

(b) Ra=470 ($\Delta T = 5.0$) & Re_j=1,150 (Q_j=8.5 slpm)

Fig. 4.18 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ for Re_j=1,150 (Q_j=8.5 slpm) for various rotational Reynolds numbers at H=10.0 mm for (a) Ra=0 ($\Delta T = 0$) and (b) Ra=470 ($\Delta T = 5.0$), (c) Ra=940 ($\Delta T = 10.0$), (d) Ra=1,410 ($\Delta T = 15.0$), and (e) Ra=1,880 ($\Delta T = 20.0$).

(e) Ra=1,880 (ΔT =20.0) & Re_j=1,150 (Q_j=8.5 slpm)

Fig. 4.18 Continued

(b) $D_j=22.1 \text{ mm \& Re}_j=61$

Fig. 4.19 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 1.0$ slpm and $\text{Re}_{\Omega} = 0$ ($\Omega = 0$ rpm) for (a) $D_j = 10.0$ mm & Re_j=135 and (b) $D_j = 22.1$ mm & Re_j=61.

(b) $D_j=22.1 \text{ mm \& Re}_j=184$

Fig. 4.20 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 3.0$ slpm and $\text{Re}_{\Omega} = 0$ ($\Omega = 0$ rpm) for (a) $D_j = 10.0$ mm & $\text{Re}_j = 406$ and (b) $D_j = 22.1$ mm & $\text{Re}_j = 184$.

(b) $D_j=22.1 \text{ mm & } Re_j=306$

Fig. 4.21 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 5.0$ slpm and $\text{Re}_{\Omega} = 0$ ($\Omega = 0$ rpm) for (a) $D_j = 10.0$ mm & $\text{Re}_j = 676$ and (b) $D_j = 22.1$ mm & $\text{Re}_j = 306$.

- (b) $D_j=22.1 \text{ mm \& Re}_j=61$
- Fig. 4.22 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 1.0$ slpm and $Re_{\Omega} = 778$ ($\Omega = 10$ rpm) for (a) $D_j = 10.0$ mm & $Re_j = 135$ and (b) $D_j = 22.1$ mm & $Re_j = 61$.

- (b) $D_j=22.1 \text{ mm & } Re_j=184$
- Fig. 4.23 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 3.0$ slpm and $\text{Re}_{\Omega} = 778$ ($\Omega = 10$ rpm) for (a) $D_j = 10.0$ mm & $\text{Re}_j = 406$ and (b) $D_j = 22.1$ mm & $\text{Re}_j = 184$.

- (b) $D_j=22.1 \text{ mm \& Re}_j=306$
- Fig. 4.24 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 5.0$ slpm and $Re_{\Omega} = 778$ ($\Omega = 10$ rpm) for (a) $D_j = 10.0$ mm & $Re_j = 676$ and (b) $D_j = 22.1$ mm & $Re_j = 306$.

- Fig. 4.25 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 1.0$ slpm and $\text{Re}_{\Omega} = 1,557$ ($\Omega = 20$
 - rpm) for (a) $D_j = 10.0 \text{ mm} \& \text{Re}_j = 135 \text{ and } (b) D_j = 22.1 \text{ mm} \& \text{Re}_j = 61.$

(b) D_j=22.1 mm & Re_j=184

Fig. 4.26 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 3.0$ slpm and $\text{Re}_{\Omega} = 1,557$ ($\Omega = 20$ rpm) for (a) $D_j = 10.0$ mm & $\text{Re}_j = 406$ and (b) $D_j = 22.1$ mm & $\text{Re}_j = 184$.

(b) $D_j=22.1 \text{ mm \& Re}_j=306$

Fig. 4.27 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various Rayleigh numbers at $Q_j = 5.0$ slpm and $\text{Re}_{\Omega} = 1,557$ ($\Omega = 20$ rpm) for (a) $D_j = 10.0$ mm & Re_j = 676 and (b) $D_j = 22.1$ mm & Re_j = 306.