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Abstract—This paper describes a timing-skew calibration
technique which equalizes the phase spacings among multiphase
clocks. The scheme uses simple sample-and-hold circuits con-
trolled by the multiphase clocks to sample a common reference
input. Phase spacing is measured by counting the number of
zero crossings between two adjacent sampling sequences. A
zero-crossing detection scheme is proposed. It has better immu-
nity against the offsets of the comparators used in the detector.
A digital calibration processor is also proposed. It examines the
outputs from the zero-crossing detectors, and then adjusts the
delays of clock buffers in order to minimize timing skews. The
proposed calibration scheme does not demand stringent require-
ment for the reference input. Its application to a eight-channel 6-b
time-interleaved analog-to-digital converter is demonstrated.

Index Terms—Analog–digital conversion, calibration, clocks,
phase estimation, time-interleaved, timing circuits, timing skew.

I. INTRODUCTION

A MULTIPHASE clock generator generates a set of clocks
that have identical frequency but different phases. Many

applications, such as time-interleaved analog-to-digital con-
verters (TI ADCs), require the clock phases to be uniformly
spread over one clock period. Fig. 1 shows an -channel
sampling system including a multiphase clock generator.
The M-phase clocks are generated using a delay line con-
sisting of cascaded delay units with equal delay , where

. The delay of is usually controlled by a
phase-locked loop or a delay-locked loop. For each , the
buffer is connected to the output of and generates the
clock that drives the sample-and-hold circuit. For a TI
ADC, the time interval between two consecutive samplings
must remain constant. Any timing skew in the multiphase
sampling clocks can yield sampling interval variation and de-
grade the overall signal-to-distortion-plus-noise ratio (SNDR)
performance of the ADC. The timing skews are caused by the
device mismatches in the delay units and the clock buffers,
as well as the mismatches among clock signal routes. For an
eight-channel 6-b 16-GS/s TI ADC, the skew must be less than
0.31 ps so that the ADC can attain 37-dB SNDR. This skew
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Fig. 1. Multiphase sampling system.

requirement is difficult to achieve even for chips fabricated by
today’s advanced integrated-circuit technologies.

There are calibration techniques to correct the timing skews.
A useful calibration scheme must be able to detect the timing
skew first and then make the necessary correction. Most timing-
skew detection techniques acquire the timing information from
a reference signal. For TI ADCs, if the reference is narrow-
band so that it does not cause aliasing in each analog-to-dig-
ital (A/D) channel, digital signal processing algorithms, such as
Fourier transform [1] or cross correlation [2], [3], can be ap-
plied for skew detection. If the reference is well defined and
rich in timing information, such as a ramp signal, the skew can
be detected without complex signal processing [4], [5]. How-
ever, a high-speed high-precision reference is difficult to gen-
erate. All the above skew detection techniques need to use the
multibit A/D channels in the TI ADC to digitize the reference.
Thus, it is not trivial to perform the calibration in the background
without interrupting the normal A/D operation. To enable back-
ground calibration, the scheme of [4] adds a ramp reference to
the ADC’s input. This precise signal summation is difficult to
implement and degrades signal dynamic range. On the other
hand, the scheme of [5] requires an additional A/D channel and
employs complex channel switching.

The timing skew can also be detected by counting the
rising (or falling) edges of an asynchronous reference [6]–[8].
The scheme needs only simple hardware, such as flip-flops and
adders. Its fundamental principle was expanded as zero-crossing
detection [9]. Although stringent specifications for the refer-
ences are not required, these techniques are sensitive to
the input-referred offsets of the comparators used in the
zero-crossing detectors. In some schemes, flip-flops serve as
the comparators.

There are calibration schemes for TI ADCs that directly use
the input of the ADC as the reference for timing-skew detection

1549-8328/$25.00 © 2009 IEEE
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Fig. 2. Proposed architecture for multiphase timing-skew calibration.

[2], [9]. Those schemes inherently operate in the background.
The scheme of [2] restricts the input to be narrowband so that it
cannot cause aliasing in each A/D channel. This narrowband re-
striction can be lifted by the clock-phase random-chopping tech-
nique [9]. However, the required clock choppers are difficult to
implement. The mismatches among clock choppers can degrade
the effectiveness of the technique. Furthermore, the effective-
ness of these input-reference schemes depends on the richness
of timing information residing in the inputs. For example, a dc
input contains no timing information. No timing-skew calibra-
tion can function under such an input condition.

This paper describes a timing-skew calibration technique
whose architecture is shown in Fig. 2. For each where

, the sample-and-hold circuit is driven by the
clock from a multiphase clock generator. The receives

the reference signal and produces the sampling se-
quence. From the sampling sequences , the
timing-skew calibration processor detects the timing skews be-
tween neighboring sampling channels. The digital control
signal from the calibration processor adjusts the delay of the
clock buffer. The objective is to equalize all sampling intervals
defined by the multiphase clocks. The timing-skew detection is
based on the principle of zero-crossing (ZC) detection [9]. The
ZC detection does not demand stringent specification for the

reference. It requires only one comparator per sampling
channel. A new ZC detection scheme is proposed to reduce its
sensitivity to comparators’ offsets. Excluding comparators, the
entire calibration processor can be realized by standard digital
circuits.

An eight-channel 6-b TI ADC is used as a design example
throughout this paper. It contains multiphase clocks.
Each clock has a clock period of and a clock frequency of

. Thus, the ADC’s effective sampling interval is
and the effective sampling rate is . The ADC has

an input range between , therefore, its magnitude resolution
is defined as . In addition, this TI ADC
requires a timing resolution on the order of .

The remainder of this paper is organized as follows. Section II
introduces the concept of ZC and its mathematical background.
Section III discusses the ZC detection techniques. Two ZC

Fig. 3. ���� and � ��� sampled signal.

detectors are described. Section IV describes the proposed mul-
tiphase timing-skew calibration scheme using the ZC detectors
of Section III. Section V demonstrates an 8-channel 6-bit TI
ADC that employs the proposed calibration scheme. Section VI
draws conclusions. In addition, there are three appendices.
Appendix A and Appendix B give detailed theoretical studies
on the two ZC detectors described in Section III. Appendix C
is a theoretical calculation of the inherent timing fluctuation of
the calibration scheme described in Section IV.

II. ZERO CROSSING

Consider the -channel sampling system shown in Fig. 1.
For each where , the sampler triggered
by the clock samples the input and produces the
sampling sequence, where is a discrete time index. Both
and for are illustrated in Fig. 3. If is ideal,
then can be expressed as

(1)

In (1), is the nominal time interval between two consecutive
samplings. The sampling rate for the entire system is .
The time period of the clock is . Its clock
frequency is . The time position of relative to the
multiphase clocks is represented by , which is the sampling
time of . The possible value of is between 0 and .
Finally, is the individual timing offset of the clock. The
value of is defined in such a way that the mean of is zero,
i.e., . A timing skew occurs between the
clocks and if .

Consider a signal that is continuous in time and in mag-
nitude. As time progresses, a ZC occurs if changes its po-
larity from positive to negative or from negative to positive. For
example, in Fig. 3, there is a ZC between and , and
another ZC between and . There exists at least one
ZC between and if . If
is a stationary Gaussian process with zero mean, then the prob-
ability of for an arbitrary is [10], [11]

(2)
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Fig. 4. ZC density.

Fig. 5. Constant ZC density and timing-skew detection.

with
(3)

(4)

where and are the standard deviations of and
, respectively. Furthermore, denotes the cross

correlation between and . The value of
is between and . If is a dc signal, then both
and are constant, , , and

. Therefore, there is no ZC for a dc . If is
a single-tone sinewave with frequency at , then both

and are also constant, but ,
, and , i.e., a ZC always occurs between

and for every .
Consider two sampling sequences and , as il-

lustrated in Fig. 4. Both sequences have an identical clock
period of . The sampling interval between and
is . The sampling time for is . For a generic
input, the cross correlation of (3) between and
is denoted as . Note that is a
periodic function of and has a period of . From (2),
the corresponding ZC probability between the two sampling
sequences is . The ZC density, defined as the ZC
probability per unit time, can be expressed as

(5)

For the sampling system of Fig. 1, the ZC probability between
and can be expressed as

(6)

where .
Consider . The sinewave input

has a frequency of and an amplitude of . The corre-
sponding is , and the corresponding

is

is even

is odd

(7)

where is the clock frequency, and and are two
mutually prime positive integers. If the ratio is irrational,
i.e., is asynchronous to the clock, then is equal to

and independent of and . If , then
is synchronous with the clock. In a synchronous case, ZCs
occur only at certain instants if all clock periods are folded as
one. There are possible uniformly spaced ZC instants if is
even. On the other hand, there are possible uniformly spaced
ZC instants if is odd.

The timing-skew calibration scheme proposed in this paper
requires a reference signal whose is nonzero and inde-
pendent of . One example is an asynchronous sinewave whose

is as described in (7). As illustrated in Fig. 5, if is
constant, then the ZC probability between and is
proportional to the sampling interval, i.e., .
If timing skew occurs and the sampling interval becomes

, the ZC probability is deviated by an amount of
. By comparing and , one can deter-

mine whether the sampling interval between and
is larger or smaller than the sampling interval between
and .

The reference signal required by the proposed calibra-
tion scheme is not restricted to single-tone sinewaves. Any
signal can have a independent of if it is narrowband and
asynchronous to the sampling clocks. Referring to Fig. 4, as-
sume both and are sampling sequences with

sampling interval. If the bandwidth of is less than
so that it does not cause aliasing, then both and
observe the same signal but with different delays. As a

result, is only a function of the delay differ-
ence. From (5), the corresponding is independent of .

A signal is said to be synchronous with the sampling
clocks if it consists of only single-tone sinewaves that are syn-
chronous with the sampling clocks. Its will comprise
-functions similar to those in (7). Under the synchronous

condition, the proposed calibration scheme can still function if
the ’s -functions have the same magnitude and are
uniformly spread over one period. The spacing between the
-functions must be smaller than the desired calibration timing

resolution.
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Fig. 6. Simple ZC detector (ZCD1).

III. ZC DETECTION

A. Simple ZC Detector (ZCD1)

Fig. 6 shows a simple ZC detector (ZCD1) to determine if a
ZC occurs between and . Both samples are com-
pared with a zero reference to determine their polarities. If the

’s polarity is different from the ’s polarity, then the
detector issues , otherwise, . The proba-
bility of is the of (2) or (6). This ZC detection
scheme is simple but sensitive to comparators’ offsets. Detailed
analysis is provided in Appendix A. Assume the two compara-
tors exhibit the input-referred offsets and respectively,
as shown in Fig. 20. The resulting is deviated from (2)
by an amount of , which can be approximated by

(8)

The variation depends not only on the normalized off-
sets and , but also on the cross correlation

. For a slowly varying , , , then
is proportional to . The resulting

probability is sensitive to the offset mismatch. For a single-tone
with frequency close to , , ,

then is proportional to . The offset sen-
sitivity is reduced when large is applied, since large
leads to large and .

When using a ZCD1 to measure the sampling interval be-
tween and of the sampling system shown in Fig. 1,
the due to offsets can lead to skew measurement error

. The relationship can be expressed as

(9)

where is the ZC density defined in (5). Consider
the eight-channel 6-b TI ADC defined in Section I. As-
sume the input is a full-range single-tone
sinewave asynchronous to the clock. To illustrate a low

case, let , then we have
, , and . The

resulting versus is shown in Fig. 7. The
solid line is obtained using (8) and (9). The black circles are
time-domain simulation results. In the simulations, a sinewave
with frequency is served as the input. In each simulation,

is obtained by calculating the ratio of the number of
times to the total number of . In Fig. 7, and

Fig. 7. Skew measurement error due to comparators’ offsets. The input is a
low-frequency sinewave with � � ���� � . The ZCD2 curve is plotted with
� � � so that � � � � � � � .

Fig. 8. Skew measurement error due to comparators’ offsets. The input is a
high-frequency sinewave with � � ���� � .

are normalized with and respectively,
where and are defined in Section I. To achieve

, the offset requirement for the ZCD1 is
. On the other hand, to illustrate a

high case, let , then we
have , , and .
The resulting versus is shown in Fig. 8. To
achieve , the offset requirement for the ZCD1
is . Although its offset requirement
is more stringent than that of a high case, a low case
is usually preferred. A lower frequency implies a slower
(and hence lower power) circuit for realizing the signal
generator. In addition, the signal leakage due to capacitor
coupling is less severe if a lower is chosen.

The preceding analyses assume that the mean value of the
signal is zero. The effect of ’s dc offset is also ana-

lyzed in Appendix A. As described in (26) and (27), both
and are reduced by the dc offset, . Since its effect is
identical to all ZC detectors in the proposed timing-skew detec-
tion scheme, the does not affect its accuracy. As described
in the next section, timing skew is detected by measuring the

difference between the ZC detectors. The absolute value
of is irrelevant.
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Fig. 9. Pseudo ZC detector (ZCD2).

B. Pseudo ZC Detector (ZCD2)

Fig. 9 shows the proposed pseudo ZC detector (ZCD2). Two
high-pass filters are added after the comparators to

reduce the detection sensitivity to comparators’ offsets. Outputs
from the comparators are and . Their binary values
are . Thus, the outputs of the filters and have
triple values . The ZC logic determines the
output as follows. The output if ,
otherwise . In other words, if both and

are or both are .
To gain an insight of the ZCD2 operation, one can approxi-

mate the comparators as linear amplifiers with random quantiza-
tion noises. Thus, the ZCD2 becomes a ZC detector that detects
the ZC in the signal. The comparators’ offsets
are removed by the operation, resulting in a reduced ZC
detection sensitivity to offsets.

Unlike the ZCD1, whose output follows the ZC probability
of (2) and the ZC density of (5), it is difficult

to derive the explicit and expressions for the
ZCD2. The ZCD2 detection is no longer a simple detection of
ZC in . It detects certain events that cause . A sim-
plified analysis for the cases with low frequency is provided
in Appendix B. In such cases, , and the probability
for can be approximated by (36). As explained in
Appendix B, the of (5) can be used to analyze the
behaviors of both ZCD1 and ZCD2 in the low- scenario of
the proposed timing-skew detection scheme. The effect of com-
parators’ offsets on the ZCD2 is also analyzed in Appendix B.
When offsets appear, the ZC probability is deviated from
(36) by an amount of . Its upper bound can be expressed
as

(10)

Figs. 7 and 8 also show the ZCD2 timing skew measurement
error due to the and offsets. Equation (10) is used
for calculation data. It is clear from both figures that the ZCD2
is less sensitive to offsets. For the low- scenario with

, the ZCD2 requires to achieve
a skew measurement error less than .

IV. MULTIPHASE TIMING-SKEW CALIBRATION

Consider the -phase sampling system of Fig. 1. It samples
the reference and generates the of (1), where

. The sampling interval between and is
. A timing skew occurs if . Fig. 2 shows

the proposed multiphase timing-skew calibration architecture.

Fig. 10. Multiphase timing-skew calibration processor.

A multiphase timing-skew calibration processor (CP) is used to
detect the timing skew between every adjacent clock pair. For
each , the delay of the clock buffer is controlled by the
output from the CP, such that

(11)

where is the step size for the timing control and is the
timing offset of the clock when . The CP measures
the timing skew between and and then adjusts
to minimize the skew.

Fig. 10 shows the CP’s block diagram. It includes ZC de-
tectors, which are deployed to measure the sampling intervals.
Either the ZCD1 of Fig. 6 or the ZCD2 of Fig. 9 can be used
as the ZC detectors. The reference is assumed to be a nar-
rowband signal. Its center frequency is near in order
to establish a low- scenario. For the th calibration channel,
its ZC detector senses any ZC between and , and
generates a binary output, . The probability of

is , which can be calculated from the ZC den-
sity using (6). From (7), a narrowband asynchronous

reference has a uniform close to . Thus, the
probability is proportional to the sampling interval be-

tween and , which is denoted the -interval. In
Fig. 10, the sequence is integrated onto an ACC1 accumu-
lator. The accumulator’s output represents the average of ,
which is also proportional to the -interval.

For each , the CP compares the -interval with the nominal
sampling interval. The difference between the two intervals is
the timing skew. The CP then adjusts to minimize the
skew. The nominal sampling interval is defined as the average of
all -intervals where . In Fig. 10, the timing skew is
calculated as the difference between the accumulation of
and the accumulation of . The sequence represents
the average of the ZC occurrences among all sampling intervals.
The is generated from the ZC recorder shown in Fig. 11.
The recorder accumulates every ZC from all ZC detectors. A
comparator compares the accumulation result with , and
generates a binary for every clock cycle. When-
ever , the comparator issues , and an amount



WANG AND WU: A MULTIPHASE TIMING-SKEW CALIBRATION TECHNIQUE USING ZERO-CROSSING DETECTION 1107

Fig. 11. ZC recorder.

of is subtracted from the accumulation result during the fol-
lowing clock cycle. Note that is a sequence of 0 and 1. Its
mean value represents the nominal sampling interval. The oper-
ation of averaging is provided by the ACC1 accumulator
in each calibration channel. The proposed ZC recorder is simple
and its hardware cost is low. Note that the extra ZC detector in
the upper left corner of Fig. 10 detects the ZC occurrences in the
sampling interval between and . This sampling interval
is not measured by the calibration channels that generate ,

.
In the th calibration channel, the timing skew is calculated as

. A simple calibration loop can be formed
by applying with .
However, the resulting fluctuation in is large unless a
very small is chosen. In Fig. 10, an additional accumulator
is added to reduce the fluctuation. The ACC1 accu-
mulator integrates the sequence, and generates the
output. A bilateral peak detector, BPD, monitors the value of

and generates a corresponding triple-valued output
. The BPD has two thresholds and .

Whenever , . Whenever ,
. Otherwise, . In addition, the ACC1 accu-

mulator is reset to zero whenever or .
Thus, . Each time is either or

, it can retain such state for only one clock cycle. Finally, the
ACC2 accumulator integrates the sequence and generates
the output. By adding the integration-and-dump opera-
tion of ACC1 and BPD, the fluctuation in is reduced.

In the proposed calibration scheme, the clock in Fig. 2
is a designated reference phase. There is no need to adjust the
corresponding control. Thus, is preset to 0 in the CP
of Fig. 10.

The proposed calibration scheme contains two system param-
eters, and . To simplify analysis, we assume each cali-
bration channel in the CP of Fig. 10 employs identical and

. Together with the of , they affect calibration be-
haviors, such as calibration converging speed and timing fluctu-
ation. In general, large and small result in fast converging
speed but large timing fluctuation. On the other hand, small
and large result in small timing fluctuation but also slow
converging speed. The following two subsections give detailed
analyses.

A. Convergence Speed

Consider the th calibration channel in Fig. 10. Its ZC de-
tector measures the sampling interval between the and
clocks. According to (1), the and clocks have the timing

Fig. 12. Probability mass function of � , ��� �.

offsets and , respectively. In Fig. 10, the signal is
the difference between and , representing the timing
skew . The is used to update the signal,
which controls the timing offset. In most cases, this cal-
ibration loop can be modeled as a continuous-time single-pole
feedback system like

The above equation states that, to update by one step, it
takes sampling intervals during which the timing
skew causes ZCs. Thus, we obtain the following differential
equation for :

(12)

where the system time constant is

(13)

For a -channel system, (12) with can be
expanded into coupled equations. In most practical cases,

is much larger than 1. Thus, by treating as a constant, the
transient behavior of can be approximated by a simple
exponential function with the time constant.

B. Timing Fluctuation

Consider the of (11). The CP measures the sampling in-
terval between the and clocks, and then adjusts .
Assume remains constant and is fixed. The CP ad-
justs only to force moving toward 0. As the process
converges, the behavior of becomes a discrete random
fluctuation around zero. Fig. 12 illustrates a probability mass
function for , . The discrete values for is , ,

, with being closest to zero. The distance between
two adjacent discrete values is . The value of is between

and . The calibration loop forces the maximum
value of to occur at . A mathematical treatment of

is included in Appendix C. The resulting standard devi-
ation of , averaged over possible value of , can be found as

(14)

Obviously, smaller and larger can reduce .
For the multiphase calibration system shown in Figs. 2 and

10, the clock with is chosen as the designated ref-
erence phase. All other clocks are adjusted by the CP to achieve
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Fig. 13. Referencing schemes for multiphase clocks.

uniform phase spacing. The timing skew between and is
minimized by adjusting the delay of the clock buffer through

. The timing skew between and is minimized by ad-
justing the delay of the clock buffer through . This cali-
bration arrangement repeats for , , and so on and is referred
to as the linear referencing arrangement illustrated in Fig. 13.
Note that does not fluctuate. The timing fluctuation of is
summarized by (14). The timing fluctuation of is larger than
(14), since it uses the fluctuating as its phase reference. In
fact, the timing fluctuation is accumulated along the reference
chain. The standard deviation of the ’s timing fluctuation can
be expressed as

(15)

To reduce the overall timing fluctuation, the circular referencing
arrangement shown in Fig. 13 is suggested. In this scheme, both

and use as the reference for timing-skew calibration.
Then, and use and as the references, respectively.
In this arrangement, the maximum is reduced by half.
The overall averaged timing fluctuation is

(16)

where is assumed to be an even number. For this multi-
phase calibration system, is proportional to the number
of phases, .

To realize the circular referencing arrangement shown in
Fig. 13, the calibration processor of Fig. 10 is modified as
follows. The calibration channel that generates the output
takes and as its inputs. The calibration channel
that generates the output takes and as its
inputs. The calibration channel that generates the output
takes and as its inputs. The calibration channels for

remain unchanged. The extra ZC detector at
the upper left corner of Fig. 10 now receives and as
its inputs and generates the output.

V. EIGHT-CHANNEL TI ADC EXAMPLE

Fig. 14 shows an eight-channel TI ADC that employs the
timing-skew calibration scheme described in Section IV. There
are eight A/D channels, i.e., , where . Each

Fig. 14. Eight-channel TI ADC.

A/D channel samples and quantizes the input and produces
a corresponding sequence. The sequences from all
channels are then multiplexed to generate the final digital
output. In the th channel, there are two samplers driven by the
same clock. One sampler samples the input to be quan-
tized into . The succeeding quantizer (QTZ) has 6-b resolu-
tion and an input range between . The other sampler receives
the reference and generates the sequence. The
sequence is sent to the timing-skew calibration processor shown
in Fig. 10. Its output controls the clock buffer shown in
Fig. 2. For the eight-phase clock generator, the nominal timing
interval between two adjacent phases is . Each clock has
a period of and a frequency of . The en-
tire system is equivalent to a 6-b ADC with a sampling rate of

. As in Section I, we define the magnitude
resolution as and the timing resolution as

.
In Fig. 14, each A/D channel includes a sampler and

a sampler to enable the robust background timing-skew
calibration. The two samplers driven by the same clock must
have the same sampling instant. To minimize mismatch, the two
samplers should be placed in close proximity in the chip layout.
The signal routes of and may also have to be matched.
Furthermore, the clock edges that define the sampling instants
should be made as steep as necessary.

For timing-skew calibration, the narrowband reference
has a center frequency at , which meets the low-
scenario described in Section III. From (7), the reference
has a ZC density of . The resulting timing
fluctuation variance averaged over the eight-phase clocks

can be calculated using (16). Fig. 15 shows the rela-
tionship between and at various values. For this
6-b ADC example, and are chosen to
achieve .

The behavior of this TI ADC is simulated using a C program.
To illustrate that the proposed calibration scheme does not re-
quire a well-defined sinewave, the reference used in the
simulation is a full-swing phase-modulated sinewave

(17)
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Fig. 15. Timing fluctuation ��� versus � and � for the TI ADC example.

Fig. 16. Settling behavior of � �� �. The comparators in ZCD1 and ZCD2 are
ideal.

Fig. 17. Settling behavior of � �� �. The comparators in ZCD1 and ZCD2
have random offsets. The standard deviation of the offsets is ��� � � �� .

where and
. Both the ZCD1 and the ZCD2

described in Section III are tested. Fig. 16 shows the settling
behavior of the ADC’s timing-skew spatial standard deviation,

. For this figure, ideal comparators without offsets are
deployed in the ZC detectors. Note that is the standard
deviation of the data set at a given time. For

, is the timing offset of the clock. A random

Fig. 18. Spectrum of ���� before timing-skew calibration.

Fig. 19. Spectrum of ���� after timing-skew calibration.

number generator selects the initial value of . The
is before calibration and settles toward
as calibration progresses. The value is obtained
by averaging over a period from
to . Without comparator offsets, ZCD1 and
ZCD2 exhibit similar behavior. Also shown in the figure is the
transient response of a single-pole model with a time constant

, which is calculated from (13). Fig. 17
shows the effect of comparators’ offsets. Random offsets
generated from a random number generator are added to the
comparators in ZCD1 and ZCD2. The standard deviation of the
offsets is . For the calibration using ZCD1,
the can only settle to . On the other hand, the

can settle to by using ZCD2. The compara-
tors’ offsets have little effect on ZCD2. Note that the
performance from simulations is better than the prediction of
(16). The timing fluctuation theory described in Appendix C is
derived from random process, which assumes a scenario more
random than those used in the simulations.

Figs. 18 and 19 show the spectra of the ADC’s output, ,
before and after timing-skew calibration. The calibration pro-
cessor uses the ZCD2 detectors for timing-skew detection. All
parameters, including comparators’ offsets and initial timing
skews are identical to those used in Fig. 17. The input is
a sinewave with a frequency . The im-
provement by the calibration is obvious. The SNDR is improved
from 15.4 to 37.44 dB.
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Fig. 20. ZCD1 with comparators’ offsets.

VI. CONCLUSION

The multiphase timing-skew calibration technique described
in this paper is based on ZC detection. Although the ZC detec-
tion is a nonlinear operation, the ZC probability is related to
the cross correlation of the calibration reference. We have made
theoretical study on the ZC detection principle and proved its
robustness. The ZCD2 with digital high-pass filters provides a
detection technique that is less sensitive to comparators’ off-
sets. With proper reference input, the ZC detectors can be used
to measure the phase spacing among multiphase clocks. The
ZC probability is proportional to the phase spacing. Based on
this fact, we propose a digital calibration processor. It receives
outputs from the ZC detectors and adjusts the delays of clock
buffers to equalize the phase spacings between adjacent clock
pairs. We have also analyzed the calibration processor’s behav-
iors, including converging speed and timing fluctuation.

An eight-channel 6-b TI ADC example is used to demon-
strate an application of the proposed calibration technique. Sim-
ulations of the ADC show that the results from the theoretical
studies can correctly predict the calibration behaviors. Although
the proposed calibration scheme needs an extra reference signal,
the requirement for this reference is loose. The reference does
not need to have an accurate frequency or an exact waveform
shape. It can be easily generated on a chip using simple circuitry.
Most of the calibration procedures are performed in the digital
domain, and require only adders and registers.

APPENDIX A
MATHEMATICAL ANALYSIS OF ZCD1

Fig. 20 shows a ZCD1 whose two comparators exhibit
and offsets, respectively. The and are two

sampling sequences corresponding to the and sam-
pling clocks, respectively. Let be a stationary Gaussian
process with zero mean. Then, and form a bi-
variate normal distribution. Its probability density function is
[10], [11]

(18)

with

(19)

where and are standard deviations as defined in (4)
and the cross correlation between and as
defined in (3).

In Fig. 20, the comparators’ outputs, and , are
determined by the polarity and po-
larity, respectively. The output is 1 only if (1)
and ; or (2) and .
The probability of the first condition is

(20)

(21)

In the last equation, the first term on the right-hand side is the
probability with , and the second term is the
effect of offsets. Similarly, the probability of the second condi-
tion is

(22)

(23)

Thus, the total probability of is

(24)

where as defined in (2) is the ideal ZC probability, and

(25)

Equation (25), as repeated in (8), is the effect of offsets.
Consider a signal having a non-zero dc component. It

is equivalent to the case that both comparators in ZCD1 exhibit
identical offsets, i.e., . From (24) and (25),
the corresponding ZC probability becomes

(26)

And the zero crossing rate becomes

(27)
Both and are reduced by .
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APPENDIX B
MATHEMATICAL ANALYSIS OF ZCD2

Consider the ZCD2 shown in Fig. 9. To simplify denotation,
define , , , and

.
First, consider the case of three random variables , , and
. Assume they form the trivariate normal distribution with

given cross correlation as defined (3), where .
Define , , , and probabilities as

(28)

Obviously, , and

(29)

where , , and are correlations between and ,
and , and and , respectively. The above equations can

be solved to give

(30)

Now consider the case of four random variables , , ,
and . It is difficult to solve the probabilities in the form of
(30). Simplified solution is provided for the low-frequency case
as follows. Define , , and as

(31)

From (30), we have

(32)

(33)

For the low-frequency case, and . As a
result, we can solve the above equations and obtain

(34)

Then, the probability of is

(35)

The above equation can be rewritten as

(36)

where is defined in (5). The is identical to
the for ZCD1. Note that the first term on the right-
hand side of (36) is independent of . Only the second term
containing is relevant in the proposed timing-skew
detection scheme. Thus, we state that both ZCD1 and ZCD2
show identical behavior in the proposed timing-skew
detection scheme under the low- scenario.

Now consider a ZCD2 with internal comparators exhibiting
offsets. The following assumption is made in order to simplify
analysis. There are two different cases regarding the relation-
ship between and : weak correlation and strong
correlation. For the weak-correlation case, we can assume that
the probability of and
is independent of the probability of and

. Thus

(37)

Define probabilities and
. When the comparators exhibit offsets, the

corresponding probabilities becomes and
, where

(38)

(39)
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Note that . From (37) and using ,
the probability for ZCD2 is deviated from (36) by

(40)

The above equation is repeated in (10).
For the strong-correlation case, we assume that, under the

condition, the relationship between and is
similar to the relationship between and . Furthermore,

or , and or . Thus,

(41)

The probability variation due to is

or

(42)

The probability variation due to is

or

(43)

Thus, the total probability variation due to the offsets is

(44)

Comparing (44) with (40), the weak-correlation case shows
larger probability variation than the strong-correlation case.
Thus, we choose (40) as the upper bound for .

APPENDIX C
TIMING FLUCTUATION DUE TO SKEW CALIBRATION

Consider the th calibration channel in the CP of Fig. 10.
It receives the and sequences and generates the

output to adjust . Its ACC1 accumulator takes
and generates . Define as the prob-

ability function of and as the probability func-
tion of , where is an integer. Since
and , for or .
is generated by accumulating the sequence. It is reset to
0 whenever or . Thus,
for or . We can derive the relationship be-
tween and as follows. At , let

, then the probability mass function (PMF) of is the
same as the PMF of . At , the condition for

is or .
Thus, the probability of is

. From the same reasoning, the
probability mass function of is , where

Fig. 21. Relationship between � ��� and � ���.

is a convolution operator. As shown in Fig. 21, we can also de-
rive that is a consecutive times convolution of ,
i.e.,

(45)

When the calibration loop converges, it implies and
. However, the BPD following the

ACC1 accumulator reset to zero whenever
or . This means for or .
The probability of is reset
to zero and added to . The probability of

is also reset to zero and added to .
We can find by solving the following recursive difference
equations:

(46)

(47)

(48)

(49)

(50)

where .
The characteristic equation is

(51)

where is the characteristic value for the above recursive equa-
tions. Solving the characteristic equation gives or

(52)

With this and , the general form
of can be written as

(53)

The above recursive difference equations can be summarized as

(54)
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(60)

(61)

(62)

(63)

(55)

where and . shows
the probability of being increased and shows the
probability of being decreased. The and terms
in (55) imply that the ratio is either very
large or close to 0 if is large. The above statement is still
valid even when the difference between and is
small.

When the timing-skew calibration loop converges, is close
to 1, Define . From (55), we have

if
if (56)

Note that

(57)

The case with is symmetical to the case with .
To ease discussion, only the case is considered below.
We have

(58)

(59)

where is a function of the timing
skew.

Consider a signal that has an uniform ZC density of .
Let . When the calibration loop converges, we
have and . Furthermore,
the probability of jumping from to is equal to the
probability of jumping from to [12], where is an
integer and is a discrete value of . Therefore, see (60)–(63)
at the top of the page. Note that . If

is large, only , , , and
are significant. We have

(64)

(65)

(66)

(67)

Then, can be approximated by

(68)

(69)

(70)

(71)

(72)

The mean variance of is

(73)

The above equation is repeated in (14). We can ignore the case
with . In this case, , thus the integration in the
above equation is zero, i.e., any function .
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