Vortex Roll	Disk rotation speed (Ω, rpm)	Flowrate (Q _j , SLPM)	Re_{Ω}	Rej				
Primary inertia-driven roll	0	0.1	0	14				
	5	0.2	389	27				
	10	0.3	778	41				
	15	0.4	1,168	54				
Secondary inertia-driven roll	0	1.3	0	180				
	5	1.4	389	190				
	10	1.6	778	216				
	15	1.9	1,168	257				
Tertiary inertia-driven roll	0	5.0	0	676				
	10 🔬	5.0	778	676				
	15	5.3	1,168	717				
	20	5.8	1,557	784				
ERITATION TRACE								

Table 4.1 The effects of the disk rotation on the critical condition for appearance
of the inertia-driven vortex roll ($\Delta T=0$, H=20.0 mm and D_j=10.0 mm).

Disk rotation speed (Ω, rpm)	Flowrate (Q _j , SLPM)	Temperature difference $\Delta T()$	Rej	Gr	Ra	Gr/Rej ²
$Re_{\Omega} = 0$ $(\Omega = 0 \text{ rpm})$	5.5	2.2	744	2,362	1,654	0.0043
	7.2	4.0	974	4,295	3,007	0.0045
	9.4	7.0	1,271	7,516	5,621	0.0046
	11.4	10.0	1,542	10,737	7,516	0.0045
$Re_{\Omega} = 389$ $(\Omega = 5 \text{ rpm})$	5.5	6.4	744	6,872	4,810	0.0118
	7.2	10.1	974	10,845	7,590	0.0115
	9.4	17.4	1,271	13,530	9,470	0.0116
	11.4	25.3	1,542	27,165	19,016	0.0114
$Re_{\Omega} = 778$ $(\Omega = 10 \text{ rpm})$	5.5	12.1	744	12,990	9,095	0.0235
	7.2	20.5	974	22,012	15,408	0.0232
	9.4	34.8	1,271	37,370	26,160	0.0232
	11.4	51.6	1,542	55,405	38,785	0.0233

Table 4.2 The effects of the disk rotation on the critical condition for onset of the
buoyancy-driven vortex flow (H=20.0 mm and D_j =10.0 mm).

Fig. 4.1 Steady vortex flow pattern in the chamber with $D_j = 10.0 \text{ mm}$ and H=20.0 mm for $Re_j = 270 \text{ (}Q_j = 2.0 \text{ slpm)}$, $Ra = 15,030 \text{ (}\Delta T = 20.0 \text{)}$ and $Re_{\Omega} = 0 \text{ (}\Omega = 0 \text{ rpm)}$: (a) top view flow photo taken at middle horizontal plane halfway between the pipe exit and heated disk, (b) side view flow photo taken at the vertical plane $\theta = 0^\circ \& 180^\circ$, and (c) the corresponding schematically sketched cross plane vortex flow.

Fig. 4.2 Vortex flow formation for $D_j = 10.0 \text{ mm}$ and H=20.0 mm at $Re_j = 0$, Ra = 0and $Re_{\Omega} = 778$ ($\Omega = 10 \text{ rpm}$): (a) top view flow photo taken at the middle horizontal plane between the disk and chamber top, and (b) side view flow photo taken at the vertical plane $\theta = 0^\circ \& 180^\circ$.

Fig. 4.3 Steady vortex flow pattern for $D_j = 10.0 \text{ mm}$ and H=20.0 mm at $Re_j = 270 (Q_j = 2.0 \text{ slpm})$, $Ra = 15,030 (\Delta T = 20.0)$ and $Re_{\Omega} = 2,335 (\Omega = 30 \text{ rpm})$: (a) top view flow photo taken at the middle horizontal plane between the disk and chamber top, (b) side view flow photo taken at the vertical plane $\theta = 0^{\circ}$ & 180° , and (c) the corresponding schematically sketched cross plane vortex flow.

Fig. 4.4 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and Re_{Ω} = 0 ($\Omega = 0$ rpm) for D_j = (a) 10.0 mm and (b) 22.1 mm.

- (b) D_j=22.1 mm
- Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° Fig. 4.5 for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and $Re_{\Omega} = 778$ $(\Omega = 10 \text{ rpm})$ for $D_i = (a) 10.0 \text{ mm}$ and (b) 22.1 mm.

Fig. 4.6 Top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra = 0 ($\Delta T = 0$), Re_{Ω} = 778 (Ω = 10 rpm) and D_j = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.7 Top view flow photos taken at the middle horizontal plane between the disk and chamber top with Ra = 0 (ΔT = 0), Re_{Ω} = 778 (Ω = 10 rpm) and D_j = 22.1 mm for Re_j = (a) 61, (b) 122, (c) 184, (d) 245, and (e) 306.

(d) D_i=22.1 mm

Fig. 4.8 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and Re_{Ω} = 1,557 ($\Omega = 20$ rpm) for D_j = (a) 10.0 mm and (b) 22.1 mm.

(b) D_i=22.1 mm

Fig. 4.9 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and Re_{Ω} = 2,335 (Ω = 30 rpm) for D_i = (a) 10.0 mm and (b) 22.1 mm.

(b) D_j=22.1 mm

Fig. 4.10 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and Re_{Ω} = 3,114 (Ω = 40 rpm) for D_j = (a) 10.0 mm and (b) 22.1 mm.

(b) D_i=22.1 mm

Fig. 4.11 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra = 0 ($\Delta T = 0$) and Re_{Ω} = 3,892 (Ω = 50 rpm) for D_i = (a) 10.0 mm and (b) 22.1 mm.

Fig. 4.12 Steady vortex flow pattern in the chamber with $D_j=10.0$ mm: (a) side view flow photo taken at the vertical plane $\theta = 0^{\circ}$ for H=20.0 mm at Re_j=717 ($Q_j=5.3$ slpm) and Ra=3,760 ($\Delta T = 5.0$) and (b) the corresponding schematically sketched cross plane vortex flow, and (c) side view flow photo for H=10.0 mm at Re_j=1,150 ($Q_j=8.5$ slpm) and Ra=470 ($\Delta T = 5.0$) and (d) the corresponding schematically sketched cross plane vortex flow.

Fig. 4.13 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ at H=20.0 mm for Ra=3,760 ($\Delta T = 5.0$) and Re_j= 717 (Q_j=5.3 slpm) for rotational Reynolds number Re_{Ω} = (a)0, (b)778, (c)1,557, and (d)2,335.

Fig. 4.14 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ at H=20.0 mm for Ra=0 ($\Delta T = 0$) and Re_j= 676 (Q_j=5.0 slpm) for rotational Reynolds number Re_{Ω} = (a)0, (b)778, (c)1,557, and (d)2,335.

Fig. 4.15 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ at H=20.0 mm for Ra=7,520 ($\Delta T = 10.0$) and Re_j= 730 (Q_j=5.4 slpm) for rotational Reynolds number Re_{Ω}= (a)0, (b)778, (c)1,557, and (d)2,335.

Fig. 4.16 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ at H=20.0 mm for Ra=11,270 ($\Delta T = 15.0$) and Re_j= 771 (Q_j=5.7 slpm) for rotational Reynolds number Re_{Ω}= (a)0, (b)778, (c)1,557, and (d)2,335.

Fig. 4.17 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ}$ at H=20.0 mm for Ra=15,030 (ΔT =20.0) and Re_j= 811 (Q_j= 6.0 slpm) for rotational Reynolds number Re_{Ω} = (a)0, (b)778, (c)1,557, and (d)2,335.