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Abstract

A perfect secret-sharing scheme is a method of distributing a secret among
a set of n participants in such a way that only qualified subsets of partici-
pants can recover the secret and the joint share of the participants in any
unqualified subset is statistically independent of the secret. The collection of
all qualified subsets is called the access structure of the scheme. In a graph-
based access structure, each vertex of a graph G represents a participant
and each edge of G represents a minimal qualified subset. The information
ratio of a perfect secret-sharing scheme realizing a given access structure is
the ratio of the maximum length of'thé share given to a participant to the
length of the secret, while the-average information ratio is the ratio of the
average length of the shares given to the participants to the length of the
secret. The infimum of the (average) information ratio of all possible per-
fect secret-sharing schemes realizing-an-access structure is called the optimal
(average) information ratio of that access structure. In this thesis, we focus
on the average information ratio of graph-based access structures.

In a weighted threshold scheme, each participant has his or her own
weight. A subset is qualified if and only if the sum of the weights of par-
ticipants in the subset is not less than the given threshold. Morillo et al.
considered the scheme for a weighted threshold access structure that can be
represented by a graph which is referred to as a k-weighted graph. They
characterized this kind of access structures and derived a bound on the op-
timal information ratio. In Chapter 2, we deal with the average information

ratio of the secret-sharing schemes for these access structures. Two sophisti-
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cated constructions are presented. Bounds on the average information ratio
of them are derived. Each of our constructions has its own advantages and
both of them perform very well when n/k is large.

Due to the difficulty of finding the exact values of the optimal information
ratio and the optimal average information ratio, most results give bounds on
them. Before 2007, apart from one specially defined class of graphs, the paths
and cycles are the only infinite classes of graph-based access structures whose
optimal information ratio and optimal average information ratio are known.
Csirmaz and Tardos found the exact values of the optimal information ratio
of all tree-based access structures in 2007. In 2009, Csirmaz and Ligeti de-
termined the exact values of the optimal information ratio of broader classes
of graph-based access structures.

Following in their footsteps, we devote our efforts to the discussion the
optimal average information ratio of tree-based access structures in Chapter
3. We successfully determine the exact values of the optimal average infor-
mation ratio of all tree-based access structures. Our idea also formulates a
complicated problem in secret-sharing into.a problem in Graph Theory with
easy description.

Extending our work in Chapter 3, we are dedicated to the study the
optimal average information ratio of the access structures based on bipartite
graphs in Chapter 4. We determine the-optimal average information ratio of
some classes of bipartite graphs. In addition, we also give a bound on the
optimal average information ratio of the rest classes of bipartite graphs. This
bound is the best for some classes of bipartite graphs using our approach.

In the final chapter, we summarize our work in this thesis and introduce

possible directions of future research.

v



11

FIT 88 #2847 A% ) (secret-sharing scheme) Y {8 & /& — {1 f B4 7% (secret) 57
A ET 2% shares 45 A 2 B3 (participants) » {15 H A #%2 # + £& (qualified
subset ) F1 172 L35 K T 43 BC 2189 shares 4H & e R A BB H B EME - 10
FEFZFE T 2E (nonqualified subset) H1HY £ B35 Rl A 7¢ 55 BC £ HY sharests £
0] B S (R & VR T E SRR ] - Hodr > FrAE R T B EEE
Fy o2 1% B 17 HUAE #% (access structure) o — {1817 HUES & H AT A /N HE T
TRy 8 & RIS Koo 17 IS S Y BR JE (basis) -

Fral DLE G R AR A 17 B A5 18 2 5 155 (B G o 9 (8 R R Ry — (8 2 B =2 i
H LS GHYE S & Ry 5L Y7 HUAE S« FER0 2% 70 S 09 [ R #4555 s Y
#HUE BB # (information ratio) #3355 B [ % (average information ratio)Hll
73 B TE 76 Fy 2 B35 Pt 77 B A share By N =8 BLAL A Y & EHVERE - DL
Fir A £ 813 Pt 73 ] share 1Y AR FE BB 1Y & LAV ELE - —(EF A4S
% PR i LAY P A B3 7y S HEHIEY COF 29 ) sHUE EE R MY infimum A1 % B 3%
17 B 45 B 1 i £E ((F 19 ) 3R EE 2 (optimal (average) information ratio) - 7
I Ew S B M ERET HY 2 DA e Ry B B A 17 B &5 1 Y o £~ 39 BHUR B R AV
i o

B o PR A A G A B P Y Y R % o AR o 45 %E — {8 P (threshold)
t>0B-(HERESHBAES ENWEERE > HF—-TETHAESEHEZDN
EEMA/ NG ERNMIE ¢ AIZ R —ERE £ - SR ETE
FIT B RO 77 B 465 8 7 5 A BB P B Y 7 LSS 1S - Morillo®: AR ZE 1 ] DA [
T YA B T8 2R A 1 EDL 9 I RF I AR (i e Ry — {18 ko — 1 BB [ (- —weighted
graph) o i {f95 2 Z#] 1S E Ay SR HEE TS T IS Y R R R
EEREy— 1 EFR - AR SRS B rf > AT RPRES kM & B Y i £



FER R EL R A R RE o FRAFTHR AR B 25 oy E IV 4 U7 AW HEE B
PR B R E E o WSS 7 A FHE R E R R RG> B A S
ERE - B2 BEA (BT mE Iy > IR ISR o ERE 8T -F R
EERGBITINaREE 1 -

I E i RS EE R B g = s B EE R 2 E N EE Y RI - P A
KETEY4E R E R4 EFIR « 20074 2 il ¢ oKk H B (R 2R S b R Bl i
S Ef R EE R Y 48 85 B 4 A pathsFlcycles » DA K BlundoZ A E & H Y —
T [E 5 o Csirmaz B Tardos 7820074 3K 1 At /A il 8] AY i 3 50 US EE RV I
WEAE - 1 Csirmaz B Ligeti AIFE 20095 3K 15 T 5 & AV & FH 1Y B¢ s UE EE 2R
TEHEE -

TE ARG SRy B = F B g MU Za vh > IR AIE B A i (B s B EE R Y
IEWEE BB ZE o FAMAE s S0V = T8 H FAM K Y DA By BL R A 77 HU &5
Y i AR R EE R AV IEMEE AV EOE - RPN DT AR E I o Z 07 H
F A8 e ] R B B2 AL Ry [l B b P 5 BE 56 = (F AE 8 2 AY max-min Y [ 7H -
PP 22 {1 7704 5K H P A R i Y & £ 1 59 3RS EE R AV IEREAE » 0 FEfE—
8H R 7 A K %A -

ifAE S U EE > FoAM 50— 2P 5 i — BB &l (bipartite graph) AV ¥
S EERATRTE o Bk — (@ fF EEAYEE even-subdivision Bi—tk
o R Y B P R EL R AV IE AR (E - B S50 i AR oK H e £ 23R
BELRWEMERN 0 E - RO ST — & E PR E R BT
MR- S —LLEHN S - AV BT IREHBEAMAVECE AT DUS F8Y et -
IR -

RIS AE - BAE T 5 58 0 48 B3 0 ) 48 oK 2 T DA 4B 4 %% 1T Y it
FEJT A o

vi



AR E - 2 BHEREXFZES D > EENUFENELIREBERE
o BRI EAA - B RUEEP R Y EEHE - SN SRS ERTET
%% 8 NHRIIAEE) - BAREB L 58 i B2 AL BB 2K - Pl » R #E
BRI A BT ARIHE) -

B IR R RS AT BB IR AR - A 0 E2EE L
P2 AIHYE - B R Z2EBFEERIEREZAES 7RG T EZE - ZEH
T2 T H&G TR DR E LT - G DI R FERIFH A EHEEFTE
Bl - REEREHRE 2% > WEEBMEZAE AR AL R
5 B i FEE R Rl B BT T8 (5 B R W] DAAE it fie 1R 28 A Y Ay o
T REFNAETELE - A ERIE AL RE 2 - HEAHRNE
BB E ML R - AL 22 ERH A EZHIEE - #
BhEAiR R - fEZATFT T - TGS EIEAIA HE2 i ERVE R » 2 R AR
AN - ZEA SRR ELLG T IR BCE R R - BAEP S
SRR B E R PIRGE T (E 2 - RFIE2EFH A H 2 M seay i
T o B NEHYREE B S SR YRS o B Al — B DU 12 1 B IR R Y
BiE LR EEHEIES LA -

PN AR R ST 0 FAE T L A HEER T 5UE A H R
Sl S HBT - BENFERE T ZFISEMAER - B—-PTRREEx
R% - SEAMBEERIE L - BFERKENBERERIIEE MK - 23
AN R ERE - 500 > ARG R EEBRIR B - ML E B E]
PREEZRTAYER - (HEZATR B2 A BMERE - A0 - BREWEREERIEE
(o RN BB AR AN L F O s R JE B A A2 15 B Ty - SR A e PR A 18 £
KEFER o B S EE R BEY B EA S MAY 4 (e B E Tl

vii



SRR A - A L SR R AR EE BT ST AL
ARG LAVEE - B RO EEHRABEMEY - BEHEE
Hil - st P 4R A e B ST RV T BURR Fp e R BT - SRIRET A R 2R

BEAN - B RGE RR TET 2 E h ak M - AR - SHEH - B - R - B
CEN e R BEAR S EHE A EELE - RN R IREET w5
ERIFE - ERRENEBHRES NS - MRS ERRFEER RS
TERANTGE  BRERRSERAORHE - bk T REEHH® - BER R
s 15 T 3 AR IR SR B e 1 - A2 18— il B SBRAVIE 5% - JetEE
AYEE IRAR 2 R 5 Y T B B A 55 SRRE I A B B A I G DU A B
ST R RENEF R B AR > W H S BIE RV ERUR - BROE I — & RE
TABZOH - BREEFHFWIIER S @REGHOCEA R EariE
7o METERBEIRS - PR TSR 2SN BEEEE T LR HERS
AU G ~ R BEE R IRIRPIRVET smés IR 2 B EE - SRIH T RIEA E
SREY T R RS E )RS S AL -

iR o B R R O B HYR 5, B RGO )Y % T S R
FE > RPIEEITESE - BB HAIREE L > W B2 LAY e KR -
TRt /2 B35 J7 B e R Bl I3 A = iR B 20 5 3R - ok AR TR R
AN - G SC I ST 552 o2 s A Y BT A 15 DLURRS 52 A » i L 4t 48
RIS S — B BB A O R ey o RSN o e R RV R AV SO
o MR R R B E B R » SRR AT S JIRY ERSRIR G - £ B A B
R o Ml Ry B IE R AR BT RRE G KN - ss TR ERTYZ
R SENEE - #RA THENKRENDE - WANE L3571 7
B R POE [ #E AP N LA |

EREARE LR UG RO R A EFRAER LAV B SR
TR THEEHEENET LR LEET |

viil



Contents

English Abstract iii
Chinese Abstract v
Acknowledgements vii
Contents ix
List of Figures xi
1 Introduction 1
1.1 Preliminaries . . . =. .. . 0o 2

1.2 Graph-Based Access Structures & +~. . . . .. ... ... ... 4
1.3 Approaches to the Derivation-of Bounds on the Ratios . . .. 6
1.3.1 The Derivation of Upper Bounds . . . .. .. ... .. 6

1.3.2 The Derivation of Lower Bounds . . . . ... ... .. 10

1.4 Known Reults on R(G) and AR(G) . . . . ... ... ... ... 13

1.5 Overview of the Thesis . . . . . . ... ... ... ... .... 15

2 Average Information Ratio of Weighted Threshold Secret-

Sharing Schemes 17
2.1 Weighted Threshold Access Structures . . . . . ... ... .. 17
2.2 An Observation . . . . . . ... ... 19
2.3 Construction (I) . . . ... ... oo 20
2.4 Construction (IT) . . . ... ... . oo 28

X



2.5 Concluding Remark . . . . . . ... ... ... 0. 34

Optimal Average Information Ratio for Trees 37
3.1 Our Approach to the Determination of the Exact Values of

AR(G) « o o 37
3.2 The Exact Values of the Optimal Information Ratio of All Trees 39
3.3 The Evaluation of AR(T) for Some Classes of Trees Using Our

Approach . . . . . ... 44
3.4 Concluding Remark . . . . . ... ... ... 0L 45
The Average Information Ratio of Bipartite Graphs 47
4.1 Some Classes of Realizable Graphs . . . . ... ... .. ... 47
4.2 A Bound on the Optimal Average Information Ratio of Bipar-

tite Graphs . . . . ... 63
4.3 Concluding Remark . . . . . . . ... ... ... 0. 70
Conclusion 71
5.1 Our Contribution . . . ol . .. ... 71
5.2 Future Work . . . . ./ i 72



List of Figures

2.1
2.2
2.3
24

4.1

The binary tree for Construction (I) . . . . . . ... ... ... 22
The binary tree for Construction (II) . . . . . ... ... ... 29
A comparison of the results in the case when p=20. . . . . . 35
A comparison of AR; and AR, in the case when u=20. ... 36
The family G(k) of bipartite graphs . . . . . . ... ... ... 70

X1



Chapter 1

Introduction

Originally motivated by the problem of secure information storage, secret-
sharing schemes have found numerous applications in cryptography and dis-
tributed computing such as access control, attribute-based encryption and
secure multiparty computations. A secret-sharing scheme involves a dealer
who has a secret, a finite set P of participants and a collection I' of subsets
of P called the access structure. Eachisubset in I' is a qualified subset. A
secret-sharing scheme is a method by which. the dealer distributes a secret
among the participants in P such that only the participants in a qualified
subset can recover the secret from the shares they received. If; in addition,
the joint share of the participants.in any tinqualified subset is statistically
independent of the secret, then the secret-sharing scheme is called perfect.
We will use “secret-sharing scheme” for “perfect secret-sharing scheme” since
only perfect ones are considered in the thesis. An access structure is natu-
rally required to be monotone, that is, any subset of P containing a qualified
subset must also be qualified. Therefore, an access structure is completely
determined by the family of its minimal subsets. This family of the minimal
subsets in I is called the basis of T'.

Shamir [31] and Blakley [3] independently introduced the first kind of
secret-sharing schemes called the (¢,n)-threshold schemes in 1979. In such
a scheme, the basis of the access structure consists of all ¢t-subsets of the

participant set of size n. Their work has raised a great deal of interest in



the research of many aspects of secret-sharing problems. Related problems
have received considerable attention since then. Secret-sharing schemes for
various access structures as well as many modified versions with additional
capacities were widely studied [11, 12, 19, 21, 22, 24, 29]. The information
ratio and the average information ratio of secret-sharing schemes have long
been the main subjects of discussion. The information ratio of a secret-
sharing scheme is the ratio of the maximum length (in bits) of the share
given to a participant to the length of the secret, while the average informa-
tion ratio of a secret-sharing scheme specifies the ratio of the average length
of the shares given to the participants to the length of the secret. These
ratios respectively represent the maximum and the average number of bits a
participant has to remember for each bit of the secret. As opposed to them,
some literature uses information rate and average information rate which are
exactly the reciprocal of the information ratio and the average information
ratio respectively. For lower storage and communication complexity, these
ratios are expected to be as low as possible. The question of constructing
secret-sharing schemes with the lowest ratios arose naturally. Given an ac-
cess structure I, the infimum of the (average)information ratio of all possible
secret-sharing schemes realizing this access structure I' is referred to as the
optimal (average) information ratio of I'. "It has been shown that, for general
access structures, the infimum is'not-always a minimum [2]. The reader is
referred to [1] and its references for a comprehensive survey and recent de-
velopments in secret-sharing. Secret sharing has been an interesting branch

of modern cryptography.

1.1 Preliminaries

Let P be the set of all participants and I' C 27 be the access structure.
We use I'y to denote the basis of I'. Then I' is called the closure of Ty,
written I' = CI(I'y). Let K be the set of all secrets and S be the set of all

possible shares. Given a secret d € K, a dealer D gives to participant p a



share s € S, where S, is the set of all shares participant p receives from the
dealer corresponding to all secrets in K. A distribution rule is a function
fAD}UP — KUS with f(D) € K and f(p) € S for all p € P. f(D) is
the secret to be distributed and f(p) is the share participant p receives from
the dealer for secret f(D). Let F be a collection of distribution rules and
Fi={fe€F: f(D)=d}. Wecall F a perfect secret-sharing scheme if the
following two conditions are satisfied:

i) Given any B € I and f,g € F, if f(p) = g(p) for all p € B, then
f(D) =g(D).

ii) Given any B ¢ I" and any function g : B — S, there exists a nonnega-
tive integer A(g, B) such that, for each d € K,

{f € Falf(p) = g9(p),¥p € B}| = \g, B).

The first condition guarantees that the shares given to a qualified subset
uniquely determine the secret. The second ensures that the shares given to
an unqualified subset reveal no information about the secret. When these two
conditions are made, we say that this secret-sharing scheme F realizes the
access structure I'. Since all schemes mentioned in this thesis are perfect, we
will simply use “secret-sharing scheme” for “perfect secret-sharing scheme”
throughout. The information ratio of the secret-sharing scheme F, denoted

as Rz, is defined as

max{log, |S,| : p € P}

R pr—
d log, VC’

and the average information ratio of F, written as ARx, is

ZpG'P log, |15y
[P|log, |K|

ARy =

The optimal information ratio and the optimal average information ratio
of the access structure I' are denoted as R(I') and AR(T"), respectively. It
is well known that R(I') > AR(I') > 1 and that R(I') = 1 if and only if

3



AR(T") = 1. A secret-sharing scheme with information ratio equal to one is
then called an ideal secret-sharing scheme. An access structure is said to be

ideal if there exist an ideal secret-sharing scheme for it.

Example 1.1.1. Consider the case where the set of participants P = {a, b, ¢},
the basis of the access structure I'y = {{a, b}, {b,c}} and the set of secret
K = GF(3). Define the set of distribution rules as F = {f,4|r,d € GF(3)}
where f,4(D) =d, fra(a) = fra(c) =7 and f,.q4(b) = r + d, then this scheme
can be represented by the following table:

o

NN N = == O OO

N O~ O O
H O N ONRFEDNDEFE O
No—= OND = O = OO

Note that each row in the table represents a distribution rule. One can easily
check that this scheme is a secret-sharing scheme and Rr = ARz = 1 since
K=5,=S,=8.=GF(3). This'schemeis in fact an ideal one. Therefore,

Cl(Ty) is an ideal access structure.

Reseachers have characterized many kinds of ideal access structures by
taking advantage of the theory of matroid and linear algebra [8, 25, 26, 27].

In this thesis, we only consider graph-based access structures.

1.2 Graph-Based Access Structures

These structures have been widely studied during the past decades. In such
an access structure, each vertex of a graph G represents a participant and

each edge represents a minimal qualified subset, that is, P = V(G) and I' =



CIl(E(G)). We shall introduce another definition of secret-sharing scheme
next. The equivalence of this definition and the previous one has been shown
in [1]. The information ratio and the average information ratio of a secret-
sharing scheme can then be defined alternativly in a way that is especially
convient for deriving lower bounds on R(G) and AR(G).

A secret-sharing scheme > for the access structure based on G is a col-
lection of random variables (g and ¢, for v € V(G) with a joint distribution
such that

(i) (g is the secret and (, is the share of v;
(i) if wv € E(G), then ¢, and ¢, together determine the value of (g;

(iii) if A C V(G) is an independent set in G, then (g and the collection
{G|v € A} are statistically independent.

Before introducing the alternative definition of the (average) information
ratio, we recall some basic property of the Shannon entropy function. Given
a discrete random variable X withipossible values {x1, xo, ..., z,} and a
probability distribution {p(z;)}#-the Shannon entropy of X is defined as
H(X)=—=>"" p(z;)log p(x; ) which is & measure of the average uncertainty
associated with X. It holds that 0/ << H(X) < log|X]|. Note that H(X) takes
its minimum value 0 if there is a value x; of X with p(z;) = 1 and it attains its
maximum value log | X| if p is a uniform distribution [17]. Let us assume the
probability distributions involved are uniform. Then the information ratio
of the scheme X can be defined as Ry = max,cv(q){H(()/H((s)} and the
average information ratio of X is ARy = (3_,cv () H(G))/([V(G)[H(Cs)).
For simplicity, with the same symbol GG, we will denote both the graph as well
as the access structure based on it. For example, “a secret-sharing scheme
on G” refers to “a secret-sharing scheme for the access structure based on
G”. Furthermore, the optimal information ratio, R(G), of G and the optimal
average information ratio, AR(G), of G are the infimum of the information
ratio Ry and the average information ratio ARy over all possible secret-
sharing schemes ¥ on G respectively. Then one has that R(G) > AR(G) > 1

>



[13] and that R(G) = 1 if and only if AR(G) = 1. A secret-sharing scheme
Y2 on GG with the optimal ratio Ry, = 1 or ARy, = 1 is then called ideal. An
access structure G is ideal if there exists an ideal secret-sharing scheme on
it.

The ideal graph-based access structures have been completely character-

ized in terms of matroid by Brickell and Devenport .

Theorem 1.2.1 ([8]). Suppose that G is a connected graph, then R(G) =
AR(G) =1 if and only if G is a complete multipartite graph.

The basis of the access structure in Example 1.1.1 is in fact the complete
multipartite graph K. This also shows that R(K;3) = 1.

1.3 Approaches to the Derivation of Bounds
on the Ratios

In this section, we introduce the main tools for deriving upper bounds and
lower bounds on R(G) and AR(G) for non-ideal graph-based access struc-

tures.

1.3.1 The Derivation of Upper Bounds

By constructing a secret-sharing scheme > on a graph GG, we naturally have
an upper bound Ry, (ARyx) on the optimal (average) information ratio of G.
Stinson [34] has proposed a very useful method for constructing secret-sharing
schemes for a graph from its complete multipartite covering. A complete mul-
tipartite covering of a graph G is a collection (multiset) IT = {G1, G, ..., G}
of complete multipartite subgraphs of GG such that each edge of GG belongs to
at least one subgraph in this collection. Since ideal secret-sharing schemes
on all G;’s are known, each vertex (participant) receives a share from the
secret-sharing scheme constructed on each G; containing this vertex. Stin-
son’s ideal is to obtain the share of a vertex in the secret-sharing scheme

for the whole graph by joining together the shares the vertex receives from

6



all secret-sharing schemes on the complete multipartite subgraphs containing
it in the covering. This method has been a major tool for the derivatin of
upper bounds on the optimal (average) information ratio of a graph. Let us
introduce some important parameters of a complete multipartite covering of
a graph before stating Stinson’s method. The occurrence t. of an edge e in
the covering II is defined as t. = |{jle € E(G;)}| and the occurrence r, of
a vertex v is r, = [{j|v € V(G;)}|. The minimum edge occurrence of a cov-
ering IT is the minimum occurrence of an edge in II, denoted as tr, and the
mazimum vertex occurrence of a covering II is the maximum occurrence of
a vertex in II, denoted as 7. In dealing with the average information ratio,
the most important concern is the total occurrences of all vertices in II. This
number also represents the total of the vertex numbers of all subgraphs in

this covering. We call it the vertez-number sum of the covering II, written

as mn = Y, [V(Gi)l.

Theorem 1.3.1 ([34]). Suppose that 11 = {G1,Gs,..., G} is a complete
multipartite covering of a graph G with |V(G)| = n. Then there exists a
secret-sharing scheme ¥ on G with information ratio Ry and average infor-

mation ratio ARx, where

1 m
Ry, = rn/tn andARg:t— Z TU:—H.

This theorem suggests that in order to construct a secret-sharing scheme
with lower information ratio, we need a complete multipartite covering with
less maximum vertex occurrence and larger minimum edge occurrence. How-
ever, the problem of how many copies of each complete multipartite subgraph
of G should we use to compose a covering(multiset) in order to reach to the
optimal value of the ratio ry/t is a crucial issue to handle. Linear pro-
gramming technique plays an important role in solving this problem. We
introduce the approach by Stinson [34] which is a modification of the version
by Blundo et.al [7].

Let £ = {G,Gs,...,Gp} be the collecction of all complete multipartite



subgraphs of G. For v € V(G), e € E(G) and i = 1,2,..., h, define

P 1, ifve V(GZ)7
"o, ifu g VG

and
b — 1, ifee E(Gl),
“ 00, ifed E(G)).
Suppose we construct a covering using «a; copies of G, fort=1,2,...,h.

Then we have ty = minepe){E,wbe} and rn = maxyey @) { S aicy }-
The secret-sharing scheme 3 constructed via the covering has information
ratio Ry = rry/ty. Since taking a scalar multiple of all the «;’s does not affect
the value of the ratio, we may allow the a;’s to be nonnegative rationals and
"normalize” them by stipulating that

max {X" ae,t = 1.

UGV(G){ 1 iCoi}
Then our objective is to maximize #;3:"The linear programming problem can

describe as follows.

(*)Maximize R subject to

a; >0, 1<:<h

Z?:lozicm» S 1, v E V(G)

Z?:laibei Z R, e c E(G)
By solving this linear programming problem, the optimal solution will in-
volve rational values of «;’s. We can make all the «;’s integral by multiplying
an appropriate integer. Then take the resulting integral combination of the

G;’s as the covering. We demonstrate this process in the following example.

Example 1.3.2. Consider the access structure based on the graph G de-
picted below.

The list £ of complete multipartite subgraphs consists of the subgraphs
G;’s induced by the following sets of edges, respectively.



€4 4

€1

€2 3

B(G) ={e;}i=1,2,....6
E(Geri) ={es e}, i=1,2,...,5
E(Gia) = {e1,e5}

E(Gi3) = {e1,e6}

The optimal solution to thedinear programming problem(*) is

1/3, ifie{3,7,10,17,19};
o =
0, otherwise

and R = 3/2. In this case, we have the desired covering II consisting of one
copy of G3,G7, G, G17 and Gpg. One can easily check the fact that ¢ = 2

and rg = 3.

Besides these major approaches, there are other results that may some-

times serve as good tools in deriving upper bounds on R(G).

Lemma 1.3.3 ([9]). Suppose that w and v are two vertices of a graph G who
have the same neighbors, then R(G) = R(G — v).

Complete multipartite coverings with t;; > 1 are easpecially helpful when

dealing with information ratio, whereas they do not necessarily lead to good



results for average information ratio. In our approach, we use covering with
tn = 1. In this case, complete multipartie coverings with less vertex-number
sum are what we are aiming for in finding a good upper bound on AR(G).
In the case when G is of girth not less than five, the stars are the only
possible subgraphs to use in a complete multipartite covering. A complete
multipartite covering in which each subgraph is a star is called a star covering.
A star covering is indeed most useful for graphs of larger girth. It in general
does not result in the least vertex-number sum for a graph of girth less than
five. In Chapter 3 and 4, we are dealing with graphs with larger girth. A

suitable star covering is our main tool to establish upper bounds on AR(G).

1.3.2 The Derivation of Lower Bounds

Finding lower bounds on the opitaml (average) information ratio is generally
much more challenging. The only known tool to do this job is the informa-
tion theoretic approach [4, 13]. Lower bounds are obtained by manipulating
information equalities and inequalities. Adopting the result in [10], Blundo
et al.[7] showed the following result.

Theorem 1.3.4 ([7]). Let G be a graph with V (G) = {v;|i = 1,2,...,4}. If
V1V, VoU3, U3y € E(G) and vyvgvivs & E(G). Then R(G) > 3/2.

van Dijk also used the this approach to characterize graphs of order six

whose information ratio is not less than 5/3.

Theorem 1.3.5 ([35]). Let G be a graph with V(G) = {v;|i = 1,2,...,6}.
If G satisfies both

(i) vive, v3v4, V506 € E(G) and
(ZZ) V1VUs, U1Vg, U2V5, U2Vg, U3V5, U3Ug Q E(G)
and at least one of the following conditions.

o vy, v406 € E(G),
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e wyv3,v3v4 € E(G),

e wyu3, 1ouy € E(G), or

o v3uy, 19Uy € E(G).
Then R(G) > 5/3.

When dealing with information ratio, the following lemma is especially
helpful.

Lemma 1.3.6 ([7]). If G’ is an induced subgraph of a graph G, then R(G) >
R(G").

Theorem 1.2.1 guarantees that the ideal graph-based access structures
are exactly the complete multipartite graphs. By Theorem 1.3.4 and Lemma

1.3.6, the result for graphs which are not complte multipartite follows.

Theorem 1.3.7 ([7]). Suppose that G is a connected graph which is not
complete multipartite, then R(G) >3 and AR(G) > " where n = [V(G)|.

It shows that there is a gap-in the inforamtion ratio between the ideal
and non-ideal graph-based access structures.

In addition to these results; Blundo et al.[7] defined a so-called ” fun-
dation” of a graph to cope with the optimal average information ratio of
graphs. The fundation of a graph G is a subgraph G of G which satisfies
(i) xzy € E(Gy) if and only if there exist vertices w, z € V(G) such that the
subgraph induced by {w, x,y, z} has edge set {wz, xy,yz} or {wzx, xy,yz, vz}
and (i) the edge set of Gy consist of all vertices in V(G) which are incident
with at least one edge in E(G). Then, they considered the linear program-
ming problem.

(**)Minimize C' = E,cv(c)av subject to

a, > 0, veV(G)
ay +a, > 1, vw € V(Gy)

11



They obtain a lower bound with the optimal solution C* to this linear

programming problem.

Theorem 1.3.8 ([7]). Let Gy be the fundation of a graph G and C* be the

optimal solution to the linear programming problem (**). Then

C*+ |V(G)|
ARG = =

Csirmaz [13] put the information theoretic approach in a neater way which
is what we place much reliance on in Chpater 3.

Let ¥ be a secret-sharing scheme in which (g is the random variable of the
secret and each ¢, is the random variable of the share of v, v € V(G). Define
a real-valued function f as f(A) = H({¢, : v € A})/H((s) for each subset
A C V(G), where H is the Shannon entropy. Then, Ry, = max,cv () f(v)
and ARy = %Zvev(a)f(v), where n = |V(G)|. Using properties of the
entropy function and the definition of a secret-sharing scheme, one can show

that f satisfies the following inegalities [13]:
(a) f(0) =0, and f(A) = 0;
(b) if AC B CV(G), then f(4) < f(B);
(c) f(A)+ f(B) > f(ANB) + f(AUB);

(d) if AC B C V(G), Aisan unqualified set and B is not, then f(A)+1 <
f(B);

(e) if neither A nor B is unqualified but AN B is, then f(A) + f(B) >
1+ f(AnB)+ f(AUB).

A subset Vj of V(G) is called connected if it induces a connected subgraph
of G. Csirmaz and Tardos [16] defined a core V; of a graph G as a connected
subset V of V(@) satisfies that (i) each v € V; has a neighbor v outside

Vo and is not adjacent to any other vertices in Vy and (ii) {ojv € Vp} is
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an independent set in (G. The neighbor v in the definition is referred to as
the designated outside neighbor of v throughout this thesis. By employing

inequalities (a) to (e), they showed the following result .

Theorem 1.3.9 ([16]). Let Vi be a core of a graph G. If f is defined as
above, then ) . f(v) > 2|V — 1.

Based on this fact, we will derive a lower bound on AR(G) and rewrite
Theorem 1.3.1 as an upper bound on AR(G) of particular form in Chapter
3. Our approach to determining the exact value of AR(G) will then be
introduced.

1.4 Known Reults on R(G) and AR(G)

For non-ideal graphs, Stinson’s [34] bound has been shown to be the best
for general graphs among known upper bounds on R(G). The complete
multipartite covering he used was a star covering. For a general graph G, let
S, be the star on vertex set {v} |JNe(v) having center v. Then IT = {S,|v €
V(G)} form a star covering with minimum edge occurrence 2 and maximum
vertex occurrence d + 1. By Theorem 1.3.1; Stinson [34] improved previous
results and showed that R(G) < % where d is the maximum degree of
G and AR(G) < 2222 where n =/{V(G)| and m = |E(G)|. Blundo et al
[4] defined an infinite class of graphs H,, and use the information theoretic
approach to show that R(H,) > 1. This result shows that Stinson’s result
on A(G) is tight. In addition, Stinson’s upper bound on AR(G) is also the
best for general graph so far.

Due to the difficulty of the derivation of good results on general graphs,
most efforts have been focused on small graphs [7, 23, 32, 33, 34, 35| and
graphs with better structures [4, 7, 15, 17, 34]. Stinson [32, 33, 34|, van
Dijk[35] and Blundo et al. [7] used various combinations of the methods
described in Section 1.3 to derive the exact velues or bounds on R(G) for all
graphs of order not less than six. Stinson [32, 33, 34] and Blundo et al. [7]
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have also found the exact velues or bounds on AR(G) for all graphs of order
not less than five.

Let C,, and P, be the cycle and the path of length n, respectively. Stinson
[34] showed that R(C,) = 3/2 for n > 5 and R(P,) = 3/2 for n > 3, which
are direct results from the bound R(G) < %! and Theorem 1.3.7. The values
of AR(C,) =3/2 for n > 5 and AR(P,) = 2?(’2:[‘15) for n > 3 [7], where 6 =0
when n is even and 0 = 1 when n is odd, come from constructing suitable star
covering (Theorem 1.3.1) and the fundation of the graphs (Therem 1.3.8).

Morillo et al.[28] considered the weighted threshold secret-sharing schemes.

This is the case when every participant is given a weight depending on his
or her position in an organization. A set of participants is in the access
structure if and only if the sum of the weights of all participants in the set is
not less than the given threshold. They characterized the wieghted thresh-
old access structure that can be represented by a graph Gj which is called
k-weighted graphs, and constructed a complet multipartite covering Ilg, for
k = 27— 1 with the maximum vertex occurrence rm,_= ¢. By Lemma 1.3.6,
they obtained an upper bound [logs(k+1)] on R(Gy) for each value of k.

Before 2007, apart from the aforementioned class of graphs H, defined
by Blundo et al.[4], the paths and cycles are the only infinite classes of
graphs which have known exact values of the optimal information ratio and
the optimal average information ratio.~Csirmaz and Tardos’s [17] excellent
work appeared in 2007. They determined the exact values of the optimal
information ratio of all trees as R(G) = 2 — ( 7, where ¢(T) is the maximum
size of a core in the tree 7. They showed R(G) > 2 — ﬁ from Theorem
1.3.9 and obtained that R(G) < 2 — ﬁ by constructing a star covering II
with minimum edge occurrence t;; = ¢(7T") and maximum vertex occurrence
rn = 2¢(T) — 1.

By generalizing this approach, Csirmaz and Ligeti [16] made an even
greater achievement in 2009. They showed that R(G) = 2 — 1/d, where d is
the maximum degree of GG, for any graph G satisfying the following properties:

(i) every vertex has at most one neighbor of degree one, (ii) vertices of degree
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at least three are not connected by an edge, and (iii) the girth of G is at least
six. This has been the greatest accomplishment regarding exact values of
the information ratio of non-ideal graph-based access structures. During
the past decades, the information ratio has apparently attracted a lot more
attention than the average information ratio has. This is partly due to the
complicated essence of treating the average inforamtion ratio. Despite the
complexity, we devote our effort to the discussion of the average information
ratio of graphs. Hope to make a contribution to the study of efficiency of

secret-sharing schemes.

1.5 Overview of the Thesis

As mentioned above, Morillo et al. [28] characterized weighted threshold
access structures based on graphs and studied their optimal information ratio.
Since these access structures are more applicable in real-life situation, we
are motivated to construct better secret-sharing schemes for them and have
a more detailed analysis of the average information ratio of our schemes in
Chapter 2. We start this chapter with Morillo’s characterization of the graphs
that represent weighted threshold access structures and the upper bound on
R(G) they have derived. We then present an observation on the structure of
this kind of graphs. Subsequently, two-sophisticated constructions of secret-
sharing schemes are proposed and bounds on the average information ratio
of these schemes are calculated. A comparison of the efficiency of them will
be given in the final section of this chapter.

Next, we engage in the pursuit of the exact values of the optimal average
information ratio of graphs in Chapter 3 and 4. We begin with completing
the work of Csirmaz and Tardos’s [17] on the study of tree-based access
structure by determinig the exact values of the optimal average information
ratio of all trees in Chapter 3. Extending this result, we deal with bipartite
graphs in Chapter 4. We obtain the exact values of the optimal average

information ratio of some classes of bipartite graphs. For the rest classes
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of bipartite graphs, a bound on the optimal average information ratio is
provided subsequently. Our bound is the first one regarding the optimal
average information ratio of bipartite graphs. This bound is the best possible
for some classess of bipartite graphs using our approach. In the final chapter,
we summarize our work in this thesis and introduce possible directions of

future research.

16



Chapter 2

Average Information Ratio of
Weighted Threshold
Secret-Sharing Schemes

In this thesis, we only take care of graph-based access structures. The graphs
considered in Chapter 2 and 3 are connected. Chapter 4 deals with bipartite
graphs which may not be connected. Inall chapters, each graph considered

contains no isolated vertices.

2.1 Weighted Threshold /Access Structures

Given a set of n participants P, a threshold ¢ > 0 and a weight function
w: P — R with w(p) > 0 for all p € P, the (¢,n,w)-weighted threshold ac-
cess structure consists of all subset A C P such that w(A) =>_ _, w(p) >¢.
Morillo et al. [28] showed that any weighted access structure determined by
a non-integer-valued weight function and a non-integer threshold can also
be determined by an integer-valued weight function and an integer thresh-
old. Therefore, considering integer-valued weight functions is sufficient in our
problem. In the remainder of the chapter, we assume that a weight function
w is given. An access structure I' = CI(I'y) is called r-homogeneous if each

subset in I'y is of size r. Throughout this chapter, we consider 2-homogeneous
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weighted threshold access structure and exclude the case where any partici-
pant has zero-weight. This kind of access structure can be represented by a
graph G. In this graph, there is a set C' of vertices, each of which is adjacent
to all other vertices in G. The weight of each vertex in C' is higher than the
weight of any vertex not in C. If C' # V(G), removing C' from the graph
G produces a nonempty set A of isolated vertices, each of which has lower
weight than any other vertex not in A. If C' U A # V(G), the subgraph G’
induced by V(G)\(C U A) represents a 2-homogeneous weighted threshold
access structure IV = { B C P\(CUA)|w(B) > t}. By repeating this process,
Morillo et al. has a clear characteriztion of the structure of G in the following

theorem.

Theorem 2.1.1 ([28]). Let G be a graph that represents the 2-homogeneous
weighted threshold access structure I'. Then, there exists a unique partition
of the vertices of G,

P=CLUA UC,UAyU---UC, U Ay,
where C; # 0 fori=1,...k, Ay £ Oufi=1,...,k —1 and either A, =0

and |Cx| > 2 or |Ag| > 2, such that the set of-edges of G is

I'y= {{u,v}

k
u,v € UCZ-,u # v} U{{vptveC,pe A;1 <i<j<k}
i=1

They also showed that any graph with a partition described in Theorem
2.1.1 represents a 2-homogeneous weighted threshold access structure. Such
a graph is then called k-weighted where k is the parameter used in Theorem
2.1.1. Since the structure of a k-weighted graph is completely determined by
the values |A;|’s and |Cy|’s, i = 1,2,...,k, we denote the k-weighted graph
by W(|A4l,...,|Ak],|C4],- .., |Ck|). Observe that the subgraph induced by
Uﬁzl(Aji U Cj,) where 1 < j; < jo < --- < j; < k is an [-weighted graph
WAl JAL 1C5 s -, |Cy]). Morillo et al. gave a complete multipar-
tite decomposition for (2¢ — 1)-weighted graph of which the minimum edge

occurrence is one and the maximum vertex occurrence is not greater than q.

18



Then, by Lemma 1.3.6, a lower bound on the optimal information ratio for

k-weighted graph, for all k, follows.

Theorem 2.1.2 ([28]). Let I' = {A C P|lw(A) > t} be an access structure
that is represented by a k-weighted graph G. Then R(G) < [logy(k + 1)].

While dealing with information ratio, one can obtain upper bound of
a graph from its subgraph using Lemma 1.3.6. However, for the average
information ratio, we do not have the advantage to take. The complete mul-
tipartite covering must be constructed for each value of k. For convenience,
we make a slight modification to the notation given in Theorem 2.1.1. In the
case where Ay, = ) and |C)| > 2, we move one (arbitrarily chosen) vertex
from Cj to Ag. Thus, none of A;’s and C;’s are empty in our model. Next, we
will present an observation on the construction of k-weighted graphs before

introducing our constructions in the following sections.

2.2 An Observation

We observe that any k-weighted graph can be obtained by alternately ap-
plying two graph operations starting with a single vertex. Let us introduce
these operations first. By “splitting vertex w of a graph G into m vertices
V1, ..., U, denoted Spt(v; {vy, Vis0m ) We obtain a graph GPHviH{vL-vm})
whose vertex set is V/(GSPHvHvL-vmd)y = (V(G) — {v}) U {vi,v9,. .., 0}
and the edge set is E(GPilvnvnd)) = B(G — v) U {vujvu € E(G) and
i = 1,2,...,m}. If we further add all edges in {vv;|]1 < i < j < m}
to B(GSPHv{vivm)) then we obtain a graph GF#P@ivi-vm}) — This re-
sulting graph is said to be obtained by “ezpanding vertex v into m ver-
tices vy, ..., v, from the original graph G and this operation is denoted by
Exp(v;{v1,...,v,}). In what follows, we use (Vi, V) to denote the set of
edges {uv|u € Vi,v € V4 and wv € E(G)} for any two disjoint subsets of
vertices V] and V5 in G.

Given a k-weighted graph G = W (aq, as, ..., ag, ¢1,¢a, - . ., k), where a; =
|A;| and ¢; = |Cy], we let A; = {uf, ub, ... ul } and C; = {v},v},..., 0.},
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1 =1,2,..., k. We explain how the given graph can be constructed start
with a single vertex by splitting and expandingan in the following algorithm.
Algorithm;
Go <+ {uo}.
For i +— 1 to k do

Exp(uo;C; U{u
G Gi—lp( 0 {uo})

AU {up), if1<i<k;
Ay, if i = k.

A7)

G Gfpt(uo; where A = {

Output the k-weighted graph Gy.

Theorem 2.2.1. The proposed algorithm produces the given k-weighted graph

G from a single vertex.

Proof. Observe that the edges in (A;,C;), j < i, are produced by the
operation Spt(ug; A) and edges in (C;, C;), j < 4, and within the part C; are
all produced by Exp(ug,CF). So, G is a subgraph of Gy. Next, the number
of edges produced in this algorithm is

—1 i—1 k—1
<(Cz N 1) +sz Cj —|—azz c]> (Ck ) 1) +ckz ¢j + (ap — 1) ch

1

zk: <(C’+1) +c1§cj+azzc]) —;
<( )+czzcj+alzcj>

which is exactly the size of the given graph GG. The proof is completed. =

N

7

I
<.
I Mw ||
L

2.3 Construction (I)

Before we can literally describe our first construction, there are some more no-

tations needed to be introduced. For any [ disjoint sets of vertices Vi, V5, ..., V],
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we use K(Vi,Vs,...,V]) to denote the complete multipartite graph with
partite sets Vi, Vs, ... and Vi. Let G; = W(|A4|,...,|A],|Cil,...,|Ci]) be
the l-weighted graph with vertex set (U._, A;) U (U\_,Ci), | < k. De-
fine By, | < k, to be the graph obtained from G; by removing all edges
connecting vertices in U§:1 C;. Then B; is a bipartite graph with par-
tite sets Uﬁzl A; and Ui=1 C;. Next, we use M, ;, to denote the complete
multipartite graph K (Cy, Cs, ..., Cy_1, {1}, {vh'}, ..., {vgl , (U?:zlﬂ C;)u
(U?:l1 A)), 1 <1l <ly <k In what follows, the complete multipartite

graph K(Cl, OQ, ey Oj—luAj—luAj> is written as Hj, 2 S j S k.

Lemma 2.3.1. IIP is a complete multipartite covering of B; where
B {HQZ,K(AQZ,CQZ)‘Z: 1,2,...,%}, Zfl 18 even,
: {K(Al,C’l),H2i+1,K(A2i+1,C’2i+1)\i: 1,2,...,%}, Zfl 1s odd.

Proof. When [ is even, the edges in (Ay;, C;) 5, with j < 2i and the edges in
.
while the edges in (Asg;, Cy;) g, appear ini the subgraph K (Ay;, Cy;). The edges

(Agi—1,Cj)p, with j < 2i —1 appear in the subgraph Hy;, for i =1,2,...

of B; are then all used up. For:odd-{, the argument is similar. [

With these notations in mind, we are able to give our complete multipar-
tite covering I1j of Gj. Let II; be obtained recursively by letting II; = {G},

I, = {K({U%}’ {U%}’ ) {021}7 A1)> M2,2}> I = {K({U%h {05}7 ) {Uc11}> Al)’
K({ofh, o vl ), As), Maa} and, for b > 4, Ty = 5, U { Mgy, U
I1 5y where Il x|, is the complete multipartite covering of the (1] —1)-
weighted subgraph W <aLﬁJ+2’ Akt gy ooy Oy C bl 4o, ClhtL |43, - o s ck).

It can be easily checked that the edges of G which are not in BL% |
and W <GL%J+2’ sy @y ClEEL g, - .,ck) all lie in ML%JHJC' These three
subgraphs virtually make up the k-weighted graph GG;,. We have the following

lemma.

Lemma 2.3.2. The collection 11, stated above is a complete multipartite

covering of G, with mimimum edge occurence one.
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Our next goal is to evaluate the vertex-number sum my, of II;. Due to the
complexity of the enumeration, we consider the reduced forms first. We call
GY =W(@,...,1,1,...,1) the reduced form of a general k-weighted graph
Wi(ay,...,a c1,...,cx). Wealsolet BY, My, and H} be the graphs defined
in the same ways as B;, M, ;, and H; respectively, except that a;’s and ¢;’s
involved are all set to be one. Then GY and By have the complete multipartite
covering I19 and ITZ" reduced from II; and IIP respectively. Note here that
G has 2k vertices. By applying suitable splitting and expanding operations
mentioned in Section 2.2 accordingly to the reduced form GY, one can recover
the general k-weighted graph W (ay,. .., ax,c1,...,cx). For the description of
the evaluation of the vertex-number sum m{ of II?, we introduce a specially
designed binary tree.

k=(j+2)2*-2 I=(j+3)2*-3

the second
layer (x=2)

the first layer ———
(x=1)

Figure 2.1: The binary tree for Construction (I)

Note that we have decomposed GY into B(L)%J’ MF%JHJC and G(Egj—l'
Since |5 ] equals (5] —1)+ 1 or (|5] —1)+2, GY can either go with BY,

0 0 : 0 0
and M}, 55,5 to compose Gy; 5 or go with B} 5 and M} 3,5 to compose
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GY;, 3. By recursively repeating this process, we observe that all G’s can be
built up from some B}’s, M} ,’s and just Gy, G and Gs. We illustrate this
relation by means of a binary tree in Figure 2.1. In this tree, each path from
the root represents the conformation of a k-weighted graph of the reduced
form in our covering. For example, the leftmost path from the root G to
Gjt6 represents that GY; ,, is composed of G, B}, | and M7, ,,.,, and then
GY,,6 is composed of GY;,,, By, 5 and Mg, , ;. Hence the path shows
how G2j+6 is built up. The 2% paths of length x from the root give the
conformations of the 2* k-weighted graphs where k ranges from (j +2)2% — 2
to (j+3)2° -3, j=1,2,3.

Theorem 2.3.3. Let I' = {A C Plw(A) > t} be an access structure rep-
resented by a k-weighted graph GY of reduced form, k1 = (j + 2)2° — 2 and
ke =(j+3)2"—3,2>1,5=1,23. If ky <k < ko, then there exists a
secret-sharing scheme X for the access structure I' whose average information
ratio ARy, satisfies

2 k142 (4)
24k,

B3 60k, — 84log, (22£2) — 37 — 5

<
= 24Ky
(O>O)a Zf] =1;
where (69 69) = { (28,24), if j = 2;
(40,44), if j = 3.

Proof. Let m{ and m/’ be the vertex-number sum of 119 and IT%" respec-
tively and m%i be the order of M;), , then m{‘f{l =2l — I, + 1. In TP,
V(K(Cy, A))| = |V(Ky)| = 2 and |V(H?)| = i + 1 for each i. So m{’ can
be evaluated as follows.
o { SV (H)| + V(K (Casy As)], if 1 is even;

L S V) + 2 VR (Carn, Asisn)l, i s odd;

1
Zi((20+1)+2), if [ is even;

= -1 -1
{22(27, +2)+3.%,2, iflis odd;
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(1> + 81), if [ is even;
(12481 — 1), iflis odd:

A

(1) First, we consider G} whose composition process is shown by the

N

leftmost path of length x from the root. Adding up the orders of all subgraphs

involved, we have

mkl_m+§ m]+22111+§:m 2)2i1,(j+2)20 -2

(m? + L[+ 1)+ 8(j + 1)]

+22}1[((3+2) —1)24+8((j+2)20t = 1) — 1]
_ ) +§J[((J+2) —2) = (j+2)2 4 1], if = 1.3
mg+ii[((3+2)2l P12 +8((5+2)207 —1) — 1]
+ij[((]+2)2—2) (j+2)2 +1], if j = 2.
=mj + 112((j+2)2$)2+g(j+2)2 —53:—50)

9 k1+2 ~(j)
—k 2 ki +2) — 5log /
(b + 27+ 00+ 2 Sloea( e ) - 4

kit 2 :
[k2+58k1—6010g2 (j+2) —32—59)] ,

12

EERUER, =13 ) @) 6
where e/ = {j2+5§;§+112 i and (819, &% ) = (12, 248,
=, ity =2.

In the second last step, we combine the value of agj ) with md =2 md=>5
()

and m3 = 9 to calculate the value of &Y’. With this covering of G} , we

are able to construct a secret-sharing scheme with average information ratio

mO
ARgl = Wkll
(2) We consider G22 whose composition process is shown by the rightmost

path of length x from the root. Similar to (1), we have
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0 _
ka—m—i—§ m]+32111+§:m 3)2i=1,(j+3)2i-3

(

ml + i LI((+3)27 — 124 8((j +3)2 — 1) — 1]

—_

_[((g+3)2 —-3)—(j+3)2t +1], if j =1,3;

MHS

+
=1
= 4m? + L[(7+2)% +8(j +2)]
2 (G +3)27 = 1) +8(( +3)27 = 1) — 1]
1=2
+>3 207+ 3)2" =3) — (j +3)2 1 + 1], if j = 2.
\ =1
1 . x\2 9 . T ()
:m +12((j+3)2) +§(j+3)2 —Tr — ey
1 ko + 3 )
k;2 ko — 841 — 37 -0
12( + 60ky — 8 ogQ(j+3) 37 2),
J2+60j+171 o .
G ) 12 > 3_1737
where 5’ = {j2+6(1)?+168 3
12 9 j_ /

With this covering of G, ,“we have constructed a secret-sharing scheme

0
with average information ratio- ARy, = ?Tkg The result then follows. ]

As a matter of fact, the vertex-number sum m} of each G can be evalu-
ated in a similar way. The resulting expression only slightly differs from the
ones for mj and mj, at some nonleading coefficients.

After dealing with the reduced forms we shall turn back to the general
forms. Let us introduce some more notations to simplify our description. Let
zy=(11212121---21),y=(¢(+Diidit-1)(L-1).--221)
and 1; = (11 --- 1) be three [-dimensional vectors. For [} <y, let a(l1,15) =
(ay, @y 41 @40 -+ ay) and €(ly, 1) = (¢, ¢y11 Cyre -+ c,) where a; = | A
and ¢; = |G|, i =11, 11+ 1,..., Lo

Lemma 2.3.4. For k =3-2° —2 and x > 1, the vertex-number sum my, of

the covering Il is given as follows.
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mk:il(zmﬂi—l)f ) (UHQ)(T1_1)+1,(k+2)(,2i_1))

21 2'6— 1 22
=1

+ xag_3+ (x + 1)ag_o + zagp_1 + (v + 1)ay

+§ (yi + (i — 1)fk_+2) .5((“2)(2“1 -1, k422 - 1))

X 27171 ’ 22
+ (I‘ + 1)C]€_3 + (ZE + 1)Ck_2 + xCKp—1 + (ZE + 1)0]€

Proof. Note that the expression for m; depends on all a¢;’s and ¢;’s, each
of whose coefficients represents the occurrence of the vertices of that part in
the covering IIj.

(1) First, let us examine the occurrence of vertices of B;, whose partite sets
are U§:1 A; and U§:1 Cy, in its covering I1P. For odd [, by Lemma 2.3.1, one

can easily see that the vertices in A; have occurrence 1 (only in K (A, CY)),

-1
y 9
and the vertices in Asjiq, j = 1, ..

the vertices in Ay;, j = 1,... also have occurrence 1 (only in Hyjyq)

] 2 ,, have occurrence 2 (in Hyj4; and
K(Ayj11,Cy41)). Hence, the occurrences of the vertices in Ay, Ao, ..., A4
are exactly the first [ coordinates in z;, 1. Similarly, the vertices in C; have
occurrence ”—1 (in K(Ay,CY) and H2i+1’s i=1,..., T) the vertices in Cy;,
j=1,..., 121, have occurrence 22— j + 1(in Hy;i1’s, i > 7) and the vertices
in Cyq1,5=1,..., l21, have occurrence l—l —j+1(in Hyyq'’s, i > j+ 1 and
K(Asjt+1,Ca541)). Hence, the occurrences of the vertices in C1, Cs, ..., C} are
exactly the first [ coordinates in ¥,.1 — 1,41

(2) Let us consider the value of my, now. We prove the result by induction
on z. When = =1, my = a1 + 2as + ag + 2a4 + 2¢1 + 2¢5 + c3 + 2¢4 by direct
counting the occurrences of vertices in Il;. So, the result holds when =z = 1.
Next, for k = 3-2*" —2 Gy = W(ay,...,ar,c1,...,cx) is composed of
Bs.gw_1, M3.gz 3.90+1_9 and G3.9e_9. For convenience, denote Mjs.os 5.00+1_9 by
M for now. Observe that the vertices in A;, 1 < i < 3-2% — 1, have the
same occurrences in II; as they do in the covering I12,. | because they do

not lie in M and G3.9:_o, while the vertices in C;, 1 <1 < 327 — 1, gain
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one more occurrences in II;, than they do in I12,. | because they also occur
in M. Notice that the vertices in Az.o. and C3.9. only occur once in Ilj.
Besides, the vertices in A;’s and C;’s, 1 = 3-2* 41, ..., k, also gain one more
occurrence in Il than they do in the covering Il3.92 o5 of G3.00 _5. Therefore,

by (1) and the induction hypothesis, we have

m3.0z+1_2

= Zaoe - A(1,3-2%) + (Fg00 — Lg90) - €(1,3 - 2%) 4 L5300 - €(1,3 - 27)

rz—1
L 3.2¢(211 3.27(2i 1
+3 (z%+(i—1)1ﬁ+132z) & (%Jrlﬁ’) 27, %H’) 2 )

+ (x41)az.o0 —543.00 + (¥4+2)ag.oe_aq3.00 + (x+1)ag.0e_g13.00 + (2+2)ag.00 _213.90

z—1
” e 3.27(2171-1) 3.27(21-1)
+Z<y%m+(l—1)13;@+132r)- (T+1+3-2$ 32
i=1

+ (242) .90 _543.20 + (¥4+2)Cg.00_aq3.90 + (T+1)Cg.00 34300 + (T+2)C3.00 24300

3. 2:73-1-1 3. 2:1:-1—1
- i3,21+1 . é: 1, e — + y’3,21+1 . 6 17 _
P) 2 2 2

. 5 3.2x+1 21_1 3_2x+1 2i+1_1
+ E <Zgzr+1 + ((i+1)— 1)13A2w+1) -a (—() +1, ( ))
2i+1

20F1 WA 21—1—1

i=1

+ ([E+1) (3 22+1_2)_3 + (x+2)a(3.2x+1_2)_2 + (m+1)a(3.21+1_2)1 + (I’+2)6L(3.21+1_2)

> 327 (211 3.90+1(9i+1_
D e
2i+1

¥ T e 21+1

i=1

+ (ZE+2)C(3 2z+1_92)_3 + (ZL’+2)C(3 2z+1_92)_2 + (I‘+1)C(3.2z+1,2)1 + (ZE+2)C(3.21+172)

_Z<Z’§2+ 2_1)1“2). ((k+2)(2i1_1)+17 (k+2)(42i_1))

2171 A

+ (z+ Dag_s + (x + 2)ar—2 + (z + Dag_1 + (x + 2)ay
i (k+2)(27' —1)

+Z< k+2 + 2—1)1k+2> . ( i1 —|—1,

+ (ZE + 2)C]€_3 + (I‘ + 2)C]€_2 + (ZL’ + 1)Ck_1 + (ZL’ + 2)0]€

(k+2)(2° —1)
)
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This lemma presents a sophisticated expression for m; in terms of a;’s
and ¢;’s. In what follows, we give the conditions on the values of a;’s and ¢;’s
under which my, attains its minimum value when n = Y% (a; + ¢;) is fixed.
Thereby, the lowest possible average information ratio of the secret-sharing

scheme constructed via this covering is obtained.

Theorem 2.3.5. Let I' be a weighted threshold access structure represented
by a k-weighted graph G = W (aq, ..., ax,c1,...,c;) of ordern and k = 3-2%—
2. If ;=1 for alli # §+1 and a; =1 foralli ¢ T = {1,2,4,6,...,§+1}.

Then 2 k+2
- 12n + k° 4 34k — 601og,y(57) — 32'

AR(G) < 12n

Proof. Observe that only ¢ ki and a;, 1 € T, have coefficient equal to one in
the expression for my, in Lemma 2.3.4. So my, is minimized if ¢; = 1 for all 7 #
§+1 and a; = 1 for all i ¢ T since this expression for my, is linear. This case is
similar to the reduced form. So, we make an adjustment in the expression for
mj, (with j = 1) in the proof of Theorem 2.3.3 to derive what we need here.
The vertex-number sum my, of thigcoveringis my, + 7 aitCe g — (|T|+1).
Note that n = S (a; + )= Soopai+ Ch iy T Digr @i T Dlipk 1 G =
Y ier @i + Criy + (k= |T)) +(k = 1) = > cra; + Cryy + 2k — (17| + 1).
Therefore, in this case my, = 5[k* + 58k <60 logy(52) — 32] + n — 2k =
5120 + k? + 34k — 60 log, (*£%) —32[."The average information ratio of the
secret-sharing scheme constructed with this covering attains its minimum

value % and the proof is completed. [

Our result appears to be quite good if k is relatively small compared
with n. In fact, as k fixed, the ratio given in Theorem 2.3.5 asymptotically

approaches “1” which is the optimal value for this ratio.

2.4 Construction (II)

Our second construction is similar to the first, while it performs better than

Construction I when k£ > 31. The major difference is that B; is replaced
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with G; in the covering. With the notations used before, we define our

second covering ﬁk of Gy = W(ay,...,ax,c1,...,c) recursively as follows.

M =10, i = 1,2,3. For k >4, I = T U {ML%HM} UL, where
k

the ﬁL k| is the complete multipartite covering of the | ]-weighted subgraph

that the edges not in the subgraphs W(al, ces @ty Cry CL%O and W
all lie in M\_ICQ;lJ‘F]-,k' So, ﬁk is a complete multipartite covering of Gj.

Lemma 2.4.1. The collection ﬁk is a complete multipartite covering of Gy,

with minimum edge occurrence one.

k=j 2 I= (j+1)2*-1

the x-th
—_— ° . ° ° ° °
layer @ @

+1)/2,1

the second
layer (x=2)

the first layer ———
(x=1)

Figure 2.2: The binary tree for Construction (II)

In order to evaluate the vertex-number sum my of ﬁk, we consider the
reduced form first. Let II9 and m? be the reduced version of II;, and
respectively. In the covering 110, we decompose GY into G‘Eﬂ It M fﬂ |41k

2 2 ’
and G(EéJ' Since [*51] equals |5] — 1 or [£], GY can either go with GY_,
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and MY

3,23
Recursively, all G{’s can be obtained by using this process repeatly from

G1, Gy, G3 and some Mok’s As we have done in Section 2.3, this relation is

to compose GY; or go with GY and M}, ,;,, to compose GY; ..

depicted by a binary tree in Figure 2.2. The 2% paths of length x from the root
give the conformations of the 2% k-weight graphs where 2°7 < k£ < 3.2% —1
or3.-2° < k<22 _ 1,

Theorem 2.4.2. Let I be an weighted threshold access structure represented
by a k-weighted graph GY, of reduced form, ky = j-2% and ko = (j+1)-2°—1,
x>0, 5=23. If ki <k < ko, then there exists a secret-sharing scheme ¥

for the access structure I' whose average information ratio ARy, satifies

( k1—|—2)10g2k1+(5 /ﬁ—l—é

<A
2k, s Al
_ 3(ka + 1) logy(ka + 1) + 86U (ke +1) + 1
- 2ks
(g_ 10g237_172)7 Zf] :2a

where (5(j),6§j),6éj)) = {

Wk N

(_17
Proof. Recall that M} ;, has order m{‘l/{lz Ay — L1 +1, m) =mf,i=1,2,3.
m{ =2, my =5, and mJ = 9.

(1) First, we consider Gy, . For each'1=2"(j + 1) — 1, G; is composed of

two G 1 ’s and one M IS So m{ canbe evaluated recursively as follows.

— 316853,5 — 2log, 3), if j = 3.

"m) +Z (2743277 4+ 1) — 1))

=27 -mj+3x-2x 'G+1)—(2°-1)

3 m; 1 3 )
:§(k2+1)10g2(k2+1)+ 1 —§log2(]+1) (ko +1)+1

3 .
= 5 (k2 + 1) logy(ky +1) + 0 (ky 4+ 1) + 1.
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Hence, the secret-sharing scheme constructed with H22 has average informa-
"'O
My

2ko *
(2) The composition process of G} is shown on the leftmost path of

tion ratio ARy, =

length x from the root. Adding up the orders of all subgraphs involved, we

have 7712 :7710—1-771 s 1~323 s lmQZ 121+ Making use of the

Gan_1 = 27 mi +3z-2°71(j + 1) — (27 — 1) from the derivation
in (1), we can contmue to evaluate mj, according to the value of j as follows.

(i) 165 = 3,

equation mzz

x
=mlm) 4 Y [2ml 4302 (2 -]+ > (3274 1)
= i=1

=m3 +mh+my(2° —2) +9((z—2)2" 1+ 1) = (2" -1 —2)+9(2" - 1) + =z
=9r2" 1 4 4.2" 42245

3k 4 3
= —10g2k1 + <3 510g23> ki + 2logy k1 + (5 — 2log, 3).

(i) If j = 2,
mgz+1
z—1 T
=ml+m) 4+ ) [27mg 4+ 3T — (27 )]+ ) (327 i+ 1)
=1 i=1

=32-2°+2"+2x+4

3
= 5]61 10g2 kl — kl -+ 210g2 kl + 2.

Hence mf), = (3k1 + 2)log, k1 + 5 ey + 5 and we have a secret-sharing
W
2k
immediately. [

scheme with average information ratio ARy, = The result follows

Next, we give the expression for my for a k-weighted graph of general

form.
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Lemma 2.4.3. Letk =2"(j+1)~1,2 >0, j =2,3. If iy = SF L atai+
Zle 7.ci 15 the vertex-number sum of the covering Iy, of the k-weighted

graph G = W(ay,...,ay,c1,...,cx). Then the values of af;’s and

can be obtained by the recursive relations of,; = a;ﬁﬁJr 1 =aj; L =
72
ﬂ;kﬂﬂ, = f_l +1 and of” k41 = BI k41 =1,1<:< %, with initial values
)2
0 _ 0 _ _ 0" _
Qj1 = Qjo = =1 andﬁ 1= 0433 533

Proof. We prove this result by induction on . When z = 0, £ = j, the
occurrences of the vertices in A;’s and C;’s in ﬁ are exactly the initial values

040 /s and (37,’s respectively. For > 0, recall that Gy is composed of W, =

W(al, ceey agz—l(ﬁ_l)_l, Ciy--+yCo—1(j41)—1 ), Wg = W(agz—l(ﬁ_l)_H, e, g,
Cor1(j41)+1, - - -, Ck) and M = Mse-1(j11)0e(j+1)—1. Bach vertex in A4;, 1 <
1 < % = 2771(j + 1) — 1, has the same occurrence in ﬁk as it does in the
covering of Wy since it does not occur in either W5 or M. So, aj o/” !
However, each vertex in C;, 1 < i < 51 gains one more occurrence in Hk
than it does in the covering of W; because it also occurs in M. This is also

true for vertices in A; and C;, @ =241+ 1)+ 1 < i <k, because all

of them occur in graph M as Well. Hence; we also have 57, = ;‘;1 + 1,
~1 =Pl C o k=1 .
Oé]’kérlJr oz;ﬁZ + 1 and Bj%ﬂ, = fz +1 for 1 <i < %=, Besides, the

vertices in Ak+l and Ck+1 have occurrence one because they only appear in
M. Hence, a ki1 6“”” o = 1.7"This preves that the coefficients oz;?ﬂ-’s and

;’s satisty the given recursive relations. [

Now, we consider the case when n = 3% (a; +¢;) is fixed. By evaluating
the minimum value of my,, we obtain the lowest possible average information

ratio of a secret-sharing scheme constructed with this covering.

Theorem 2.4.4. Let I' be a weighted threshold access structure represented
by a k-weighted graph G = W{(ay,...,ax,c1,...,c;) of order n and k =
G+D2°—1. Ife =1 foralli # 52 anda; =1 foralli ¢ T =
{1,2} U{(j+1)2¢=0,1,...,x — 1}. Then

+ 3(k 4+ 1) logy(k + 1) + (69 — 2)k + (69) + 1)

AR(G) < Z
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where 8Y) is given in Theorem 2.4.2.

Proof. The argument is similar to the proof of Theorem 2.3.5. From the
relations given in Lemma 2.4.3, among all the coefficients of a;’s and ¢;’s,
only af;, @ € T, and 6;“: ka1 ATE equal to one. So my, is minimized if a; = 1
forall i ¢ T and ¢; = 1 for all i # % We modify the expression for
77122 in the proof of Theorem 2.4.2 to meet what we need here. In this case,
my, = ﬁ@g2+2ieTai+c% —(|T|+1) =m)+n—2k =n+2(k+1)logy(k+
1)+ (68U —2)k+ (69 +1). The secret-sharing scheme for this access structure

has average information ratio “%. [

This result is also very good when £k is relatively small compared with n.
The ratio also approaches “1” asymptotically as k fixed. After analyzing the
average information ratio produced from each of our constructions separately,
we shall give a comparison of them in Section 2.5. For a fair comparison,
we consider the same class of k-weighted graphs where k£ = 3 - 2% — 2. We

present the lowest possible average information rate for this class as follows.

Theorem 2.4.5. Let I' be a weighted threshold access structure represented
by a k-weighted graph G = W@y, .. agsCt, ..., c;) of order n and k =
3-2—2. Ife; =1 for alli # $anda; =1 foralli ¢ T = {1}U{3-2'—1]i =
0,1,...,x—1}. Then

AR(Gy) < n—+ (%k + 2)logy(k +2) — (% + %log2 3)k + % — 2log, 3.

n

Proof. Suppose ([, A;)U (UL, C) is the vertex set of G, where | 4| = a;
and |C;] = ¢, ¢ = 1,2,...,k. Denote {u} by Ay and {v} by Cy. Let
(UL, A) U (UY, C)) be the vertex set of the (k + 1)-weighted graph Gy, =
W(|Ao|,a1,...,ak |Co|,c1, -..,cx) of order n + 2 where k +1 = 3-2% — 1.
Then Gy, satisfies the criteria in Theorem 2.4.4, and the vertex-number
sum my 1 of its covering ﬁk+1 isn+2+ %(k +2) log, (k +2) 4 (6@ — 2)(k +
1) +6® + 1. Now, observe that G}, = Gyy1 — (Ao U Cp) and the collection
of subgraphs obtained from ﬁk;-i—l by deleting u and v from each subgraphs
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in ﬁk;-i—l is exactly the complete multipartite covering ﬁk of Gy since G is

composed of W (|Ayl, a1, .. @k _y, |Col, c1, - - -70571)7 M§+1,k+1 (in Gg41) and

W(agﬂ, oy Oy Ch gy ., ¢) and Gy, is composed of W(ay, .. @k, Cry

ck_y), Mx,, (in Gy) and W(ax 4,...,ax,cx q,...,cx). From the relations in
2 27 2 2

Lemma 2.4.3, one can see that the occurrence of u in ﬁk+1 is one and the
occurrence of v in Iy is B3, = x4 2 = log,(*+*) + 2. Hence, the vertex-
number sum 7y, of Iy is M1 — 1 — (logy(B52) +2) = n+ (2k + 2) logy(k +

2) — (2 4 3log, 3)k 4+ 2 — 2log, 3. The result is then obtained. |

2.5 Concluding Remark

The weighted threshold access structure is a more applicable structure of
secret-sharing schemes in reality. In the implementation of such a scheme,
the value of k£ can be thought of as the number of departments or divisions in

an organization. In order to have a comparison of the efficiency of our con-
12n+k2434k—60 log, (52 )—32
12n

structions of secret-sharing scchmes, we let AR; =

n+(2k+2) logy (k+2)— (2 + 2 logs 3)k+2=210
and AR2: (2 ) g2( ) (73; 2 22 ) 3 22

% which are the lowest possi-
ble average information ratio derived from our two constructions in Theorem
2.3.5 and Theorem 2.4.5, respectively. Both ratios perform very well when
n/k is large. If k is constant, both of them approaches “1”7 asymptotically.
Let n = puk where i can be thought of ‘as the average size of departments
in the organization. When p is larger, both AR; and AR, become lower for
each fixed value of k. Figures 2.3 and 2.4 show the behavior of Morillo’s
ratio [28], AR; and AR in the case when p = 20. As indicated in the figure,
AR; performs better than AR, when k < 30, whereas ARy becomes supe-
rior to AR; for all £ > 31. Actually, this fact remains true for all values of
p. Therefore, Construction I is more suitable for organizations with fewer
departments, whereas Construction II performs especially well for organiza-

tions with more departments.

The results in this chpater have been included in the following paper.
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"H.-C. Lu and H.-L. Fu, New bounds on the average information rate of
secret-sharing schemes for graph-based weighted threshold access structures,
Information Sciences, 240 (2013), 83-94.”
(http://dx.doi.org/10.1016/j.ins.2013.03.047)
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Figure 2.3: A comparison of the results in the case when p = 20.
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Figure 2.4: A comparison of AR; and AR, in the case when u = 20.
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Chapter 3

Optimal Average Information
Ratio for Trees

Before taking care of trees, we start this chapter with the introduction of
our approach to the determination of the exact values of the optimal average

information ratio of graphs of larger girth.

3.1 Our Approach to the Determination of
the Exact Values of AR(G)

Let IN(G) = {v € V(G)|degs(v):= 2} and in(G) = |[IN(G)|. Given a star
covering II of G with vertex-number sum myy, the deduction of II is defined
as dip = |V(G)| 4+ in(G) — mp. A star covering with the least vertex-number
sum gives the largest deduction. We also denote the largest deduction over
all star coverings of G as d*(G), called the deduction of G. A star covering
IT with dy = d*(G) is referred to as an optimal star covering of G. The
following upper bound on AR(G) is simply a rephrasemant of Theorem 1.3.1

in terms of the deduction of G.

Corollary 3.1.1 ([34]). IfII is a star covering of a graph G with deduction
G)|+in(G)—
dri, then AR(G) < %_

For the derivation of lower bounds on AR(G), we follow Csirmaz’s ap-
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proach stated in Section 1.3.2. Recall that a core of GG is a connected subset
Vo € V(G) such that each vertex v € Vj has a designated outside neighbor
v, which refers to a neighbor of v that is outside V; and is not adjacent to
any other vertex in Vp, and {ojv € V;} is an independent set. In the case
of trees, all neighbors of the vertices in a connected set naturally form an
independnet set. Therefore a core of a tree can be simplified as a connected
subset Vy € V(@) such that each vertex v € V; has a designated outside
neighbor. In order to cope with the average information ratio, we extend the
idea of a core of G. For G # K, we define a core cluster of G of size k as a
partition C = {V3, V4, ..., Vi} of IN(G) such that each V;, i € {1,2,... k},
is a core of G. The size of a core cluster C is written as ¢.. We also denote
the minimum size of all core clusters of G as ¢*(G), called the core number
of G. Note that ¥, V; may not be a core of G, if so, then ¢*(G) = 1 for
G # K. The core number of K ; is naturally defined as ¢*(K;;) = 0. A
core cluster of size ¢*(G) is then called an optimal core cluster of G. The

idea of a core cluster helps us establish a lower bound on AR(G).
Theorem 3.1.2. IfC is a core cluster-of a graph G, then

V(G| +in(G) — ¢
ARC) 2 =

Proof. Let C = {V;,V5,...,V,} and X be a secret-sharing scheme on G.
Then the function f defined in Section 1.3.2 by the random variables from
Y. satisfies inequalities (a) to (e) and Theorem 1.3.9. Since G has no iso-
lated vertices, f(v) > 1 for all v € V(G) [13]. We have }_ ) f(v) =
ZUGIN(G) fv)+ Zv:degc(v):l flv) = Z?:1 > ey, f(0) + [{v] dega(v) =1} >
S L2V = 1) + [{v] degg(v) = 1} = |[V(G)| + in(G) — k. Hence, ARy, >
ﬁ(!V(G)\ +in(G) — k) for any secret-sharing scheme ¥ on G. The result
follows. ]

Combining Corollary 3.1.1 and Theorem 3.1.2, we have the following re-
sults.
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Theorem 3.1.3. The inequality cc > dy holds for any star covering 11 and
core cluster C of a graph G. In particular, ¢*(G) > d*(G).

Corollary 3.1.4. If there exists a star covering Il and a core cluster C of a

graph G such that cc = dp, then ¢*(G) = cc = dy = d*(G) and AR(G) =
|V(G)\T€Z(GC§)‘*C*(G) _

As indicated in this result, the equality ¢*(G) = d*(G) makes a criterion
for examining whether the lower bound and the upper bound on AR(G) will
match. We call G realizable if ¢*(G) = d*(G) holds. In the next section, we

shall show that all trees are realizable.

3.2 The Exact Values of the Optimal Infor-
mation Ratio of All Trees

Given a tree T, we let IN(T') and LF(T') be the sets of all internal vertices
and leaves of T respectively. Denote |[IN(T)| as in(T) and |LF(T)| as Lf(T).
Blundo et al.[7] gave an algorithm for producing a star covering of a tree
T. We make a slight modification to it and restate it for completeness. Let
Nr(v) be the set of all neighbors of vin 7" and S, be the star centered at v
with Np(v) as its leaf set.

Algorithm;

Covering(T) Cover(v)

Let v € IN(T) A(v) = Np(v) N IN(T)

II+ ¢ I« ITuU{sS,}

Cover(v) E(T) « E(T)\E(S,)

Output the star covering II V(T) + V(T)\((Nr(v) "N LF(T)) U {v})

VI
for all v' € A(v) do Cover(v')

Lemma 3.2.1. Let T be a tree. The star covering II of T produced by
Covering(T') has deduction dy =1 if T # K11 and dy =0 if T = Ky 1.

Proof. For T' # K, i, the initial vertex v and all leaves of T" appear in

exactly one star in II. All internal vertices but the initial one appear twice
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in the covering. So the vertex-number sum my = [f(T) +1+2(in(T) —1) =
\V(T)| +in(T) — 1, and we have dy; = 1. .

We shall refine this process and obtain star coverings with higher deduc-
tions next.

A vertex v € IN(T) is called a critical vertex of T if Np(v) N LF(T) = 0.
In the structure of a tree T', critical vertices play an important role in our
discussion. We use Xt to denote the set of all critical vertices of T'. Consider
the subgraph Hr of T induced by X and let Ar (resp. Yr) be the set of all
nontrivial (resp. trivial) components in Hy. Then the set Yr is in fact the
set of all isolated vertices in Hr. So, Y1 can been seen as a subset of Xy. In
addition, for any V' C V(T') and E' C E(T'), the graph T"— V' is obtained
by removing from 7" all vertices in V' as well as the edges incident to them.
T — E' is resulted from removing all edges in E’ from 7. Both T"— V' and

T — E’ may contain isolated vertices.

Proposition 3.2.2. Let T # Ky be a tree. If Ay =0 and |Yr| =y > 0,
then there exists a star covering Liof T with deduction dy =y + 1.

Proof. Let G be an arbitrary-component in 7' — Y. If wy,...,w; are all of
the vertices in Y that are adjacent to some vertices in G, then we define G
as the subgraph of T induced by V(G) Ufawy, ..., w}. Let H = {G|G is a
component in 7' — Y7} and Il5 be the'star covering produced by algorithm
Covering(é). By the definition of Y, no G is isomorphic to K 11, 80 dp, =1
by Lemma 3.2.1. Since Jgeqy E(G) = E(T'), the covering II = (Jzeqy Il is a

star covering of T" with vertex-number sum

min =Y _([V(G)| +in(G) - 1)

GeH
— <V(T) + Z (degr(v) — 1)) + (in(T) — y)
- <Z degr(v) — (4 — 1))
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=V(T)+in(T) — (y+ 1).
[
Next, we consider the core number of T. For a tree T with Xy = 0,
{IN(T)} is obviously a core cluster of minimum size. The following lemma

is straight forward.
Lemma 3.2.3. Let T # Ky be a tree. If Xp =0, then ¢*(T) = 1.

Now, we introduce the way we decompose a tree in order to define a core
cluster we need. Let V' C V(7). Given a vertex © € Np(v)NIN(T) for each
v eV weset B/ = {volv € V'}. For each component G in T — E’, let G
be the subtree of T" obtained by attaching to G all edges of the form vv if
v € V(G), then Gt = G if G does not contain any v. We also denote the
collection of all G*’s, where G is a component in T'— E’, as HT(T, V', E’).
Observe that, if v € V' and deg,(v) = 2, then v € LF(G™) for exactly two
G*’s in the collection H* (T, V', E’).

Proposition 3.2.4. Let T # Ky pbé adree. If Ar =0 and |[Yr| =y > 0,
then ¢*(T) = d*(T) =y + 1.

Proof. It suffices to show that there is a core cluster of T' of size y +
1. For each v € Yp, choose ‘an arbitrary neighbor of v as v, then v €
IN(T). Let E' = {vv|v € Yr}. Theré'are y + 1 subgraphs in H* (T, Yr, E').
Let HH(T,Yr, E') = {Gg,GY,...,G}} where G’s, i = 0,1,...,y are the
components in 7" — E’. Note that any two vertices in Y; have distance at
least two, so IN(G}) # 0. Let V; = IN(G}) U {v|v € V(G;) N Yr and
degp(v) = 2}. We claim that {V, V4,...,V,} is a core cluster of T". First,
each vertex u € IN(T)\Yr belongs to exactly one IN(G;") and also exactly
one V;. Each v € Yr belongs to exactly two G;’s. If degy(v) > 3, then v is
an internal vertex of one G; and a leaf of the other. It belongs to exactly one
IN(G) and hence exactly one V. If deg,(v) = 2, then v is a leaf of exactly
one component G; in T'— E’ and is a leaf of two subgraphs in H* (T, Yr, E').
Hence it belongs to exactly one V; and none of the [N(G;r)’s, ji=0,1,...,y.
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This shows that {Vp,Vi,...,V,} is a partition of IN(T). Next, each V;
certainly induces a connected subgraph of 7. In addition, each v € V; N Y
has a neighbor ¢ not in V;. Each u € V;\Yr has a leaf neighbor in 7" which
does not belongs to V;. Hence, V; is a core of T'. Since we have a core cluster
of size y + 1, the result then follows immediately by Proposition 3.2.2 and
Corollary 3.1.4. n

Before literally proving our main theorem, we examine the relation be-
tween the deductions of star coverings of the subtrees in H* (7, V', E') and

the deduction of a star covering of 7" more closely.

Lemma 3.2.5. Let V' be an independent subset of IN(T) and z = [{v € V|
degr(v) > 3}|. For each v € V', let © be a nonleaf neighbor of v in T and

= {vo|v € V'}. If there is a star covering U of each T' € HT (T, V', E’)
with deduction dy,, then I = UT,€H+(T7V,’E,) [I7+ 2s a star covering of T with

deduction dH = ZT’GH*(T,V’,E’) dHT/ - <.

Proof. Denote H™(T,V’, E') as H™ for now. Since Jpcqr E(T") = E(T),

IT is a star covering of T'. The vertex-number sum my of II is

mn =Y _ ([V(T9|+n(T)~d,)

T'eH+
= V(D) + V| #in(T)=(V'| = 2) = ) _ du,,
T'eHt
= |V(T)| + in(T) — ( > dn, —z> .
T'eHt

Now, we are in a position to present our main theorem in this chapter.

Theorem 3.2.6. Any tree T is realizable and

n+in(T) — c*(T) '

AR(T) =

Proof. We prove this result by induction on |Xg|.
(1) If |X7| =0 or 1, then Ay = ). The result holds by Proposition 3.2.4.
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(2) Suppose that |Xz| > 2. By Proposition 3.2.4, we may assume that
Ar # 0. Choose a vertex v € LF(T") for some T € Ar and let © be the
neighbor of v in T”. There are two subtrees G4 and G| in H* (T, {v}, {v0}),
each of which is not a Kj;. Let GE{ be the one not containing v, then
|XGSF\ < |X7| is obviously true. Since v € LF(GY), it is no longer a critical
vertex of G, we also have [Xg+| < [Xr|. By induction hypothesis, there
exist a star covering II; of G;” and a core cluster C; = {Vi1, Vi, ..., Vix,} with
dr, = cc;, = k; > 0,7=0,1. Then II = Il U1l is a star covering of 7. We

construct a core cluster of size di next.

(i) If degp(v) > 3, then dy = ko + k; — 1 by Lemma 3.2.5. Suppose
that v € V. Since Vy is a core of G, there is a designated outside
neighbor v of v in G§ and outside Vp;. Now, v’ is an internal vertex
of G¢ because v is critical both in T and in G§. We may assume that
v' € Vha. Now, let C = {Vi1 U Voo, Vos, -+ -, Vokg, Vi1, - -+, Vi, }, then
IC| = ko + k1 — 1. We claim that C is a core cluster of T'. First note
that IN(GJ) UIN(GY) = IN(T),and any two sets in C are disjoint.
Each set in C\{Vy; U Vi2} isa core of Gi or G, hence a core of T. For
Vo1 U Vie, © is a neighbor of w in T-not in Vp; U Vo, Since v € LF(T"),
v’ is not critical and then has“a leaf neighbor v” # v in G§ (and in
T) not in Vg, so v” ¢ Vo1UVoe 1s the designated outside neighbor of
v" with respect to Vi1 U Vie, and Vi U Vi is qualified as a core of T

Therefore, C is a core cluster of T of size dp.

(i) If degy(v) = 2, then dyp = ko + ky by Lemma 3.2.5. Since v is a criti-
cal vertex of T', the neighbor v # © in T is an internal vertex of G7. We
may assume that v’ € V. Let C = {Vo1U{v}, Voo, . -+, Vokes Vits - -+, Vik 1
then |C| = ko + k1. To show that C is a core cluster of T, it suffices
to show that Vo U {v} is a core of T. Note that v’ is not critical in
both G§ and T'. It has a leaf neighbor v” # v not in Vg; U {v} which
serves as a qualified designated outside neighbor of v" with respect to

Vo1 U {v}. Besides, v is also a qualified designated outside neighbor of
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v with respect to Vo U {v}. The set Vo U {v} is indeed a core of T.

Therefore, T also has a core cluster of size dy in this case.

In both cases, we have ¢*(T') = d*(T'), which implies that the lower bound
and the upper bound on AR(T) coincide. Hence, AR(T) = "HnD=<(1) g

n

3.3 The Evaluation of AR(T) for Some Classes
of Trees Using Our Approach

In this section, we evaluate the optimal average information ratio systemat-
ically for two infinite classes of trees using our approach.

The only infinite class of trees which has known optimal average informa-
tion ratio is the paths. By evaluating the core number, we can easily obtain

the known result.

Proposition 3.3.1 ([34]). Let P, be a path of length n. Then

3n . : .

) s if n is even,
AR(PTL)_{ 3Z+1 an is Odd
2(n+1)’ :

Proof. By Proposition 3.2.4,-we have ¢*(P) = 0, ¢*(P%) = ¢*(P3) = 1 and
c*(Py) = 2. Observe that Ap, ={P,_4} forall n > 5. Since any leaf of the
P,_4in Ap has degree two in P,, from the proof of Theorem 3.2.6, we have
c*(P,) = ¢*(P,_4) + 2. Recursively, we have

(P = {2k ifn=4k+4,i=123;
C n) —
c*(Py) +2(k—1), ifn =4k,
)5, if nis even;
nd, if nis odd.
Hence,
AR(P,) = (n+1)+(n—1)=c(P) _ 2§211), ?f n %s even;
n+1 2(211)7 if n is odd.
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Next, we evaluate the average information ratio of complete g-ary trees.
A complete g-ary tree with k levels is a rooted tree such that each nonleaf

vertex has ¢ children and the distance from the root to each leaf is k.

Theorem 3.3.2. Let T}, be a complete q-ary tree with k levels, ¢ > 2. Then

qk+2+2qk+liq272q

AR(Tk):{ (g+1)(g"T1-1) >

k42 k+1_ 2
4T 429" —q—q—1 ; ;
Q@D if k is odd.

if k is even;

Proof. By Proposition 3.2.4, ¢*(71) = 1 and ¢*(73) = 2. Observe that
Ap, = {Ty_2}, k > 3, and the T;_ has ¢"~2 leaves, each of which has degree
g+ 1 > 3 in Ty. Since each leaf of the Tj_5 and its descendants in T}
compose a Ty, from the proof of Theorem 3.2.6, we get ¢*(T}) = ¢*(Tx—2) +
¢"2(c*(Ty) — 1) = ¢*(Tr_2) + ¢" 2. Recursively, the core number of T}, can

be evaluated as follows.

‘T 24+ P+ (), if ks even;
C prm—
k F 24+ g (Ty),  if ks odd.

1

k 2_ . .
(1421277(11, if k is odd.

k 2
—9 . .
{q;;%, if k dis-even;
1

Therefore,

qk+l_1 qk_l "
S ()
AR(Ty) = —4=L T a1 (T)

qk+171
qg—1

k+2 2 k+1_ 272 . .
{q 20020 if | is even;

(g+1)(g*+1-1)

k+2 k+1_ 2
T 429" —q"—g—1 ; ;
GI@D if k£ is odd.

3.4 Concluding Remark

We have proposed the idea of the deduction d*(G) and the core number

c*(G) of a graph G and showed that these values are the same for any tree
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T, thereby proving the upper bound and the lower bound on the optimal
average information ratio of a tree coincide. By doing so, we also present a
systematic way of evaluating the core number of a tree.

In addition, the condition d*(G) = ¢*(G) makes a criterion for examin-
ing whether the upper bound and the lower bound on AR(G) will match.
The idea formulates a complicated problem of secret-sharing schemes into a
problem in graph theory with easy description. “For what kind of graphs
will the identity be true?” is indeed an interesting question to investigate.
One obvious restriction to set on G is that G must be of larger girth. A star
covering generally does not serve as a complete multipartite covering with
the least vertex-number sum for a graph of small girth. In the next chapter,
we study the optimal average information ratio of bipartite graphs of larger
girth. Finding a star covering whose deduction matches the size of a core
cluster is in general very difficult. However, there have not been any bounds

or asymptotic results on the complexity of the problem yet.

The results in this chapter have been‘included in the following paper.
"H.-C. Lu and H.-L. Fu, The exact values of the optimal average informa-
tion ratio of perfect secret-sharing schemes for tree-based access structures,
Designs, Codes and Cryptography (2013), http://dx.doi.org/10.1007/s10623-
012-9792-1”
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Chapter 4

The Average Information Ratio
of Bipartite Graphs

4.1 Some Classes of Realizable Graphs

In this chapter, we need more definitions and notations to facilitate the whole
discussion process for bipartite graphs, The girth of G is written as girth(G).
Ng(v) denotes the set of all neighbors of vin G and N(S) = |J,cg Na(v) for
any S C V(G). A vertex v is called a k-vertex of G if deg,(v) = k. Let G =
(X,Y) be a bipartite graph with bipartitions-X and Y. If H is a subgraph
of G, we use Xy and Yy to denote X N V(H) and Y NV (H) respectively
and then H = (Xpg, Yy). In addition, let ng) = {z € Xy|degy(z) = k}
and X&' = {z € Xy|degy(z) > k}. The sets Y} and YA are defined
correspondingly. In the case when H = G, we use X® and X** for Xg ) and
ng respectively and also use Y*) and Y*" for YG(k) and YG’“+ respectively
for simplicity. In order to have a better description of our approach to the
problem regarding bipartite graphs, we give an alternative definition of a
core cluster of G. A core cluster g of GG is defined as a vertex labeling
g : IN(G) — NU{0} such that each g7'(i), 1 € g(IN(G)), is a core of G.
The size |¢g(IN(G))| of the clore cluster is denoted as ¢, in this chapter. The
core number of G is still written as ¢*(G). As a reminder, for any V' C V(G)

and any E' C F(G), we do not remove resulting isolated vertices from the
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subgraphs G — V' and G — E’. Each isolated vertex is considered as a trivial
component in both subgraphs.

As we define an orientation on a specified trail vg — vy — -+ — v (the
v;’s may repeat) in the proof of Theorem 4.1.1, “orienting the trail from
vp to v;” means choosing the orientation v; — wv;4; for each edge v;v;41,
i=0,1,...,0 — 1, of this trail. For any subgraph H of G, we denote as SZ
the star centered at v and having all neighbors of v in H as its leaves. In
what follows, we let IIx(H) = {S|x € Xy} and Iy (H) = {S|y € Yy}
Both of them are star coverings of H. Unless otherwise specified, a graph
G = (X,Y) always represents a bipartite graph which contains no isolated

vertices.

Theorem 4.1.1. Let G = (X,Y) with |X| > |Y| and girth(G) > 6. If
degy(z) <2 for all x € X, then G is realizable and ¢*(G) = |Y>"].

Proof. Before constructing the desired core cluster, we define an orientation
on G first. (i) If G contains a cycle C, then we start with an orientation
on C' so that C' becomes a directed €ycle. Next, we repeat the following
process until all edges of GG are-oriented.”We take a uv-trail passing through
unoriented edges where u is a vertex to which at least two oriented edges
are incident and v is a 1-vertex or a repeated vertex on this trail or also a
vertex to which at least two oriented edges are incident, and then we orient
the trail from w to v. Since GG is connected, we will eventually arrive at an
orientation of G by repeatedly doing this process. (ii) In the case when G
is a tree, counting the number of edges of G gives | XV| 4 2(|X| — |[XP|) =
| X|+ Y| =1 < 2|X|—1 which implies [ X" > 1. Let 2o € X" be the root
of G and orient all edges toward the leaves. Now, we have the orientation we
need. Observe that in both cases, each vertex v € IN(G) has at least one in-
neighbor and one out-neighbor. Let us construct a core cluster of G by virtue
of this orientation. Initially, we label the vertices in y2' differently, that is,
let g : V2" — {1,2,...,|]Y?"|} be a bijection. Next, we will extend the
domain of g to IN(G) and keep the image of g unchanged at the same time.
For each z € X?', define g(x) = g(y) if (y,z) is an arc in the orientation.
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Being a 2-vertex of GG, x has exactly one in-neighbor y, and then the extended
labeling g : IN(G) — {1,2,...,[Y?"|} is well-defined.

We claim that ¢ is a core cluster of G. Note that each y € Y2" has at least
one in-neighbor which is either a 1-vertex or a vertex x € X who receives the
label from its in-neighbor 3’ # y. Hence each y € Y2" has a neighbor not
in g7 '(g(y)). Similarly, each z € X 2" receives the label from its in-neighbor
Yy € Y2" and also has at least one out-neighbor 3" # y which is a 1-vertex
or has initially gotten a label different from y’s. So each = € X?" also has
at least one neighbor not in ¢g~!(g(x)). Now, each vertex in ¢g~!(i) does have
a neighbor outside ¢!(i) and these outside neighbors of vertices in ¢g~!(7)
certainly form an independent set in G because g~!(i) induces a connected
subgraph of diameter at most two and G has girth not less then six. This
shows that g is indeed a core cluster of size |[Y2"|. On the other hand, the
star covering IT = Iy (G) = {SS|y € Y} has the vertex-number sum my =
[V(G)|+|X?"| which gives the deduction dy = |V (G)|+in(G)—myg = [Y?'|.
The proof is then completed. [

In a graph G, k-subdividing an-edge is the operation of replacing the edge
with a path of length k. A graph G’ is called an even-subdivision of G if it
is obtained by 2k.-subdividing each edge e € E(G), where k., > 1.

Corollary 4.1.2. If G is a simple graph; then any even-subdivision G' of G
is realizable. In addition, if G' is obtained by 2k.-subdividing each edge e of

G and G is not a tree, then AR(G') = :“jggit:gggglﬁ %eig Z
ec €

Proof. We may assume that G is not a tree. Let vf,v5,...,v5, _; be the
consecutive internal vertices of the path in G’ that replaces the edge e in
G. Then G’ is a bipartite graph with bipartition X = {v5,,le € E(G),
i=0,1,...., ke — 1} and Y = {v§|le € E(G),i=1,...,k. — 1} UV(G). So,
[ X] =2 cene ke and [Y] = 3 cpe) (ke =) HIV(G)| = Xocepe) ke=|E(G)|+
|[V(G)| < |X]|. Since the girth of G’ is not less than six and degq/(x) = 2
for all € X, we know that G’ is realizable by Theorem 4.1.1 and ¢*(G’) =
V2] = Ceepe (ke = 1) +in(G). Since |V(G)] = Locpe)(2ke = 1) +|V(G)]
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and in(G') = > cp)(2ke — 1) +in(G), the optimal average information
ratio of G/ can be easily evaluated as follows.

_ V(@) +in(¢) — (&)

N V(&)

- VG = IEG)+3)cep ke

VG =BG + 2 e ke

AR(G")

This proof actually also works when G is not simple and G’ has girth not

less than six.

Corollary 4.1.3. If G is a graph with loops and multiple edges, then any
even-subdivision G' of G is realizable provided that G’ is of girth not less than

S1.

Theorem 4.1.4. Let G = (X,Y) and | X| > |Y|. Suppose that girth(G) > 8
and Ng(u)NNg(v)NY?" = 0 for all distinct u,v € X*". If for eachv € X*",
there exists a set N~ (v) = {v;]i = 1,...,degs(v) — 1} € IN(G) N Ng(v)
such that each component G in'G— E', “where E' = {vu;lv; € N~(v),v €
X3}, satisfies | Xg| > |Yz|,-then G-is realizable and ¢*(G) = |[Y?'| -
oo (deg(0) — 2).

Proof. First note that for all distinct u;0 € X3, N~ (u) and N~ (v) are
disjoint because a vertex in N~ (u) N N~ (v) would otherwise turn out to be
a trivial component in G — E’ which violates the assumption. Now let us
initially define g : Y2 — {1, 2, ..., [Y?"|} to be a bijection and then, for
each v € X3, we further define g(v) = g(vy) and alter the labels of v;’s,
i > 2, by redefining g(v;) = g(v1) for i = 2,3,...,degs(v) — 1. After this
alteration, [g(Y?" UX®")| = V2| = 3 s+ (degg(v) — 2).

Let {G; = (Xg, Yz )li =1,2,...,s} be the collection of all components
in G — E’'. Applying the construction of a core cluster used in the proof of
Theorem 4.1.1 to each G; if G; # K1 1, we extend the domain ofglyﬁmm@)
to IN(G;) and keep its image unchanged. As a consequence, we have jointly

extended the domain of g to IN(G) and keep its image unchanged.
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Next, it will be verified that ¢g~!(g(u)) is a core for each u € IN(G). If
u = v for some v € X3, there exists y' € Ng(v)\N~(v) which is either a
1-vertex or has a different label from v’s because y’ was initially given a label
different from v;’s and has never been altered. If u = v; € N~ (v) for some
v € X3 and deg,(v;) = 2, then v; is a 1-vertex of some CNJJ-. According to the
manner we extend gyt -, NG the neighbor of v; in éj has a label different
from v;’s. Finally, if u € IN(G)\X? \{v;: € N~ (v)|v € X3" deg,(v;) = 2},
then u € IN(G;) for some j. It has been shown that u has a neighbor in
CNJJ- which is either a 1-vertex or has a label different from w’s in the proof
of Theorem 4.1.1. Hence, each vertex u € IN(G) has a neighbor not in
g (g(u)). These outside neighbors of the vertices in g~!(g(u)) certainly form
an independent set in G because g~!(g(u)) induces a connected subgraph of
diameter at most four and the girth of GG is at least eight. We conclude that
g is a core cluster of G of size [g(IN(G))| = [YZ'| = 3, xs+ (degg(v) — 2).

On the other hand, the star covering Il = Ily(G) has the vertex-number sum

mn = |V(G) + Y (dega(v) —1)

veX2
+
= V(@) /. (degg(n) — 2) + | X*].

U€X3+
Therefore, it has deduction dyy = JV(G)| +4X?" | + Y| —mn = |g(IN(G))|
as desired and the proof is completed. [
A component H in G—X?3" with | Xp| > |Yy| will give rise to a component
H* in G — E" with | Xg+| > |Yu+|. We have a complete characterization of
this kind of components. In the next lemma, we consider a more general case

for later use.

Lemma 4.1.5. Let G = (X,Y) with |X| > |Y| and H = (Xu,Yn) be a
component in G — S for some S satisfying X3 C S C X. Then | Xy| > |Vl

if and only if H contains a cycle or H is a tree with at least one leaf in Xp.

Proof. For each z € Xy, degy(x) = degs(z) < 2. Since H is connected,
counting the edges of H gives |X\P|+2|X?| > | X |+ |Yu| — 1 which implies
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that \Xg)] > |Yy|—1. In addition, H is a tree if and only if \Xg)] = |Yy|—-1.
Now, it is clear that | Xp| < |Yz| and | X?'| > |Yy|—1if and only if [ X'P| = 0
and \X](f)| = |Yy| — 1. The result follows immediately. ]

Let G = (X,Y) with |X| > |Y| and S satisfy X3" € S C X. Then,
a component H in G — S with |Xy| > |Yg| is called a proper component
in G — 5. A component in G — S is improper if it is not proper. In other
words, an improper component H in G — S, where X3 C § C X, is a tree
component with all its leaves in Yj.

Theorem 4.1.4 suggests that proper components in G — X 3" do not hinder
G from being realizable. However, improper components may cause trouble
while constructing core clusters of GG. To deal with improper components in
G-X 3+, it will be convenient to define an improper-component-adjacency
graph Ag as follows. Let Uy = {T;|i € Iy} be the collection of improper
components in G — X3 and let X3 = {v € X3 |v is adjacent to some
T; € Uy in G}. The improper-component-adjacency graph is a bipartite
graph Ag = ([UO,)??”L) such that for all T, € Uy and v € X3, (T;,v) is an
edge in Ag if and only if v is adjacent to some vertex of T; in G. Suppose that
My = {(T},v;)|5 € Jo} (Jo Cdp) is @ maximum matching in Ag. Each T;,
i € Ip\Jo, is called an excess improper component of G. The number of excess
improper components of G is independent, of the choices of the maximum
matchings. We denote the number |Ig\Jy| as exc(G). This parameter plays
an important role in finding ¢*(G) and d*(G).

We take care of star coverings first. In what follows, we shall identify a
subgraph G’ of G and show that II = IIx(G’") UIly (G — G’) is an optimal
star covering of G. Note that the graph G — G’ is obtained by removing all

edges of G' as well as the resulting isolated vertices from G.

Lemma 4.1.6. Suppose that G’ is a subgraph of G = (X,Y) with | X| > |Y|
and V(G") N V(G — G') C X. Then, the deduction of the star covering
II=1Ix(G")UIlly(G — &) is given as

dy =Y = > (degg(v) —2) + Yo | — [ Xe|-

veX3T

52



Proof. Denote G — G’ as Gy for now. Let S = V(G') NV (Gy) and |S| = s.

The vertex-number sum my of II can be evaluated as follows.

mn = |V(G')| + Z (deger (y) — 1) + [V(Go)| + Z (degg,(z) — 1)

yGYG/ :BGXGO
= V(@) +s+ Y dege(e) = Yo+ D degg, (@) — [ Xey|
:BGXG/ .TEXGO
= |V(G)| + 5+ ) degg(e) — [Xao| — [Yer|
reX

= V(@) +s+| Y (degg(x) = 2) + X[+ X7 | = [Xao| - [Yor|

zeX3t

= V(@) +in(G) — [|X¥ |+ |Y?| =5

[ 3 (degla) —2) + X[+ X2 | + 1 Xe | + [Yer!

zeXx3t

= V(G| +in(G) — |[Y2 = 3] (dega(x) - 2) = [ Xar| + Yo

zeX3T

In the last step, we use the fact that | X|+ s = | X¢,| + | X /|. Therefore, we

have the deduction as desired. ]

Lemma 4.1.7. Suppose that G = (X,Y) with |X| > |Y| and X3" C S C X.
Let U be the collection of all components in G — S. If every component H in
G — S is improper, namely, |Xg| < |Yu|, then |U| —|S| = Y| — | X].

Proof. Since every component H € U is improper, H is a tree with all leaves
in Yy and then deg.(x) = 2 for all x € Xy. Counting the edges of H gives
2| Xy| = |Xu| + |Yu| — 1 which implies |Xy| = |Yu| — 1. As a consequence,
we have [Y] —[X] =3 pey [Yu| = QCpey [ Xul +[S]) = [U] - [S5]. "

The notion of a maximum matching in a bipartite graph and a cut in a
network is at the core of our process of identifying the subgraph G’ in G. We
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recall some basic properties before further discussion. We follow the terms
and notations used in [36] in the following review.

Given a matching M in G, an M -augmenting path is a path that alternates
between edges in M and edges not in M and the endpoints of the path are
unsaturated by M. It is well known that a matching M in a graph G is a
maximum matching in G if and only if G has no M-augmenting path.

A network N is a digraph with a nonnegative capacity c(e) on each edge
e and a distinguished source vertex s and sink verter t. A flow f assigns
a value f(e) to each edge satisfying 0 < f(e) < c(e) and the in-flow f~(v)
and the out-flow f*(v) of each vertex v ¢ {s,t} are the same. Given a
flow f in a network, an f-augmenting path is a source-sink path P in the
underlying graph such that, for each e € E(P), (i) if P follows e in the
forward direction, then f(e) < c(e), and (ii) if P follows e in the backward
direction, then f(e) > 0. In a network N, a source/sink cut [S,T] consists of
the edges from the source set S to the sink set T, where S and T partition
V(N) with s € S and t € T. The capacity of the cut is the total of the
capacity on the edges of [S,T]. The well-known Ford-Fulkerson algorithm
[20] produces an f-augmenting pathior a cut-with capacity f~(¢t) — f*(¢) in
a network. We will take advantage of it in our approach later.

We are now in a position te introduce our star coverings.

Theorem 4.1.8. If G = (X,Y) and'|X| > |Y|, then there exists a star
covering I1 of G with dyy = |Y?'| = 3, _ ys+ (degg (v) — 2) + exc(G).

Proof. Let Hy and Uy, = {T;|i € Iy} be the collection of all proper and
improper components in G — X3", respectively. Suppose that the improper-
component-adjacency graph Ag = (Uy, X 3+) has a maximum matching M, =
{(T;,v;)|5 € Jo}, Jo C I, and let XM = {v; € X37|j € Jo}.

Case 1. If Jy = Iy, that is, exc(G) = 0, we have shown that II = IIy(G) has
the given deduction in the proof of Theorem 4.1.4.

Case 2. If Jy C Iy, then exc(G) = |Io\Jo| > 0. Consider the subgraph G

defined as the union of nontrivial components in G — (|J ey, H) containing
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some excess improper component T;, where i € Ip\Jy. Let Uy = {T;|i € I},
I; C I, be the subset of Uy consisting of the T;’s, ¢ € Iy, which are contained
in Gl-

Denote A, = Aglg, = (Up, Xg, N X3") in which for all T € U; and
v e Xg, N X3, (T,v) € E(A) if (T,v) € E(Ag). Then A; is an induced
subgraph of Ag. Note that A; may differ from Ag, because in general X, N
X% #£ X3 = {z € Xg,|degg, () > 3}. Let us examine the matching
My = My|a, = {(T},v)|(T},v;) € E(A1) N My} in G; more closely. Let
M, = {(T;,v;)|j € J1}, J1 C Jy. Observe that, by the definition of Gy, for
each (Tj,v;) € My, we have T; € Uy if and only if v; € Xg, N X3, So,
each edge in M\ M; is not incident to any vertex in the subgraph A; of
Ag. This fact guarantees that M; is a maximum matching in A; because
any maximum matching M’ in A; would otherwise result in a matching
M = MU (My\M,) in Ag with |M| > | M|, giving a contradiction. Since
each T, i € I\ Jy, belongs to Uy, we have |I1\Ji| = |1\ Jo| = exc(G).

(i) If Xg, N X3 C XM then M, saturates Xg, N X*" and thus |X¢, N
X3"| = |My| = |J1]. Now, Gy is:a bipartite graph in which every component
in Gy — (Xg, N X?") is improper.and th C Xg NX? C Xg,. By Lemma
4.1.7, we have |Yg, | — | Xa, | = Uy | =X, 0 X3 | = |I,|—|J1|. With the aid of
Lemma 4.1.6, the deduction of the star covering II = I1x(G;) ULy (G — Gy)
can be easily calculated as dip = |[Y?'[= 3" _ ot (degg(v) — 2) + exc(G).

(i) If (X, N X3 )\XAD £ @, then the vertices in (Xg, N X )N\XA) are
not incident to any edge in M;. In this case, we transform the graph A; into a
network A’ through the following process. First, we define an orientation on
A; by choosing T; — v; for (T;,v;) € My and v; — T; if (T}, v;) € E(A1)\M;.
Second, let A’ be the graph obtained from the oriented A; by identifying all
vertices in (X¢g, N X* )\X™) and then renaming the resulting new vertex
as the source vertex s, and also by identifying all T;’s for i € I[;\J; and
then renaming the resulting vertex as the sink vertex t. Additionally, we
assign the capacity c(e) = 1 to each e € E(A’) and let f be a zero flow
in A’. Now, applying the Ford-Fulkerson algorithm to the network A’, we
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claim that the result from carrying out this algorithm must be a cut [S, S]
as opposed to an f-augmenting path. For simplicity, let us call the edges in
M, red and the other edges in A’ black. Observe that at each Tj, j € Ji,
the only leaving edge is red and each entering edge (if there is any) is black,
whereas at each v;, j € Ji, the only entering edge is red and each leaving
edge (if there is any) is black. If this algorithm results in an f-augmenting
path s — T, —v;, — 1}, —v;, —---—1T};, —vj, —t, then each (7},,v;,) must be
red and the remaining edges must be black. This path naturally corresponds
to an Mi-augmenting path in A; which contradicts to the fact that M; is a
maximum matching in A;.

Now we have a cut [, S] from this algorithm. Define G5 to be the sub-
graph of Gy induced by {v|v € V(T;) where T; € S\{t} or i € I,\J;} U
(Xe, N X3 N'S). In order to have a better understanding of Gs, we need
to point out some features of the cut [S,S]. When this algorithm is run-
ning, some 73, j € J;, must be reached. Searching from such 7; reaches
exactly one vertex v;, where (7},v;) € M;. It can not go any further only
when the reached v; has no leaving-edges. Hence, for each (7},v;) € My,
T; € S if and only if v; € $) and each edge in [S,S] is a black one of
the form T; < v where Tj € S, v € S and (T;,v;) ¢ M;. Now, it is
clear that if 7, € S, then all its neighbors-in A; lie in S as well. This
accounts for the fact V(Go) N V{G-—Gy) C X. By Lemma 4.1.6, the
deduction of the star covering II = IIx(G2) U Ily (G — G3) has deduction
di = [Y*'| = 32, xor (dega(v) = 2) + [Yau | — [Xanl-

This proof will be completed after the equality |Yo,| — | X¢,| = exc(G)
is assured. Let Uy = {T;|T; € S\{t} or i € I1\J1}, Ay = Ai|g, and My =
Mi|g,, then Ay = (Uy, X, N X*" N'S). Now, each vertex v € (Xg, N
X 3+)\X (M) unsaturated by M; has been excluded from G5 and A,. The
vertices in (Xg, N X*" NS) are saturated by M, and thus |M,| = [Xg, N
X3"NS|. Since each T}, i € I;\.Jy, belongs to Uy, |11\ J1| = [Us| — | M,]| holds
obviously. We finally reach to a bipartite graph G5 in which each component
in Gy — (Xg, N X% N5S) is improper and X¢, C (Xg, N X*" N'S) C Xg,.
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By Lemma 4.1.7, we conclude that |Yg,| — [Xg,| = |Us| — | Xe, N X3 NS| =
’UQ‘ — |M2’ = ‘[1\J1’ = GXC(G). |

Let us denote this crucial value |Y2"| — > pexst (degg(v) —2) +exc(G) as
B(G) in the remainder of this chapter. Note that our star covering is in fact
a star decomposition (which requires that each edge of G appears in exactly
one star) of the bipartite graph G. It will be shown that 5(G) meets the size
of some core clusters for certain classes of bipartite graphs, thereby proving
the star covering (decomposition) we propose is optimal for each of those
graphs. Although it would not be of the least vertex-number sum among all
complete multipartite coverings (decompositions), we strongly believe that
it is an optimal star covering (decomposition) for all bipartite graphs.

Next, we turn to the construction of our core clusters.

Lemma 4.1.9. Let G = (X,Y) and X' C X3". Given a neighbor v* of each
v € X" and let N~ (v) = Ng(v) — {v*} for allv e X'. If N"(u)N N~ (v)N
N~ (w) = 0, for all distinct u,v,w € X', then there exists vt € N~ (v) for

each v € X' such that all v ’s are distinet.

Proof. Let us consider the bipartite graph B = (X', J,c, N~ (v)) in which,
for allv € X" and y € J,cx VT (v), (v,y) € E(B) if and only if y € N~ (v).
Since degg(v) = degs(v) — 1 = 2 for allv € X' and degg(y) < 2 for all
y € Uyexr N™(v), we have |[Np(S)[ =22 = |§] for all S C X’. By Hall’s
Theorem, there is a matching Mp = {(v,v")jv € X', vt € [J,exs N (v)}

which saturates X”. ]

In the remainder of this chapter, I(C) denotes the length of the cycle C'
in GG. We give another description of the criteria for examining whether a

lableing of IN(G) is a core cluster.

Lemma 4.1.10. Let G be a simple graph. Then a labeling g : IN(G) —
NU {0} is a core cluster of G if the following conditions are satisfied.

(1) g71(i) induces a connected subgraph of G for all i € g(IN(G));
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(i1) any vertex v € IN(G) has a neighbor w € Ng(v) such that w ¢ IN(G)
or g(w) # g(v);

(111) each cycle C in G contains at most [(C') — 4 consecutive edges in every
subgraph induced by g~'(i), i € g(IN(Q)).

Proof. Conditions (ii) ensures that each vertex in g~*(4), i € g(IN(G)), has
a neighbor outside g~!(i). Condition (iii) in turn guarantees that any two
of these outside neighbors are of distance at least two and each of them is

adjacent to only one vertex in g~1(7). Hence, g is a core cluster of G. ]

Now, we present the construction of our core clusters.

Lemma 4.1.11. Let G = (X, Y) with | X| > |Y|. Then there exists a labeling
g : IN(G) — N satisfying criterion (i) in Lemma 4.1.10. Moreover, if g
satisfies criterion (iii) in Lemma 4.1.10, then g is a core cluster of G and

lg(IN(G))] = B(G).

Proof. (a) First, let us consider the:case where each vertex in X*" has
at most one l-vertex neighbor. Let Hgand Uy = {T;]i € Iy}, I C N, be
the collection of proper and improper components in G — X 3* respectively.
Suppose My = {(Tj,v,)|j € Jo},edo C Iy, is a maximum matching in the
improper-component-adjacency graph Ag’= (Up, X37). If v € X3" has a
1-vertex neighbor y, then {y} is a trivial component in Uy and v = v; for
some j € Jo. In this case, we may assume that 7; = {y}. Now choose
v; € V(Tj) N Ng(vy) for each j € Jy and choose v* arbitrarily from Ng(v) for
each v € X3 \{v;|j € Jo}. Let N~(v) = Ng(v)\{v*} for each v € X*" and
Y = {y|Ng(y) € X* and y # v* forallv € X*"}. For each H € HyUUy, let
H* be the graph obtained by attaching to H each edge vv* with v € X3 and
v* € V(H), and H* = H if H does not contain any vertex in {v*jv € X3"}.
Observe that the collection of components in G — E', where E' = {vw|w €
N=(v),v € X?"}, is exactly {H*|H € Hy U Uy}, among which the improper
ones are {T;|i € Ip\Jo}. Now, for each y € Y* let N'(y) be a subset of
Nea(y) C X3 consisting of degq(y) — 2 arbitrary neighbors of y and let
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X' = X3+\(Uyey. N'(y)). Then N~ (u)N N~ (v)N N~ (w) = 0 for all distinct
u,v,w € X'. With the aid of Lemma 4.1.9, we have distinct v™’s for v € X’,
where vt € Ng(v). For each y € Y*, let y* be the vertex in Ng(y)\(N'(y) U
{v}) if y = vT for some v € X', and be any vertex in Ng(y)\N'(y) otherwise.
Now, consider the subgraph K induced by X3 U (Upexst N~ (v)) and all the
components O1,O,, ..., 05 in K — {uu*|u € X3y Y*}. It is worth nothing
that each O; contains at least one v € X’ and its neighbor v+ € Y2', or at
least one v € X3 and its neighbor y € Y* where v € N’(y). In addition,
if v € X3 \V(0;) and v is adjacent (in G) to a vertex y of O;, then y = v*
for some v € X3 or v = y* for some y € Y*. With these facts in mind,
we now start to define the desired labeling g. Initially, we define g to be
a bijection from Y?" to {1,2,...,]Y?"|}. Next, for each i € {1,...,s},
we choose a vertex y; € V(0;) N Y?" and then extend the domain of g to
V2" U X3 and alter some labels in V(K)NY?" by redefining g(w) = g(y:)
for all w € V(O;). To evaluate the cardinality of the image of the extended
g, we define Y*(v) = {y € Y*|v = y*} for each v € X*", then these Y*(v)’s
are disjoint and ) _ s+ [Y*(v)| =J¥*}Ifeach V(O;) does not induce cycles
in G, then |g(Y>" U X*)| = 1215 5 Gyt (dege(v) — 2 — [Y*(v)]) =
Y2 = 3 o xo (degg (v) — 2)3 V2.

For each H* € {H*|H € HoW{T}|jr€do}} and H* # K, 1, since | Xy~

|Ypr+|, the labeling gl,.+ can be‘extended to a core cluster of H* with its
H*

>

image kept unchanged as what we have done in the proof of Theorem 4.1.1.
Next, for each improper component 7;* = T; in G — E', if T} is trivial, then
T; = {y} for some y € Y* because we assume that each v € X*' has at
most one l-vertex neighbor v* and the trivial component {v*} is saturated
by My in Ag. Since each vertex in Y® has been labeled, it remains to label
nontrivial improper components. If T;, i € Iy\Jy, is nontrivial, then all its
leaves are in Yr, and |Xr,| = \X;Q)] > 0. Let us choose a vertex xy € Xr,
which has a leaf neighbor in 7; and then root T; at zy. Now, we define
g(xo) = [V | +i- [V(G)| and g(z) = g(y) if = € X3\{xo} is a child of

Yy € Yﬁf in 7;. This extension process is almost the same as the one used
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in Theorem 4.1.1 except only that we give an extra value |Y2'| +i-|V(G)]
to the labels of each improper component 7;. Since xy has a leaf neighbor
yin T; with y ¢ IN(G) or g(y) # g(zo), {xo} is indeed a core of T;. The
extended labeling g|;n(z,) from g\YT2i+ is a core cluster of 7T;.

Now, we have a labeling g : IN(G) — N obviously satisfying criterion (i)
in Lemma 4.1.10. Let us further assume that g satisfies criterion (iii),then u
and u* are in different components in K — {uu*|u € X3 UY*}. This implies
that g(u) # g(u*) for all uw € X3 UY*. If u € V(K)NIN(G)\(X* UY?*),
then degy.(u) =1 or uw € IN(H*) for some component H* in G — E’. From
the construction of g|;n(m+), we know that each vertex u € IN(G) with
degy« (u) = 1 satisfies g(u) # g(w) where w is the unique neighbor of u in H*.
Also, the proof of Theorem 4.1.1 guarantees that each vertex u € IN(H*) has
a neighbor w such that w ¢ IN(G) or g(w) # g(u). Criterion (ii) in Lemma
4.1.10 is satisfied as well. We therefore conclude that g is a core cluster of
G. Finally, since there are exc(G) — |Y'*| nontrivial improper components in
G— B, |g(IN(G))| = [V~ Eyexor (degs(v) —2)+ [V *[ + (exe(G)— [V *]) =
B(G).

(b) For the case where G has some vertices in X*" which have more
than one 1-vertex neighbors, we let t, be the number of 1-vertex neighbors
of v € X3 and X' = {v € X¥ |, >2}. Denote as G’ the subgraph
obtained by removing (¢, — 1) 1-vertex meighbors of each v € X’ from G,
then exc(G') = exc(G) — >, cy/(ty — 1) and B(G’) = B(G). The core cluster
g of G’ obtained from part (a) is also a core cluster of G with |g(IN(G))| =
lg(IN(G"))| = B(G") = B(G). The proof is completed. |

Let us call any labeling of I N(G) defined in the way stated in this proof
a candidate labeling of GG in the remainder of this section. If a candidate
labeling ¢ of G satisfies criterion (iii) in Lemma 4.1.10, then ¢ is a core
cluster of G.

In the case where Ng(u) N Ng(v) NY3™ = § for all distinct u,v € X3"
and girth(G) > 8, a candidate labeling obviously satisfies criterion (iii). The

following consequence extends Theorem 4.1.4.
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Corollary 4.1.12. Let G = (X,Y) with | X| > |Y| and girth(G) > 8. If
Ne(u) N Neg()NY3" =0 for all distinct u,v € X3, then G is realizable and
(@) = B(G).

In what follows, we call a cycle feasible if it contains two 2-vertices of
distance at least four. A feasible cycle is of length at least eight. If every

cycle in a graph G is feasible, then G is called feasible as well.

Theorem 4.1.13. Let G = (X,Y) and |X| > |Y|. If G is feasible, then G
is realizable and ¢*(G) = B(G).

Proof. Consider a candidate labeling g of GG. It suffices to show that criterion
(ili) in Lemma 4.1.10 is made in this situation. We adopt the notations used
in the proof of Lemma 4.1.11. Let w be a 2-vertex on a cycle of G. Then
w € V(H) for some component H in G—X3" or w € Y*. By the construction
of g, if w € V(H), then w certainly has a neighbor v’ in G with g(w) # g(w’).
If w € Y*, since each cycle containing w must contain another 2-vertex, w and
w* must be in different components, im# — {uu*|u € X3 UY*}. We therefore
conclude that each 2-vertex w ona cyclethas at least one neighbor which has
a label different from w’s. Next, let C' =(wg, w1, ..., w;—1) be a cycle of G in
which degg(wy) = degg(wq) =2 and 4 <.d < 11, then g(w;_1) # g(w;) and
g(wg—1) # g(wgy1). This implies that this cycle contains at most [(C') — d
consecutive edges in the subgraph induced by g~'(i) for all : € g(IN(QG))

and the result follows. ]

An unfeasible cycle can be made feasible by subdividing an edge on it.
We have the following observations regarding the effect of subdividing an
edge of GG on the size of a core cluster and the deduction of a star covering

of G which is not necessarily bipartite.

Proposition 4.1.14. Let G be realizable and girth(G) > 4. If g is an optimal
core cluster of G, then every cycle of G contains at most [(C) —3 consecutive

edges in every subgraph induced by g~'(i), i € g(IN(G)).
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Proof. Let g and II be a core cluster and a star covering of (G, respectively,
with |g(/N(G))| = dpn. Suppose, on the contrary, that C' = (ug, ug, ..., ux_1)
is a cycle containing ¢ consecutive edges in the subgraph induced by ¢g=*(0)
with ¢ > k — 2. We may assume that g(u;) = 0 fori = 1,2,...,k — 1 and
g(ug) = ig, then ig = 0 if t = k and iy # 0 if t = k — 2. In the latter case, ug
can not be the designated outside neighbor of u; or u;_; because {uy, ux_1} C
¢7'(0) and we may further assume that u; is not the designated outside
neighbor of ug. Now, we subdivide the edge ugu; by replacing it with a path
which has consecutive vertices ug = wg, wy, ..., w1 = ug, [ > 3, and let the
resulting graph be G'. We then define a labeling ¢’ on IN(G") as ¢'|in(c) = 9,
g'(wy) = g, ¢'(we) = 0 and ¢'(we;) = ¢’ (wair1) = max(g(IN(G))) + i for all
1=1,2,...,l—1. Since in both cases uy and u; are not the designated outside
neighbors of one another, ¢’ is a core cluster of G’ of size |¢'(IN(G'))| =
|g(IN(G))|+1—1. On the other hand, a star covering of G’ can be constructed
in a natural way. Let us denote the star with only two edges w;_jw; and
w;w;41 as S;. Since we may assume that uyu; belong to a star S, centered
at uo in II, II" = (II\{Su, }) U {(Suy—tows) + wow1, Swy, Swys - - - s Swy } 15 &
star covering of G’ with vertexsmumber sum n = my + 3[. The deduction
of IT" will then be diy = (|V(G)| +20) + (in(G) + 2) — (mp+3l) =dn+1 =
|¢'(IN(G"))| + 1 which contradicts to Theorem 3.1.3 and we have the proof.

[

Proposition 4.1.15. Let G’ be a graph obtained by (21 + 1)-subdividing an
edge e of G where e is not pendant and | > 3. If G is realizable, then G’ is

realizable.

Proof. Suppose that G’ is obtained by replacing the edge ugu; with a path
which has consecutive vertices uy = wg, wy, W, ..., w1 = uy. Let g and II
be a core cluster and a star covering of G, respectively, with |g(IN(G))| = dp.
We give G’ the same star covering Il defined in the previous proof. Then
dry = dpi + 1. Now, we need a core cluster ¢’ of G’ with |¢'(IN(G"))| = dn +1
as well. If g(ug) # g(u1), then we define ¢' as ¢'|in) = g and ¢'(wai—1) =
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g'(wy) = max(g(IN(Q))) +1, for i = 1,2,...,1. ¢ is clearly a core cluster
of G as desired. For the case where g(ug) = g(u1), the subgraph induced by
Vo = g (g(up)) in G is no longer connected after removing the edge ugu;
from it by Proposition 4.1.14 and this removal results in two components, say
Up and U;. Assume that ug € V/(Up), then uy € V(Uy). Let us define ¢ as
J'linen\vay = 9linepvany, §'(v) = max(g(IN(G))) +1forallu € V(Uy)U
{war}, ¢'(w1) = g(up) and ¢'(wy;) = ¢'(waiy1) = max(g(IN(G))) + i+ 1, for
alli=1,...,1 — 1. One can easily verify that ¢’ is a core cluster of G’ with

the desired size. ]

4.2 A Bound on the Optimal Average Infor-
mation Ratio of Bipartite Graphs

Proposition 4.1.15 states that (2[ + 1)-subdivision (I > 3) of a nonpendant
edge preserves realizability. As for graphs which have not been determined to
be realizable or not, suitable 7-subdividing some selected edges can transform
them into feasible ones. This suggests a possibility to derive bounds on the
optimal average information ratie of them:. Inthe discussion of the following
results, we assume that G’ is obtained by replacing an edge ugu; of G with

a path which has consecutive vetrtices ug =wq, wy, ..., W11 = U;.

Theorem 4.2.1. If G’ is a graph obtained by (21 4 1)-subdividing a nonpen-
dant edge of G where | > 3, then d*(G) = d*(G') —[.

Proof. In the proof of Proposition 4.1.14, we have given a construction of a
star covering II" of G’ from an optimal star covering II of G and obtained that
dry = di+1. Therefore, we have d*(G’") > d*(G)+1. On the other hand, if IT'
is an optimal star covering of G’, then a star covering of G can be constructed
from II" as follows. First, if none of wy and wq 41 is the center of any star in
IT" which has some leaves in V(G), then we let S be the star with a unique
edge ugu;. For the rest case, since the wywsy1-path which replaces ugu; is

of odd length, we may assume that only wy is the center of a star S;, in II'
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which has leaves in both V(G) and {w;|i = 1,...,2l}, and that w1 is not
the center of such kind of stars. In this case, we let S = (5,,, — {w1}) +uous.
Now, discarding all stars containing vertices in {wy, wy, ..., wy} from II" and
adding the star S to it, we have a star covering II of G which has vertex-
number sum my = m — 3l where myp is the vertex-number sum of IT" and
the deduction dy = (|V(G")| —2l) + (in(G") —21) — (my — 31) = dp — . This
gives d*(G) > d*(G’) — [ and the result follows. ]

The gap between ¢*(G) and ¢*(G’) depends largely on the edge that is
being subdivided. We classify the edges of G as follows. An edge wugu; is
said to be of type 1 if either one of the following two conditions is true:
(1) uouy does not belong to any cycle in G, or (2) it belongs to some cycle
(uouy - - - ;) and there is no path in G which connects uy and some u;, i €
{1,2,...,1}, without traversing any edge of this cycle. In case (1), any vertex
in Ng(ug)\{u1} is called a friendly neighbor of the edge ugu;. In case (2), the
vertex u; of ug is assigned to be the friendly neighbor of ugu;. An edge not
of type 1 is said to be of type r+ 1, r € N, if it is the unique common edge of
exactly r cycles and any two of these r cycles have no common vertices other
than uy and u;. In the proof-of the next two lemmas, the construction of
desired core cluster involves fiddly description. We make use of the following
notations and an operation to facilitate the discussion. If g is a core cluster
of G and u € IN (G) then we denote the designated outside neighbor of u
as (u); and let (V )y = {(u)jlu € V}. Besides, if V is a connected subset
of V(G) which induces a connected subgraph K of G, and Ay and A; are
disjoint connected subsets of V then we define a splitting operation on 1%
as follows. Suppose that U = {O;]i € I} is the collection of all components
in K — Ay and O; € U is the component containing A;. Let VI = = V(0y)
and V19 = V\V, then both VI and VI are connected. By applying the
splitting operation to V w.rt. Ag and A;, we have two disjoint subsets vl
and VI with 4; C VIl § = 0,1, such that VI9 U VI = V. We denote this
process as Split(V; Ag, A;) = (VIO Y1),

Let ¢’ be an optimal core cluster of G’. In the proof of Lemma 4.2.2
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and 4.2.3, we initially define a labeling g on IN(G) as g = ¢'|in(e) and let
(u); = (u)y for all u € IN(G) when there is no specification. The labeling
g may require some modification accordingly in order to reach to a core
cluster of G. There are many cases to discuss. Let (¢')"'(i) N V(G) = V;.

One situation that worsens our problem the most is when {ug,u;} C (V,)*

for some a € ¢'(IN(G')) where upu; is the edge been subdivided. Thiqs
situation is referred to as Situation (S*). In what follows, we assume that
uo = (yp)s and uy = (i)} where {yf, yi} € V,, for all i = 1,2,...,¢, and
{uo,us} € (Vi)i, for all i € ¢'(IN(G"))\{as|i = 1,...,t}. Naturally, t > 0
when Situation (S*) occurs and ¢t = 0 otherwise. When ¢ > 0, we use v
and V;[l I to denote the resulting subsets from applying the splitting operation
to Vo, wr.t. {yi} and {yi}, ie. Split(Ve:{yi}, {yi}) = (Vi% Vi), for all
1 =1,...,t. Moreover, the numbers ¢y, c1, ..., ¢, dy and d; that will be used
in the proof always represent distinct integers in N\¢'(IN(G’)). With the
aid of these notations, we can present our construction of core clusters of GG

in a more systematic way.

Lemma 4.2.2. Let G’ be a graph-obtained by (21 + 1)-subdividing a nonpen-
dant edge uguy of a simple graph’ G-with-gixth(G) > 6, where l > 3. If ¢’ is an
optimal core sequence of G' and ¢'(up) =g (uy), then ¢*(G) < ¢*(G') =l +r
provided that uguy is an edge of type r.

Proof. If {(uo)}, (u1)y} € V(G), then [{g'(wi)li = 1,...,20}\{g'(uo)}| >
[ — 1 and the labeling g = ¢'|;n(q) is a core cluster of G with [g(IN(G))| <
l'(IN(G"))| — (I = 1). Now, we assume that ¢'(up) = ¢'(u;) = 0 and
{(uo)y, (wr)s} € V(G), then [{g'(w;)li = 1,..., 21}\{0}| > I and g may
no longer be qualified as a core cluster of G. We shall make some local mod-
ifications of g and assign (ug); = uy and (u1); = up to reach our goal. Set
Ao = {uo} U (Na(uo)\{ur}) N'Vo) and Ay = {ur} U ((Ne(ui)\{uo}) 0 Vo).
Since ug and u; have no common neighbors, Ay and A; are disjoint con-
nected subsets of the connected set V. Applying the splitting operation
Split(Vo; Ao, A1) = (VO[O}, Vom), we have two disjoint connected subsets VO[O]
and V" with VI u v = v;.
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(1) Suppose first that ¢ = 0, that is, Situation (S*) does not occur. By
redefining g(V(')[O]) = {¢o}, we claim that the resulting labeling g is a core
cluster of G. Note that now g(uy) = ¢o # g(u1), and ug is adjacent to
uy € VO[I] and no other vertices in Vom. Besides, {ug}U (Vom);, is independent
because (¢')~!(0) is a core in G’ containing {ug} U Vo[l] and each (w)}, €
(Vom);, is adjacent to the unique vertex w in (¢")~'(0). Hence, (u1)} = ug
and (w); = (w)y, for all w € Vom\{ul}, are qualified designated outside
neighbors of vertices in Vo[l] and then Vom = ¢71(0) is a core of G. The fact
g eo) = VO[O] is also a core of G can be shown by similar reasoning. We then
conclude that ¢ is a core cluster of G and |g(IN(G))| < |¢/(IN(G"))| — 1+ 1.

(2) Suppose that ¢ > 0, then r > ¢t 4+ 1. Besides making g(VO[O]) = {co},
we further redefine g(Va[?]) = {¢;} for all i = 1,...,t. Since g(y) = ¢; #
gy} = a, Va[? Jand V.Y are cores of G. g is then a core cluster of G with

GIN(G)| < | (ING)] — 1+ (t+1). .

Lemma 4.2.3. Let G’ be a graph obtained by (21 4 1)-subdividing a nonpen-
dant edge upuy of a simple graph G awith.girth(G) > 6, where [l > 3. If ¢’ is
an optimal core cluster of G' and g'{g) #.g'(u1), then ¢*(G) < ¢*(G') —1l+r
provided that uguy is an edge of type r.

Proof. We split the discussion - into two cases.

Case 1. Assume that g'(up) = 0 # ¢'(u1) = 1 and {(uo)},, (u1)}} S V(G),
then [{¢'(w;)|i = 1,...,2[}\{0,1}| > I —1 and g = ¢'|;n () is not a core
cluster of G only when any of the following three situations occurs. Situation
(S1) 1 uy = (z1)}, for some z; € Vp; Situation (52) : ug = (x0);, for some
xo € V1; and the stated Situation (S*). We shall fix the problem by shifting
some vertices between Vj and V; or adding some extra values to g(/N(G))

as follows.

Subcase 1-1. Suppose that both Situation (S1) and (S2) do not occur,
then t > 0. If r =t = 1, let us assume that y; is the friendly neighbor of

uouy. We redefine g(Va[?]) = {0} and then assign (ug); = u; and choose a
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neighbor of 3} in V;l[l to be (yo) Since ugu; is of type 1, each vertex in Va1
is not adjacent to any vertex in Vo\{uo} and {(y5);} U (Va?]\{y0}> U (Vo)s
is independent. This guarantees that ¢='(0) = V4 U Va[l] is a core of G.
Besides, g(y3) # g(yi) implies that Vil is also a core. Hence, g is a core
cluster of G with |[g(IN(G))| < ]g’([N(G’))\ —(l-1)=cG")—1+r If
r > 1, then r > t 4+ 1. By redefining g(Va ) ={¢} foralli=1,... ¢t and
letting (u); = (u);, for all u € IN(G), we have a core cluster g of G' with
lg(IN(G))| < [g'(UN(G))] = (I = 1) +1 < (G) = L+ 7

Subcase 1-2. Suppose that Situation (S1) occurs and (S2) does not, then
either t =0 and r > 1ort > 0 and r >t + 2. Let Split(Vo; {uo}, {z1}) =
WV VY. When r € {1, 2} (t = 0), we redefine g(V")) = {1}. One can
easily verify that ¢g71(1) = VO U Vj is a core of GG and therefore g is a core
cluster of G with |g(IN(G))| < |¢'(IN(G"))|—(I—1). When r > 3, redefining
g(VO[O]) = {co} is sufficient if £ = 0. After assigning u; = (71), g is a core
cluster of G with |g(IN(G))| < |¢(IN(G"))| - (1 —-1)+1 < (G') -1+ 2.
If t > 0, we further redefine g(Va[?}) = {c¢;} foralli =1,...,t. The resulting
labeling g is a core cluster of G with-{g(IN(G))| < |¢/(UN(G"))| — (1 — 1) +
t+1<e(G) =1+

Subcase 1-3. Suppose that Situation (S1) and (S2) occur simultaneously,
then r > ¢ + 3. When ¢ = 0, we redefine g(Vi" U V{%) = {do} if r = 3, and
redefine g(V(')[O]) = {dp} and g(Vl[O]) =-{di}if r > 4. In both cases, g is a core
cluster of G with |g(IN(G))| < ¢*(G') — 1+ 3. When ¢ > 0, besides making
g(VO[O]) = {dy} and g(Vl[O}) = {d;,}, we further redefine g(Va[?]) = {¢;} for all
1t =1,...,t. This results in a core cluster g of G that meets our requirement
where |g(IN(G))| < *(G) =1L +.

Case 2. Assume that g(ug) = 0 # g(u1) = 1 and {(uo)}, (u1)}} € V(G
then [{g'(wi)|i = 1,...,20}\{0,1}[ > I. Note that if we assign (uo); = w
and (u1); = uo, then the labeling g = ¢'|;n(c) Will not be a core cluster of
G only when any of the following three situations occurs. Situation (7'1) :
Neg(ur) NVo # 0 or Ne(ui) N (Vo)i # 0; Situation (72) : Ng(ug) NVi # 0 or
Ng(ug) N (V1);, # 0; and the Situation (S*).
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Subcase 2-1. Suppose that both Situation (7'1) and (7'2) do not occur and
t > 0, then either r =t =1orr > 1 and r >t + 1. We redefine g(Va[?]) = ¢,
for all 7 = 1,...,¢, and assign (ug); = w1 and (uy); = up. The resulting
labeling g is obviously a core cluster with |g(IN(G))| < |[¢/(IN(G"))| — [ +t.
Subcase 2-2. Suppose that Situation (7'1) occurs and (7'2) does not, then
either t =0andr > 1ort >0 and r > t+ 2. Now, let 1 be a vertex in
Ne(ur) NV if Ng(ui) NV # 0, and 21 be a vertex in Vg such that (xl);/ €
N¢(uy) otherwise. Choose a vertex zy € Ng(ug) which is on a ugzi-path
whose vertices are in Vj, and then consider Split(Vy; {uo}, {z0}) = ( 0[0], Vom).

*

9
can easily verify that VO[O] = g (cp) is a core. If t > 0, we further redefine

After redefining g(VO[O}) = {co} and assigning (ug); = 2o and (u1)} = ug, one
g(Vj?]) = {¢;} forall : = 1,2,...,t. Then the labeling g is a core cluster of
G with [g(IN(Q))| < |[¢(UN(G"))| =1+t +1.

Subcase 2-3. Suppose that both Situation (7'1) and (7'2) occur, then r >
t + 3. Using the manner we chose zy in the previous subcase, we select
21 € Ng(uq) such that z; is on a path with vertices in Vj connecting wu; to
a vertex xg where g € Ng(ug) AV Ng(ug) N V4 # 0, and o € Vi such
that (v0)} € Ng(uo) if Na(ug) Vi = 0. Consider Split(Vo; {uo}, {z0}) =
(Vo", Vo) and Split(Vi; {ua} {=1}) = (A 15Y). By redefining g(1") =
{do} and g(Vl[O]) = {d:} and assigning (%)} = z, i = 0,1, g7 (do) = Vo[m and
g (dy) = Vl[m are both cores of ‘Gi-If ¢ > 0, we further redefine g(\/;l[?}) =
{c¢;} for all ¢ = 1,...,t. Then the core cluster g of G has |g(IN(G))| <
l(IN(G"))| — 1+t +2.

Theorem 4.2.1, Lemma 4.2.2 and Lemma 4.2.3 jointly show the following

lemma.

Lemma 4.2.4. Let G' be a graph obtained by (21 + 1)-subdividing a non-
pendant edge e of a simple graph G with girth(G) > 6, where | > 3. If
(G — d*(G") = k, then ¢*(G) — d*(G) < k + r provided that e is an edge
of type r.

This lemma gives rise to a bound on AR(G). Let E’ be a set of edges
of G. If 7T-subdividing each edge in E’ results in a feasible graph, then
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E' is called a feasiblizer of G. The minimum cardinality of all feasiblizers
of G is denoted as ¢(G), called the feasiblizing number of G. Let A(G)
be the maximum degree of G. If an edge wou; of G is of type r, then
r < min{degq(up), degs(u1)} < A(G).

Theorem 4.2.5. Let G = (X,Y) with | X| > |Y| and girth(G) > 8. If '

1s a feasiblizer of G in which there are o, type-r edges and o = Zf:(?) rag.,

then ¢*(G) — d*(G) < a and

V(@) +in(G) — (B(G) + o) V(@) +in(G) - B(G)
V(@) < ARG) < V(G)

The feasiblizing number is analogous to the decycling number of G. One
major difference lies in that we only deal with unfeasible cycles instead of
all cycles in G. More importantly, we choose edges as opposed to vertices
to destroy unfeasible cycles. This gives a lot more freedom on the choices of
edges in a feasiblizer. It should be clarified that choosing common edges of
cycles does not necessarily lessen the number of edges needed to feasiblize a
graph. For instance, let G' be a l6-cycle (wow - - - wy5) with a chord wows,
then ¢(G) = 2 and both edges-in a minimum feasiblizer can be chosen to be
of type 1. Choosing the common edge wyw; of two cycles does not result in
a feasiblizer with lesser edges. For a graph swhich has a feasiblizer consisting

of type-1 edges, the bound of Theorem 4.2.5 can be very good.

Corollary 4.2.6. Let G = (X,Y) with | X| > |Y| and girth(G) > 8. If E' is
a feasiblizer consisting of type-1 edges with |E'| = ¢(G), then ¢*(G)—d*(G) <
o(G) and

V(@) + in(G) — (B(G) + 9(G)) V(@) +in(G) - BG)
@] < ARG) < V(G)

This bound is best possible using our ¢*(G)-and-d*(G) approach. We
show this fact by proposing an infinite class of graphs attaining this bound.
Consider the class of connected graphs with the pattern given in Figure 4.1.
The one with & cycles is denoted as G(k). For each k € N, ¢(G(k)) = k is
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obviously true. By direct calculation, one can verify that the labeling giving
all vertices of the ¢-th cycle the label i, for all ¢ = 1,...,k, is an optimal
core cluster, hence ¢*(G(k)) = k. On the other hand, the covering given in
Theorem 4.1.8 is an optimal star covering of G(k) and then d*(G(k)) = 0.
Therefore, the bound ¢*(G)—d*(G) < ¢(G) is attained by each G(k). For the
classes of bipartite graphs described in this corollary, our bound on AR(G)
is not only the best possible using our approach but also the best bound so
far.

ISEREE 11

G(k‘) : e—e *~—e —eo --- oo o (k‘ Cyc]es)

SRR L

Figure 4.1: The family G(k) of bipartite graphs

4.3 Concluding Remark

In this chapter, we have investigated:-the equality ¢*(G) = d*(G) and have
shown that it holds for any even-subdivdion of a simple graph and certain
classes of bipartite graphs of larger girth. The exact values of the optimal
average information ratio for those graphs can then be determined.

For bipartite graphs which have not been determined to be realizable
or not, we have derived a bound on ¢*(G) — d*(G), which naturally gives
rise to a bound on the optimal average information ratio for them. We
have also shown that our bound is the best possible using our approach for
some infinite classes of graphs. To determine the exact values of the optimal

average information ratio for them, new technique must be imposed.

Theorems 4.1.1 and 4.1.4 and Corollaries 4.1.2 and 4.1.3 have been pre-
sented in the 33rd International Conference on Mathematical, Computational
and Statistical Sciences, and Engineering (ICMCSSE2012).
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Chapter 5

Conclusion

5.1 Our Contribution

Evaluating the optimal information ratio and the optimal avergage informa-
tion ratio is an important and challenging issue in secret-sharing. In this
thesis, we devote our efforts to the study of the optimal average information
ratio of interesting access structures:

In weighted threshold access structures, each participant has his or her
own weight depending on the importance of the participant in an organiza-
tion. A participant(vertex) with higher weight naturally induce more edges
incident to it in the k-weighted graph. This makes the weighted threshold
access structures more applicable in real-life situation. An in-depth investiga-
tion can have a significant contribution to the application of secret-sharing.
We have examined the structure of k-weighted graphs and presented two
constructions of secret-sharing schemes for them. Both of our constructions
have low avergage information ratios and, as k fixed, both ratios approach
the optimal value 1 asymptotically. A comparison shows that Construction
I has lower avergage information ratio when £ is smaller, while Constructin
IT gains its superiority over Construction I for larger k. Dealing with the
average information ratio is in general very tedious. In the work of Chapter
2, we have demonstrated an approach to extracting valuable results from

complicated expressions.
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In Chapter 3, we propose our new approach to the determination of the
exact values of the optimal average information ratio of graphs. We define
the core number ¢*(G) and the deduction d*(G) of a graph G, and show
that when ¢*(G) = d*(G), the exact value of AR(G) can be determined.
This idea also formulates a complicated problem in secret-sharing into an
elegant max-min problem in Graph Theory with easy description. Using our
approach, we successfully determine the exact values of the optimal avergage
information ratio of all trees. Along with the result by Csirmaz and Tardos
[17], we complete the work of evaluating the optimal information ratio and the
optimal average information ratio of all trees. In addition, our approach can
also be used to recursively evaluate the core number of trees with symmetric
structures. This gives a systematic way to evaluate the optimal average
information ratio of them.

We then make an attempt on the average information ratio of bipartite
graphs in Chapter 4. We determine the exact values of AR(G) for any even-
subdividion of a simple graph and some classes of bipartite graphs. It is worth
noting that the value of AR(G) also'serves as a lower bound on the unknown
optimal information ratio of those graphs. ‘Deriving lower bounds on the
optimal (average) information ratio is in general much more difficult than
deriving upper bounds for any graph. ‘Appendantly, by solving the problem
of AR(G), we also obtain valuable results'in graph decomposition problem.
We have shown that the star covering (decomposition) we constructed has
the minimum vertex-number sum among all star coverings (deocmpositions)
of those realizable graphs. Although we did not make an effort to show
that the coverings (decompositions) given in Theorem 4.1.8 are optimal star

coverings for all bipartite graphs, we conjecture that this is true.

5.2 Future Work

Continuing our work in this thesis, we shall explore more classes of graphs
which satisfy the identity ¢*(G) = d*(G). We shall also try to characterize
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non-realizable graphs, namely, the decuction of the graphs can never match
the core number of them. By estimating the gap between the decuction
and the core number of a non-realizalbe graph, one can obtain a bound on
the optimal average information ratio of that graph. To find out the exact
values of the optimal average information ratio of non-realizable graphs, new
approach must be developed.

In our work, the deduction of GG is defined for a star covering of G. Since
a star covering generally does not serve as a complete multipartite covering
with the least vertex-number sum for graphs of smaller girth, our approach
only works well for graphs of larger girth. However, the idea of the deduc-
tion of a star covering can be generalized. It can be defined for a complete
multipartite covering in the same way. Then, the deduction of a complete
multipartite covering matching the size of a core cluster still makes a criterion
for examinimg whether the exact values of the optimal average information
ratio of a graph can be determined. In this case, the complete multipartite
covering may contain various kinds of complete multipartite subgraphs. The
question of how many copies of each complete multipartite subgraph should
we use in the covering in order to reach to the maximum deduction may
again lead to a linear programining problem.

Under this new setting, the problem of identifying a proper complete
multipartite covering with the maximum deduction which matches the core
number of that graph, or estimating the gap between the maximum deduction
and the core number is again worth trying. Apart from these questions,
we may try to characterize the graphs of which the deduction of complete
multipartite coverings can never match the core number, and develop a new
strategy to determine the exact values of the optimal average information
ratio of this kind of graphs. Although they may be quite challenging, these

questions certainly are intriguing generalizations of our work in this thesis.
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