TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONTENTS	iii
LIST OF TABLE	v
LIST OF FIGURE	vi
NOMENCLATURE	xiv
CHAPTER 1 INTRODUCTION	1
 1.1 Motive of the Present Study 1.2 Literature Review - Heat Transfer Performance, Bubble Characteristics, and Enhanced Surface Micro-structures 1.2.1 Single-phase Convective Heat Transfer 1.2.2 Two-phase Heat Transfer Performance 1.2.3 Bubble Characteristics 1.2.4 Enhanced Surface Micro-structures 1.3 Review of Correlation Equations for Two Phase Flow Boiling Heat Transfer 1.4 Objective of This Study 	1 2 2 3 5 7 9 11
 2.1 Degassing Unit 2.2 Coolant Loop 2.3 Test Section 2.4 Hot-water Loop 2.5 Cold-water Loop 2.6 DC Power Supply 2.7 Data Acquisition 2.8 Optical Measurement Technique 2.9 Experimental Procedures 2.10 Experimental Parameters 	 18 18 20 21 22 22 23 23 24 24
CHAPTER 3 DATA REDUCTION	36

CHAPTER 3 DATA REDUCTION

3.1 Single Phase Heat Transfer	36
3.2 Two Phase Flow Boiling Heat Transfer	38
3.3 Uncertainty Analysis	39
CHAPTER 4 SATURATED FLOW BOILING OF FC-72 ON A HEADED	
MICRO PIN-FINNED SILICON CHIP FLUSH MOUNTED ON	
BOTTOM OF RECTANGULAR CHANNEL	41
4.1 Single-phase Liquid Convective Heat Transfer	41
4.2 Saturated Flow Boiling Curves	43
4.3 Saturated Flow Boiling Heat Transfer Coefficients	44
4.4 Bubble Characteristics	45
4.5 Correlation Equations	47
4.6 Concluding Remarks	51
CHAPTER 5 SUBCOOLED FLOW BOILING OF FC-72 ON A HEADED	
MICRO PIN-FINNED SILICON CHIP FLUSH MOUNTED ON	
BOTTOM OF RECTANGULAR CHANNEL	78
5.1 Subcooled Flow Boiling Curves	78
5.2 Subcooled Flow Boiling Heat Transfer Coefficients	81
5.3 Bubble Characteristics	81
5.4 Correlation Equations	84
5.5 Concluding Remarks	88
CHAPTER 6 CONCLUDING REMARKS	147
REFERENCES	149

LIST OF TABLE

Table 1.1	Thermodynamic properties for FC-72	12
Table 1.2	Some single-phase convection heat transfer correlations for electronic cooling	13
Table 1.3	Some flow boiling two-phase heat transfer correlations for electronic cooling	14
Table 1.4	Correlations for bubble departure diameter in flow boiling	15
Table 1.4	Continued	16
Table 1.5	Correlations for heat transfer & active nucleation site density in flow boiling	17
Table 2.1	Experimental parameters	26
Table 2.2	Thermodynamic and transport properties of the dielectric refrigerant FC-72 list	27
Table 3.1	Summary of the uncertainty analysis	40

LIST OF FIGURES

Experiment Apparatus

Fig 2.1	Schematic diagram of experimental apparatus	- 28
Fig 2.2	Three-dimensional plots of test section along with inlet and outlet sections	- 29
Fig 2.3	Three-dimensional plots illustrating the test section in the rectangular flow-channel	- 30
Fig 2.4	Three-dimensional pictures showing (a) hollow cylindrical Teflon block and (b) cylindrical Teflon bolt	- 31
Fig 2.5	Locations of thermocouples	- 32
Fig 2.6	Schematics of the silicon chip module	- 33
Fig 2.7	Flow chart for the micro pin-fins fabrication	- 34
Fig 2.8	Photographs of micro-pin-fins on the silicon chip taken by SEM	- 35
Saturate	d Flow Boiling	
Fig. 4.1	Comparison of the present single-phase liquid convection heat transfer data for the chip with a smooth surface with the correlation of Gersey and	
	Mudawar (1992) for (a) $h_{1\phi}$ vs. G and (b) Nu_L vs. Re_L	- 53
Fig. 4.2	Effects of the micro pin-fins on single-phase liquid convective heat transfer	
	coefficients at $T_{in} = 25 \ ^{o}C$ for (a) $h_{1\phi}$ vs. G and (b) Nu_L vs. Re_L	- 54
Fig. 4.3	Boiling curves for various coolant mass fluxes for $T_{sat} = 54.3$ °C for the chip with (a) smooth surface and (b) pin-finned 200 surface and (c) pin-finned	
	100 surface	- 55
Fig. 4.4	Boiling curves for various micro-structures of chip surface for $T_{sat} = 54.3$ °C at (a) G = 287 kg/m ² s and (b) G = 431 kg/m ² s	- 56
Fig. 4.5	Saturated flow boiling heat transfer coefficients for various coolant mass	
C	fluxes for $T_{sat} = 54.3$ °C for the chip with (a) smooth surface and (b) pin-finned 200 surface and (c) pin-finned 100 surface	- 57
Fig. 4.6	Saturated flow boiling heat transfer coefficients for various micro-structures of chip surface for $T_{sat} = 54.3$ °C at (a) G = 287 kg/m ² s and (b) G = 431	
	kg/m ² s	- 58

- 54.3 °C for the chip with (a) smooth surface and (b) pin-finned 200 surface and (c) pin-finned 100 Surface----- 62
- Fig. 4.11 Mean bubble departure diameters for various micro-structures of chip surface for $T_{sat} = 54.3$ °C at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$ ----- 63
- Fig. 4.12 Mean bubble departure frequencies for various coolant mass fluxes for T_{sat}
 = 54.3 °C for the chip with (a) smooth surface and (b) pin-finned 200
 Surface and (c) pin-finned 100 surface ------64
- Fig. 4.13 Mean bubble departure frequencies for various micro-structures of chip surface for $T_{sat} = 54.3$ °C at (a) G = 287 kg/m²s and (b) G = 431 kg/m²s ----- 65
- Fig. 4.14 Mean active nucleation site densities for various coolant mass fluxes for T_{sat}
 = 54.3 °C for the chip with (a) smooth surface and (b) pin-finned 200
 Surface (c) pin-finned 100 Surface-----66
- Fig. 4.15 Mean active nucleation site densities for various micro-structures of chip surface for $T_{sat} = 54.3$ °C at (a) G = 287 kg/m²s and (b) G = 431 kg/m²s ----- 67
- Fig. 4.16 Comparison of the measured data for Nusselt number for saturated flow boiling of FC-72 on smooth surface with the proposed correlation------68
- Fig. 4.17 Comparison of the measured data for Nusselt number for saturated flow boiling of FC-72 on pin-finned surfaces with the proposed correlation------69
- Fig. 4.18 Comparison of the measured data for mean bubble departure diameter for saturated flow boiling of FC-72 on smooth surface with the proposed correlation ------70
- Fig. 4.19 Comparison of the measured data for mean bubble departure diameter for saturated flow boiling of FC-72 on pin-finned surfaces with the proposed correlation ------71

Fig. 4.20	Comparison of the measured data for mean bubble departure frequency for	
	saturated flow boiling of FC-72 on smooth surface with the proposed correlation	72
Fig. 4.21	Comparison of the measured data for mean bubble departure frequency for saturated flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	73
Fig. 4.22	Comparison of the measured data for mean active nucleation site density for saturated flow boiling of FC-72 on smooth surface with the proposed correlation	74
Fig. 4.23	Comparison of the measured data for mean active nucleation site density for saturated flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	75
Fig. 4.24	Comparison of the measured data for boiling heat flux for saturated flow boiling of FC-72 on smooth surface with the proposed correlation	76
Fig. 4.25	Comparison of the measured data for boiling heat flux for saturated flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	77
<u>Subcook</u> Fig. 5.1	Boiling curves for the chip with smooth surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C and (b) $T_{sub} = 4.3$ °C	91
Fig. 5.2	Boiling curves for the chip with pin-finned 200 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C and (b) $T_{sub} = 4.3$ °C	92
Fig. 5.3	Boiling curves for the chip with pin-finned 100 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C and (b) $T_{sub} = 4.3$ °C	93
Fig. 5.4	Boiling curves for the chip with smooth surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$	94
Fig. 5.5	Boiling curves for the chip with pin-finned 200 surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$	95
Fig. 5.6	Boiling curves for the chip with pin-finned100 surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$	96
Fig. 5.7	Boiling curves affected by surface micro-structures for $T_{sub} = 2.3$ °C at (a)	

	$G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$	97
Fig. 5.8	Boiling curves affected by surface micro-structures for $T_{sub} = 4.3$ °C at (a) G = 287 kg/m ² s and (b) G = 431 kg/m ² s	98
Fig. 5.9	Subcooled flow boiling heat transfer coefficients for the chip with smooth surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C and (b) $T_{sub} = 4.3$ °C	99
Fig. 5.10	Subcooled flow boiling heat transfer coefficients for the chip with pin-finned 200 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ °C}$	100
Fig. 5.11	Subcooled flow boiling heat transfer coefficients for the chip with pin-finned 100 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C	100
	and (b) $T_{sub} = 4.3 \text{ °C}$	101
Fig. 5.12	Subcooled flow boiling heat transfer coefficients for the chip with smooth surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) G	100
Fig. 5.13	= 431 kg/m ² s	102
Fig. 5.14	Subcooled flow boiling heat transfer coefficients for the chip with pin-finned 100 surface for various inlet liquid subcoolings at (a) $G = 287$ kg/m ² s and (b) $G = 431$ kg/m ² s	104
Fig. 5.15	Subcooled flow boiling heat transfer coefficients affected by surface micro-structures for $T_{sub} = 2.3$ °C at (a) G = 287 kg/m ² s and (b) G = 431 kg/m ² s	105
Fig. 5.16	Subcooled flow boiling heat transfer coefficients affected by surface micro-structures for $T_{sub} = 4.3$ °C at (a) G = 287 kg/m ² s and (b) G = 431 kg/m ² s	106
Fig. 5.17	Photos of boiling flow for various imposed heat fluxes for the chip with smooth surface at $T_{sub} = 2.3$ °C for (a) G = 287 kg/m ² s and (b) G = 431 kg/m ² s	107

ix

Fig. 5.18 Photos of boiling flow for various imposed heat fluxes for the chip with smooth surface at $T_{sub} = 4.3$ °C for (a) G = 287 kg/m²s and (b) G = 431 kg/m²s ------108

- Fig. 5.24 Mean bubble departure diameters for subcooled flow boiling from pin-finned 200 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ }^{\circ}\text{C}$ and (b) $T_{sub} = 4.3 \text{ }^{\circ}\text{C}$ ------114
- Fig. 5.25 Mean bubble departure diameters for subcooled flow boiling from pin-finned 100 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ °C}$ and (b) $T_{sub} = 4.3 \text{ °C}$ ------115
- Fig. 5.26 Mean bubble departure diameters for subcooled flow boiling from smooth surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) $G = 431 \text{ kg/m}^2 \text{s}$ ------116
- Fig. 5.27 Mean bubble departure diameters for subcooled flow boiling from pin-finned 200 surface for various inlet liquid subcoolings at (a) G = 287kg/m²s and (b) G = 431 kg/m²s ------117

Fig. 5.28 Mean bubble departure diameters for subcooled flow boiling from pin-finned 100 surface for various inlet liquid subcoolings at (a) G = 287 kg/m^2s and (b) G = 431 kg/m²s ------ 118 Fig. 5.29 Mean bubble departure diameters for subcooled flow boiling affected by surface micro-structures for $T_{sub} = 2.3$ °C at (a) G = 287 kg/m²s and (b) G Fig. 5.30 Mean bubble departure diameters for subcooled flow boiling affected by surface micro-structures for $T_{sub} = 4.3$ °C at (a) G = 287 kg/m²s and (b) G Fig. 5.31 Mean bubble departure frequencies for subcooled flow boiling from smooth surface for various coolant mass fluxes at (a) $T_{sub} = 2.3$ °C and (b) T_{sub} = 4 3 °C ------ 121 Fig. 5.32 Mean bubble departure frequencies for subcooled flow boiling from pin-finned 200 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ }^{\circ}\text{C}$ and (b) $T_{sub} = 4.3 \text{ °C}$ 122 Fig. 5.33 Mean bubble departure frequencies for subcooled flow boiling from pin-finned 100 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ }^{\circ}\text{C}$ and (b) $T_{sub} = 4.3 \text{ °C}$ 123 Fig. 5.34 Mean bubble departure frequencies for subcooled flow boiling from smooth surface for various inlet liquid subcoolings at (a) $G = 287 \text{ kg/m}^2 \text{s}$ and (b) G Fig. 5.35 Mean bubble departure frequencies for subcooled flow boiling from pin-finned 200 surface for various inlet liquid subcoolings at (a) G = 287 kg/m^2s and (b) G = 431 kg/m²s ------ 125 Fig. 5.36 Mean bubble departure frequencies for subcooled flow boiling from pin-finned 100 surface for various inlet liquid subcoolings at (a) G = 287 kg/m^2s and (b) G = 431 kg/m²s ------ 126 Fig. 5.37 Mean bubble departure frequencies for subcooled flow boiling affected by surface micro-structures for $T_{sub} = 2.3$ °C at (a) G = 287 kg/m²s and (b) G

- Fig. 5.40 Mean active nucleation site densities for subcooled flow boiling from pin-finned 200 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ °C}$ and (b) $T_{sub} = 4.3 \text{ °C}$ ------130
- Fig. 5.41 Mean active nucleation site densities for subcooled flow boiling from pin-finned 100 surface for various coolant mass fluxes at (a) $T_{sub} = 2.3 \text{ }^{\circ}\text{C}$ and (b) $T_{sub} = 4.3 \text{ }^{\circ}\text{C}$ ------131
- Fig. 5.43 Mean active nucleation site densities for subcooled flow boiling from pin-finned 200 surface for various inlet liquid subcoolings at (a) G = 287kg/m²s and (b) G = 431 kg/m²s -------133

- Fig. 5.47 Comparison of the measured data for Nusselt number for subcooled flow boiling of FC-72 on smooth surface with the proposed correlation------ 137
- Fig. 5.48 Comparison of the measured data for Nusselt number for subcooled flow

	boiling of FC-72 on pin-finned surfaces with the proposed correlation	138
Fig. 5.49	Comparison of the measured data for mean bubble departure diameter for subcooled flow boiling of FC-72 on smooth surface with the proposed correlation	139
Fig. 5.50	Comparison of the measured data for mean bubble departure diameter for subcooled flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	140
Fig. 5.51	Comparison of the measured data for mean bubble departure frequency for subcooled flow boiling of FC-72 on smooth surface with the proposed correlation	141
Fig. 5.52	Comparison of the measured data for mean bubble departure frequency for subcooled flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	142
Fig. 5.53	Comparison of the measured data for mean active nucleation site density for subcooled flow boiling of FC-72 on smooth surface with the proposed correlation	143
Fig. 5.54	Comparison of the measured data for mean active nucleation site density for subcooled flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	144
Fig. 5.55	Comparison of the measured data for boiling heat flux for subcooled flow boiling of FC-72 on smooth surface with the proposed correlation	145
Fig. 5.56	Comparison of the measured data for boiling heat flux for subcooled flow boiling of FC-72 on pin-finned surfaces with the proposed correlation	146

NOMENCLATURE

А	area, m ²
В	fin height, m
Во	Boiling number, $Bo = \frac{q}{G \cdot i_{fg}}$, dimensionless
c _p	specific heat, J/kg
D	hydraulic diameter of rectangular-channel, m
E	enhancement factor
F	pin-fin factor for the effects of fin geometries, dimensionless
Fr	Froude number, $Fr_1 = \frac{G^2}{\rho_1^2 \cdot g \cdot D_h}$, dimensionless
G	mass flux, kg/m ² s
g	acceleration due to gravity, m ² /s
Н	height, m
h	heat transfer coefficient, $W/m^2 \cdot K$
Ι	measured current from DC power supply, A
i_{lv}	enthalpy of vaporization, J/kg·K
Ja	Jacob number based on ΔT_{sat} , $Ja = \frac{\rho_1 \cdot C_{pl} \cdot \Delta T_{sat}}{\rho_v \cdot i_{lv}}$, dimensionless
Ja'	Jacob number based on ΔT_{sub} , $Ja' = \frac{\rho_1 \cdot C_{pl} \cdot \Delta T_{sub}}{\rho_v \cdot i_{lv}}$, dimensionless
k	thermal conductivity, $W/m \cdot K$
L	length, mm
ṁ	mass flow rate, kg/s
Ν	number of micro-pin-fins
N _{ac}	Active nucleation site density, n/m^2
N _{conf}	Confinement number, $N_{conf} = \frac{(\sigma/g \cdot \Delta \rho)^{0.5}}{D_{h}}$, dimensionless

Nu	Nusselt number, $Nu = \frac{h \cdot L}{k}$, dimensionless
Р	system pressure, kPa
Pr	Prandtl number, $Pr = \frac{\mu \cdot C_p}{k}$, dimensionless
Q	heat transfer rate, W
q"	average imposed heat flux, W/cm ²
R	resistance of the electric-heater
Re	Reynolds number, $Re = \frac{G \cdot D}{\mu}$, dimensionless
S	fin space between two adjacent fins, m
Т	temperature,
V	coolant FC-72 flow velocity, m/s
V	measured voltage from DC power supply, V
W	width, m
Greek Symł	pols
ΔΤ	temperature difference,
ρ	density, kg/m ³
μ	dynamic viscosity, $N \cdot s/m^2$
ν	specific volume. m ³ /kg

ν	specific volume,	m ³ /kg

σ	surface tension,	N/m
	,	

- void fraction, dimensionless α
- relative heat loss, dimensionless 3
- contact angle ø
- static contact angle фs

Subscripts

ave	average
c,h	from heater surface to cooper surface
chip	chip surface
cop	copper
CS	cross-section of rectangular-channel
d	diameter
e	effective
f	fin
fin	mean bubble departure frequency
g	gas
h	hydraulic
i	at the inlet of the test section
in	at the inlet of the test section
i,0	at inlet and exit of the test section
1	all-liquid nonboiling heat transfer
lv	liquid phase to vapor phase
m	average value for the two phase mixture or between the inlet and exit
mica	mica
n	net power input to the coolant FC-72
n	active nucleation site density
0	at the outlet of the test section
р	preheater
pool	pool boiling
r	coolant FC-72
S	surface
sat	saturated state for coolant FC-72

- sp single-phase convective heat transfer
- sub subcooled state for coolant FC-72
- t total
- t-g thermal-grease
- tp two-phase boiling heat transfer
- v vapor
- w wall
- w water
- 1φ single-phase
- 2¢ two-phase

