
第三章  實驗結果與討論 

3.1 實驗條件 

    本實驗使用的工作流體為純水以及濃度為 1000wppm 的聚丙醯胺

溶液，其實驗條件如下： 

（1）利用恆溫水槽的熱交換將流體入口溫度控制為 30℃。 

（2）實驗流量範圍： 

純水：質量流率範圍為 0.0017kg/s～0.01kg/s，即廣義雷諾數

範圍為Re*=257～1131（n=1）。 

聚丙醯胺水溶液：質量流率範圍為 0.001kg/s～0.0085kg/s， 

即廣義雷諾數範圍為 60～540。 

（3）熱通量範圍： 

純水： 

1.上板加熱：200W。 

2.下板加熱：200W。  

3.上下板同時加熱：上下板各 100W。 

聚丙醯胺水溶液： 

1.上板加熱：100W、150W 以及 200W 三種。 

 2.下板加熱：100W、150W 以及 200W 三種。  

3.上下板同時加熱：上下板加熱各 50W、75W 以及 100W 三種。 
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實驗不準度的分析方法請詳見附錄與文獻【25】，表 3-1 為本實驗之

不準度。 

3.2 流變性質 

    同樣的溶質但是使用不同的溶劑調配，則流體本身特性及其對熱

傳效果會有差異，因此本實驗固定使用純水當作聚丙醯胺水溶液的溶

劑，以維持實驗的準確性。判斷流體是否為牛頓流體時，最常用的方

式就是使用流變儀量測其剪切率及其對應的剪應力，將測量值代入式

2.15 中，經由線性回歸，若 n=1 代表流體為牛頓流體；若 n≠1則為

非牛頓流體。本實驗是使用共軸圓柱流變儀（Brookfiled Laboratory 

Viscometer）量測純水的剪切率及其對應的剪應力，實驗結果代入式

（2.15）中，再由式（2.16）經由線性回歸得到純水 n=1，確定為牛

頓流體，其相關的物理性質將以文獻【26】所附的表作為依據，如表

3-2 所示。量測聚丙醯胺水溶液的剪切率及其對應的剪應力，經由式

（2.16）計算結果 n 與 K 值如表 3-3 所示，（a）為進行熱傳實驗之前，

（b）為進行熱傳實驗之後所量測。實驗結果發現聚丙醯胺水溶液 n

≠1，屬於非牛頓流體，且對應不同溫度時的 n 值皆為小於 1，與圖

1-1 對照，確定本實驗所使用的聚丙醯胺水溶液為輕剪力流體。圖 3-1

為不同溫度下聚丙醯胺水溶液黏度對剪切率的關係圖，（a）為進行熱

傳實驗之前，（b）為進行熱傳實驗後的測試結果。由圖 3-1 可以發現，
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固定剪切率時，視黏度隨著溫度升高而下降，而且視黏度皆是隨著剪

切率的增加而遞減。比較圖 3-1（a）與圖 3-1（b），在同樣的溫度下，

經過熱傳實驗後的聚丙醯胺水溶液其視黏度小於未進行熱傳實驗，主

要是因為在進行熱傳實驗時，聚丙醯胺水溶液裡面的分子鍵結受到管

路以及幫浦的擠壓拉扯而遭到破壞，使其黏度下降。 

3.3 壓力差降與摩擦因子 

測試段總壓力差降ΔPt可以分為三部分：重力壓降ΔPg、加速度

壓降ΔPa以及摩擦壓降ΔPf： 

ΔPt＝ΔPg+ΔPa+ΔPf                 (3.1) 

在本實驗中，測試段是維持水平狀態，所以忽略重力壓降；在固定流

量的情況下，可以忽略加速度壓降，因此在本實驗維持測試段水平且

管內流量固定的情況，摩擦壓降即代表測試段的總壓降。由差壓計量

測得到的差壓值即代表管內的摩擦壓降值，將壓降值代入式（2.2）

中，得到達西摩擦因子（ ），芬寧摩擦因子（ ）與達西摩擦因子

相差四倍，所以

f Ff

4
ff F = 。 

    圖 3-2 為工作流體通過矩形流道的壓力差降與質量流率關係圖， 

（a）為未加熱的情況；（b）為加熱後的情況。由圖 3-2 發現，純水

與聚丙醯胺水溶液，其壓降皆是隨著質量流率增加而增加，為正比關

係。式（2.2）中壓降與流速平方成正比，但是在層流情況下，摩擦
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因子與雷諾數的關係為 ＝Ff
Re*
16

，將雷諾數的速度項代回式（2.2）

中，得到壓降與流速成正比的關係，因此可以證實本實驗假設管內總

壓降只需要考慮摩擦壓降是正確的。由圖 3-2 亦可以發現在相同質量

流率下，聚丙醯胺水溶液的壓降值比純水高，原因是聚丙醯胺水溶液

具有黏彈性特性，使其黏度增加，因此在流動狀態時阻力增加，而壓

力差降值必然比純水高。比較圖 3-2（a）與圖 3-2（b）可以發現，

不論是純水或是聚丙醯胺水溶液，在同樣的質量流率下，加熱過後的

流體其產生的壓降皆小於未加熱時，此現象可由圖 3-1 得到解釋，當

溫度增加時其黏度會下降，因此管內摩擦壓降也下降。 

    純水與聚丙醯胺水溶液在寬高比 2：1的矩形管道內的雷諾數以

Kozicki【15】所提出的廣義雷諾數Re*計算，定義如式（1.11）。其

中純水 n=1，聚丙醯胺水溶液的 n值如表 3-1 所示，本實驗測試段尺

寸為 12mm × 6mm，比值由表 1-1 定義為 0.5，a 與 b 分別為 a=0.244、

b=0.7276，代入式（1.11）中得到本實驗適用的廣義雷諾數為： 

K
n

n
DV

n
n

n
h

n

⎟
⎠
⎞

⎜
⎝
⎛ +

=
−

−

7276.0244.08
*Re

1

2ρ
                （3.2） 

將壓降與質量流率的關係轉換為廣義雷諾數與摩擦因子的關係，如圖

3-3 所示，（a）為流體未加熱狀態，（b）為流體加熱後狀態。發現純

水與聚丙醯胺水溶液加熱前後，其雷諾數與摩擦因子的關係皆與預測

值式（1.12）相近，雖然純水與聚丙醯胺水溶液的雷諾數與摩擦因子
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乘積為有同樣的定值 16，但不代表兩者在同樣流率之下的壓降值是

相同的，以未加熱狀態的工作流體而言，純水與聚丙醯胺水溶液質量

流率皆約 0.005kg/s 時，其雷諾數與摩擦因子的乘積雖然同為 16，

但是純水 f=0.037，聚丙醯胺水溶液 f=0.061，因此可以知道在同樣

流量下，聚丙醯胺水溶液的壓降比純水高，由圖 3-2 亦可得到此結

果，主要原因是聚丙醯胺水溶液的黏度大於純水，使其在流道內流動

產生較大的壓力差降。 

3.4 熱傳結果分析 

    熱傳結果依工作流體分別論述，首先討論純水的熱傳實驗結果，

與文獻作比較，確認實驗數據是否正確，接著討論聚丙醯胺水溶液的

熱傳結果，再與純水實驗結果以及文獻的結果做比較，探討分析聚丙

醯胺水溶液熱傳係數增加的機制和原因。 

3.4.1 純水熱傳實驗結果 

    圖 3-4 至 3-6 分別為純水在不同的熱邊界條件，對於層流狀態下

的壁面及流體溫度隨軸向分佈圖。圖 3-4 為上板加熱，質量流率為

0.0066kg/s（Re*=744）；圖 3-5 為下板加熱，質量流率為 0.0067kg/s

（Re*=749）；圖 3-6 為上下板同時加熱，質量流率為 0.0071kg/s

（Re*=791）。由圖中假設局部純水溫度沿流道軸向位置呈線性分佈，

而壁面與流體的局部溫差值隨著入口位置而改變，在靠近入口位置
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處，此溫差為最小值，隨著入口位置增加，溫差越來越大，主要是因

為流體邊界層發展的緣故。最後溫差會趨向一定值，代表流體已經達

到完全發展流的階段。熱完全發展長度的理論值計算【27】： 

PrRe*05.0
L , ⋅⋅=

h

tfd

D
                  (3.3) 

其中水力直徑 =0.008m，三種熱邊界條件hD
h

tfd

D
,L
皆約為 180 左右，而

由圖 3-4 至 3-6 可以知道當 =
hD

x
200 時，壁面與流體的局部溫差開始

為定值，故與理論值接近。 

比較圖 3-4 與圖 3-5，同樣皆為單板加熱 200W 其他三面絕熱，

但是前者為上板加熱後者為下板加熱。局部壁溫在下板加熱的情況比

上板加熱時小，代表的物理現象為下板加熱時，流體有較高的熱傳係

數，主要是因為下板加熱時浮力效應使流場混合，因此在同樣的加熱

瓦數下，加熱壁面溫度比上板加熱時小。由圖 3-6 發現，上下板同時

加熱時，下板的局部壁溫比上板低，說明自然對流效應的存在，使靠

近下板的流體的流場混合，增加流體熱傳係數，因此下板的壁溫比上

板的壁溫低。 

圖 3-7 至圖 3-9 分為別純水在上板加熱、下板加熱以及上下板同

時加熱的熱邊界條件下，對於不同質量流率下局部紐塞數與流道軸向

位置關係圖，在此以格雷茲數（ ）的倒數代表流道軸向位置的參數。zG
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由圖 3-7 至 3-9 發現，紐塞數隨著進口距離增加而漸漸減小，是因為

壁面與流體溫差漸漸增加，最後溫差趨向一定值而紐塞數亦趨向一定

值。由此可知純水在矩形管道中的流動行為，剛進入測試段（entrance 

region）為發展區，流體邊界層開始發展，流體速度分佈隨測試段軸

向位置改變，最後流體速度分佈不隨軸向位置改變即為完全發展

（fully developed）。圖 3-7 為上板加熱的情況，圖中標記單板加熱

H1(1L)的純強制對流的紐塞數極限值（Shah and London,1978【28】）

為 3.54，實驗結果皆大於 3.54，且隨著流量增加熱傳係數越高，主

要原因為流量增加則強制對流效應增加，熱傳係數則越高，在雷諾數

257～1128 的範圍內，紐塞數為由 3.84 增至 5.3。圖 3-8 為下板加熱

的情況，圖中標記單板加熱 H1(1L)的純強制對流的紐塞數極限值，

實驗結果皆大於 3.54，且隨著流量增加熱傳係數越高，在雷諾數 228

～1021 的範圍內，紐塞數由 4.8 增至 6。比較圖 3-7 與圖 3-8 中相近

流量下的紐塞數，下板加熱時的紐塞數皆大於上板加熱，主要是因為

下板加熱時有自然對流效應，因此流體熱傳係數比上板加熱時高。圖

3-9 為上下板同時加熱的情況，圖中標記雙板加熱 H1(2L)的純強制對

流的紐塞數極限值（Shah and London,1978【28】）為 5.2，除了在

質量流率為 0.0036 kg/s，有幾個軸向位置對應的紐塞數小於 5.2 以

外，其他皆大於 5.2，小於 5.2 的原因可能為實驗的誤差，以及紐塞
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數包含的不準度。上下板加熱時，其紐塞數亦是隨著流量增加而增

加，在雷諾數 415～1098 的範圍內，紐塞數由 5.28 增至 6.1。比較

圖 3-7 與圖 3-9 中相近流量下的紐塞數，上下板加熱時的平均紐塞數

皆大於上板加熱，主要原因為自然對流效應的產生，使其有比上板加

熱時的流體更高的熱傳係數。 

3.4.2 聚丙醯胺水溶液熱傳實驗結果 

    以聚丙醯胺水溶液為工作流體時，熱傳實驗結果除了與同樣加熱

量的純水實驗結果做比較以外，亦比較不同加熱量對聚丙醯胺水溶液

在矩形管道裡流動時的熱傳影響。 

    圖 3-10 至圖 3-12 分別為聚丙醯胺水溶液在不同的熱邊界條件，

對於層流狀態下的壁面及流體溫度隨軸向分佈圖。圖 3-10 為上板加

熱，質量流率為 0.0078kg/s（Re*= 471）；圖 3-11 為下板加熱，質

量流率為 0.0085kg/s（Re*=516）。圖 3-12 為上下板同時加熱，質量

流率為 0.0081kg/s（Re*=490）。由此三個圖中發現，假設局部流體

溫度沿流道軸向位置呈線性分佈，而壁面與流體的局部溫差值隨著入

口位置而改變，在靠近入口位置處，此溫差為最小值，隨著入口位置

增加溫差亦增加，主要是因為流體邊界層發展的緣故，在測試段中段

位置壁溫上升幅度減緩，使溫差由原本的漸增變為漸減，而後與局部

流體溫差漸為定值，代表流體已經達到完全發展流的階段，此與純水
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為工作流體時的溫差現象不同，而且壁面與流體的溫差明顯比純水

小，原因為存在其他熱傳機制使熱傳結果改變，即是聚丙醯胺水溶液

特有的黏彈特性，在矩形管道中流動時因為具有正向力差所產生的二

次流動，增加聚丙醯胺水溶液的熱傳係數，使壁溫上升幅度減低。由

圖 3-6 與圖 3-12 的比較，可以發現當上下板同時加熱，純水和聚丙

醯胺水溶液有明顯不同的表現，以純水為工作流體時，下板因為有浮

力效應造成的二次流，使靠近下板的流場混合，所以局部的下壁溫比

上壁溫低。以聚丙醯胺水溶液為工作流體時，局部上壁溫與下壁溫相

差很小，更可以確定當上下板加熱時，除了浮力效應之外亦存在另一

種增強熱傳機制，使靠近上板與下板的流場能充分混合，即是由正向

力差引起的二次流。完全發展長度的理論值計算，雷諾數以式（3.2）

計算，普朗特數 Pr 之視黏度η以式(1.3)計算，由式(3.3)計算結果

h

tfd

D
,L
皆約為 220 左右，由圖 3-10 至圖 3-12 可以知道當

hD
x
約為 240

時，壁面與流體的局部溫差開始為定值，與理論值接近。 

    以下是聚丙醯胺水溶液的熱傳分析分別，以不同的熱邊界條件作

為區分，並與純水為工作流體的實驗結果比較，以比較不同的加熱量

聚丙醯胺水溶液的的熱傳效果差異。 

上板等熱通量加熱 

    圖 3-13 至圖 3-15 為聚丙醯胺水溶液在層流狀態下，改變上板加
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熱瓦數，對於不同質量流率的局部紐塞數與流道軸向位置關係圖。圖

3-13 為加熱瓦數 200W 的情況，質量流率範圍為 0.0009～0.0078 

kg/s，廣義雷諾數範圍為 57～471。圖 3-14 為加熱瓦數 150W 的情況，

質量流率範圍為 0.0048～0.0076kg/s，廣義雷諾數範圍為 276～

457。圖 3-15 為加熱瓦數 100W 的情況，質量流率範圍為 0.0049～

0.0076kg/s，廣義雷諾數範圍為 280～447。由圖 3-13 至 3-15 發現，

在固定流量的情況下，紐塞數皆是隨入口位置（entrance region）

增加而漸漸減小，到測試段中段位置紐塞數反轉為遞增，是因為溫差

由漸增變為漸減，當溫差為定值時，則紐塞數亦不隨入口距離增加而

改變，可知已達完全發展（fully developed）。加熱 200W 時，雷諾

數最高為 471 時對應紐塞數為 8；加熱 150W 時，雷諾數最高為 457

時對應紐塞數為 6.4；加熱 100W 時，雷諾數最高為 447 時對應紐塞

數為 5.2。 

由圖 3-13 發現在低流量（質量流率為 0.0009 kg/s 以及 0.0014 

kg/s）的時候，紐塞數幾乎與純強制對流邊界條件為 H1(1L)的紐塞

數相同甚至更低，主要原因為流量太低，實驗不容易達到穩態，加上

紐塞數包含的不準度，導致結果比 H1(1L)的紐塞數低。隨著流量增

加，強制對流的效應越明顯，所以紐塞數越高，對於聚丙醯胺水溶液，

因為其黏彈特性具有正向力差效應，而且正向力差的大小與雷諾數成
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正比，因此流量越大則正向力差效應越顯著，紐塞數越高。聚丙醯胺

水溶液為輕剪力流體，視黏度隨剪切率增加而下降，在質量流率為

0.0009～0.0078 kg/s 的範圍內，剪切率隨著質量流率增加而增加，

由於輕剪力效應，視黏度隨著剪切率增加而下降，又再次影響管內的

流速，在上板加熱的條件下，靠近上板的流體會因為溫度上升使黏度

下降，使流體局部速度梯度增加，造成流體軸向速度扭曲，最大流速

由軸向中心位置橫移至靠近上板處。輕剪力效應以及流體軸向速度扭

曲有互相增強的影響，因此紐塞數隨著流量增加而增加。圖 3-14、

3-15 亦有相同情況， 

圖 3-16 為層流狀態時，相近質量流率之兩種工作流體，對於不

同上板加熱瓦數比較圖。首先比較同樣加熱量 200W 的純水與聚丙醯

胺水溶液，純水在質量流率 0.007 kg/s 的紐塞數為 4.5，聚丙醯胺

水溶液在質量流率 0.0078 kg/s 的紐塞數為 8，在流量相近的條件下

熱傳係數提高了 78％，主要原因為聚丙醯胺水溶液屬於黏彈性流體，

在矩形流道中流動具有正向力差導致熱傳增強；另一原因為聚丙醯胺

水溶液具有輕剪力效應與上板加熱時流體軸向速度扭曲關係，導致流

體熱傳係數增加。比較不同加熱量時熱傳係數的差異，由圖 3-16 可

以明顯的看出聚丙醯胺受加熱量越大，熱傳係數越提升，原因是當加

熱量由 100W 增加至 200W 時，靠近壁面的流體視黏度會下降，在相近
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流量的情況下，視黏度越小，靠近上板的流場速度梯度越大，因此加

熱量越大熱傳係數越高。 

下板等熱通量加熱 

    圖 3-17 至圖 3-19 為聚丙醯胺水溶液在層流狀態下，改變下板加

熱瓦數，對於不同質量流率的局部紐塞數與流道軸向位置關係圖。圖

3-17 為加熱瓦數 200W 的情況，質量流率範圍為 0.0011～0.0085 

kg/s，廣義雷諾數範圍為 62～516。圖 3-18 為加熱瓦數 150W 的情況，

質量流率範圍為 0.0048～0.0078kg/s，廣義雷諾數範圍為 282～

468。圖 3-19 為加熱瓦數 100W 的情況，質量流率範圍為 0.0049～

0.0077kg/s，廣義雷諾數範圍為 278～456。在固定流量的情況下，

紐塞數皆是隨入口位置增加而漸漸減小，到中段位置反轉上升，最後

紐塞數不隨入口距離增加而改變時，可知已達完全發展。加熱 200W

時，雷諾數最高為 516 時對應紐塞數為 8.1；加熱 150W 時，雷諾數

最高為 468 時對應紐塞數為 6.45；加熱 100W 時，雷諾數最高為 456

時對應紐塞數為 6.3。 

由圖 3-17 發現在低流量（質量流率為 0.0011 kg/s以及 0.0016 

kg/s）的時候，其紐塞數大於邊界條件為H1(1L)的紐塞數，與上板加

熱時的情況不同，由上板加熱的結果顯示，流量低（質量流率為0.0009 

kg/s以及 0.0014 kg/s）時，正向力差效應不明顯，所以與H1(1L)的
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紐塞數相差不多，但當下板加熱時，低流量比上板加熱時有較高的熱

傳係數，其主要原因為浮力效應引起的自然對流，計算Gr*/Re*
2
（自

然對流與強制對流的比值），發現當質量流率為 0.0011 kg/s以及

0.0016 kg/s，Gr*/Re*
2
分別為 8.54 與 5.7，自然對流效應大於強制

對流，因此確定自然對流為主要的熱傳機制。當流量增加，Gr*/Re*
2

約為 1時，自然對流與強制對流所佔比例相同，由正向力差產生的二

次流強度亦逐漸增加。當質量流率為 0.0085 kg/s，Gr*/Re*
2
約為

0.27，熱傳機制以強制對流為主，因此由正向力差產生的二次流為主

要熱傳增強機制，紐塞數升高至 8.1。與圖 3-13 上板加熱實驗結果

比較（質量流率為 0.0078 kg/s，紐塞數為 8），在流量相近的情況下，

紐塞數值接近，代表下板加熱在質量流率為 0.0085 kg/s時自然對流

效應相對於強制對流比例減小，以正向力差形成的二次流為主要熱傳

機制，因此與上板加熱的紐塞數接近。圖 3-17 中紐塞數隨軸向位置

增加而漸漸減小，到中段位置反轉上升，說明自然對流效應在流體剛

進入流道內尚不明顯，直至中段位置，自然對流效應因為壁面與流體

的局部溫差增加而開始上揚，紐塞數由遞減轉為遞增而後趨於一定

值，圖 3-18、3-19 情況亦相同。 

    圖 3-20 為層流狀態時，相近質量流率之工作流體，對於不同下

板加熱瓦數比較圖，首先比較同樣加熱量 200W的純水與聚丙醯胺水
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溶液，純水在質量流率 0.066 kg/s的紐塞數為 5.8，聚丙醯胺水溶液

在質量流率 0.0063 kg/s的紐塞數為 7.4，在流量相近的條件下熱傳

效果提高了 28％。比較純水與聚丙醯胺水溶液的雷利數（Raq），在下

板加熱量 200W且質量流率相近的條件下，純水雷利數為 1.08×10
6
，

聚丙醯胺水溶液雷利數為 0.61×10
6
，純水雷利數大於聚丙醯胺水溶

液，代表純水的自然對流強度比聚丙醯胺水溶液大，但是聚丙醯胺水

溶液的熱傳效果卻比純水好，主要原因為正向力差造成的二次流以及

輕剪力效應在下板加熱時使流體軸向速度產生扭曲的關係。對於聚丙

醯胺水溶液，隨著加熱瓦數的增加，紐塞數亦增加，主要原因為加熱

量由 100W增加至 200W時，靠近加熱面的流體視黏度會下降，靠近下

板的流場速度梯度會增加。另外，雷利數隨視黏度減小而增加，浮力

效應越明顯，因此加熱量越大熱傳係數越高。 

上下板同時等熱通量加熱 

    圖 3-21 至圖 3-23 為聚丙醯胺水溶液在層流狀態下，改變加熱瓦

數，對於不同質量流率的局部紐塞數與流道軸向位置關係圖。圖 3-21

為加熱瓦數上下板各 100W的情況，質量流率範圍為 0.0048～0.0081 

kg/s，廣義雷諾數範圍為 281～491。圖 3-22 為加熱瓦數上下板各 75W

的情況，質量流率範圍為 0.005～0.0082 kg/s，廣義雷諾數範圍為

298～494。圖 3-23 為加熱瓦數上下板各 50W的情況，質量流率範圍
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為 0.0051～0.0081 kg/s，廣義雷諾數範圍為 291～481。在固定流量

的情況下，平均紐塞數Nux皆是隨入口位置增加而漸漸減小，到中段

位置反轉上升，最後平均紐塞數不隨入口距離增加而改變時，可知已

達完全發展。上下各加熱 100W時，雷諾數最高為 491 時對應平均紐

塞數為 7.61；上下各加熱 75W時，雷諾數最高為 494 時對應平均紐塞

數為 6.38；上下各加熱 50W時，雷諾數最高為 481 時對應平均紐塞數

為 6.1。 

    由圖 3-21 發現上下板同時加熱的紐塞數皆是隨入口位置增加而

漸漸減小，到中段位置反轉上升，是因為自然對流效應在流體剛進入

流道內尚不明顯，隨軸向位置增加自然對流效應開始增加。上下板同

時加熱時，靠近加熱面的流體會因為溫度增加而黏度降低，流體速度

梯度增加，但是由於速度梯度的對稱性，所以軸向速度並不會向任何

一個加熱面扭曲，與下板加熱的情況不同。比較圖 3-21 與圖 3-17，

在相似質量流率下，下板加熱質量流率為 0.0085 kg/s 時，其完全發

展的紐塞數為 8.1，上下板同時加熱質量流率為 0.0081 kg/s 時，其

完全發展的平均紐塞數為 7.6，上下板同時加熱的紐塞數略低，原因

則是因為少了軸向速度扭曲的因素，但是因為存在自然對流效應，所

以熱傳效果仍然比上板加熱時好，圖 3-22、3-23 亦有相同的情況。 

    圖 3-24 為層流狀態時，相近質量流率之工作流體，對於不同上
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下板加熱瓦數比較圖，首先比較同樣上下板各加熱 100W的純水與聚

丙醯胺水溶液，純水在質量流率 0.071 kg/s的紐塞數為 5.8，聚丙醯

胺水溶液在質量流率 0.0081 kg/s的紐塞數為 7.6，在流量相近的條

件下熱傳係數提高了 31％。比較純水與聚丙醯胺水溶液的雷利數，

在質量流率相近的條件下，純水雷利數為 1.13×10
6
，聚丙醯胺水溶液

雷利數為 0.67×10
6
，純水雷利數大於聚丙醯胺水溶液，代表純水的自

然對流強度比聚丙醯胺水溶液大，但是聚丙醯胺水溶液的熱傳效果卻

比純水好，主要原因為正向力差造成的二次流以及輕剪力效應，流體

速度梯度隨黏度降低而增加，使熱傳係數比純水高。另由圖 3-24 可

以看到隨著加熱瓦數的增加，聚丙醯胺水溶液紐塞數亦增加，主要原

因為加熱量由 50W增加至 100W時，靠近加熱面的流體視黏度會下降，

靠近加熱面的流場速度梯度會增加。另外，雷利數隨視黏度減小而增

加，浮力效應越明顯，因此加熱量越大熱傳係數越高。 

3.5 實驗結果與文獻討論比較 

實驗結果與 Xie 和 Hartnett【12】比較： 

    本實驗聚丙醯胺水溶液黏度範圍為 1.3～1.6（cp），文獻【12】

中的聚丙醯胺水溶液其黏度範圍為 4～11（cp），本實驗流體黏度低

於文獻【12】，以下將比較本實驗與文獻【12】的壓降與熱傳結果。 

(a)壓降結果： 
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圖 3－25 為本實驗與文獻【12】的廣義雷諾數與摩擦因子關係圖， 

由圖上可以知道，實驗結果與文獻數據皆與 ＝Ff
Re*
16

關係式吻合，證

明其皆在層流狀態下。 

(b)熱傳結果： 

上板加熱 

    圖 3－26 為比較本實驗結果與文獻【12】在上板加熱，相近雷諾

數下，其局部紐賽數與 1/Gz 關係圖。本實驗結果在雷諾數為 471 時，

其已完全發展紐塞數為 8；文獻【12】在雷諾數為 464 時，其已完全

發展紐塞數為 10，本實驗結果其紐塞數低於文獻【12】為 25％。 

下板加熱 

    圖 3－27 為比較本實驗結果與文獻【12】在下板加熱，相近雷諾

數下，其局部紐賽數與 1/Gz 關係圖。本實驗結果在雷諾數為 516 時，

其已完全發展紐塞數為 8.1；文獻【12】在雷諾數為 511 時，其已完

全發展紐塞數為 10.2，本實驗結果其紐塞數低於文獻【12】約 26％。 

上下板同時加熱 

    圖 3－28 為比較本實驗結果與文獻【12】在上下板同時加熱，相

近雷諾數下，其局部紐賽數與 1/Gz 關係圖。本實驗結果在雷諾數為

491 時，其已完全發展紐塞數為 7.61；文獻【12】在雷諾數為 433 時，

其已完全發展紐塞數為 8.5，本實驗結果其紐塞數低於文獻【12】約
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11.7％。 

    由於本實驗所使用的聚丙醯胺水溶液與文獻【12】中的黏度不

同，因此其流體流動特性亦會有差異，由式（1.6）可以知道黏彈性

流體的應力特性是由彈性應力與黏性應力相加的結果，而由式（1.5）

黏性應力為黏度與剪切率的乘積，因此黏度不同會造成流體在流動時

特性不同，這是本實驗結果紐塞數皆低於文獻【12】的主要原因，由

此可以證實，聚丙醯胺水溶液黏度大小對於熱傳係數大小具有正比的

關係。 
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表 3-1 實驗不準度 

參數 不準度（％） 參數 不準度（％） 

面積 ±1.9 壓力差降 ±0.1 

周長 ±1.2 熱通量 ±1.82 

水力直徑 ±2.2 局部熱傳係數 ±2.29 

質量流率 ±0.32 局部紐塞數 ±3.33 

局部壁溫 ±0.33 格雷茲數 ±1.45 

進出口溫差 ±1.25 雷諾數 ±3.4 

局部流體溫度 ±1.36 摩擦因子 ±3.2 
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表 3-2 純水物理性質表【26】 
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表 3－3 聚丙醯胺水溶液在不同溫度時的 power law index(n)

與 consistency index(K)值：（a）進行熱傳實驗之前（b）進行熱傳

實驗後 

溫度(℃) n K

25 0.931 0.00245

30 0.924 0.00242

35 0.904 0.00236

40 0.879 0.00233

45 0.872 0.00231     

溫度(℃) n K

25 0.923 0.00220

30 0.910 0.00214

35 0.899 0.00207

40 0.886 0.00205

45 0.875 0.00175  

（a）                          （b） 
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（a）進行熱傳實驗之前

 

（b）進行熱傳實驗之後 

圖 3-1 不同溫度下聚丙醯胺水溶液視黏度對剪切率的關係圖 

 72



 

（a）未加熱狀態 

 

（b）加熱狀態 

圖 3-2 層流狀態下工作流體之壓降與質量流率關係圖 
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（a）未加熱狀態 

 

（b）加熱狀態 

圖 3-3 層流狀態下工作流體之廣義雷諾數與摩擦因子關係圖 
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圖 3-4 純水在上板加熱之上壁面溫度與流體溫度軸向分佈圖 
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圖 3-5 純水在下板加熱之下壁面溫度與流體溫度軸向分佈圖 
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圖 3-6 純水在上下板同時加熱之上壁面、下壁面與流體溫度軸向 

分佈圖 
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圖 3-7 純水在上板加熱之局部紐賽數與 1/Gz 關係圖 
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圖 3-8 純水在下板加熱之局部紐賽數與 1/Gz 關係圖 
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圖 3-9 純水在上下板同時加熱之局部紐賽數與 1/Gz 關係圖 
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圖 3-10 聚丙醯胺水溶液在上板加熱之上壁面溫度與流體溫度軸向 

分佈圖 
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圖 3-11 聚丙醯胺水溶液在下板加熱之下壁面溫度與流體溫度軸向 

分佈圖 
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圖 3-12 聚丙醯胺水溶液在上下板同時加熱之上壁面、下壁面與流體

溫度軸向分佈圖 
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圖 3-13 聚丙醯胺水溶液在上板加熱之局部紐賽數與 1/Gz 關係圖

（200W） 
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圖 3-14 聚丙醯胺水溶液在上板加熱之局部紐賽數與 1/Gz 關係圖

（150W） 

 85



 

圖 3-15 聚丙醯胺水溶液在上板加熱之局部紐賽數與 1/Gz 關係圖

（100W） 
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圖 3-16 相近質量流率之工作流體於不同上板加熱瓦數比較圖 
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圖 3-17 聚丙醯胺水溶液在下板加熱之局部紐賽數與 1/Gz 關係圖

（200W） 
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圖 3-18 聚丙醯胺水溶液在下板加熱之局部紐賽數與 1/Gz 關係圖

（150W） 
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圖 3-19 聚丙醯胺水溶液在下板加熱之局部紐賽數與 1/Gz 關係圖

（100W） 
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圖 3-20 相近質量流率之工作流體於不同下板加熱瓦數比較圖 
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圖 3-21 聚丙醯胺水溶液在上下板同時加熱之局部紐賽數與 1/Gz  

關係圖（各 100W） 
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圖 3-22 聚丙醯胺水溶液在上下板同時加熱之局部紐賽數與 1/Gz  

關係圖（各 75W） 
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圖 3-23 聚丙醯胺水溶液在上下板同時加熱之局部紐賽數與 1/Gz  

關係圖（各 50W） 
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圖 3-24 相近質量流率之工作流體於不同上下板加熱瓦數比較圖 
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圖 3－25 本實驗與文獻【12】之廣義雷諾數與摩擦因子關係圖 
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圖 3－26 本實驗與文獻【12】上板加熱之局部紐賽數與 1/Gz 關係圖 
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圖 3－27 本實驗與文獻【12】下板加熱之局部紐賽數與 1/Gz 關係圖 
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圖 3－28 本實驗與文獻【12】上下板加熱之紐賽數與 1/Gz 關係圖 
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第四章  結論 

    本實驗主要目的是探討純水（牛頓流體）與聚丙醯胺水溶液（黏

彈性流體）在層流狀態下，在水平矩形管道中的壓降與熱傳分析，結

果說明如下： 

1、 壓力差降： 

    由實驗量測得到純水以及聚丙醯胺水溶液的摩擦因子值，皆與

＝

Ff

Re*
16

預測值接近。在相同的質量流率下，聚丙醯胺水溶液的壓降值

大於純水的壓降值，主要是因為聚丙醯胺水溶液的黏度大於純水，所

以在管內流動會有比較大的壓力差降。加熱後流體黏度下降，純水與

聚丙醯胺水溶液的壓降皆略小於未加熱時的壓降。 

2、 熱傳係數： 

a.上板加熱時，聚丙醯胺水溶液因為正向力差效應，產生二次流動

使流場混合，加上輕剪力效應與上板加熱時軸向速度扭曲的關係，因

此熱傳係數比純水高，而且隨著流量增加，正向力差效應增強，熱傳

係數越高。在本實驗測試範圍內，聚丙醯胺水溶液的熱傳係數，在相

近流量的條件下，比純水提高 78％。 

  b.下板加熱時，聚丙醯胺水溶液除了正向力差效應以及輕剪力效

應與下板加熱時軸向速度扭曲的因素外，尚有自然對流效應加成，因

此熱傳係數比純水高，隨著流量增加，自然對流效應所佔比例減低，
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以強制對流為主，正向力差效應成為主要熱傳增強機制。在本實驗測

試範圍內，聚丙醯胺水溶液的熱傳係數，在相近流量的條件下，比純

水提高 28％。 

  c.上下板同時加熱時，聚丙醯胺水溶液的熱傳機制與下板加熱時比

較，相同的是，正向力差效應與自然對流效應的加成，使熱傳係數增

加；不同的是，靠近上板與下板加熱面的流體，雖然因為溫度增加而

黏度降低，流體速度梯度增加，但是由於速度梯度的對稱性，軸向速

度並不會向任何一個加熱面扭曲，所以熱傳係數略低於下板加熱，但

是因為具有自然對流效應，所以熱傳係數比上板加熱時高。與純水比

較，因為聚丙醯胺水溶液具有正向力差效應與自然對流效應的加成，

所以熱傳係數比純水高。在本實驗測試範圍內，聚丙醯胺水溶液的熱

傳係數，在相近流量的條件下，比純水提高 31％。 
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附錄 A  實驗不準度分析 

 

    根據文獻【25】所整理出來的方法來分析實驗的不準度。實驗結

果是經由一系列實驗量測而得到的，因此實驗結果 R為各個實驗量測

參數 的函數。 ,x,x,x 321 nx,⋅⋅⋅⋅⋅

( )n321 x,,x,x,xRR ⋅⋅⋅⋅⋅=  

     而在 時產生有ix ixδ 的變化，使得R值有 iRδ 的變化量 

i
i

i x
x
RR δδ

∂
∂

=  
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i
i
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x
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R
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∂
∂
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                   (A.1) 

     所以由 所造成的不準度， : ix
iRu

xi
i

i
R u

x
R

R
x

u
i ∂

∂
=                           (A.2) 

假設 為實驗結果的不準度，而 為各個實驗量測參

數的不準度。則實驗結果的不準度與各個實驗量測參數的不準度的關

係為： 

Ru nuuuu ,.....,,, 321
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1 ⎥

⎥
⎦

⎤

⎢
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⎛
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⎞
⎜⎜
⎝

⎛
⋅

∂
∂

±= n
n

R u
x
Ru

x
Ru

x
Ru         (A.3) 

 

不準度分析： 

A-1  面積不準度 

      實驗測試端的面積為 612× ㎜，假設基本誤差為 ㎜，   1.0

baA ×=  

008.0
12

1.0
±=±=au  
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017.0
6
1.0

±=±=bu  

2/1
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    2/122 )( ba uu +±=

    or 019.0±= 9.1± ﹪ 

A-2  周長不準度 

           )(2 baP +=  
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               or  012.0±= 2.1± ﹪ 

A-3  水力直徑不準度 

          
P
ADh

4
=  
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A-4 質量流率不準度 

        做流量計校正時，以燒杯配合碼錶量測工作流體在一分鐘時

間內的質量流率： 

             
t
mm
Δ
Δ

=
.

    ( )ef mmm −=Δ  

      而誤差參數 

             燒杯裝滿水， 0008.0
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A-5 局部壁溫不準度 

數據擷取器的最小精準度為 ，最低量測溫度為 30  C°1.0 C°

=Twu ± % 33.0

A-6 進出口溫度差最大不準度 

在實驗中，進口溫度為 30 ，且出口溫度最低為 33  C° C°

inboutbb TTT ,, −=Δ ， 

25.1±=ΔTbu % 

A-7 局部流體溫度不準度 

        局部流體溫度的定義： ⎟
⎠
⎞

⎜
⎝
⎛−+=

L
xTTTT inboutbinbx )( ,,,  

        ± ﹪ =Txu 36.1
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A-8 熱通量不準度 

加熱量為 ，進出口溫差 Cp 是流體比

熱，由查表得到，所以誤差在 1%以下，故計算可得 

)( ,,

.

inboutbpsensible TTCmQ −=

=Qu ± ﹪ 63.1

故在測試端的每單位面積熱傳量為： 
LW

Q
q sensible

x =                         

       其中W 為測試段寬度， 為測試段長度 L

83.0
12

1.0
±==

mm
mmuw %， 004.0

2440
1.0

±==
mm

mmuL % 

則 82.1±=qxu % 

A-9  局部熱傳係數不準度 

局部熱傳係數的定義為：
xwx

x
x TT

qh
−

=  

=hxu ± % 29.2

A-10 局部紐塞數不準度 

紐塞數定義為：
k
DhNu hx

x
⋅

= ，其中 k 由表查得，所以誤差在

1%以下，因此計算可得 

=Nuxu ± % 33.3

A-11 Gz 數的不準度 

 Gz 的定義：
kx
Cm

Gz p&
= ，其中 Cp 與 k 由表查得，所以誤差在

1%以下，因此計算可得 

=Gzu ± % 45.1

A-12 壓力差降不準度 

差壓計採用 Foxboro 公司產品，輸出訊號為 4-20mA，誤差值可

達±0.1%，所以 ± % =Δpu 1.0
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A-13 摩擦因子不準度 

     摩擦因子定義如下： 

2

2V
D
Lfp

h

ρ
=Δ  

得到達西摩擦因子 ，其中f ρ由表查得，所以誤差在 1%以下，

因此計算可得 

=fu ± % 2.3

A-14 雷諾數不準度 

     
μ

ρ hvD
=Re ，其中 ρ、μ由表查得，所以誤差在 1%以下，因此計

算可得 

     ± % =Reu 4.3

 

 111


