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同調波轉換於介觀光學與量子力學之研究 

 

學生：林毓捷                                指導老師：陳永富 

 

國立交通大學電子物理學系博士班 

 

摘要 

介觀物理是尺度介於巨觀與微觀的物理科學，使其能涵蓋兩種尺度下的物理特

徵；這一尺度下的物理系統也因此孕育了不少有趣的物理現象為許多不同領域的

科學家們所深深著迷。直至目前為止，相關的議題還是持續地被關注與研究。本

文藉由光在量子(波動光學)與古典(幾何光學)的良好對應性，以光學系統來類比

觀察介於量子力學與古典力學之間的介觀現象。再者，由於描述光學系統的波動

方程式在近軸近似下與研究量子系統的薛丁格波動方程式有相當良好的數學對

應性，在文中我們借助量子力學的理論完備性來探討對應於光波的量子同調態

(quantum coherent states)所具有的物理特性。藉由對量子系統的深入分析，我們

更容易洞悉波動光學與幾何光學之間的奧妙。也藉此更了解量子態在量子系統中

所扮演的重要角色。 

文中主要探討同調波在兩種光學系統中的物理面貌，包含光導管(light pipe)

與球型雷射共振腔(spherical laser resonator)。看似完全不同的實驗架構，實際上

卻以相同的理論架構為基礎。由量子同調態疊加的概念配合嚴謹的理論分析，疊

加出來的波函數展現出坐落於古典週期性軌跡(periodic orbit)的物理圖像；透過仔

細的實驗觀察，相同的空間圖像也在光學系統中被驗證。藉由同調態在光學與量

子力學的相互印證之下，更確立了以量子力學為理論基石的進一步相關研究。 

本文另一個重點就是透過雷射共振腔系統外的模態轉換元件 (mode 
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converter)，來連結兩群各具特色的光波同調態。而這兩群光波同調態皆具有獨特

的古典週期性粒子軌道形貌，分別是利薩如(Lissajous)曲線和擺線(trochoidal)曲

線。此一研究不僅以視覺化的方式呈現數學研究中拓樸學的內涵，也藉由不同耦

合機制下的二維簡諧系統，具體的展現了粒子軌道的空間對應轉換關係。由於簡

諧系統普遍存在於各個研究領域與問題中，空間轉換同調態的研究與實現想必會

是最直接且容易的途徑來刺激或幫助解答更多不同領域中的相關問題。此外，針

對實驗結果的理論分析更顯示了這些空間模態擁有很大的角動量，這對於未來的

雷射技術提供了一些前瞻性的想法。 

 而本文另一個探討的議題在介觀物理的研究中一直扮演相當重要的角色，就

是波穿透紊亂介質(disordered medium)所展現出來的局域化(localization)現象。本

文藉由錐形二次諧波產生(conical second harmonic generation)的方式來觀察紊亂

波函數在弱局域化(weak localization)範疇中從遍布態(extended states)到預局域化

態(pre-localized states)的連續性變化；透過理論進一步分析實驗量測到的強度分

布，我們成功地利用縮版的非線性σ模型(reduced version of the nonlinear sigma 

model)來定量地探討各種形式的強度分布其所對應不同局域化的程度，這是縮版

的非線性σ模型首次在實驗上的一個應用與對照。再者，為人們所熟知的卡方分

布(chi-square distributions)在此一研究中也首次被證實可以有效地使用來定量分

析不同局域化的程度，且與縮版的非線性σ模型有相當良好的對應關係。由於紊

亂系統的實驗並不是很容易觀察，而此一研究提供一個途徑來幫助深入了解紊亂

系統所展現出來的物理圖像；另一方面，實驗結果也意味錐形二次諧波產生的方

式可以協助研究紊亂晶體中複雜的結構特徵。 
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Abstract 

 

Mesoscopic physics, which is in between the microscopic and the macroscopic world, 

contains physical features of both scales. Distinctive phenomena found in the 

mesosopic systems give insights into the quantum-classical correspondence which has 

attracted lots of attention from researchers. The related issues in mesoscopic regime 

have been studying and paying close attention. In the thesis we employed optical 

systems as analog systems to investigate the connection between quantum and 

classical mechanics. This statement based on the good correspondence between 

quantum-classical mechanics and wave-ray optics. Moreover, optical wave equation 

was theoretically elucidated to be in the same mathematical form as the Schrödinger 

equation. We provided comprehensive studies for the quantum coherent states 

corresponding to the optical waves. With sophisticated mathematics in quantum 

mechanics, we are able to understand the wonderland between wave optics and ray 

optics and the important roles of quantum coherent states in quantum systems.   

Two kinds of optical systems, light pipes and a laser resonator, were discussed in 

the thesis. Although it seems that the two setups are totally different, they are 
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governed by the same theoretical foundation. Within rigorous analyses, the coherent 

states in corresponding quantum systems revealed intriguing patterns localized on the 

classical periodic orbits. The same spatial patterns could be found in the optical 

systems. The validation of the connection between quantum and optical coherent 

waves enables further studies on related research based on quantum mechanics.  

Another topic in the thesis is the linkage of two distinctive optical coherent states 

localized on the periodic orbits of Lissajous and trochoidal curves. The investigation 

not only visualized the insight of topology in mathematics but exhibited analog 

transformational relationship of particle trajectories followed by different coupling 

mechanisms in a two-dimensional harmonic system. Hence, the realization of the 

converted spatial coherent states might be an accessible method for the study of 

fundamental science in various branches. With theoretical analyses, the coherent 

waves were found to carry large orbital angular momentum and might stimulate 

further applications. 

Besides the two topics mentioned on the above, another topic has been played an 

important role in the mesoscopic physics—the investigation of localization for 

disordered wave functions in random media. In this work, we obtain the disordered 

wave functions from the conical second harmonic generation to explore the 

continuous transformation of weak localization from extended to pre-localized states. 

We numerically verify that the experimental density distributions with different 

extents of weak localization can be excellently analyzed with a reduced version of the 

nonlinear sigma model. This is the first time that the reduced version of the nonlinear 

sigma model to be applied to describe the experimental results. Moreover, we perform 

that the chi-square distributions with fractional degrees of freedom are practically 

equivalent to the density distributions of the reduced version of the nonlinear sigma 

model. Since the observation of the disordered wave functions is not accessible, this 
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work might provide an approach to comprehensively study the intriguing physics 

behind the disordered systems. On the other hand, the present results suggest the 

possibility of exploiting conical second harmonic generation as a diagnostic method to 

understand the complex topological structure of the disordered crystals. 
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Chapter 1  
Introduction to the Thesis 

 
1.1 Classical Mechanics and Ray Optics : Periodic Orbits 
 

Classical mechanics helps us to realize the the macroscopic physics world. It could be 

employed to describe the motion of the macroscopic objects and the classical 

trajectories that the particles move along. By systematically analyzing the trajectories 

of the objects in classical systems, one can have further insights into the physical 

properties of the systems. For example, one can acquire useful information such as the 

interaction between objects in the many-body system, the effect of the confinement on 

the objects, and the states that can exist in the system [1]. These are the important 

factors that determine the behavior of the particles in the classical systems.  

There is a great deal of research that concerns the issues in the classical 

trajectories [1], among which the most well-known are the revolution of heavenly 

spheres, the motion of billiards in confined systems as depicted in Fig. 1.1.1 , and the 

orbits of an electron in the hydrogen atom. Most of the classical trajectories related to 

the systems reveal periodicity and closed form. According to their specialty, they are 

therefore designated as the periodic orbits. Research on the periodic orbits not only 

shows the physical meaning of great significance but discloses the exotic and diverse 

appearances which have fascinated scientists from a variety of fields. Moreover, the 

periodic orbits are characterized by their concise and symmetric mathematical 

interpretation. Besides of the conical sections, including circular, and elliptic orbits, 

we are familiar with, there are attracting periodic orbits such as the Lissajous and 
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trochoidal curves.  

According to the intriguing features and complexity of the periodic orbits in 

classical systems, scientists wondered whether “light” possess the same characteristics 

as the classical trajectories. The answer has been provided by Hamilton who proposed 

his formulation of the optical-mechanical analogy in the early 19th century [2]. The 

analogy between the classical mechanics and ray optics according to his 

announcement is given in Table 1.1.1. It is noted that the ray optics shows good 

analogy to the classical mechanics. Experiments have confirmed that optical rays can 

reflect in the same manner as the classical objects. The validation suggests that the 

various classical trajectories could be manifested within light. In a part of this thesis, 

we focus our attention on the complex classical trajectories by employing the optical 

experiments to investigate the transformational relationship between different periodic 

orbits. 

 

1.2 Schrödinger Wave Equation and Paraxial Wave 

Equation  
 

In this section, we demonstrate the analogy between the matter waves and the optical 

waves by validating the tight connection between the Schrödinger wave equation and 

the Paraxial wave equation for the electromagnetic (EM) waves. On the other hand, 

the verification also reveals the fact that the wave optics has certain similarity to the 

quantum mechanics. 

Here we begin with the well-known Maxwell equations that have often been 

used to describe how electric and magnetic fields are generated and altered by each 

other and by charges and currents. The four Maxwell equations in the differential 
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form can be given by 

0E  
 

,             (1.2.1a) 

E H
t

 
  



  
,           (1.2.1b) 

0H  
 

,            (1.2.1c) 

H E
t

 
 



  
,           (1.2.1d) 

where   is the permittivity, and   is the permeability of the medium that the EM 

waves pass through. 

 Furthermore, taking the curl of the curl equations in Eq. (1.2.1b) and Eq. (1.2.1c) 

and using the identity   2A A A    
     

, we obtain the wave equations for 

the EM waves  

 
2

2
2 2

1
, , ; 0E x y z t

v t

 
    

,         (1.2.2a) 

 
2

2
2 2

1
, , ; 0H x y z t

v t

 
    

,        (1.2.2b) 

where 1v   signifies the speed of the waves in the medium and 

0 01v c    where c represents the speed of light in free space.  

Considering the case of separation in time and space, we can write down the 

amplitude of the electric field in the form    , , ; , , i tE x y z t x y z e    for a 

monochromatic wave of angular frequency   and thus we can rewrite Eq. (1.2.2a) 

as  

   2 2 , , 0k x y z    ,          (1.2.3) 

where k v  is the wave number. It is obvious that the Helmholtz equation has 

been derived in Eq. (1.2.3).  
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Table 1.1.1 Analogy between classical mechanics and ray optics by Hamilton. 

Classical Mechanics Ray Optics

Characteristic Function

Integrand

Principle
(Least action) (Fermat’s principle)

Denotations

S : action
m : mass 

E-V : Kinetic energy
p : particle momentum 

t : time of  propagation 
n : refractive index

c : light velocity
v p : phase velocity

0
n

t ds
c

  2 0S m E V ds  

 2p m E V 
1

p

n

v c


0S  0t 
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 Assume that the EM wave propagates along the z direction, the electric field 

can thus be expressed as  

   , , , , zi k zx y z u x y z e  ,          (1.2.4) 

where  , ,u x y z  signifies the transverse amplitude and zk  denotes the z component 

of the wave vector. Substituting Eq. (1.2.4) into Eq. (1.2.3) leads to  

   
2 2 2

2 2
2 2 2

2 , , 0z zik k k u x y z
x y z z

    
          

.   (1.2.5) 

Since, in the paraxial approximation, the term  2 2, ,u x y z z   is small enough 

to be neglected, Eq. (1.2.5) can be simplified as  

 2 22 , , 0z tik k u x y z
z

 
     

,       (1.2.6) 

where 2 2 2 2 2x y        in the Cartesian coordinate and 2 2 2
t zk k k  . Eq. 

(1.2.6) is known as the paraxial wave equation.  

Compare with the time dependent Schrödinger wave equation of two spatial 

dimensions 

        
2

2 , , , , , , ,
2

x y t V x y x y t i x y t
m t


      


  ,   (1.2.7) 

which can be rewritten as 

    2
2

2 2
, , , 0

mi m
V x y x y t

t

 
       

,      (1.2.8) 

we can obtain the relations between Eq. (1.2.6) and Eq. (1.2.8) as follows 

 

2

z

t

z t

m
k

mV
k i



 







 .           (1.2.9) 
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Based on the derivation that the Schrödinger wave equation possesses the same 

mathematical form as the paraxial wave equation, we are able to interpret the light 

patterns observed in the optical experiments by the use of the sophisticated quantum 

theory. On the other hand, it has been confirmed that matter waves can also refract, 

diffract, interfere, and scatter in the same manner as electromagnetic waves in the 

quantum systems. Therefore, one can undertake comprehensive studies in the 

quantum wave functions with the available optical experiments through the tight 

connection between the quantum mechanics and wave optics.  

 

1.3 Optical-Mechanical Analogy 
 

In the previous sections, we have shown the analogy between the mechanics and 

optics with systematical analysis. Here we are going to find out the correspondence 

between waves and rays by considering the EM wave equation and Schrödinger wave 

equation in the semi-classical limit 

 Here we start with the EM wave equation in Eq. (1.2.2a). Consider the case of 

separation in time and space, the amplitude of the electric field of a monochromatic 

wave of angular frequency   can be expressed as    ; i tE r t r e    and thus we 

can rewrite Eq. (1.2.2a) into the Helmholtz equation  

   2 2 0k r    ,           (1.3.1) 

where 2k v    , 0k c  in vacuum, and 0 0n c v k k      is the 

refractive index of the medium. Let      0expr A r ik r     , where  A r  

represents the amplitude of  r  and  r  signifies the phase factor for  r , 

and then substitute  r  into Eq. (1.3.1), two equations can be obtained for both the 
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real and imaginary part are equal to zero as follows 

     
2

2 22 2
0

0

ln ln 0
k

k r A r A r
k


                 

   

 
,   (1.3.2a) 

     2
0

1
ln 0

2
k r A r r               

 
.      (1.3.2b) 

In the short wavelength limit for ray optics ( 0 0, 0 ,k k     ), the terms with 

2
0k  dominate in Eq. (1.3.2) and hence we have 

     
2

2 2 2

0

0
k

r r n r
k

 
 

            
 

 
,      (1.3.3a) 

     21
ln 0

2
r A r r            

 
.       (1.3.3b) 

Here, we can obtain from Eq. (1.3.3a) that 

   2 2r n r   


,           (1.3.4) 

where  r


 suggests the direction of the optical rays. Equation (1.3.4) is the 

principal equation of ray optics in homogeneous isotropic medium and is the so-called 

eikonal equation. The interpretation successfully verifies the connection between 

wave and ray optics. 

 In the following, we consider the case for matter waves and the time-dependent 

Schrodinger equation can be given by 

       
2

2 ; ; ;
2

r t V r r t i r t
m t


      


  .     (1.3.5) 

Similarly, take account of the separation in time and space for the wave function 

   ; i tr t r e    , Eq. (1.3.5) can be modified as  

   2 2 0r    ,          (1.3.6) 

where  2m E V     and E   . It can be seen that Eq. (1.3.6) has 
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equivalent form to the Helmholtz equation. Let      expr r i S r     , where 

 S r  is the action, and substitute it into Eq. (1.3.6). After the same algebra as the 

above mentioned with the EM wave, the obtained equation can hold only when both 

the real and imaginary part are zero. Therefore, a couple of equations can be derived 

from Eq. (1.3.6) as  

        2 22 2
2

1
ln ln 0S r r r              

 



,   (1.3.7a) 

     2
2

1 1
ln 0

2
S r r S r              

 


.      (1.3.7b) 

In the classical limit for particles ( 0 ), the terms with 21   dominate in Eq. 

(1.3.7) and thus we obtain   

          
2

2 2 22 2S r S r S r p r


                    

   ,   (1.3.8a) 

     21
ln 0

2
S r r S r           

 
,       (1.3.8b) 

where   is the wavelength of the matter waves and    2p r m E V r     

signifies the momentum of the classical objects. From Eq. (1.3.8a), we are informed 

that  

   2 2S r p r   


.           (1.3.9) 

where  S r


 indicates the direction of the particle motion. Obviously, Eq. (1.3.9) is 

closely analogous to Eq. (1.3.4), which implies that the transition from quantum 

mechanics to classical mechanics is equivalent to the relation between wave optics 

and geometric optics. The equivalence also confirms the relations we have discussed 

in previous sections: the trajectory of classical particle is similar to a ray in geometric 

optics and the matter waves are highly analogous to the optical waves. It is evident 

that we are able to employ optical experiments to explore the corresponding classical 
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or quantum phenomena. Figure 1.3.1 displays the complete version of analogy 

between the optics and mechanics. 

 

1.4 Mesoscopic Wave Functions  
 

In the previous sections, we have presented the tight connection between optics and 

the mechanics. The purpose of this thesis is to explore the intriguing physical 

phenomena in the mesoscopic physics which is the intermediate regime between the 

classical and quantum mechanics. Based on the close correspondence between the 

optics and mechanics, we use optical experiments to analogously investigate the 

physical features in the mesocscopic regime. Since optical experiments are 

characterized by their advantages of reproducibility, stability, and accessibility, the 

observations are reliable and enable us to have a better understanding of the physical 

meaning for the mesoscopic wave functions. In this thesis, we focus our attention on 

two important issues concerning the periodic orbits in the mesoscopic systems and the 

statistical properties of the disordered wave functions in random medium. 

 

1.4.1 Periodic Orbits in Mesoscopic Systems 
 

In recent decades, there has been great interest in the quantum manifestation of the 

classical periodic orbits in mesoscopic systems [3-13]. Mesoscopic billiards have been 

shown to play a crucial role in the exploration of the interplay between the classical 

orbits and the quantum energy spectrum [1,14-20]. Intriguingly, nonintegrable 

systems also reveal the localized phenomena that the scarred eigenstates are 

concentrated on unstable periodic orbits instead of randomly distributed in the 

systems [21-23]. Moreover, observations of conductance fluctuations related to the 

quantum transport in nanostructure devices have displayed close correspondence to 
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the quantum wave functions associated with the classical periodic orbits [24-29]. The 

phenomena of nonlinear resonances formerly investigated by Fermi with the molecule 

of CO2 [30] have been validated to have a great effect on the appearance of the 

classical trajectories [31]. There is a good deal of research that has been shown to 

tightly relate to the important phenomena of the nonlinear resonances. For example, 

the works can be seen in the experimental investigation of tunneling effects, stellar 

orbits, molecular excitations, and some theoretical studies [31-34].  

It can be seen that the localized feature associated with the classical periodic 

orbits plays a significance role in a variety of mesoscopic systems. As a result, the 

exploration of the connection between the quantum wave functions and the classical 

periodic orbits can help to figure out the intriguing physics exhibited in the 

mesoscopic regime, which is also the central issue of modern physics. In the thesis, 

we present two kinds of optical systems including the spherical laser resonator and the 

light pipe to analogously investigate the corresponding wave functions in the quantum 

harmonic oscillator and the quantum circular billiard. The wave functions and the 

optical modes that characterized by their fascinating morphologies are shown to be 

concentrated on the intricate periodic orbits. It can be expected that this work might 

stimulate more ideas in the quantum-classical connection for the related topics in 

mesoscopic systems.  

 

1.4.2 Disordered Wave Functions in Random Media 
 

Wave behavior in Random medium is a popular subject that has gone through a 

remarkable transformation in the past decades. The transformation was initiated by 

Anderson who suggested the possibility of electron localization inside a 

semiconductor [35]. The issue is now an important area of research which includes a 

variety of problems such as wave localization (weak [36-45] or strong [36,46-48]), 
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wave diffusion [49-52], intensity fluctuations [53-57], and correlation [58]. Since 

disorder phenomena are not restricted to a specific kind of wave, various approaches 

[36-38,59] have been developed individually in condensed matter physics, optics, 

acoustics, and atomic physics. It could be found that the localization phenomenon is 

still an important issue and deserves further investigations. 

In this thesis, we experimentally acquire the disordered wave functions from the 

conical second harmonic generation to explore the variation of weak localization from 

extended to pre-localized states. We numerically verify that the experimental density 

distributions with different extents of weak localization can be excellently analyzed 

with a reduced version of the nonlinear sigma model (RV-NLS model). Moreover, we 

demonstrate that the chi-square distributions with fractional degrees of freedom are 

practically equivalent to the density distributions of the RV-NLS model. Our finding 

indicates that the concept of fractional degrees of freedom can be applied to the 

statistical properties of disordered wave functions. It is believed that the present work 

can bring more insight into the localization phenomena of diverse disordered systems. 
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Chapter 2  
Coherent Wave Transformation in 
Quantum Harmonic Oscillators 
and Spherical Laser Resonators 

 
2.0 Introduction 

 

 Transformation in coupled isotropic harmonic oscillators 

Numerous recent researches on optical spatial modes have come out in modern 

physics [1-3] ranging from classical simulators of quantum entanglement [4-6] to 

parallel information [7,8]. The transverse Hermite-Gaussian (HG) modes are emitted 

by most laser cavities and are formally identical to the eigenstates of two-dimensional 

(2D) quantum harmonic oscillator (HO) [9]. Consequently, HG modes are often used 

to represent the spatial quantum photon states within the paraxial regime [10]. 

Recently, a variety of quantum Lissajous states formed by the coherent superposition 

of HG eigenstates has been analogously generated from the degenerate laser 

resonators, which exhibit wave patterns resembling Lissajous figures [11]. 

Constructing wave states with spatial morphologies well localized on the particle 

orbits has become one of the most fundamental features in different branches of 

physics such as solid-state physics, nuclear and atom physics, and laser physics 

[12,13]. 

Likewise, the Laguerre-Gaussian (LG) modes correspond to circular eigenstates 

of the 2D HO and play a prominent role in singular optics [14]. In the early 1990s, it 

was shown that a high-order HG mode can be converted into a LG mode by using 
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astigmatic lenses [15,16]. Since this discovery, researchers have made tremendous 

progress in manipulation [17], detection [18], and application [19,20] of the 

orbital-angular-momentum states of light. The generation of optical coherent states 

with intensities localized on intriguing periodic orbits might be an enabling tool to 

explore further possibilities for creating a new class of quantum light-matter entangled 

states.  

In section 2.1.1 and 2.2.2, we theoretically and experimentally present the 

continuous transformation between the HG and LG modes. Furthermore, in section 

2.1.2 and 2.2.3, we theoretically verify that converting the HG modes into the LG can 

lead to the spatial morphologies of the two-dimensional (2D) coherent states to be 

transformed from Lissajous figures to trochoidal curves. With this transformational 

relationship, we experimentally generate various structured lights by exploiting a 

cylindrical-lens mode converter to transform the optical Lissajous modes. The present 

investigation manifests a notable method to generate optical coherent waves with 

various orbital spatial morphologies. 

 

 Transformation in coupled commensurate harmonic oscillators 

For the past few decades, models developed from quantum mechanics have been 

employed progressively to explore the emergent phenomena in numerous different 

branches of physics because they can be interpreted with the same theoretical forms as 

quantum formulas [2,21-24]. One of the most profound similarities is that the 

electromagnetic wave equation in paraxial approximation is isomorphous to the 

Schrödinger equation [25-28]. Consequently, the electromagnetic radiation modes in 

the optical resonator or waveguide are analogs of the wave functions of a quantum 

system [9,11,29]. The tight connection between the paraxial beam propagation and 

quantum mechanics has been extensively exploited to study wave chaos phenomena 
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[29-31], disorder induced wave localization [32], semiclassical physics [33,34], and 

transient dynamics of quantum states [35-37].   

The coupled HOs have been employed successfully to explore the hydrogen 

atom problem [38], charged particles in external field [39,40], states of deformed 

nucleus in the Nilson model [41], shell effects in nuclei and metallic clusters [42], 

and orbital magnetism in quantum dots [43]. More recently, the isotropic HOs with 

SU(2) coupling interactions have been used to investigate the generation and 

evolution of quantum vortex states [44] and the transformation geometry between 

Lissajous and trochoidal orbits [45]. It has been shown [46,47] that the 

commensurate HOs can be mapped into the isotropic HOs via the canonical 

transformation. Although the isotropic HOs with SU(2) coupling interactions have 

been verified to be a striking analytical model, the quantum states of canonically 

mapped commensurate HOs with SU(2) coupling interactions have not been 

thoroughly explored yet. 

In section 2.1.3, we theoretically explore the eigenstates of a commensurate HO 

with SU(2) coupling interactions under the canonical transformation. The spatial 

patterns of the high-order eigenstates are found to be markedly localized on Lissajous 

figures to trochoidal curves from single to multiple periodic orbits. In section 2.1.4, 

controlling the pumping size in large-Fresnel number degenerate cavities, we have 

experimentally observed the laser transverse modes that display the wave patterns to 

be analogous to the derived eigenstates. Moreover, by exploiting the cylindrical-lens 

mode converter, we have experimentally presented the beam transformation from 

multiple Lissajous orbits to the multiple trochoidal curves. 

 

2.1 Coupled Quantum Harmonic Oscillators 
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2.1.1 Eigenstates : SU(2) Transformation  
 

It is well-known that the Hamiltonian for the 2D isotropic HO with the dimensionless 

spatial variables x~  and y~  is given by 

 2 2 2 20
0

ˆ
2 x yH p p x y


       ,         (2.1.1) 

where 0  is the angular frequency of the HO. Furthermore, Eq. (2.1.1) can be 

rewritten in terms of the ladder operators, and hence it becomes  

 † †
0 1 1 2 2 0

ˆ ˆ ˆ ˆ ˆ 1H a a a a    ,         (2.1.2) 

where   2~~ˆ1 xpixa  ,   2~~ˆ†
1 xpixa  ,   2~~ˆ2 ypiya  , and 

 †
2ˆ 2ya y i p   . Here we chose 1  for the units. The eigenstates of 0Ĥ  can 

be derived to be the two-mode Fock state 1 2

0 0

† †
ˆ ˆ1 2 1 2 1 2ˆ ˆ, ( ) ( ) ! ! 0,0n n

H H
n n a a n n    , 

where 
0

ˆ0,0
H

 denotes the ground state. The corresponding eigenvalues are 

0
ˆ 1 2 1 2 0( , ) ( 1)

H
E n n n n    , where 1n  and 2n  are positive integers. Moreover, the 

normalized spatial representation is expressed as 

  

2 2

1 20 1 2

2
ˆ1 2

1 2

1
, , ( ) ( )

2 ! !

x y

n nH n n
x y n n e H x H y

n n







 

    ,   (2.1.3) 

where ( )nH   is the Hermite polynomial of order n.   

 The general form of a 2D HO with the SU(2) coupling can be modeled as 

0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆH H J J J    ,        (2.1.4) 

where the coupling parameters i  ( 1,2,3i ) are assumed to be real constants and 

ˆ
iJ  are the Casmir operators associated with the SU(2) Lie algebra and the 

corresponding generators derived by Schwinger [48] are  
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 † †
1 1 2 2 1

ˆ 1 ˆ ˆ ˆ ˆ
2J a a a a  ,           (2.1.5a) 

 † †
2 1 2 2 1

ˆ ˆ ˆ ˆ ˆ
2

iJ a a a a   ,          (2.1.5b) 

 † †
3 1 1 1 2

ˆ 1 ˆ ˆ ˆ ˆ
2J a a a a  .          (2.1.5c) 

The operators ˆ
iJ follow the angular-momentum commutation relation 

ˆ ˆ ˆ,i j ijk kJ J i J      [48], where the Levi-Civita tensor ijk  equals +1 (-1) if  , ,i j k  

is an even (odd) permutation, and zero otherwise. With the dimensionless spatial 

variables,  

 1̂
1

2 x yJ x y p p     ,           (2.1.6a) 

 2
ˆ 1

2 y xJ x p y p     ,           (2.1.6b) 

 2 2 2 2
3

ˆ 1
4 x yJ x p y p       .         (2.1.6c) 

Before solving the quantum eigenstates of Ĥ , let first investigate the classical 

representation of the Hamiltonian Ĥ . The classical equation of motion for the 

Hamiltonian Ĥ  can be found to be 

   
   

3 1 21 1

1 2 32 2

/ 2 / 2

/ 2 / 2
o

o

iv vd
i

iv vdt




        
             

,     (2.1.7) 

where 1 xv x i p    and 2 yv y i p   . It is worth to mention that the equation of 

motion for the Hamiltonain Ĥ  in the classical system possesses the same form as 

the Schrödinger equation when considering the case of a 2-level system. By 

employing the SU(2) algebra, the general solution for Eq. (2.1.7) can be derived to be 

/2 /2
1 1

/2 /2
2 2

( ) ( )cos( / 2) sin( / 2)

( ) ( )sin( / 2) cos( / 2)

i i

i i

v t u te e

v t u te e

 

 

 
 

     
     

    
,    (2.1.8) 
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where  12
1tan   ,  3

2
2

2
1

1tan   , 1 1( )

1 1( )
i t

u t A e
    , 

2 2( )

2 2( )
i t

u t A e
     1 / 2o    ,  2 / 2o    , 2

3
2
2

2
1  , 1A , 

2A , 1 , and 2  are decided by the initial conditions.  

To explore the quantum eigenstates of the Hamiltonian Ĥ , we employ the 

same SU(2) algebra as in the classical dynamics to define a new pair of operators 

/2 /2
1 1

/2 /2
2 2

ˆ ˆcos( / 2) sin( / 2)

ˆ ˆsin( / 2) cos( / 2)

i i

i i

a ae e

a ae e

 

 

 
 





     
          

.     (2.1.9) 

Substituting 1â  and 2â  into Eq. (2.1.4) according to the relation in Eq. (2.1.9), we 

thus obtain the Hamiltonian Ĥ  to be transformed into a separable 2D HO 

1 1 1 2 2 2

1 1ˆ ˆ ˆ ˆ ˆ
2 2

† †H a a a a             
   

.       (2.1.10) 

Therefore, the eigenstates and eigenvalues of the Hamiltonian Ĥ  yield to be 

1 2† †
ˆ ˆ1 2 1 2 1 2ˆ ˆ, ( ) ( ) ! ! 0,0n n

H H
n n a a n n     and 

   ˆ 1 2 1 1 2 2( , ) 1 2 1 2
H

E n n n n     , respectively. With the transformational 

relation in Eq. (2.1.9) and 
0

ˆ ˆ0,0 0,0
H H
 , the eigenstates to the Hamiltonian Ĥ  

can be derived in terms of the Wigner d-coefficient [49]: 

 1

0
1 1

1

/2 2
ˆˆ1 2 1 2

,
0 2 2

, ,
NN

i miN
N N HH m n

m

n n e e d m m 

 

  ,    (2.1.11)  

where 1 2 1 2N n n m m     and 

 
1 1

2
1 1 1

,
2 2

!( ) ! !( ) !1     
N

N N
m n

d m N m n N n
 

    



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators    
 

 24

 

     

1 1 2 1

1 1

1 1

2 2

min ,

max 0, 1 1 1 1

1 cos sin
2 2

! ! ! !

n m n m

N n m

m n v N n v m v n m v

 




 
   

  

   

                   
    

 . (2.1.12) 

The detailed derivation can be found in Appendix A. Evidently, the eigenstates 

ˆ1 2,
H

n n  can be expressed as a linear superposition of the set of 
0

ˆ1 2,
H

m m . Figure 

2.1.1 and Fig. 2.1.2 depict the intensity distribution of ˆ1 2,
H

n n  for various indices 

 1 2,n n  and values of  ,  . Figure 2.1.1 and Fig. 2.1.2 are shown with the 

parameters 2   and 2  , respectively. It can be seen that the 

transformation from the HG to the LG modes can be continuously obtained by 

changing the parameter   or  , which suggests different extent of coupling effect. 

The intermediate states, the Ince-Gaussian modes, are accessibly acquired through the 

SU(2) algebra associated with the coupled isotropic HO. Notably, the LG modes 

presented in Fig. 2.1.2(e) and Fig. 2.1.2(e’) possess fairly large orbital angular 

momentum per photon [19,20] of 5l    and 52l   , respectively. Since light 

beams with well-defined orbital angular momentum have a number of developing 

applications [19,20], generation of such optical beams should be an important issue 

for further studies. Moreover, in Fig. 2.1.3, we present the comparison between the 

traveling-wave and the standing-wave forms of the eigenstates ˆ1 2,
H

n n  for 

2  . The standing-wave forms are obtained by taking the real part of the 

eigenstates ˆ1 2,
H

n n .  

 

2.1.2 Coherent States : Single Periodic Orbits 
 

According to Eq. (2.1.8), we can obtain the classical orbits for Ĥ  with the 

parametric equations  1( ) Rex t v t     and  2( ) Rey t v t    , where 
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Fig. 2.1.1 The intensity distribution of the eigenstates ˆ1 2,
H

n n  with different indices 

 1 2,n n , various values of   values and constant value of 2  . 

 

 

 

 

 



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators    
 

 26

 

(a)

(c)

(e)

(b)

(d)

β=0°

β=47.4°

β=90°

β=25.8°

β=78°

β=0°

β=36°

β=90°

β=60°

β=25.8°

(a’)

(c’)

(e’)

(b’)

(d’)

 

 

Fig. 2.1.2 The intensity distribution of the eigenstates ˆ1 2,
H

n n  with different indices 

 1 2,n n , various values of   and constant value of 2  : (a)-(e) 

   1 2, 15,10n n  , (a’)-(e’)    1 2, 55,3n n  . 
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Fig. 2.1.3 The intensity distribution of the eigenstates ˆ1 2,
H

n n  with different indices 

 1 2,n n , various values of   and constant value of 2  ; (Upper) 

traveling-wave form; (Lower) standing-wave form. 
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1 1 1 2 2 2

( ) cos cos sin cos
2 2 2 2

( ) sin cos cos cos
2 2 2 2

x t A t A t

y t A t A t

      

      

                            


                            




.(2.1.13) 

Figure 2.1.4 depicts the periodic orbits of the case 1 2 8 /1    for various   and 

  values with the parameters of    1 2, 35,100A A   and    1 2, ,0     

according to Eq. (2.1.13). The periodic orbits are shown to be associated with a 

continuous transformation between Lissajous curves and hypotrochoids for differing 

values of   and  . In addition, Fig. 2.1.5 displays the periodic orbits the case of 

1 2 9 /1     for different   and   values with the parameters of 

   1 2, 60,150A A   and    1 2, ,0     according to Eq. (2.1.13). The classical 

trajectories are found to be a continuous transformation between Lissajous figures and 

epitrochoids with varying values of   and  . It is obvious that a hypotrochoid or 

an epitrochoid depends on the ratio of 1 2   to be positive or negative with 

2/   and 2/  . 

 The periodic orbits for the Hamiltonian Ĥ  in the classical mechanics have been 

clearly demonstrated as mentioned above. Here we wonder whether the quantum 

states corresponding to the Schrödinger equation reveal the same morphologies 

localized on the periodic orbits. To construct such quantum states for mimicking the 

localized curves in classical dynamics, we apply the concepts of wave-packet 

coherent states first proposed by Schrödinger in 1926.  

 The wave-packet coherent states of 1D HO developed by Schrödinger are given 

by 
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Fig. 2.1.4 Classical periodic orbits for the case 1 2 8 /1   ,    1 2, 35,100A A  , 

and    1 2, ,0     corresponding to Eq. (2.1.13).  
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Fig. 2.1.5 Classical periodic orbits for the case 1 2 9 /1    ,    1 2, 60,150A A  , 

and    1 2, ,0     corresponding to Eq. (2.1.13).  
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 
2

0 | |
†2 2

0

ˆ; ( ) 0
!

t un
i n

n

u
t u e e a

n

  



   ,       (2.1.14) 

where 0( )i t
u Ae

   , A and   are decided by the initial conditions of the orbits. By 

employing the generating function of the Hermite polynomials, the probability 

distributions of the Schrödinger coherent states can be derived to be 

 2 21
( , ; ) ( ; ) exp [ 2 Re( )]P x t u x t x u


       .    (2.1.15) 

It can be obviously seen that the center of the coherent state moves along the path of 

the classical trajectory ( ) 2 Re[ ( )] 2 cos( )x t u t A t    . In Eq. (2.1.10) we 

have performed that the coupled HO with Hamiltonian Ĥ  can be transformed into a 

separable 2D HO through the SU(2) algebra. The Schrödinger coherent states for a 2D 

coupled HO can be expressed as the product of two 1D wave-packet coherent states: 

 
   2 2

1 21 2

1 2

| | | |

2 2
1 2

0 0

; ,
u ut

i

n n

t u u e e
     

 


 


   

     
1 2

1 2† †1 2
ˆ1 2

1 2

ˆ ˆ( ) ( ) 0,0
! !

n n
n n

H

u u
a a

n n


  


,   (2.1.16) 

where 1 1( )

1 1( ) i tu t A e     and 2 2( )

2 2( )
i t

u t A e
   . By substituting the ladder 

operators †
1â  and †

2â  with the transformational relations in Eq. (2.1.9), after 

cumbersome algebra, Eq. (2.1.16) is given by  

 
 2 2

1 2

0

1 2

| | | |

2
1 2

0 0

; ,
v v

i t

m m

t v v e e
  

 


 


   
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1 2

1 2

0

† †1 2
ˆ1 2

1 2

ˆ ˆ( ) ( ) 0,0
! !

m m
m m

H

v v
a a

m m





,    (2.1.17) 

where  1 2( ), ( )u t u t  and  1 2( ), ( )v t v t  follow the same relations as presented in Eq. 

(2.1.8). According to Eq. (2.1.15) and Eq. (2.1.17), we find that the probability 

distribution of the coherent states  1 2; ,t v v  can be expressed as  

      22

1 2 1

1
, , , ; , exp 2 Re[ ( )]P x y t x y t v v x v t


           

  2

2exp 2 Re[ ( )]y v t   .   (2.1.18) 

Equation (2.1.18) reveals that the coherent states  1 2; ,t v v  concentrate exactly 

on the same trajectories represented by the parametric equations in Eq. (2.1.13). To 

provide a comprehensive study in the corresponding quantum coherent states 

localized on the periodic orbits, we are here to find out the time independent 

stationary coherent states extracted out from the wave-packet coherent states 

 1 2; ,t v v .  

Consider a general expression for the stationary coherent state, the wave-packet 

coherent states  1 2; ,t v v  can be expressed as the double finite sum with fairly 

large 1A  and 2A  values. For the corresponding 2D Poisson distribution, the 

probability of the coherent state  1 2; ,t v v  in the eigenstate 
H

nn ˆ21,  can 

therefore be written as 

   
1 2

1 21 2
ˆ1 2 1 2 1 2

1 2

, , ; ,
! !

n n
n n

H

n n
P n n n n t v v e e

n n
    

      
   

,   (2.1.19) 

where 1n  and 2n  are the mean values for the associated quantum numbers and can 
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be given by 2
1 1 1 1ˆ ˆ†n a a A      and † 2

2 2 2 2ˆ ˆn a a A     . Since the values 

of the means 1n  and 2n  are sufficiently large, according to the central limit theorem, 

the distribution  1 2,P n n  becomes normally distributed and the standard deviations 

are given by 1n  and 2n . As a result, Eq. (2.1.17) can be rewritten as 

1 2

1 1 2 2

[2 ] [2 ]
( )

1 2
[2 ] [2 ]

( ; , )
n n

i t

s n s n

t v v e 

 


  


   

2 2
1 21 1 1 2 2 2

1 2

( ) ( )
4 4

ˆ1 1 2 2

1 2

,
2 2

s sis t is t
n n

H

e e
e e n s n s

n n

   

 

     
 



, (2.1.20)  

where 1 1 1 2 2 21 2
( ) ( )( ) /2( ) i n t i n ti ti te e e e            and [ ]a  is the Gaussian Bracket which 

signifies the nearest integer to a  at the lower side. Considering the case for a 

commensurate HO with a frequency ratio of 1 2 q p    , we let 1 q   and 

2 p   , where p and q are relatively prime and positive integers. The eigenstates 

with indices  1 2,s s  of the commensurate HO in Eq. (2.1.20) hence can be divided 

into subsets and expressed as 1 1 1 2 2 2 ˆ
,

H
n pk n qk     , where  1 2,k k  are 

arbitrary nonnegative integers, and  1 2,   are constants that 1 0,1, , 1p    and 

2 0,1, , 1q   . The coherent states in Eq. (2.1.20) can be derived to be 

1 2

1 1 2 2

1 2 1 1 2 2

[2 / ] [2 / ]1 1
( ) ( )( )

1 2
0 0 [2 / ] [2 / ]

( ; , )
n p n qp q

i q t i p ti t

k n p k n q

t v v e e e     

 

 
    

   


  


      

     

22
2 21 11 1 2 2

21

( )( )( ) ( )
44

1 22 2

qkpkipk q t iqk p t
nne e

e e
n n

   

 

     

  

1 1 1 2 2 2 ˆ
,

H
n pk n qk        ,    (2.1.21) 
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with indices 2/)(1 ksk   and 2/)(2 ksk  , where the sign ± of the index k is 

decided by the sign of 2 p    and the condition of nearly degeneracy, the 

coherent state 1 2( ; , )t v v  in Eq. (2.1.21) can hence be given by 

1 1 2 2

1 2

1 1
( ) ( )( )

1 2
0 0

( ; , )
p q

i q t i p ti t

u u

t v v e e e
     

 
    

 


  


   

1 2

1 2
1 2

( )2 ,
,

, ,
( )

S
is p qi spq t p q

n n
ss S

e e  

 
 



 
 ,   (2.1.22) 

where ]22[ 21 qnpnS   and the time independent stationary coherent state  

1 2
1 2

,
, , ,

( )p q
n n s  

 is given by 

2 2
1 2

1 2

1 2
1 2

[ ( ) ] [ ( ) ]( )
4 4,

, , ,
( )

1 2

1
( )

2

p s k q s kU s
n np q ik

n n s
k L s

e e e
n n

 


 




    
 






 


  

    1 1 2 2 ˆ
( ) , ( )

H
n p s k n q s k         ,  (2.1.23) 

with  sqnspnsL  ]2[,]2[max)( 21  and 

 sqnspnsU  ]2[,]2[min)( 21 . Note that it is valid for us to choose a 

specific subset of    1 2, 0,0    since the choice of the subset does not affect the 

spatial morphology of the stationary states 
1 2

1 2

,
, , ,

( )p q
n n s  

  in the classical limit ( 1n  

and 2n  large enough). Moreover, the amplitude coefficient of 
1 2

1 2

,
, , ,

( )p q
n n s  

  

dominates when the index s  equals to zero. Thus, the stationary coherent state 

0,0,0

,
, )(

21
qp

nn
  can be rewritten in a compact form: 
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
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21
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
 ,  

              (2.1.24) 

where  1 2min 2 , 2M n p n q        . The stationary coherent states in Eq. 

(2.1.24) suggest the periodic orbits that the wave-packet coherent states move along. 

Figure 2.1.6 depicts the transformation between the Lissajous curves and 

hypotrochoids for varying values of   with the parameters of 1 2 5 / 2   , 

   1 2, 9,80n n  , 4   , and 2  . The continuous transformation between 

the Lissajous curves and the epitrochoids is clearly shown in Fig. 2.1.7 for different 

  values with the parameters of 1 2 5 / 2        1 2, 29,60n n  , 4  , and 

2  . Moreover, Fig. 2.1.8 displays the transformation from Lissajous curves to 

hypotrochoids for various values of   with the parameters of 1 2 5 / 2     

   1 2, 29,60n n  , 2   , and 2  . Exploiting the concepts of the 

Schrödinger coherent states, we have successfully constructed the quantum states that 

mimic the classical dynamics in the coupled HOs. Via the SU(2) algebra, we also 

demonstrated the continuous transformation of the spatial morphologies between the 

two sort of distinct classical orbits, the Lissajous curves and the trochoids. The present 

results provide a comprehensive survey of the quantum-classical correspondence and 

might stimulate further ideas concerning the intriguing non-classical behavior in the 

mesoscopic regime. 
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Fig. 2.1.6 Theoretical results for the intensity distribution of the stationary states 

1 2

,
, 0,0,0

( )p q
n n   for varying values of   with the parameters of 1 2 5 / 2   , 

   1 2, 9,80n n  , 4   , and 2  .  
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Fig. 2.1.7 Theoretical results for the intensity distribution of the stationary states 
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n n   for different values of   with the parameters of 1 2 5 / 2     

   1 2, 29,60n n  , 4  , and 2  .  
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Fig. 2.1.8 Theoretical results for the intensity distribution of the stationary states 

1 2

,
, 0,0,0

( )p q
n n   for different values of   with the parameters of 1 2 5 / 2     

   1 2, 29,60n n  , 2   , and 2  .  
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2.1.3 Coherent States : Multiple Periodic Orbits 
 

In this section we start from the coupled commensurate HO with the Hamiltonian Ĥ  

as derived in Eq. (2.1.10) and develop a quantum model by adding a new coupling 

term to the the coupled commensurate HO. We explore the eigenstates and find that 

the high-order spatial patterns are noticeably concentrated on Lissajous figures to 

trochoidal curves from single to multiple periodic orbits. 

The general form of a two-dimensional (2D) commensurate HO comprising 

weak coupling term can be modeled as 

 ˆ ˆ
cH H H  ,            (2.1.25) 

where ˆ
cH  signifies the SU(2) coupling term characterized by a vibration-rotational 

mechanism and the detail will be provided later. The Hamiltonian Ĥ  of the 

commensurate HO is given by 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆH H J J J     as has been shown in 

Eq. (2.1.4). By the use of the SU(2) algebra and in terms of the quantum ladder 

operators, the Hamiltonian has been transformed into Eq (2.1.10) with 

   1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ1 2 1 2† †H a a a a        , where 1 q  , 2 p  ,   is a common 

factor of the oscillation frequencies 1  and 2 , q  and p  are integers, and the 

ladder operators ˆ †
ia and ˆia   1,2i  follow the SU(2) transformation in Eq. (2.1.9). 

The eigenstates of the commensurate HO can be divided into subsets given by 

ˆ1 1 2 2,
H

n p n q    as has been presented by Louck [46] and also discussed in 

section 2.1.2, where  1 2,n n  are arbitrary nonnegative integers, and  1 2,   are 

constants that 1 0,1, , 1p    and 2 0,1, , 1q   . According to Eq. (2.1.11), the 

eigenstates ˆ1 1 2 2,
H

n p n q    can be written as     
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 1

0
1 1 1

1

/2 2
ˆˆ1 1 2 2 1 2

,
0 2 2

, ,
MM

i siM
M M HH s n p

s

n p n q e e d s s


  

  

    , (2.1.26) 

where 
0

ˆ1 2,
H

s s  are the eigenstates for the 2D isotropic HO given in Eq. (2.1.2), 

1 1 1 1 1 2M n p n p s s       ,  12
1tan   , and  3

2
2

2
1

1tan   . 

It reveals the fact that the eigenstates have been divided into pq different subsets of 

states and the degeneracy holds when 1 2n n  is a constant N  for fixed  1 2,   

corresponding to the eigenvalues  1 2 1 21 2 1 2E n n p q p q          . For a 

particular case    , 1,1p q   of the isotropic HO, it is evident that ˆ ˆ2 1H J     , 

where Ĵ  is the Casmir operator associated with the SU(2) Lie algebra and the 

corresponding generators derived by Schwinger [48] are shown in Eq. (2.1.5). 

With the non-bijective canonical transformation, the commensurate HO can be 

mapped on to an isotropic one in a degenerate eigenspace [46]. The mapping suggests 

Schwinger’s development of SU(2) symmetry represented by the canonically 

transformed ladder operators and leads to the analytical solutions to the Hamiltonian 

Ĥ . Therefore, under the canonical transformation, the Hamiltonian in Eq. (2.1.10) 

can be transformed into 

 † †
1 1 2 2

1 1ˆ
2 2

H a a a a                
    ,       (2.1.27) 

where ia  and †
ia  are the canonically transformed ladder operators which bear the 

relations [46] 

       

       

1
† †2

1

2

1
ˆ ˆ ˆ ˆ ˆ1 1

1
ˆ ˆ ˆ ˆ ˆ1 1

i

i

i i i i i i i i
i

i i i i i i i i
i

a n n n n a

a n n n n a





 


 







        



        


 

 
,   (2.1.28) 

with number operator †ˆ ˆ ˆi i in a a  and indices    1 2, ,p q   . The operation of the 
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ladder operators on particular eigenstates for fixed  1 2,  , for instance, are  

 †
ˆ1 1 1 2 2 1 1 1 2 2 ˆ, 1 1 ,

H H
a n p n q n n p n q          and 

 ˆ1 1 1 2 2 1 1 1 2 2 ˆ, 1 ,
H H

a n p n q n n p n q         . Obviously, Eq. (2.1.27) 

has been converted into the same form as the isotropic HO when the degeneracy can 

exist for 1 2n n N   according to the eigenvalue  1 2 1E n n    to the 

Hamiltonian Ĥ . The generators of the SU(2) symmetry group can be rewritten in a 

way that makes them the generators responsible for the commensurate HO under 

consideration: 

 † †
1 1 2 2 1 2J a a a a      ,  † †

2 1 2 2 1 2J a a a a i      ,  † †
3 1 1 2 2 2J a a a a      . (2.1.29) 

The operators also satisfy the Lie commutation relation. Particularly, 1 1
ˆJ J , 

2 2
ˆJ J , and 3 3

ˆJ J  for the special case of the isotropic HO with    , 1,1p q  . 

Let us now return to our formal considerations of the coupled HO of the 

Hamiltonian H  given in Eq. (2.1.25). The Hamiltonian ˆ
cH  is expressed in the 

form of the SU(2) coupling interactions [44,45] and hence the Hamiltonian H  can 

be modeled as  

1 1 2 2 3 3
ˆ ˆ ˆ

cH H H H J J J           ,       (2.1.30) 

where j  ( 1, 2,3j ) are constants indicating the coupling parameters with the 

assumption j     for weak coupling. We would like to remark that, in view of the 

case    , 1, 1p q   for the coupled isotropic HO, the wave functions have been 

demonstrated previously on a group theory level via the SU(2) transformation in 

section 2.1.1. Likewise, it enables us to derive the wave functions by employing the 

transformation of SU(2) symmetry group. It can be seen that Eq. (2.1.30) possesses 
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the same mathematical interpretation as Eq. (2.1.4). Therefore, the eigenstates with 

indices  1 2,m m  for the Hamiltonian H  can be directly obtained in terms of the 

Wigner d-coefficient [49]: 

 1

1 1

1

2 2
1 2 1 2 2, 2 1 1 2 2 ˆ

0

, ; , ,
N

iniN N
n N m NH H

n

m m e e d n p n q    
 



   ,  

               (2.1.31) 

where  

     
1 1

2
2, 2 1 1 1 1! ! ! ! N

n N m Nd n N n m N m       

     
     

     
1 1 2 1

1 1

1 1

2 2min ,

max 0, 1 1 1 1

1 cos 2 sin 2

! ! ! !

m n m nN m n

n m v N m v n v m n v

 



 
     

   

        
    

 . 

               (2.1.32) 

Evidently, the eigenstates 1 2 1 2, ; ,
H

m m     can be expressed as a linear 

superposition of the set of 1 1 2 2 ˆ
,

H
n p n q   . Figures 2.1.9(a1)-2.1.9(a4) show 

distributions of the Wigner d-coefficient  
1 1

2
2

2, 2
N
n N m Nd     with respect to 1n  for 

1 0 ~ 3m  , 60N   and 2   , which reveal the composition of 

1 2 1 2, ; ,
H

m m     with eigenstates 1 1 2 2 ˆ
,

H
n p n q    of different orders. Figures 

2.1.9(b1)-2.1.9(b4), 2.1.9(c1)-2.1.9(c4), and 2.1.9(d1)-2.1.9(d4) illustrate the 

corresponding eigenstates 1 2 1 2, ; ,
H

m m     for different indices  1 2,m m  with 

   , 2,1p q  ,    , 3,1p q  , and    , 3, 2p q  , respectively, and all with the 

parameters    1 2, 0,0   ,    , 2, 2      ,    , 0,0   , and 60N  .  

Note that it is valid for us to choose a specific eigenspace of    1 2, 0,0    

since, in the classical limit (N large enough), [50] has confirmed that the choice of the 
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eigenspace does not affect the final results. Therefore, parameters  1 2,   are set 

to be  0,0  in the following discussions and we simplify the denotation of the 

eigenstates 1 2, ;0,0
H

m m   to 1 2,
H

m m  . Moreover,  ,    are chosen for specific 

parameters.   signifies an additional phase shift between the two HOs in x and y 

directions, and    corresponds to the coupling strength arising from ˆ
cH . The 

distribution shown in Fig. 2.1.10(a1)-2.1.10(a8) are varied with   , which indicates 

different composition for the corresponding eigenstates 1 2,
H

m m   as depicted in Fig. 

2.1.10(b1)-2.1.10(b8) with    , 2, 1p q  , 2   ,    , 0,0   , 1 1m  , and 

60N  . For 0   and    , the eigenstates can be seen to project precisely onto 

particular eigenstates  , 1
H

p q N    and ( 1) ,
H

p N q 
 
, respectively. While   

is determined, the conversion of    can be illustrated as shown in Fig. 

2.1.11(a1)-2.1.11(a5) with 1 1m  , 0.4  
    , 0,0    and 60N  , and in 

Fig. 2.1.11(b1)-2.1.11(b5) with 1 3m  , 0.74   ,    , 0,0    and 60N  . 

The morphologies transform since different relative phases are introduced into the 

superposition of states 1 2,
H

m m   with the set of states 1 2 ˆ
,

H
n p n q .  

Theoretical results disclose intriguing geometric patterns localized on an 

ensemble of periodic Lissajous orbits, which suggests a kind of quantum-classical 

analog. It is evident that the number of peaks associated with  
1 1

2
2

2, 2
N
n N m Nd     is 

consistent with the number of Lissajous orbits in 1 2,
H

m m   according to various 1m . 

The fact implies each orbit of multi-Lissajous patterns is formed by the superposition 

of a particular group of the set 1 2 ˆ
,

H
n p n q  with distribution centered on the  
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Fig. 2.1.9 (a1)-(a4) Numerical simulations of the Wigner d-coefficient with respect to 

1n  for various 1m ; (b1)-(d4) numerical wave patterns for the intensities of 

eigenstates 1 2, ;0,0
H

m m  . Detailed description of the parameters; see text. 
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Fig. 2.1.10 (a1)-(a8) Numerical simulations of Wigner d-coefficient with respect to 

1n  for various  ; (b1)-(b8) corresponding numerical wave patterns for the intensity 

distribution of eigenstates 1 2,
H

m m  . 
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Fig. 2.1.11 Numerical wave patterns for the intensities of eigenstates 1 2,
H

m m   with 

respect to varying  ; (a1)-(a5) 0.4   ; (b1)-(b5) 0.74   . 
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corresponding peak of  
1 1

2
2

2, 2
N
n N m Nd    . A relation  1 2min , 1l m m   can be 

given, where l  denotes the number of orbits. While the magnitude of  1 2min ,m m  

becomes larger, the related excited states display more complex caustic-like geometric 

patterns as shown in Fig. 2.1.12 followed by the case in Fig. 2.1.9(b1)-2.1.9(b2). 

Additionally, the symmetry is held for    1 2 2 1, ,m m m m , e.g., eigenstates of 

   1 2, 26,34m m   and    1 2, 34, 26m m   shown in Fig. 2.1.12(f) and 2.1.12(h) 

possess identical morphology for equal distribution  
1 1

2
2

2, 2
N
n N m Nd    . Though the 

same morphology is notified, the eigenstates  1 2,m m  and  2 1,m m  are 

characterized by distinct features of the quantum probability current  ,J x y


, where 

   *, ImJ x y   
 

 
[49] and  

1 2, 1 2, , ,m m H
x y x y m m   . Taking the cases of 

   1 2, 1 , 59m m   and    1 2, 59 ,1m m   as an example, it can be seen that the 

probability current  ,J x y


 flow in counter directions for the two states as depicted in 

Fig. 2.1.13(b) and 2.1.13(c). Note that the vector field  ,J x y


 has been normalized 

to    , ,J x y J x y
 

 for observing the detailed structures and the constants   and 

particle mass are set to be unity. 

Figure 2.1.14 further displays the phase structures for the case in Fig. 2.1.12(a) 

and 2.1.12(e). The enlarged figures of the box region in Fig. 2.1.14(a2) and 2.1.14(b2) 

are presented respectively in Fig. 2.1.14(a3) and 2.1.14(b3), where the complicated 

phase distribution indicates promising development in quantum physics such as 

quantum entanglement and quantum information as long as the quantum states 

1 2,
H

m m   
 

can be accessibly prepared [51]. Furthermore, in Fig. 2.1.15, we  
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Fig. 2.1.12 Numerical wave patterns for higher indices 1m
 
followed by the case in 

Fig. 2.1.9(b1)-(b4). 
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 a

 b    1 2, 1, 59m m   c    1 2, 59,1m m 

 

 

Fig. 2.1.13 (a) Numerical wave patterns for the intensities of eigenstates 1 2,
H

m m   
for    1 2, 1, 59m m 

 
and    1 2, 59, 1m m  ; probability current  ,J x y


 for (b) 

   1 2, 1, 59m m  , and (c)    1 2, 59, 1m m  . 
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the numerical calculations of 1 2,
H

m m   for different  ,p q  where    , 3, 2p q  , 

and    , 2 , 2       for Fig. 2.1.15(a),    , 3,1p q  , and 

   , 2 , 2       for Fig. 2.1.15(b),    , 4,3p q  , and    , 0, 2      for 

Fig. 2.1.15(c), and    , 5, 2p q  , and    , 2 , 2       for Fig. 2.1.15 (d), and 

all with    , 0,0   , 1 1m  , and 60N  . Moreover, Fig. 2.1.16 depicts the 

transverse patterns for multiple Lissajous orbits in Fig. 2.1.15(a) for varying  .  

We have provided comprehensive analyses for the condition of    , 0,0    

on the above, i.e. the examples for multiple Lissajous orbits have been thoroughly 

investigated. More intriguingly, consider the case for    , 0,0   , the eigenstates 

of the coupled commensurate HO can be found to transform continuously from 

multiple Lissajous orbits to the multiple trochoidal orbits as depicted in Fig. 2.1.17. It 

is noted that the intensity distribution in Eq. (2.1.31) has been modified here to be  

 1

1 1

1

2 2
1 2 1 2 1 2 2, 2

0

, ; , ; ,
N

iniN N
n N m NH

n

m m n n e e d  
 




 




  

1 1 1 2 2 2 ˆ
,

H
n n p n n q      ,   (2.1.33) 

where 1n  and 2n  are the initial values for the associated quantum numbers and the 

sign   of the index 2n q  is decided by the general representation for  p2 . 

As presented in section 2.1.2, the localization on the classical structure is more 

prominent as the number of quanta increases. Therefore, without limiting the initial 

values to be    1 2, 0,0n n  , 1n  and 2n  are introduced here for the general 

expression of the localized trajectories assoicated with fairly large quantum numbers. 

Note that the degeneracy is still hold for Eq. (2.1.33) under the modification. Figures  
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



1 6m 

1 22m 

 1a  3a 2a

 1b  3b 2b

 

 

Fig. 2.1.14 (a1), (b1) Theoretical results in Fig. 2.1.12(a) and 2.1.12(e); (a2), (b2) 

phase distribution of (a1) and (b1), respectively; (a3), (b3) enlarged figures of the box 

region in (a2) and (b3), respectively. 
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   , 3 , 2p q     , 3 , 1p q 

   , 4 , 3p q     , 5 , 2p q 

 a

 c

 b

 d

 

 

Fig. 2.1.15 Numerical wave patterns for the intensity distribution of 1 2,
H

m m   with 

different indices  ,p q . 
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0 

0.08 

0.38 

0.5 

1.17 

0z L

0.02z L

0.08z L

0.11z L

0.30z L

(a1)

(a3)

(a5)

(a2)

(a4)

(b1)

(b3)

(b5)

(b2)

(b4)

 

 

Fig. 2.1.16 (a1)-(a5) Experimental wave patterns. (b1)-(b5) Numerical wave patterns 

for the intensity distribution of 1 2,
H

m m   with    , 3, 2p q   and varying values of 

 . 
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2.1.17(a1)-2.1.17(e1) display the intensity distribution of 1 2 1 2 1 2, ; , ; ,
H

m m n n    for 

varying values of   with the parameters 1 2 1 4   ,    1 2, 60,20n n  ,  

   1 2, 0,0   , N=7, 1 1m  ,    , 4,0      , and 2  . Figures 

2.1.17(b1)-2.1.17(b2) show the intensity distribution of 1 2 1 2 1 2, ; , ; ,
H

m m n n    for 

varying values of   with the parameters 1 2 2 5   ,    1 2, 40,28n n  , 

   1 2, 0,0   , N=5, 1 1m  ,    , 4 ,0     , and 2  . It can be seen that 

for    , 2 , 2     the eigenstates to the coupled commensurate HO are 

concentrated on the multiple trochoidal orbits. The eigenstates reveal a continuous 

transformation from the multiple Lissajous orbits to the multiple trochoidal curves for 

  changing from 0 to 2 . 

As we will see in section 2.2.4, the correlated optical modes can be successfully 

generated in an astigmatic large-Fresnel-number laser cavity [52]. The certification is 

based on the reconciliation between the wave equation for laser transverse modes in 

the paraxial approximation and the Schrödinger equation for the 2D quantum confined 

systems [9,11,29]. Most importantly, Nienhuis et al [9] has clarified high correlation 

between the quantum operator algebra and manipulation in the laser cavity. 

Consequently, based on the acts of the quantum operators, we are able to generate the 

analogous wave patterns by the correlated operation in a laser resonator. The 

presented research will not be restricted to the theoretical viewpoint of quantum 

physics and, intriguingly, practical correspondence will be explicitly provided with 

optical waves.  
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0 

10

4

7 18

2

(a3)

(a4)

(a1)

(a2)

(a5)

0 

10

4

7 18

2

(b3)

(b4)

(b1)

(b2)

(b5)

 

 

Fig. 2.1.17 Numerical results of the intensity distribution for 1 2 1 2 1 2, ; , ; ,
H

m m n n    

with various values of  . Detailed description of the parameters, see text. 
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2.2 Analogous Optical Experiments  

 

2.2.1 Experimental Setup 
 

Figure 2.2.1 depicts the experimental setup for transforming the laser modes through 

cylindrical lenses. The present laser cavity was composed of a spherical mirror and a 

large-aperture gain medium. The spherical mirror was a 10-mm radius-of-curvature 

concave mirror with antireflection coating at the pumping wavelength on the entrance 

face (R<0.2%), high-reflection coating at lasing wavelength (R>99.8%), and 

high-transmission coating at the pumping wavelength on the other surface (T >95%). 

The gain medium was an a-cut 2.0 at. % Nd:YVO4 crystal with the length of 2 mm 

and the cross section of 88 mm2. One planar surface of the laser crystal was coated 

for antireflection at the pumping and lasing wavelengths; the other surface was coated 

to be an output coupler with the reflectivity of 99%. The pump source was a 3-W 

809-nm fiber-coupled laser diode with a core diameter of 100 m. A coupling lens 

was used to focus the pump beam into the laser crystal with a large off-axis 

displacement. The well-known transverse HG modes are emitted by most laser 

cavities and are formally identical to the eigenstates of 2D quantum HO [53]. For 

localized laser patterns, it has been found that the longitudinal-transverse coupling 

and the mode-locking effect in large-Fresnel-number spherical laser cavities usually 

drive the laser modes to be the coherent waves that are transversely concentrated on 

the Lissajous figures with the relative phase continuously varying with the 

longitudinal direction [11]. The generated laser mode was re-imaged into a 

cylindrical-lens mode converter to perform the beam transformation. The focal length 

of the cylindrical lenses was f=25 mm; the distance was precisely adjusted to be 

f2  for the operation of the /2 converter. To image the transformed transverse 
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pattern, the transformed laser beam was directly projected on a paper screen at a 

distance of ~50 cm behind the cylindrical mode converter and the scattered light was 

captured by a digital camera.  

 In the following sections we are going to discuss the beam transformation of the 

laser modes emitted from the laser resonator to be converted through the 

cylindrical-lens mode converter.  

 

2.2.2 Eigenmodes : General Huygens’ Integral 
 

We first derive a general form for the laser modes to be converted via an ABCD 

system by exploiting the Huygens integral to investigate the case concerning the 

transverse HG modes to be transformed through the cylindrical-lens mode converter. 

It can be found that the conversion of the laser modes possess identical mathematical 

interpretation to the quantum states via the SU(2) transformation in section 2.1.1   

 In free space, Huygens’ integral in one transverse dimension for propagation 

through a distance L can be given by [53] 

      2 2 1 1 1 2 1
0

, , exp ,
j

u x z u x z jk x x dx
L








    ,    (2.2.1) 

where    22
1 2 2 1,x x L x x     is the optical path length, also called the eikonal 

function for the optical ray propagate from  1 1,x z  to  1 2 1,x z z L  , 02k    

is the wave number and 0  is the wavelength of the light in free space. For a general 

consideration that the optical ray travels through optical elements building up the 

ABCD system of length L, the optical path length under the paraxial approximation 

can be derived to be [53]   

    2 2
1 1 2 2

1 2

2
,

2

A x x x D x
x x L

B


 
  .       (2.2.2) 
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Fig. 2.2.1 Experimental setup for generating and transforming the laser modes via the 

cylindrical-lens mode converter. 
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Therefore, the general Huygens’ integral associated with an ABCD system can be 

rewritten as   

   2 2
0

, exp
j

u x z jk L
B

   

   2 2
1 1 2 2

1 1 1
0

2
, exp

Ax x x D x
u x z j dx

B









  
  
  

 .  (2.2.3) 

Consider an input beam of a high-order HG mode in the form [53]   

 
2

11
1 1

1 1 11

22
, exp

2 !
n nn

xx
u x z H j

qn


  

   
       

   
.    (2.2.4) 

where  nH   is the Hermite polynomial of order n. Note that 

   2
1 1 1 11 1q R j     , where 1R  is the radius of curvature for the input beam, 

1  signifies the beam radius at 1z , and 1  is the wavelength in the medium where 

the beam is currently located and here we assume 1 0   for simplicity. Employing 

the generating function for the Hermite polynomials  

   2

0

exp 2 !n
n

n

t t H t n 




      and the identity  2exp ax dx a




   we 

can obtain the amplitude distribution of  2 2,nu x z  in the form 

    
1 2

2 2
11

2 1
, exp

2 !

n

n n
u x z jkL

A B qn  


 

    
 

     
2

2 2 2

1 2 0 2

2
exp

n

n

x x
H j

q

 
  

     
           
     

,    (2.2.5) 

with    2
2 2 0 21 1q R j     , where 2R  is the radius of curvature for the 

output beam,    2 2
2 1 1 0 1 12A B q j B A B q          signifies the beam 
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radius at 2z , and 2q  follows the relation    2 1 11 q C D q A B q   . It is worth to 

mention that the term   1 2

11
n

A B q


    is a complex value which can be rewritten 

as    1 2

11 exp 1 2
n

A B q j n 


      where  exp 1 2j n      suggests the 

Gouy phase shift. Equation (2.2.5) is the general form for a high-order HG mode 

traveling through an arbitrary ABCD system. For a high-order HG mode with two 

transverse dimensions, Eq. (2.2.5) can be modified as 

     
2 2

, 2 2 2 1
1 1 1 1

1
, , exp

2 !

n m

x y
n m n m

x y x y

u x y z jkL
n m

 
     

   
            

 

1 21 2

2 2

1 1 2 2

2 21 1
mn
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x x x y y y x y
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H H

A B q A B q  

      
                    

 

2 2
2 2

0 2 0 2

exp exp
x y

x y
j j

q q

 
 

   
        

   
,    (2.2.6) 

where the subscript x or y denotes the transverse direction for the corresponding 

parameter. Without astigmatism, the Gouy phase shift can be given by 

 exp 1j n m      . Since there is induced astigmatism for the light beam 

propagating via the cylindrical-lens mode converter, the parameters are to be 

considered separately into the x and y directions.  

 Furthermore, consider a rotated HG mode passing through an ABCD system 

such as a cylindrical-lens mode converter as depicted in Fig. 2.2.2, the output beam in 

Eq. (2.2.6) can be modified as  , 2 2 1, ,n mu z  , where the coordinates  ,   for the 

optical beam follow the relation: 

 
2 2 2

2 2 2

cos sin

sin cos

x y

x y

  
  

 
   

.         (2.2.7) 

It can be seen that the formulae in Eq. (2.2.7) are the general expressions for the 
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coordinates  2 2,x y  of a point to be rotated by an angle  . Substitute Eq. (2.2.6) 

and Eq. (2.2.7) into the generating function for the Hermite polynomial, after 

cumbersome algebra (Appendix B), the output beam for the rotated HG mode can be 

derived to be 

     2
, 2 2 2 , 2 2 2

,
0 2 2

, , , ,
NN

n m N N s N s
s n

s

u z d u x y z   
 

 ,    (2.2.8) 

where N m n  ,   represents the rotated angle of the input mode relative to the 

principal axes of the cylindrical lenses as shown in Fig. 2.2.2, and  2

,
2 2

N

N N
s n

d 
 

 is 

just the Wigner d-coefficient in Eq. (2.1.12). Equation (2.2.8) reveals that the rotated 

HG mode can be expanded by a set of high-order HG modes without rotation and with 

the distribution weighting of the Wigner d-coefficient. It can be seen that Eq. (2.2.8) 

has the similar form to Eq. (2.1.11), which implies that one could find an appropriate 

ABCD system for the realization of the conversion between the HG and the LG 

modes presented in section 2.1.1. In this thesis, we choose the cylindrical-lens mode 

converter as our equipment for the beam transformation. As a result, we define the 

ABCD system in the range between the the gain medium (z=0) and the observation 

plane at 2z . Based on the arrangement for the cylindrical-lens mode converter as 

mentioned in section 2.2.1, we have successfully performed the beam transformation 

between the HG and the LG modes in Fig. 2.2.3. Figure 2.2.3(a)-2.2.3(e) show the  

far-field patterns obtained by passing a rotated HG mode at various angles with 

indices    , 15,10n m   through the cylindrical-lens mode converter. Fig. 

2.2.3(a’)-2.2.3(e’) display the experimental results of the far-field patterns generated 

by inputting the rotated HG mode at different angles with indices    , 55,3n m  . It 

can be informed that the experimental observations shown in Fig. 2.2.3 are in good  
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Fig. 2.2.2 Experimental scheme for a rotated HG mode propagating through a 

cylindrical-lens mode converter.  
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agreement with the theoretical results illustrated in Fig. 2.1.2 associated with the  

eigenstates to the coupled HO. The quantum states are successfully realized when we 

find a corresponding optical system. Therefore, the investigation suggests the 

possibility for the manifestation of the beam transformation between localized optical 

patterns that related to the quantum coherent states discussed in section 2.1.2. 

 

2.2.3 Coherent Modes: Single Periodic Orbits 

 

In this section, we first discuss the wave functions of the optical coherent wave 

emitted from a large-Fresnel-number spherical laser resonator. Furthermore, we 

exploit the the general Huygens integral mentioned in previous section to explore the 

transformation of the spatial morphologies from the optical Lissajous states to the 

optical trochoidal states. We further employ the optical Lissajous modes and a 

cylindrical-lens mode converter to realize the spatial transformation. The present 

investigation manifests an intriguing non-classical behavior of the coherent optical 

waves. 

The optical coherent wave is a superposition of degenerate laser modes and can 

provide a general description for a laser system exhibiting ray behavior. One aim of 

our work is to explore the spatial geometry of the optical coherent wave related to the 

HG and LG modes. The free-space wave function of a HG mode with longitudinal 

index n3, transverse indices n1 and n2 in Cartesian coordinates (x, y, z) is given by [9] 

      ),,()(1)(
,

)(
,,

3,2,121

21321
,,,,

zyxiznniHG
nn

HG
nnn

nnnG eezyxzyx
  ,   (2.2.9) 
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Fig. 2.2.3 Output far-field patterns for the rotated HG modes at various angles passing 

through the cylindrical-lens mode converter; (a)-(e) transformed far-field patterns for 

a rotated HG mode of indices    , 15,10n m  ; (a’)-(e’) transformed far-field patterns 

for a rotated HG mode of indices    , 55,3n m  . 



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators    
 

 65

 

where  

1 2
1 2

( )
,

1 2

1 2
( , , )

( )2 ! !

HG
n n n n

x y z
w zn n

   

1 2

2 2

2

2 2
exp

( ) ( ) ( )n n

x y x y
H H

w z w z w z

     
              
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2)(1)( Ro zzwzw  ,  )(2)(1),,( 2222
,,,, 321321 Rnnnnnn zzyxzkzyx  , 0w  is 

the beam radius at the waist, and  2
0wzR   is the Rayleigh range, Hn (·) are the 

Hermite polynomials, 
321 ,, nnnk  is the wave number, and  RG zzz 1tan)(   is the 

Gouy phase. In terms of the effective length L, the wave number 
321 ,, nnnk  is given by 

 )()( 213,, 321 LTnnn ffnnnLk   ,      (2.2.11) 

where LcfL 2  is the longitudinal mode spacing and Tf  is the transverse 

mode spacing. When the ratio LT ff   is close to a simple fractional, it has been 

evidenced that the longitudinal-transverse coupling usually leads to the frequency 

locking among different transverse modes with the help of different longitudinal 

orders [11]. Consequently, when the mode-spacing ratio LT ff   is locked to a 

rational number QP , the group of the HG modes )(
,, 321

HG
sknqknpkn    with 

k=····-2,-1,0,1,2,···· can be found to constitute a family of frequency degenerate states, 

provided that the given integers (p, q, s) obey the equation   0)(  QPqps  . For 

convenience, the integers p and q are taken to be positive. The equation 

  0)(  QPqps   indicates that qp   needs to be an integral multiple of Q, i.e. 

QKqp  , where K is an integer.  

With the coherent-state representation presented in section 2.1.2 and Ref. [11], 

the optical coherent wave formed by the family of the degenerated HG modes 
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)(
,, 321

HG
sknqknpkn    can be expressed as  

2 2

1 2

1 2 3 1 2 3

( ) ( )

4 4, , ( )
, , , ,

1 2

1
( )

2

pk qkM
n np q s ik HG

n n n n pk n qk n sk
k M

e e e
n n




 


 


    , (2.2.12) 

where  1 2min 2 , 2M n p n q        , the parameter 21  qp  is the relative 

phase between various HG modes at 0z , 1  and 2  are the phase factors related 

to the wave pattern, and 1n , 2n , and 3n  are the mean orders. With the expression of 

Eq. (2.2.9), the HG coherent wave can be expressed as  

  ),,()(1,
,

,,
,,

3,2,121

21321
)( )(

zyxiznniqp
nn

sqp
nnn

nnnG ee
   ,    (2.2.13) 

with 

2 2

1 2

1 2

( ) ( )

4 4,
,
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1
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2

pk qkM
n np q ik

n n
k M

e e e
n n
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

 





 

  

1 2

( ) ( ) ( )
,

Gik p q z HG
n pk n qke 


  


 .    (2.2.14) 

The wave pattern of the coherent state )(,
, 21

qp
nn

  has been shown to be localized 

on the Lissajous parametric surface: )],(Re[),( zXzx   ; )],(Re[),( zYzy   , 

where 1[ ( ) ]
1( , ) ( ) Gi q zX z n w z e      ,  2)(

2 )(),(   zpi GezwnzY ,  20   

and  z . Explicitly, the Lissajous parametric surface is formed by the 

Lissajous curves with the phase factor varying with the position z. Note that these 

Lissajous orbits are invariant with respect to changes in the phases 1  and 2 , 

provided that the quantity 1 2p q     is conserved modulo 2π.  

 It had been experimentally realized in optics that a HG mode could be 
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transformed with cylindrical lenses into an Ince-Gaussian (IG) or a LG mode as 

shown in section 2.2.2. As discussed above, the coherent states formed by the HG 

modes represent the quantum Lissajous states that display the spatial morphologies 

concentrating on the Lissajous figures. The stationary Lissajous states )(,
, 21

qp
nn

  

have been analogously generated from various degenerate laser cavities for several 

hundred different (p,q) [11]. It is intriguing to explore the change of the spatial 

morphology for a Lissajous coherent state passing through cylindrical lenses that 

transforms each HG component into the corresponding output mode. Here we apply 

the technique associated with the general Huygens’ integral in two transverse 

dimensions and take the Lissajous coherent waves in Eq. (2.2.13) as the input mode. 

The general expression for a Lissajous coherent state traveling through an arbitrary 

ABCD system in terms of the spatial representation hence can hence be given by  

  
2 2

1 2

1 2

( ) ( )

4 4,
, 2 2 2

1 2

1
, , ;

2

pk qkM
n np q ik

n n
k M

U x y z e e e
n n




 







  

 
1 2, 2 2 2, ,n pk n qku x y z   ,   (2.2.15) 

where  
1 2, 2 2 2, ,n pk n qku x y z   is the general form for the HG mode in Eq. (2.2.6), and 

 
1 2

,
, 2 2 2, , ;p q

n nU x y z   represents the output coherent wave observed at the plane of 2z . 

Generally, consider a rotated Lissajous laser mode to be transformed via an ABCD 

system, the Eq. (2.2.15) can be modified as  

  
2 2

1 2

1 2

( ) ( )

4 4,
, 2 2 2

1 2

1
, , ;
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pk qkM
n np q ik

n n
k M

U z e e e
n n

  
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 





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
  

 
1 2, 2 2 2, ,n pk n qku z    ,   (2.2.16) 

where  
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      
1 2
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2
, 2 2 2 , 2 2 2
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n pk n qk N N s N s
s n pks

u z d u x y z   
  

 ,  (2.2.17) 

with 1 2kN n n pk qk    . Eq. (2.2.17) comes from Eq. (2.2.8) which demonstrates 

the transformation of a rotated HG modes traveling through an ABCD system. It can 

be seen that Eq. (2.2.16) possesses the same mathematical interpretation as Eq. 

(2.1.24). Therefore, we can find a corresponding ABCD system to realize the 

transformational relation for the quantum coherent states illustrated in section 2.1.2. 

Employing the arrangement for the cylindrical-lens mode converter as mentioned in 

section 2.2.1, we have successfully demonstrated the continuous transformation 

between the Lissajous and the trochoidal curves with the input of a rotated Lissajous 

laser mode at various angles. Figure 2.2.4 displays the experimental results of the the 

output beam  
1 2

2,
, 2 2 2, , ;p q

n nU x y z   generated by passing the Lissajous laser mode of 

positive sign through the cylindrical lenses. The spatial morphologies of the laser 

modes can be clearly seen to be transformed from Lissajous figures to hypotrochoidal 

curves. Figures 2.2.5 shows the experimental results of the output beam 

 
1 2

2,
, 2 2 2, , ;p q

n nU x y z   by passing the Lissajous laser mode of negative sign through 

the cylindrical lenses. Instead of hypotrochoids, the spatial morphologies of the laser 

modes are transformed from Lissajous figures to epitrochoidal curves due to the 

negative sign of 1 2  . It is evident that the experimental observations in Fig. 2.2.4 

and Fig. 2.2.5 are in excellent agreement with the theoretical results demonstrated in 

Fig. 2.1.6 and 2.1.7, respectively. The parameter   in Eq. (2.1.24) and the rotation 

angle   in Eq. (2.1.16) are found to obey the relation 2  . Moreover, Fig. 2.2.6 

exhibits various Lissjous patterns with positive sign and their hypotrochoidal 

counterparts. Figure 2.2.7 shows several Lissjous patterns with negative sign and their 
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corresponding epitrochoidal curves.  

 

2.2.4 Coherent Modes : Multiple Periodic Orbits 
 

In section 2.1.3, we have explored the eigenstates for the coupled commensurate HO 

with the SU(2) algebra and found that the high-order spatial patterns are noticeably 

concentrated on Lissajous figures and trochoidal curves from single to multiple 

periodic orbits. In this section, we demonstrate the analogous experimental results 

corresponding to the multi-trajectory quantum states discussed in section 2.1.3. The 

three-dimensional (3D) coherent lasing modes with transverse patterns corresponding 

to single Lissajous figures have been methodically generated in degenerate cavities 

with a large off-axis tightly focused pumping scheme [11,52]. Here we verified that 

the 3D coherent lasing waves can be manipulated to form more intricate transverse 

patterns corresponding to multiple Lissajous orbits as found in the quantum 

eigenstates of the developed model. The number of the Lissajous orbits in the lasing 

transverse pattern is experimentally confirmed to be proportional to the pumping spot 

size. More importantly, the role of the phase factor introduced by the SU(2) coupling 

interactions can be nicely manifested from the propagating property of the lasing 

modes. Furthermore, the transformation between the multiple Lissajous orbits and the 

multiple trochoidal orbits is performed with the cylindrical-lens mode converter. We 

expect that the findings of controlling lasing transverse modes with spatial patterns to 

be related to quantum states could open new attractive issues in quantum physics and 

optical pattern formations. 

The experiment mainly consists of a laser resonator, a pumping source, a mode 

converter and an imaging system as shown in Fig. 2.2.1. The length of the present 

resonator can be set to form various degenerate cavities in which a resonance  
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Fig. 2.2.4 Experimental results of the output beam  
1 2

2,
, 2 2 2, , ;p q

n nU x y z   generated 

by passing the rotated Lissajous laser mode of positive sign through the cylindrical 

lenses. 
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Fig. 2.2.5 Experimental results of the output beam  
1 2

2,
, 2 2 2, , ;p q

n nU x y z   generated 

by passing the rotated Lissajous laser mode of negative sign through the cylindrical 

lenses. 
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 a  c b  d  e

 1a  1c 1b  1d  1e

 2a  2c 2b  2d  2e

 3a  3c 3b  3d  3e

   , 1, 4p l    2,5  1,8  1,11  2,9
 

 

Fig. 2.2.6 (a)-(e) Input Lissajous laser modes. (a1)-(e1) corresponding classical 

Lissajous curves. (a2)-(e2) Output hypotrochoidal laser modes, (a3)-(e2) 

corresponding classical hypotrochoidal curves.  
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 a  c b  d  e

 1a  1c 1b  1d  1e

 2a  2c  2d  2e 2b

 3a  3c 3b  3d  3e

   , 1,6p l   2,5  6,8  5,9  3,11
 

 

Fig. 2.2.7 (a)-(e) Input Lissajous laser modes. (a1)-(e1) corresponding classical 

Lissajous curves. (a2)-(e2) Output epitrochoidal laser modes, (a3)-(e2) corresponding 

classical epitrochoidal curves.  
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frequency with a high-order transverse mode is equal to another resonance frequency  

with the fundamental transverse modes [53]. Figures 2.2.8(a)-2.2.8(d) depict the 

experimental observations for the cavity length L of 7.5 mm with the pumping size to 

be approximately 50-100 µm. It can be seen that the experimental observations agree 

very well with the numerical results in Fig. 2.1.9(b1)- 2.1.9(b4), which confirms our 

theoretical analysis that groups of eigenstates can be excited simultaneously to 

compose the corresponding Lissajous patterns. Note that the indices (p,q) are 

determined from the cavity length L and the degenerate conditions [11]. We verify that 

the number of the Lissajous orbits in the lasing transverse pattern is governed by the 

spot size of the pumping beam. The larger the pumping size is, the more the number 

of Lissajous orbits can be effectively excited.  

In section 2.1.3, we have demonstrated the effect of the parameter   on the 

degree of coupling mechanism and the distribution related to the superposed 

eigenstates 1 2,
H

m m   for the states ˆ1 1 2 2,
H

n p n q   . In a laser resonator, the 

influence of   corresponds to the amount of astigmatism arising from the off-axis 

pumping. While   is chosen, the parameter   can be realized as the Gouy phase 

shift [11,54] which differs along the propagation direction for Gaussian beams. As 

shown in Fig. 2.2.9, the transverse patterns of different positions along the 

propagation direction are visibly consistent with the theoretical results in Fig. 2.1.11 

for the evolution of multiple Lissajous orbits. Obviously, a 3D evolutional parametric 

surface can be exploited to interpret the transformation of the spatial patterns inside 

the cavity. The same clarification for single periodic Lissajous figures had been 

primarily provided [11] to show noticeable localization on the 3D parametric surface 

by observing the tomographic transverse patterns inside the cavities. Note that Fig. 

2.2.9(a1)-2.2.9(a5), and Fig. 2.2.9(b1)-2.2.9(b5) are generated with off-axis pumping 
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(ᇞx,ᇞy)=(0.21mm,0.10mm), and (ᇞx,ᇞy)=(0.57mm,0.10mm), where (ᇞx,ᇞy) are 

measured relative to the optical axis of the laser cavity and an objective lens is 

employed to reimage the near-field patterns on the screen. In Fig. 2.2.10(a)-2.2.10(d), 

the far-field patterns are observed at L=9.0 mm, L=4.9 mm, L=6.1 mm, and L=7.4 

mm, respectively. Moreover, Fig. 2.2.11(a1)-2.2.11(a5) show the transverse patterns 

along the propagation direction of (p,q)=(3,2) in Fig. 2.2.10(a). The good agreement 

with the theoretical results presented in Fig. 2.1.15 and Fig. 2.1.16 suggests that our 

quantum operator model of the coupled commensurate HO is applicable to the 

ubiquitous laser modes.  

 In previous discussion, we have successfully generated the multiple Lissajous 

orbits with a large-Fresnel-number spherical laser resonator to analogously explore 

the eigenstates to the coupled commensurate HO as presented in section 2.1.3. Here 

we employ the cylindrical-lens mode converter to transform the obtained multiple 

Lissajous orbits and to reconstruct the relation in Fig. 2.1.17. The field distribution for 

the output beam can be obtained from the expression in Eq. (2.1.33): 

    1
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where  
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               (2.2.19) 

with 1 2M n n   and 1 1 1 2 2 2,N n n p n n q     . Figure 2.2.12 shows the 

experimental observation of the multiple Lissajous orbits and their trochoidal 

counterparts. Figure 2.2.12(a’) displays the epitrochoidal orbits transformed from Fig. 
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2.2.12(a) with the negative sign of 1 2 1 2    . Fig. 2.2.12(b’), Fig. 2.2.12(c’), and 

Fig. 2.2.12(d’) exhibit the multiple hypotrochoids corresponding to the multiple 

Lissajous orbits in Fig. 2.2.12 (b), Fig. 2.2.12(c), and Fig. 2.2.12(d) with the positive 

sign of 1 2 1 3   , 1 2 2 5   , and 1 2 1 4   , respectively.  
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Fig. 2.2.8 Experimental far-field patterns corresponded to the numerical results in Fig. 

2.1.9(b1)-2.1.9(b4). 
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Fig. 2.2.9 Experimental tomographic transverse patterns observed along the 

propagation direction from the beam waist; (a1)-(a5)    , 0.21 , 0.10x y mm mm   ; 

(b1)-(b5)    , 0.57 , 0.10x y mm mm   . 
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Fig. 2.2.10 Experimental results corresponded to the theoretical analysis. Detailed 

description of the parameters; see text. 
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Fig. 2.2.11 (a1)-(a5) Experimental tomographic transverse patterns observed along the 

propagation direction from the beam waist for    , 3, 2p q  . (b1)-(b5) 

Corresponding numerical calculations according to Eq. 2.1.31. 
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(a) (b)

(c) (d)

(a’) (b’)

(c’) (d’)

 
 

Fig. 2.2.12 (a)-(d) Input multiple Lissajous laser modes. (a’)-(d’) Output multiple 

trochoidal laser modes. For detailed descriptions for the parameters, see the text. 
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2.3 Extension Topic : Generation of Optical Vortex Array 

 

2.3.1 Introduction 
 

In recent decades, optical vortices (OVs) characterized by their distinct features [55] 

have gained increasing importance in the study of singular optics [56], light and 

matter interaction [55,57,58], and quantum optics [59]. Since an OV is defined as the 

phase singularity with vanishing intensity of a helical-phased light beam, the 

azimuthally circulated phase term implies the orbital angular momentum (OAM) 

carried by the light beam [60]. For practical interest, the characteristics associated 

with the OAM inspire great applications on optical tweezers [55,57,58], optical 

testing [61], image processing [62,63], quantum entanglement [59], and nonlinear 

optics [64].  

Several approaches have been adopted to generate a single OV, such as mode 

conversions by astigmatic lenses [64,65], spiral phase plates [66], computer generated 

holograms [67], and optical wedges [68]. Since Hermite-Gaussian (HG) modes can be 

emitted by most laser cavities and are well-known eigenstates for the 2D quantum 

harmonic oscillator [9], via the mode conversion, a HG mode has been widely used to 

create a single OV [65-67] hold by a traveling-wave Laguerre Gaussian (LG) mode 

features azimuthally phased term  exp il , where l is known as the topological 

charge of the vortex. The transformational relation has also been confirmed 

theoretically by using a Fresnel integral [15] or quantum operators connected the two 

complete sets of HG and LG states [69].  

Aside from an isolated OV, a network of OVs can be created by means of 

interferometry and lead to a novel type of vortex structure. For instance, intriguing 

manifestations were shown corresponding to the two-dimensional (2D) optical vortex 
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array [70] and 3D topology of optical vortex lines [71] by superposing several plane 

waves. Exploiting a thin-slice solid state laser, [72] demonstrated the generation of 

vortex array beams by the interference of emitted Ince-Gaussian modes. Distinguished 

from an isolated OV, optical vortex array related to a network of vortices is especially 

useful in optical metrology [73], microlithography [74], quantum processing [59], 

micro-optomechanical pumps manipulation [75], and investigating nonlinear 

propagation of array of singularities [76].  

In this section, a novel method is carried out to produce the optical vortex array 

by the transformation of a standing-wave LG mode (the so-called “flower-like” [77] 

LG mode). Generation of the flower-like LG modes has been provided experimentally 

by utilizing a large-aperture CO2 laser [78], a solid-state laser cavity compounded of 

nonlinear medium [77,79,80], and a vertical-cavity surface-emitting semiconductor 

laser [81]. Unlike a traveling-wave LG mode, a flower-like LG mode, formed by 

coherent superposition of a pair of traveling-wave ones that carry the same 

topological charges while counter rotational wave fronts, possesses no OV and has 

been concerned especially in the study of pattern formation [77,79-81]. Therefore, it is 

fascinating and practical to raise the issue for the creation of optical vortex array by 

the use of the flower-like LG modes. To illustrate the feasibility, we verify firstly that 

a flower-like LG mode can be transformed from a set of “crisscrossed” HG modes 

theoretically. The optical vortex array is shown to be located at the cross section of the 

crisscrossed HG modes established by coherent superposition of a TEMn ,m mode and 

a TEMm,n mode with well-defined relative phase α , where (n,m) designate the 

transverse indices in x-y directions. Since the transformational relation has been 

confirmed to show excellent analogy to the mode conversion of a /2-cylindrical-lens 

mode converter (2-CLMC) [69], the investigation enables us to generate the optical 

vortex array experimentally by transforming the accessible flower-like LG modes 
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through the /2-CLMC. More importantly, adjustability of the relative phase α is 

qualitatively displayed in this paper by rotating the mode converter at various angles. 

In all, we expect the creation and exploration of the vortex light beams in our work 

may inspirit a more thorough study in the vortex structure and its further applications. 

 

2.3.2 Transformation of Fundamental Laser Modes  
 

HG modes and LG modes are complete orthonormal sets that each can well describe 

any amplitude distribution by an appropriate complex superposition. Besides, they are 

eigenmodes that can be emitted by most laser resonators. Due to comprehensive 

studies and accessibility of the eigenmodes, it can be understood that it is useful to 

create and investigate the 2D optical vortex array by concerning those well-known 

eigenmodes. As a result, it may be necessary to provide firstly a brief overview of the 

eigenmodes and their transformational relationship.  

The profile of a HG mode in terms of the Cartesian coordinates  , ,x y z  with 

transverse indices  ,m n  under paraxial approximation of the wave equation is given 

by [74] 

     1 ( )( ) ( ) ( , , )
, ,, , , ,  Gi n m zHG HG i x y z

n m n mx y z x y z e e      ,    (2.3.1) 

where  

 
 

     

2 2

2, ( )( )
,

2 2
, ,

x yHG
n m w zHG

n m n m

C
x y z e H x H y

w z w z w z


 
  
 

   
       

   
,   (2.3.2) 

with 2 2 2 2( , , ) 1 ( ) 2( )Rx y z k z x y z z       ,     1 21
, 2 ! !HG n m

n mC n m
  ,

2 ( ) 1 ( )o Rw z w z z  , 0w  is the beam radius at the waist, and  2
0wzR   is 

the Rayleigh range.  nH   is the Hermite polynomial of order n , k  is the wave 
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number, and  RG zzz 1tan)(   is the Gouy phase. Likewise, the wavefunction of a 

LG mode characterized by its azimuthal and radial symmetry associated with a helical 

phase front i le   can be written in terms of the cylindrical coordinates  , ,r z  with 

radial index p and azimuthal index l as [74] 

       2 1 ( ) , ,( ) ( )
, ,, , , , Gi p l z i r zLG LG

p l p lr z r z e e         ,    (2.3.3) 

where  

    
 

       
 

2

2
2

,
, 2

2 2
, , 1

l rLG
pp l lLG w z i l

p l p

C r r
r z L e e

w z w z w z
 

  
          

 ,  (2.3.4) 

where  l
pL   is the associated Laguerre polynomial of azimuthal index l and radial 

index p, 2 2 2( , , ) 1 2( )Rr z k z r z z       , and 

     , 0,2 ! 1 !LG
p l lC p p l       with 0, 1l   for 0l  . Note that the 

azimuthal indices with different sign convention ( l  and l ) denote the equal and 

opposite topological charge l   of the LG modes which implies the OAM 

possessed by the light beam.  

Most important of all, the conversion of the Gaussian modes, which has been 

demonstrated and verified in detail by [15,69], can be expressed in the following with 

a left-right-double arrow “ ” signifying the transformational relation 

       , ,, , , ,LG HG
p l n mr z x y z   ,        (2.3.5a) 

       , ,, , , ,LG HG
p l m nr z x y z    ,        (2.3.5b) 

where  ,p min n m , l m n  , and the relation 2 p l n m    is hold for the 

conservation of transverse order under transformation. Explicitly, LG modes of 

opposite topological charges can be given by the transformation of a HG mode and its 
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replica rotated at 90 degrees as shown in Eq. (2.3.5). To clarify the results, simplicity 

is added by using the Poincaré-sphere resemblance [82] since the transformation of 

the LG and HG modes can be well mapped on the Poincaré-sphere that has been 

verified to be an effective tool in dealing with the conversion of polarization states 

[83]. 

 

2.3.3 Formation of Optical Vortex Array 
 

To make these formal considerations more meaningful, return to our concern of the 

2D optical vortex array. Our goal is to create the OAM state of a network of lattices 

by superposing two crisscrossed HG modes of the same order N with a well-defined 

relative phase  . Hence, the wavefunction of the superposed state composed of the 

HG modes can straightforwardly be written as   

         , , ,
1, , , , , , ,2

HG HGi
n m n m m nx y z x y z e x y z       ,   (2.3.6) 

where   indicates the relative phase between the crisscrossed HG modes. To 

determine the OVs, it should be noted that they are defined as the phase singularities 

where the real and imaginary components of the scalar field  , , , ,n m x y z   are 

both zero and possess the characteristic of zero intensity in the vortex core [84,85]. In 

other words, the resulting vortices are dark points in intersects of the nodal lines 

corresponding to the respective HG modes of the state  , , , ,n m x y z   with relative 

phase   apart from an integral multiple of  . An illustration of   2

0, 11 , , ,x y z   

is depicted in Fig. 2.3.1 with various relative phase   ranging from 0  to 2  and it 

can be seen the intensity distribution in the cross-section is altered accordingly. 

Despite this, Fig. 2.3.1 also reveals the nature that   2

, , , ,n m x y z   is repeated 

within every period of 2  phase shift. 
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Fig. 2.3.1 Theoretical results of   2

0, 11 , , ,x y z   of various relative phases. 
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For comprehensive demonstration of the vortex structure, Fig. 2.3.2 depicts the 

phase distribution of the state  0, 11 , , , 2x y z  . Though there are all 11 11  

singularities which situate at the crisscrossed positions of the nodal lines as depicted 

in Fig. 2.3.2(b), the available OVs for practical use of particle trapping with stronger 

intensity distribution around [55] are estimated at 5 5  in total within the cross 

section. The enlarged figure of the box region in Fig. 2.3.2(b) is shown in Fig. 2.3.2(c) 

where the black and red dots mark the vortex positions of counter rotational phase 

fronts. It is conspicuously illustrated in Fig. 2.3.2(d) by plotting the transverse linear 

momentum density pof a linear polarized light beam [60] 

 * *0

2
p i

       ,          (2.3.7) 

where  ,p x yp p  ,  ,x y      ,   relates to the frequency of the light 

beam and 0  represents the permittivity of free space. Note that the vector field p  

has been normalized to p p   for observing the detailed structures. Since the 

helical wave fronts signify the OAM carried by the light beam, the swirls in Fig. 

2.3.2(d) shows the evidence that the superposed state  0, 11 , , , 2x y z   certainly 

form an OAM state associated with the vortex array. From quantum perspective, 

preparing such superposed OAM states has become an important issue concerning 

quantum entanglement and quantum information [59]. Thus, it is crucial to arrange 

feasible experimental techniques for creating and investigating the superposed states.  
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Fig. 2.3.2 (a) Theoretical results of  0, 11 , , , 2x y z  . (b) Phase distribution of (a). (c) 

Enlarged figure of the box region in (b). (d) probability current p  for the box region 

in (b) of  0, 11 , , , 2x y z  . 
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2.3.4 Formation of Flower Laguerre-Gaussian Modes 
 

To develop an available experimental configuration to generate the superposed state 

 , , , ,n m x y z  , an inspiration is provided by the transformational relation written in 

Eq. (2.3.5). Likewise, we can obtain a coherent superposed state  , , , ,p l r z   

according to the discussion at the very start, i.e. 

   , ,, , , , , ,n m p lx y z r z     ,       (2.3.8) 

where, with a little algebraic manipulation, the superposed state  , , , ,p l r z   can 

be expressed in the form 

 
 

       
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2
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r z e L e

w z w z w z
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 
   

           
 

cos
2

l
l


  

   
  

.       (2.3.9) 

It therefore appears that a new family of superposed state  , , , ,p l r z   is 

established and can be decomposed into two LG modes of opposite topological 

charges l  with identical relative phase  . Compared to the traveling-wave LG 

mode in Eq. (2.3.4), the expression explicitly shows distinct intensity distribution of 

 cos 2l l     in azimuthal angle which forms the flower-like [77] LG mode of 

2l  nodes in azimuthal and possess no OAM at all. Besides, the intensity distribution 

of  , , , ,p l r z   can be seen to rotate with its profile remains the same followed by 

the variation of   as depicted in Fig. 2.3.3 of a specific case    , 0,11p l   related 

to  0, 11 , , ,x y z  . It is worth to mention that, with the help of the arrows illustrated 



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators    
 

 92

in Fig. 2.3.3, the state  0, 11 , , ,r z   is visualized obviously to rotate by an angle 

2 2 22l   through a period of 2  phase retardation. The investigation reveals 

the fact that the superposed state  , , , ,n m x y z   can be repeated while the 

flower-like LG mode  , , , ,p l r z   rotates by 2 2l  which is exactly the angle 

between consecutive peaks. Experimentally, this result provides the key to 

qualitatively controlling the relative phase   between the crisscrossed HG modes 

that will be presented in the next section. 

 

2.3.5 Experimental Setup 
 

The experimental configuration can be separated mainly into three parts according to 

particular purposes as depicted in Fig. 2.3.4. The microchip solid state laser cavity 

presented in Fig. 2.3.4(a) is utilized to generate the flower-like LG mode discussed on 

the above as an input mode to be transformed via the 2 -CLMC. The second part at 

the external cavity is consisted of a non-spherical lens and the 2 -CLMC to convert 

the emitted LG mode into the crisscrossed HG modes as shown in Fig. 2.3.4(b). The 

last part in Fig. 2.3.4(c) corresponds apparently to the detection scheme. Furthermore, 

detailed experimental arrangements are provided in the following. 

It can be seen that the laser resonator is composed of a gain medium and a 

spherical mirror. The laser medium is an a-cut 2.0-at. % Nd:YVO4 crystal with a 

length of 2 mm and the cross section 33 mm2. One side of the Nd:YVO4 crystal is 

coated for partial reflection at 1064 nm and the other is for antireflection at 1064 nm. 

The radius of curvature of the cavity mirror is R= 25 cm and its reflectivity is 97% at 

1064 nm. The pump source is an 808 nm fiber-coupled laser diode with pump core of 

100 m in radius, a numerical aperture of 0.16, and a maximum output power of 1 W. 
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Fig. 2.3.3 Theoretical results of superposed state   2
0, 11 , , ,r z   of various 

relative phases. 
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A focusing lens with focal length of 20 mm and 90 % coupling efficiency is used to 

reimage the pump beam into the laser crystal. To produce a high-order flower-like LG 

mode, which are processed from the astigmatism and imperfection dominated by the 

cylindrical symmetric laser cavity, the valid key point is using a doughnut pump 

profile and defocusing the standard fiber-coupled diode [85]. The pump spot radius is 

controlled to be around 50-200 μm. The effective cavity length is set in the range of 

1-1.5 cm. A non-spherical lens with focal length 40f   mm mounted on a 

translation stage is exploited to provide the mode matching condition by collimating 

the input light beam in the midway between the following cylindrical lenses. The 

flower-like LG modes generated by the laser cavity are converted into the crisscrossed 

HG modes by passing through a rotatable 2 -CLMC comprised of two identical 

cylindrical lenses with focal length 25f   mm, separated by 2 f . To observe the 

far-field pattern via a CCD camera, the output beam is directly projected to a paper 

screen.  

 

2.3.6 Experimental Results and Discussions 
 

According to the previous sections, considering the correspondence of the 

transformational relation depicted in Fig. 2.3.5(a) and the mode conversion through 

the 2 -CLMC, we therefore utilize a rotatable 2 -CLMC to convert the 

accessible flower-like LG mode emitted by the laser cavity into the crisscrossed HG 

modes as shown in Fig. 2.3.5(b). Figures 2.3.6(a)-(j) further display the experimental 

results of an input flower-like LG mode with    , 0,11p l   and the corresponding 

output crisscrossed HG modes associated with various rotating angles  of the 

2 -CLMC. Since the output HG modes are always at 45 degrees relative to the 

principal axes of the cylindrical lenses, it can be seen that the superposed HG modes 
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rotate by the same angle   as the mode converter. With attention to the cross section 

of the crisscrossed HG modes, the intensity distribution can be informed to alter 

accordingly with the rotating angle of the mode converter. Analogously, compared to 

the theoretical illustration of the superposed state  0, 11 , , ,x y z   as depicted in Fig. 

2.3.1, the obtained experimental results in Fig. 2.3.6(b)-(j) are in good agreement with 

the theoretical realization in Fig. 2.3.1(a)-(i) and are connected by the relation 

2 l  . In essence, the manifestation of the correlation 2 l   is none other 

than the geometric rotating angle of the input LG mode relative to the principal axes 

of the mode converter as if it was fixed. That is, the fulfillment can be understood 

based on our previous discussion of the superposed state  0,11 , , ,r z   according 

to different relative phase   as shown in Fig. 2.3.3, which identically exhibits the 

behavior of geometric rotation by the angle 2 l . As a result, we have successfully 

verified the transformational relation demonstrated in the preceding analysis by 

exploiting the rotatable 2 -CLMC experimentally. In other words, the 2D optical 

vortex array embedded in the crisscrossed HG mode has been finally generated by the 

method of mode conversion with a 2 -CLMC. What needs to be emphasized 

especially is the controllable relative phase   between the two crisscrossed HG 

modes, which can be qualitatively altered by rotating the 2 -CLMC at various 

angle. Since the relative phase has been confirmed to be the decisive factor that 

contributes to the formation of the phase singularities according to the above 

investigation, the adjustability of the relative phase in the experiment appears to be 

absolutely crucial to the production of the OAM state. For practical consideration, the 

investigation reveals the possibility of particle manipulation in 

two-transverse-dimension for the developing applications as it can be informed from 

Fig. 2.3.6(b) that the resulting vortices with fixed relative positions are simultaneously 
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rotated with the CLMC by an angle  . Moreover, since the Gaussian beams satisfy 

the property of bilinear transformation [53], which indicates that the profiles are 

preserved under propagation in free space through the Fourier transformation, the 

resulting vortex array can maintain its spatial distribution while being focused. 

Namely, it enables us to quantitatively determine the features of the optical vortex 

array that focused into the optical traps.  

 In addition to constructing the optical vortex array that embedded in the 

superposed state  , , , ,n m x y z   with vanishing transverse index p  illustrated on 

the above, we are now considering more complicated vortex structures determined by 

increasing transverse index l  with multi-ring LG modes. As an illustration, Fig. 

2.3.7(b) demonstrates the theoretical results of superposed states  1,10 , , , 2x y z  , 

 2, 10 , , , 2x y z  , and  3, 10 , , , 2x y z  with non-vanishing transverse index p 

corresponding to the flower-like LG modes of  1, 9 , , , 2r z  ,  2, 8 , , , 2r z  , 

and  3, 7 , , , 2r z   as shown in Fig. 2.3.7(a). To make it clear, the associated 

phase distribution is demonstrated in Fig. 2.3.7(c) which explicitly shows the 

variation of the position of the singularities defined by the points of intersection. 

Since several methods have been adopted to generate the multi-ring LG modes 

[77-81], our investigation may provoke further application for the creation of the 

exotic vortex structures by transforming the available higher-order LG modes through 

the mode converter.  

  

2.3.7 Summary 
 

In conclusion, we successfully create the optical vortex array by employing the 

flower-like LG modes. Theoretically, we firstly verify that the flower-like LG mode 
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can be transformed from the crisscrossed HG modes embedded with the optical vortex 

array. According to excellent correspondence of the transformational relation and the 

mode conversion of the 2 -CLMC, we further confirm our assertion by converting 

the available flower-like LG modes through the 2 -CLMC. Importantly, the 

relative phase of the crisscrossed HG modes can be controlled qualitatively by 

rotating the rotatable mode converter at various angles. We anticipate the present 

result and method to be an inspiration for novel application and more sophisticated 

study related to the fascinating features of optical vortices. 
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Fig. 2.3.4 Experimental setup utilized to transform the flower-like LG modes into the 

crisscrossed HG modes with the cylindrical lenses.  
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Fig. 2.3.5 (a) Diagram for the transformational relation of a flower-like LG mode and 

the crisscrossed HG modes. (b) Operational scheme for the rotation of the mode 

converter. 
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Fig. 2.3.6 Experimental results of an input LG mode with    , 0,11p l   and the 

corresponding crisscrossed HG modes while rotating the CLMC.  
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Fig. 2.3.7 Theoretical analysis: (a) LG modes with non-vanishing radial index p. (b) 

The resulting modes converted from the LG modes. (c) Phase distribution 

corresponding to (b). 
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Chapter 3  
Generation of Resonant 
Geometric Modes in Quantum 
Circular Billiards and Light Pipes 

 
3.0 Introduction 

 

Helically phased light beams are well known to have an azimuthal phase form of 

exp(im) and carry an orbital angular momentum (OAM) of m per photon, where m 

is an integer [1,2]. The OAM or optical vortex of light has been exploited in a variety 

of applications, such as trapping [3,4] and rotating [5] of micron and submicron 

objects in hydrodynamics and biology, stellar coronagraphy [6], image processing [7], 

quantum cryptography [8], phase contrast microscopy [9], and spiral interferometry 

[10]. Helically phased beams with small OAM can be generated with several different 

techniques, such as transformation from Hermite-Gaussian modes by lens converters 

[11], generation from Gaussian beams by spiral phase plates [12], creation by 

synthesized holograms [13], generation through spatial light modulation by liquid 

crystal cells [14], and creation with light diffraction on dielectric wedges [15]. 

Nowadays, generation of light beams with huge OAM is an important and interesting 

task for potential applications including demonstration of opto-mechanical effects and 

trapping of cold atoms [16]. 

Bessel beams emerge as propagation invariant solutions of the Helmholtz 

equation in a cylindrical waveguide and carry a well-defined OAM associated with 
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their spiral wave fronts [17]. In ray dynamics, the transverse confinement of a 

cylindrical waveguide can be regarded as a circular billiard for light. The periodic 

orbits of a circular billiard can be characterized by the indices (p,q), where q is the 

number of turning points at the boundary during one period, and p is the number of 

windings during one period [18]. The average OAM of light for each periodic orbit 

(p,q) can be given by (kt Ro), where Ro is the shortest distance to the circular center 

and kt is the transverse wave number. This indicates that it is possible to employ the 

geometric modes of cylindrical waveguides to generate light beams with large OAM. 

Even though very high order Bessel beams have been demonstrated using cylindrical 

waveguides and whispering gallery resonators [16], generation of geometric modes 

with huge OAM has not been realized yet. Moreover, since light interferences are 

profoundly relevant to the underlying ray dynamics [19-21], it will be scientifically 

interesting to explore light beams with huge OAM from the feature of ray-wave 

correspondence that is analogous to the classical-quantum correspondence [22].   

In this section we first explore the subtle relationship between geometric modes 

and high order Bessel modes for manifesting the OAM in the ray-wave 

correspondence. We further develop a systematic method to generate various 

geometric modes with huge OAM from a large aperture cylindrical waveguide. More 

importantly, we also employ the free-space propagation of the geometric modes 

emerging from the cylindrical waveguide to analogously emulate the transient 

dynamics of quantum states suddenly released from quantum billiards. 

 

3.1 Quantum Circular Billiards  

 

3.1.1 Eigenstates 
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The normalized eigenstates ),(,  rnm  in polar coordinates for a circular billiard of 

radius R are given by 

 


 im

nmm

nmm

nm erkJ
RkJR

r )(
)(

1
),( ,

,1

,



 ,      (3.1.1) 

where m , n , and mJ  is the Bessel function of the first kind and order m as 

depicted in Fig. 3.1.1. The corresponding eigenvalues nmk ,  are determined by the 

boundary condition at the circular boundary, i.e. 0)( , RkJ nmm  and the quantum 

numbers m, n correspond to the quantization of the azimuthal and radial oscillations 

of the wave, respectively. In a cylindrical waveguide, nmk ,  is the transverse 

component of the total wave number k. For large quantum numbers, the eigenvalues 

nmk ,  can be determined with the Wentzel-Kramers-Brillouin (WKB) method to be 

given by   )4/3()/(cos 1222
,   nRRmRRk oonm , where Ro is the distance of 

closest approach of the wave to the center of the billiard. The relationship between Ro 

and nmk ,  is given by the expression for OAM: )( ,nmo kRm   . In ray dynamics, the 

shortest distance to the origin oR  for the periodic orbits ),( qp  is given by 

)/cos( qpRRo  . With this expression, the quantization condition from the WKB 

method can be written as   )4/3()/()/sin(,  nqpmqpRk nm . This 

quantization condition reveals that the group of the eigenstates  pnqm oo  ,  with 

  and || qmo   constitutes a family of nearly degenerate states and forms an 

energy shell in the neighborhood of the central eigenstate 
oo nm , , which indicates the 

appearance of a sharp peak in the density of states [23].  
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(a) (b)

(c) (d)

 

 

Fig. 3.1.1 Numerical results of Bessel functions with different orders: (a)-(d) are m=0, 

m=1, m=2, and m=3, respectively.   
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3.1.2 Coherent States  
 

In terms of the representation of stationary coherent state [24,25], the resonant modes 

localized on the periodic orbits can be expressed as a coherent superposition of the 

eigenstates belonging to the same shell of the spectrum:  

 







M

M
pnqm

qi
o

qp
Mm reMr

oo

o

o



  ),()12();,( ,

2/1,
, ,  (3.1.2) 

where o  is related to the starting position of periodic orbits and )12( M  is the 

total number of Bessel modes. For a sufficient large mo, the larger the number M is, 

the more localized the resonant mode );,(,
, o
qp
Mm r

o
  is on the orbital trajectories. It 

is intriguing that even M=1 the resonant modes );,(,
, o
qp
Mm r

o
  are conspicuously 

localized on the periodic orbits. In brief, the interference between nearly degenerate 

eigenmodes is extremely efficient to form the resonant geometric modes. The efficient 

interference leads the resonant geometric modes to play an important role in 

numerous mesoscopic systems [18-22]. Figure 3.1.2 shows the numerical patterns 

calculated by using Eq. (3.1.2) with M=3 and o=0, where the values of the order 

parameter mo are 200 and 100 for the results in Figs. 3.1.2(a)-3.1.2(d) and Figs. 

3.1.2(e)-3.1.2(h), respectively. Note that the chosen values for mo, o and M are not 

particular but only for clear presentation. It can be seen that the numerical patterns for 

the resonant geometric modes are well localized on the periodic orbits. Since the 

Bessel beams with the azimuthal phase term of exp(im) carry OAM [16], the 

resonant geometric modes naturally possess considerable average OAM. The average 

OAM of the geometric mode );,(,
, o
qp
Mm r

o
  can be straightforwardly verified to be 

om .  

Although the numerical patterns of resonant modes );,(,
, o
qp
Mm r

o
  are clearly 
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(h)

(g)

(f)

(e)

(d)

(c)

(b)

(a)

 

Fig. 3.1.2 Numerically calculated patterns with Eq. (3.1.2) and using M=3 and θo=0. 

The values of the order parameter mo are 200 and 100 for the results in Figs. 

3.1.2(a)-3.1.2(d) and Figs. 3.1.2(e)-3.1.2(h), respectively. 
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concentrated on the periodic orbits, it is pedagogically useful and important to explore 

the ray-wave correspondence in an explicit way. Next, we use the properties of the 

Bessel function to construct the relationship between the Bessel beams and geometric 

modes. Using the boundary condition 0)( , RkJ nmm and the asymptotic form of the 

Bessel function, ]4/)12(cos[)/2()(   mzzzJm  for z and, we can 

obtain )(2)( ,,1 RkRkJ nmnmm   for the large indices. With this result and the 

Bessel’s integral representation, the high-order Bessel modes ),(,  rnm  can be 

expressed as  








 


 dee
R

k
r miriknm

nm
nm )(sin,

,
,

2

1

2
),(  .     (3.1.3) 

In substitution of Eq. (3.1.3) into Eq. (3.1.2), the resonant modes );,(,
, o
qp
Mm r

o
  is 

given by 

,,
,

1
( , ; )

(2 1) 2 2
o o

o

m np q
m M o

k
r

M R
 


 


 

 , sin ( )m n oo o o

M
ik r i m i q

M

e e e d


      

 

    

 

  .  (3.1.4) 

Changing the integration variable from  to  with   o  and resetting the 

integration bounds on the circle angle, Eq. (3.1.4) can be written 

,,
,

(2 1)
( , ; )

2 2

o o
o o

o

i m
m np q

m M o

M k e
r

R



 



   

 , sin
( )m n oo o o

ik r i m
Me e D q d


   


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

 ,  (3.1.5) 
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where 



M

M

qi
M eMqD



 1)12()(  is the Dirichlet kernel. Since )( qDM is a 

periodic pulse function with period q2 , the integration of Eq. (3.1.5) on the circle 

angle can be divided into q segments with the integration interval between /q and 

/q. Hence Eq. (3.1.5) can be written as 

,,
,
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o o
o o
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im
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m M o
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q s s
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
 

    
       

   




    
  

  .(3.1.6) 

For 1)12(  qM , the Dirichlet kernel )( qDM  displays a narrow peak 

concentrated in a small region of   , where ])12([  Mq . Since the 

effective integral range of  in Eq. (3.1.6) is rather limited, the factor 

  )]/2(sin[ qso   for small  can be reasonably approximated as 

)]/2(sin[)]/2(cos[ qsqs oo   . For obtaining a close form, we also 

approximate the function )( qDM  as a gate function that is 0 outside the interval 

[, ] and unity inside it. With these approximations and oonm Rmk
oo

/,  , Eq. (3.1.6) 

can be analytically integrated as 

1 2 2
sin

,
,
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( , ; )
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m s
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,(3.1.7) 

where sinc(x)=sin(x)/x is the sinc function. From the property of the sinc function, the 

wave function );,(,
, o
qp
Mm r

o
  can be manifestly deduced to be concentrated on the 

set of straight lines:   oo Rqsr  )/2(cos   with 1,.....,1,0  qs  that coincide 
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with the periodic orbit in a circular billiard. 

 

3.1.3 Transient Dynamics of Released Coherent States  
 

In quantum mechanics, the free time evolution of the quantum state ),( yx  

suddenly released at time 0 0t   can be in terms of the 2D free propagator 

 0x, y, x ,y ,K t t ;     [26, 27] and expressed as 

     0x, y, x, y, x , y , x , yt dy dx K t t         ;       ,    (3.1.8) 

where 

   

2 2

0
0 0

x, y, x ,y ,
2 2

x x y ym i m
K t t

i t t t t

               
( ) ( )

; exp    . (3.1.9) 

Thus the quantum state  x, y,t  can be written as 

2 2( ) ( )
( , , ) exp ( , )

2 2

x x y ym i m
x y t dy dx x y

i t t
 



            
  

  
.(3.1.10) 

 

3.2 Analogous Optical Experiments  

 

3.2.1 Experimental Setup 
 

Cylindrical waveguides and whispering gallery resonators have been employed to 

generate very high order Bessel beams [16].  Here we exploit a large-aperture 

cylindrical waveguide with the precise coupling scheme to systematically generate 

resonant geometric modes with large OAM. Figure 3.2.1(a) depicts the experimental 

setup. A linearly polarized Gaussian laser beam of wavelength at 532 nm was used as 

an incident light source. A beam expander was employed to reduce the beam 

divergence less than 0.1 mrad.  A lens with the focal length of 25 mm was used to 

focus the laser beam into the cylindrical waveguide.  Figure 3.2.1(b) depicts the 
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central angle of incidence and the effective spreading range in the longitudinal 

section of the cylindrical waveguide. The transverse path length of a ray with the 

angle of incidence  through the waveguide is given by oT LL tan , where L is 

the length of the waveguide. For the angle bandwidth  the range of the transverse 

path length can be found to be   )sec( 2
oT LL . To form a complete transverse 

orbit (p,q), the range TL  needs to be greater than the orbital length 

)/sin(2, qpqRL qp  . Namely, the geometric condition is given by 

)/sin()/(2)(sec2 qpLRqo   . A smaller aspect ration R/L can lead to the 

formation of geometric modes with smaller angle bandwidth. Here we use the 

cylindrical waveguide with R=0.75 mm and L=295 mm. Figure 3.2.1(c) depicts the 

off-axis distance Ro of the incident beam and the effective azimuthal spreading in 

the transverse section of the cylindrical waveguide. A movable pinhole with an 

adjustable diameter was placed behind the beam expander to control the incident 

angle and the off-axis distance Ro of the laser beam. The pinhole diameter was 

adjusted to obtain the desired bandwidth  and. 

 

3.2.2 Coherent Modes 
 

We experimentally confirmed that the geometric mode with index (p,q) can be 

completely generated when the off-axis distance Ro is close to the value of 

)/cos( qpR  . The transverse near-field pattern at the output facet of the cylindrical 

waveguide was projected on a screen and was imaged by a CCD camera. We 

controlled the incident angle to be approximately =10o and changed the off-axis 

distance Ro to generate various geometric modes with indices (p,q) corresponding to 

the theoretical results shown in Fig. 3.1.2. Figure 3.2.2 shows the near-field patterns 
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for observed geometric modes. The experimental patterns are in good agreement with 

the numerical patterns showing in Fig. 3.1.2. With =10o and Ro for different 

geometric modes with indices (p,q), the average OAM can be calculated as 

)/cos(tan qpRkm o   , where k is the wave number of the incident beam. 

Consequently, it can be found that the average OAM ranges from 348  to 1264 . 

 

3.2.3 Propagation of Coherent Modes 
 

Another extended intriguing topic is to investigate the free-space propagation of the 

geometric mode because it can be analogous to the time evolution of a suddenly 

released 2D quantum-billiard waves. The optical wave ),( yx  emerges from the 

output end of the light pipe at z=0 to the free space in the direction of the +z axis can 

be described with the Fresnel transformation:  

 
  







 




),(
)()(

2
exp),,(

22

yx
z

yyxxki
xdyd

z

ei
zyx

zik




 .(3.2.1) 

Comparing Eqs. (3.1.10) and (3.2.1) it is evident that the time evolution of a 2D 

quantum state is equivalent to the Fresnel transformation of a near-field optical wave 

with the substitution of zt   and  /2/ m , where  is the optical 

wavelength. Figure 3.2.3 illustrates the experimental (upper row) and numerical 

(lower row) patterns for the geometric modes );,(,
, o
qp
Mm r

o
  for the case of 

)5,2(),( qp  in the free-space propagation. Numerical patterns can be clearly seen to 

agree very well with experimental results. It is also worth noting that the free-space 

propagation of the geometric mode displays not only the feature of ray streamlines but 

also the spiral characteristics. The spiral feature confirms the existence of OAM that 

comes from the traveling-wave nature of the geometric modes in the azimuthal axis.  
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Fig. 3.2.1 (a) Experimental setup for generating the resonant geometric modes from a 

cylindrical waveguide; (b) longitudinal section of the cylindrical waveguide, showing 

the central angle of incidence 0  and the effective spreading range   (c) 

transverse section, showing the off-axis distance Ro of the incident beam and the 

effective azimuthal spreading  . 
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Fig. 3.2.2 Experimental transverse near-field patterns for the observed geometric 

modes corresponding to the numerical patterns shown in Fig. 3.1.2. 
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Fig. 3.2.3 Experimental (upper row) and numerical (lower row) patterns for the 

quasiscarred optical modes for the case of )5,2(),( qp in the free-space 

propagation. 
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3.2.4 Spiral Patterns  
 

Spiral patterns characterized by their fascinating structures have been investigated in 

various systems of different fields such as biological [28], chemical [29], physical 

[30-34], and optical [35,36] systems. It is also found that the spirals appear in heart 

muscle during the heart diseases [37-39] such as the cardiac arrhythmia and 

fibrillation.  

 In this section, we demonstrate the observation of the optical spiral patterns with 

the high-order geometric modes emitted from the light pipe. The experimental 

configuration is the same as the one in Fig. 3.2.1. The propagation for various 

high-order geometric modes traveling from the end faucet (z=0) of the light pipe to 

the far field are clearly displayed in Fig. 3.2.4 to Fig. 3.2.6. It should be noted that 

these attracting figures are generated with the input angle 0 10    and with different 

off-axis distances 0R . Figure 3.2.4 and Fig. 3.2.5 show the experimental observations 

of the high-order geometric modes with indices ( , ) (6,25)p q  , and ( , ) (21,62)p q  , 

respectively. For the case in Fig. 3.2.6, the intricate structure of the geometric mode 

has caused difficulty in directly recognizing the indices ( , )p q . Even so, with the 

relation 0 cos ( / )R R p q , we can derive the ratio p q  with 0 0.48R R   to be 

 1
0cos 0.34p q R R      according to the experimental result. It can be seen 

that the spiral patterns are distinctly formed through the propagation. The far-field 

patterns also show that the the effective spreading range  should be quantized and 

the effective azimuthal spreading range in the transverse section of the light pipe 

is continuously distributed. The quantization for  can be obtained from the 

theoretical interpretation since the available incident angles are governed by the 

boundary condition of the light pipe. Moreover, the inner and the outer intensity 
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distribution of the far-field spiral patterns suggest the lower and higher values of the 

transverse component of the wave number, respectively. The outer intensity 

distribution of the far-field spiral pattern also implies the more number of times the 

light beams are reflected by the wall of the light pipe. During the propagation, it can 

be obviously observed that the light beams corresponding to different transverse 

components of the wave number are divided into layers and ultimately form the 

spirals. More complex spiral patterns with irregular trajectories can be observed in Fig. 

3.2.7 and Fig 3.2.8. Since the presented optical spiral patterns are reproducible, robust, 

and stable, it is useful for further exploration of the intriguing features of the spirals.  
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Fig. 3.2.4 Experimental patterns for the optical geometric modes for the case of 

( , ) (6,25)p q   in the free-space propagation. 
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Fig. 3.2.5 Experimental patterns for the optical geometric modes for the case of 

( , ) (21,62)p q   in the free-space propagation. 
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Fig. 3.2.6 Experimental patterns for the optical geometric modes for the case of 

0.34p q   in the free-space propagation. 
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Fig. 3.2.7 Experimental patterns for the spiral patterns with irregular trajectories in the 

free-space propagation. 
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Fig. 3.2.8 Experimental patterns for the spiral patterns with irregular trajectories in the 

free-space propagation. 
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Chapter 4  
Formation of Centrally Focused 
Beam via Intracavity Second 
Harmonic Generation 
 
4.0 Introduction 

 

Traveling-wave Laguerre-Gaussian TEMp,l (LGp,l) modes display intriguing physics 

and have developing technology applications, where p and l are the indices in radial 

and azimuthal directions of the traveling-wave LGp,l modes. In 1992, Allen et. al have 

shown that the taveling-wave LGp,l modes with an azimuthal phase term i le   possess 

well-defined orbital angular momentum of l   per photon [1]. Since then, the optical 

beams with orbital angular momentum have been intensively studied in a variety of 

fields [2-5]. Unlike the traveling-wave LGp,l modes, standing-wave LGp,l modes are 

characterized by their flower-like profiles [6] and possess no net orbital angular 

momentum. It has been confirmed that the flower-like LG modes are formed by a 

coherent superposition of two traveling-wave LGp,l modes that carry the same 

topological charges l while with counter rotational wave fronts (+l, -l ) [7]. The 

production of high-order standing-wave LGp,l modes has been reported in a 

large-aperture CO2 laser [8], optically pumped [9] and electrically pumped [10] 

vertical-cavity surface emitting semiconductor lasers (VCSELs), and a solid-state 

laser cavity compounded of nonlinear medium [6,11-13]. The attractive features of the 

SLG modes lead to rich studies in the pattern formation [6,11-13] and recent research 

on the generation of the two-dimensional optical vortex array [7]. 
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Besides the investigations into the optical properties of the traveling-wave LGp,l 

modes at fundamental wavelengths, Allen et. al reported further studies in the 

frequency doubling of the traveling-wave LGp,l modes through the second-harmonic 

generation (SHG) [14,15]. The second-harmonic wave is shown to be decomposed 

into a number of traveling-wave LGp,l modes with different indices. Since the 

components of different indices give rise to a varying Gouy phase shift between the 

modes, the resulting intensity distribution of the second-harmonic wave changes its 

profile during propagation. Hasegawa and Shimizu disclosed the same physical 

picture with frequency-doubled Hermite-Gaussian (HG) modes which are described 

as a coherent superposition of the orthonormal HG bases with different orders [16]. It 

can be noted that the second-harmonic waves can no longer be illustrated as a simple 

traveling-wave LG mode or HG mode. The wave interference of constituent modes 

with corresponded Gouy phase shift results in the interesting structures of the 

second-harmonic waves through propagation. The experiments for the generation of 

the frequency-doubled modes were carried out in the extracavity configurations of the 

SHG [14-16]. However, limited to the conversion efficiency of the extracavity scheme, 

the experiments only revealed the results concerning the SHG for the low-order 

fundamental modes. On the other hand, though the SHG for the essential optical 

modes has been thoroughly studied, frequency doubling of the standing-wave LGp,l 

modes that characterized by their highly-symmetric and fascinating structures has not 

been investigated as yet.  

In this chapter we present the mode transformation of the high-order 

standing-wave LG0,l modes when undergoing the SHG. We theoretically validated that 

the frequency-doubled modes can be expressed as the interference between a set of 

traveling-wave LGp,0 modes and a standing-wave LG0,2l mode with differing Gouy 

phase shift. We found that, through the second-harmonic process, a centrally focused 
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beam was formed along the propagation direction. The location of the maximum 

intensity on the longitudinal axis was numerically calculated to vary among the 

standing-wave LG modes of different orders. To generate such a centrally focused 

beam, we performed the experiment in a diode-pumped solid state laser with 

intracavity SHG. We employed a doughnut-shaped pump profile [11] to produce the 

highly-symmetric standing-wave LG0,l modes of varying orders for frequency 

doubling. The intracavity scheme with higher conversion efficiency enables the 

realization of the frequency conversion for the high-order standing-wave LG0,l modes. 

Since focused beams have great importance on practical uses [17-19], the presented 

centrally focused beam might have the potential for further applications. 

 

4.1 Theoretical Analyses  

 

4.1.1 Wave Functions of Laguerre-Gaussian Flower Modes 
 

Under the paraxial approximation, one of the attracting solutions to the Helmholtz 

equation in terms of the cylindrical coordinates  , ,r z  is the traveling-wave LGp,l 

modes. The profiles of the traveling-wave LGp,l modes with radial indices p and 

azimuthal indices l at frequency   can be written as [20], 

         
 

 

2 2
,( )

, 2 2

2 2
, , 1 exp exp

l

p p l l
p l p

N r r r
r z L i l

w z w z w z w z
  

    
                 

  

       exp , , exp 2 1 Gi r z i p l z           .  (4.1.1) 

Here    1tanG Rz z z   is the Gouy phase,    2 2 2, , 1 2 Rr z k z r z z       , k  

is the wave number, 2
0 2Rz k w  is the Rayleigh range, 0w  is the beam radius at 

0z  ,    2

0 1 Rw z w z z   is the spot size at z, 
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   , 0, 2 ! 1 !p l lN p l p     is the constant for normalization where 0 , 1l   

for 0l   , and  l
pL  is the associated Laguerre polynomial of integer indices l  

and p  in azimuthal and radial directions, respectively. The indices l  can be zero, 

positive, or negative and 0p . 

The standing-wave LGp,l mode is verified to be the coherent superposition of a 

pair of traveling-wave LGp,l modes with equal but opposite topological charges l   

[7]. Based on the validation, the field distributions of the standing-wave LG0,l  modes 

can be immediately obtained  

     ( ) ( ) ( )
, , ,

1, , , , , , ,2
i

p l p l p lr z r z e r z      
       ,   (4.1.2) 

where   ranging from 0 to 2π signifies the relative phase between the two 

traveling-wave LG modes. Substitute Eq. (4.1.1) into Eq. (4.1.2), the coherent state 

 ( )
, , , ,p l r z    can be expressed as 

         
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l i

l w z
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     exp 2 1 exp , ,Gi p l z i r z          .  (4.1.3) 

Equation (4.1.3) reveals the distinct intensity distribution with  2cos 2l l     

which suggests the flower-like profiles of the standing-wave LGp,l modes with 2 l  

nodes in the azimuthal direction. The profiles of   2( )
, , , ,p l r z    can be found to 

rotate by an angle 2 l  during a period of 2π retardation, where   are decided by 

initial conditions of the system. In the following, we focus our attention on the 

standing-wave LG0,l modes with vanishing radial indices, i.e. 0p  . For 0p  , the 
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associated Laguerre polynomial reduces to a constant and is independent of r. Figure 

4.1.1 displays the intensity distribution of several high-order standing-wave LG0,l 

modes with different azimuthal indices l . The relative phases   are 1.3 , 

1.3 ,  ,  ,  , 0,  /4,   for Fig. 4.1.1(a)-4.1.1(h), respectively.  

 

4.1.2 Second-harmonic Laguerre-Gaussian Flower Modes  
 

Next we consider the standing-wave LG0,l modes when undergoing the 

phase-matching SHG. To simplify the analysis further, we assume that there is no 

absorption and neglect the depletion of the input wave. Under these conditions, the 

amplitude of the frequency-doubled field can be obtained to be proportional to the 

square of the fundamental field [14-16]. That is, the frequency-doubled field for the 

standing-wave LG0,l mode at the beam waist, z=0, is given by 

    
2(2 ) ( )

0, 0,, ,0, , ,0,l lE r D r        ,       (4.1.4) 

where D  is a constant related to the conversion efficiency in the second-harmonic 

process. It follows that the transformational relations 2k k   and 

    2w z w z   ( 0 0 2w w  ) are satisfied during the SHG, where k  and 

 w z  represent the wave number and the spot size of the frequency-doubled beam, 

respectively. Based on the relations, Eq. (4.1.4) becomes  

  
2

2
0

22

(2 ) 2
0,

0 0

1 1 2
, ,0, cos

22 !

l r

wi
l l

r
E r D e e l

w w ll
    




       

               
.  

               (4.1.5) 

To understand the second-harmonic process due to the wave interference of the 

corresponding components, we here provide further analysis for the 

frequency-doubled field,  (2 )
0, , , 0,lE r   . By substituting  2cos 2l l     with 
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Fig. 4.1.1 (a)-(h) Theoretical results for the fundamental standing-wave LG0,l modes 

of different orders corresponding to the intensity distributions  
2( )

0, , , ,l r z    

at far field. For detailed description of the parameters; see the text. 
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its explicit expression according to the double-angle formula,  (2 )
0, , ,0,lE r    in Eq. 

(4.1.5) can be decomposed into two terms. Expanding  2

02
l

r w  in series of the 

Laguerre polynomials [21] 

    
0

! 1
l

nl
n

n

l
x l L x

n

 
  

 
 ,        (4.1.6) 

where  2

02x r w  in our consideration and  
!

! !
l l

n l nn

 
   

 is the 

binomial coefficient, we thus obtain that 

 (2 )
0, 1

0

, ,0,
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l l

D
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i r
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 



      
  
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, , , 2

2 !
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r z

l
  

  


.    (4.1.7) 

It can be seen that the second-harmonic wave  (2 )
0, , ,0,lE r    can be expanded by 

the normalized set of the frequency-doubled traveling-wave LGp,0 modes and the 

standing-wave LG0,2l mode corresponding to Eq. (4.1.1) and Eq. (4.1.2) with 0z   

and 0w  replaced by 0w . Considering the general form for the second-harmonic 

wave when propagating along the z direction, we can derive the z-dependent 

expression for (2 )
0, lE   from Eq. (4.1.7) as follows 

   (2 )
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0

, , , exp , ,
2

l l
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E r z i r z
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, , , 2 exp 2 1
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l
r z i l z

l
   

      


. 

(4.1.8) 

Figure 4.1.2 demonstrates the theoretical results of the far-field patterns for the 

second-harmonic waves  (2 )
0, , , ,lE r z    corresponding to the fundamental waves 

displayed in Fig. 4.1.1. It can be noted that a Bessel-like profile due to the first term in 

Eq. (4.1.8) is formed at the center of the frequency-doubled beam. On the other hand, 

the flower-like structure whose azimuthal index l is doubled through the 

second-harmonic process is mainly contributed by the last term in Eq. (4.1.8).  

 

4.1.3 Propagation of Second-harmonic Waves 
 

In Fig. 4.1.3, we present the propagation of the frequency-doubled beam from the 

beam waist (z=0) for the fundamental standing-wave LG0,12 mode according to Fig. 

4.1.2(f). Figure 4.1.3(a) illustrates the side view of the second-harmonic wave along 

the z direction to reveal the formation of the centrally focused beam. The 

corresponding transverse intensity profiles at different longitudinal positions are 

depicted in Fig. 4.1.3(b)-4.1.3(i) where the fine multilayer structure is clearly visible 

at the center of the focused beam. A single standing-wave LG0,l mode propagates 

without changing its profile, only with a beam divergence determined by the size of 

the beam waist and the Rayleigh range. However, the second-harmonic wave exhibits 

the revolution along the longitudinal axis to form a centrally focused beam, which 

resulted from the interference of several LG modes with the corresponding Gouy 

phase shift.  

Furthermore, Fig. 4.1.4(a)-4.1.4(d) display the side views of various centrally 

focused beams propagating along the longitudinal axis with indices    , 0, 6p l  ,  
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Fig. 4.1.2 (a)-(h) Theoretical simulations for the second-harmonic waves of intensity 

distributions   2(2 )
0 , , , ,lE r z    corresponding to Fig. 4.1.1. 
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Fig. 4.1.3 (a) The side view of the frequency-doubled beam   2(2 )
0, 12 , , ,E r z    as it 

propagates from the beam waist, (b) corresponding transverse intensity profiles. 
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   , 0, 12p l  ,    , 0,20p l  , and    , 0,40p l  , respectively. The maximum 

intensity of the central profiles marked by the dashed lines is numerically calculated 

to vary among the fundamental standing-wave LG0,l modes of different orders. The 

maximum intensity are located at 1.8 Rz z , 2.5 Rz , 3.4 Rz , and 4.7 Rz  for Fig. 

4.1.4(a)-4.1.4(d), respectively. As the order of the fundamental standing-wave LG0,l 

mode gets higher, the distance from the beam waist to the position of the maximum 

intensity becomes larger. The focusing phenomena of optical waves have great 

importance for applications such as optical trapping [17-18], and optical 

manufacturing [19]. Therefore, it might be useful to generate such centrally focused 

beams characterized by their inherent focusing phenomena through the SHG.   

 

4.2 Experimental Observations 

 

4.2.1 Experimental Setup  
 

The schematic diagram for the experimental setup of a diode-pumped Nd:YVO4 laser 

with a KTP crystal as an intracavity SHG medium is illustrated in Fig. 4.2.1. The 

experimental configuration was designed for the SHG at 532 nm from the 

fundamental wavelength at 1064 nm. The laser medium is an a-cut 2.0-at. % 

Nd:YVO4 crystal with a length of 2 mm and the cross section 10 × 10 mm2. The SHG 

medium is a 10-mm-long KTP crystal with a cutting angle (θ=90° and φ=23.5°) to 

satisfy the type Ⅱ SHG phase matching condition. Both sides of the Nd:YVO4 and 

KTP crystals were coated for antireflection at 1064 nm (R<0.2%). In addition, they 

were wrapped with indium foil and mounted in a water-cooled copper block. The 

front mirror is a 250-mm radius-of-curvature concave mirror with antireflection 
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Fig. 4.1.4 (a)-(d) The side views of the frequency-doubled beams with different 

orders. 
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 (R<0.2%) coating at 808 nm on the entrance surface (R<0.2%), and high-reflection 

coating at 1064 (R>99.8%) nm and 532 nm (R>99%) on the other surface. The output 

coupler is a flat mirror with partial-reflection coating at 1064 nm (R=98%) and 

high-transmission coating at 532 nm (T>85%). The pump source is an 808 nm 

fiber-coupled laser diode with pump core of 100 μm in radius, a numerical aperture of 

0.16, and a maximum output power of 1 W. A focusing lens with focal length of 25 

mm and 85% coupling efficiency was used to reimage the pump beam into the laser 

medium. To generate the high-order standing-wave LG0,l modes of different orders, 

we employed a doughnut-shaped pump profile and defocused the standard 

fiber-coupled diode [11]. The standing-wave LG0,l modes of varying orders 

correspond to differing sizes of the pump profiles. The pump spot sizes were 

controlled to be at 50 – 200 μm. The overall cavity length is nearly 80 mm. According 

to the experimental scheme, the beam radius of the fundamental TEM00 mode can be 

calculated to be around 141μm. The difference of the beam radius between adjacent 

standing-wave LG0,l modes is of the order 40 μm. The conversion efficiency for the 

standing-wave LG0,0 mode from the diode laser incident power to the SHG output is 

about 12% . Moreover, filters placed after the laser cavity allow either the 

fundamental or the second-harmonic wave to be chosen and projected onto a screen. 

The projected patterns were observed through a CCD camera.  

 

4.2.2 Generation of Centrally Focused Beams  
 

Figure 4.2.2 and Fig. 4.2.3 display respectively the far-field patterns of a variety of 

fundamental standing-wave LG0,l modes and their frequency-doubled counterparts. 

The experimental observations show good agreement with the theoretical results as 

illustrated in Fig. 4.1.1 and Fig. 4.1.2. Moreover, the formation of the centrally 

focused beam corresponding to Fig. 4.1.3 has been confirmed via the measurement of 
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the transverse intensity profiles at different z planes as shown in Fig. 4.2.4. The 

experimental tomographic transverse patterns are found to be in accordance with the 

theoretical simulations in Fig. 4.1.3. It is worth to mention that the focusing 

phenomenon is a linear interference of the wave itself as we have validated in 

previous section and not the result of the nonlinear self-focusing effect. Since focused 

beams have always been a subject of practical interest, the second-harmonic waves 

presented here might be utilized for further applications. 
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Fig. 4.2.1 Experimental setup of the diode-pumped solid-state laser with intracavity 

SHG. 
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Fig. 4.2.2 Observed far-field patterns of the standing-wave LG0,l modes at the 

fundamental wavelength. 
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Fig. 4.2.3 Frequency-doubled counterparts of the fundamental standing-wave LG0,l 

modes in Fig. 4.2.2. 
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Fig. 4.2.4 Observed transverse intensity profiles along the longitudinal axis. 
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Chapter 5  
Weak Localization in Disordered 
Systems with Conical Second 
Harmonic Generation 
 
5.0 Introduction 

 

Wave localization, which originally results from the peculiar interference of waves 

scattered by disorders, is an intriguing phenomenon beyond diffusion theory and 

transfer treatment [1-3]. Since the fundamental processes of scattering and 

interference are identical for classical and quantum waves, the phenomena of wave 

localization have been extensively investigated in different physical systems [4-7]. 

Recent developments have led to much interest in various disordered media specified 

by weak (WL) [8-14] or strong localization (SL) [5,15-17]. It could be found [1-17] 

that the localization phenomenon is still an important issue and deserves further 

investigations. 

Theoretical analyses and experimental observations for the disordered wave 

functions are the straightforward procedures to determine the extent of wave 

localization. Numerous theoretical models [18-22] have been constructed to explore 

the extent of wave localization. Recently, the nonlinear sigma models based on the 

supersymmetry theory have been employed to investigate the statistical properties of 

disordered wave functions [22]. The zero-dimensional (0D) nonlinear sigma model 

has been shown to be equivalent to the random matrix method [22] in the diffusive 

limit of disordered systems. In the weakly disordered systems, the wave functions are 
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widely spread over space, corresponding to the so-called extended states. With the 

one-dimensional (1D) nonlinear sigma model, the density distributions of the 

extended states can be expressed as an analytical formula related to the well-known 

Porter-Thomas (P-T) distribution [23]. On the other hand, the wave functions of the 

strongly disordered systems display log-normal asymptotic forms and long-tail 

characteristics in the density distributions [24,25], corresponding to the so-called 

pre-localized states. Fal’ko and Efetov [20] developed the reduced version of the 

nonlinear sigma model (RV-NLS model) to analyze the long-tail density distributions 

of the pre-localized states. Although the RV-NLS model seems to be applicable to 

quantify the varying extent of WL, detailed comparisons with experimental 

observations have not been performed as yet.  

In experiments, the disordered wave functions were measured in a microwave 

cavity to show the influence of chaos and localization in disordered quantum billiards 

[13]. In 2006, Chen et al. [26] demonstrated the spatial structure of two-dimensional 

(2D) disordered wave functions from exploring the near-field patterns of conical 

second harmonic generation (SHG) in a GdCa4O(BO) (GdCOB) nonlinear crystal 

with moderate defect domains. So far, experimental results for the disordered wave 

functions only covered a partial WL regime and did not provide a comprehensive 

analysis of the transition from extended to pre-localized states. 

In this chapter we experimentally generate the 2D disordered wave functions by 

systematically scanning a GdCOB nonlinear crystal in the conical SHG process to 

explore the characteristics of WL. We numerically confirm that the RV-NLS model 

model can provide statistical analyses to agree very well with the experimental wave 

functions with various localizations. Furthermore, we find that the density 

distributions of the disordered wave functions can be analytically expressed as the 

chi-square distributions with fractional parameters. Since the parameters in the formal 
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expression of chi-square distributions are only integers for the integral degrees of 

freedom [27], we use the terminology of fractional chi-square distribution to 

distinguish the difference. Finally, we construct the relationship between the RV-NLS 

model and the fractional chi-square distributions to reveal the characteristics of the 

fractional degrees of freedom in the disordered wave functions. Although the present 

results focus on the regime of WL, the fractional chi-square distribution might be 

useful for the full crossover of localization. We also believe that the present model can 

be employed to study the degree of localization in various disordered systems [8-14] 

such as scattering powder, cold atoms, randomized laser materials, liquid crystal, 

scattered systems, microcavities, and graphene. 

 

5.1 Experimental Observations  

 

5.1.1 Experimental Setup and Results 
 

Figure 5.1.1 shows the experimental setup that is a diode-pumped actively Q-switched 

Nd: YAG laser with intracavity SHG in the GdCOB crystal. The gain medium is a 

0.8-at. % Nd3+:YAG crystal with a length of 10 mm. The GdCOB crystal was cut for 

type Ⅰ frequency doubling in the XY planes (θ = 90°, φ = 46°) with a length of 2 

mm and a cross section of 3 mm 3 mm. All crystals were coated for antireflection 

(R<2%) at 1064 nm on their both sides. The radius of curvature of the concave-front 

mirror is 50 cm with coating of antireflection (R<0.2%) at 808 nm, high-reflection 

(R>99.8%) at 1064 nm, and 532 nm on the entrance side and high-transmission 

(T>90%) at 808 nm on the other side. The output coupler is a plant mirror with 

coating of high-reflection (R>99.8%) at 1064 nm and high-transmission at 532 nm 

(T>85%). The pump source is a 10 W 808 nm fiber-coupled laser diode with a core 

diameter of 800 µm. A focusing lens with a focal length of 2.5 cm and 90% coupling 
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efficiency was employed to reimage the pump beam into the laser gain medium. The 

acoustic-optic Q switch with a length of 30 mm has coating with antireflection at 

1064 nm on both sides and is driven at a 27.12-MHz center frequency with 15.0 W of 

rf power. An object lens was used to reimage the near-field patterns on the screen. 

It has been shown that GdCOB crystals possess various random defect domains 

which can be used to generate the intensities   2
r  of 2D disordered wave functions 

in the SHG process [26]. Here we find that the extent of random defect domains 

significantly depend on the transverse position of the GdCOB crystal. With this 

feature, we can scan all transverse positions of the GdCOB crystal to generate a 

variety of disordered wave functions from extended to pre-localized states as shown 

in Figs. 5.1.2(a)-5.1.2(f). 

 

5.2 Statistical Analyses  

 

5.2.1 Porter-Thomas Distribution and 1D Nonlinear Sigma Model  
 

To determine the extent of localization, the density probability distribution 

  2
P r   is illustrated to specify the localization of wave functions. For extended 

states in quantum chaotic systems, random-matrix method and equivalent 0D 

nonlinear σ model have been verified to give good explanations of universal statistic 

behaviors with the P-T distribution [22]. For weakly disordered systems, density 

probability of the normalized disordered wave functions can be expressed with 1D 

nonlinear σ model as [19,22,26]   

      2
1

1 1 1
1 IPR 3

8 4 24D PTP I P I I I
          

,     (5.2.1) 



Ch5 Weak Localization in Disordered Systems with Conical Second Harmonic Generation             

 155

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1.1 Experimental setup for the generation of disordered wave functions with the 

diode-pumped Q-switched Nd:YAG laser of intracavity SHG in the GdCOB crystal. 
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Fig. 5.1.2 (a)-(f) Experimental observation of near-field wave patterns measured at 

different transverse positions of the GdCOB crystal. 
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where    exp 2 2PTP I I I   is the expression of the P-T distribution, and 

2 2IPR I d r   is the inverse participation ratio associated with the extent of 

localization. For P-T distribution, the IPR can be directly achieved to be  

 2

0
IPR 3.0PTI P I dI


   indicating the chaotic systems. The larger the IPR value, 

the stronger the extent of localization is. As a result, the IPR values for disordered 

systems are greater than 3.0 in general. The IPR values for the experimental data in 

Fig. 5.2.1(a) and 5.2.1(b) are 3.3 and 5.72, respectively. Evidently, the fitting curve of 

1D nonlinear σ model is validated to be consistent with the experimental data which 

displays small deviation to the P-T distribution in Fig. 5.2.1(a). However, as depicted 

in Fig. 5.2.1(b), the use of the perturbative result according to the 1D nonlinear σ 

model is violated obviously in the region where the deviation from the P-T 

distribution is considerable. Negative quantities of the density distribution  P I  can 

be obtained for IPR values greater than 7.0. We numerically confirm that the 1D 

nonlinear σ model is only appropriate for the disordered wave function with IPR<5.5. 

For stronger disorder, higher densities of the distribution functions decay more slowly 

in the region where 1D nonlinear σ models break down. Therefore, a more appropriate 

model should be given to clarify the varying extent of localization. 

 

5.2.2 Reduced Version of the Nonlinear Sigma Model  
 

In the following, we employ the experimental data to testify the RV-NLS model that is 

developed to quantitatively specify different regimes of localization. The RV-NLS 

model indicated by a dimensionless parameter g is given by [20,22] 



















4

)(

2

)(
exp);(

2IzIz
g

I

A
gIP

 

,      (5.2.2) 
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Fig. 5.2.1 (a)-(b) The density distribution P(I) according to experimental data in Fig. 

5.1.2(a) and 5.1.2(c), respectively. 
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where A is a normalized constant,  z I  could be solved numerically according to the 

relation zz e I g , and g is the dimensionless conductance [2,3] used to identify the 

degree of localization. The parameter g is also called the “Thouless number” which 

first proposed by Thouless in the discussion on the scaling theories of localization 

[2,3]. The dimensionless conductance g is adopted by the scaling theory as its only 

parameter and depends on the dimensionality of the system. For 2D case, 

 ~ lng k l L l  [2] where k is the wave vector, 2k   , l signifies the value of 

mean free path, and L denotes the size of the system. The formal definition of g is 

   2 2g G L e   (Ref. 2) where  G L  is the conductance of a hypercube of size 

dL , d relates to the dimensionality,   is Plank’s constant , and e is the electronic 

charge. In the diffusive limit of 1g  , the density distribution reveals a universality 

of the statistics of localized waves. The value of g is substantially decreased due to 

WL which is the precursor of Anderson localization (SL) of 1g   [28]. In other 

words, the scaling parameter g can be exploited to specify the extent of localization 

for the experimental results. Figures 5.2.2(a)- 5.2.2(f) depict the numerical results of 

the RV-NLS model for the best fits to the wave patterns shown in Figs. 

5.1.2(a)-5.1.2(f), where the values of g are found to be 33, 11, 5.5, 3.5, 2.3, and 1.1, 

respectively. It can be seen that the density distributions generated with the RV-NLS 

model agree very well with the experimental results for all cases. Actually, K. B. 

Efetov [22] has once bought up the idea that the RV-NLS model can be applied to 

explain the statistical behavior for the disordered wave functions in a microwave 

cavity [13]. Employing the laser system with the conical SHG operation, we have 

verified here the practicability of the RV-NLS model in another disordered system. 

The fact implies possible extension of RV-NLS model on the studies of different 

extent of localization in various kinds of disordered systems.  
 



Ch5 Weak Localization in Disordered Systems with Conical Second Harmonic Generation             

 160

5.2.3 Fractional Chi-square Distribution  
 

Besides the verification of the RV-NLS model, we originally find that the chi-square 

distributions with fractional parameters can satisfactorily describe the experimental 

results. The analytic expression of the chi-square distributions is given by [27] 

2/12/1 )2/()2/();( vIv
CS eIvIvvIP   ,       (5.2.3) 

where 0v   is a parameter referred to the number of degrees of freedom and 

  1
2v

  is the gamma function which serves to normalize the density 

distributions );( vIPCS . The P-T distribution )(IPPT  is the chi-square distribution with 

one degree of freedom, i.e. )1;( vIPCS  [23]. In addition, the exponential 

distribution exp( -I ) can be referred to the chi-square distribution with two degrees of 

freedom, i.e. )2;( vIPCS . Even though there is no conceptual difficulty to extend an 

integer value of v to a non-integer, it has not been confirmed that whether non-integer 

degrees of freedom have any applications in nature. As shown in Figs. 

5.2.2(a)–5.2.2(f), the chi-square distributions with 0.06 1v  , almost identical to 

the features of the RV-NLS model, can excellently illustrate the experimental results. 

The values of v  for experimental wave patterns in Figs. 5.1.2(a)-5.1.2(f) are 0.774, 

0.54, 0.32, 0.20, 0.126, and 0.06, respectively. The evidence shows that the tails of the 

density distribution decay more slowly at small values of v  and the degree of 

localization becomes larger while the values of v  decrease rapidly. The investigation 

yields a clear result that the fractional chi-square distribution could be a powerful 

procedure for analyzing the statistical properties of the localization phenomena. It is 

well-known that the non-integer dimensionality is an important property of most 

fractals. Our exploration reveals that non-integer or fractional parameters are also 

valid concepts in statistical distributions of disordered wave functions.  
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Fig. 5.2.2 (a)-(f) Experimental and theoretical density distributions P(I) corresponding 

to experimental data in Fig. 5.1.2(a)-5.1.2(f), respectively.  
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5.2.4 Relation between Statistical Models 

 

The validity and equivalence between the density distributions );( vIPCS  and 

);( gIP  imply that the two parameters v  and g are related. The relationship 

between v  and g according to the experimental results is marked with blue dots in 

Fig. 5.2.3. We employ an empirical form of 0.851 exp[ 0.08 ]v g    to express the 

relationship between v  and g, as depicted with a solid line in Fig. 5.2.3. The 

empirical expression indicates the two properties: one is 1v  as g  to 

indicate no WL effects and the other is 0.06cv   with 1g   to signify the SL 

threshold. In other words, the statistical properties for the WL and SL effects can be 

manifested with the the chi-square distributions with the parameters in the region of 

1cv v   and 0 cv v  , respectively. Taking the familiar parameter g as a standard of 

scaling, the careful mapping of g and v of the two models helps to clarify the regime 

of different extent of localization with the new parameter v.  
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Fig. 5.2.3 Blue dots: The relation between v and g according to the experimental data. 

Red line: Empirical form for the relationship between v and g. 
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Chapter 6 
Summary and Future Work 
 

6.1 Summary  
 

In section 2.1.1, we have theoretically derived the eigenstates of the coupled isotropic 

HO, which reveals the continuous transformation from the HG to the LG states. In 

section 2.2.2, we have performed the analogous optical experiment to systematically 

reconstruct the transformational relation between the HG and LG modes with a 

cylindrical-lens mode converter. In section 2.1.2, we have verified that the spatial 

morphologies of the Lissajous states can be continuously transformed into the 

trochoidal states with spatial morphologies corresponding to the trochoidal curves by 

converting the HG components into the corresponding LG modes. In section 2.2.3, we 

have further exploited the optical Lissajous modes and a /2 cylindrical lens mode 

converter to perform the spatial transformation in analogous way and to generate the 

intermediate optical modes between the optical Lissajous and trochoidal modes. 

Experimental realization confirmed a notable method to generate the spatial coherent 

states with various orbital morphologies. The present method is expected to be 

constructive for investigating the spatial transformation of optical coherent waves. In 

section 2.1.3, we have systematically investigated the quantum signatures of the 

eigenstates corresponding to the coupled commensurate HO with SU(2) coupling 

interactions. The eigenstates are shown to be concentrated on the multiple periodic 

orbits that transform from the multiple Lissajous orbits to the multiple trochoidal 

orbits. In section 2.2.4, we have explored the analogous observation of the laser 
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transverse modes from large-Fresnel-number degenerate cavities via varying pumping 

size. It has been experimentally verified that the 3D coherent lasing waves 

corresponding to the quantum states with multiple Lissajous orbits can be 

systematically generated by enlarging the pumping spot size. We also employ the 

propagating property of the lasing modes to manifest the role of the phase factor 

introduced by the SU(2) coupling interactions. Moreover, we apply the 

cylindrical-lens mode converter to confirm the transformational relation between the 

multiple Lissajous orbits and the multiple trochoidal orbits. Section 2.3 is the further 

extension of section 2.1 and 2.2. We develop a novel method of creating optical 

vortex array by the conversion of a standing-wave Laguerre-Gaussian (LG) mode. 

Theoretically, by employing the transformational relation, the standing-wave LG 

mode is verified to be transformed from a pair of crisscrossed Hermite-Gaussian (HG) 

modes, embedded with optical vortex array, consists of a TEMn,m mode and a TEMm,n 

mode. Due to close correspondence between the transformational relation and the 

mode conversion of astigmatic lenses, we successfully generate the optical vortex 

array by transforming a standing-wave LG mode into the crisscrossed HG modes via a 

/2 cylindrical lens mode converter. The investigation may provide useful insight in 

the study of the vortex light beam and its further applications.  

In chapter 3, we have exploited the Bessel’s integral to analytically manifest the 

ray-wave correspondence between high-order Bessel beams and geometric modes in 

circular billiards. We also experimentally demonstrated that the Bessel-related 

geometric modes can be strikingly generated by utilizing a large-aperture cylindrical 

waveguide with controlling the extent of the incident angle. Moreover, we 

demonstrated that the free-space propagation of the output beam emerging from the 

cylindrical waveguide could be used to investigate the transient dynamics of the 

geometric modes. We believe that the present investigation can provide an important 
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insight into quantum physics and wave optics. 

In chapter 4, we have theoretically demonstrated the mode transformation of the 

high-order standing-wave LG0,l modes when undergoing the phase-matching SHG. 

The SHG for the standing-wave LG0,l modes has been verified to cause the formation 

of the centrally focused beams which propagate with their transverse intensity profiles 

changed. The theoretical analysis reveals that the revolution of the centrally focused 

beam along the longitudinal axis results from the interference of a set of 

traveling-wave LGp,0 and a standing-wave LG0,2l modes according to different Gouy 

phase shift. Furthermore, we have employed a diode-pumped solid-state laser with 

intracavity SHG to carry out the experiment. By controlling the spot sizes of the 

doughnut-shaped pump profiles, we have effectively generated the high-order 

standing-wave LG0,l modes of varying orders for frequency-doubling. The 

experimental results of the second-harmonic waves are shown to be in good 

agreement with the theoretical analysis. Our studies might provide some useful 

insights into the wave functions for the nonlinear conversion.  

In chapter 5 we have experimentally generated the optical patterns from the 

conical SHG process to investigate the disordered wave functions with different 

extents of WL from extended to pre-localized states. It has been numerically 

confirmed that the statistical characteristics of experimental disordered wave 

functions can be explained very well with the RV-NLS model. Furthermore, we have 

found that the fractional chi-square distributions are nearly equivalent to the 

distributions of the RV-NLS model. With this result, the concept of the fractional 

degrees of freedom can be used to manifest the extent of localization for the 

disordered wave functions. It is believed that the present work can bring more insight 

into the localization phenomena of diverse disordered systems. 
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6.2 Future work 
 

In chapter 4, we have thoroughly investigated the formation of the centrally focused 

beam with the second-harmonic generation (SHG) of a high-order Laguerre-Gaussian 

mode. It can be found that the obtained second-harmonic waves characterized by their 

intricate structures reveal fairly different morphologies to the input fundamental 

waves. The intriguing observations stimulate our interests in the SHG for the localized 

coherent waves as discussed in chapter 2. However, the restriction of the conversion 

efficiency for the SHG of such a high-order laser mode might cause the major 

difficulty in carrying out the experiment. Once we can overcome the limitation, it 

could be expected that the second-harmonic coherent waves associated with the input 

localized modes might display considerably complicated configurations. 

 

 

 

 

 

 



Appendix A                                                                           

170 
 

Appendix A 

Derivation of the Eigenstates to the Harmonic 

Oscillator with SU(2) Coupling 

 

The Hamiltonian for a two-dimensional (2D) isotropic harmonic oscillator with SU(2) 

coupling can be given by 

0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆH H J J J    .         (A.1) 

In terms of the dimensionless spatial representation, (A.1) can be rewritten as 

     2 2 2 2 1 2
0

1ˆ
2 2 2x y x y y xH x p y p x y p p x p y p  

                    

 3 2 2 2 2

4 x yx p y p


       .         (A.2) 

ˆ ˆH H   

Try to eliminate the second term with 1 , we employ the following transformation 

for the operators: 
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  
,     (A.3) 

where  1
2 12 tan    . Substitute Eq. (A.3) into Eq. (A.2), the Hamiltonian in 

Eq. (A.2) hence can be written as  

   
2 2

1 22 2 2 2
0

1ˆ
2 2x y x yH x p y p x y p p

                       

  3 2 2 2 2

4 x yx p y p


          .         (A.4) 

ˆ ˆH H   

Try to eliminate the third term with 3  in Ĥ  : 
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cos sin

sin cos

x x y

y x y

 
 

   
    

  
  

, 
cos sin

sin cos

x x y

y x y

p p p

p p p

 

 

    


   

  

  
,     (A.5) 

where  1 2 2
1 2 32 tan     . Substituting Eq. (A.5) into (A.4), we obtain that 

   2 2 2 2 2 2 2 2
0

1ˆ
2 4x y x yH x p y p x p y p                         

   2 2 2 2
1 2

1 1
ˆ ˆ ˆ ˆ

2 2x yx p y p       ,       (A.6) 

where 2 2 2
1 2 3     , 1 0 2   , and 2 0 2   . Obviously, the 

eigenvalues and eigensates 1 2 ˆ
,

H
n n


 in terms of the spatial representation for 

Ĥ  can be given by 

,1 2
1 1 2 2

1 1

2 2n n
E n n          

   
  ,        (A.7) 

and 

     
2 2

, 1 21 2 1 2

2 2

1 2

1 1
,

2 ! 2 !
n n

x y

n nn n
x y H x e H y e

n n 

 
 

     ,  (A.8) 

 

Solve Ĥ : 

We have already got the solutions of Ĥ  . Such transformations in Eq. (A.3), and 

(A.5) enable us to simplify the question with the well-known eigenstates 

Hermite-Gaussian states of the uncoupled Hamiltonian Ĥ  . At the end, we will show 

that the eignenstates of the coupled oscillator can be expressed as the superposition of 

Hermite-Gaussian states. Now let us back to our question in the beginning with the 

2D coupled harmonic oscillator—solving the eigensates and eigenvalues of it. 

Furthermore, using the ladder operators may help us explicitly figure out the question. 

The ladder operators can be given by 
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 
 

†

†

1
ˆ ˆ

2

ˆ ˆ
2

x

x a a

i
p a a

   

    





, 

 

 

†

†

1 ˆ ˆ
2

ˆ ˆ
2

y

y b b

i
p b b

    

    





.      (A.9) 

Equations (A.5) can be rewritten in the form of the ladder operators: 

 
 

† † †

† † †

ˆˆ ˆ cos sin

ˆ ˆˆ sin cos

a a b

b a b

 

 

    

    

.            (A.10) 

Since the ground state 0,0  is invariant under transformation of the coordinate, it is 

obvious that ˆ ˆ0,0 0,0
H H 
 . Therefore, the eigenstates 1 2 ˆ

,
H

n n

 can be written as 

    21 ††

ˆ1 2

1 2

ˆˆ
, 0,0

! !

nn

HHO

ba
n n

n n 

   

    21 ††

ˆ

1 2

ˆˆ
0,0

! !

nn

H

ba

n n 


    

   
 

† † † †

ˆ

ˆ ˆˆ ˆcos sin sin cos
0,0

! !

n N n

H

a b a b

n N n

   




     



,  (A.11) 

where 1 2n n N  , 1n n , 2n N n  , and N is a constatnt. This condition is 

required for the energy degeneracy. Furthermore, we use the Binomial series to 

expand Eq. (A.11): 

1 2 ˆ
,

H
n n


  

       
 

1 21 2

1 2

1 2

† † † †

ˆ

ˆ ˆˆ ˆcos sin sin cos
0,0

! !

n N n
n N n

H

C a b C a b

n N n

  

 

 

   
  





   



  

       
 

† † † †

ˆ
0

ˆ ˆˆ ˆcos sin sin cos
0,0

! !

n s N nsn N n
N s

H
s

C a b C a b

n N n

  

 



   
    






   



  

 
         

     

2 2 † †

ˆ
0

ˆˆ! ! cos sin
1 0,0

! ! ! !

N ssN n s n s
N

v

H
s

n N n a b

s v n s v N n v v

 



 
    




 
 

      
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 2
ˆ

,
0 2 2

2 ,
NN

N N Hs n
s

d s N s  

  ,           (A.12) 

where 1v s v  , 2v v , 1 2v v s   ( 0s N  ),  ! ! !n
kC n n k k    , and the 

Wigner d-coefficient is given by 

     2

,
2 2

2 ! ! ! !
N

N N
s n

d s N s n N n
 

    

    
     
      

  2 2min ,

max 0,

1 cos sin

! ! ! !

v N s n v s n vN n s

s n n v s n v N s v v

     

 

 


     .     (A.13) 

Similarly, according to Eq. (A.3), the ladder operators can be obtained to be 

† †

† †

ˆ ˆ

ˆ ˆ

i

i

a a e

b b e





 

 

.               (A.14) 

Substitute Eq. (A.14) into Eq. (A.12), an extra phase term is introduced:  

   2 2
ˆ1 2 ˆ ,

0 2 2

, 2 ,
NN

isiN
N N HH s n

s

n n e e d s N s 

  

  .        (A.15) 

Eq. (A.15) presents the eigenstates of the coupled harmonic oscillator, where one can 

replace 2  by   and 2  by   to correspond to Eq. (2.1.11). 
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Appendix B 

Derivation of the General Expression for a 

High-order Hermite-Gaussian Mode Transforming 

through an ABCD System with the Huygens Integral 

 

The general form for the Huygens integral in one transverse dimension in terms of the 

ABCD matrix can be given by 

   2 2
0

, exp
j

u x z jk L
B

   

   2 2
1 1 2 2

1 1 1
0

2
, exp

Ax x x D x
u x z j dx

B









  
  
  

 .   (B.1) 

where 0  is the optical wavelength in free space and L is the length for the ABCD 

system.  

 

B.1 Input a Hermite-Gaussian Mode  
 

Consider an input beam of a high-order Hermite-Gaussian (HG) mode in the form    

 
2

11
1 1

1 1 11

22
, exp

2 !
n nn

xx
u x z H j

qn


  

   
       

   
.     (B.2) 

where 1  is the wavelength in the medium where the beam is currently located. The 

field distribution of the HG mode propagates through a distance L hence can be 

written as 

 
2

1

1 11
2 2

0 01

22
,

2 !

x
j

q

n nn

xj
u x z H e

B n




  

 



             
  
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 2 2
1 1 2 2

0

2

1

Ax x x D x
j

Be dx





 
 

 


,       (B.3) 

where the phase term  exp jk L  has been neglected since it does not affect the 

intensity distribution   2

2 2,nu x z . Employing the generating function of the Hermite 

polynomials,  22

0

!t t n
n

n

e H t n 






 , we can further obtain 

 2 2
0

,
!

n

n
n

t
u x z

n




      

 2 22
1 1 2 21

1 1 0

2

1
1

00 1 1

22 1

2 !!

Ax x x D xx
n j j

q B

nn
n

xj t
H e e dx

B nn


 

   

 
   



 
   

 
  

   2 22
1 1 2 21

1 1 0

2

1
1

00 1 1

2 22

!

n Ax x x D xx
j j

q B

n
n

t xj
H e e dx

B n


 

   

 
   



       
   



 

 2 222 1 1 2 211

1 1 1 0

22

2

1
0 1

2
Ax x x D xxx t t

j j
q Bj

e e e dx
B


  

  

 
   



  .     (B.4) 

Calculate the exponent with allocation method and simplify the equation with 

0 1  , the exponent can be derived to be  

 2 222
1 1 2 21

1
1 1 1 0

2
2

2

Ax x x D xxt t
x j j

q B


  

 
    

2
2 2

1 2 1 2
0 1 1 0 0

1 2 2

2

A t t D
j x j x x j x

q B B

  
   

    
                

2
1 2 1

1 0 0 10 1

1 1
2

A t A
j x j x j x

B q Bq B

  
  

                           
  

2 2

2 2
1 0 0 1 1 0 0 1

1 1
+

t A t A
j x j j x j

B q B B q B
   

     

                                    

2
2

2
02

t D
j x

B




 
  
 

.            (B.5) 
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Applying the integral identity  2exp ax dx a




   to Eq. (B.5) and substituting 

the obtained exponent into Eq. (B.4), we can rewrite Eq. (B.4) as   

 

2 2
2

2 2
1 0 0 1 0

1
   

2

2 2
0 11

2 1
,

!

t A t D
j x j j xn

B q B B

n
n

t
u x z e

A B qn

  
   

 

                




 . (B.6) 

To eliminate the series in the left hand side (LHS) of Eq. (B.6) and find the expression 

for the amplitude distribution  2 2,nu x z , we should apply again the generating 

function of the Hermite polynomials to the right hand side (RHS). See the exponent 

first,  

2 2
2

2 2
1 0 0 1 0

1

2

t Dt A
j x j j x

B q B B

 
   

    
       
    

 

 
   

2 2
2 22

1 1 0 1 1 0 2

(2)(1)

1 1 1
2

2 1 1
j t x t j x

q A B B q A B q


   

   
             

, (B.7) 

where    2 1 11 q C D q A B q   . Define a new parameter t  for the term (1) in 

Eq. (B.7), where  

 
2 2

2
1 1 0

1 2
1

2 1
t j t

q A B 
 

     
,        (B.8) 

 2
1 1 0

2
1

12

t
t j

q A B 
  


.         (B.9) 

Furthermore, employ the parameter t  derived in Eq. (B.9) and define a new 

parameter    for term (2) in Eq. (B.7): 

    22
1 1 0 1 1

2 1
2 2 1 2

1 12

t
t j x t

q A B B q A B
 

  
    

 
,  (B.10) 

   
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2
1 1 1 1 0

2 1
  

1 1 2 1
x

B q A B j q A B


  
 
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  22
1 1 1 0

2

2
x

A B q A B q j B  

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.      (B.11) 

Substitute Eq. (B.9) and Eq. (B.11) into Eq. (B.7), Eq. (B.7) can be rewritten as 
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 ,    (B.12) 

where    2 2
2 1 1 0 1 12A B q j B A B q         . 

Compare the RHS and LHS term-by-term, the field distribution can be given by 
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1 2 0 2

2
exp

n

n

x x
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q

 
  
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.      (B.13) 

For a high-order HG mode in the two transverse dimension (x,y), Eq. (B.13) can be 

modified as  
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B.2 Input a Rotated Hermite-Gaussian Mode  
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We first expand the rotated high-order HG modes into a set of HG basis without 

rotation and find the weighting coefficients: 

     , 1 1 1 1 1 1 1, , , ,n m n mu z u z u z            (B.15) 
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0

, ,
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s n m
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D u x y z
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 ,       (B.16) 

where N=n+m, and the coordinates  ,   for the optical beam follow the relation: 
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1 1 1

1 1 1

cos sin

sin cos

x y

x y

  
  

 
   

.          (B.17) 

From the generating function in the two transverse dimensions, we have 
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where 12   , 12   , 12x x  , and 12y y  . Here we have 

assumed that the input mode is an isotropic, i.e. the beam radius in x and y directions 

are the same. Substitute Eq. (B.17) into the LHS of Eq. (B.18): 
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Apply the generating function to Eq. (B.19): 
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Similarly, the RHS in Eq. (B.18) can be modified as 
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Comparing Eq. (B.20) and Eq. (B.21) term-by-term, we can obtain the relation: 
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Moreover, let 1v m v  , and 2v v , there follows the relations that  
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Therefore, Eq. (B.20) can be rewritten as 
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(B.24) 

Since Eq. (B.21) is equivalent to Eq. (B.24) and the length is conserved under rotation, 

we can compare Eq. (B.21) and Eq (B.24) term-by-term to obtain the field distribution 

as follows 
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Consider the case for the input beam traveling through an ABCD system, it is 

evident that the output beam can be directly obtained tobe 
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