CHAPTER 3 DIMENSIONLESS GROUPS AND UNCERTAINTY ANALYSIS

3.1 Dimensionless Groups

The non-dimensional parameters associated with the flow considered here are the jet Reynolds number Re_i based on the mean gas speed V_i at the injection pipe exit and the exit diameter of the injection pipe D_i , the Rayleigh number Ra based on the temperature difference between the heated disk and inlet gas T and the jet-to-disk separation distance H, and the rotational Reynolds number Re_{o} based on the disk rotation speed Ω and the radius of the heated rotating disk R_w. They are defined as

 $- \sim$

$$
Re_j = \frac{V_j D_j}{\nu} = \frac{4}{\pi} \frac{Q^2}{\nu D_j},
$$
\n
$$
Ra = \frac{g\beta(T_f - T_j)H^3}{\alpha \nu} = \frac{g\beta\Delta T H^3}{\alpha \nu}
$$
\n(3.1)

and

$$
Re_{\Omega} = \frac{\Omega R_w^2}{V}
$$
 (3.3)

where α is the thermal diffusivity, g is the gravitational acceleration, β is the thermal expansion coefficient, and ν is the kinematic viscosity.

3.2 Uncertainty Analysis

An uncertainty analysis is carried out here to estimate the uncertainty levels in the experiment. Kline and McClintock [52] proposed a formula for evaluating the uncertainty in the result F as a function of independent variables,

 X_1, X_2 X_2, X_3, X_4

$$
F = F(x_1, x_2, x_3, \dots, x_n)
$$
 (3.4)

The absolute uncertainty of F is expressed as

$$
\delta F = \left\{ \left[\left(\frac{\partial F}{\partial x_1} \right) \delta x_1 \right]^2 + \left[\left(\frac{\partial F}{\partial x_2} \right) \delta x_2 \right]^2 + \left[\left(\frac{\partial F}{\partial x_3} \right) \delta x_3 \right]^2 + \dots \left[\left(\frac{\partial F}{\partial x_n} \right) \delta x_n \right]^2 \right\}^{1/2}
$$
(3.5)

and the relative uncertainty of F is

$$
\frac{\delta F}{F} = \left\{ \left[\left(\frac{\partial \ln F}{\partial \ln X} \right) \left(\frac{\delta X_1}{X_1} \right) \right]^2 + \left[\left(\frac{\partial \ln F}{\partial \ln X_2} \right) \left(\frac{\delta X_2}{X_2} \right) \right]^2 + \dots \left[\left(\frac{\partial \ln F}{\partial \ln X_n} \left(\frac{\delta X_n}{X_n} \right) \right]^2 \right]^{1/2} \tag{3.6}
$$

If $F = x_1^a x_2^b x_3^c \dots$, then the relative uncertainty is

$$
\frac{\delta F}{F} = \left[\left(a \frac{\delta X}{X_1} \right)^2 + \left(b \frac{\delta X}{X_2} \right)^2 + \left(c \frac{\delta X}{X_3} \right)^2 \right]
$$
(3.7)

where $(\partial F / \partial X_i)$ and δX_i are, respectively, the sensitivity coefficient and uncertainty level associated with the variable X_i . The values of the uncertainty intervals δX_i are obtained by a root-mean-square combination of the precision uncertainty of the instruments and the unsteadiness uncertainty, as recommended by Moffat [53]. The choice of the variable X_i to be included in the calculation of the total uncertainty level of the result F depends on the purpose of the analysis. The uncertainties for the chosen parameters are calculated as follows:

(1) Uncertainty of the measured temperature difference, $\Delta T = T_f - T_j$

$$
\delta(T_{\rm f} - T_{\rm j}) = [(\delta T_{\rm f})^2 + (\delta T_{\rm j})^2]^{1/2}
$$
\n(3.8)

(2) The dependence of the air properties k, μ , and ν on the temperature (T in K) [54]

$$
k = 1.195 \times 10^{-6} T^{1.6} / (T + 118)
$$

\n
$$
\mu = 1.448 \times 10^{-6} T^{1.5} / (T + 118)
$$

\n
$$
v = \mu / \rho
$$
\n(3.9)

The uncertainties of the properties are

$$
\frac{\delta k}{k} = \frac{T}{k} \frac{\partial k}{\partial T} \frac{\delta T}{T}
$$
\n
$$
\frac{\delta \rho}{\rho} = \frac{T}{\rho} \frac{\partial \rho}{\partial T} \frac{\delta T}{T}
$$
\n
$$
\frac{\delta \mu}{\mu} = \frac{T}{\mu} \frac{\partial \mu}{\partial T} \frac{\delta T}{T}
$$
\n(3.10)

(3) Uncertainty of Rayleigh number, Ra,

$$
Ra = \frac{g\beta(T_f - T_i)H^3}{\alpha v} = \frac{g\beta\Delta TH^3}{\frac{\alpha v}{Ra}} = \left[\left(\frac{\delta g\beta}{g\beta}\right)^2 + \left(3\frac{\delta H}{H}\right)^2 + \left(\frac{\delta A T}{\Delta T}\right)^2 + \left(\frac{\delta \alpha}{\alpha}\right)^2 + \left(\frac{\delta v}{v}\right)^2\right]^{1/2}
$$
(3.12)

(4) Uncertainty of jet Reynolds number, Rej,

$$
\text{Re}_j = \frac{V_j D_j}{V} = \frac{4}{\pi} \frac{Q_j}{V D_j} \tag{3.13}
$$

$$
\frac{\partial \text{Re}_j}{\text{Re}_j} = \left[\left(\frac{\delta \nu}{\nu} \right)^2 + \left(\frac{\partial Q_j}{Q_j} \right)^2 + \left(\frac{\partial D_j}{D_j} \right)^2 \right]^{1/2}
$$
(3.14)

(5) Uncertainty of rotational Reynolds number, Re_{Ω} ,

$$
\text{Re}_{\Omega} = \frac{\Omega^2 R_w^2}{V} \tag{3.15}
$$

$$
\frac{\partial \text{Re}_{\Omega}}{\text{Re}_{\Omega}} = \left[\left(\frac{\delta v}{v} \right)^2 + \left(2 \frac{\partial R_w}{R_w} \right)^2 + \left(\frac{\partial \Omega}{\Omega} \right)^2 \right]^{1/2} \tag{3.16}
$$

The results from this uncertainty analysis are summarized in Table 3.1

Parameter and Estimate Uncertainty	
Parameters	Uncertainty
D_i , R_w , $H(m)$	± 0.00005 m
T($\big)$	\pm 0.2
T()	0.3
Q_i (slpm)	$\pm 2\%$
Ω (rpm)	\pm 0.2 rpm
μ (Nm/s ²)	$\pm 0.05\%$
ρ (kg/m ³)	$\pm 0.05\%$
$v(m^2/s)$	$\pm 0.07\%$
Ra	$\pm 8.6\%$
Re_i	± 2.3%
Re_{Ω}	±4.0%
1896 mmmm	

Table 3.1 Summary of uncertainty analysis