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ABSTRACT

Various detectors for multiple-in-multiple-out (MIMO) technologies have been
proposed, yet to achieve-a.good complexity-performance tradeoff still remains a
challenge problem. In this thesis, we proposed a low complexity soft-output sphere
decoding, called modified repeated tree search (RTS), that can achieve good
complexity-performance tradeoff and is suitable for hardware implementation. We
further apply the modified RTS for interference cancellation with unknown
interference modulation. Simulation results show that a' good modulation
classification rate and block error rate (BLER) can be achieved with lesser
complexity and resources consumed when'it'is compared with the traditional general
likelihood ratio test (GLRT).
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Chapter 1

Introduction

With increasing demand on system throughput, multiple-input-multiple-output
(MIMO) techniques become a trend in current and future communication technologies.
Modern communications standardsssuch as IEEE 802:11n, Worldwide Interoperability
for Microwave Access (WiMAX), and Long Term Evelution (LTE), all accommodate
the MIMO techniques into their standards.

Along this trend, several linear-detecting methods 'suech as zero-forcing (ZF) and
minimum mean squareserror (MMSE) detectors have been proposedsfor MIMO systems.
Due to linearity property, these linear detéctors have low and fixed complexities and
hence can be easily hardware-implemented. 'Lheir resulting performance however would
sacrifice a certain degree of MIMO antenna gain. ~On the other hand, a brutal-force
maximum-likelihood (ML) detector,finds the optimal eé6déword at a price of huge and
thus impractical complexity. To compromise; the so-called sphere decoding [2, 3] (SD)
algorithm maintains a good tradeoff between performance and complexity by searching
the (near-ML) best codeword among those within a sphere.

The SD algorithms can be categorized into two classes: hard-output SD algorithms
and soft-output SD algorithms. As their names reveal, a hard-output SD algorithm
outputs estimates of information bits, while a soft-output one generates the soft like-
lihood information for each bit, which can be used to co-work with a soft-input outer

decoder such as the turbo decoder. The combination of the soft-output SD algorithm



and the soft-input outer decoder can then provide significant performance gain over the
hard-output SD algorithm [4, 5, 6].

In order to generate soft likelihood information for each bit, more complexity is in-
duced for the soft-output SD algorithm when being compared with a hard-output one.
Some methods have thus been proposed for the reduction of complexity of the soft-output
SD algorithm (with possibly a slight degradation in performance) such as log-likelihood
ratio (LLR) clipping and channel matrix regularization [5]. A drawback of these meth-
ods, when considering their hardware implementation, is that they have varying com-
plexity. The authors in [6] then resolved this problem by proposing a fixed-complexity
soft-output SD algorithm, named smart ordering candidate adding (SOCA). Notably,
the fixed complexity of the SOCA is actually higher than the average complexity of the
soft-output SD algorithm in [5]. The'merit of being more easily hardware-implementable
of the former due to its fixed complexity nonetheless makes it a better choice in practical
application.

In this thesis, we propose in Chapter 3 a new soft-output SD algorithm, which will be
referred to as the modified repeated tree search (RTS) SD algorithm [1]. The proposed
modified RTS SD algorithm guarantees a practically low complexity upper limit and
hence is suitable for hardware implementation: From simulations, our modified RTS
SD algorithm can provide a‘betterperformance-complexity trade-off in comparison with
the SOCA, and its complexity upper limit.is-clearly smaller than the 99.9-percentile
complexity of the single tree search (STS) SD algorithm in [5], where the 99.9-percentile
complexity should be the designed maximum complexity allowable for the hardware
implementation of a varying complexity soft-output SD algorithm like the ST'S.

We next investigate in Chapter 4 the interference cancellation (IC) over MIMO sys-
tems. Different from treating the interference as a part of the background noise as
conventional detection problem does, we now attempt to cancel the interference from

other users. Usually, the modulation scheme of the interference from other users is un-



known to the receiver. Estimation of the possible modulation scheme of interferences
thus becomes essential. In [14], Shim et al. proposed to use a modified general likeli-
hood ratio test (GLRT) to perform IC with unknown interference modulation scheme,
and a bias term is added to the GLRT quantity to balance the impact from different
modulation schemes. We then found that the bias term in [14] has not been optimized.
An additional 1 dB gain can actually be resulted under the block error rate of 0.01 if
we optimize this bias term. Subsequently, we continue to find that the previously pro-
posed modified RTS can be further modified to resolve the IC problem with unknown
interference modulation scheme. Details will be given in Chapter 4.

In the end, we conclude our thesis in Chapter 5. Possible extension of the proposed

modified RTS SD algorithm is also g geest




Chapter 2

System Model and Background

Base station of
Pico Cell, BSp

Base station of Macro
Cell, BSm

Coverage of MacroCell Coverage of Pico Cell

Figure 2.1: Illustration of a heterogeneous network

In a heterogeneous network such as the one in Fig. 2.1, different wireless access

technologies respectively for macro and pico cells may be deployed so as to fit their



characteristics. A macro cell often provides a large radio coverage with a high power
base station, while a pico cell is deployed either for areas with high concentration of users
or as a coverage extension for indoor communications. In particular, when deploying
pico cells within macro cells, more radio resources can be allocated, thereby improving
the spectrum efficiency and system throughput. These merits however will unavoidably
introduce more inter-cell interference to a single user. The techniques to effectively cancel
the inter-cell interferences thus become essential in a heterogeneous network. Since users
in the pico cell (respectively, macro cell) may not know the modulation schemes of other
users in the macro cell (respectively, pico cell), this makes the MIMO detection and
interference cancellation even more challenging.

In the later sections of this chapter, we will formulate the problem we focus in this

thesis and then brief the existing technologies that have been proposed to solve it.

2.1 System Maodel

The MIMO system that we consider in this thesis can be modeled as:
Yy = HSPSXS =F HzPZXz +n (21)

where H, and H; represent. respectivéely the channel'matrices for signal and interference,
and P4 and P; are respectively thewprecoder matrices forsignal and interference. Here,
X, is the signal the receiver desires; and x; denotes the interference signal. The length
of x, and x; are N, and NN, respectively. The last term n represents the usual additive
white Gaussian noise (AWGN). Note that in a heterogeneous network such as the LTE,
which densely distributes with small cells, the interference power of H;P;x; may be
larger than the signal power of H,P x,, which makes cancellation technologies essential

to such system.



2.2 Prior Detection Algorithms

2.2.1 Linear Receivers

Traditional so-called type-I linear receivers for solving MIMO detection problems can

be written as:
1
WMMSE,1 = Hf (Hst -+ diag(crl?N’i)) (22)

where fIS = H,P,, and O'IQN’Z- is the equivalent noise variance that incorporates the
interference power. Another MMSE receiver [17] that is generally classified as type II

considers the impact of interference, and its resulting estimate can be written as:
s o ~1
wWinvsee = HY (HHH +H,H + diag(a?N)) (2.3)

where ITIZ = H,P;, and o3 is.the noise variance. Although eptimal from the statistical
aspect, the MMSE receivérs. are known to be sensitive to corrélations among antennas

[18].
2.2.2 Sequential Interference Cancellation

When the interferencespower is seemingly larger than the signal power, alternative non-
linear sequential interference cancellation (SIC):scheme has beeniproposed in the lit-
erature [15][19]. This method detects and cancels the intérferences, starting from the
current dominating one, in sequence; and-afterwards recover the desired signals. It can
be further categorized as symbol-SIC (S-SIC) and codeword-SIC (C-SIC) [19].

The S-SIC applies interference cancelation independently to each subcarrier as shown
in Fig. 2.3. The S-SIC is known to suffer serious error propagation when symbol error
rate is high. In certain cases, the performance of the S-SIC may be even worse than
that of an MMSE receiver.

To resolve this error-propagation problem, the C-SIC, as illustrated in Fig. 2.4, per-
forms error correction for interference codeword before interference cancelation, and thus

can significantly improve the performance in comparison with the S-SIC. A restriction



of the C-SIC scheme is that the code rate and modulation of the interference code-
word must be know at the receiver; this however is not guaranteed in the current LTE

standard.

2.2.3 Sphere Decoding

A technique that recently gains much attention in the practice of interference cancelation
is the sphere decoding (SD). The sphere decoding technique can maintain the maximum-
likelihood performance under a practically appropriate complexity, and hence is recently
used by many researchers for signal detection problem in MIMO systems. Again, the

system model can be expressed as:

Yy = HSPSXS = HszXz + n
= H,P, HP)[x, x]" %n

= Hx+n (2.4)

where H = [H,P, H;P,], and x £ [x, x;|”.

Before we continuesthe presentation of theamain results in this.e¢hapter, we should
tell the main difference-between the system model considered in/Chapter 3 and that in
Chapter 4. In Chapter 3; we only consider an interference-free séenario, where there is
no interference signal (i.e., N;=0); while in Chapter 4 intérference x; will interfere the
demodulation of x; and hence N; > 0.

Specifically, in Chapter 3, the symbol vector x only contains x,. As such, an MIMO
system with Np transmit layers and Ny receive layers is considered, where Np < Ny.
The symbol transmitted from each antenna represents () coded information bits, namely,
the information bits are mapped to 29 complex constellation points. For example, ) = 2
for QPSK, and @) = 4 for 16-QAM. We further assume that the covariance matrix of
x satisfies F{xx'} = Iy,, and each entry in H is complex Gaussian distributed with

mean zero and variance 1/Np. The noise n is independent Gaussian distributed with



mean zero and variance Ny. As a result of the above setting, the signal-to-noise ratio
(SNR) per receive antenna is exactly 1/Nj.

As a contrast in Chapter 4, we assume that the receiver contains totally NN; layers
of interference and N, layers of desired signals, where N; + N, = Np. Again, the
symbol transmitted from each antenna is constituted of () coded information bits, and
the information bits are mapped into 29 constellation points. The modulation for x,
is known to the receiver; however, the modulation for x; is only known to belong to
a set of candidate schemes. The covariance matrix of x still satisfies E{xx'} = Iy,
which means signals and interferences have equal power. Similar to those assume in
Chapter 3, the entry in the Ng-by-Nt matrix H is assumed to be complex Gaussian
distributed with mean zero and variance 1/Np, and additive noise n has independent
complex Gaussian components with mean zero and variance' Ny. The SNR per receive
antenna thus remains 1/Np.

Now we return to the introduetion-of the SB algorithm. The SD algorithm is ben-
eficially adopted for MIMO signal detection sincefit guarantees finding the maximum-
likelihood (ML) symhel vector with considérable reduction ‘of demedulation/decoding
complexity in comparisen with the brutal force ML detector. Theridea behind the SD
algorithm is that it sets a'sphere centered at the received symbol wector with a properly
chosen radius. Only the candidate vectors that lie insidethe sphere are needed to be
checked, thereby reducing its complexity:

The SD algorithm has two steps: 1) per-processing step and 2) tree search step. The
pre-processing step QR-decomposes the channel matrix H:

H:Q{O R } (2.5)

(NrR—Nr)X N

where Q is an unitary Ng x Nr matrix, and R is an Ny X Nt upper triangular matrix

with real-valued diagonal elements. Since Q is unitary, we can left-multiply (2.4) by Q*



to yield a modified input-output relation:
v =Qy = QPHx + Q’n =Rx +n,

where n remains independent Gaussian distributed with mean zero and variance Ny. In

matrix form, this relation can be written as:

y i Tzt TN T n

1 1 1

. 0 22 - T2, Ny ]

gNT : . TNy ,ﬁNT
O Ce O TNT7NT

With this modified relation, the tree-search step can be executed according to (2.6)

below:
v = arg min ||'§—Rx |I?
xeONT
N NR 2
= arg ngI}Ql}vlT : Yi — Z T &5 (26)
i=1 gj=

In the literature, three major tree-search algorithms have beemproposed, which are
respectively named depth-first search [5], breadth-first search [7],and best-first search
[8] algorithms. Theseralgorithms basicallyproduce hard-output xy. Instead, we wish
to investigate the soft-output SI) algorithm-in this-thesis, which will be briefed in the

next section.

2.2.4 Soft-Output Sphere Decoding-and Methods for Complex-
ity Reduction

Denote by z;; the bth bit in the constellation point corresponding to the jth entry of
vector x. In order to reduce the decoding complexity, the true LLR for bit z; is replaced

by its Max-Log approximation [5, 9]:

L(zjp)= min ||y — Hx ||>— min ||y — Hx [?, (2.7)
xeX}_’? xeX](_;)

where Xj(fz) and Xj(,})) are sets of vectors that have the bth bit in the jth entry equal

to 0 and 1, respectively. Applying this idea to the QR-decomposition-refined relation



y = Rx + i, we now obtain an equivalent version of Eq. (2.7):
L(x;3)= min |y — Rx|*— min ||y — Rx ||*. (2.8)
xex\) xex'y)
We then solve the above equation by using the SD-based tree search.
Several tree traversal strategies have been proposed in the literature. They are

respectively described below:

1. Repeated Tree Search (RTS)

The main idea of the RTS [4] is to compute the soft LLR value based on the ML
solution found by the hard-output SD algorithm. This strategy may re-do some

branch computations, resulting in.a significant_complexity waste.

2. Single Tree Search (STS)

When being compared with-the-RTS, the ST'S is much more efficient since every
branch in the treeis visited at-most once.. The STS finds the ML solution via the
hard-output SD algorithm, and simultaneously identifies the counter-hypothesis
paths corresponding to the ML solution: Thus, the branch computations will not
be repeated, which saves the significant complexity in comparison with the RTS.
Its largely varying complexity however may make itshardware implementation a

challenging task.

3. Smart Ordering and Candidate Adding (SOCA) Algorithm

Aiming to solve to complexity variation problem in the SD algorithm like the ST'S,
the authors in [6] proposed another algorithm named the SOCA in a way that
by performing QR decomposition with a smart ordering criterion, together with
predefined numbers of per-layer candidates to be searched, the complexity can be

made fixed and hence achieve a good performance-complexity trade-off.

We end this chapter by remarking that some other complexity reduction techniques

10



such as LLR clipping, LLR sorting and regularization can also be combined with the

above algorithms to further reduce the complexity [4, 5, 6].

11
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Chapter 3

Soft-Output Sphere Decoding with
Modified Repeated Tree Search

In this chapter, we will first investigate the traditional soft-output sphere decoding
algorithm for signal detection, followed by our proposal of the modified-RTS soft-output

SD algorithm with complexity upper limit.

3.1 Modified RTS Traversal Strategy

Similar to the RTS tree traverse algorithm, ourimodified RTS algorithm has two stages.
The first stage finds the-hard-decision NI path, while the second stage examines counter
hypothesis paths to generate the required soft output.

A suitable candidate algorithm for the first stage is.the Schnorr-Euchner sphere
decoder (SESD) with radius reduetion.[12]. It issan-efficient depth-first tree search
algorithm for finding the ML hard-output. Nevertheless, the SESD still has varying
decoding complexity, and therefore, we propose to set an upper limit 77 such that the
first stage ends either when the ML hard-output is found or when the complexity upper
limit 77 is reached at which time the current best path is outputted instead.

From this setting, an expectation can be resulted. After imposing a complexity upper
limit, we may find a near-ML path instead of the ML path. Our simulation results
however show that with a small 77, the ML path can be located with high probability,

and a good performance-complexity tradeoff can be obtained.
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After the determination of the ML path (or a near-ML path), we perform the tree
traverse in the second stage. Later, we will show that the second stage also has a upper
complexity limit 75, and hence the overall complexity for the proposed modified RTS is

limited by (T} + T5).

root node

by counter
hypotheses

Level 1 A

A
b counter // \ \\ \ single best

ypotheses \ \ \ path only
\
Level 2 Y 7 y \
b; counter single best // //single best |
hypotheses | | ypathonly / ; npathonly
¢ S |
\ A B vor

Figure 3.1: Ilustration of the Second-stage with Np.= 3 and b = [b) by b3] = [4 3 2]
for the proposed modified RI'S. The thick solid line correspends to the near-ML path
obtained from the first stage.

Specifically, the second stage finds counter hypothesis paths based on the near-ML
path obtained from the first stage. There¢an‘be as many as QV®wcounter hypothesis
paths. To save the complexity, ‘weSpecify.a.vector-b.= [b;,+ - Jby,| to restrict the
number of counter hypothesis. pathsto be extended at each level, where 1 < b; < Q.
Therefore, at level i, only those bppaths with the smallest partial path metrics (i.e.,
distances to the received vector) are extended:"AS an example, suppose the modulation
scheme adopted is 16-QAM, which gives immediately @) = log,(16) = 4. Assume that
the symbol at the ith level of the ML path located at the first stage is z; = 1000.
This gives us four counter hypothesis branches, specified by {0000, 1100, 1010, 1001}.
Among these four counter hypothesis paths, only b; of them are selected for further
extension according their Euclidean distances to the complex receive scaler ;. For a
better understanding, a simple illustration of the second stage is given in Fig. 3.1.

On the other hand, it is known that clipping the LLR value to make it within £ 1L,

15



has essential effect on performance and complexity of the soft-output SD algorithm.
Since b; < (), the counter hypothesis paths traversed by our modified RT'S strategy may
not include all the paths required by (2.8). In such case, the Max-Log approximated
LLR value may become infinity. This makes the selection of the clipping limit L., very
important in our modified RTS strategy. In fact, we observe that extending a path with
the distance of its ith entry to y; larger than L,,,, will often result in no improvement
in performance but induce only more complexity. Hence, we set a rule that a path will
be abandoned once the distance of its ith entry to y; is found to exceed L.y, which can
further reduce the complexity.

The upper complexity limit of the second stage can be computed as follows:
N
i=1

The idea behind equationn(3.1) is that the mear=-ML path expands b; paths at level
1, and each path visit “b; nodes until-it reaches<the bottom level. Again, as having
been described, by only expanding those nodes with branehsmetrics within L., the
complexity of the second stage can be further reduced.

We close this section_by summarizing the main ideas of the proposed modified RTS

in the following:

e We adopt the SESD with an upper complexity limit 77 in the first stage. It finds a
near-ML path, guaranteeing having complexity no greater than 77. With a proper

choice of T7, a good performance-complexity tradeoff is obtained.

e b; counter hypothesis paths with the smallest metrics and also with metrics smaller
than L., are extended in the second stage. This guarantees a complexity no

greater than 75, and prevents a complexity waste in the second stage.

3.2 Simulation Results

We now compare our modified RTS with the STS and the SOCA.

16



Consider an MIMO system transmitted over Rayleigh fading channels with possibly
spatial or temporal correlation. Fast fading and slow fading scenarios as specified in [6]
are both considered, where in fast fading scenario, the channel realizations change per
MIMO transmission, while in slow fading scenario, the channel realizations remain the
same throughout an entire (turbo) transmission block but vary across (turbo) transmis-
sion blocks. We assume that all channel matrix realizations can be perfectly estimated
at the receiver. Four transmit antennas and four receive antennas, (i.e. Ny = Np = 4)
and 16-QAM constellation are adopted.

Two kinds of channel coding schemes are tested. The first one is a 3GPP-specified
punctured turbo code of code rate R = 1/2 with codeword length 2000 bits [10]. After
passing the code through a 40 x 50.block interleaver; 500 16-QAM symbols are formed
and transmitted. At the receiver, the 8-iteration Max-Log-MAP decoder is used for
turbo decoding.

The second channel.coding scheme-used in our simulation is a 3GPP-specified (2, 1,
8) convolutional codeyof code rate R = 1/2. The codeword length,is 720 bits. After
convolutional encodingy 180 16-QAM symbols.are fed into a’'15 x.48 block interleaver
before they are sent. Atithe receiver,the Viterbi decoder is used for:the decoding of this
convolutional code.

The upper complexity limit Ijwfor the first stage insour modified RTS is set to 30,
and the set of the restriction vectors b éxamined-ift our simulation contains b = [4444],
[4442], [4422], [4222], and [2222], which respectively result in T, = 40, 38, 34, 28, and 20.
For the SOCA, the tested numbers of paths extended in the first level, i.e., by, include
6, 14, 12, 10, 8, 6, and 4, which results complexities 88, 80, 72, 64, 56, 48, and 40,
respectively. Note that for the SOCA, b; = 1 for every ¢ > 1.

It should be mentioned that the channel regularization algorithm [5] is used for
all three algorithms, i.e., the STS, the SOCA, and our proposed modified RTS when

performing the QR-decomposition step. In addition, the SQRD [13] is employed as the

17



sorting algorithm in QR decompositoin for both the STS and our proposed modified
RTS, while the SOQR in [6] is implemented for the SOCA.

The performance index that we adopt in this thesis is the minimum SNR required
to achieve a block error rate of 1072 after channel decoding. The complexity measure is
the number of visited nodes during the tree search. This complexity measure is widely
adopted for one-node-per-cycle hardware implementation architecture [11]. We are now
ready to present the simulation results.

We first examine what should e the proper selected value for L... As previously
mentioned, the value of L., chosen will affect performance and complexity of the ST'S,
the SOCA and our modified RTS. As for the STS (as well as other algorithms), a larger
Ly implies a better performancesbut a larger complexity. We then show the the
performance-complexity tradeoff for'the STS in Fig. 3.2. Liater, an L., value will be
chosen according to this figure.

For the SOCA and our modified-RTS, thexrelationship'between L., and performance-
complexity tradeoff is,a little messy. Various test results regarding different L, values
are summarized in Figss 3.3, 3.5, 3.4, and 3:6.

Specifically, in Fig.=3.3, the range of the tested L., valuesuis ranged from 0.15
to 0.55 for the modified RTS under fast fading channels. We can clearly see from this
figure that L., = 0.25 has the best complexity-performanece trade-off. However, the
implication from Fig. 3.4 is a little different-under slow fading scenario. By testing
Lax from 0.15 to 0.55, we observe from Fig. 3.4 that under a slow fading environment,
the smaller the L., the better the performance-complexity tradeoff. To have a good
balance choice that fits both fast fading and slow fading scenarios, we set L. = 0.25
for our modified RTS.

Similar tests, for which L., assumes values from 0.15 to 0.55, are performed for the
SOCA. From Fig. 3.5, where the fast fading scenario is assumed, we observe that the

performance-complexity tradeoff improves as L., increases. Notably, the simulation
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Figure 3.2: ITmpact of L.y on the STS with turbo coding under fast (left subfigure) and
slow (right subfigure) Rayleighdading channels

results for L., rangingsfrom 0.35-t0-0:55 are almost indistinguishable. Under the slow
fading scenario, however, different trends can be observed from Fig:® 3.6. We note from
this figure that when L., is larger than 0.2, the performance-complexity tradeoff begins
to degrade. Again, to eompromise between two different scenarios, we choose L., = 0.3
for the SOCA.

Figs. 3.7 and 3.8 illustrate how different T} affect BLERsand complexities. In short,
we can see from Fig. 3.7 that under fast-fading, the curve corresponding to 77 = 20 has
already approached the curve of 77 = oo. In Fig. 3.8, we then see that there is no visible
gap between curves of T} = 20 and T} = oo. Nonetheless, we set T} = 30 to secure the
(near-)ML performance.

After the settlement of the parameters used, we are now ready to compare the STS
and the SOCA with our modified-RTS algorithm. First, we remark on the simulations
results regarding turbo coding and fast fading scenario. As observed in Fig. 3.9, the

proposed modified RTS achieves the best performance-complexity tradeoff, when it is
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Figure 3.3: Impact of Ly, on the modified RTS with turbo coding under fast Rayleigh
fading channels, where b = [4444] and [2222] are employed.

compared with the STS and the SOCA. In order to examine the variation in complexity,
we also record that the:99.9th pereentile complexities of ‘the STS and our modified RTS
in this figure. Since the,.SOCA has a fixed decoding complexity, thesaverage complexity
of the SOCA is exactly the same as its 99.9th percentile complexity. It is shown in
Fig. 3.9 that since the99.9th percentile complexity of the STS"is much higher than
its average complexity, the STS may suffer with-high' variation of complexity and hence
may become a challenge for'hardware implementation. The high variation of complexity
of the STS also makes varying its computational delay.

On the other hand, the gap between the average complexity and the 99.9th percentile
complexity of the modified RTS is considerably much smaller that that of the STS. The
99.9th percentile complexity of the modified RTS is even just slightly higher than the
(fixed) complexity of the SOCA. This indicates that the complexity upper limit (77 +75)
we set for the modified RTS does decrease the variation of the decoding complexity, and
therefore makes the soft-output SD algorithm more easily hardware-implementable.

Next we remark on the simulation results in the slow fading scenario. We observe
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Figure 3.4: Impact of L, on the modified RTS with turbo coding under slow Rayleigh
fading channels, where b = [4444] and [2222] are employed.

from Fig. 3.10 that the STS achieves.the best complexity-performance tradeoff in the
sense of average complexity. However;-nonetheless, the high complexity variation of the
STS remains, which again challenges its hardwaré implementations In particular, the
99.9th percentile complexity of the STS issix times larger than itssaverage complexity.
Similar conclusion as the'one in the fast fading scenario.can be obtained about the SOCA
and the modified RTS that these two-are more appropriate for hardware implementation
due to their prohibitively bounded complexity. When cemparing the modified RTS with
the SOCA, the former requires a‘higher 99th-percentile complexity but has a seemingly
less average complexity.

In order to examine the impact on the coding algorithm such as turbo and con-
volutional codes, we re-do the previous simulations by replacing the turbo code with
the convolutional code. The simulation results are summarized in Figs. 3.11 and 3.12.
The results are similar to what obtained using the turbo code. As a result, the SOCA
and the proposed modified RTS remain to be more attractive solutions for hardware

implementation, regardless of the channel coding scheme.
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In order to have more detailed insight on thée complexities. of the STS and our
modified-RTS algorithm, we show-the-50%s=pereentile, 90%-percentile, 99%-percentile,
and 99.9%-percentile complexities in Figs. 3.13 and 3.14 in both fast and slow fading
scenarios under turbo-eoding scheme. Evidently, the gaps among 50%-percentile, 90%-
percentile, 99%-percentile, and 99.9%-percentile complexities for the modified RTS are
much smaller that thosef the STS.

We further investigate the.complexity distribution of the STS with L., = 0.2 and
also the complexity distribution of the modified RTS with L., = 0.25 and b = [4444]
in Figs. 3.15 and 3.16, respectively. Note that to achieve a BLER of approximately
1072, the minimum SNR required for the STS is 13.41 dB, while the minimum SNR
required for the modified RTS is 13.40 dB; so they are approximately operated at the
same SNR. From the two figures, we can clearly see a drawback of the STS is its high
complexity variation. Although its average complexity is only 44.57, its largest decoding
complexity can be as large as 900 after testing 2,500,000 simulation samples. Such a high

complexity variation of the STS may become a challenge for hardware implementation.
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Chapter 4

Interference Cancellation under
Unknown Interference Modulation

In this chapter, we turn to a new interference cancellation problem, where the modulation
scheme of the interference is unknown to the transceiving system.

As shown in the heterogeneousnetwork in Fig. 4.1, a‘user ¢amps on a pico cell (BSp)
may receive a strong inter=eell interference from a macro cell (BSyr), especially when the
cell range expansion [15] i employed.-The interference power from BSy; may be similar
to or even larger than the signal power from BSp €0 that without a proper inter-cell
interference cancellation technique, suecessful’communication is not possible.

As having been specified in ‘Eq. (2.1), the general system /model for interference

cancellation problem can be formulated as
y = H.Px, FH,P,x;+ n,

where H;P,x; denotes the interference source, whose modulation scheme is now unknown
to the receiver. This brings us to the problem of performing inter-cell interference with
unknown interference modulation scheme.

In [14], joint modulation classification and detection using sphere decoding was pro-
posed for high-speed downlink packet access (HSDPA) system, where exactly one in-
terference source exists and only QPSK and 16QAM are the possible the modulation

scheme of the interference. The authors then proposed a modified general likelihood
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Figure 4.1: Tllustration of interference from-a marco cell to a user at the cell boundary
of a pico cell

ratio test (GLRT) to deal with such-a-modulation classification preblem. Basically, the
modified GLRT is tosperform a modified hypothesis testing so that all likelihoods of
modulation hypothesesrare calculated and-€¢ompared in order to detect the modulation
scheme of the interferenée source. The simulation results.in [14] ¢onfirms that the mod-
ified GLRT method cantoutput a promising modulation classification outcome for the
HSDPA system. One drawbagk of the modified GLRT.is that.the number of hypotheses
grows exponentially with the number of interference sources as well as the number of pos-
sible modulation schemes. This may result in an impractical modulation classification
complexity for communication standards such as the LTE and LTE-Advanced.

In this chapter, we revisit our modified RTS in Chapter 3 to fit the new demand of
performing inter-cell interference with unknown interference modulation scheme. With
the inherited merit of the SD algorithm, the classification complexity can be considerably
reduced in comparison with the modified GLRT. The main idea behind our proposal is

to perform the SD algorithm for all possible modulation schemes for the interference on
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the first few received symbols, and then declare the true modulation scheme by voting.

Details will be given later.

4.1 Modified RTS for Joint Modulation Classifica-
tion and Detection

In Chapter 2, we have shown that the modified RTS can provide a good performance-
complexity tradeoff and meanwhile suits the need of hardware implementation under the
assumption that the receiver knows the modulation schemes of and wishes to recover
all symbols. With a new assumption that the modulation schemes of some unwanted
received symbols (which are exactly the interferences) are unknown to the receiver,
adjustment to the modified RTS must be done.

The new modified RTS for unknown interference medulations also retains the two-

stage structure as shownein Fig. 4.2.

15t stage
Hard-output Sphere 2nd gtage
_ : AN
Decoder & Voting for Soft-LLR generation
Modulation

Figure 4.2: Structure of the preposed soft-output sphere decoding for joint modulation
classification and detection

The first stage performs the hard-decision SD algorithm for the first N received
symbols or received elements (REs) to generate N votes for possible modulation schemes.
Then classification of the interference modulation scheme can be carried out by the so-
called unfair voting. The second stage uses the modulation scheme determined in the
first stage and performs detection of the wanted signals. Details will be given in the

sequel.
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Figure 4.3: Illustration of the extended search tree for the 1st stage of the modified RTS
for unknown interference modulation

4.1.1 The First Stage.of the Modified RTS

In this first stage, the modified RTS again petforms the hard<output SD algorithm to
find the ML path but over extended-modulation tree that contains all possible candi-
date modulation schemes for the interference. Hence, the main difference between the
first stages of the modified RTS algorithms<in this chapter and in previous chapter is
the additional number of candidate modulation schemes for unknown interference. For
example, if the modulation scheme of the interference may be either QPSK or 16QAM,
each node on the search trée will have 20 children nodeés, corresponding to the total
number of QPSK symbols and 16QAM. symbols. -Stich ‘a new extended search tree is
illustrated in Fig. 4.3.

After executing the first stage for N received elements (REs), we have the ML path
for each RE, which suggests a modulation scheme for the interference. We can then
decide or classify the modulation scheme of the interference via voting. It can be verified
that different number of constellation points for different modulation scheme will give
an unbalanced modulation classification error rate. For example, Pr(16QAM|QPSK)
is significantly larger than Pr(QPSK|16QAM), where Pr(modulation Ijmodulation II)
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denotes the error probability that modulation I is detected by the first stage of the
modified RTS, while modulation II is the truly used one for the interference source.
Due to the unbalanced modulation error rate, we propose an “unfair voting” method

by introduce a bias V}, such that the decision rule is
Vi+ Vi 21 Vi, (4.1)

where Vi and Vi1 denote the numbers of votes respectively for modulation I and modu-
lation II. The parameters N and V}, will be later determined via simulations.

After performing N hard-output SD algorithms to determine the modulation scheme
of the interference source via (4.1), those REs, whose ML paths suggest an alternative
modulation scheme other than the decided one, will have to be re-done their corre-
sponding hard-output SD algerithms with respect to.the decided interference modula-
tion scheme; otherwise the performance of thé inter-cell interference cancellation may
degrade significantly.

We end this subsection by emphasizing that although-the first stage process that
we described above is exemplified for two candidate interference modulation schemes as
QPSK and 16QAM, it can be straightforwardly extended to three or more candidate
interference modulation sehemes, e.g., QPSK, 16QAM“and 64QAM. Hence, one should

be able to apply it to to-date LT'E and LTE-Advanced standard.

4.1.2 The Second Stage ‘of the Modified RTS

In the second stage of modified RTS, we will again generate the soft-output LLR values
via the help of the counter hypothesis paths.

Since the receiver has no interest to recover the information contained within the
interference, only the soft-output LLRs of the desired signals will be generated. For
this reason, we modify the sorting and QR-decomposition (SQRD) algorithm [13] such
that the symbols corresponding to the desired signals are placed in the first Ny levels

of the search tree. Again, in these N, levels, () counter hypothesis paths are extended
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Figure 4.4: Illustration of the 2nd stage of the modified RTS for unknown interference
modulation

in order to generate the softsoutput LLR values. During this process, only the paths
corresponding to the best candidate symbol are retained. The process will be repeated
until the bottom level of the search-tree is reached. An example of the second stage is

illustrated in Fig. 4.4,

4.2 Simulatien Results

In this section, simulation tesults for-/Ny =.N;y= 2 and Nz = 4 will be presented,

which corresponds to the system model

y = H/Px,+HPx,+n
T
T2
= [HSPS Hsz] i + n,

1

i2
where n denotes the additive white Gaussian noise. In the simulation, the modulations
of the desired signals x; and x5 are 16QQAM, whereas the modulations of interferences

71 and iy can be either 16QAM or QPSK and are unknown to the receiver. A 3GPP-
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Algorithm 1 Modified SQRD Algorithm

L R=0,Q=H,P =1y,
2: fori=1,...N, do

_ : 2
3 k;=arg o lq;|
4:  Exchange columns ¢ and k; in Q, R, and P
5. Tii = |l
6: Qi = q;/Tig
7. forj=141,....Nrdo
8: Tij = quqj
9: A =9q; — Tij - di
10: end for
11: end for
12: for i = N, +1,..Np do
13:  k;=arg min _ |q;?

j:N5+17---7NT
14:  Exchange columns ¢ and k; in Q, R, and P
15: 71 = |q
16:  q = q/Ti;
17 forj=1+4+1,...,Nrdo

18: ri,j = quqJ

19: qQ =4q; —Tij A
20: end for

21: end for

specified punctured turbo code of code rate R =1/2 and codeword length1920 bits is
adopted [10]. Under ar15 x 128 block interleaver, 480 16-QAM symbols are received at
the receiver, in which the 8-iteration Max-Log-MAP:decoder is used for turbo decoding.
It is assumed that the channel coefficients can be perfectly estimated. Only the slow
fading scenario is considered; hence; théparameter Ly, is set to be 0.2.

We first examine the impact on the ‘correctness of modulation classifications in Fig.
4.5. The exact modulation schemes of the interference sources i; and i, are 16QQAM
and QPSK, respectively. For the incorrect modulation judgement of interference, two
situations are thus examined. The modulation scheme of i; is wrongly declared as
QPSK, and that of 75 is wrongly decided to be 16QAM. We can then observe from
Fig. 4.5 that any one incorrectly judgement on interference modulation scheme can

seriously jeopardize the system performance, where the resultant BLERs decrease at a
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Figure 4.5: Comparison of BLERsbetween correct anderroneous declarations of mod-
ulation scheme for interferences

very low speed as the SNR grows.

Next, we investigate the modulation classification errors swwhen only one RE is used.
The modulation schemes of i; and 75 are set as {16QAM, 16QAM} {QPSK, 16QAM},
{QPSK, QPSK} in the'left, middle, and right subfigures of Fig. 4.6 respectively.!

Similar to those examined in\Fig. 4.6, we shows the modulation classification error
for one RE in Fig. 4.7, where the/modulationsschémes of of i; and iy are now randomly
chosen with equal probability from QPSK and T6QAM. Figure 4.7 again confirms that
high-order modulations are favored in decision, particularly at the low SNR region.

Next, we examine the thresholds for unfair voting when taking N = 8 and N = 16
REs in Figs. 4.8 and 4.9, respectively. The interference modulation scheme to be
compared is the modified GLRT in [14]. Note that since the number of total votes is an

even number, we set the thresholds Vi, to be also even as for example setting Vi = 0

Tt can be verified that the simulation result for the modulation scheme of i; and iz being {16QAM,
QPSK} is identical to that of i; and is being {QPSK, 16QAM}. Therefore, we omit such case in Fig.
4.6.
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Figure 4.6: Modulation classification errors. The modulation schemes of i; and 75 are
set as {16QAM, 16QAM}, {QPSK, 16QAM}, {QPSK, QPSK} from left to right in the
three subfigures, respectively.

is equivalent to setting Vius = 1, setting Vis = 2 is equivalent to setting Vi = 3,
etc. In order to reduce the modulation classification error, we déetermine the threshold
according to

min{max{Pr(QPSK|16QAM),P(16QAM|QPSK)}}.

bias

We then found that Vs = 2 and Vius-=-6-achieve the aboye minimization values
respectively for N = 8 and N = 16.

After identifying the Viiasf We hext compare the performance of unfair voting with
that of the modified GLRT [14]." In Fig."4:10; the incorrect modulation classification
error rates respectively using unfair voting and the modified GLRT are illustrated for
both N =8 and N = 16. In Fig. 4.11, the average complexity per receive antenna and
the number of paths stored during the modulation classification stage are presented.
Notably, the number of paths stored can be regarded as an index of memory storage
required for the proposed algorithm. We can see from the two figures that the modified

GLRT outperforms the proposed unfair voting in classification error rate; however, the

superiority in classification error rate of the modified GLRT is obtained at the cost of a
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Figure 4.7: Modulation classification error: -Medulation schemes of ¢; and i, are ran-
domly chosen from QPSK and 16QAM.

higher complexity and higherstorage requirement. The high complexity of the modified
GLRT is due to that itiehecks the-metrics of all possible hypotheses. In the scenario
we simulated, the modified GLRT needs to examine. the four cases®f i) i; € QPSK and
ip € QPSK, ii) iy € 16QAM and i, € QPSK, dii) i3 € QPSK and i5°€ 16QAM, and iv)
i1 € 16QAM and iy € 16QAM. In additiony to-determine the MI/path as well as the ML
path’s metric for each hypethesis, the SESD algorithm should be executed four times.
During this process, all information, for each candidate path needs to be stored. For
the above reasons, the modified GLRT requires a much higher complexity and storage
requirement, than our proposed unfair voting.

We would like to add at the end of this discussion that the complexity and the num-
ber of paths required to be stored for the modified GLRT are actually proportional to
the number of hypotheses, while those of the proposed unfair voting, are only propor-
tional to NV; (i.e., the number of interferences), where the number of hypotheses grows
exponentially as N; increases.

In this thesis, we only consider QPSK and 16QQAM as candidate modulation schemes
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for intereferences. If 64QAM.is additionally considered, thén the complexity of the
GLRT may grow dramatically and become impractical.

On the other hand, the performance gap in Fig. 4.10 regarding Pr(16QAM|QPSK)
may look huge; however, Figure 4.12 indicates that the simulated BLERs of the modified
GLRT and the proposed unfair voting are not that deviated. We may accordingly
conclude that the proposed unfair voting can achieve similar performance to the modified
GLRT with a much smaller complexity and its simplicity in implementation makes it a

suitable candidate for hardware implementation.
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed a soft-output SD algorithm, named the modified RTS,
that can provide a good performanece-complexity tradeoff and is appropriate for hard-
ware implementation. Furthérmore, based on the modified RTS, we further propose a
simple method called unfair voting-to-perform the joint modulation classification and
signal detection. Considering its simplicity and also its low requirement in storage, the
proposed unfair voting:becomes a good candidate for-hardwire implementation.

At this stage, the Wias is actually determined based on simulations. Finding a the-
oretical footing for thesselected Vi could be an interesting future work. To examine
the possibility of a soft voting rather than a hard voting could be another interesting
subject to explore. Via these modifications, the modulation classification and the signal

detection may become more reliable.
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