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Influence of Size Effects and Interface Thermal Resistance

on Heat Conduction of Superlattice Nanowires

Student Tung-Chou Hu Advisor Dr. Hsin-Sen Chu

Institute of Mechanical Engineering

National Chiao Tung University

ABSTRACT

The size effects on thermal conductivity of superlattice nanowires with circular
cross-section are investigated. The effective thermal conductivity of superlattice
nanowires is predicted by using equation-of phonon radiative transfer. The inelastic
mismatch model (DMM) is applied to simulate the mterface thermal resistance. The
effective thermal conductivity of superlattice nanowires is dependent on temperature,
the diameter, the periodic length and.the-velumetric fraction of the constituent
materials. The results show that the effective thermal conductivity of Si/SigeGeo1
superlattice nanowire is reduced by a factor of 3 or 2 by correcting phonon mean free
path. As the result of radial and axial size effects, the effective thermal conductivity
of superlattice nanowires decreases with reduction of the diameter and the periodic
length. When the periodic length is smaller than the diameter, the interface thermal
resistance plays an important role on heat conduction of superlattice nanowires,
however, as the periodic length increases, the dominative degree of interface thermal
resistance gets more and more slight. When the periodic length is smaller than the
diameter, the heat conduction of the superlattice nanowire is analogy to of the
nanowire. In this regime, the lower the atomic percentage of low thermal
conductivity material is, the lower the effective thermal conductivity of superlattice
nanowires. The results of this study can be used to develop high efficiency

thermoelectric materials.
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b : bottom

bound : boundary scattering

c : circle

collsion * Fi-3&

defect : Scattering between phonon and defect
eff. : effective

k% kR

p * period

ph—e : scattering between phonon and electron
ph— ph * scattering between phonon and phonon

¢t - top
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acoustic mismatch model ~-gj # SMAMM) » 3% & f 7B T I g A
B ARG AT FR e

14 2A~FF3p %

1990 & rt sk » L EREFE AR HaE N 0§ K EER AR L
PARARF R AATEE SR TET > B 1-4[35]% 1950 &£ 1 2000
E300KEARTHTREAEE T RS DA A SR T HE
FENRTBEORS EL e SEHRERBET G RS
Fi o By B RERITES Topd EE S B E e Y
WL R A T Y- 2R o P i RA R AR ARBE
Gefeents B SR B RS AR R A B PR T H
Fz = o A I Z B EAR kS B AR S 5 e st



AR AN AR P - FHRLL B2 RO FHER B
EEEAWFHEE A REGEPE DT LAITEREE ARE L
REAAMAFPGF L2 0 E-HFTEHEF TSP G H

B 4B T & e 88 2 Matthiessen LR 13 & Ml ehT 308 d 2o

-

T BB BB b L Sl i & HOBLE BT MR B %
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211 #f S+ A AT

Free electrons Phonons Photons
.. . Atomic
) lonization or Lattice
Generation o ] ) molecule
excitation vibration ..
transition
Propagation In vacuum or i In vacuum or
. . In media only .
media media media
Statistics Fermi-Dirac Bose-Einstein Bose-Einstein
Frequency 0-% 0-w, 0—oo
Dispersion E=1o"/(2m) E=E(w) v=c/A
\elocity
~10° ~10° ~108

(/)




HALA

T +AT T

AV

B 1-1 F0srck ( Seebeck effect) 7+ %, B

HEA

T, + AT

Bl 1-2 34 f v (Peliter effect) 7+ 2 B
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® (TEcooler) 1

&4

E

B 1-3
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(ZT)EDDK

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

A. Bi,Te, and alloys with Sb, Se by loffe

B. Bi,Te, alloy by Wright

C. Doped Bi,Te, by Landecker

D. Bi,Te, Quantum-well by Hick and Dresselhaus

E. Bi,Te, by Ghoshal OF
F.Bi,Te/Sb,Te, SL by Venkatasubriamanian et al.

G. PbSbTe/PbTe QDSL by Harman et al.

ol

B o =
® D E
e o
A C
1 1 ] 1 1

1950 1960 1970 1980 1990 2000

Bl1-4 300K B A T#%7 BiET L& kg E[35]

Year
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2010



= :@_\g Av’}"’r

B BRPE s FRBTREAZNCR SR ARG A
172 BFHLT cpE A @I % > AP E ¥ Majumdar [8]3F 1993 £ &
TR - AT E N A GBI hoa A BT i a4 B N
( Equation of phonon radiative transfer ~ i # EPRT )» :&- # 4& /4 T =
MR A - AR HHERD S B P oL
AN B R AL o gLt o AZ R R F N ARE D A R L
Foo #res ¢ FEBERA @ﬁ%lf% 2o P FREBMAN S IEHE AP
FRET A R OEAHE AR BIEHA SR R PR

2.1 B3 §5 544 8 el

ELEMALMEY D EFTIRAS G 2 RS FIET
ezt 4 % fie (Distribution function’) «5 Va8 Flire & 5 (Bose
-Einstein distribution ) » ek 3+ s i S fedp i o @ ABRLE R T 0 &
APEIZNERFPRAOTE TUBRDE S ERE TR LR
TR AR T hR B HN > S AR R ERA DD

’ %
f'_ rfvi}ivmﬁnﬁ'{’ldgﬁl}fﬁayﬁi

gx’{

\

)i I PSR I s s YA TR :

MEEER R T LA T L (L) o gL 4 B Y e Liouville %

o F - g 4p 3 F (Phasespace) i - B & W #o o~

\i

R e U SR e SEIE Y £ LT R
N Y T TR
P V5.5 fa-v.f=0 (2-1)

dt ot

15



AR o B R AR > A S BT E il DA

L/ af+v V. f+a
dt ot

7)
f [ 5t collisions

’,\J‘i

collisions

ARTISTE Al i = ) e M ePE <

T

A N ST
ﬁiaal * #23¢ (Boltzmann transport equation ~ f§ £ BTE )

7~ FV; &«FI ’ ':F]l}b-é‘:

Majumdar #-pt = f25% i 3t L ER{e A TR Ha 2 RS
S HS A T AGBHA Y RS B R RTEE > B R ¥

B TV

Eg UNTE
o,

o (5
at 5t collisions

(2-3)
ks B AR DA S AT B R R AT R AR T
BHoos 0§zt

LB SRR IT 0 Bk A B B IEPER R
R T v B3 g,
T g IF AL

SRR < 2
( Relaxation time approximation )

(£
é‘t collisions

Iy

H ¢ foﬁl.}iﬂ%@—rg—ﬁg\

(2-4)

I i r»t/ﬁtuﬁ@%] AR
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NE A
O_
16fw+év~vffw=f” S (2-6)
v Ot Vi,

RBBEI A L LT 7 BT hig st B (Intensity) 7, %57 5 ¢
1,(0,4.r.1) Zv(9¢)f (r.t )hoD(w) (2-7)

HY 50¢) s Er28ep@g) 2wtk ie®  nad P ¥k
i (Planck’s constant ) “/T‘ Y127 o D@y EE A T ahis % & (Density
of state)» (2-7) ;%\~ Tfakﬁ PEEFCE R EH AT RS
(IR Gl £ T o U o ﬁﬁ*‘uz‘@“ Pirarenk 55 B enE g o AN

fd- (2-6) Nk F S8k kY vhoD(w) » T 8 F4eT g g5l

0 —_—
14, +év~V;Iw=I’” &
v Ot Vi,

(2-8)

#7183 9 (2-8) 3¢ jeR Majumdar [8] & 1993 & 74 o1 % s {f 5
#ih R (EPRT) 7 2% A MG BT o MR N BT LA
2 ?g@\;—l B F S o
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22 B K- AFHES 5B BA

221 B - e hB5 4554 @i 250

=Lk A EHCR AR 2-1o d B IR R S S
#& & (Polar angle) @ ~ = = & (Azimuthal angle) ¢ % $hw £ B z &9

Sl o B 4R SRR TR S P T

ZV.V]wzd]’” al dr+81wﬁ+8]_w%+%%

(2-9)
ds oOrds 00 ds 0¢ ds 0z ds

HY It BI09 k- b p o i s Fpt 75 5 B 4 il

0> 238 &7 40T ¢

ﬁ:sin€cos¢ (2-10a)
ds

49 _g (2-10b)
ds

d¢ _ sinBsing (2-10¢)
ds r

%zcosﬁ (2-10d)
ds

#-(2-9)~(2-10a) ~ (2-10b) ~ (2-10c) ~ (2-10d )  » = f75% (2-8)
[
ol, sin@sing dl, or, I1°-1I

- +c

0s—2 =-2 " (2-11)
v Ot or r o¢p Oz ViR

18



?_2" :_‘él\'-"—"‘
0
vo r| or r| O¢ oz Vi,

H ¥ y=sinGcosp ~ n=sinbsing ~ E=cos@ > » W 5 = B EFfhih>

#5% (Direction cosine ) o T frhk fe B3 5 55 B T& 5 ¢

I° :%J.deQ (2-13)
T

P AR S A (Graybody) B gt R ST AN 0 © &
< rj‘ay},%'. %ﬁi—"——’;’ﬁ@ﬁ;@ EFRERR e A T8 5 0 ﬁ’ﬂ?’ o T 2

\

f2 it
( ( ) 1 1 dQ—1

ﬁ{arl )}_1[% } 5{@}:4;; > (210)

r{ or r| O0¢ oz Vig
L - AR AR R B et o H P s T R 2R
BRE @i d T 7k R RE

0 0
ar _ 1 e vmha)D(a))ida) _ve (2-15)
dT 47z dar A

HY @, &40 # L 4F % (Debye cut-off frequency) > C 5+t #

( Specific heat) » v 7 &3 #:& (Group velocity ) -
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222 B R - aFatk sz g Rhigie

Ao ARl ARz e B = Rl RER > B4 (2-15)

FRN TG G T O R SRR o e
1= 1(r) =0 (2-16a)
Io1T) =1 (2-16b)
]:IO(T'C) r:R (2'160)

[(rzO*)z[(rzO’) (2-17)

2.3 B o # e

«T | B g*,‘g,.&;j"ti [ T EEAN o )é] “‘“]‘#.’ &R AR B AT ST R BE 4
PR 0 d R R B N Y T e B il 0 £ 2
TR BIEGEE 0 R 2-20 B TER 6 o FIH AR A
%ﬂgiﬁ%mﬂvﬁﬁﬁﬁi?éﬂ&’ﬁf—%@mgﬁiﬁ

b Flm AR @ kA 4 8% (Temperaturedrop)e & # ez & 5 ¢
R =2 (2-18)
q

HeATZ R o B RL  grE o i g o

7 57 45 1[10-13, 28, 31-34] % & £ re g4 iR E ey P A D
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%’HTﬂ”*ﬁ%Fm%m ERLECRISPE NI St 2EX.
ERNE B BN S FER E U LR R RER £
o st o b B R LR 05T -

mh

2.3.1 BR @m0

-2 4 -7 (Acoustic mismatch model ~ i 2 AMM ) &_d  Little
[31]>F 1959 &4 » B B Ao s R 2kFde > Fo HE>Ed
SATHrig F ch e B SR 6 AU BT AR R 2 L% A 3 T
B HBESHETE2FEL 2 MR E R ALY

e Snell’s Law :

sin, _ sinb, (2-19)

V1 V)

R N

2

YAYTRE VAT
R —|Zv ez 2-20
12 (441) Zon + 7, ( )
_ A2, 7, u, 2.21
a(t4) (Zi1y +Zzﬂ2)2 ( )

BPou 52 eaRiE o Z=py, & M ¥ (Acoustic impedance )
p» A H AR (Density) v i #8833 o v+ (2-19) fr (2-20)
B 3% A P4 A A 84iE 47 (Elastic scattering process) ¥ i * o

TR F M AT e MBS S AR 0 3 TR 4 e 7]

AT SN

21



Ry (1,) = Ry, (14y) ( 2-22 )
Tou(Hy ) =Ty (1) (2-23)

W2 T 7 4 1 [33] AMM B ehAERl B G A E IR R T B 8
EE A “ii%iﬁ)i eht = B p Fp b ondg el i a AT R o de sk
BPr > @A TR @A e R 0 i L ARSI R R ko
1998 & Chen [13]i& - # 3 g L3584 $7 8438 42 ( Inelastic scattering
process ) > » & & &2 4ra4 & 4 A pRGE_Snell’s Law » @ 7\!—\_5 P 2 B

24 A .
% 5Nl

, %
sint, _ (%J (2-24)

sin @, Cv;

P AR MGE R AL o b A O PRI el M TR AR AMM B

- 3R o

2.3.2 $7 R EH N

F7 R =% #-5¢ (Diffuse mismatch model ~ & # DMM ) #_d4 Swartz
¢4 [32] 1989 E & A fr AMM A B o 4 B B AR 6 A
AR e BT BREFSER P EIERT U TES AR
Bt H o RO - %lehp e Egd FAERAF e ko Fp TG

HAF I LT HN AN

T =Ry =1-17, ( 2-25 )

22



TR B Pk T @'_r (Deta” ba|ance> ] 0 B R H >
%ﬁf%'r a«lﬁ.@&#ﬁ I ' ho B3 ’$%’?1m§~+§ig.u;§zﬁ%~
R AR 2 enB i

Zvlm im a) T)le ZVZm 2m (a) T)721( ) (2-26)

By, e FRHE (Mode) T B ehiv2d & > ficlim 7 e
( Transverse ) frii® (Longitudinal ) = #& > N, Bl E B Ap e B R T i
F0 B MBS lkE o 417 (2-25)0 ® AfhTiT i (Debye

approximation) T {# 3| F % F ek op 40T

2 Van
T = 3 (2-27)

Dk + > Vo
m m

g ET I AR B A B A G v 0 3 F_1998 # Chen [13] ¥ ¢t
d (2-15) ;2 B AP BRERC I A UEINLRTARL - ¥ Ho
FraRE s #2 Fal GieT
vC\T-T
Io=—( ) (2-28)
Az
BaPe s g HPER TR B E  TEET S Fhi 0

e T

23



G,
Clul + CZUZ ( 2_29 )

T

P HREERY > BRI OEIONTERG B EFR G L2t
SH TSt 0 Fopt 5 ZRSE M AT A 58 (Inelastic diffuse mismatch

model ) -

2.3.3 $rht BB L H

e B BB 12 35 $0 ;8 ( Scattering-mediated acoustic  mismatch
model ~ & f SMAMM ) £_2001 # d Prasher {- Phelan [34]+* # EPRT
o ERT 17 e - 4 1 L AMM B3 A 20t eh e #1325 o

AMM #0584y dscjid & o I > 0s § fosa ki 2 R 6 #

(2-30)

d s g (2-30) Rz sl HY 9L R Al Him

) EATE AR - & B (Effective velocity ) v 4™

\% \%
V= = 2-31
Y i % a'+ib’' ( )
Sw
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it & 2T & 2K i Snell’s Law
Vv, 8in@, =v, sinb,

Bdrét d 9,00 ~ b+ 4 9 & T

Bl SMAMM 1% 35 F 2 F SF de™ L

{cos@l , A T {cos@l , B T
—ay——— | H———at—
R(el): ke P2 P P2

{cos@l , A T {cos@l , B T
a1+7 + 7(11—7
PVi P2 PV1 o

7(6,)=1-R(6,)

H¢ A4 B AR (2-35) g ik Bn A -

25

(2-32)

(2-33)

(2-34)

(2-35)

(2-36)

(2-37)



24 5 k- afliLE T+ st

241 3 k- R E3 HaE g a8

d AP AT B S AR S H B K A Bt Rk B - F
2 ot A - MRS RHED S RN D R B
4ol 2-3 97 2 ARl e B AL S R K RS A S faH
e E A wlck NERY LT BBk BRI L A
Foom - k- MR EVARL - A - BRI ko i 22 &0

B e A7 5Y o e T T

1
M a(ﬂk) 1 a(ﬂlk) & oL, | Max arly 21
r| or r| o¢ 0z -

Ao TS LN KK Rk e

k=12,..,K (2—38)

242 5K - LR L 2 f R ax

i%%ﬁ%?ﬁ%%ﬁﬁ%ﬁ@ﬂ?ﬁ&ﬁﬂ,%#%ﬁ%iﬁ
sl R A N ARV E S A PR S 3 e SRR s

BB AR g BT S kAR

J.le 1,dQ = J.M Rk,k+1[k+dQ + J;ﬂ Thopd 2 dQ ( 2-39 )

_[ I;.,dQ = L” Ry g dQ+ J;” Tyl A (2-40)
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Ho [t e A DS e BT R 0 - Ao AARF % BT

R TRk frAALA B R A F LK R F kLA BT R R Aol By

FhE AT BT R R o R, R, A BN E BT kR
Fh+1E M E EF kIR E N FhkE F BT o o v, AR ERE

24

TP RBE N Fh+ LR B B kIR R AT ES -

ﬁféigﬂf%f 111*222:12*?]1\?” PT%?‘\}:KT‘JL,L\%Y‘—QL"T:

(2-41a)
I, =1°(T) z=1L (2-41b)
F% P enaGg F R iF & 4o
I,=IT) r=R (=12 K (2-42)
¢k AL R E AT
1r=0")=1,(r=0") k=12,...K (2-43)

25 B+ o d Fanig

\(:

ik 2-2 & e s ‘a‘_lﬁ]ﬁfi‘fﬂﬁ‘*i&ﬁd"g@ gz w
Gei > F AP - RS A AL R B e § R 2
BHE S M B BTG BT Topd o HY BT

Boh o BB E ARG A N B R E R TR
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R AT e B A D AR (A, ) R 5 Rk

B3 RO (A )~ B 32 2 8T (A ) 2 BF e+ B e

FebtiE A2 (A, ) 1% Matthiessen’srule 3> & @ # 5] o § #r% £ eh

B SO AR S R W R AR TR0 o D AR Ar A

m@@#ﬁﬁ%ofﬂﬁ%*?%§+i%ﬁ#miﬁﬁﬁ EEA

et A PR R AT HBERTER o H - > 1+ £ Kinetic theory

A I B (ER) TEI R A s 5 Ee o v R

FTEaR A T (A ) AR R L GEY B EE - 2 F B
SR A B T30 d I B A R A A e ¢

BaF AN HEL N R o F oh s A @;5%[21,23,24]4 ®I o EZEAZ

RHREFRY O E RS E e B S H BB G Ml

LR F12— o FP o 30 AR AT R i B B I 5 o T S BRI

Rl L= i

Bk T+ fris R Eni x o

WEE B 9 A 300K BT 5 fovk 23 $1 8 o

Bk BT R ot F a B o

FI1* Matthiessen’s rule » g & B fethlp 0% | b s

A w0 -

i & T3ap d g2 0 deT s R - B kS Tiop 4

1 1 1.1 (2-44)
Abulk L R

Ae_/j"ect
He chl SHEER R AHPLI T o A2 AL 3 BHIL N ¢
+ o Hd AT B O ko i R F a1
BT Eopd mAn g o @R g S B PR AT B RE

HAle i s Tampd
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B 2-1 = BEHLAHE %
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Heat flow

pH A Hi B

B 2-2 Ko #res L@

30
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= N EEA T

3.1 SNiT i

d AP e e 425N e (2-14) 38 & - FEakA 2 423¢ (Intergral-
differential equation) > 5 7 > 2§ > WA 2 H & - 2R %5 {5
Sl S AR o A2 g 5 17022 [36] (* f The discrete ordinate
method ) #-%+ {5545 & # = %8 & (Solidangle) sff ~» U N B A~ &
fpteiTi o & - B R AR OEE FIF (Quadrature
weights ) » 4= F :

jldQ ZWm . (3-1)

HY T AT oW B om A 5 E e #(31)

RO ARS (2-14) o FEIIN B AR

m=12,..,N

r| o | r| o o T

r

(3-2)

d *> = 5 43z g (Directional consine) - #gsceh > f* ¢ & X o2

( Central differences scheme) k2 28 % = 38 » 2 7 2 Bl4cB 3-1 -

o 1 - I
{5(77,”1,”)} il Tnheh L 4o N (3-3)
09 oy "

m
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"t =%(]m +1,.,) (3-4)
I, :%(Im_l +1,) (3-5)
a, =0 (3-6)
@1y = WA, (3-7)

% (33)~(3-4)~(3-5)~(3:6)(37) & » (32) 7 @ :

1 N
r — I1,-1
61/71 /’lm am+%1m+1 am_%lm_l 6]”1 472- ;Wm " "
lum — |T _Im - e gm =
or 2r 2w, r Oz Vig

m=12,...N
(3-8)

Ho SR ZRY hS w2 T ik £ 3-1[35] -

32 $ k- AR ETEHHE B8 2 iz
BERIE R AT 0 B - B2 s S fre o et (3-8) 5 e
e sE R4 * 5 T4 4 2 (Finite difference method ) 4 f& > d »+ 8 =
Ao e A B RIABAEIE - %' (u>0 E>0) BE
W % fhe w1 * {5 £ 4 (Backward difference scheme) ZJZ ; % = %
T (u<0~&E>0) pf@m i £ 4 (Forward difference scheme) 2o
o fhe PR 8 EAAIE 5= %' (u<0~ E<0) Aifw 2 g
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wE R AT S T (>0~ E<0) AR EE A
fhe & * 3 LA Rl o

- % (pu,>0~& >0)

a I ... —a I ...
Loig = Lmiay yHm me Yo ML) ey mAL n Loy iy

m,i,j
Hn Ar 2r 2w, r En Az
1 & ( 3-9 )
T Wm]m ij ]m i
4r = " !
Vi,

¥ (3-9) ApHERTE (3-10) 0

I, =

1
R U S -
%r—l_ %r+ %z—l_%t,e

am+ 1m+1,i,' _am_ Im—l,i,' ! N
ﬂ—’”lmH/Jr Yo " 2 2 +§—’"I,MH+ S wol
Ar 2w, r Az Anvt, o
(3-10)
52 %% (p, <0~ & >0)
Im,i+l,j —[m’i’j My a,ﬁ%lmﬂ,i,/‘ - am_%lm—l,i,j ]m‘i‘j + Im’i’j_l
My ———+_— +&
Ar 2r 2w, r Az
1 X (3-11)
T Wmlmi j _Imi j
Y " "
Vi,

#(3-11) e e E (3-12) ;¢
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[mij = 1 é: X
" _u,,/ u,/ ,,/
A2 Az+%tR
aer Im+1,i,' _am, [m—l,i,‘ N
_ﬂ_mlmi+l‘+ % . % j+§_mlmi‘—l+ 1 Zwmlmz
Ar " 2w, r Az " Aave, o "
(3-12)

5= %% (pu, <0~ & <0)

m + + m s
Ar 2r 2w, r Az
1 & (3-13)
e Wm]mi j _]mi j
_ 472_ ~ iy )
Vig

¥ (3-13) A ey # . (3-14) &

L, = L [y
Y, +ﬂ,,/ _cf,/ N
Ar 2r Az~ /vty

aer Im+1,i, i am_ Im—l,i, i N
Iu_m]mi-%—l‘+ % - % J_é:m Imi‘—l+ L z m= mji,j
Ar " 2w, r Az " Aot 4o "
(3-14)
S % (g >0~ & <0)
Im ij Im i-1,j H am+%1m+1,i,j B am_%lm—l,i,j § ]m i,j+1 + Im i,j
., ’ ) + m. + WL, S
K Ar 2r 2w, r " Az
1 N 3'15
T wmlm,i,j _Im,i,j ( )
— 47[ m=1
Vi
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#-(3-15) ;' #oEEET 7 (3-16) ;*

[mij_ 1 X
" un/ +u,/ _é,/+
Ar 2r Az~ /vt

am+ Im+1,i, i am, Im—l,i, j 1 N
ﬂ_mlmi—l‘_'_ % - % j _g_mlmi‘—l-i_ Zwmlml
Ar " 2w, r Az " Aave, o "

(3-16)

B, REEe S B e s jBRELSm BHRED w0
Sag R 0 =012, N, > j=012,. . N, o ¥ J|* Fif#ri8 (3-10) -

(3-12)~(3-14) 2 (3-16) ;S amisdic™ 4255 ad® = 4L A 1R % 30
T R AT o e d %?:HI;L%:E Sl O (r=0) kR Y i E

SRS 0 A AR o il PG
1 (2-11) 5% - f815 Py, 43 450F 5 2 $PF 08 1 5 0

Jj\,gglﬂal"—r ’ %—3— ﬁﬁf%ﬁ&ﬁﬁgj:ﬁ‘rﬁg ) ?/ig—r ;\: :

o _naol, .ol I°-1
”ar r 0@ oz Vi g (3-17)

¥ (3-17) A kr o Ar=0F71 :

ol
— =0 (3-18)
77 a¢ r=0

FI(3-17)8 s % r=0pF> 285 - IR %G‘] i * L’Hospital
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rule » ¥ {F4c™ 3 485\ ¢

(3-19)

Al (3-19) N2 P £ fh (r=0> Fi=0) R - kAL 3w
B gt * G UL R JT A TR o

- % (pu,>0~¢& >0)

m,0,j
_l_
2 Ar S Az
1 N
—>>yw ll . =1
1 Im+l,0,j Im+l,—1,j Im—l,O,j Im—l,—l,j Az Z:‘I om0 "0
2w, mk Ar "2 Ar Vi,
(3-20)
# (3-20) ;*#mEEy # (321) &
1
I .= X
2Ar Az /vt
3u ¢ 1 < (3-21)
—n] o+ —D>w [
ZAV m,—1,j AZ m,0,;-1 472'VfR ; m* m,0,j
1
+ 2w Ar (O‘M% (Im+1,0,j 1, )_ a’"‘}/z (Im—l,O,j =1, )j
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3,um ]m_l,j _Im,o,j +§m Im,O,j _Im,O,j—l
2 Ar Az
1 N
— > w il . —1 ..
1 Im+1,l,j _Im+l,0,j Im—l,l,j _Im—l,O,j Ar ; e "o
2w, | "2 Ar "2 Ar Vig

(3-22)

#(3-22) *pmEREy # (3-23) &

1
I .=
" :
2Ar Az %tR

3/“ 5 1 o ( 3-23)
-, +==1 . .+ w I ..
2 fl" ml,j ‘ m,0,j-1 1 tR ; m* m,0,;j

1
2w, Ar [a’"*% (I"”l‘l'j Loy )_ TTY (I w1~ Inao; )j

—+

5= % (pu, <0~ & <0)

3,le Im,l,j - Im,O,_/' + é:m ]m,O,j+1 - ]m,O,j
2 Ar Az
1 N
—> w il . —1 ..
1 Im+l,l,j - Im+l,0,j Im—l,l,j - Im—l,O,j A ; om0 "0
2w, | ™k Ar "t Ar vty

(3-24)

¥ (3-24) A #Hmpme F (3-25) ;N
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1
I . =
m'o’-/ —_ 3ﬂr/ —_ ér/ + *
2Ar Az %tR

3u 3 1 < (3-25)
-y -7 o +——>w I .
ZAI" ml,j AZ m,0,j+1 47ZVtR ; m* m,0,j
1
+ 2Wm Ar (am% (Irn+l,l,_j - Im+l,0,j )_ am_% (]m—l,l,_j - Im—l,O,j )J

g % (>0~ & <0)

2 Ar Az

#(3-26) A #EEFRTE (3-27)

1
I, = X
e B,

3u £ 1 (3-27)
~! =1 o +—>w I .
ZAV m,-1,j Az m,0,j+1 47Z'VtR mZ:l m*m,0,j

1
2w, Ar (a””% (I’"”’O'j B I’”*l"lJ )_ am—% (1’”‘1:0,} -1 m-1,-1,; )j

—+

#- it (3-10)~(3-12)~(3-14)~(3-16 )~ (3-21)~(3-23)~(3-25)
20(327) %% g2 5 K - AR S B a4y KRR T &
MR R R
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L,=1,),z=0, &, >0 (3-28a)

I, =1°T),z=L, £, <0 (3-28b)

I,,=I1T),r=R, u, <0 k=12, K (3-29)

# ok A R

1,00,u,,¢)=1,0-u,¢,) k=12,..,K (3-30)

}élbt:}é] ¥ ehge & < §§lu+l—— | i # (239); (240) X .

d AT R AN e R

&

v H ETendp (X 2

(b T3 A fACHE B RS A G R R
R L U S R Y 2SR S Sl
1opia =1L ep| < error (3-31)

H Bl > JE LB 4o B 3-2 o
BEFEFVD THrig st A2 Rl %N (2-15) wiEEIER A

\\

i vd TN g didhe il § (Heat flux) o
= mewmlm ( 3_32 )
m=1
SO qcA MR R G A d B2 H B E T R K- e

& »e# @ 3 i fc (Effective thermal conductivity ) 40
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kz,eff'ect =dq. %T (3'33)
5K = MFIHLE RN 38R 6 #ue (Interface thermal resistance » R, )

Gt E sz‘é'l b"i%] BF TR o AP g = £ > IRAR 4 o %‘t AT

T 0 Ao T Ao

R =2 (3-34)

HY k=1~K-1>FZKkF K-1B k5 o3+ 5 %# e (Total thermal

resistance » R, ) ®_d i IR R R 7},_“/]“ R ATl

R, ="t (3-35)

M Fl 5 FAL A Eoarid & et B ((Material resistance 0 R, ) B¢
EA IR F L N I 2 L

R, =R, —R, (3-36)

Ao 3B g S el S 75 4 3-2[8,28] - 3-3[13,37] -

33 Bie > E2 %%

TR TIER TR B A Y S R A B BB E W

[Z]
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% 3-1

- LSy v ATz o £ S0l 4 [36]

u

4

w

0.5 0.5 3.141592654

Ry -0.5 0.5 3.141592654
2 0.5 -0.5 3.141592654
-0.5 -0.5 3.141592654

0.2958759 | .0.9082483 | 1.047197533
-0.2958759 | ~0.9082483 | 1.047197533
0.9082483 | 0.2958759 | 1.047197533
0.2958759 1 { ~0.2958759 | 1.047197533
-0.2958759+.| 0.2958759 | 1.047197533

S -0.9082483 | 0.2958759 | 1.047197533
4 | 009082483 | -0.2958759 | 1.047197533
0.2958759 | -0.2958759 | 1.047197533
-0.2958759 | -0.2958759 | 1.047197533
-0.9082483 | -0.2958759 | 1.047197533
0.2958759 | -0.9082483 | 1.047197533
-0.2958759 | -0.9082483 | 1.047197533
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%32 %38 (300K) T Heni A 4 E[8,28]

Diamond Si Ge
wgckaors/ ) | 181 | 0926 | 0.866
i o) 12288 | 6084 | 3662
TI5h § 4T AGm)s| 447 79 50
%R A*/,) 2| 8510 | 2329 | 5323
#g a1 3320 148 59.9
WATE R T,(K) | 1860 | 625 360
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% 3-3 238 (300K) T Hlenf A % [13,37]

GaAs AlAs Bi,Tes; | ShyTe;
ek, )| 171 1.58 122 | 1.338
g o) 3700 | 4430 | 3058 | 2888
T390 o TAGm) | 2008 377 | 0482 | 0.466
%A o(*8/,) | 5318 | 8830° | 6505 | 7860
B g/ )| 56 84 0.6 0.6
IR R T,(K) 344 47 165 160
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