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Abstract

Mesoscopic physics, which is in between the microscopic and the macroscopic world,
contains physical features of both scales. Distinctive phenomena found in the
mesosopic systems give insights into the quantum-classical correspondence which has
attracted lots of attention from researchers. The related issues in mesoscopic regime
have been studying and paying close attention. In the thesis we employed optical
systems as analog systems to investigate the connection between quantum and
classical mechanics. This statement based on the good correspondence between
quantum-classical mechanics and wave-ray optics. Moreover, optical wave equation
was theoretically elucidated to be in the same mathematical form as the Schrodinger
equation. We provided comprehensive studies for the quantum coherent states
corresponding to the optical waves. With sophisticated mathematics in quantum
mechanics, we are able to understand the wonderland between wave optics and ray
optics and the important roles of quantum coherent states in quantum systems.

Two kinds of optical systems, light pipes and a laser resonator, were discussed in

the thesis. Although it seems that the two setups are totally different, they are
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governed by the same theoretical foundation. Within rigorous analyses, the coherent
states in corresponding quantum systems revealed intriguing patterns localized on the
classical periodic orbits. The same spatial patterns could be found in the optical
systems. The validation of the connection between quantum and optical coherent
waves enables further studies on related research based on quantum mechanics.

Another topic in the thesis is the linkage of two distinctive optical coherent states
localized on the periodic orbits of Lissajous and trochoidal curves. The investigation
not only visualized the insight of topology in mathematics but exhibited analog
transformational relationship of particle trajectories followed by different coupling
mechanisms in a two-dimensional harmonic system. Hence, the realization of the
converted spatial coherent states might be an accessible method for the study of
fundamental science in various branches. With theoretical analyses, the coherent
waves were found to carry large orbital angular momentum and might stimulate
further applications.

Besides the two topics mentioned on the above, another topic has been played an
important role in the mesoscopic physics—the investigation of localization for
disordered wave functions in random media. In this work, we obtain the disordered
wave functions from the conical second harmonic generation to explore the
continuous transformation of weak localization from extended to pre-localized states.
We numerically verify that the experimental density distributions with different
extents of weak localization can be excellently analyzed with a reduced version of the
nonlinear sigma model. This is the first time that the reduced version of the nonlinear
sigma model to be applied to describe the experimental results. Moreover, we perform
that the chi-square distributions with fractional degrees of freedom are practically
equivalent to the density distributions of the reduced version of the nonlinear sigma

model. Since the observation of the disordered wave functions is not accessible, this
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work might provide an approach to comprehensively study the intriguing physics
behind the disordered systems. On the other hand, the present results suggest the
possibility of exploiting conical second harmonic generation as a diagnostic method to

understand the complex topological structure of the disordered crystals.
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Ch1 Introduction to the Thesis

Chapter 1

Introduction to the Thesis

1.1 Classical Mechanics and Ray Optics : Periodic Orbits

Classical mechanics helps us to realize the the macroscopic physics world. It could be
employed to describe the motion of the macroscopic objects and the classical
trajectories that the particles move along. By systematically analyzing the trajectories
of the objects in classical systems, one can have further insights into the physical
properties of the systems. For example, one can acquire useful information such as the
interaction between objects in the many-body system, the effect of the confinement on
the objects, and the states that can exist in the system [1]. These are the important
factors that determine the behavior of the particles in the classical systems.

There is a great deal of research that concerns the issues in the classical
trajectories [1], among which the most well-known are the revolution of heavenly
spheres, the motion of billiards in confined systems as depicted in Fig. 1.1.1 , and the
orbits of an electron in the hydrogen atom. Most of the classical trajectories related to
the systems reveal periodicity and closed form. According to their specialty, they are
therefore designated as the periodic orbits. Research on the periodic orbits not only
shows the physical meaning of great significance but discloses the exotic and diverse
appearances which have fascinated scientists from a variety of fields. Moreover, the
periodic orbits are characterized by their concise and symmetric mathematical
interpretation. Besides of the conical sections, including circular, and elliptic orbits,

we are familiar with, there are attracting periodic orbits such as the Lissajous and
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trochoidal curves.

According to the intriguing features and complexity of the periodic orbits in
classical systems, scientists wondered whether “light” possess the same characteristics
as the classical trajectories. The answer has been provided by Hamilton who proposed
his formulation of the optical-mechanical analogy in the early 19" century [2]. The
analogy between the classical mechanics and ray optics according to his
announcement is given in Table 1.1.1. It is noted that the ray optics shows good
analogy to the classical mechanics. Experiments have confirmed that optical rays can
reflect in the same manner as the classical objects. The validation suggests that the
various classical trajectories could be manifested within light. In a part of this thesis,
we focus our attention on the complex classical trajectories by employing the optical
experiments to investigate the transformational relationship between different periodic

orbits.

1.2 Schrodinger Wave Equation and Paraxial Wave
Equation

In this section, we demonstrate the analogy between the matter waves and the optical
waves by validating the tight connection between the Schrodinger wave equation and
the Paraxial wave equation for the electromagnetic (EM) waves. On the other hand,
the verification also reveals the fact that the wave optics has certain similarity to the
quantum mechanics.
Here we begin with the well-known Maxwell equations that have often been
used to describe how electric and magnetic fields are generated and altered by each

other and by charges and currents. The four Maxwell equations in the differential
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form can be given by

V-E=0, (1.2.1a)

o o -

VxE=—-u—H, (1.2.1b)
ot

V-H=0, (1.2.1¢)

_ o -

VxH=¢—F, (1.2.1d)
ot

where ¢ 1is the permittivity, and u is the permeability of the medium that the EM
waves pass through.

Furthermore, taking the curl of the curl equations in Eq. (1.2.1b) and Eq. (1.2.1¢)

and using the identity VxVxA4=V (? . Zl) ~V?4, we obtain the wave equations for

the EM waves
, 1 ¢
\Y% —V—ZW E(x,y,z;t)=0, (1223)
, 1 ¢
\Y% —V—ZW H(x,y,z;t)=0, (122b)

where v:l/ Jue signifies the speed of the waves in the medium and

V= 1/ \J M, €, =c where c represents the speed of light in free space.

Considering the case of separation in time and space, we can write down the

iot

amplitude of the electric field in the form E(x,y,z;t)=®(x,y,z)e'”" for a

monochromatic wave of angular frequency @ and thus we can rewrite Eq. (1.2.2a)
as

(V2 +&)D(x,y.2)=0, (1.2.3)
where k =w/v is the wave number. It is obvious that the Helmholtz equation has

been derived in Eq. (1.2.3).
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Table 1.1.1 Analogy between classical mechanics and ray optics by Hamilton.

Classical Mechanics Ray Optics

Characteristic Function |S = I 2m(E — V) ds=0 t= I Tds=0
c
1 n
Integrand P =+/2m (E — V) —=—
v
p
(Least action) (Fermat’s principle)
Principle
P 55=0 5t=0
S : action ¢t : time of propagation
Denotations 10 5 T n: refractive igdex
E-V : Kinetic energy ¢ : light velocity
p : particle momentum v p : phase velocity
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Assume that the EM wave propagates along the z direction, the electric field

can thus be expressed as

@(x,y,z):u(x,y,z)e’ikzz, (1.2.4)

where u (x, y,z) signifies the transverse amplitude and k. denotes the z component

of the wave vector. Substituting Eq. (1.2.4) into Eq. (1.2.3) leads to

0 0’ 0 0
+ + —2ik. —+(k* -k ,1,2)=0. 1.2.5
{axz oy* o0z ry ( : )}u(x »2) ( )

Since, in the paraxial approximation, the term 0’u (x, V, z) / 0z® issmall enough

to be neglected, Eq. (1.2.5) can be simplified as

{Vlz—2ik28i+k,2}u(x,y,z)20, (1.2.6)
z

where V > =0?/0x* +6%/6y* “in the Cartesian coordinate and k*=k”—k.. Eq.

(1.2.6) is known as the paraxial wave equation.
Compare with the time dependent Schrodinger wave equation of two spatial

dimensions

2
—f—mvj‘P(x, Vo t)+V (5 2) ¥ (v, y,t)=ih%‘1’(x, 1), (12.7)

which can be rewritten as
N +————V(x,y)}f’(x,y,t):0, (1.2.8)

we can obtain the relations between Eq. (1.2.6) and Eq. (1.2.8) as follows

Z4t
ko —% . (1.2.9)
i l,\/2mV
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Based on the derivation that the Schrodinger wave equation possesses the same
mathematical form as the paraxial wave equation, we are able to interpret the light
patterns observed in the optical experiments by the use of the sophisticated quantum
theory. On the other hand, it has been confirmed that matter waves can also refract,
diffract, interfere, and scatter in the same manner as electromagnetic waves in the
quantum systems. Therefore, one can undertake comprehensive studies in the
quantum wave functions with the available optical experiments through the tight

connection between the quantum mechanics and wave optics.

1.3 Optical-Mechanical Analogy
In the previous sections, we have shown the analogy between the mechanics and
optics with systematical analysis. Here we are going to find out the correspondence
between waves and rays by considering the EM wave equation and Schrodinger wave
equation in the semi-classical limit

Here we start with the EM wave equation in Eq. (1.2.2a). Consider the case of

separation in time and space, the amplitude of the electric field of a monochromatic

wave of angular frequency @ can be expressed as E(r;t)=®(r)e'”" and thus we

can rewrite Eq. (1.2.2a) into the Helmholtz equation

(V?+&*)D(r)=0, (1.3.1)
where k=ao/v=2z/1, k,=®/c in vacuum, and n=c/v=k/k,=2,/A is the
refractive index of the medium. Let ®(r)=A(r)exp|ik,4(r)], where A(r)

represents the amplitude of ®(r) and ¢(r) signifies the phase factor for ®(r),

and then substitute @ (r) into Eq. (1.3.1), two equations can be obtained for both the
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real and imaginary part are equal to zero as follows

—k,? {[W(r)]z —[kﬁjz}{vln,q(r)f +V2Ind(r)=0, (1.3.2a)

0
1 _ _
k, {5V2¢(r)+[VInA(r)]-[V¢(r):|}:0. (1.3.2b)
In the short wavelength limit for ray optics (4,4, - 0= k,k, — o), the terms with

k,” dominate in Eq. (1.3.2) and hence we have

[vqé(r)]z—[i] =W¢(r)]2—n2 (r):O, (1.3.3a)

kO

1 _ _

Evzgzﬁ(r){v InA(r)]-[Vé(r)]=0. (1.3.3b)
Here, we can obtain from Eq. (1.3.3a) that

[Vo(r)] =n(r), (1.3.4)
where ?¢(r) suggests the direction of the optical rays. Equation (1.3.4) is the
principal equation of ray optics in homogeneous isotropic medium and is the so-called
eikonal equation. The interpretation successfully verifies the connection between
wave and ray optics.

In the following, we consider the case for matter waves and the time-dependent

Schrodinger equation can be given by

n g, Ao in @ wl,.
_EV ‘P(r,t)+V(r)‘P(r,t)—lhat‘l’(r,t). (1.3.5)

Similarly, take account of the separation in time and space for the wave function

Y (r;t)=w(r)e’", Eq. (1.3.5) can be modified as
(V?+x )y (r)=0, (1.3.6)

where K:1/2m(E—V)/h and E=hw. It can be seen that Eq. (1.3.6) has

8
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equivalent form to the Helmholtz equation. Let w(r)= p(r)exp [i S(r)/ h:' , where

S(r) is the action, and substitute it into Eq. (1.3.6). After the same algebra as the

above mentioned with the EM wave, the obtained equation can hold only when both
the real and imaginary part are zero. Therefore, a couple of equations can be derived

from Eq. (1.3.6) as

_%{WS(F)T ‘(h’f)z} +Wlnp(r)]2 +V:Inp(r)=0, (1.3.7a)
hlz{;v S(r)+[Vinp( )]'WS(”)]}ZO- (1.3.7b)

In the classical limit for particles (% — 0), the terms with 1/ h’ dominate in Eq.

(1.3.7) and thus we obtain

St

(98 (r)] - ()’ =[¥5(r)] -(—T _[vS()] -2 (). (1.3.82)

~

EVS (r)+[Vinp(r)]-[VS(r)]=0, (1.3.8b)

where A4 is the wavelength of the matter waves and p \/Zm[E V

signifies the momentum of the classical objects. From Eq. (1.3.8a), we are informed

that
(VS(r)] =p* (). (13.9)
where VS (r) indicates the direction of the particle motion. Obviously, Eq. (1.3.9) is

closely analogous to Eq. (1.3.4), which implies that the transition from quantum
mechanics to classical mechanics is equivalent to the relation between wave optics
and geometric optics. The equivalence also confirms the relations we have discussed
in previous sections: the trajectory of classical particle is similar to a ray in geometric
optics and the matter waves are highly analogous to the optical waves. It is evident

that we are able to employ optical experiments to explore the corresponding classical

9
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or quantum phenomena. Figure 1.3.1 displays the complete version of analogy

between the optics and mechanics.

1.4 Mesoscopic Wave Functions

In the previous sections, we have presented the tight connection between optics and
the mechanics. The purpose of this thesis is to explore the intriguing physical
phenomena in the mesoscopic physics which is the intermediate regime between the
classical and quantum mechanics. Based on the close correspondence between the
optics and mechanics, we use optical experiments to analogously investigate the
physical features in the mesocscopic regime. Since optical experiments are
characterized by their advantages of reproducibility, stability, and accessibility, the
observations are reliable and enable us to have a better understanding of the physical
meaning for the mesoscopic wave functions. In this thesis, we focus our attention on
two important issues concerning the periodic orbits in the mesoscopic systems and the

statistical properties of the disordered wave functions in random medium.

1.4.1 Periodic Orbits in Mesoscopic Systems

In recent decades, there has been great interest in the quantum manifestation of the
classical periodic orbits in mesoscopic systems [3-13]. Mesoscopic billiards have been
shown to play a crucial role in the exploration of the interplay between the classical
orbits and the quantum energy spectrum [1,14-20]. Intriguingly, nonintegrable
systems also reveal the localized phenomena that the scarred eigenstates are
concentrated on unstable periodic orbits instead of randomly distributed in the
systems [21-23]. Moreover, observations of conductance fluctuations related to the

quantum transport in nanostructure devices have displayed close correspondence to

10
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the quantum wave functions associated with the classical periodic orbits [24-29]. The
phenomena of nonlinear resonances formerly investigated by Fermi with the molecule
of CO, [30] have been validated to have a great effect on the appearance of the
classical trajectories [31]. There is a good deal of research that has been shown to
tightly relate to the important phenomena of the nonlinear resonances. For example,
the works can be seen in the experimental investigation of tunneling effects, stellar
orbits, molecular excitations, and some theoretical studies [31-34].

It can be seen that the localized feature associated with the classical periodic
orbits plays a significance role in a variety of mesoscopic systems. As a result, the
exploration of the connection between the quantum wave functions and the classical
periodic orbits can help to figure out the intriguing physics exhibited in the
mesoscopic regime, which is also the central issue of modern physics. In the thesis,
we present two kinds of optical systems including the spherical laser resonator and the
light pipe to analogously investigate the corresponding wave functions in the quantum
harmonic oscillator and the quantum circular billiard. The wave functions and the
optical modes that characterized by their fascinating morphologies are shown to be
concentrated on the intricate periodic orbits. It can be expected that this work might
stimulate more ideas in the quantum-classical connection for the related topics in

mesoscopic systems.

1.4.2 Disordered Wave Functions in Random Media

Wave behavior in Random medium is a popular subject that has gone through a
remarkable transformation in the past decades. The transformation was initiated by
Anderson who suggested the possibility of electron localization inside a
semiconductor [35]. The issue is now an important area of research which includes a
variety of problems such as wave localization (weak [36-45] or strong [36,46-48]),

11
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Fig. 1.3.1 Optical-Mechanical analogy.
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wave diffusion [49-52], intensity fluctuations [53-57], and correlation [58]. Since
disorder phenomena are not restricted to a specific kind of wave, various approaches
[36-38,59] have been developed individually in condensed matter physics, optics,
acoustics, and atomic physics. It could be found that the localization phenomenon is
still an important issue and deserves further investigations.

In this thesis, we experimentally acquire the disordered wave functions from the
conical second harmonic generation to explore the variation of weak localization from
extended to pre-localized states. We numerically verify that the experimental density
distributions with different extents of weak localization can be excellently analyzed
with a reduced version of the nonlinear sigma model (RV-NLS model). Moreover, we
demonstrate that the chi-square distributions with fractional degrees of freedom are
practically equivalent to the density distributions of the RV-NLS model. Our finding
indicates that the concept of fractional degrees of freedom can be applied to the
statistical properties of disordered wave functions. It is believed that the present work

can bring more insight into the localization phenomena of diverse disordered systems.

13
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Chapter 2

Coherent Wave Transformation in
Quantum Harmonic Oscillators
and Spherical Laser Resonators

2.0 Introduction

® Transformation in coupled isotropic harmonic oscillators
Numerous recent researches on optical spatial modes have come out in modern
physics [1-3] ranging from classical simulators of quantum entanglement [4-6] to
parallel information [7,8]. The transverse Hermite-Gaussian (HG) modes are emitted
by most laser cavities and are formally identical to the eigenstates of two-dimensional
(2D) quantum harmonic oscillator (HO) [9]. Consequently, HG modes are often used
to represent the spatial quantum photon states within the paraxial regime [10].
Recently, a variety of quantum Lissajous states formed by the coherent superposition
of HG eigenstates has been analogously generated from the degenerate laser
resonators, which exhibit wave patterns resembling Lissajous figures [11].
Constructing wave states with spatial morphologies well localized on the particle
orbits has become one of the most fundamental features in different branches of
physics such as solid-state physics, nuclear and atom physics, and laser physics
[12,13].

Likewise, the Laguerre-Gaussian (LG) modes correspond to circular eigenstates
of the 2D HO and play a prominent role in singular optics [14]. In the early 1990s, it

was shown that a high-order HG mode can be converted into a LG mode by using
18



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

astigmatic lenses [15,16]. Since this discovery, researchers have made tremendous
progress in manipulation [17], detection [18], and application [19,20] of the
orbital-angular-momentum states of light. The generation of optical coherent states
with intensities localized on intriguing periodic orbits might be an enabling tool to
explore further possibilities for creating a new class of quantum light-matter entangled
states.

In section 2.1.1 and 2.2.2, we theoretically and experimentally present the
continuous transformation between the HG and LG modes. Furthermore, in section
2.1.2 and 2.2.3, we theoretically verify that converting the HG modes into the LG can
lead to the spatial morphologies of the two-dimensional (2D) coherent states to be
transformed from Lissajous figures to trochoidal curves. With this transformational
relationship, we experimentally generate various structured lights by exploiting a
cylindrical-lens mode converter to transform the optical Lissajous modes. The present
investigation manifests a notable method to generate optical coherent waves with

various orbital spatial morphologies.

® Transformation in coupled commensurate harmonic oscillators

For the past few decades, models developed from quantum mechanics have been
employed progressively to explore the emergent phenomena in numerous different
branches of physics because they can be interpreted with the same theoretical forms as
quantum formulas [2,21-24]. One of the most profound similarities is that the
electromagnetic wave equation in paraxial approximation is isomorphous to the
Schrodinger equation [25-28]. Consequently, the electromagnetic radiation modes in
the optical resonator or waveguide are analogs of the wave functions of a quantum
system [9,11,29]. The tight connection between the paraxial beam propagation and

quantum mechanics has been extensively exploited to study wave chaos phenomena
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[29-31], disorder induced wave localization [32], semiclassical physics [33,34], and
transient dynamics of quantum states [35-37].

The coupled HOs have been employed successfully to explore the hydrogen
atom problem [38], charged particles in external field [39,40], states of deformed
nucleus in the Nilson model [41], shell effects in nuclei and metallic clusters [42],
and orbital magnetism in quantum dots [43]. More recently, the isotropic HOs with
SU(2) coupling interactions have been used to investigate the generation and
evolution of quantum vortex states [44] and the transformation geometry between
Lissajous and trochoidal orbits [45]. It has been shown [46,47] that the
commensurate HOs can be mapped into the isotropic HOs via the canonical
transformation. Although the isotropic HOs with SU(2) coupling interactions have
been verified to be a striking analytical model, the quantum states of canonically
mapped commensurate HOs  with SU(2) coupling interactions have not been
thoroughly explored yet.

In section 2.1.3, we theoretically explore the eigenstates of a commensurate HO
with SU(2) coupling interactions under the canonical transformation. The spatial
patterns of the high-order eigenstates are found to be markedly localized on Lissajous
figures to trochoidal curves from single to multiple periodic orbits. In section 2.1.4,
controlling the pumping size in large-Fresnel number degenerate cavities, we have
experimentally observed the laser transverse modes that display the wave patterns to
be analogous to the derived eigenstates. Moreover, by exploiting the cylindrical-lens
mode converter, we have experimentally presented the beam transformation from

multiple Lissajous orbits to the multiple trochoidal curves.

2.1 Coupled Quantum Harmonic Oscillators
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2.1.1 Eigenstates : SU(2) Transformation

It is well-known that the Hamiltonian for the 2D isotropic HO with the dimensionless

spatial variables X and y is given by

A

Hb=%?uﬁ+ﬁ§+x?gf), 2.1.1)

where @, is the angular frequency of the HO. Furthermore, Eq. (2.1.1) can be

rewritten in terms of the ladder operators, and hence it becomes

A

H, =(a/a,+ala, +1) o, (2.1.2)
where a=F+ip)/V2 , a=F-ip)N2 ., a=(F+ip)N2 , and
a," = ( y-ip, ) / V2 . Here we chose =1 for the units. The eigenstates of I:IO can

be derived to be the two-mode Fock state |,,7,) PN [ ahymahy» / Jmn,! ]

Q@a,

where

0, O> , denotes the ground state. The corresponding eigenvalues are
E, (n,,n,)=(n,+n,+)w,, where n, and n, are positive integers. Moreover, the
normalized spatial representation is expressed as

#2452

e * H, (DH, (7), (2.1.3)

(%7 ”1’”2>190

B 1
J2" " 7 (m ) (ny))

where H () is the Hermite polynomial of order 7.

The general form of a 2D HO with the SU(2) coupling can be modeled as
H=H,+Q,J +Q,J, +Q.J,, (2.1.4)

where the coupling parameters €, (i€1,2,3) are assumed to be real constants and

ji are the Casmir operators associated with the SU(2) Lie algebra and the

corresponding generators derived by Schwinger [48] are
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Jy =Y (ala, +ala), (2.1.5a)
J, == (a4, -dla,), (2.1.5b)
J, = Yo(aa,-ala,). (2.1.5¢)

The operators J, follow the angular-momentum commutation relation
[ J..J, |=iney J, [48], where the Levi-Civita tensor &, equals +1 (-1) if (i, j,k)

is an even (odd) permutation, and zero otherwise. With the dimensionless spatial

variables,
Jo= YV (25+p.p,), (2.1.6a)
J,=V(%p,-75.), (2.1.6b)
J=Vi(®+pl-5-5). (2.1.60)

Before solving the quantum eigenstates of H, let first investigate the classical
representation of the Hamiltonian H . The classical equation of motion for the
Hamiltonian H can be found to be

i%{vl}{(a)ﬁ(gyz) (Ql—iQZ)/zﬂvl} @17

v | [(+i9,)/2 o, -(2,/2) ||,

where v, =X+ip and v,=y+ip, . It is worth to mention that the equation of

motion for the Hamiltonain H in the classical system possesses the same form as
the Schrodinger equation when considering the case of a 2-level system. By

employing the SU(2) algebra, the general solution for Eq. (2.1.7) can be derived to be

[vl (t)} ~ {em/z cos(f/2) —e“*sin(f/ 2)} {ul (f)} (2.1.8)

v(@)| | €Psin(B12) € cos(B/2) ||uy(0)
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where  a=tn(©@,/0) . pow (T 0lj0)  wo=se
u, ()= e w0 =w,+(Q/2), 0,=0,-(Q/2), QA=A +Q;+Q], 4,

A4,, ¢,,and ¢, are decided by the initial conditions.

To explore the quantum eigenstates of the Hamiltonian H, we employ the

same SU(2) algebra as in the classical dynamics to define a new pair of operators

|:&1, j| _ |: 6%/2 C().S(ﬂ / 2) e:fa/z sin(ﬂ / 2):| |:C?1 :| . (219)
_e’a/z Sll’l(ﬂ / 2) e a2 COS(,B / 2) a,

Substituting a; and &), into Eq. (2.1.4) according to the relation in Eq. (2.1.9), we

thus obtain the Hamiltonian H to be transformed into a separable 2D HO
5 AP 1 A 1
H=|a'a +5 o, +| a, a2+5 @, . (2.1.10)

Therefore, the eigenstates and eigenvalues of the Hamiltonian H yield to be
|nl,n2>ﬁ :[(&f)”' (&;)”Z/Jrzl 'n, !]

E_.(n,n,)=(m+1/2)a, +(n,+1/2) e, , respectively. With the transformational

0,0) . and

relation in Eq. (2.1.9) and

0, O>ﬁ -

0, 0> P the eigenstates to the Hamiltonian H

can be derived in terms of the Wigner d-coefficient [49]:

1 Y —im,a x
|nmy); =™y e N(ﬂ)|ml,m2>ﬁ0, (2.1.11)

my——,n——
2

m;=0 2

where N =n,+n,=m, +m, and

N
d,,,z_N N(ﬂ):\/ml '(N-m,) !n, (N—-n)!
1 E,nl—?
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e Cof{E] 2]
"t . (2112

v=max{0,m-n, ] v!(N—nl —v)!(ml —v)!(nl—m1 +v)!

The detailed derivation can be found in Appendix A. Evidently, the eigenstates

|nl,n2 > , can be expressed as a linear superposition of the set of |m],m2> ;- Figure
2.1.1 and Fig. 2.1.2 depict the intensity distribution of |n1,n2> , for various indices

(nl,nz) and values of (a,ﬂ). Figure 2.1.1 and Fig. 2.1.2 are shown with the

parameters S=7x/2 and «a=7x/2 , respectively. It can be seen that the

transformation from the HG to the LG modes can be continuously obtained by

changing the parameter « or [, which suggests different extent of coupling effect.
The intermediate states, the Ince-Gaussian modes, are accessibly acquired through the
SU(2) algebra associated with the coupled isotropic HO. Notably, the LG modes
presented in Fig. 2.1.2(e) and Fig. 2.1.2(¢’) possess fairly large orbital angular
momentum per photon [19,20] of [A=5h and [h=52%h, respectively. Since light
beams with well-defined orbital angular momentum have a number of developing
applications [19,20], generation of such optical beams should be an important issue

for further studies. Moreover, in Fig. 2.1.3, we present the comparison between the

traveling-wave and the standing-wave forms of the eigenstates |n1,n2> , for
B =r/2. The standing-wave forms are obtained by taking the real part of the

eigenstates |n1 , n2> P

2.1.2 Coherent States : Single Periodic Orbits
According to Eq. (2.1.8), we can obtain the classical orbits for H with the

parametric equations X(¢) = Re[v1 (t)] and ()= Re[v2 (t)] , Where
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a=7z’/2 (p,l)

(0,20)

(2,16)

(4,12)

(6.8)

(10,0)

Ince-Gaussian

Fig. 2.1.1 The intensity distribution of the eigenstates |nl,n2> ;, with different indices

(n1 N, ), various values of « values and constant value of f=7/2.
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- .
Snne

(b

)
B=25.8 @mmnnmmnn|mmuum@

(c”)
B=ATA @ @ B=36"
B=T8 B =60
B=90" B=90"

Fig. 2.1.2 The intensity distribution of the eigenstates |nl,n2> ;, with different indices

(nl,nz) , various values of S and constant value of a=7x/2 : (a)-(e)

(n,,m,)=(15,10), @)(e") (n,.n,)=(55.3).
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My,

A
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N
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I

L
N,

\\\\IIH/,

Standing wave

Fig. 2.1.3 The intensity distribution of the eigenstates |n1,n2> , With different indices

(nl,nz) , various values of « and constant value of S=x/2 ; (Upper)
traveling-wave form; (Lower) standing-wave form.
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Hr) = s 4 -% - asin? _4-Z
x(t)—Alcos(z)cos(a)lt @, 2] Azsm(zjcos(a)zt @, 2]

y(t) =4, sin [g} cos (a)lt —-@+ %J + 4, cos (gj cos (a)2t -, + %)

(2.1.13)

Figure 2.1.4 depicts the periodic orbits of the case w, / @, =8/1 for various o and

L values with the parameters of (AI,A2)2(35,100) and (¢1,¢2)=(—7z,0)

according to Eq. (2.1.13). The periodic orbits are shown to be associated with a

continuous transformation between Lissajous curves and hypotrochoids for differing

values of o and f. In addition, Fig. 2.1.5 displays the periodic orbits the case of

@, / w,=-9/1 for differet « and f values with the parameters of

(4,,4,)=(60,150) and (¢1,¢2)=(—7Z',0) according to Eq. (2.1.13). The classical

trajectories are found to be a continuous transformation between Lissajous figures and

epitrochoids with varying values of o and g . It is obvious that a hypotrochoid or
an epitrochoid depends on the ratio of , /a)2 to be positive or negative with

a=nx/2 and B=nxr/2.

The periodic orbits for the Hamiltonian A in the classical mechanics have been
clearly demonstrated as mentioned above. Here we wonder whether the quantum
states corresponding to the Schrodinger equation reveal the same morphologies
localized on the periodic orbits. To construct such quantum states for mimicking the
localized curves in classical dynamics, we apply the concepts of wave-packet
coherent states first proposed by Schrodinger in 1926.

The wave-packet coherent states of 1D HO developed by Schrodinger are given

by
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o2 2 2 3

Fig. 2.1.4 Classical periodic orbits for the case ,/w,=8/1, (AI,A2)=(35,100),
and (¢1,¢2) =(-,0) corresponding to Eq. (2.1.13).
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122228
SRR R
"%, U % %3 &

Fig. 2.1.5 Classical periodic orbits for the case a)l/a)2 =-9/1, (AI,AZ) =(60,150),
and (¢1,¢2) = (—7r,0) corresponding to Eq. (2.1.13).
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_a) t MZ

“P > e iu—eT(&

nOn'

0), (2.1.14)

where u=Ae“"™ Aand ¢ are decided by the initial conditions of the orbits. By

employing the generating function of the Hermite polynomials, the probability

distributions of the Schrodinger coherent states can be derived to be
- - 1 -
P(X, tu) = |<x|‘P(t;,u)>|2 =—= eXp{ —[¥=~/2 Re(u)]’ } . (2.1.15)
N

It can be obviously seen that the center of the coherent state moves along the path of
the classical trajectory Xx(¢)= V2 Re[u(?)]= \/5 Acos(wt—¢). In Eq. (2.1.10) we

have performed that the coupled HO with Hamiltonian H can be transformed into a

separable 2D HO through the SU(2) algebra. The Schrodinger coherent states for a 2D

coupled HO can be expressed as the product of two 1D wave-packet coherent states:

(a) +w2) " (\“1\ ‘*'\”2\ )

> e

n;=0 n,=0

“P(t ul,u2 >

n,
u] uz ("’T)nl("VT)HZ
n! n,!

1°

0,0), (2.1.16)

where u,()=d4,e" " and u,(f)=A,e"" . By substituting the ladder

+

operators 4, and a)' with the transformational relations in Eq. (2.1.9), after

cumbersome algebra, Eq. (2.1.16) is given by

(ImP +\vz\ )

“P(tvl,v2> e ! i ie

m;=0 m,=0
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WV m s
— (@) ' (a)
5!

0,0), |, 2.1.17
m ! m >H° ( )

where (ul (t),u, (t)) and (v1 (), v, (t)) follow the same relations as presented in Eq.

(2.1.8). According to Eq. (2.1.15) and Eq. (2.1.17), we find that the probability

distribution of the coherent states “P (v, v, )> can be expressed as
- - . 1 .
P(3.5.1) =[(%.5|¥ (tm.v,))f = — exp{—(x—ﬁRe[vl(t)])z}
xexp{—()?—x/iRe[vz(t)])z}. (2.1.18)

Equation (2.1.18) reveals that the coherent states “P(I;vl, v, )> concentrate exactly

on the same trajectories represented by the parametric equations in Eq. (2.1.13). To
provide a comprehensive study. in the corresponding quantum coherent states
localized on the periodic orbits, we are here to find out the time independent

stationary coherent states extracted out from the wave-packet coherent states
“P(t;vl,vz».

Consider a general expression for the stationary coherent state, the wave-packet
coherent states “P(t;vl, v, )> can be expressed as the double finite sum with fairly
large A4, and A, values. For the corresponding 2D Poisson distribution, the

probability of the coherent state “P(z‘;vl,v2 )> in the eigenstate |n1,n2> can

A

therefore be written as

P(n,n,)= ,;<n1,nz\‘1’(t;vl,vz)>=(ﬁl—e“j(ﬁe"zj, (2.1.19)

where 7, and 7, are the mean values for the associated quantum numbers and can
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N

aa; “I’> = A4 . Since the values

Art Ar

a, q,

W)=4 and 7, =(¥

be given by 7, = <‘P
of the means 7, and 7, are sufficiently large, according to the central limit theorem,

the distribution P(n,,n,) becomes normally distributed and the standard deviations

are given by \/ﬁ_l and \/i . As aresult, Eq. (2.1.17) can be rewritten as

A 2Jm1 ENER
|‘P(t;v1, V2 )> - 6—1\9(1‘) z z
s=—12/m1 s=2,[7,]

e—isl(wlt—%) —:é e—isz(a’zf‘%) _:7%
n D — —
! e |nl+sl,n2+sz>ﬁ ,(2.1.20)

LPrm o

—i9(t) — e—i(a)l+(u2)t/26—i7’1(0)1f—¢|)e—iﬁz((02f—¢z)

where e and [a] is the Gaussian Bracket which

signifies the nearest integer to a at the lower side. Considering the case for a

commensurate HO with a frequency ratio of o,/w,=*¢/p, we let o, =qo and
@, =t pw, where p and ¢ are relatively prime and positive integers. The eigenstates
with indices ('s,s,) of the commensurate HO in Eq. (2.1.20) hence can be divided

into subsets and expressed as ‘ﬁl + pk, + u, , 1, +qk, +y2>g, where (k,k,) are
arbitrary nonnegative integers, and (x,,u,) are constants that x,=0,1,...,p—1 and

4,=0,1...,g—1. The coherent states in Eq. (2.1.20) can be derived to be

0 (27 /p] [2,/7 /4]

)4 gq-1
B p - .
|IP(I;V1,V2)>:Q i9(t) z e ip (qot—¢;) z e ity (tpot-¢,) Z
=0 #5=0 l=—12/7,/p] ky=—12,[7,/q]
ik (qoi-g) PR g, por-gy) (Wt
e 47, e 4n,
X———— — ¢
N27h, \JA[27n,
x|, + phy + 1,75, + gk, +y2>H], (2.121)
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with indices k, =(s+k)/2 and k, =%(s—k)/2, where the sign + of the index & is

decided by the sign of @w,=*pw and the condition of nearly degeneracy, the

coherent state |‘P(t;v1, v2)> in Eq. (2.1.21) can hence be given by

p-1 gq-1
_ —i . i (£ -
|\P(t VI,VZ > i9(t) |: e in(qot-¢,) z e i, (tpot-¢,)

=0 uy =0

S
Z e—i2quwt eiS(P¢1iQ¢2)

s==S

pira (7)>S# ) } (2.1.22)

where § =[2ﬁ / p+2.1, /q] and the time independent stationary coherent state

\t}f;fjn;j (y)>_ is given by
831y Mo

U(s) [pls+h)tp TP [£q(s—k)+p,T
\Pip,q _ 1 iky 4m 4n,
), — | 2 e ¢

A 27 [, | k=LG)

|7+ ps k) + (s =)+ 41,), |, (2.1.23)

with L(s) = max( -[27, /p]—s. ~[2/7, [q]+5) and
U(s):min( [2ﬁ/p]—s, (24 1, /q]+s). Note that it is valid for us to choose a
specific subset of ( y yz) =(0,0) since the choice of the subset does not affect the

spatial morphology of the stationary states “I—‘nl . (7/)> in the classical limit (7,

NN

my 71y

and 7, large enough). Moreover, the amplitude coefficient of ‘\I’“’ "(7/)>

S,y Hy

dominates when the index s equals to zero. Thus, the stationary coherent state

‘ prrd (7/)> o can be rewritten in a compact form:

)11 }'l2
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1 M (k) (k)
= Ze’ky e e M |ﬁl + pk, n, 1qk>ﬁ ,

“P?nyrfzq (7)>070’0 = W ~

(2.1.24)

where M =min< [2\/%1 / p},[Zﬁ /q}) . The stationary coherent states in Eq.

(2.1.24) suggest the periodic orbits that the wave-packet coherent states move along.

Figure 2.1.6 depicts the transformation between the Lissajous curves and

hypotrochoids for varying values of S with the parameters of w, /a)2 =5/2,

(ﬁl , 712) =(9,80), y=-r/4, and a=7x/2. The continuous transformation between

the Lissajous curves and the epitrochoids is clearly shown in Fig. 2.1.7 for different

S values with the parameters of a)l/co2 =-5/2 (nl,r_zz) =(29,60), y=x/4, and
a = /2. Moreover, Fig. 2.1.8 displays the transformation from Lissajous curves to

hypotrochoids for various values of «a with the parameters of o, / w,=-5/2

(ﬁl,ﬁ2)=(29,60) , y=-n/2, and pS=x/2 . Exploiting the concepts of the

Schrodinger coherent states, we have successfully constructed the quantum states that
mimic the classical dynamics in the coupled HOs. Via the SU(2) algebra, we also
demonstrated the continuous transformation of the spatial morphologies between the
two sort of distinct classical orbits, the Lissajous curves and the trochoids. The present
results provide a comprehensive survey of the quantum-classical correspondence and
might stimulate further ideas concerning the intriguing non-classical behavior in the

mesoscopic regime.
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S

=153

B=180°

Fig. 2.1.6 Theoretical results for the intensity distribution of the stationary states
“Pi”’q()/)>000 for varying values of [ with the parameters of w, /a)2 =5/2,

n,ny

(7,.7,)=(9.80), y=-z/4,and a=z/2.
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p=18°
B=30" p=146"
p=45 B=170
B=66'

Fig. 2.1.7 Theoretical results for the intensity distribution of the stationary states
“Pi”’q(}/)>000 for different values of £ with the parameters of w, /a)2 =-5/2

1y,

(m,.7,)=(29.60), y=x/4,and a=7/2.

37



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

li

3
|
|

a=85"°

a=90 °

Fig. 2.1.8 Theoretical results for the intensity distribution of the stationary states
“Pi”’q(;/)>000 for different values of S with the parameters of w, /a)2 =-5/2

n,ny

(m,.7,)=(29,60), y=-z/2,and B=7/2.
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2.1.3 Coherent States : Multiple Periodic Orbits

In this section we start from the coupled commensurate HO with the Hamiltonian H
as derived in Eq. (2.1.10) and develop a quantum model by adding a new coupling
term to the the coupled commensurate HO. We explore the eigenstates and find that
the high-order spatial patterns are noticeably concentrated on Lissajous figures to
trochoidal curves from single to multiple periodic orbits.

The general form of a two-dimensional (2D) commensurate HO comprising

weak coupling term can be modeled as
H=H+H,k, (2.1.25)
where I-AIC signifies the SU(2) coupling term characterized by a vibration-rotational

mechanism and the detail will be provided later. The Hamiltonian H of the

commensurate HO is given by “H = Iflo +Q 1j1 +Q,J, +Q3.}3 as has been shown in

Eq. (2.1.4). By the use of the SU(2) algebra and in terms of the quantum ladder

operators, the Hamiltonian has been transformed into Eq (2.1.10) with

]—Alz(dl’T&I’+1/2)a)l+(&j&;+1/2>a)2, where @ =qw, w,=pw, © is a common
factor of the oscillation frequencies @, and @,, ¢ and p are integers, and the

ladder operators a/fand 4 (ie 1,2) follow the SU(2) transformation in Eq. (2.1.9).

The eigenstates of the commensurate HO can be divided into subsets given by

|nl p+A,n,q+A 2>H as has been presented by Louck [46] and also discussed in
section 2.1.2, where (n,,n,) are arbitrary nonnegative integers, and (4,,4,) are
constants that A =0,1,...,p—1 and 4,=0,1,...,g—1. According to Eq. (2.1.11), the

eigenstates |n1 p+A,n,q+A 2>ﬂ can be written as
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Mo M
|n1p+/11anzq+/12>;}:elMa/Zze_l sd?y, M(ﬂ)|S1’S2>Hn’ (2.1.26)
where |sl,s2> . are the eigenstates for the 2D isotropic HO given in Eq. (2.1.2),

M=n,p+Atn p+i=s+s,, a=tan'(Q,/Q,),and f= tan“(ﬁQl2 +Q§/Q3).
It reveals the fact that the eigenstates have been divided into pgq different subsets of
states and the degeneracy holds when n,+n, is a constant N for fixed (4,,4,)
corresponding to the eigenvalues E :a)'[(n1 +n2)+l/2p+l/2q+/11/p+lz/q}. For a
particular case (p,q)=(1,1) of the isotropic HO, it is evident that H = a)’[2j +1J ,
where J is the Casmir operator associated with the SU(2) Lie algebra and the
corresponding generators derived by Schwinger [48] are shown in Eq. (2.1.5).

With the non-bijective canonical transformation, the commensurate HO can be
mapped on to an isotropic one in a degenerate eigenspace [46]. The mapping suggests

Schwinger’s development of SU(2) symmetry represented by the canonically

transformed ladder operators and leads to the analytical solutions to the Hamiltonian

H . Therefore, under the canonical transformation, the Hamiltonian in Eq. (2.1.10)

can be transformed into

H= w'KaIaﬁéj{agaﬁ%H, (2.1.27)

where a, and G are the canonically transformed ladder operators which bear the

relations [46]

1 - . 2 (a1)
aiTzWx[’li(”i_l)"'(”i—é+1)]2 (aiT)‘f

: (2.1.28)
1 2 (40 ¥

(A=2,)x[A,(A=1)(A-&+1)]? (a,)"

with number operator 7 ,=4,'a, and indices (¢,&,)=(p.q). The operation of the
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ladder operators on particular eigenstates for fixed (4,,4,), for instance, are
dﬂnl p+A,,n,qg+A 2>ﬁ :\/ﬁ‘(nl+l)p+ﬂ L, g+ A 2>H and
&l|n1 p+A,n,g+A 2>I:1 =\/n71‘(nl—l)p+ﬂ L, g+ A 2>1% . Obviously, Eq. (2.1.27)
has been converted into the same form as the isotropic HO when the degeneracy can
exist for n,+n,=N according to the eigenvalue E=a'(n+n,+1) to the

Hamiltonian A . The generators of the SU(2) symmetry group can be rewritten in a

way that makes them the generators responsible for the commensurate HO under

consideration:
J=(aja,+ala,))2, J,=(ala,-ala,)/2i, J=(ala-ala,)/2. (2.129)

The operators also satisfy the Lie commutation relation. Particularly, J lzj -

J,=J,,and J,=J, forthe special case of the isotropic HO with (p.q)=(11).
Let us now return to our formal considerations of the coupled HO of the
Hamiltonian H given in Eq. (2.1.25). The Hamiltonian FIC is expressed in the

form of the SU(2) coupling interactions [44,45] and hence the Hamiltonian H can

be modeled as
H=H+H =H~+QJ +Q.J, +Q.J,, (2.1.30)
where Q' (je€l,2,3) are constants indicating the coupling parameters with the

assumption Q' <@' for weak coupling. We would like to remark that, in view of the

case (p,q)=(1,1) for the coupled isotropic HO, the wave functions have been

demonstrated previously on a group theory level via the SU(2) transformation in
section 2.1.1. Likewise, it enables us to derive the wave functions by employing the

transformation of SU(2) symmetry group. It can be seen that Eq. (2.1.30) possesses
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the same mathematical interpretation as Eq. (2.1.4). Therefore, the eigenstates with

indices (ml,mz) for the Hamiltonian A can be directly obtained in terms of the

Wigner d-coefticient [49]:

iNa' Y —in a' '
‘m13m2;213/1'2>1:1 =elNa/Zze d'i\ll/*zN/Z,ml—N/z (ﬂ )‘nlp_i_ﬂ‘l ,n2q+/1 2>1:[,

n;=0

(2.1.31)

where

dri\j/_zN/Z,ml—Nﬁ (ﬂ')z\/l’ll '(N—nl)'mll(N_ml)'

X

g ) [eos(p2)] " [sin(p/) ]

v:max[O,nl—ml] V!(N—ml —V)!(nl _V)!(ml_nl +v)!
(2.1.32)

Evidently, the eigenstates ‘ml,mz;/ll,/12> can. be expressed as a linear

il
superposition of the set of ‘n1p+ﬂ,1 M, g+ A 2>ﬁ. Figures 2.1.9(al)-2.1.9(a4) show

2

distributions of the Wigner d-coefficient with respect to n, for

d:l,/—zN/Z,ml—N/Z (ﬂ')
m,=0~3, N=60 and pB'=x/2 , which reveal the composition of
‘ml,mz;ﬂq,/?,z >H with eigenstates ‘nlp +A,,n,q+A 2>H of different orders. Figures

2.1.9(b1)-2.1.9(b4), 2.1.9(c1)-2.1.9(c4), and 2.1.9(d1)-2.1.9(d4) illustrate the

corresponding cigenstates |m,,m,;4,,4,) ~ for different indices (m,,m,) with

(p.q)=(21). (p.q)=(3.1). and (p.q)=(3.2). respectively, and all with the

parameters (4,,4,)=(0,0), (a',8)=(7/2,7/2), («,B8)=(0,0),and N =60.
Note that it is valid for us to choose a specific eigenspace of (4,,4,)=(0,0)

since, in the classical limit (V large enough), [50] has confirmed that the choice of the
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eigenspace does not affect the final results. Therefore, parameters (4,,4,) are set
to be (0,0) in the following discussions and we simplify the denotation of the

eigenstates ‘ml,m2;0,0>ﬁ to ‘ml,m2>ﬁ.Moreover, (a',p') are chosen for specific

parameters. «' signifies an additional phase shift between the two HOs in x and y

directions, and S’ corresponds to the coupling strength arising from I—AIC. The

distribution shown in Fig. 2.1.10(al)-2.1.10(a8) are varied with ', which indicates

different composition for the corresponding eigenstates ‘ml ,m2>ﬁ as depicted in Fig.

2.1.10(b1)-2.1.10(b8) with (p,q)=(2, 1) , a'=7x/2, (a,ﬂ)z(0,0) ,m; =1, and
N=60.For f'=0 and p'=r, the eigenstates can be seen to project precisely onto

particular eigenstates ‘ p.q(N —1)>I9 and |p(N-1),q), , respectively. While /'

1_'1 b
is determined, the conversion of «' can be illustrated as shown in Fig.

2.1.11(al)-2.1.11(a5) with m, =1, f'=04r («,B)=(0,0) and N=60, and in

Fig. 2.1.11(b1)-2.1.11(b5) with m =3, =074z, (a,B)=(0,0) and N=60.
The morphologies transform since different relative phases are introduced into the

superposition of states ‘ml,m2>ﬁ with the set of states ‘nl p.n, q>H .

Theoretical results disclose intriguing geometric patterns localized on an

ensemble of periodic Lissajous orbits, which suggests a kind of quantum-classical

2

analog. It is evident that the number of peaks associated with |d ,fvl/fN/z,mlfN/z (p)] is

consistent with the number of Lissajous orbits in ‘ml,m2>ﬁ according to various m, .

The fact implies each orbit of multi-Lissajous patterns is formed by the superposition

of a particular group of the set ‘nlp,n2q>ﬁ with distribution centered on the
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Fig. 2.1.9 (al)-(a4) Numerical simulations of the Wigner d-coefticient with respect to
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for various m, ; (bl)-(d4) numerical wave patterns for the intensities of

eigenstates ‘ml,mz;o, O> . Detailed description of the parameters; see text.
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Fig. 2.1.10 (al)-(a8) Numerical simulations of Wigner d-coefficient with respect to
n, for various f; (bl)-(b8) corresponding numerical wave patterns for the intensity

distribution of eigenstates ‘ml,m2>g .
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a=0 a=0
a=0.087 a=0.187
a=0.187 a=0257
a=0287 a=0357
a=05x a=057

Fig. 2.1.11 Numerical wave patterns for the intensities of eigenstates ‘ml,m2> with

i
respect to varying «'; (al)-(a5) f'=0.4xz;(bl)-(b5S) f'=0.74r.
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2

corresponding peak of |d,? . .. (B')| . A relation l:min(ml,m2)+1 can be
given, where [ denotes the number of orbits. While the magnitude of min(ml,m 2)

becomes larger, the related excited states display more complex caustic-like geometric

patterns as shown in Fig. 2.1.12 followed by the case in Fig. 2.1.9(b1)-2.1.9(b2).

Additionally, the symmetry is held for (ml,m2)<:>(m2,ml), e.g., eigenstates of
(m,.m,)=(26,34) and (m,m,)=(34,26) shown in Fig. 2.1.12(f) and 2.1.12(h)
possess identical morphology for equal distribution ‘d,fl’/_ 2nmn (B) ‘2. Though the
same morphology is notified, the eigenstates (ml,mz) and (mz,ml) are
characterized by distinct features of the quantum probability current J (x, y) , where
J(x,y)= Im(‘P*v‘P) [49] and W, ., (x.¥) =<x,y‘ml,m2>g. Taking the cases of

(ml,mz) =(1,59) and (ml,mz): (59,1) as an example, it can be seen that the
probability current J(x,y) flow in counter directions for the two states as depicted in

Fig. 2.1.13(b) and 2.1.13(c). Note that the vector field J(x,y) has been normalized

to J(x,y) / ‘j (x, y)‘ for observing the detailed structures and the constants 7 and

particle mass are set to be unity.

Figure 2.1.14 further displays the phase structures for the case in Fig. 2.1.12(a)
and 2.1.12(e). The enlarged figures of the box region in Fig. 2.1.14(a2) and 2.1.14(b2)
are presented respectively in Fig. 2.1.14(a3) and 2.1.14(b3), where the complicated
phase distribution indicates promising development in quantum physics such as

quantum entanglement and quantum information as long as the quantum states

‘ml,m2>ﬁ can be accessibly prepared [51]. Furthermore, in Fig. 2.1.15, we
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m =26

;{;:,’.-uull)llili“' m= 30

Fig. 2.1.12 Numerical wave patterns for higher indices m, followed by the case in

Fig. 2.1.9(b1)-(b4).
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Fig. 2.1.13 (a) Numerical wave patterns for the intensities of eigenstates ‘ml,m2>g

for (ml, mz):(l, 59) and (ml, m2)=(59, 1); probability current J(x,y) for (b)
(m,. m,)=(1,59),and (c) (m,, m,)=(59,1).
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the numerical calculations of ‘ml,m2>ﬁ for different (p,q) where (p,q)=(3,2),
and (a,f')=(7/2,7/2) for Fig. 2.1.15(), (p.q)=(3,1) , and

(o, p')=(7/2,7/2) for Fig. 2.1.15(b), (p,q)=(4,3), and (a',p')=(0,7/2) for
Fig. 2.1.15(c), and (p,q)=(5,2), and (a',p')=(x/2,7/2) for Fig. 2.1.15 (d), and
all with («,f)=(0,0), m, =1, and N =60. Moreover, Fig. 2.1.16 depicts the

transverse patterns for multiple Lissajous orbits in Fig. 2.1.15(a) for varying «'.

We have provided comprehensive analyses for the condition of (a,3)=(0,0)

on the above, i.e. the examples for multiple Lissajous orbits have been thoroughly
investigated. More intriguingly, consider the case for (e, 8)#(0,0), the eigenstates
of the coupled commensurate HO can be found to transform continuously from

multiple Lissajous orbits to the multiple trochoidal orbits as depicted in Fig. 2.1.17. It

is noted that the intensity distribution in Eq. (2.1.31) has been modified here to be

N
. = = _ _iNd'/2 —inya’ yN/2 '
‘ml’m2’ﬂ“l’ﬂ“2’nl’n2> g€ Ze dn]—N/Z,ml—N/Z (ﬂ)

n;=0

‘ﬁ1+n1p+/11,172$n2q+/12> }, (2.1.33)

H
where 7, and 7, are the initial values for the associated quantum numbers and the

sign ¥ oftheindex n,q isdecided by the general representation for o, =+pw.

As presented in section 2.1.2, the localization on the classical structure is more

prominent as the number of quanta increases. Therefore, without limiting the initial

values to be (ﬁl,ﬁz):(0,0) , n, and 7, are introduced here for the general

expression of the localized trajectories assoicated with fairly large quantum numbers.

Note that the degeneracy is still hold for Eq. (2.1.33) under the modification. Figures
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phase distribution of (al) and (b1), respectively; (a3), (b3) enlarged figures of the box

region in (a2) and (b3), respectively.
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Fig. 2.1.15 Numerical wave patterns for the intensity distribution of ‘ml,m 2>ﬁ with

different indices (p,q).
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z=0L a=0
z=0.02L a=0.087
z=0.08L a=0.387
z=0.11L a=05x
a=117r

Fig. 2.1.16 (al)-(a5) Experimental wave patterns. (b1)-(b5) Numerical wave patterns

for the intensity distribution of ‘ml,m 2> with (p,q)=(3,2) and varying values of

A

!

a .
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2.1.17(al)-2.1.17(el) display the intensity distribution of ‘ml,mz;ll,ﬂz;ﬁl,ﬁ2> . for
varying values of S with the parameters o, /w,=1/4, (711,172):(60,20) ,
(/11,/12):(0,0) , N=1, m =1, (a.p)=(-7/4,0), and a=x/2 . Figures
2.1.17(b1)-2.1.17(b2) show the intensity distribution of ‘ml,mz;ﬂl,ﬂz;ﬁl,ﬁ2> , for
varying values of A with the parameters o,/w,=2/5, (ﬁl,ﬁ2)=(40,28) ,
(/11,2,2)2(0,0), N=5, m, =1, (a',')=(x/4,0), and a=x/2. It can be seen that

for (a,B)=(7/2,7/2) the ecigenstates to the coupled commensurate HO are

concentrated on the multiple trochoidal orbits. The eigenstates reveal a continuous
transformation from the multiple Lissajous orbits to the multiple trochoidal curves for
S changing from 0 to 7/2.

As we will see in section 2.2.4, the correlated optical modes can be successfully
generated in an astigmatic large-Fresnel-number laser cavity [52]. The certification is
based on the reconciliation between the wave equation for laser transverse modes in
the paraxial approximation and the Schrodinger equation for the 2D quantum confined
systems [9,11,29]. Most importantly, Nienhuis et al [9] has clarified high correlation
between the quantum operator algebra and manipulation in the laser cavity.
Consequently, based on the acts of the quantum operators, we are able to generate the
analogous wave patterns by the correlated operation in a laser resonator. The
presented research will not be restricted to the theoretical viewpoint of quantum
physics and, intriguingly, practical correspondence will be explicitly provided with

optical waves.

54



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

Fig. 2.1.17 Numerical results of the intensity distribution for ‘ml,mz;/ll,/lz;ﬁl,r_zz> 19

with various values of /. Detailed description of the parameters, see text.
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2.2 Analogous Optical Experiments

2.2.1 Experimental Setup

Figure 2.2.1 depicts the experimental setup for transforming the laser modes through
cylindrical lenses. The present laser cavity was composed of a spherical mirror and a
large-aperture gain medium. The spherical mirror was a 10-mm radius-of-curvature
concave mirror with antireflection coating at the pumping wavelength on the entrance
face (R<0.2%), high-reflection coating at lasing wavelength (R>99.8%), and
high-transmission coating at the pumping wavelength on the other surface (T >95%)).
The gain medium was an a-cut 2.0 at. % Nd:YVOy crystal with the length of 2 mm
and the cross section of 88 mm®”. One planar surface of the laser crystal was coated
for antireflection at the pumping and lasing wavelengths; the other surface was coated
to be an output coupler with the reflectivity of 99%. The pump source was a 3-W
809-nm fiber-coupled laser diode with a core diameter of 100 um. A coupling lens
was used to focus the pump beam into the laser crystal with a large off-axis
displacement. The well-known transverse HG modes are emitted by most laser
cavities and are formally identical to the eigenstates of 2D quantum HO [53]. For
localized laser patterns, it has been found that the longitudinal-transverse coupling
and the mode-locking effect in large-Fresnel-number spherical laser cavities usually
drive the laser modes to be the coherent waves that are transversely concentrated on
the Lissajous figures with the relative phase continuously varying with the
longitudinal direction [11]. The generated laser mode was re-imaged into a
cylindrical-lens mode converter to perform the beam transformation. The focal length

of the cylindrical lenses was f=25 mm; the distance was precisely adjusted to be

V2 f for the operation of the m/2 converter. To image the transformed transverse
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pattern, the transformed laser beam was directly projected on a paper screen at a
distance of ~50 cm behind the cylindrical mode converter and the scattered light was
captured by a digital camera.

In the following sections we are going to discuss the beam transformation of the
laser modes emitted from the laser resonator to be converted through the

cylindrical-lens mode converter.

2.2.2 Eigenmodes : General Huygens’ Integral
We first derive a general form for the laser modes to be converted via an ABCD
system by exploiting the Huygens integral to investigate the case concerning the
transverse HG modes to be transformed through the cylindrical-lens mode converter.
It can be found that the conversion of the laser modes possess identical mathematical
interpretation to the quantum states via the SU(2) transformation in section 2.1.1

In free space, Huygens’ integral in one transverse dimension for propagation
through a distance L can be given by [53]

u(x,,z,) = fﬁ]ﬁ u(xl,zl)exp[—jkp (xl,xz)]dxl, (2.2.1)

—00

where p(x,,x,)=+L*+(x,~x)" is the optical path length, also called the eikonal

function for the optical ray propagate from (x,,z) to (x, z,=2+L), k=27/4,
1s the wave number and A, is the wavelength of the light in free space. For a general

consideration that the optical ray travels through optical elements building up the
ABCD system of length L, the optical path length under the paraxial approximation

can be derived to be [53]
(4x> —2xx,+Dx,?)
2B '

p(xl,xz)zL—i- (2.2.2)
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Fig. 2.2.1 Experimental setup for generating and transforming the laser modes via the

cylindrical-lens mode converter.
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Therefore, the general Huygens’ integral associated with an ABCD system can be

rewritten as

u(x,,z,) = fﬁ exp(—jkL)
0

” 2 2
xj u(xl,zl)exp[j ﬂ-(AXI Zx/{xz D% )}l’x1 : (2.2.3)
—o0 0

Consider an input beam of a high-order HG mode in the form [53]

7Z')C2
V2 H, V2, exp| —j——|. (2.2.4)
2" o7 o, 214,

where H, (-) is the Hermite polynomial of order n. Note that

g, = (1/ R, ) —-J (/’t1 / T ) , where R, is the radius of curvature for the input beam,
@, signifies the beam radius at z,, and ‘A, 1is the wavelength in the medium where

the beam is currently located and here we assume A4, ~ A, for simplicity. Employing

the generating function for the Hermite polynomials

0

exp(2§t—t2)=2[Hn (5) t”/n!] and the identity Texp(—axz)dx:\/ﬁ we

n=0

can obtain the amplitude distribution of u,(x,,z,) in the form

o )/

()=o) o0 A Bl
- 1

" 2
<22 V2, exp| —j FX2_ |, 2.2.5)
@, @, 404,

with 1/¢, E(I/Rz)—j(ﬂ,o/ﬂ'a)zz), where R, is the radius of curvature for the

output beam, o, = a)l\/ (A+B/q1 )2 +j[2BiO (A+B/ql )/7[0)12] signifies the beam
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radius at z,,and ¢, follows the relation 1/q, =(C+D/q,)/(A+B/q,). It is worth to

mention that the term [1/ (A+B/q, )]H " isa complex value which can be rewritten

as ‘ 1/(A+B/ql)‘n+l/2 exp[—j(n+ 1/2)¢] where exp[—j(n+ 1/2)¢:| suggests the
Gouy phase shift. Equation (2.2.5) is the general form for a high-order HG mode
traveling through an arbitrary ABCD system. For a high-order HG mode with two

transverse dimensions, Eq. (2.2.5) can be modified as

_ @,, (o, ) 1
T (xz,yz,zz)z exp(—‘]kL)(a)2 ] (a)zy] \/2,1+m—1(n+m)l7z-a) W
: 1Ix*1y

1x ly

n+ m+1/2
x( 1 J v 1 o (25, (V2
Ax+Bx/q1x Ay+By/qu " a)2x ! a)Zy

2 2
X exp| —j % exp —j& , (2.2.6)
Ao G, Ao q5,

where the subscript x or y denotes the transverse direction for the corresponding

parameter. Without astigmatism, the Gouy phase shift can be given by
exp[— j(n+m+1)¢]. Since there is induced astigmatism for the light beam
propagating via the cylindrical-lens mode converter, the parameters are to be
considered separately into the x and y directions.

Furthermore, consider a rotated HG mode passing through an ABCD system

such as a cylindrical-lens mode converter as depicted in Fig. 2.2.2, the output beam in

Eq. (2.2.6) can be modified as u,, (¢,,7,,z, ), where the coordinates (&,7) for the

optical beam follow the relation:

= 0+ y,sind
{ &, =x,co80+ y,sin (22.7)

1, =x,(—sin@)+y,cos’
It can be seen that the formulae in Eq. (2.2.7) are the general expressions for the
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coordinates (xz, yz) of a point to be rotated by an angle &. Substitute Eq. (2.2.6)

and Eq. (2.2.7) into the generating function for the Hermite polynomial, after
cumbersome algebra (Appendix B), the output beam for the rotated HG mode can be

derived to be

N\z

N
nm §2’n2’22 z

s=0

N, E sts(xzayzazz)a (2.2.8)
2"

§—

where N=m+n, 6 represents the rotated angle of the input mode relative to the

N
principal axes of the cylindrical lenses as shown in Fig. 2.2.2, and 4?2, (9) is

S——,n——
2

2

just the Wigner d-coefficient in Eq. (2.1.12). Equation (2.2.8) reveals that the rotated
HG mode can be expanded by a set of high-order HG modes without rotation and with
the distribution weighting of the Wigner d-coefficient. It can be seen that Eq. (2.2.8)
has the similar form to Eq. (2.1.11), which implies that one could find an appropriate
ABCD system for the realization of the conversion between the HG and the LG
modes presented in section 2.1.1. In this thesis, we choose the cylindrical-lens mode
converter as our equipment for the beam transformation. As a result, we define the

ABCD system in the range between the the gain medium (z=0) and the observation

plane at z,. Based on the arrangement for the cylindrical-lens mode converter as

mentioned in section 2.2.1, we have successfully performed the beam transformation
between the HG and the LG modes in Fig. 2.2.3. Figure 2.2.3(a)-2.2.3(e) show the

far-field patterns obtained by passing a rotated HG mode at various angles with

indices (n,m)=(15,10) through the cylindrical-lens mode converter. Fig.

2.2.3(a’)-2.2.3(e’) display the experimental results of the far-field patterns generated

by inputting the rotated HG mode at different angles with indices (n,m) = (55,3). It

can be informed that the experimental observations shown in Fig. 2.2.3 are in good
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Fig. 2.2.2 Experimental scheme for a rotated HG mode propagating through a

cylindrical-lens mode converter.
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agreement with the theoretical results illustrated in Fig. 2.1.2 associated with the
eigenstates to the coupled HO. The quantum states are successfully realized when we
find a corresponding optical system. Therefore, the investigation suggests the
possibility for the manifestation of the beam transformation between localized optical

patterns that related to the quantum coherent states discussed in section 2.1.2.

2.2.3 Coherent Modes: Single Periodic Orbits

In this section, we first discuss the wave functions of the optical coherent wave
emitted from a large-Fresnel-number spherical laser resonator. Furthermore, we
exploit the the general Huygens integral mentioned in previous section to explore the
transformation of the spatial morphologies from the optical Lissajous states to the
optical trochoidal states. We further employ the optical Lissajous modes and a
cylindrical-lens mode converter to realize the spatial transformation. The present
investigation manifests an intriguing non-classical behavior of the coherent optical
waves.

The optical coherent wave is a superposition of degenerate laser modes and can
provide a general description for a laser system exhibiting ray behavior. One aim of
our work is to explore the spatial geometry of the optical coherent wave related to the
HG and LG modes. The free-space wave function of a HG mode with longitudinal

index n3, transverse indices 7; and 7, in Cartesian coordinates (x, y, z) is given by [9]

o HD (x,y,z) — (D(HG)(x,y’Z) ei(nlJrnzH)HG(z) e—ig,,lv,,z_,u (x,9,2) ’ (2.2.9)

ny,ny,ny n,ny
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(a) (@)

;«mumn s
- mml‘llrlnliwur
i

0=12.9°

0=23.7°

6 =39.0°

0 =45°

Fig. 2.2.3 Output far-field patterns for the rotated HG modes at various angles passing
through the cylindrical-lens mode converter; (a)-(e) transformed far-field patterns for
a rotated HG mode of indices (n,m)=(15,10); (a’)-(¢’) transformed far-field patterns

for a rotated HG mode of indices (n,m)=(55,3).
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where

1 2
J2" 7yt W(2)

an(‘/ExJH%(ﬁyJexp{—xzwz}, (2.2.10)

w(z) w(z) w(z)*

HG
®E’ll,n2) (‘x9 y’ Z) =

w(z)= woqll+(z/zR)2 s Comom, ¥,2) =k, 2 [l+ (x* + )/2)/2(22 + Z;)], w, 18
the beam radius at the waist, and z, =z w{ /A is the Rayleigh range, H, () are the

Hermite polynomials, & is the wave number, and 6,(z) =tan"'(z/z,) is the

ny,ny, N3

Gouy phase. In terms of the effective length L, the wave number & is given by

ny, 0y, 1y

by o L= [ 0y +(m 1) (A fr /A )] 2.2.11)

where A f, =c/2L is the longitudinal mode spacing and A f, is the transverse
mode spacing. When the ratio A f, /A f, is close to a simple fractional, it has been
evidenced that the longitudinal-transverse coupling usually leads to the frequency
locking among different transverse modes with the help of different longitudinal

orders [11]. Consequently, when the mode-spacing ratio A f, /A f, is locked to a

rational number P/Q , the group of the HG modes @ "% with

m +pk, ny Fqk, ny +sk
k=-----2,-1,0,1,2,-+- can be found to constitute a family of frequency degenerate states,
provided that the given integers (p, ¢, 5) obey the equation s+ (p F q)(P/ Q) =0. For
convenience, the integers p and ¢ are taken to be positive. The equation
s+(p¥F q)(P/ Q): 0 indicates that pF g needs to be an integral multiple of O, i.e.
p¥q=KxQ, where K is an integer.

With the coherent-state representation presented in section 2.1.2 and Ref. [11],

the optical coherent wave formed by the family of the degenerated HG modes
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(HG)
ny+pk,ny¥qk,nsy+s

. can be expressed as

(kY (qk)

‘ +p q,s 4”1 4n,

RO (7/)> \/T z elky

where M :min( [2\/71 / p}, [2\/?2 /q:|) , the parameter y = pd T q¢, is the relative

Qo > (2.2.12)

n+pk, ny Fqk, ny+sk

phase between various HG modes at z=0, ¢, and ¢, are the phase factors related

to the wave pattern, and n,, n,,and 7, are the mean orders. With the expression of

Eq. (2.2.9), the HG coherent wave can be expressed as

tp,q, + 1 0, =1 Gy iy iy (X5352)
“P ﬁf’ﬁz‘fﬁj(y»: ‘\P ﬁfnzq(y)> i (7,471, +1) 6(2) oo , (2.2.13)
with

_(pk) - (gk)

+p, k;/ 4, 47

¥ ) = —— 2 . 2 &

2r\nn, | k=M
ik(p70)06(2) | gy (HG)

S R (2.2.14)

The wave pattern of the coherent state “I’ b, q(}/)> has been shown to be localized
on the Lissajous parametric surface: x(4,z)=Re[X(4,2)]; y(%,z)=Re[Y (4, 2)],
where X(%,z)= ﬁw (z)e %Ol y(9,z)= \/%w(z) lEr9-0c (-4 , 0<9<2x

and —oo<z <. Explicitly, the Lissajous parametric surface is formed by the

Lissajous curves with the phase factor varying with the position z. Note that these

Lissajous orbits are invariant with respect to changes in the phases ¢, and ¢,,

provided that the quantity y = p@, Fq ¢, is conserved modulo 2.

It had been experimentally realized in optics that a HG mode could be

66



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

transformed with cylindrical lenses into an Ince-Gaussian (IG) or a LG mode as
shown in section 2.2.2. As discussed above, the coherent states formed by the HG

modes represent the quantum Lissajous states that display the spatial morphologies

concentrating on the Lissajous figures. The stationary Lissajous states “P EP;4(7)>

have been analogously generated from various degenerate laser cavities for several
hundred different (p,q) [11]. It is intriguing to explore the change of the spatial
morphology for a Lissajous coherent state passing through cylindrical lenses that
transforms each HG component into the corresponding output mode. Here we apply
the technique associated with the general Huygens’ integral in two transverse
dimensions and take the Lissajous coherent waves in Eq. (2.2.13) as the input mode.
The general expression for a Lissajous coherent state traveling through an arbitrary

ABCD system in terms of the spatial representation hence can hence be given by

1 M C(k)E gk
tp,q . _ iky 4%1 452
Uﬁl,ﬁz (x2=y2’22=7)_ Z e ¢ ¢

Xu?z]+pk,ﬁ2;qk (xzayzazz)Jy (2215)
where u oo (x,,¥,,2,) is the general form for the HG mode in Eq. (2.2.6), and

U:"?(x,,y,,2,;7) represents the output coherent wave observed at the plane of z,.

Generally, consider a rotated Lissajous laser mode to be transformed via an ABCD

system, the Eq. (2.2.15) can be modified as

1 w7
U%f%q(§2’772722;7):f Z elk}/e 4m, e 47,
2r\nn, | k=M
XU m+ pk, my Tqk (529772’22 )]: (2216)

where
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Ny Ne
U 5 4 ok, my 7k 52,772:22 Zd ZNA _ ) Us N, s (xzayzazz)a (2.2.17)

sf— 1+ pk— 7

with N, =n, +n,+ pkFqk.Eq. (2.2.17) comes from Eq. (2.2.8) which demonstrates

the transformation of a rotated HG modes traveling through an ABCD system. It can
be seen that Eq. (2.2.16) possesses the same mathematical interpretation as Eq.
(2.1.24). Therefore, we can find a corresponding ABCD system to realize the
transformational relation for the quantum coherent states illustrated in section 2.1.2.
Employing the arrangement for the cylindrical-lens mode converter as mentioned in
section 2.2.1, we have successfully demonstrated the continuous transformation
between the Lissajous and the trochoidal curves with the input of a rotated Lissajous

laser mode at various angles. Figure 2.2.4 displays the experimental results of the the

output beam ‘U b (xz, VysZy5 7)‘2 generated by passing the Lissajous laser mode of

positive sign through the cylindrical lenses. The spatial morphologies of the laser
modes can be clearly seen to be transformed from Lissajous figures to hypotrochoidal
curves. Figures 2.2.5 shows the experimental results of the output beam
‘Uﬁff’ﬁ’f (xz, yz,zz;;/)‘2 by passing the Lissajous laser mode of negative sign through
the cylindrical lenses. Instead of hypotrochoids, the spatial morphologies of the laser

modes are transformed from Lissajous figures to epitrochoidal curves due to the
negative sign of o, / o, . It is evident that the experimental observations in Fig. 2.2.4

and Fig. 2.2.5 are in excellent agreement with the theoretical results demonstrated in

Fig. 2.1.6 and 2.1.7, respectively. The parameter £ in Eq. (2.1.24) and the rotation
angle € in Eq. (2.1.16) are found to obey the relation €= /2. Moreover, Fig. 2.2.6
exhibits various Lissjous patterns with positive sign and their hypotrochoidal

counterparts. Figure 2.2.7 shows several Lissjous patterns with negative sign and their
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corresponding epitrochoidal curves.

2.2.4 Coherent Modes : Multiple Periodic Orbits
In section 2.1.3, we have explored the eigenstates for the coupled commensurate HO
with the SU(2) algebra and found that the high-order spatial patterns are noticeably
concentrated on Lissajous figures and trochoidal curves from single to multiple
periodic orbits. In this section, we demonstrate the analogous experimental results
corresponding to the multi-trajectory quantum states discussed in section 2.1.3. The
three-dimensional (3D) coherent lasing modes with transverse patterns corresponding
to single Lissajous figures have been methodically generated in degenerate cavities
with a large off-axis tightly focused pumping scheme [11,52]. Here we verified that
the 3D coherent lasing waves can be manipulated to form more intricate transverse
patterns corresponding to multiple Lissajous orbits as found in the quantum
eigenstates of the developed model. The number of the Lissajous orbits in the lasing
transverse pattern is experimentally confirmed to be proportional to the pumping spot
size. More importantly, the role of the phase factor introduced by the SU(2) coupling
interactions can be nicely manifested from the propagating property of the lasing
modes. Furthermore, the transformation between the multiple Lissajous orbits and the
multiple trochoidal orbits is performed with the cylindrical-lens mode converter. We
expect that the findings of controlling lasing transverse modes with spatial patterns to
be related to quantum states could open new attractive issues in quantum physics and
optical pattern formations.

The experiment mainly consists of a laser resonator, a pumping source, a mode
converter and an imaging system as shown in Fig. 2.2.1. The length of the present

resonator can be set to form various degenerate cavities in which a resonance
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0 =45
0 =10 6 =60
o=16 6=76.5
0 =04 6 =84°
6 =90°
Fig. 2.2.4 Experimental results of the output beam [U2%% (x,,7,.2,:7)| generated

by passing the rotated Lissajous laser mode of positive sign through the cylindrical

lenses.
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6 =0’ 0 =45
0 =9° 0 =525
0=15 0=73
6=025 985"
0 =33 0 =89
Fig. 2.2.5 Experimental results of the output beam [U2%% (x,,7,.2,:7)| generated

by passing the rotated Lissajous laser mode of negative sign through the cylindrical

lenses.
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(-2.5) (-1.8) (-1,11)

Fig. 2.2.6 (a)-(e) Input Lissajous laser modes. (al)-(el) corresponding classical
Lissajous curves. (a2)-(e2) Output hypotrochoidal laser modes, (a3)-(e2)

corresponding classical hypotrochoidal curves.
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(2,5) (6.8)

Fig. 2.2.7 (a)-(e) Input Lissajous laser modes. (al)-(el) corresponding classical
Lissajous curves. (a2)-(e2) Output epitrochoidal laser modes, (a3)-(e2) corresponding

classical epitrochoidal curves.
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frequency with a high-order transverse mode is equal to another resonance frequency
with the fundamental transverse modes [53]. Figures 2.2.8(a)-2.2.8(d) depict the
experimental observations for the cavity length L of 7.5 mm with the pumping size to
be approximately 50-100 um. It can be seen that the experimental observations agree
very well with the numerical results in Fig. 2.1.9(b1)- 2.1.9(b4), which confirms our
theoretical analysis that groups of eigenstates can be excited simultaneously to
compose the corresponding Lissajous patterns. Note that the indices (p,q) are
determined from the cavity length L and the degenerate conditions [11]. We verify that
the number of the Lissajous orbits in the lasing transverse pattern is governed by the
spot size of the pumping beam. The larger the pumping size is, the more the number
of Lissajous orbits can be effectively excited.

In section 2.1.3, we have demonstrated the effect of the parameter p’ on the

degree of coupling mechanism and the distribution related to the superposed

eigenstates ‘ml,m2>ﬁ for the states |n1 prAn,g+A 2>g . In a laser resonator, the
influence of B’ corresponds to the amount of astigmatism arising from the off-axis
pumping. While /' is chosen, the parameter ¢’ can be realized as the Gouy phase
shift [11,54] which differs along the propagation direction for Gaussian beams. As
shown in Fig. 2.2.9, the transverse patterns of different positions along the
propagation direction are visibly consistent with the theoretical results in Fig. 2.1.11
for the evolution of multiple Lissajous orbits. Obviously, a 3D evolutional parametric
surface can be exploited to interpret the transformation of the spatial patterns inside
the cavity. The same clarification for single periodic Lissajous figures had been
primarily provided [11] to show noticeable localization on the 3D parametric surface

by observing the tomographic transverse patterns inside the cavities. Note that Fig.

2.2.9(al)-2.2.9(a5), and Fig. 2.2.9(b1)-2.2.9(b5) are generated with off-axis pumping
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(AX,Ay)=(0.21mm,0.10mm), and (AX,Ay)=(0.57mm,0.10mm), where (AX,Ay) are
measured relative to the optical axis of the laser cavity and an objective lens is
employed to reimage the near-field patterns on the screen. In Fig. 2.2.10(a)-2.2.10(d),
the far-field patterns are observed at L=9.0 mm, L=4.9 mm, L=6.1 mm, and L=7.4
mm, respectively. Moreover, Fig. 2.2.11(al)-2.2.11(a5) show the transverse patterns
along the propagation direction of (p,q)=(3,2) in Fig. 2.2.10(a). The good agreement
with the theoretical results presented in Fig. 2.1.15 and Fig. 2.1.16 suggests that our
quantum operator model of the coupled commensurate HO is applicable to the
ubiquitous laser modes.

In previous discussion, we have successfully generated the multiple Lissajous
orbits with a large-Fresnel-number spherical laser resonator to analogously explore
the eigenstates to the coupled commensurate HO as presented in section 2.1.3. Here
we employ the cylindrical-lens mode converter to transform the obtained multiple
Lissajous orbits and to reconstruct the relation in Fig. 2.1.17. The field distribution for
the output beam can be obtained from the expression in Eq. (2.1.33):

i ' A —in '
Uﬁilfjézﬁle,ﬂz (fz’ﬂzazzﬁ/) =Ml Z - df/?w/z m,—Mj2 (ﬂ )

n;=0

Xuﬁl+n]p+ll,ﬁzinzq+ﬂ,2 (é:Z’UZ’ZZ):|’ (2218)
where
N N
2
u AN pH+A LT, Fy g+ A, 52’772’22 Z:(; B % +’11P+11—* (6) uS,N—S (xz,yz,Zz),
(2.2.19)

with M =n +n, and N=n+np+A,n,Fn,q+A,. Figure 2.2.12 shows the

experimental observation of the multiple Lissajous orbits and their trochoidal

counterparts. Figure 2.2.12(a”) displays the epitrochoidal orbits transformed from Fig.

75



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

2.2.12(a) with the negative sign of @, /@, =-1/2. Fig. 2.2.12(b"), Fig. 2.2.12(c’), and

Fig. 2.2.12(d”) exhibit the multiple hypotrochoids corresponding to the multiple

Lissajous orbits in Fig. 2.2.12 (b), Fig. 2.2.12(c), and Fig. 2.2.12(d) with the positive

signof o, /w,=1/3, o,/w,=2/5,and o, /w,=1/4, respectively.
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Fig. 2.2.8 Experimental far-field patterns corresponded to the numerical results in Fig.

2.1.9(b1)-2.1.9(b4).

77



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

z=0L z=0L

z=0.05L z=0.12L

z=0.11L z=0.15L

z=0.17L z=0.22L

z=0.33L z=0.35L

Fig. 2.2.9 Experimental tomographic transverse patterns observed along the
propagation direction from the beam waist; (al)-(aS) (Ax,Ay)=(0.21mm,0.10mm);

(b1)-(b5) (Ax,Ay)=(0.57 mm ,0.10mm).
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Fig. 2.2.10 Experimental results corresponded to the theoretical analysis. Detailed

description of the parameters; see text.
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z=0L a=0
7=002L a=0.087
z=0.08L a=0.387

z=0.11L a=05r
a=117r

Fig. 2.2.11 (al)-(a5) Experimental tomographic transverse patterns observed along the
propagation direction from the beam waist for (p,q)=(3,2) . (bl)-(b5)

Corresponding numerical calculations according to Eq. 2.1.31.
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Fig. 2.2.12 (a)-(d) Input multiple Lissajous laser modes. (a’)-(d’) Output multiple

trochoidal laser modes. For detailed descriptions for the parameters, see the text.
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2.3 Extension Topic : Generation of Optical Vortex Array

2.3.1 Introduction

In recent decades, optical vortices (OVs) characterized by their distinct features [55]
have gained increasing importance in the study of singular optics [56], light and
matter interaction [55,57,58], and quantum optics [59]. Since an OV is defined as the
phase singularity with vanishing intensity of a helical-phased light beam, the
azimuthally circulated phase term implies the orbital angular momentum (OAM)
carried by the light beam [60]. For practical interest, the characteristics associated
with the OAM inspire great applications on optical tweezers [55,57,58], optical
testing [61], image processing [62,63], quantum entanglement [59], and nonlinear
optics [64].

Several approaches have been adopted to generate a single OV, such as mode
conversions by astigmatic lenses [64,65], spiral phase plates [66], computer generated
holograms [67], and optical wedges [68]. Since Hermite-Gaussian (HG) modes can be
emitted by most laser cavities and are well-known eigenstates for the 2D quantum
harmonic oscillator [9], via the mode conversion, a HG mode has been widely used to

create a single OV [65-67] hold by a traveling-wave Laguerre Gaussian (LG) mode

features azimuthally phased term exp(il¢), where / is known as the topological

charge of the vortex. The transformational relation has also been confirmed
theoretically by using a Fresnel integral [15] or quantum operators connected the two
complete sets of HG and LG states [69].

Aside from an isolated OV, a network of OVs can be created by means of
interferometry and lead to a novel type of vortex structure. For instance, intriguing
manifestations were shown corresponding to the two-dimensional (2D) optical vortex
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array [70] and 3D topology of optical vortex lines [71] by superposing several plane
waves. Exploiting a thin-slice solid state laser, [72] demonstrated the generation of
vortex array beams by the interference of emitted Ince-Gaussian modes. Distinguished
from an isolated OV, optical vortex array related to a network of vortices is especially
useful in optical metrology [73], microlithography [74], quantum processing [59],
micro-optomechanical pumps manipulation [75], and investigating nonlinear
propagation of array of singularities [76].

In this section, a novel method is carried out to produce the optical vortex array
by the transformation of a standing-wave LG mode (the so-called “flower-like” [77]
LG mode). Generation of the flower-like LG modes has been provided experimentally
by utilizing a large-aperture CO2 laser [78], a solid-state laser cavity compounded of
nonlinear medium [77,79,80], and a vertical-cavity surface-emitting semiconductor
laser [81]. Unlike a traveling-wave LG mode, a flower-like LG mode, formed by
coherent superposition of a pair of traveling-wave ones that carry the same
topological charges while counter rotational wave fronts, possesses no OV and has
been concerned especially in the study of pattern formation [77,79-81]. Therefore, it is
fascinating and practical to raise the issue for the creation of optical vortex array by
the use of the flower-like LG modes. To illustrate the feasibility, we verify firstly that
a flower-like LG mode can be transformed from a set of “crisscrossed” HG modes
theoretically. The optical vortex array is shown to be located at the cross section of the
crisscrossed HG modes established by coherent superposition of a TEM,, ,, mode and
a TEM,,, mode with well-defined relative phase o , where (n,m) designate the
transverse indices in x-y directions. Since the transformational relation has been
confirmed to show excellent analogy to the mode conversion of a n/2-cylindrical-lens
mode converter (/2-CLMC) [69], the investigation enables us to generate the optical

vortex array experimentally by transforming the accessible flower-like LG modes

83



Ch2 Coherent Wave Transformation in Quantum Harmonic Oscillators and Spherical Laser Resonators

through the m/2-CLMC. More importantly, adjustability of the relative phase a is
qualitatively displayed in this paper by rotating the mode converter at various angles.
In all, we expect the creation and exploration of the vortex light beams in our work

may inspirit a more thorough study in the vortex structure and its further applications.

2.3.2 Transformation of Fundamental Laser Modes

HG modes and LG modes are complete orthonormal sets that each can well describe
any amplitude distribution by an appropriate complex superposition. Besides, they are
eigenmodes that can be emitted by most laser resonators. Due to comprehensive
studies and accessibility of the eigenmodes, it can be understood that it is useful to
create and investigate the 2D optical vortex array by concerning those well-known
eigenmodes. As a result, it may be necessary to provide firstly a brief overview of the

eigenmodes and their transformational relationship.

The profile of a HG mode in terms of the Cartesian coordinates (x, y,z) with

transverse indices (m, n) under paraxial approximation of the wave equation is given

by [74]
D (5,0,2) =y 10 (1, 3,2) €07 00, @3
where
cro ] V2
(HG) —_mm W&y H , 232
l//n,m (xayaz) W(Z) e n W(Z)x m W(Z)y ( )
with  E(ryo)=kz [1+(2 )2+ . =2 znm)"”

w(z)=w,\ 1+(z/z,)*, w, is the beam radius at the waist, and z, =zw: /1 is

the Rayleigh range. H,(-) is the Hermite polynomial of order n, k is the wave
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number, and 6, (z) =tan"'(z/z,) is the Gouy phase. Likewise, the wavefunction of a

LG mode characterized by its azimuthal and radial symmetry associated with a helical

¢

phase front ¢’ can be written in terms of the cylindrical coordinates (r,¢,z) with

radial index p and azimuthal index / as [74]

U (r,g.2) =y D (r,g.2) 7 B O (2.3.3)

=

| (2) w(2) w(z)

where L; () is the associated Laguerre polynomial of azimuthal index / and radial

1) d 2 ) 5
w0 (r,4,2) = =2 (1) o L, 2T T e : (2.3.4)

indeX p’ é(l",¢,2)=kz |:1+r2/2(22+Z123):| ) and

C(L?):\/zp!/[(l+5071)(p+|l|)!7:} with &, ,=1 for /=0. Note that the

3
azimuthal indices with different sign convention (/ and —/) denote the equal and
opposite topological charge */7# of the LG modes which implies the OAM
possessed by the light beam.

Most important of all, the conversion of the Gaussian modes, which has been
demonstrated and verified in detail by [15,69], can be expressed in the following with

a left-right-double arrow “ <>  signifying the transformational relation

v (rg.z) o vl (x.p.2), (2.3.5a)
v\ (r.d.z) o i) (x.y.2), (2.3.5b)

where p=min(n,m), I=m—n, and the relation 2p+/=n+m is hold for the

conservation of transverse order under transformation. Explicitly, LG modes of

opposite topological charges can be given by the transformation of a HG mode and its
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replica rotated at 90 degrees as shown in Eq. (2.3.5). To clarify the results, simplicity
is added by using the Poincaré-sphere resemblance [82] since the transformation of
the LG and HG modes can be well mapped on the Poincaré-sphere that has been
verified to be an effective tool in dealing with the conversion of polarization states

[83].

2.3.3 Formation of Optical Vortex Array

To make these formal considerations more meaningful, return to our concern of the
2D optical vortex array. Our goal is to create the OAM state of a network of lattices
by superposing two crisscrossed HG modes of the same order N with a well-defined

relative phase . Hence, the wavefunction of the superposed state composed of the

HG modes can straightforwardly be written as

Q,,(xrza)= vl (ernz)+e vl ()], (2.3.6)
where o indicates the relative phase between the crisscrossed HG modes. To
determine the OVs, it should be noted that they are defined as the phase singularities
where the real and imaginary components of the scalar field Qn,m(x, v, z,a) are
both zero and possess the characteristic of zero intensity in the vortex core [84,85]. In
other words, the resulting vortices are dark points in intersects of the nodal lines

corresponding to the respective HG modes of the state Q n,m(x, v, z,a) with relative

phase o apart from an integral multiple of 7 . An illustration of ‘ Qo (x, y,z,a) ‘2

is depicted in Fig. 2.3.1 with various relative phase ¢ ranging from 0 to 2z and it

can be seen the intensity distribution in the cross-section is altered accordingly.
. . . 2,
Despite this, Fig. 2.3.1 also reveals the nature that ‘Qn’m(x, y,z,a)‘ is repeated

within every period of 27 phase shift.
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Fig. 2.3.1 Theoretical results of ‘QO, 0 (X, z,oz)‘2 of various relative phases
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For comprehensive demonstration of the vortex structure, Fig. 2.3.2 depicts the
phase distribution of the state Q (x, vz, 7/ 2) . Though there are all 11x11
singularities which situate at the crisscrossed positions of the nodal lines as depicted
in Fig. 2.3.2(b), the available OVs for practical use of particle trapping with stronger
intensity distribution around [55] are estimated at 5x5 in total within the cross
section. The enlarged figure of the box region in Fig. 2.3.2(b) is shown in Fig. 2.3.2(c)

where the black and red dots mark the vortex positions of counter rotational phase

fronts. It is conspicuously illustrated in Fig. 2.3.2(d) by plotting the transverse linear

momentum density p, of a linear polarized light beam [60]

p, = ia)%(Q* V.Q-Qv,Q), (2.3.7)
where p, =(px,py), V,=(8/dx , 8/dy), @ relates to the frequency of the light
beam and g, represents the permittivity of free space. Note that the vector field p,

has been normalized to p, / |p L| for observing the detailed structures. Since the
helical wave fronts signify the OAM carried by the light beam, the swirls in Fig.
2.3.2(d) shows the evidence that the superposed state Q,(x,y,z,7/2) certainly

form an OAM state associated with the vortex array. From quantum perspective,
preparing such superposed OAM states has become an important issue concerning
quantum entanglement and quantum information [59]. Thus, it is crucial to arrange

feasible experimental techniques for creating and investigating the superposed states.
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2.3.4 Formation of Flower Laguerre-Gaussian Modes

To develop an available experimental configuration to generate the superposed state

Q, . (x, v,z, a) , an inspiration is provided by the transformational relation written in

Eq. (2.3.5). Likewise, we can obtain a coherent superposed state @ ,(r,¢,z,a)

according to the discussion at the very start, i.e.

Q, ,(uyza)e ©, (rdza), (2.3.8)

where, with a little algebraic manipulation, the superposed state @, (r, 0, z,a) can

be expressed in the form

_a o) T ] 0y o
10)) —e 221 (1Y )4 w(z)
rsza)=e S Sy 2

xcos[1(¢+%j . (2.3.9)

It therefore appears that a new family of superposed state @ l(r, 0, z,a) is

established and can be decomposed into two LG modes of opposite topological

charges [ with identical relative phase «. Compared to the traveling-wave LG

mode in Eq. (2.3.4), the expression explicitly shows distinct intensity distribution of
cos [l (p+a /21 )] in azimuthal angle which forms the flower-like [77] LG mode of
2/ nodes in azimuthal and possess no OAM at all. Besides, the intensity distribution

of ® , (r, 0, z,a) can be seen to rotate with its profile remains the same followed by
the variation of @ as depicted in Fig. 2.3.3 of a specific case (p,/)=(0,11) related

to Q) (x, v, z,a). It is worth to mention that, with the help of the arrows illustrated
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in Fig. 2.3.3, the state @ (r,¢, z,a) is visualized obviously to rotate by an angle
a/21=2x/22 through a period of 27 phase retardation. The investigation reveals

the fact that the superposed state Q,  (x,y,z,a) can be repeated while the

flower-like LG mode @, ,(r,¢,z,a) rotates by 27z/2/ which is exactly the angle

between consecutive peaks. Experimentally, this result provides the key to

qualitatively controlling the relative phase « between the crisscrossed HG modes

that will be presented in the next section.

2.3.5 Experimental Setup

The experimental configuration can be separated mainly into three parts according to
particular purposes as depicted in Fig. 2.3.4. The microchip solid state laser cavity
presented in Fig. 2.3.4(a) is utilized to generate the flower-like LG mode discussed on
the above as an input mode to be transformed via the /2 -CLMC. The second part at
the external cavity is consisted of a non-spherical lens and the 7/2-CLMC to convert
the emitted LG mode into the crisscrossed HG modes as shown in Fig. 2.3.4(b). The
last part in Fig. 2.3.4(c) corresponds apparently to the detection scheme. Furthermore,
detailed experimental arrangements are provided in the following.

It can be seen that the laser resonator is composed of a gain medium and a
spherical mirror. The laser medium is an a-cut 2.0-at. % Nd:YVO4 crystal with a
length of 2 mm and the cross section 3%3 mm®”. One side of the Nd:YVO4 crystal is
coated for partial reflection at 1064 nm and the other is for antireflection at 1064 nm.
The radius of curvature of the cavity mirror is R= 25 c¢m and its reflectivity is 97% at
1064 nm. The pump source is an 808 nm fiber-coupled laser diode with pump core of

100 pm in radius, a numerical aperture of 0.16, and a maximum output power of 1 W.
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A focusing lens with focal length of 20 mm and 90 % coupling efficiency is used to
reimage the pump beam into the laser crystal. To produce a high-order flower-like LG
mode, which are processed from the astigmatism and imperfection dominated by the
cylindrical symmetric laser cavity, the valid key point is using a doughnut pump
profile and defocusing the standard fiber-coupled diode [85]. The pump spot radius is
controlled to be around 50-200 um. The effective cavity length is set in the range of
1-1.5 cm. A non-spherical lens with focal length /=40 mm mounted on a
translation stage is exploited to provide the mode matching condition by collimating
the input light beam in the midway between the following cylindrical lenses. The
flower-like LG modes generated by the laser cavity are converted into the crisscrossed

HG modes by passing through a rotatable 7/2-CLMC comprised of two identical

cylindrical lenses with focal length f =25 mm, separated by V2 f . To observe the

far-field pattern via a CCD camera, the output beam is directly projected to a paper

screen.

2.3.6 Experimental Results and Discussions

According to the previous sections, considering the correspondence of the
transformational relation depicted in Fig. 2.3.5(a) and the mode conversion through
the /2 -CLMC, we therefore utilize a rotatable 7/2 -CLMC to convert the
accessible flower-like LG mode emitted by the laser cavity into the crisscrossed HG

modes as shown in Fig. 2.3.5(b). Figures 2.3.6(a)-(j) further display the experimental

results of an input flower-like LG mode with (p,/)=(0,11) and the corresponding

output crisscrossed HG modes associated with various rotating angles & of the
7/2-CLMC. Since the output HG modes are always at 45 degrees relative to the
principal axes of the cylindrical lenses, it can be seen that the superposed HG modes
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rotate by the same angle & as the mode converter. With attention to the cross section
of the crisscrossed HG modes, the intensity distribution can be informed to alter

accordingly with the rotating angle of the mode converter. Analogously, compared to

the theoretical illustration of the superposed state Q |, (x,y,z,&) as depicted in Fig.

2.3.1, the obtained experimental results in Fig. 2.3.6(b)-(j) are in good agreement with
the theoretical realization in Fig. 2.3.1(a)-(i) and are connected by the relation
0 =a/21. In essence, the manifestation of the correlation € =a/2/ is none other
than the geometric rotating angle of the input LG mode relative to the principal axes

of the mode converter as if it was fixed. That is, the fulfillment can be understood

based on our previous discussion of the superposed state @ (r,¢,z,a) according

to different relative phase « as shown in Fig. 2.3.3, which identically exhibits the
behavior of geometric rotation by the angle @/2/. As a result, we have successfully
verified the transformational relation demonstrated in the preceding analysis by
exploiting the rotatable 7/2-CLMC experimentally. In other words, the 2D optical
vortex array embedded in the crisscrossed HG mode has been finally generated by the
method of mode conversion with a 7/2-CLMC. What needs to be emphasized
especially is the controllable relative phase « between the two crisscrossed HG
modes, which can be qualitatively altered by rotating the z/2-CLMC at various
angle. Since the relative phase has been confirmed to be the decisive factor that
contributes to the formation of the phase singularities according to the above
investigation, the adjustability of the relative phase in the experiment appears to be
absolutely crucial to the production of the OAM state. For practical consideration, the
investigation  reveals the  possibility of  particle  manipulation in
two-transverse-dimension for the developing applications as it can be informed from

Fig. 2.3.6(b) that the resulting vortices with fixed relative positions are simultaneously
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rotated with the CLMC by an angle 8. Moreover, since the Gaussian beams satisfy
the property of bilinear transformation [53], which indicates that the profiles are
preserved under propagation in free space through the Fourier transformation, the
resulting vortex array can maintain its spatial distribution while being focused.
Namely, it enables us to quantitatively determine the features of the optical vortex
array that focused into the optical traps.

In addition to constructing the optical vortex array that embedded in the
superposed state Q,  (x,y,z,&) with vanishing transverse index p illustrated on
the above, we are now considering more complicated vortex structures determined by
increasing transverse index / with multi-ring LG modes. As an illustration, Fig.

2.3.7(b) demonstrates the theoretical results of superposed states Q,  (x,,z,7/2),
Q, o(x,.2,7/2), and Q, (¥, y,z,7/2) with non-vanishing transverse index p
corresponding to the flower-like LG modes of @, (r,4,z,7/2), @, (r,4,2,7/2),

and @, ,(r,4,z,7/2) as shown in Fig. 2.3.7(a). To make it clear, the associated

phase distribution is demonstrated in Fig. 2.3.7(c) which explicitly shows the
variation of the position of the singularities defined by the points of intersection.
Since several methods have been adopted to generate the multi-ring LG modes
[77-81], our investigation may provoke further application for the creation of the
exotic vortex structures by transforming the available higher-order LG modes through

the mode converter.

2.3.7 Summary

In conclusion, we successfully create the optical vortex array by employing the
flower-like LG modes. Theoretically, we firstly verify that the flower-like LG mode
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can be transformed from the crisscrossed HG modes embedded with the optical vortex
array. According to excellent correspondence of the transformational relation and the
mode conversion of the 7/2-CLMC, we further confirm our assertion by converting
the available flower-like LG modes through the 7/2-CLMC. Importantly, the
relative phase of the crisscrossed HG modes can be controlled qualitatively by
rotating the rotatable mode converter at various angles. We anticipate the present
result and method to be an inspiration for novel application and more sophisticated

study related to the fascinating features of optical vortices.
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Fig. 2.3.4 Experimental setup utilized to transform the flower-like LG modes into the

crisscrossed HG modes with the cylindrical lenses.
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Cylindrical D,

Fig. 2.3.5 (a) Diagram for the transformational relation of a flower-like LG mode and
the crisscrossed HG modes. (b) Operational scheme for the rotation of the mode

converter.
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Fig. 2.3.6 Experimental results of an input LG mode with ( D, l) =(0,11) and the

corresponding crisscrossed HG modes while rotating the CLMC.
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Chapter 3

Generation of Resonant
Geometric Modes in Quantum
Circular Billiards and Light Pipes

3.0 Introduction

Helically phased light beams are well known to have an azimuthal phase form of

exp(im¢) and carry an orbital angular momentum (OAM) of m# per photon, where m

is an integer [1,2]. The OAM or optical vortex of light has been exploited in a variety
of applications, such as trapping [3,4] and rotating [5] of micron and submicron
objects in hydrodynamics and biology, stellar coronagraphy [6], image processing [7],
quantum cryptography [8], phase contrast microscopy [9], and spiral interferometry
[10]. Helically phased beams with small OAM can be generated with several different
techniques, such as transformation from Hermite-Gaussian modes by lens converters
[11], generation from Gaussian beams by spiral phase plates [12], creation by
synthesized holograms [13], generation through spatial light modulation by liquid
crystal cells [14], and creation with light diffraction on dielectric wedges [15].
Nowadays, generation of light beams with huge OAM is an important and interesting
task for potential applications including demonstration of opto-mechanical effects and
trapping of cold atoms [16].

Bessel beams emerge as propagation invariant solutions of the Helmbholtz

equation in a cylindrical waveguide and carry a well-defined OAM associated with
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their spiral wave fronts [17]. In ray dynamics, the transverse confinement of a
cylindrical waveguide can be regarded as a circular billiard for light. The periodic
orbits of a circular billiard can be characterized by the indices (p,q), where ¢ is the
number of turning points at the boundary during one period, and p is the number of

windings during one period [18]. The average OAM of light for each periodic orbit
(p,q) can be given by %(kR,), where R, is the shortest distance to the circular center

and k; is the transverse wave number. This indicates that it is possible to employ the
geometric modes of cylindrical waveguides to generate light beams with large OAM.
Even though very high order Bessel beams have been demonstrated using cylindrical
waveguides and whispering gallery resonators [16], generation of geometric modes
with huge OAM has not been realized yet. Moreover, since light interferences are
profoundly relevant to the underlying ray dynamics [19-21], it will be scientifically
interesting to explore light beams with huge OAM from the feature of ray-wave
correspondence that is analogous to the classical-quantum correspondence [22].

In this section we first explore the subtle relationship between geometric modes
and high order Bessel modes for manifesting the OAM in the ray-wave
correspondence. We further develop a systematic method to generate various
geometric modes with huge OAM from a large aperture cylindrical waveguide. More
importantly, we also employ the free-space propagation of the geometric modes
emerging from the cylindrical waveguide to analogously emulate the transient

dynamics of quantum states suddenly released from quantum billiards.

3.1 Quantum Circular Billiards

3.1.1 Eigenstates
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The normalized eigenstates y,, ,(r,¢) in polar coordinates for a circular billiard of

radius R are given by

1 ,
r,Q)= J (k. rye™
lr//m,n( ¢) \/;R Jmﬂ(km’nR) m( m,n )

(3.1.1)

where meZ, neN,and J, isthe Bessel function of the first kind and order m as

depicted in Fig. 3.1.1. The corresponding eigenvalues %, , are determined by the

boundary condition at the circular boundary, i.e. J,(k, ,R)=0 and the quantum

numbers m, n correspond to the quantization of the azimuthal and radial oscillations

of the wave, respectively. In a cylindrical waveguide, &,k is the transverse

component of the total wave number k. For large quantum numbers, the eigenvalues

k  can be determined with the Wentzel-Kramers-Brillouin (WKB) method to be

m,n

given by k. (R*—R’)—mcos™ (R,/R)=(n+3/4)x, where R, is the distance of
closest approach of the wave to the center of the billiard. The relationship between R,
and k,, is given by the expression for OAM: mh = R (hk,, ). In ray dynamics, the

shortest distance to the origin R for the periodic orbits (p,q) is given by

R =Rcos(pr/q). With this expression, the quantization condition from the WKB
method can be written as k,, Rsin(pz/q)=[m(p/q)+n+(3/4)]z . This
quantization condition reveals that the group of the eigenstates v, .., . With

ke€Z and m, >>| gk | constitutes a family of nearly degenerate states and forms an

energy shell in the neighborhood of the central eigenstate y,, , , which indicates the

appearance of a sharp peak in the density of states [23].

109



Ch3 Generation of Resonant Geometric Modes in Quantum Circular Billiards and Light Pipes

.b.
.d-

Fig. 3.1.1 Numerical results of Bessel functions with different orders: (a)-(d) are m=0,

m=1, m=2, and m=3, respectively.
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3.1.2 Coherent States
In terms of the representation of stationary coherent state [24,25], the resonant modes
localized on the periodic orbits can be expressed as a coherent superposition of the

eigenstates belonging to the same shell of the spectrum:

M
Yol (r, gy g) =M+ Y Sy, (s 8), (3.1.2)
K=—M

where ¢, 1is related to the starting position of periodic orbits and (2M +1) is the

total number of Bessel modes. For a sufficient large m,, the larger the number M is,

the more localized the resonant mode ‘P%, (r, #; ¢,) is on the orbital trajectories. It

is intriguing that even M=1 the resonant modes ¥, (r,¢;¢,) are conspicuously

localized on the periodic orbits. In brief, the interference between nearly degenerate
eigenmodes is extremely efficient to form the resonant geometric modes. The efficient
interference leads the resonant geometric modes to play an important role in
numerous mesoscopic systems [18-22]. Figure 3.1.2 shows the numerical patterns
calculated by using Eq. (3.1.2) with M=3 and ¢@,=0, where the values of the order
parameter m, are 200 and 100 for the results in Figs. 3.1.2(a)-3.1.2(d) and Figs.
3.1.2(e)-3.1.2(h), respectively. Note that the chosen values for m,, @, and M are not
particular but only for clear presentation. It can be seen that the numerical patterns for
the resonant geometric modes are well localized on the periodic orbits. Since the
Bessel beams with the azimuthal phase term of exp(im¢@) carry OAM [16], the

resonant geometric modes naturally possess considerable average OAM. The average
OAM of the geometric mode ‘¥, (r, ¢; 4,) can be straightforwardly verified to be
mh.

o

Although the numerical patterns of resonant modes W, (r, ¢; ¢,) are clearly
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Fig. 3.1.2 Numerically calculated patterns with Eq. (3.1.2) and using M=3 and 6,=0.
The values of the order parameter m, are 200 and 100 for the results in Figs.

3.1.2(a)-3.1.2(d) and Figs. 3.1.2(e)-3.1.2(h), respectively.
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concentrated on the periodic orbits, it is pedagogically useful and important to explore
the ray-wave correspondence in an explicit way. Next, we use the properties of the

Bessel function to construct the relationship between the Bessel beams and geometric

modes. Using the boundary condition J, (k, ,R)=0and the asymptotic form of the

Bessel function, J,(z)=+/(2/mz)cos[z—(2m+1)x/4] for z—> oo and, we can

obtain J

m+1

(k,,R)=~\2/(rk,,R) for the large indices. With this result and the

Bessel’s integral representation, the high-order Bessel modes v, ,(r,4) can be

expressed as

k 1 Tk rsing (p—9)
P =T — " do . 3.13
Va1, 8) = R 2n [“e e ¢ (3.1.3)

In substitution of Eq. (3.1.3) into Eq. (3.1.2), the resonant modes ¥ (r, #; ¢,) is

given by

|k 1
\PP"] r,Q; )= my s,
mo,M( ¢ ¢) (2M+1)R 2\/57[

V4 M
X‘[ eik"hr"a rsing e*imu (¢—(p) z e—iqk(¢—(p—%) d¢ . (3 i 1 4)
K

=M

Changing the integration variable from ¢ to a with ¢ —¢—¢@ =« and resetting the

integration bounds on the circle angle, Eq. (3.1.4) can be written

pr : (M +1)k, , emo
il r’ ; ) — 070
m, M ¢ ¢ 2R 27[

XI eik’”uv”o rsin(a+o+9,) oM DM (qa)da , (3 1 5)

-
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M

where D,,(qa)=(2M +1)' Z e ' is the Dirichlet kernel. Since D, (ga)is a

Kk=—M

periodic pulse function with period 27/q , the integration of Eq. (3.1.5) on the circle

angle can be divided into ¢ segments with the integration interval between —m/g and

n/q. Hence Eq. (3.1.5) can be written as

o ( ) 1/(2M+1)km 5 €7
(e )=
mm 5P P, 2R 27

q-1

XZ J‘ ;; eik,,,{,_,,,)rsin[awwf%] e—imo [azqﬂstM (qa)da ¢ .(3.1.6)
g

s=0

For (2M +1)g>>1, the Dirichlet kernel D, (qa) displays a narrow peak
concentrated in a small region of —A<a <A, where A=7x/[q(2M +1)]. Since the

effective integral range of « in Eq. (3.1.6) is rather limited, the factor

sinfa +0+6,—(2rs/q)] for small o can be reasonably approximated as

a-cos[0+6 —(2rs/q)]+sin[@+6 ~(2xs/q)]. For obtaining a close form, we also

approximate the function D,,(qa) as a gate function that is 0 outside the interval

[-A, A] and unity inside it. With these approximations and £, , =m,/R,, Eq. (3.1.6)

can be analytically integrated as

—im,@, g1 im,| sin| o+ O—ﬂ 278
\PZ;‘fM(r,qo;(po)=,/221;eo p §2M¢7+1) Ze [Ro (=) q}

s=0

xsine| Ze— |1 cos (o+(oo—m -R, ,(3.1.7)
R q(2M +1) q

where sinc(x)=sin(x)/x is the sinc function. From the property of the sinc function, the
wave function ¥, (r,¢;¢4,) can be manifestly deduced to be concentrated on the

set of straight lines: rcos[¢ +¢, - (27rs/q)] =R, with s=0,1,....,g—1 that coincide
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with the periodic orbit in a circular billiard.

3.1.3 Transient Dynamics of Released Coherent States
In quantum mechanics, the free time evolution of the quantum state w(x,y)

suddenly released at time f#,=0 can be in terms of the 2D free propagator

K(x,y,t;x.y',t,) [26,27] and expressed as

ly(x,y,t):Idy’jdx'K(x,y,t;X',y',to)l//(x',y'), (3.1.8)
where
m im|[(x=x) +(y=»)]
K XY t) = — . (3.1.9
(xoy£5xY5 1) 27zih(t—t0)eXp{2h -1, (3-1.9)

Thus the quantum state (x,y,t) can be written as

5 M 2+ 2
w(x,y,t)_zﬂ’z”mjdy'jdx'exp{%[(x *) t(y Y) ]}l//(x',y').(&l.lO)

3.2 Analogous Optical Experiments

3.2.1 Experimental Setup

Cylindrical waveguides and whispering gallery resonators have been employed to
generate very high order Bessel beams [16]. Here we exploit a large-aperture
cylindrical waveguide with the precise coupling scheme to systematically generate
resonant geometric modes with large OAM. Figure 3.2.1(a) depicts the experimental
setup. A linearly polarized Gaussian laser beam of wavelength at 532 nm was used as
an incident light source. A beam expander was employed to reduce the beam
divergence less than 0.1 mrad. A lens with the focal length of 25 mm was used to

focus the laser beam into the cylindrical waveguide. Figure 3.2.1(b) depicts the
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central angle of incidence &, and the effective spreading range A6 in the longitudinal

section of the cylindrical waveguide. The transverse path length of a ray with the

angle of incidence 6, through the waveguide is given by L, =Ltan@, , where L is

the length of the waveguide. For the angle bandwidth A8, the range of the transverse

path length can be found to be AL, =(Lsec’8,)A8. To form a complete transverse
orbit (p,q), the range AL, needs to be greater than the orbital length

L, =2qRsin(pr/q) . Namely, the geometric condition is given by

(sec’8))AO>2q(R/L)sin(pr/q). A smaller aspect ration R/L can lead to the

formation of geometric modes with smaller angle bandwidth. Here we use the
cylindrical waveguide with R=0.75 mm and L=295 mm. Figure 3.2.1(c) depicts the
off-axis distance R, of the incident beam and the effective azimuthal spreading A¢ in
the transverse section of the cylindrical waveguide. A movable pinhole with an
adjustable diameter was placed behind the beam expander to control the incident
angle 6, and the off-axis distance R, of the laser beam. The pinhole diameter was

adjusted to obtain the desired bandwidth A@ and A¢.

3.2.2 Coherent Modes

We experimentally confirmed that the geometric mode with index (p,q) can be
completely generated when the off-axis distance R, is close to the value of
Rcos(pr/q). The transverse near-field pattern at the output facet of the cylindrical
waveguide was projected on a screen and was imaged by a CCD camera. We
controlled the incident angle to be approximately €, =10° and changed the off-axis
distance R, to generate various geometric modes with indices (p,q) corresponding to

the theoretical results shown in Fig. 3.1.2. Figure 3.2.2 shows the near-field patterns
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for observed geometric modes. The experimental patterns are in good agreement with
the numerical patterns showing in Fig. 3.1.2. With &,=10° and R, for different

geometric modes with indices (p,g), the average OAM can be calculated as

<m>:ktan90chos(p7z/ q), where k is the wave number of the incident beam.

Consequently, it can be found that the average OAM ranges from 348 7 to 1264 h.

3.2.3 Propagation of Coherent Modes

Another extended intriguing topic is to investigate the free-space propagation of the
geometric mode because it can be analogous to the time evolution of a suddenly
released 2D quantum-billiard waves. The optical wave w(x,y) emerges from the
output end of the light pipe at z=0 to.the free space in the direction of the +z axis can

be described with the Fresnel transformation:

w(x,y.z) =" ZZ [ av| dx'exp{—;—k[(x_x) Z(y =) ]} w(x',)) (3.2.1)

Comparing Egs. (3.1.10) and (3.2.1) it is evident that the time evolution of a 2D
quantum state is equivalent to the Fresnel transformation of a near-field optical wave
with the substitution of t—>z and m/h—>27z/A, where A is the optical
wavelength. Figure 3.2.3 illustrates the experimental (upper row) and numerical

(lower row) patterns for the geometric modes Y., (r,¢;¢,) for the case of

(p,q)=(2,5) in the free-space propagation. Numerical patterns can be clearly seen to
agree very well with experimental results. It is also worth noting that the free-space
propagation of the geometric mode displays not only the feature of ray streamlines but
also the spiral characteristics. The spiral feature confirms the existence of OAM that

comes from the traveling-wave nature of the geometric modes in the azimuthal axis.
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(a) . Screen
Plnr}ole

Cylindrical waveguide

g - 0' .Eis: . 1.5 mmx295 mm ]
- " “
Diode pumped “ Focusing Focusing /1\.
green laser lens 1 lens 2
Beam _ CccD
- expander f=25mm f=8mm camera

| = :

(b) (©

Fig. 3.2.1 (a) Experimental setup for generating the resonant geometric modes from a
cylindrical waveguide; (b) longitudinal section of the cylindrical waveguide, showing
the central angle of incidence 6, and the effective spreading range A€ ; (c)

transverse section, showing the off-axis distance R, of the incident beam and the

effective azimuthal spreading A¢.
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Fig. 3.2.2 Experimental transverse near-field patterns for the observed geometric

modes corresponding to the numerical patterns shown in Fig. 3.1.2.
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z=0mm

1.95mm

3.55 mm

5.76 mm

8.7mm

22.2 mm

Fig. 3.2.3 Experimental (upper row) and numerical (lower row) patterns for the
quasiscarred optical modes for the case of (p,q)=(2,5) in the free-space

propagation.
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3.2.4 Spiral Patterns

Spiral patterns characterized by their fascinating structures have been investigated in
various systems of different fields such as biological [28], chemical [29], physical
[30-34], and optical [35,36] systems. It is also found that the spirals appear in heart
muscle during the heart diseases [37-39] such as the cardiac arrhythmia and
fibrillation.

In this section, we demonstrate the observation of the optical spiral patterns with
the high-order geometric modes emitted from the light pipe. The experimental
configuration is the same as the one in Fig. 3.2.1. The propagation for various
high-order geometric modes traveling from the end faucet (z=0) of the light pipe to

the far field are clearly displayed in Fig. 3.2.4 to Fig. 3.2.6. It should be noted that

these attracting figures are generated with the input angle 6, ~10° and with different

off-axis distances R, . Figure 3.2.4 and Fig. 3.2.5 show the experimental observations

of the high-order geometric modes with indices (p,q)=(6,25),and (p,q)=(21,62),
respectively. For the case in Fig. 3.2.6, the intricate structure of the geometric mode

has caused difficulty in directly recognizing the indices (p,q). Even so, with the

relation R, = Rcos(px/q), we can derive the ratio p/q with R,/R=0.48 to be

p/q= [cos’1 (RO/R)}/n =0.34 according to the experimental result. It can be seen

that the spiral patterns are distinctly formed through the propagation. The far-field
patterns also show that the the effective spreading range A0 should be quantized and
the effective azimuthal spreading range A¢ in the transverse section of the light pipe
is continuously distributed. The quantization for A® can be obtained from the
theoretical interpretation since the available incident angles are governed by the

boundary condition of the light pipe. Moreover, the inner and the outer intensity
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distribution of the far-field spiral patterns suggest the lower and higher values of the
transverse component of the wave number, respectively. The outer intensity
distribution of the far-field spiral pattern also implies the more number of times the
light beams are reflected by the wall of the light pipe. During the propagation, it can
be obviously observed that the light beams corresponding to different transverse
components of the wave number are divided into layers and ultimately form the
spirals. More complex spiral patterns with irregular trajectories can be observed in Fig.
3.2.7 and Fig 3.2.8. Since the presented optical spiral patterns are reproducible, robust,

and stable, it is useful for further exploration of the intriguing features of the spirals.
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1.5 mm

Fig. 3.2.4 Experimental patterns for the optical geometric modes for the case of

(p,q)=1(6,25) in the free-space propagation.
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z=0 mm z=0.4 mm

0.7 mm

2.0 mm

F.F.

Fig. 3.2.5 Experimental patterns for the optical geometric modes for the case of

(p,q)=(21,62) in the free-space propagation.
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z=0 mm z=1.3 mm
0.15 mm 2.7 mm
0.28 mm 4 mm
0.4 mm F.F.

Fig. 3.2.6 Experimental patterns for the optical geometric modes for the case of

p/q=0.34 in the free-space propagation.
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Fig. 3.2.7 Experimental patterns for the spiral patterns with irregular trajectories in the

free-space propagation.
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Fig. 3.2.8 Experimental patterns for the spiral patterns with irregular trajectories in the

free-space propagation.
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Chapter 4

Formation of Centrally Focused
Beam via Intracavity Second
Harmonic Generation

4.0 Introduction

Traveling-wave Laguerre-Gaussian TEM,,; (LG,;) modes display intriguing physics
and have developing technology applications, where p and / are the indices in radial
and azimuthal directions of the traveling-wave LG,,; modes. In 1992, Allen et. a/ have

I¢

shown that the taveling-wave LG,; modes with an azimuthal phase term ¢’ possess

well-defined orbital angular momentum of /% per photon [1]. Since then, the optical
beams with orbital angular momentum have been intensively studied in a variety of
fields [2-5]. Unlike the traveling-wave LG,; modes, standing-wave LG,; modes are
characterized by their flower-like profiles [6] and possess no net orbital angular
momentum. It has been confirmed that the flower-like LG modes are formed by a
coherent superposition of two traveling-wave LG,; modes that carry the same
topological charges / while with counter rotational wave fronts (+/, -/ ) [7]. The
production of high-order standing-wave LG,; modes has been reported in a
large-aperture CO, laser [8], optically pumped [9] and electrically pumped [10]
vertical-cavity surface emitting semiconductor lasers (VCSELs), and a solid-state
laser cavity compounded of nonlinear medium [6,11-13]. The attractive features of the
SLG modes lead to rich studies in the pattern formation [6,11-13] and recent research

on the generation of the two-dimensional optical vortex array [7].
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Besides the investigations into the optical properties of the traveling-wave LG,
modes at fundamental wavelengths, Allen et. al reported further studies in the
frequency doubling of the traveling-wave LG, ; modes through the second-harmonic
generation (SHG) [14,15]. The second-harmonic wave is shown to be decomposed
into a number of traveling-wave LG,; modes with different indices. Since the
components of different indices give rise to a varying Gouy phase shift between the
modes, the resulting intensity distribution of the second-harmonic wave changes its
profile during propagation. Hasegawa and Shimizu disclosed the same physical
picture with frequency-doubled Hermite-Gaussian (HG) modes which are described
as a coherent superposition of the orthonormal HG bases with different orders [16]. It
can be noted that the second-harmonic waves can no longer be illustrated as a simple
traveling-wave LG mode or HG mode. The wave interference of constituent modes
with corresponded Gouy phase shift results in the interesting structures of the
second-harmonic waves through propagation. The experiments for the generation of
the frequency-doubled modes were carried out in the extracavity configurations of the
SHG [14-16]. However, limited to the conversion efficiency of the extracavity scheme,
the experiments only revealed the results concerning the SHG for the low-order
fundamental modes. On the other hand, though the SHG for the essential optical
modes has been thoroughly studied, frequency doubling of the standing-wave LG,
modes that characterized by their highly-symmetric and fascinating structures has not
been investigated as yet.

In this chapter we present the mode transformation of the high-order
standing-wave LGy; modes when undergoing the SHG. We theoretically validated that
the frequency-doubled modes can be expressed as the interference between a set of
traveling-wave LG, modes and a standing-wave LGy mode with differing Gouy

phase shift. We found that, through the second-harmonic process, a centrally focused
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beam was formed along the propagation direction. The location of the maximum
intensity on the longitudinal axis was numerically calculated to vary among the
standing-wave LG modes of different orders. To generate such a centrally focused
beam, we performed the experiment in a diode-pumped solid state laser with
intracavity SHG. We employed a doughnut-shaped pump profile [11] to produce the
highly-symmetric standing-wave LGy; modes of varying orders for frequency
doubling. The intracavity scheme with higher conversion efficiency enables the
realization of the frequency conversion for the high-order standing-wave LG; modes.
Since focused beams have great importance on practical uses [17-19], the presented

centrally focused beam might have the potential for further applications.

4.1 Theoretical Analyses

4.1.1 Wave Functions of Laguerre-Gaussian Flower Modes

Under the paraxial approximation, one of the attracting solutions to the Helmholtz

equation in terms of the cylindrical coordinates (r, 2, z) is the traveling-wave LG,

modes. The profiles of the traveling-wave LG,; modes with radial indices p and

azimuthal indices / at frequency @ can be written as [20],

1 ) )
‘P;‘t?(r,¢,z)=(—1)pfvv(‘;’)(%] L,J{ - Jexp(ilcé)eXp(— . J

w(z)’ w(z)’
xexp[ —i& (r.4, z) |expi(2p+|1[+1)6,(2) ] (4.1.1)
Here @, (z)=tan”(z/z,) is the Gouy phase, &(r.4,z)=kz [1+r°/2(22+2})], k
is the wave number, z, =kw;/2 is the Rayleigh range, w, is the beam radius at

z=0 w(z)=wyy 14(2/2,)° is  the spot size at  z,
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\/2 p'/ 1+50 ; |l |+ p)' is the constant for normalization where o, , =

for /=0 , and L‘pl | () is the associated Laguerre polynomial of integer indices /

and p in azimuthal and radial directions, respectively. The indices / can be zero,
positive, or negative and p>0.

The standing-wave LG,; mode is verified to be the coherent superposition of a

pair of traveling-wave LG, ; modes with equal but opposite topological charges +/7

[7]. Based on the validation, the field distributions of the standing-wave LGy; modes

can be immediately obtained

) (r.g,z,a)= Y[ P (r.p2)+e ™ P, (r0,2) ], (4.1.2)
where « ranging from 0 to 2m signifies the relative phase between the two

traveling-wave LG modes. Substitute Eq. (4.1.1) into Eq. (4.1.2), the coherent state

') (r,¢,z,a) can be expressed as

|7 2
ot L?(fér]
xco{z(mzﬁlﬂexp(—iaexp(— ;)2}

xexp| i(2p+1[+1)6, (z) [exp[-i&(r.¢ 2)].  (4.1.3)

Q') (r,4,z,a) =(-1)"

Equation (4.1.3) reveals the distinct intensity distribution with cos? [l(¢+a/ 21 )]

which suggests the flower-like profiles of the standing-wave LG,; modes with 2/
2

nodes in the azimuthal direction. The profiles of ‘CD r.Q,z a)‘ can be found to

rotate by an angle «/2! during a period of 2 retardation, where « are decided by

initial conditions of the system. In the following, we focus our attention on the

standing-wave LGy; modes with vanishing radial indices, i.e. p=0. For p=0, the
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associated Laguerre polynomial reduces to a constant and is independent of r. Figure
4.1.1 displays the intensity distribution of several high-order standing-wave LGy,
modes with different azimuthal indices /. The relative phases « are —7z/1.3,

/13, =, =, -x,0, =/4, x for Fig. 4.1.1(a)-4.1.1(h), respectively.

4.1.2 Second-harmonic Laguerre-Gaussian Flower Modes

Next we consider the standing-wave LGj; modes when undergoing the
phase-matching SHG. To simplify the analysis further, we assume that there is no
absorption and neglect the depletion of the input wave. Under these conditions, the
amplitude of the frequency-doubled field can be obtained to be proportional to the
square of the fundamental field [14-16]. That is, the frequency-doubled field for the
standing-wave LGy, mode at the beam waist, z=0, is given by

EX (r.4.0,a) = D[ ) (r.4,0.) ] . (4.1.4)

where D is a constant related to the conversion efficiency in the second-harmonic

process. It follows that the = transformational relations k'=2k and
w(z)= w(z)/\/f (w, = wo/\/i ) are satisfied during the SHG, where k' and
w'(z) represent the wave number and the spot size of the frequency-doubled beam,

respectively. Based on the relations, Eq. (4.1.4) becomes

1 LY (V)
B (rg0,@) =D e gl — || S5 e W oos? | 1) e
: 2z p\wy ) w, 21

(4.1.5)
To understand the second-harmonic process due to the wave interference of the

corresponding components, we here provide further analysis for the

frequency-doubled field, E\’;” (r,4,0,a). By substituting cos’ [1 (p+af21 )} with
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Fig. 4.1.1 (a)-(h) Theoretical results for the fundamental standing-wave LGy; modes
of different orders corresponding to the intensity distributions ‘ CDéf‘}) (r, ?,z, a) ‘2

at far field. For detailed description of the parameters; see the text.
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its explicit expression according to the double-angle formula, E\’” (r,4,0,&) in Eq.

2|1
(4.1.5) can be decomposed into two terms. Expanding (\/Er/ w(’)) . in series of the

Laguerre polynomials [21]

=] Z(M] L, (x), (4.1.6)

where xz(\/zr/w('))z in our consideration and [|l|j:|%(|l|—n)' is the

n

binomial coefficient, we thus obtain that

E(g?;l)) (7", ¢5 Oaa)

_ D
Trw,

7]

Josn(-ian ez .00

n=0

(2| |) CI)(2”')(r¢ Za) 4.1.7)
f|l|‘ 02 (759,2, . .

It can be seen that the second-harmonic wave Ej’” (r,4,0,a) can be expanded by

the normalized set of the frequency-doubled traveling-wave LG,y modes and the

standing-wave LGy mode corresponding to Eq. (4.1.1) and Eq. (4.1.2) with z=0

and w, replaced by w,. Considering the general form for the second-harmonic

wave when propagating along the z direction, we can derive the z-dependent

expression for Ey’¢’ from Eq. (4.1.7) as follows

(2] D .
E (r.¢.z,a) = mexp [—zf(r,¢, z)]
0

n=0

x{exp(_m)jon'jqufg) (r¢,2)exp[~i(2n+1)0, (2)]

137



Ch4 Formation of Centrally Focused Beam via Intracavity Second Harmonic Generation

+—(2|l|)!cl)(2‘”)(r¢z2a)exp[—i(2|l|+1)9 (Z)] :
\/§|Z|' 0,2/ ST G

(4.1.8)

Figure 4.1.2 demonstrates the theoretical results of the far-field patterns for the

second-harmonic waves E’” (r,4,z,a) corresponding to the fundamental waves

displayed in Fig. 4.1.1. It can be noted that a Bessel-like profile due to the first term in
Eq. (4.1.8) is formed at the center of the frequency-doubled beam. On the other hand,
the flower-like structure whose azimuthal index / is doubled through the

second-harmonic process is mainly contributed by the last term in Eq. (4.1.8).

4.1.3 Propagation of Second-harmonic Waves

In Fig. 4.1.3, we present the propagation of the frequency-doubled beam from the
beam waist (z=0) for the fundamental standing-wave LGy ;> mode according to Fig.
4.1.2(f). Figure 4.1.3(a) illustrates the side view of the second-harmonic wave along
the z direction to reveal the formation of the centrally focused beam. The
corresponding transverse intensity profiles at different longitudinal positions are
depicted in Fig. 4.1.3(b)-4.1.3(i) where the fine multilayer structure is clearly visible
at the center of the focused beam. A single standing-wave LGy; mode propagates
without changing its profile, only with a beam divergence determined by the size of
the beam waist and the Rayleigh range. However, the second-harmonic wave exhibits
the revolution along the longitudinal axis to form a centrally focused beam, which
resulted from the interference of several LG modes with the corresponding Gouy
phase shift.

Furthermore, Fig. 4.1.4(a)-4.1.4(d) display the side views of various centrally

focused beams propagating along the longitudinal axis with indices (p,/)=(0, 6),
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Fig. 4.1.2 (a)-(h) Theoretical simulations for the second-harmonic waves of intensity

distributions ‘EJ?‘;’)(r,gb,z,a)‘z corresponding to Fig. 4.1.1.
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Fig. 4.1.3 (a) The side view of the frequency-doubled beam ‘Eo(zl‘;’) (r, 0, Z,a)

propagates from the beam waist, (b) corresponding transverse intensity profiles.
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(p.1)=(0,12), (p,1)=(0,20), and (p,7)=(0,40), respectively. The maximum

intensity of the central profiles marked by the dashed lines is numerically calculated

to vary among the fundamental standing-wave LGy; modes of different orders. The

maximum intensity are located at z=1.8z,, 2.5z,, 34z,, and 4.7z, for Fig.

4.1.4(a)-4.1.4(d), respectively. As the order of the fundamental standing-wave LGy,
mode gets higher, the distance from the beam waist to the position of the maximum
intensity becomes larger. The focusing phenomena of optical waves have great
importance for applications such as optical trapping [17-18], and optical
manufacturing [19]. Therefore, it might be useful to generate such centrally focused

beams characterized by their inherent focusing phenomena through the SHG.

4.2 Experimental Observations

4.2.1 Experimental Setup

The schematic diagram for the experimental setup of a diode-pumped Nd:YVO;, laser
with a KTP crystal as an intracavity SHG medium is illustrated in Fig. 4.2.1. The
experimental configuration was designed for the SHG at 532 nm from the
fundamental wavelength at 1064 nm. The laser medium is an a-cut 2.0-at. %
Nd:YVOy crystal with a length of 2 mm and the cross section 10 x 10 mm?®. The SHG
medium is a 10-mm-long KTP crystal with a cutting angle (6=90° and ¢=23.5°) to
satisfy the type II SHG phase matching condition. Both sides of the Nd:YVO, and
KTP crystals were coated for antireflection at 1064 nm (R<0.2%). In addition, they
were wrapped with indium foil and mounted in a water-cooled copper block. The

front mirror is a 250-mm radius-of-curvature concave mirror with antireflection
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0z, 2z, 4z, 6z, 8z,

z

Fig. 4.1.4 (a)-(d) The side views of the frequency-doubled beams with different

orders.
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(R<0.2%) coating at 808 nm on the entrance surface (R<0.2%), and high-reflection
coating at 1064 (R>99.8%) nm and 532 nm (R>99%) on the other surface. The output
coupler is a flat mirror with partial-reflection coating at 1064 nm (R=98%) and
high-transmission coating at 532 nm (T>85%). The pump source is an 808 nm
fiber-coupled laser diode with pump core of 100 um in radius, a numerical aperture of
0.16, and a maximum output power of 1 W. A focusing lens with focal length of 25
mm and 85% coupling efficiency was used to reimage the pump beam into the laser
medium. To generate the high-order standing-wave LGy; modes of different orders,
we employed a doughnut-shaped pump profile and defocused the standard
fiber-coupled diode [11]. The standing-wave LGj; modes of varying orders
correspond to differing sizes of the pump profiles. The pump spot sizes were
controlled to be at 50 — 200 pm. The overall cavity length is nearly 80 mm. According
to the experimental scheme, the beam radius of the fundamental TEMyy mode can be
calculated to be around 141pum. The difference of the beam radius between adjacent
standing-wave LGy; modes is of the order 40 pum. The conversion efficiency for the
standing-wave LGy mode from the diode laser incident power to the SHG output is
about 12% . Moreover, filters placed after the laser cavity allow either the
fundamental or the second-harmonic wave to be chosen and projected onto a screen.

The projected patterns were observed through a CCD camera.

4.2.2 Generation of Centrally Focused Beams

Figure 4.2.2 and Fig. 4.2.3 display respectively the far-field patterns of a variety of
fundamental standing-wave LGj; modes and their frequency-doubled counterparts.
The experimental observations show good agreement with the theoretical results as
illustrated in Fig. 4.1.1 and Fig. 4.1.2. Moreover, the formation of the centrally
focused beam corresponding to Fig. 4.1.3 has been confirmed via the measurement of
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the transverse intensity profiles at different z planes as shown in Fig. 4.2.4. The
experimental tomographic transverse patterns are found to be in accordance with the
theoretical simulations in Fig. 4.1.3. It is worth to mention that the focusing
phenomenon is a linear interference of the wave itself as we have validated in
previous section and not the result of the nonlinear self-focusing effect. Since focused
beams have always been a subject of practical interest, the second-harmonic waves

presented here might be utilized for further applications.
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Fig. 4.2.1 Experimental setup of the diode-pumped solid-state laser with intracavity

SHG.
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(p.1)

(0,11)

(0,12)

Fig. 4.2.2 Observed far-field patterns of the standing-wave LGj; modes at the

fundamental wavelength.
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(0,17)

(0,20)

Fig. 4.2.3 Frequency-doubled counterparts of the fundamental standing-wave LGy,

modes in Fig. 4.2.2.
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z=0.8 z,

0.2z,

0.6 z, 10 z,

Fig. 4.2.4 Observed transverse intensity profiles along the longitudinal axis.
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Chapter 5

Weak Localization in Disordered
Systems with Conical Second
Harmonic Generation

5.0 Introduction

Wave localization, which originally results from the peculiar interference of waves
scattered by disorders, is an intriguing phenomenon beyond diffusion theory and
transfer treatment [1-3]. Since the fundamental processes of scattering and
interference are identical for classical and quantum waves, the phenomena of wave
localization have been extensively investigated in different physical systems [4-7].
Recent developments have led to much interest in various disordered media specified
by weak (WL) [8-14] or strong localization (SL) [5,15-17]. It could be found [1-17]
that the localization phenomenon is still an important issue and deserves further
investigations.

Theoretical analyses and experimental observations for the disordered wave
functions are the straightforward procedures to determine the extent of wave
localization. Numerous theoretical models [18-22] have been constructed to explore
the extent of wave localization. Recently, the nonlinear sigma models based on the
supersymmetry theory have been employed to investigate the statistical properties of
disordered wave functions [22]. The zero-dimensional (0D) nonlinear sigma model
has been shown to be equivalent to the random matrix method [22] in the diffusive

limit of disordered systems. In the weakly disordered systems, the wave functions are
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widely spread over space, corresponding to the so-called extended states. With the
one-dimensional (1D) nonlinear sigma model, the density distributions of the
extended states can be expressed as an analytical formula related to the well-known
Porter-Thomas (P-T) distribution [23]. On the other hand, the wave functions of the
strongly disordered systems display log-normal asymptotic forms and long-tail
characteristics in the density distributions [24,25], corresponding to the so-called
pre-localized states. Fal’ko and Efetov [20] developed the reduced version of the
nonlinear sigma model (RV-NLS model) to analyze the long-tail density distributions
of the pre-localized states. Although the RV-NLS model seems to be applicable to
quantify the varying extent of WL, detailed comparisons with experimental
observations have not been performed as yet.

In experiments, the disordered wave functions were measured in a microwave
cavity to show the influence of chaos and localization in disordered quantum billiards
[13]. In 2006, Chen et al. [26] demonstrated the spatial structure of two-dimensional
(2D) disordered wave functions from exploring the near-field patterns of conical
second harmonic generation (SHG) in a GdCa40O(BO) (GdCOB) nonlinear crystal
with moderate defect domains. So far, experimental results for the disordered wave
functions only covered a partial WL regime and did not provide a comprehensive
analysis of the transition from extended to pre-localized states.

In this chapter we experimentally generate the 2D disordered wave functions by
systematically scanning a GACOB nonlinear crystal in the conical SHG process to
explore the characteristics of WL. We numerically confirm that the RV-NLS model
model can provide statistical analyses to agree very well with the experimental wave
functions with various localizations. Furthermore, we find that the density
distributions of the disordered wave functions can be analytically expressed as the

chi-square distributions with fractional parameters. Since the parameters in the formal
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expression of chi-square distributions are only integers for the integral degrees of
freedom [27], we use the terminology of fractional chi-square distribution to
distinguish the difference. Finally, we construct the relationship between the RV-NLS
model and the fractional chi-square distributions to reveal the characteristics of the
fractional degrees of freedom in the disordered wave functions. Although the present
results focus on the regime of WL, the fractional chi-square distribution might be
useful for the full crossover of localization. We also believe that the present model can
be employed to study the degree of localization in various disordered systems [8-14]
such as scattering powder, cold atoms, randomized laser materials, liquid crystal,

scattered systems, microcavities, and graphene.

5.1 Experimental Observations

5.1.1 Experimental Setup and Results

Figure 5.1.1 shows the experimental setup that is a diode-pumped actively Q-switched
Nd: YAG laser with intracavity SHG in the GdACOB crystal. The gain medium is a
0.8-at. % Nd’":YAG crystal with a length of 10 mm. The GdCOB crystal was cut for
type 1 frequency doubling in the XY planes (6 = 90°, ¢ = 46°) with a length of 2
mm and a cross section of 3 mmx 3 mm. All crystals were coated for antireflection
(R<2%) at 1064 nm on their both sides. The radius of curvature of the concave-front
mirror is 50 cm with coating of antireflection (R<0.2%) at 808 nm, high-reflection
(R>99.8%) at 1064 nm, and 532 nm on the entrance side and high-transmission
(T>90%) at 808 nm on the other side. The output coupler is a plant mirror with
coating of high-reflection (R>99.8%) at 1064 nm and high-transmission at 532 nm
(T>85%). The pump source is a 10 W 808 nm fiber-coupled laser diode with a core
diameter of 800 um. A focusing lens with a focal length of 2.5 cm and 90% coupling
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efficiency was employed to reimage the pump beam into the laser gain medium. The
acoustic-optic Q switch with a length of 30 mm has coating with antireflection at
1064 nm on both sides and is driven at a 27.12-MHz center frequency with 15.0 W of
rf power. An object lens was used to reimage the near-field patterns on the screen.

It has been shown that GdACOB crystals possess various random defect domains
which can be used to generate the intensities |‘I’(17)|2 of 2D disordered wave functions

in the SHG process [26]. Here we find that the extent of random defect domains
significantly depend on the transverse position of the GdCOB crystal. With this
feature, we can scan all transverse positions of the GACOB crystal to generate a
variety of disordered wave functions from extended to pre-localized states as shown

in Figs. 5.1.2(a)-5.1.2(f).

5.2 Statistical Analyses

5.2.1 Porter-Thomas Distribution and 1D Nonlinear Sigma Model

To determine the extent of localization, the density probability distribution

P(| (7 )|2) is illustrated to specify the localization of wave functions. For extended

states in quantum chaotic systems, random-matrix method and equivalent 0D
nonlinear ¢ model have been verified to give good explanations of universal statistic
behaviors with the P-T distribution [22]. For weakly disordered systems, density
probability of the normalized disordered wave functions can be expressed with 1D

nonlinear o model as [19,22,26]

P, (1)=P, (1){1+(IPR—3)[%—%1+%12H, (5.2.1)
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Fig. 5.1.1 Experimental setup for the generation of disordered wave functions with the

diode-pumped Q-switched Nd:YAG laser of intracavity SHG in the GdACOB crystal.
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Fig. 5.1.2 (a)-(f) Experimental observation of near-field wave patterns measured at

different transverse positions of the GACOB crystal.
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where PPT(I)zeXp(—I/2)/\/27ZI is the expression of the P-T distribution, and

IPR=.[12d2r is the inverse participation ratio associated with the extent of

localization. For P-T distribution, the IPR can be directly achieved to be
IPR =J.:I ’P,, (1) dI =3.0 indicating the chaotic systems. The larger the IPR value,

the stronger the extent of localization is. As a result, the IPR values for disordered
systems are greater than 3.0 in general. The IPR values for the experimental data in
Fig. 5.2.1(a) and 5.2.1(b) are 3.3 and 5.72, respectively. Evidently, the fitting curve of
1D nonlinear ¢ model is validated to be consistent with the experimental data which
displays small deviation to the P-T distribution in Fig. 5.2.1(a). However, as depicted
in Fig. 5.2.1(b), the use of the perturbative result according to the 1D nonlinear ¢
model is violated obviously in-the region where the deviation from the P-T
distribution is considerable. Negative quantities of the density distribution P(/) can
be obtained for IPR values greater than 7.0. We numerically confirm that the 1D
nonlinear ¢ model is only appropriate for the disordered wave function with IPR<S5.5.
For stronger disorder, higher densities of the distribution functions decay more slowly
in the region where 1D nonlinear 6 models break down. Therefore, a more appropriate

model should be given to clarify the varying extent of localization.

5.2.2 Reduced Version of the Nonlinear Sigma Model
In the following, we employ the experimental data to testify the RV-NLS model that is
developed to quantitatively specify different regimes of localization. The RV-NLS

model indicated by a dimensionless parameter g is given by [20,22]

P.(l;g)= %exp{— g(? + %ﬂ , (5.2.2)
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Fig. 5.2.1 (a)-(b) The density distribution P(I) according to experimental data in Fig.
5.1.2(a) and 5.1.2(c), respectively.

158



Ch5 Weak Localization in Disordered Systems with Conical Second Harmonic Generation

where 4 is a normalized constant, z(/) could be solved numerically according to the
relation ze® =1/g, and g is the dimensionless conductance [2,3] used to identify the
degree of localization. The parameter g is also called the “Thouless number” which
first proposed by Thouless in the discussion on the scaling theories of localization
[2,3]. The dimensionless conductance g is adopted by the scaling theory as its only
parameter and depends on the dimensionality of the system. For 2D case,
g~kil/In(L/1) [2] where k is the wave vector, k=27/4, I signifies the value of

mean free path, and L denotes the size of the system. The formal definition of g is

g EG(L)/ (e2/2h) (Ref. 2) where G(L) is the conductance of a hypercube of size

L?, d relates to the dimensionality, # is Plank’s constant , and e is the electronic
charge. In the diffusive limit of g >>1, the density distribution reveals a universality
of the statistics of localized waves. The value of g is substantially decreased due to
WL which is the precursor of Anderson localization (SL) of g~1 [28]. In other
words, the scaling parameter g can be exploited to specify the extent of localization
for the experimental results. Figures 5.2.2(a)- 5.2.2(f) depict the numerical results of
the RV-NLS model for the best fits to the wave patterns shown in Figs.
5.1.2(a)-5.1.2(f), where the values of g are found to be 33, 11, 5.5, 3.5, 2.3, and 1.1,
respectively. It can be seen that the density distributions generated with the RV-NLS
model agree very well with the experimental results for all cases. Actually, K. B.
Efetov [22] has once bought up the idea that the RV-NLS model can be applied to
explain the statistical behavior for the disordered wave functions in a microwave
cavity [13]. Employing the laser system with the conical SHG operation, we have
verified here the practicability of the RV-NLS model in another disordered system.
The fact implies possible extension of RV-NLS model on the studies of different

extent of localization in various kinds of disordered systems.
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5.2.3 Fractional Chi-square Distribution
Besides the verification of the RV-NLS model, we originally find that the chi-square
distributions with fractional parameters can satisfactorily describe the experimental

results. The analytic expression of the chi-square distributions is given by [27]
Po(I;v)=T(v/2)" ' (vI/2)"*"e™"? | (5.2.3)

where v>0 is a parameter referred to the number of degrees of freedom and

r(v/ 2)71 is the gamma function which serves to normalize the density

distributions P4 (/;v) . The P-T distribution P, (/) is the chi-square distribution with
one degree of freedom, i.e. P(/;v=1) [23]. In addition, the exponential
distribution exp( -/ ) can be referred to the chi-square distribution with two degrees of
freedom, i.e. P.;(/;v=2). Even though there is no conceptual difficulty to extend an
integer value of v to a non-integer, it has not been confirmed that whether non-integer
degrees of freedom have any applications in nature. As shown in Figs.
5.2.2(a)-5.2.2(f), the chi-square distributions with 0.06 <v <1, almost identical to
the features of the RV-NLS model, can excellently illustrate the experimental results.
The values of v for experimental wave patterns in Figs. 5.1.2(a)-5.1.2(f) are 0.774,
0.54, 0.32, 0.20, 0.126, and 0.06, respectively. The evidence shows that the tails of the
density distribution decay more slowly at small values of v and the degree of
localization becomes larger while the values of v decrease rapidly. The investigation
yields a clear result that the fractional chi-square distribution could be a powerful
procedure for analyzing the statistical properties of the localization phenomena. It is
well-known that the non-integer dimensionality is an important property of most
fractals. Our exploration reveals that non-integer or fractional parameters are also

valid concepts in statistical distributions of disordered wave functions.
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Fig. 5.2.2 (a)-(f) Experimental and theoretical density distributions P(I) corresponding

to experimental data in Fig. 5.1.2(a)-5.1.2(f), respectively.

161



Ch5 Weak Localization in Disordered Systems with Conical Second Harmonic Generation

5.2.4 Relation between Statistical Models

The validity and equivalence between the density distributions F.(/;v) and
P (I;g) imply that the two parameters v and g are related. The relationship
between v and g according to the experimental results is marked with blue dots in
Fig. 5.2.3. We employ an empirical form of v=1-exp[-0.08 g"¥] to express the
relationship between v and g, as depicted with a solid line in Fig. 5.2.3. The
empirical expression indicates the two properties: one is v—1 as g—>o to
indicate no WL effects and the other is v, ~0.06 with g=1 to signify the SL
threshold. In other words, the statistical properties for the WL and SL effects can be
manifested with the the chi-square distributions with the parameters in the region of
v.<v<l and 0<v<v,,respectively. Taking the familiar parameter g as a standard of
scaling, the careful mapping of g and v of the two models helps to clarify the regime

of different extent of localization with the new parameter v.

162



Ch5 Weak Localization in Disordered Systems with Conical Second Harmonic Generation

1.0 T T 1 |
0.8 * 4
0.6 .

o L J

0.4 .

®  Experimental data

v=1—exp[—n_DSg°35]
0.2 F .

00 1 1 1 1
0 10 20 30 40 50

Fig. 5.2.3 Blue dots: The relation between v and g according to the experimental data.

Red line: Empirical form for the relationship between v and g.
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Chapter 6

Summary and Future Work

6.1 Summary

In section 2.1.1, we have theoretically derived the eigenstates of the coupled isotropic
HO, which reveals the continuous transformation from the HG to the LG states. In
section 2.2.2, we have performed the analogous optical experiment to systematically
reconstruct the transformational relation between the HG and LG modes with a
cylindrical-lens mode converter. In section 2.1.2, we have verified that the spatial
morphologies of the Lissajous states can be continuously transformed into the
trochoidal states with spatial morphologies corresponding to the trochoidal curves by
converting the HG components into the corresponding LG modes. In section 2.2.3, we
have further exploited the optical Lissajous modes and a m/2 cylindrical lens mode
converter to perform the spatial transformation in analogous way and to generate the
intermediate optical modes between the optical Lissajous and trochoidal modes.
Experimental realization confirmed a notable method to generate the spatial coherent
states with various orbital morphologies. The present method is expected to be
constructive for investigating the spatial transformation of optical coherent waves. In
section 2.1.3, we have systematically investigated the quantum signatures of the
eigenstates corresponding to the coupled commensurate HO with SU(2) coupling
interactions. The eigenstates are shown to be concentrated on the multiple periodic
orbits that transform from the multiple Lissajous orbits to the multiple trochoidal

orbits. In section 2.2.4, we have explored the analogous observation of the laser
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transverse modes from large-Fresnel-number degenerate cavities via varying pumping
size. It has been experimentally verified that the 3D coherent lasing waves
corresponding to the quantum states with multiple Lissajous orbits can be
systematically generated by enlarging the pumping spot size. We also employ the
propagating property of the lasing modes to manifest the role of the phase factor
introduced by the SU(2) coupling interactions. Moreover, we apply the
cylindrical-lens mode converter to confirm the transformational relation between the
multiple Lissajous orbits and the multiple trochoidal orbits. Section 2.3 is the further
extension of section 2.1 and 2.2. We develop a novel method of creating optical
vortex array by the conversion of a standing-wave Laguerre-Gaussian (LG) mode.
Theoretically, by employing the transformational relation, the standing-wave LG
mode is verified to be transformed from a pair of crisscrossed Hermite-Gaussian (HG)
modes, embedded with optical vortex array, consists of a TEM, , mode and a TEMp,
mode. Due to close correspondence between the transformational relation and the
mode conversion of astigmatic lenses, we successfully generate the optical vortex
array by transforming a standing-wave LG mode into the crisscrossed HG modes via a
n/2 cylindrical lens mode converter. The investigation may provide useful insight in
the study of the vortex light beam and its further applications.

In chapter 3, we have exploited the Bessel’s integral to analytically manifest the
ray-wave correspondence between high-order Bessel beams and geometric modes in
circular billiards. We also experimentally demonstrated that the Bessel-related
geometric modes can be strikingly generated by utilizing a large-aperture cylindrical
waveguide with controlling the extent of the incident angle. Moreover, we
demonstrated that the free-space propagation of the output beam emerging from the
cylindrical waveguide could be used to investigate the transient dynamics of the

geometric modes. We believe that the present investigation can provide an important
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insight into quantum physics and wave optics.

In chapter 4, we have theoretically demonstrated the mode transformation of the
high-order standing-wave LGj; modes when undergoing the phase-matching SHG.
The SHG for the standing-wave LGy; modes has been verified to cause the formation
of the centrally focused beams which propagate with their transverse intensity profiles
changed. The theoretical analysis reveals that the revolution of the centrally focused
beam along the longitudinal axis results from the interference of a set of
traveling-wave LG,y and a standing-wave LGy modes according to different Gouy
phase shift. Furthermore, we have employed a diode-pumped solid-state laser with
intracavity SHG to carry out the experiment. By controlling the spot sizes of the
doughnut-shaped pump profiles, we have effectively generated the high-order
standing-wave LGj; modes of varying orders for frequency-doubling. The
experimental results of the second-harmonic waves are shown to be in good
agreement with the theoretical analysis. Our studies might provide some useful
insights into the wave functions for the nonlinear conversion.

In chapter 5 we have experimentally generated the optical patterns from the
conical SHG process to investigate the disordered wave functions with different
extents of WL from extended to pre-localized states. It has been numerically
confirmed that the statistical characteristics of experimental disordered wave
functions can be explained very well with the RV-NLS model. Furthermore, we have
found that the fractional chi-square distributions are nearly equivalent to the
distributions of the RV-NLS model. With this result, the concept of the fractional
degrees of freedom can be used to manifest the extent of localization for the
disordered wave functions. It is believed that the present work can bring more insight

into the localization phenomena of diverse disordered systems.
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6.2 Future work

In chapter 4, we have thoroughly investigated the formation of the centrally focused
beam with the second-harmonic generation (SHG) of a high-order Laguerre-Gaussian
mode. It can be found that the obtained second-harmonic waves characterized by their
intricate structures reveal fairly different morphologies to the input fundamental
waves. The intriguing observations stimulate our interests in the SHG for the localized
coherent waves as discussed in chapter 2. However, the restriction of the conversion
efficiency for the SHG of such a high-order laser mode might cause the major
difficulty in carrying out the experiment. Once we can overcome the limitation, it
could be expected that the second-harmonic coherent waves associated with the input

localized modes might display considerably complicated configurations.
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Appendix A
Derivation of the Eigenstates to the Harmonic

Oscillator with SU(2) Coupling

The Hamiltonian for a two-dimensional (2D) isotropic harmonic oscillator with SU(2)
coupling can be given by
H=H,+Q J +Q,J,+Q.J,. (A.1)

In terms of the dimensionless spatial representation, (A.1) can be rewritten as

[—}':%(;}2 +p2+7 +j§y2)a)0 +%(?~CJ~’+I3X ﬁy)+%(’~‘ﬁy _)713»’«)
(- 5 B). (A2

HSH

Try to eliminate the second term with €, we employ the following transformation

for the operators:

f=%cosd+ b sin b =—%Xsind+p. cos
¢ px, ¢, D, ¢+ D, ¢’ (A3)
j=j'cosp—p sing |p, =7'sing+p, cosg

where 2¢=tan™' (92 /Ql). Substitute Eq. (A.3) into Eq. (A.2), the Hamiltonian in
Eq. (A.2) hence can be written as

A L QA+ (. .,
Hr:E(x72+p;2+y72+p;2)a)o+ 12 2 (x!yr+px py)

0
+T3()z'2 +p -5 =) (A.4)

H > H"

Try to eliminate the third term with Q; in H':
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(A.5)

7' =%"sin@+7"cos@ |

~ ~ ~ . ~ ! ~ " ~ " .
{x':x”cosé’—y"sme P, =D, cos@—p, sind
~ " . ~ " ’
p, =D, sinf+p, cost

where 26 =tan™ (1 Q2+Q.° /Q3) . Substituting Eq. (A.5) into (A.4), we obtain that

~n2 ~n2 ~n2 __ ~n2 ~n2

=2 55 5o+ (7 55 - )

y

(5245,)o +%(ﬁ”2 +5," o, (A6)

where Q =\/Q Q7 +Q7, 0,=0,+Q/2, and o, =w,-Q/2. Obviously, the

eigenvalues and eigensates ‘nl,n2> in terms of the spatial representation for

[_”[n

A

H" can be given by
1 1
E = n1+5 ho, + n2+5 ho,, (A.7)

and

n2 "2
y

(x")e_T " (y")e_T, (A.8)

\Pl ( 1 1

)= V2 n T2 i

We have already got the solutions of H" . Such transformations in Eq. (A.3), and
(A.5) enable us to simplify the question with the well-known eigenstates
Hermite-Gaussian states of the uncoupled Hamiltonian H" . At the end, we will show
that the eignenstates of the coupled oscillator can be expressed as the superposition of
Hermite-Gaussian states. Now let us back to our question in the beginning with the
2D coupled harmonic oscillator—solving the eigensates and eigenvalues of it.
Furthermore, using the ladder operators may help us explicitly figure out the question.

The ladder operators can be given by
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=n

X =

ﬁ(d’#&”) )7"=%(15”+15”) | "
i) | (i)

P=gl N5

Equations (A.5) can be rewritten in the form of the ladder operators:

a' = (&'T cos @+ 5" sin 9)
. A.10
p" = (—&’T sin@+b'" cos 49) (19

Since the ground state

0, O> is invariant under transformation of the coordinate, it is

obvious that

0, 0>H -

0, 0> ;.- Therefore, the eigenstates ‘nl, n2>H can be written as

14
‘n13n2> HO - n]y ’12! O’O>1{(”
(a)" ()"
= 0’0>1-"1'
n,! n,!

_ (&’T cos@+h't sin G)n (—&'T sin@+b'" cos H)Nﬁn 0,0

N J(V=n)!

(A.11)

F"Ir’

where n,+n,=N, n,=n, n,=N-n, and N is a constatnt. This condition is

required for the energy degeneracy. Furthermore, we use the Binomial series to

expand Eq. (A.11):

‘”15”2>H"

o (&'T cos H)V' (Z;'T sin 6?)”#l C (—d'T sin G)Vz (l;'T cos 6’)

:;%: \/a\/(N—n)!

N-n-v,

0.0},

§— n—s+v N-n-v

cr, (02'T cos 6’) ’ (bA”L sin 9) cr (—02'T sin G)V (Z;'T cos 49)

Zv: \/m\/(N—n)!

z(_l)v MM(COS e)N—nﬂ—zV (Sine)n_ﬁzv (&,T )s ([;,T )N—s
v (s=v)!(n—s+v)I(N—n-v)!

-

Y
I
(=]

0,0) .

g

M=

0.0),

I
(=}

s
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N

N
d?

E

s 2

s=0

)., (A.12)

N“\ =

where v, =s—-v, v,=v, v+v,=5 (s=0...N), CZ:n!/I:(n—k)!k!:l, and the

Wigner d-coefficient is given by

dzNNze )=VsL(N —s)Wnl /(N —n)!

s—f n——

min[N-n,s] (_1)\" N-s+n—-2v s S—n+2v
y (=1)"(cos ) (—sin0) | A1)

v=max[0,s-n] (n—v)'(s n+v) (N s — v)'v'

Similarly, according to Eq. (A.3), the ladder operators can be obtained to be

&r‘ _ a"Te—l¢
. (A.14)
b =ble?

Substitute Eq. (A.14) into Eq. (A.12), an extra phase term is introduced:

‘nl,n2>H = elWZe—” ¥ 2N v (20)]s,

S——,n——

2 2

=) 1= (A.15)

Eq. (A.15) presents the eigenstates of the coupled harmonic oscillator, where one can

replace 2¢ by a and 20 by [ to correspond to Eq. (2.1.11).
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Appendix B
Derivation of the General Expression for a
High-order Hermite-Gaussian Mode Transforming

through an ABCD System with the Huygens Integral

The general form for the Huygens integral in one transverse dimension in terms of the

ABCD matrix can be given by

u(x,,2,)= Bfﬂ exp(—jk L)

0

o 2 2
xI u(xl,zl)exp{jﬁ(/lx1 Zx;c2+Dx2 ) dx, . (B.1)
—0 0

where A, is the optical wavelength in free space and L is the length for the ABCD

system.

B.1 Input a Hermite-Gaussian Mode

Consider an input beam of a high-order Hermite-Gaussian (HG) mode in the form

2
(2= |2 [ P2 | 7 (B2)
2" o7 o, 214,

where A, is the wavelength in the medium where the beam is currently located. The

field distribution of the HG mode propagates through a distance L hence can be

written as

_ | J T V2 \/Exl _j%
u, (xz,zz) = == _[ - H, e
BA, |, 2 n!a)lx/; o,
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_7[(Axl2 =2X1X, +Dx22)

- B,

xe dx, ¢, (B.3)

where the phase term exp(— jkL) has been neglected since it does not affect the

intensity distribution ‘ u, (xz,zz) ‘ . Employing the generating function of the Hermite

polynomials, &> = D> H, (&) /n!, we can further obtain

n=0

-J
3 B2
e 191 e 0 dxl

] x) <7r(Ax|2—2x1x2+Dx22)
e s e )

! x,2 ﬂ(AX|2—2X1X2+DX22)
© | = |t 2) L I G B e Rl
_ Bi] 3 J‘ z( /\/'_ Hﬂ[\/le] . jﬂlqle j B &
0, N7 _ n! 10}
0@ % | =0 |
2x,t 2 xy ‘H(Ax|2—2x1x2+Dx22)
J 2% oz Tia o EEISL>W\ A
= —_ [ — j e 1 e 1 ]e dx1' (B‘4)
BAw, 7w =,

Calculate the exponent with allocation method and simplify the equation with

A, = 4,, the exponent can be derived to be

2Lx _ﬁ_ 7x” ~ .ﬁ(Ax12—2x1x2+Dx22)
o, 2 g’ B2,
(1 A, [2t 2« ¢ .xD ,
=—j—| —+= x| —+jx, |x, -] =+ —x,
A\q B @, 0 2 4B
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Applying the integral identity j exp(—ax2 )dx =7/a to Eq. (B.5) and substituting

the obtained exponent into Eq. (B.4), we can rewrite Eq. (B.4) as

> T ) Sl e
= ' B'

To eliminate the series in the left hand side (LHS) of Eq. (B.6) and find the expression

for the amplitude distribution un(xz,zz), we should apply again the generating

function of the Hermite polynomials to the right hand side (RHS). See the exponent

[r o jz/,ﬂ(l A] £ xD
St x, R | ey
o B a\a B)| 2 7B
“ ]xzz,(Bﬂ)

1 1 s .
=—| —+ Jlr+2 xt—][—
[2 mw .’ (1/g,+ A/B) /4, J Bw,(1/q,+A4/B) " o4,
(O] (2)

first,

where 1/¢g, =(C+D/q, )/(A +B/q,) . Define a new parameter ¢' for the term (1) in

Eq. (B.7), where

1”2 _l 2 . 2

"= 2(“ 70, (g, + 4/B) % ]]t ’ (B-8)
:t’—L 1+ 2 ' (B.9)

2\ e (g, +A4/B) /4 /- '

Furthermore, employ the parameter ¢ derived in Eq. (B.9) and define a new

parameter &' for term (2) in Eq. (B.7):

1 rL 2 . _ 1
er=22 ﬁ\/l+ 7o’ (1/q,+ A/B)/ 4, / ZBa)l(l/ql +A/B)le’ (B.10)
: V2 I

=

B0+ 48) 122 T (Ve 48) 4]
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_ V2 i
B 1/A+B/q1\/(A+B/q1)a)12 +22,j/7B ’

Substitute Eq. (B.9) and Eq. (B.11) into Eq. (B.7), Eq. (B.7) can be rewritten as

[ 1 g
(4 1 \/; A + B/ ql I generating func I
n+(1/2) ”XZZ
2 1 602 \/_xl /10 q>
NIB . (B.12)
7 \ A+B/q, nO\/— 2”n'60

where @, :a)l\/ (A4+B/q,) +j[2Bﬂ,O(A+B/q1)/7m)12]

(B.11)

Compare the RHS and LHS term-by-term, the field distribution can be given by

\/5 ( 1 jnJr( 1/2)

un(xzazZ): Znn!wlﬁ A+B/q1

" 2
| L2 H, \/Exz exp —jﬂ . (B.13)
@, @, 4045

For a high-order HG mode in the two transverse dimension (x,y), Eq. (B.13) can be

modified as

un,m(xzayzazz):un(xzazz)”m(yz’zz)
_ a)Zx ' a)Zy "’ 1
o, |\ o, 2"" N (n+m)\z 0,0,
n+ m+1/
x( 1 jl/z : le V2 H 2y,
Ax +Bx/q1x Ay + By/Qly ! a)Zx ! a)Zy

2 2
X exp| —j ks exp —j& , (B.14)
Aoy ﬂony

B.2 Input a Rotated Hermite-Gaussian Mode

177



Appendix B

We first expand the rotated high-order HG modes into a set of HG basis without

rotation and find the weighting coefficients:

U, m (§1a771521):“;1(9:1’21)’“‘"1(771321) (B.15)
:iDs(é’) u,, (%, .2), (B.16)

where N=n+m, and the coordinates (5,77) for the optical beam follow the relation:

=Xx,cos@+ y, sinf
G =X ‘ N ‘ (B.17)
n =X, (—sm 6’)+yl cos
From the generating function in the two transverse dimensions, we have
vz e S HL(E) & H (7)1
e’ +2§re—t +277t ZZ ’”(5) z n(n) , (Blg)
m=0 m' n=0 n!

where 4?:\/55/501 , 7=~21/w,, fzﬁx/wl , and y:ﬁy/a)l. Here we have

assumed that the input mode is an isotropic, i.e. the beam radius in x and y directions

are the same. Substitute Eq. (B.17) into the LHS of Eq. (B.18):

—r? +2&, re—tz +277,t

—r2+2glre—t2+2ﬁl t

_ e—r2 +2(X cos 6+, sin H)re—t2 +2|:,Y1 (—sin @)+, cos HJI

_ e—(rcos 0t sin49)2 +2(rcosf—tsin O)x, e—(rsin 9-*—[005(9)2 +2(rsin@+tcosb)y, . (B 1 9)

Apply the generating function to Eq. (B.19):

—(rcosl9—tsin49)2 +2(rcosf-tsin)x, e—(rsin O+tcos 9)2 +2(rsinf+tcosb)y,
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Appendix B

Y (rcos@—rsin@) (rsin@+icos G)Nﬂ

(
XZ Js! (N—s)!

U n-s (xla)’le)

”Wl Xl +)’1

T 2%
_a)le 01 ZzN/Z

s N-s C* (r cos H)Vl (—t sin H)HI

N-s—v,

CV]:"S (rsin@)” (tcos0)
(N—s)!

TN E I -1 )} . (B.20)

Similarly, the RHS in Eq. (B.18) can be modified as

m(f_l)r’"iHn (7,)r"

m! pr n!

Kz E2+77 /— 272
T 1221 l l" = Jﬁ;ﬂl. -
— _a)e od1 51 o
1

2 e 0 2'”m'a) i
/ t _J”wlzﬁlz
77 2200

2”n'a)

ira), 51 +171

o0
m=0

N—m

J
_\/gw‘ o Z2N/2Z \/ Uy (&70521) - (B.21)
N=0 .

m=0

Comparing Eq. (B.20) and Eq. (B.21) term-by-term, we can obtain the relation:

{( (LHS) 7 =r" (RHS) =>v+tv,=m. (B.22)

LHS) ts—v]JrN—s—vz — tN—m (RHS)

Moreover, let v, =m—v, and v, =v, there follows the relations that

=0~s
v, =0~N-5s. (B.23)
m=0~N

Therefore, Eq. (B.20) can be rewritten as
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j/t(ulz(;lq*)l ) s N/2 N I"m tNim
041
\/25‘)1 22 ZM (N_m)!”m,/v—m(xlayl’zl)

N=0 m=0
,”’”12(f12+f12) © N N . s—m+v
=\/§a)]e] 2204, 22/\1/2 [ZZZ - rcosH)\/_'( tsmH)
N=0 5 0 v s!

y CY (rsin@)’ (tcos@)"
(N—s)!

um,N—m (x19y1’ Zl )}

pu J”‘Ul ("1 7 ) w NN
:\/;wle 2204 ZzN/z |:ZZ
N K

SN =s)! "™ (cosH)N_Hm_zv(—sinﬁ)s_mzv(—l)v

Zv: \/;,/ N—s ! m—v)!(s—m+v)!v!(N—s—v)!

um,me (xlﬂyl’zl) :

(B.24)

Since Eq. (B.21) is equivalent to Eq. (B.24) and the length is conserved under rotation,

we can compare Eq. (B.21) and Eq (B.24) term-by-term to obtain the field distribution

as follows
N N
U, (&m.2)= stz_ﬂ N (@)u,y-, (x5 72), (B.25)
s=0 2’ 2
where

d%N \/7\/Ns\/7\/Nm

S-;,m—;
min[N—nl,ml] (—1)" |:Cos(/§j:| 1tmy = [Sln(/gJ} 27y
_ (B.26)

v!(N—nl —v)!(ml —v)!(nl—ml +v)!

X

v:max[o,m1 -n 1]

Consider the case for the input beam traveling through an ABCD system, it is

evident that the output beam can be directly obtained tobe

U, m 982’772: Zdz N u\,N—s (xzayz’zz)- (B.27)

A\—* m——
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