
 

國 立 交 通 大 學 
 

電控工程研究所 
 

博 士 論 文 
 
 
 

飛彈防衛系統之任務分配及軌跡規劃 
 

Design of Task Assignment and Path Evolution for Missile Defense System (MDS) 
 
 
 
 
 

研 究 生：洪堃能 

指導教授：王啟旭  教授 

 

 
 

中 華 民 國 一 ○ 二 年 六 月 

 



 

飛彈防衛系統之任務分配及軌跡規劃 

Design of Task Assignment and Path Evolution for Missile Defense System (MDS) 
 
 
 
 

研 究 生：洪堃能          Student：Kun-Neng Hung 

指導教授：王啟旭          Advisor：Chi-Hsu Wang 

 
 
 

國 立 交 通 大 學 
電 控 工 程 研 究 所 

博 士 論 文 
 
 

A Thesis 

Submitted to Institute of Electrical Control Engineering 

College of Electrical and Computer Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

 
Electrical Control Engineering 

 
June 2013 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國一○二年六月 

 



飛彈防衛系統之任務分配及軌跡規劃 

 

研究生：洪堃能        指導教授：王啟旭 博士 

 

國立交通大學電控工程研究所博士班 

 

摘 要       

 

    針對非線性系統的控制問題，本論文發展兩個嶄新的控制架構。首先

探討多自主系統(MAS, multi-agent system)，其為一包含多個自主運作的群

體系統，能接受來自其他機構或者中央的命令來採取行動，並在我們所設

定的條件內達成任務。飛彈防衛系統(MDS, missile defense system)即為一多

自主系統的延伸架構，環境內有來自敵方的多個攻擊飛彈的威脅、有限多

個據點將遭受戰損與有限多個防衛飛彈發射並各自攔截攻擊飛彈等，均是

本論文第一部份的探討重點。在飛彈的任務規劃部份，傳統的任務分配使

用窮舉法來做多對多的配對，雖然最終能找到滿足條件的最佳配對，但是

當對象數量增加時所花費的計算量更是龐大，因此本論文提出自組織映射

(SOM, self-organizing map)，其優勢在於降低配對的計算量並可根據多個據

點的最小總戰損為目標來進行多個防衛飛彈與多個攻擊飛彈之間的配對，

如此不僅可以加速配對時間也可以滿足所設定的最小總戰損條件。在控制

器的部份，本論文根據飛彈導引法則為基礎建構提出智慧型模糊類神經網

路(FNN, fuzzy neural network)控制器架構，相較於 CMAC(cerebellar model 

articulation controller)在飛彈導引的運算時間過長及失誤距離過大，更進一

 i



步改善飛彈導引系統的即時性；本論文所提出的控制器架構可經由李亞普

諾夫穩定性證明來保證系統的穩定性，同時藉由參數學習的機制來克服系

統的非線性。最後由模擬成果可明顯看出自組織映射在任務分配與模糊類

神經網路控制器在飛彈導引控制的結合度極高，因此可以完整建構出一飛

彈防衛系統。本論文之第二部份為高階霍普菲爾神經網路 (HOHNN, 

high-order Hopfield-base neural network)應用於動態系統之鑑別。高階霍普菲

爾神經網路中的函數型連結網路(FLN, functional link net)能提供額外的輸入

給網路之各神經元。相對於傳統的霍普菲爾網路(HNN, Hopfield neural 

network)，本論文所提出的函數型連結網路具有系統化階次的數學表示法，

具有較快的收斂速度及較少的計算負載。另外，函數型連結網路之權重更

新，亦可藉由李亞普諾夫穩定理論來保證在非線性即時系統的鑑別收斂。

針對各種基於霍普菲爾神經網路架構的比較，可由模擬結果及計算量分析

顯示我們所提出的高階霍普菲爾神經網路在未知動態系統的鑑別具有較高

的效能。 
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ABSTRACT 

 
    In this dissertation, two novel control schemes are proposed to solve the 

control problems of nonlinear systems. The first is the multi-agent system (MAS) 

consists of multiple autonomous systems which can activate, interact, and 

communicate with each others or from central command, and eventually 

complete some missions under the desired conditions. Missile defense system 

(MDS) is a suitable application of MAS: threat from multiple attacking missiles, 

some limited assets are under attack, and multiple defense missiles (or agents) 

are launched to intercept the associated attacking missiles (or targets), and a 

fuzzy neural network (FNN) controller with self-organizing map (SOM) for 

MAS are investigated in the first part of this thesis. The presented approaches 

are better than traditional exhausted method which can find the optimal solution 

though time-consuming when the processing data increases. The advantage of 

SOM is the less computational load under the condition of minimal total asset 

damages. Therefore, SOM can be adopted to not only dispatch the agents toward 

the targets, but also lower the computational load under the desired condition. 

Based on the missile guidance law, the proposed FNN can deal with the 

problems of large computational load and miss distance by the cerebellar model 

articulation controller (CMAC). Finally, the proposed SOM-based FNN 
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controller adopted in the highly nonlinear MDS can be guaranteed stable and the 

parameters can be updated via Lyapunov stability criterion. From the 

experimental results, it can be demonstrated the possibility of applying the 

proposed intelligent control method in MDS. In the second part of the thesis, the 

high-order Hopfield-based neural network (HOHNN) is proposed to the 

dynamical system identification. The functional link net (FLN) in HOHNN has 

additional inputs for each neuron. In comparison with the traditional Hopfield 

neural network (HNN), the compact structure of FLN with a systematic order 

mathematical representation combined into the proposed HOHNN has additional 

inputs for each neuron for faster convergence rate and less computational load. 

In addition, the weighting factors in HOHNN are tuned via the Lyapunov 

stability theorem to guarantee the convergence performance of real-time system 

identification. The simulation results and computation analysis for different 

Hopfield-based neural networks are conducted to show the effectiveness of 

HOHNN in uncertain dynamical system identification. 
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Chapter 1 
Introduction 

 

1.1 Background and Motivation 

The multi-agent system (MAS) has attracted increasing interests among researchers 

working on a wide variety of topics due to its broad applications in autonomous underwater 

vehicles, unmanned aerial helicopters, mobile multi-robot formations, and so on [1–8]. Some 

studies have reported on consensus control and synchronization [1–8], including the 

leaderless and modified leader-follower architecture in the presence of actuator faults. The 

main part of consensus control is that the agents communicate with each other via an adjacent 

graph and behaves in a similar manner to an equilibrium state. However, the dynamic task 

assignment between agents and targets was not considered in the studies, and few intelligent 

control techniques have been applied to find the agent trajectories. The task assignment of 

MAS is to decide the dispatching for agents toward the corresponding targets according to 

some exhaustive criteria, or to control a group of agents so that they can move to their 

designated target locations with the coordination and cooperation of each robot. Many 

researches have been proposed in the task assignment domain, like the intelligent 

transportation systems (ITS) [9–11], transport logistics [12], taxi dispatching [13], and so on. 

In [9–14], the most important factor considered in MAS is the total computational loads (or 

balance of group resources) which means the total real-time travel period has to be minimized. 

However, the considered targets in [9–14] were static, and dynamic task assignments with 

intelligent path control algorithms for MAS have not been developed yet. The traditional 

exhaustive method used to find the minimal total damaging cost is time-consuming, that is, 

the solution can be obtained, and the number of computation steps is ,  

when there are N agents and D targets. In practice the task assignment can not accept such an 

)!/(! NDD − ND ≥
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inefficient method since the computational load will get heavier as N becomes larger. There 

are various algorithms proposed for the task assignment problem, such as the genetic 

algorithm [15], agent based algorithm [16], dynamic Tabu search algorithm [17], and graph 

matching algorithm [18]. However, these algorithms mainly focus on the target assignment 

problem without considering the nonlinear control and path planning of robots. In comparison 

with leader-following tracking problem, there are no information interchanges among the 

agents in our MAS because one agent just has to know whether its corresponding target has 

been matched to another agent. Moreover, it is convenient and efficient for task assignments 

that we do not need to consider the information delays between neighbors or the other agents 

due to the communication constraints. The missile defense system (MDS) provides a sort of 

protective shield against a limited missile attack. The incoming missiles are launched to attack 

limited assets which have their own significances. Once an asset is unfortunately destroyed by 

some incoming missiles, it will cause the corresponding damaging cost which can be regarded 

as the value of asset. Because the number of assets that are under attacking by unknown 

number of incoming missiles, the allocation of defending missiles becomes important to 

ensure the damaging cost are minimized (or the surviving assets are maximized). A dynamic 

programming for interceptor allocation problem in theater missile defense (TMD) [43] has 

been discussed to develop reliable defense guidelines. However, the approach in [43] is too 

complex to be implemented in practice. In this thesis, we will treat the MDS as an important 

application of MAS [1–8]. The defending missiles and incoming missiles in MDS represent as 

agents and targets in MAS, respectively. Therefore, a task assignment considered in MAS can 

easily deal with the allocation problem in MDS. 

The self-organizing map (SOM) first proposed in [19] has the winner-takes-all property 

that activates the winner among a group of neuron based on competitive learning. The SOM 

has been studied for various areas such as web content mining [20], pattern classification [21], 

and image processing [22], etc. In [23], SOM has been proposed as a useful dynamic task 
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assignment method for a multi-robot system, in which the positions of agents are updated by 

the SOM with neighborhood update rule. Once the best match is found by SOM, the agents 

start to move their initial targets, using a simple incremental path planning mechanism with 

dynamic weighting factors. However, the weighting factors should be updated in the next 

iteration via the learning neighborhood vectors to account for the random indexed targets. 

Furthermore, the SOM consists of distributed and competitive methods that can efficiently 

and dynamically dispatch the agents to the respective targets. In comparison with traditional 

SOM algorithm, the SOM proposed in [24] eliminated the time consuming tuning in 

neighborhood function to reduce the computational load in task assignment. A simple 

incremental path planning [23] has been adopted to allow the agents to move toward the 

chosen targets; however, the high nonlinearities and uncertainties of the agents (such as robots) 

have never been considered. The neural network control technique has been adopted for 

various systems in recent works [25–30]. The important element is the parameterized neural 

network, which can approximate the unknown system dynamics after the learning process. In 

the past decades, the fuzzy logic and neural network have grown into a popular research topic 

[31–36]. The fuzzy neural network (FNN) has the advantages of fuzzy systems and neural 

network, because of the combination of the fuzzy reasoning capability and the neural network 

on-line learning capability [31]. The FNN has been adopted widely for the control and 

identification application of complex dynamical systems [32, 33]. 

In control purpose, the path evolution (or planning) adopted by FNN can smoothly and 

robustly be constructed when the nonlinear dynamics and uncertainties of agents are 

considered in MDS. The adaptive SOM with FNN controller constructed under the command 

line-of-sight (CLOS) missile guidance law [44–46] consists of FNN controller and monitoring 

controller. The principle of CLOS missile guidance law is to force the agent to fly as closely 

as possible along the instantaneous line-of-sight (LOS) between the ground tracker and the 

target. If the missile can continuously stay on the LOS, it will eventually hit the target. The 
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CLOS missile guidance law has been regarded as a low-cost guidance concept because it 

emphasizes placement of avionics on the launch platform, as opposed to mounting on the 

expendable weapons [44]. Many different guidance laws have been developed over the years, 

and with the advent of highly maneuverable targets, research on improved guidance laws is 

still active [47–49]. However, their methods have resulted in complicated controllers and 

some of the guidance laws require knowledge of the maneuvering model of the targets. These 

are limitations for guidance of missiles, therefore, the guidance system should be robust 

enough to reject disturbances, and the escaping model of the target should not be considered. 

A cerebellar model articulation controller (CMAC) in [46] has been developed under CLOS 

for missile guidance law. However, the CMAC structure is too complex to be implemented in 

real-time environment, and the enormous weight space and limited modeling capability in 

CMAC can be further improved using the proposed FNN controller with fewer mappings and 

layers. Moreover, the multi-agent-multi-target cases with task assignment have not been 

discussed in [44–49]. The surviving assets [43] in MDS are the most important role for the 

task assignment to efficiently make an interception list for agents to intercept targets. As long 

as the interception list is done by SOM, the FNN controller will be adopted to force the agents 

to intercept their corresponding targets. Finally, the overall task assignment and path 

evolution (or planning) (TAPE) in MAS can be achieved to be adopted in MDS. Figure 1-1 

illustrates the relationships between TAPE, MAS, and MDS. The MDS (outermost circle) 

contains various spatial fields such as sea-based, space-based, and high altitude anti-ballistic 

missile systems. In order to cope with task assignment and path evolution (TAPE), the 

proposed MAS in this paper is considered as the application of multi-agent-multi-target 

space-based missile guidance. 
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SOM - Self 
Organizing Map

FNN – Fuzzy 
Neural Network

TAPE

 

Fig. 1-1. The relationships between TAPE, MAS, and MDS. 

 

The Hopfield neural network (HNN) proposed in 1982 [50] is an auto-associative 

learning network that consists of a set of neurons with a multiple-loop feedback structure in 

which the number of feedback loops is equal to the number of neurons. The HNN is a type of 

recurrent neural network (RNN) that has important capabilities that are not found in 

feed-forward neural networks (FNNs), such as attractor dynamics and the ability to store 

information for later use [51]. The abilities of HNN to deal with time-varying input or output 

through their own natural temporal operations [52–54] are particularly interesting. 

Researchers have devoted much attention to applying neural networks to identify and model 

nonlinear dynamical systems. Neural networks are suitable for identifying nonlinear 

dynamical systems because of their learning and memorization capabilities. In recent years, 

research on HNN has been conducted for pattern recognition [55], adaptive control [56], and 

crossbar switching problem [57]. The effectiveness of functional link net (FLN) in 

classification was first proposed in 1989 [58, 59] and has been combined with the HNN to 

create the high-order neural networks (HONNs). The extra input patterns of a FLN are formed 
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by either a functional expansion representation, tensor representation, or a combination of 

these two representations. The FLN may be conveniently used for functional approximation 

and pattern classification with faster convergence rate and less computational load than a 

multilayer perceptron (MLP) (or the static neural network) from many considerable interests 

in exploring the applications of functional link model to deal with nonlinearities and 

uncertainties [60–63]. A radial basis function neural network (RBFNN) was combined with a 

random-vector FLN to improve the recognition of English language script. In [61], FLN with 

higher-order statistics was introduced for signal enhancement. A nonlinear adaptive filter with 

pipelined Chebyshev functional link artificial recurrent neural network in [62] used a 

modification real-time recurrent learning algorithm for nonlinear colored signal prediction. In 

[63], a functional link net-adaptive neuro fuzzy system was adopted as a controller for robot 

path tracking purposes. The advantages of FLN shown in [64–66] indicated that not only is 

the efficiency of supervised learning greatly improved, but a flat net without hidden layer is 

sufficiently capable to do the job. However, the functional link artificial neural networks in 

[67] did not include the HNN. Furthermore, the weighting factors were tuned by 

back-propagation algorithm, which cannot guarantee the convergence of tuning results, 

especially in real-time applications. 

The applications of MLP for identification were studied in [68]. However, the fact that 

RNN involves dynamic elements with lower connectivity and fewer weighting factors results 

in the easier learning process of RNN than that of MLP [38, 69]. Thus, a further extension of 

RNN to yield HOHNN for dynamical system identification is proposed in this thesis. 

HOHNN is basically formed by HNN and a compact functional link structure with a 

systematic order mathematical representation. The application of HOHNN in the 

identification is explored to show the advantages of extra inputs for each neuron. In [70], the 

initial efforts were only reflected toward the effectiveness of the nonlinear system 

identification via HOHNN. 
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From the above discussions of novel neural network structures, there are two 

motivations in this thesis. The first motivation is the task assignment for the agents to be 

forced in a bounded start region to their corresponding targets in a one-to-one mapping. If any 

target is to be inserted at any time instant, the new best-matching pairs will be dynamically 

found by SOM. Furthermore, the adaptive process of SOM was replaced by the proposed 

FNN control mechanism, in which the path planning of agents can be smoothly and robustly 

constructed. In order to effectively lead the high-order nonlinear agents to their targets, a FNN 

controller and monitoring controller are adopted in the adaptive process of SOM. Therefore, a 

new intelligent adaptive algorithm based on SOM is proposed in this thesis to deal with the 

dynamic task assignment and path control problem. In comparison with the traditional SOM, 

the total resources can also be minimized by this new approach, in which only the winner 

vectors are considered. The intelligent adaptive SOM-based FNN controller is operated in 

conjunction with the traditional SOM in order to find the best paths allowing all agents to go 

to their final targets. The Lyapunov adaptive process is adopted to update the weighting 

factors, which is very different from the simple update of weighting factors for path planning 

in traditional SOM. A new monitoring controller is also designed to work with FNN controller; 

thus, the agents can be forced to go to their corresponding targets within the constraints of 

nonlinear dynamics and uncertainties of the agents (or robots). The second motivation in this 

thesis is the improvement of Hopfield-based neural networks, in which a compact functional 

link structure with a systematic order mathematical representation in FLN can perform 

satisfactory results among the other Hopfield-based neural network. A Lyapunov-based tuning 

theorem is also proposed to find the optimal weighting factor matrix of HOHNN to achieve 

favorable approximation error, which can be attenuated to arbitrary specified level. The robust 

learning analysis is also discussed to improve the convergence performance. Finally, the 

simulation results and computation analysis for different Hopfield-based neural networks are 

conducted to show the effectiveness of HOHNN in uncertain dynamical system identification. 
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More detailed discussions and comparisons are proposed in this thesis. 

 

1.2 Major Works 

In this dissertation, a SOM-based FNN controller with a monitoring controller is 

adopted for the task assignment and path evolution (or planning). The proposed FNN 

controller utilized for missile guidance is to mimic an ideal controller, and the monitoring 

controller is designed to compensate the tracking error between the FNN controller and the 

ideal controller. The parameters of FNN are tuned based on the Lyapunov stability criterion to 

achieve a favorable performance. In comparison with CMAC, the FNN controller behaves 

less miss distance and computational load in one-to-one agent-target missile guidance. In 

comparison with the result in [46] using CMAC, our control mechanism is much simplified 

with nearly the same accuracy. In the simulation results, it can be seen that the proposed FNN 

controller can not only effectively be adopted in the scenario, but also the computational load 

of proposed FNN controller is better than that by using CMAC [46]. Furthermore in the MAS, 

the SOM has the advantage of the dimension reduction from inputs and the efficient 

dispatching between agents and targets under the desired condition. From the results, the FNN 

controller combined with SOM can not only deal with the agent-target matching in 

two-dimensional space, but also force a group of agents to different number of targets in the 

real-time MDS environment. The objective of this new MDS system is to minimize the total 

damaging cost after executing the TAPE system, which is an immediate application of MAS. 

Excellent simulation results are obtained under three scenarios via TAPE to achieve 

successful MDS. 

In addition, for the system identification, the other purpose of the dissertation is to 

develop a new Hopfield-based neural network in which the FLN structure with systematic 

mathematical representation can efficiently perform the nonlinear dynamical system 

identification. The proposed HOHNN can be guaranteed stable by the Lyapunov stability 
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criterion and its weighting factors can be adjusted to minimize the approximation error by the 

robust learning analysis. Finally, the proposed scheme is applied to identify the regular-order 

Chen system to illustrate its effectiveness. The illustrated examples demonstrate that the 

proposed HOHNN can obtain better identification performance than the other Hopfield-based 

neural networks. 

 

1.3 Dissertation Overview 

Four MAS systems are illustrated to achieve successful results using this new approach. 

It is noted that this new proposed approach can also handle the insertion of random targets at 

any time instant and moving targets, which is illustrated in Cases 2 and 3 of Section VI. 

This thesis is organized as follows. The problem of formulation of MAS and SOM 

algorithm for task assignment is first defined in Chapter 2. Chapter 3 presents the task 

assignment and path evolution (or planning) for MDS. The proposed FNN controller and 

Lyapunov stability analysis are also provided in Chapter 2 and Chapter 3. In Chapter 4, the 

HOHNN is proposed for nonlinear dynamical system identification. Finally, the discussions 

and future works of the proposed approach are given in Chapter 5. 

The major contributions of this thesis are the successful developments of the following: 

1) an adaptive fuzzy neural network (FNN) control system in which the Lyapunov stability 

theorem is used for on-line tuning of the missile guidance design parameters. 2) a monitoring 

controller is used to compensate the residual of the tracking error. 3) an online dispatching in 

multi-agent system (MAS) under the desired condition is adopted for the task assignment 

problem. 4) a battle scenario environment of the missile defense system (MDS) is constructed. 

5) a novel high-order Hopfield-based neural network (HOHNN) is proposed for nonlinear 

dynamical system identification. 

 

 9



Chapter 2 
Dynamic Task Assignment with Path Control for Multi-Agent 

System using Intelligent Adaptive SOM-based Fuzzy Neural 

Network 

 

2.1 Background and Motivation 

The traditional self-organizing map (SOM) aims to exclusively search the real-time 

shortest paths for all agents, thus allowing them to go to their targets. After this traditional 

task assignment, the weighting factors of our new SOM-based fuzzy neural network (FNN) 

controller are activated to force the agents toward their corresponding targets. The FNN 

controller is the main controller combining the fuzzy rules with the neural network. A 

monitoring controller is also designed to reduce the error between FNN controller and ideal 

controller. Using the Lyapunov constraints, the weighting factors for the proposed 

SOM-based FNN controller are updated to guarantee the stability of the path control system. 

 

2.2 Problem Formulation 

Consider a group of N agents in the M-dimensional workspace, it is desired to first 

perform task assignment by self-organizing map (SOM), after which the path control is 

activated so that all the agents are capable of going to their targets under the agent dynamics 

constraints. The dynamics for the ith agent can be described by [37] 

iiii ufaM =+&& , Ni ≤≤1                         (2-1) 

where  is the position;  is the mass or inertia matrix;  

represents the centripedal, Corriolis, gravitational effects and additive disturbances; and 

 represents the control input. We assume that 

M
i ℜ∈a

M

MM
i

×ℜ∈M M
i ℜ∈f

i ℜ∈u
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u
i

k
ii FFf +=                              (2-2) 

where  and  represent the known and the unknown vectors of the ith agent, 

respectively. We also assume that the unknown vector is bounded by a known bound 

k
iF u

iF

iF . In 

other words, let 

i
u
i F≤F                               (2-3) 

for all the N agents. Moreover, it is assumed that, Mi is nonsingular and its lower and upper 

bounds are bounded by a known bound. In other words, the matrices Mi satisfy 

22 )( αMαxMααM Uini
T

Li i
≤≤                     (2-4) 

where MLi > 0 and MUi < ∞ are the known lower and upper bounds of the ith agent, 

respectively, and  is an arbitrary vector. Assume that the initial positions 

 of agents are located randomly in a given bounded space, and the initial 

positions  of targets are distributed randomly in the same M-dimensional 

workspace. Then the main control objective is to find the best-matching pairs iteratively by 

SOM, such that agents can find their relatively shorter paths to the final chosen targets. 

Therefore, the planning paths for all agents may have initial chattering (or transient) effects; 

nevertheless, these disappear once the best-match time tb is reached. The stability of the 

closed-loop system can be guaranteed by adaptively adjusting the weighting factors for the 

proposed SOM-based FNN controller with the aid of a monitoring controller. Define the 

control inputs  for all the agents, the overall concept proposed in this 

chapter can be illustrated in the following Fig. 2-1. 

Mℜ∈α

},...,2 Dt

,...,,{ 21 uu

},...,,{ 21 NaaaA =

,{ 1tT =

U

t

= }Nu
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Fig. 2-1. The closed-loop adaptive SOM-based FNN controller for MAS. 

 

2.3 The Self-Organizing Map (SOM) 

2.3.1 Description of SOM 

The principal goal of SOM is to transform an input pattern of arbitrary dimension into a 

one- or two-dimensional discrete map as well as to perform this transformation adaptively in a 

topologically ordered fashion [19, 38]. The SOM is suitable for dealing with the dynamic task 

assignment because the dimension of the targets can be simplified, and mapped to the 

relatively corresponding agents. Furthermore, the SOM can iteratively search the 

best-matching pairs if the targets and agents are dynamically inserted into the workspace. The 

overall MAS system can be considered a self-organizing system which can adjust its basic 

structure when its environment changes. 

 

2.3.2 Major Works 

The algorithm of the SOM proceeds first by initializing the synaptic weights in the 

network, such that it can be done by assigning them in random indexed patterns. Thus, no 
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prior index is imposed on the feature map. Once the network has been properly initialized, 

there are three essential processes involved in the formation of the SOM, as follows. 

Random Indexed Process: 

In order to prevent the dependence of an agent on the initial workspace configuration and 

the input data order, all targets are placed in random indexed patterns in iterations after the 

first sampling time TS. For each input pattern shown in Fig. 2-2, the random indexed input 

vectors chosen from the positions of targets are denoted as 

},...,,...,,{ 21 Dd rrrrR = ,                    (2-5) STt >

where TS is the sampling time. As long as an iteration starts, the target vector is transformed 

to the random indexed input vector. The neurons in the network compute their respective 

values of a discriminant function. This discriminant function then provides the basis for 

competition among the neurons. The particular neuron with the largest value of discriminant 

function is declared the winner of the competition. The synaptic weight vector of each neuron 

in the network has the same dimension as the input space. Let the synaptic weight vector 

corresponding to the input rd be denoted by 

T
dNddd ][ ,,2,1 pppP L= .                      (2-6) 

To find the best match for the input vector rd with the synaptic weight vectors , we 

compare the inner products  to the N agents and select the largest. Based on 

maximizing the inner product , the best-matching criterion is mathematically 

equivalent to minimizing the Euclidean distance. If we use the index iw to identify the neuron 

that best matches the input vector rd, we may then determine the index of winner neuron iw, 

which satisfies the following condition 

di,p

d
T

di rp ,

T
dip , dr

dididw ii ,minarg)( prr −== , Ni ,...,2,1=                  (2-7) 
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that sums up the essence of the random indexed process among the neurons. Depending on 

the application of interest, the response of the network could either be the index of the 

winning neuron or the synaptic weight vector closest to the input vector in a Euclidean sense. 
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Fig. 2-2. The structure of self-organizing map (SOM). 

 

Competitive Process: 

The winner neuron determines the spatial location of a topological neighborhood of 

excited neurons. In traditional SOM, the winning neuron locates the center of a topological 

neighborhood of cooperating neurons. In this chapter, the neighborhood of the winner is 

neglected since the agents move toward their corresponding targets without any cooperative 

process. For a given target as an input, the output neurons compete to be the winner according 

to a specified criterion described as 

}},{ ;,...,2,1 ;,...,2,1,min{],[ , Ω∉=== diDdNiDii ditw             (2-8) 
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where [iw, it] denotes that the pair in which the it
th target from the iw

th agent is the winner, and 

Ω is the set of neurons in which the winner has been chosen in an iteration. The distance Di,r 

is given as 

iddiD ar −=, .                           (2-9) 

As long as the N winners are found in an iteration, the index of agents A are re-allocated to 

obtain a new  corresponding to the targets to be used in the adaptive 

process. From the above two processes, the computational load for finding the best-matching 

pairs can be obtained as O(N2). In comparison with traditional SOM method, the new adaptive 

SOM method eliminates the time consuming tuning in neighborhood function and is able to 

reduce the computational load in the task assignment of MAS. 

},...,,{ 21 NwwwW =

Adaptive Process: 

The last process enables the excited neurons to increase the individual values of their 

discriminant functions in relation to the input patterns through suitable adjustments applied to 

their synaptic weights. In the competitive process, we define the group vector consisting of 

the winner agents defined as W. This group vector is then utilized to obtain the error matrix to 

update the weights of the winner. In comparison with incremental adjustment in traditional 

SOM, the proposed adaptive FNN controller can handle the overall path control for 

high-order nonlinear agents. This updating method is explained in the following section. 

 

2.4 Design of Fuzzy Neural Network (FNN) Controller 

2.4.1 Description of FNN 

The FNN architecture in this thesis shown in Fig. 2-3 is a fully linked layer, in which 

the input layer accepts the input variables, the fuzzification layer calculates the Gaussian 

membership function and represents the fuzzy rules, and the output layer sums the output of 

the fuzzification layers. The fuzzy system in internal FNN is trained by the neural network 
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adaptive algorithm. Therefore, the fuzzy inference system and artificial neural network can 

complementarily operate for the controlling of nonlinear dynamical systems. For each layer in 

the following figure, the superscripted number represents each layer and the subscripted 

number represents the neuron in this layer. The detailed net input and net output are 

represented as follows. 
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Fig. 2-3. The architecture of fuzzy neural network (FNN). 

 

Input layer: 

An input vector is fed into the input layer of the ith agent. The net input and output of 

the input layer are presented as follows. 
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11
kk xnet =                              (2-10) 

1111 )( kkkk netnetfy ==                         (2-11) 

where  represents the net input in this layer, and  and  are defined as the kth 

input and output to the node of input layer, respectively. Each node in this layer represents an 

input linguistic variable. The presentations of notation in following layers are similar to those 

defined in this layer. 

1
knet 1

kx 1
ky

Fuzzification layer: 

Each node performs the fuzzification operation and acts as an element for membership 

degree calculation, in which the Gaussian function is adopted as the membership function of 

the IF-parts of the fuzzy rules given by 

2

22
2 )(

kh

khk
h v

mxnet −
−=                          (2-12) 

)exp()( 2222
hhhh netnetfy ==                       (2-13) 

where mkh and vkh are referred to as the mean and the standard deviation of the Gaussian 

function, respectively. 

Inference layer: 

Let , , …, , and hA1 2 K
hA hA hB  denote the fuzzy sets characterized by their 

corresponding membership function in (2-12) and (2-13) in the function layer, the hth fuzzy 

rule can be defined as 

Rule h: IF  is  AND  is  AND …,  is  THEN  is 2
1x hA1

2
2x hA2

2
Kx h

KA 3
hx hB . 

The inference layer implements the fuzzy AND aggregation operation which is chosen as the 

simple PRODUCT operation. Each node multiplies the incoming signals and outputs the 

result of this product as 
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333                           (2-14) 
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== P

p
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net
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1

3

3
333 )(                       (2-15) 

where  represents the rule weight of the hth fired rule between the function layer and the 

inference layer. 

3
hpw

Output layer: 

Each node multiplies the incoming signals and outputs the result of this product as 

follows 

∑
=

=
P

p
ppoo xwnet

1

444                           (2-16) 

4444 )( oooo netnetfy ==                         (2-17) 

where  represents the output action strength of the oth output associated with the pth rule. 

Finally, the overall representation is given by 

4
pow

∑ ∏
= =

−−==
P

p

H

h
khkhkpooo vmxwyy

1 1

22144 ))/()(exp( .              (2-18) 

In summary, the FNN output can be presented as 

∑
=

=
P

p
khkhkppoo vmxwy

1

14 ),,(θ                       (2-19) 

where 

∏
=

−−=
H

h
khkhkkhkhkp vmxvmx

1

2211 ))/()(exp(),,(θ .              (2-20) 

The above (2-20) represents the firing weight of the pth neuron in the rule layer. The output in 

the output layer of FNN is adopted as the main controller to the MAS. 

 

2.4.2 Major Works 
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The control problem of the MAS is to control the position of the winner target so that 

they can move to the desired target. The error matrix of MAS is defined as 

},...,,...,,{ 21 Ni eeeeWRe =−= .                    (2-21) 

Considering the ith agent, the tracking error vector defined as 

T
iiSi
][ eee &=                            (2-22) 

represents the input vector fed into the input node of FNN controller. For the ease of notation, 

the tracking error vector for single agent is denoted as eS. Assuming all the system dynamics 

are well known and that there exists an ideal controller for ith agent and dth target based on the 

optimal control design, we then arrive at [39]: 

)( 21 iiiidiid kk eeMfrMu +++= &&& , Ni ≤≤1 , Dd ≤≤1 .          (2-23) 

Applying (2-23) into (2-1), the following error dynamics in two-dimensional workspace can 

be given 

SS Kee =&                              (2-24) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
12

10
kk

K  

is a Hurwitz matrix by choosing proper k1 and k2. However, the ideal controller uid is difficult 

to implement in practice since the system dynamics is highly nonlinear and sometimes 

unavailable. Therefore, in order to control the output state efficiently, the control law is 

assumed to take the following form: 

mfnni uuu +=                            (2-25) 

where ufnn is a FNN controller, and um is a monitoring controller. The FNN control ufnn is the 

main tracking controller used to imitate the ideal controller in (2-23), and the monitoring 

controller um is designed to recover the residual approximation error. The monitoring 

controller, which is similar to a hitting controller in a traditional sliding mode controller, is 
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derived in the sense of Lyapunov theorem to cope with all system uncertainties to guarantee 

the stability of the system. Fig. 2-4 illustrates the concept of (2-25) in our new approach. The 

FNN structure shown in Figs. 2-3 and 2-4 has been considered. For simplicity, the following 

m and v vectors are defined to collect all parameters in the hidden layer of Fig. 2-3 given as 

Tmmmmmm ][ KLLL=m KHHKK 1212111

KHHKK 1212111                (2-27) 
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Fig. 2-4. The configuration of ufnn and um for the ith agent. 

Then, the output of FNN can be represented in vector form as 

                         (2-28) 

where , and . By the universal 

approxim such that [40, 41] 

                  (2-29) 
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where E denotes the approximation error and we
*, m*, and v* are the optimal parameter 

vectors of we, m, and v, respectively. In fact, the optimal parameter vectors needed to best 

approximate a given nonlinear function are difficult to determine. Thus, an estimate function 

is defined as 

)ˆ,ˆ,(ˆ)ˆ,ˆ,ˆ,(ˆ vmxθwvmwxyy T
eeoo ==                   (2-30) 

where , , and  are the estimates of we
*, m*, and v*, respectively. For notational 

convenience, we denote  and . Then, we define the 

estimation error as 
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where eee www ˆ~ * −=  and θθθ ˆ~ * −= . In the following, some tuning laws are derived to 

on-line tune the parameters of the FNN to achieve favorable estimation. To achieve this goal, 

we use the linearization technique to transform the nonlinear Gaussian functions into partially 

linear form so that the Lyapunov theorem extension can be applied [40] as follows 
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where mmm ˆ~ * −= , vvv ˆ~ * −= , 
mmmm
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and H is the higher-order term, and 
m∂

∂ hθ  and 
v∂

∂ hθ  are defined respectively as 
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Substituting (2-32) into (2-31) gives 
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where em
TT

m
T

e wθmmθw ˆ~~ˆ =  and ev
TT

v
T

e wθvvθw ˆ~~ˆ =

E+

 are used since they are scalars, and the 

uncertain term θwHwd +=
~~ˆ T

e
T

e  is assumed to be bounded by ||d||≦Δ. Since the 

uncertainty bound Δ is difficult to determine, it is on-line estimated in the following section. 

 

2.5 The Lyapunov Stability Analysis 

The proposed control system is comprised of an FNN identifier and an optimal 

controller defined in (2-25), in which ufnn is used to mimic the ideal controller uid, and the 

compensation tangent controller um is used to compensate for the difference between the FNN 

controller and the ideal controller. Substituting (2-25) into (2-1) and using (2-23), the error 

dynamic equation becomes 

)ˆ~ˆ~ˆ~()( mev
T

em
TT

eSmfnnidSS udwθvwθmθwBKeuuuBKee −++++=−−+=&   (2-36) 

where  is a bounded matrix. Since K is a Hurwitz matrix, given a symmetric 

positive-definite matrix , there exists a symmetric positive-definite matrix 

, such that the following Lyapunov equation [39, 42] 

1−= iMB

22×

22×ℜ∈Q

ℜ∈P

QPKPK −=+T                          (2-37) 

is satisfied. 
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Theorem 2-1: Consider the dynamic nonlinear system represented by (2-1) with the control 

law in (2-25), where the FNN identifier is designed as (2-30). Then, the weighting vectors 

, , and  will remain bounded, and the performance errors will approach zero. The 

parameters are updated by the following learning rules: 

eŵ m̂ v̂

θPBeww ˆ~ˆ T
Swee η=−= &&                        (2-38) 

em
T

Sm wPBθemm ˆ~ˆ η=−= &&                       (2-39) 

ev
T

Sv wPBθevv ˆ~ˆ η=−= &&                        (2-40) 

)tanh( PBeΔu T
Sm =                         (2-41) 

where ηw, ηm, and ηv are the positive real values. Then, the stability of the FNN control system 

can be guaranteed. 

Proof: 

Let the Lyapunov-like function candidate be 
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Taking the derivative of V in (2-42) with respect to time and using (2-36) and (2-37), yields 

)()~1ˆ(~       

)~1ˆ(~)~1ˆ(~
2
1    

~~1~~1~~1)(       

)ˆ~ˆ~ˆ~()(
2
1    

~~1~~1~~1
2
1

2
1

m
T

S
v

ev
T

S
T

m
em

T
S

T
e

w

T
S

T
eS

T
S

T

v

T

m
e

T
e

w
m

T
S

ev
T

em
TT

e
T

SS
TT

S

T

v

T

m
e

T
e

w
S

T
SS

T
SV

udPBevwPBθev

mwPBθemwθPBewQee

vvmmwwudPBe

wθvwθmθwPBeePKPKe

vvmmwwePePee

−+++

++++−=

+++−+

++++=

++++=

&

&&

&&&

&&&&&&

η

ηη

ηηη

ηηη

     (2-43) 

Substituting the learning rules (2-38)–(2-41) into (2-43), (2-43) becomes 
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where )(min Qλ  is the minimum eigenvalue of Q. Since )(min Qλ  can be chosen as 

1) >(min Qλ , then (2-44) reveals that 

∫∫ −
++

−
≤

tt

S dttVVdt
0

2

minmin
0

2

1)(
2))()0((

1)(
2 ΔPB

QQ
e

λλ
       (2-45) 

for all t 0. Furthermore, if ≧ Δ is squared integratable, then from (2-45),   has been 

proven [39]. In addition, the right hand side of (2-45) is bounded, that is, . Using 

Barbalat’s Lemma [39], we can prove that 

2LS ∈e

∈Se& ∞L

0lim =
∞→ St

e  when ∞<∫
t

dt
0
Δ . The stability of 

the overall approximation scheme is guaranteed based on the above results and the Lyapunov 

stability theorem. Based on (2-38)–(2-40), the adaptive law of weighting factors in an element 

form can be obtained. Thus, the Lyapunov stability theorem is guaranteed under the optimal 

approximation model with no modeling error.                                 Q.E.D. 

 

2.6 Illustrated Examples 

In this section, four numerical simulation cases are presented in order to illustrate the 

effectiveness of the proposed new intelligent SOM-based FNN controller discussed in 

previous section. For ease of plotting, we only consider agents and targets in a bounded 

two-dimensional space; however, qualitatively, the results are expected to be the same for 

higher dimensions. We consider agents with point-mass dynamics with unknown mass and 

additive sinusoidal disturbances. In other words, we consider the model 

iiii ufaM =+&& , Ni ≤≤1 .                       (2-46) 
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Without loss of generality, we assume that unity mass Mi = 1 are for all the N agents, and that 

there exists the following unknown uncertainties. 

Case 2-1: N = D = 6 
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Cases 2-2 and 2-3: N = D = 8 
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Case 2-4: N = D = 64 

Niet t
i ≤≤= − 1 ,)sin( 2 λf                        (2-49) 

where  is a random vector with all the elements bounded in [–1, 1]. Note that it 

satisfies the bounded assumption ||fi|| 1, 1≦ ≦i 64. As controller parameters in the ≦

simulations below, we choose 

NM×ℜ∈λ

⎥
⎦

⎤
⎢
⎣

⎡
=

20
02

Q , , ⎥
⎦

⎤
⎢
⎣

⎡
=

24.02.0
2.02.2

P

and k1 = k2 = 5. The weighting factors ηw = 5 and ηm = ηv = 0.2 are chosen. Figure 2-5 shows 

the closed-loop configuration of SOM-based FNN for MAS dynamic task assignment and 

path control. 
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Fig. 2-5. The closed-loop SOM-based FNN for MAS dynamic task assignment and path 

control. 

 

The best-match time tb is added and shown in the simulation results. In the following figures, 

the agents marked as ‘Χ’ are randomly located in the grey circle, and the points marked as 

‘ ’ are the positions of targets which are◇  the input to the SOM for finding the winner agents. 

When the number of agents and targets are different, our proposed approach can also be 

applied and implemented in the MAS. In this chapter, the agent-target matching pairs of SOM 

are assumed to be completed before the control inputs are fed to the MAS for path control. In 

other words, time delay is not considered in the proposed SOM. Moreover, we assume that 

the number of agents and targets are the same at any time moment in the following cases in 

order to construct the agent-target matching pair. Therefore, if there is one target inserted into 

the MAS, there should be one more agent inserted. 

Case 2-1: Static random targets 

Consider 6 agents and 6 targets in the same two-dimensional (2D) workspace shown in Fig. 

2-6. The targets find their matching agents that are then forced to their corresponding targets 

via SOM-based FNN controller. In order to ensure and check whether or not the 

best-matching pair is chosen, the dash line shows the best-matching pairs for all the agents 
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and targets. It is apparent that the transient chattering effects in all paths disappeared after the 

time is larger than tb. In Fig. 2-7, it can be seen that tb = 1.91 seconds is the best-match time; 

after tb, the errors and change of errors will no longer chatter because the best-matching pairs 

are found. Finally, the best match is completed and the tracking error converges to a 

satisfactory small value. 
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Fig. 2-6. The trajectories of 6 agents with 6 targets. 
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Fig. 2-7. The errors and change of errors of MAS. 

 

Case 2-2: Insertion of random targets 

Consider 6 agents and 6 targets in the same two-dimensional (2D) workspace shown in Fig. 

2-8. Define the insertion time ti for the MAS are the time point when the additional random 

targets are inserted into the workspace. In this case, the 7th and 8th targets and their 

corresponding agents are inserted when ti = 2 seconds and ti = 4 seconds. As soon as one 

target is inserted, there will be an agent produced at a random location in the given bounded 

region, and the best match will be automatically completed by the adaptive SOM for all the 

new agent-target pairs as shown in Fig. 2-8. In Fig. 2-9, it can be seen that the best match is 

reached after tb = 4 seconds even if the chattering transient peak happened twice at the two 

insertion times. 
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Fig. 2-8. The trajectories of 8 agents with 8 targets. 
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Fig. 2-9. The errors and change of errors of MAS. 
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On the other hand, the traditional exhaustive method has no obvious advantage on the 

dynamic task assignment when additional targets and agents are inserted into the workspace. 

However, in order to search the shortest total patch length, the computational load in the 

traditional exhaustive method will take from 6! (= 720) to 8! (= 40,320) computational loads 

each iteration according to the number of targets after the insertion time. 

Case 2-3: Moving random targets 

Assume that the targets move a random bounded distance in [–2, 2] each Tm = 1 seconds for 

the first five seconds which can be defined by the user. However, the targets have to be static 

before the simulation time to avoid the racing situation for the agents and targets. Consider 8 

agents and 8 moving targets in the same two-dimensional (2D) workspace shown in Fig. 2-10. 

The red ‘ ’ points indic◇ ate the initial target positions; the green ‘ ’ points indicate the ◇

temporary positions every Tm seconds, and the incrementally move paths with directions are 

marked as gray dash lines and black arrows. Finally, the targets stop at the dark ‘ ’ points ◇

which represent the static positions after four seconds. It can be obviously seen that no matter 

where the targets move, the agents instantly update their trajectories toward their 

corresponding targets. 
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Fig. 2-10. The trajectories of 8 agents with 8 moving targets. 
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Fig. 2-11. The errors and change of errors of MAS. 
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As shown in Table 2-1, the shortest and longest total path lengths are both obtained by the 

exhaustive method. In comparison with the optimal match obtained by the exhaustive method, 

the total path length of the adaptive SOM-based FNN control method are slightly similar to 

those of the optimal match by the exhaustive method. However, the benefit for the shortest 

total path length of the exhaustive method is the loss of computational load if there is large 

number of random targets which will be indicated in Case 2-4. 

 

Table 2-1 Total path length comparisons for the three cases. 

 
Optimal match by the 

exhaustive method (m) 

Worst match by the 

exhaustive method (m) 

SOM-based 

FNN (m) 

Case 2-1 210.4025 242.3714 211.0147 

Case 2-2 211.4181 741.2715 222.6199 

Case 2-3 291.1972 754.3930 310.7617 

 

Case 2-4: Large number of random targets 

Consider 64 agents and 64 targets in the same 2D workspace shown in Fig. 2-12. The number 

of targets and their corresponding agents in this case is much larger than those in cases 2-1, 

2-2 and 2-3. The total path length of MAS by the proposed adaptive SOM-based FNN control 

method is calculated as 2168.8 meters which displays a satisfactory tracking performance. 

Moreover, it also can be seen that the best match is reached after tb = 7.38 seconds in Fig. 

2-13. In this case, it can be seen that the proposed SOM-based FNN controller is capable of 

effectively handling the best match even if huge number of targets and agents with nonlinear 

uncertainties is considered. 
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Fig. 2-12. The trajectories of 64 agents with 64 targets. 
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Fig. 2-13. The errors and change of errors of MAS. 
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From the simulation results, the adaptive SOM-based FNN control method is capable of 

handling dynamic task assignment of the agents and then smoothly control the agents toward 

the corresponding targets. Moreover, the computational load in the traditional exhaustive 

method is 64! (= 1.2689×1089) for each iteration in Case 2-4. It is only 642 (= 4096) in our 

adaptive SOM-based FNN method. It can be seen that the advantage of our new adaptive 

SOM-based FNN is the tremendous saving of computational load, which is shown in the 

following Table 2-2. 

 

Table 2-2 Comparisons of computational loads in an iteration for all the cases. 

 
Optimal match by the 

exhaustive method 

Worst match by the 

exhaustive method 
SOM-based FNN

Case 2-1 720 720 36 

Case 2-2 720 ~ 40320 720 ~ 40320 36 ~ 64 

Case 2-3 40320 40320 64 

Case 2-4 1.2689×1089 1.2689×1089 4096 

 

2.7 Conclusions 

In this chapter, a SOM-based FNN controller is adopted in the MAS to choose the 

best-matching pairs between agents and targets and perform path planning using intelligent 

adaptive methodology. Compared with the simple incremental path planning adopted in the 

traditional SOM to let the agents move toward the chosen targets, the high nonlinearities and 

uncertainties of the agents have been considered in this chapter. The intelligent adaptive 

SOM-based FNN controller is operated in conjunction with the traditional SOM to find the 

best paths allowing all agents to go to their final targets. The proposed main controller is the 

FNN controller, in which the fuzzy rule is combined into the neural network, and a new 
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monitoring controller is also designed to work with FNN controller. This forces the agents to 

go to their corresponding targets within the constraints of nonlinear dynamics and 

uncertainties of the agents. It is obvious that the weighting factors are updated via the 

Lyapunov stability constraints, a process which is very different from the simple update 

method used by the traditional SOM. From the simulation results, excellent path planning for 

all agents has been obtained via the intelligent adaptive SOM-based FNN controller. 
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Chapter 3 
Toward a New Task Assignment and Path Evolution (TAPE) for 

Missile Defense System (MDS) using Intelligent Adaptive SOM 

with Fuzzy Neural Networks 

 

3.1 Background and Motivation 

In this thesis, we assume that there are limited N defending missiles and D incoming 

missiles in MDS. The D incoming missiles are launched to attack the limited assets which 

have their own significances. Once an asset is destroyed by some incoming missiles, it will 

lose its asset value (or the damaging cost). Because the number of assets that are under attack 

is unknown, the assignment of N defending missiles becomes important to minimize the total 

damaging costs (or maximize the total surviving assets). In the first part of this chapter, a 

one-to-one agent-target missile guidance law using fuzzy neural network is proposed in 

comparison with the cerebellar model articulation controller (CMAC) [46], however, the 

CMAC structure is too complex to be implemented in real-time environment, and the 

enormous weight space and limited modeling capability in CMAC can be further improved 

using the proposed FNN controller with fewer mappings and layers. In the second part of this 

chapter, an adaptive SOM with FNN controller is proposed for multi-agent-multi-target task 

assignment and missile guidance. 

 

3.2 Problem Formulation 

In multi-agent system (MAS) with a group of N agents in the three-dimensional 

workspace, we assume that the positions and angles of agents },...,,{ 21 NaaaA =  are initially 

in a user defined region, and the positions and angles of },...,2 Dt  are targets ,{ 1 ttT =
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initially distributed randomly in the same three-dimensional workspace. The MAS can rapidly 

and efficiently complete an assigned task via the control inputs },...,,{ 21 NuuuU =  for all the 

agents. In the MAS, it is desired to first perform task assignment by self-organizing map 

(SOM), after which the path evolution is activated so that all the agents are capable of going 

to their corresponding targets under the agent dynamics constraints. The architecture of MAS 

can be extended to missile defense system (MDS), in which the defending interceptors and 

incoming missiles can be seen as agents and targets, respectively. Furthermore, we consider in 

the MDS that the assets S with different asset values and will be attacked by targets. For any 

asset sl in S, it contains its own asset value )( lV s  denoted by lV , which can be regarded as 

the damaging cost when the asset is attacked and then destroyed. Thus the overall damaging 

cost by all the targets can be denoted by },...,,{ 21 DVVV=V . The main control objective is to 

find the minimal total damaging cost ∑
=

D

d
dV

1

 to all the assets by SOM, which will be 

discussed in Section 3.5. After task assignment for all the agents, the fuzzy neural network 

(FNN) controller is adopted for the agents to intercept the targets. The overall concept 

proposed in this chapter can be illustrated in the following Fig. 3-1. 
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Fig. 3-1. The overall concept of adaptive SOM with FNN controller for MDS. 
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Before considering multi-agent-multi-target scenarios, a new intelligent algorithm for single 

agent-target command line-of-sight (CLOS) guidance law will be first proposed in the 

following sections. 

 

3.3 The Three-Dimensional CLOS Guidance Model 

The three-dimensional CLOS guidance problem in Fig. 3-2 is a well-known guidance 

model [44, 46] which can be formulated as a tracking problem for a time-varying nonlinear 

system. The three-dimensional CLOS guidance model in [44, 46] will be repeated here for 

convenience. The origin of the inertial frame is located at the ground tracker. The ZI axis is 

vertical upward and the XI-YI plane is horizontal. The origin of the agent body frame is fixed 

at the agents’ center of mass, with the XA axis forward along the agent centerline. The 

dynamics of all the agents in the inertial frame can be represented [44] as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a

azc

yc

a

ac

a

ac

aa

ac

aa

ac

a

a

zc

yc

x

aacaaca

aa

aa

a

a

a

v
gca

a

v
c

v
s

cv
s

cv
c

ga
a
a

cccss
IIsc
IIcc

z
y
x

θφφ
θ
φ

θ
φ

θ
ψ

θφθφθ
ψθ
ψθ

0

0
0

43

21

&

&

&&

&&

&&

                (3-1) 

where 

aacaaac sccssI ψφψθφ −−=1 aacaaac, sscscI ψφψθφ +−=2 , 

aacaaac ccsssI ψφψθφ +−=3 , and aacaaac cssscI ψφψθφ −−=4 . 

A tracking error is defined in order to convert the CLOS guidance problem into a tracking 

problem. The CLOS guidance involves guiding the agent along the line-of-sight (LOS) to the 

target. The LOS frame is shown in Fig. 3-3 in which the origin is located at the ground tracker. 

The XL axis forwards along the LOS to the target, and the YL axis is horizontal to the left of 

the XL-YL plane. Then, the coordinates (Rp, e1, e2) indicated in Fig. 3-3 represent the agent 
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position in the LOS frame, and they are related to (xa, ya, za) through rotations as follows: 
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Fig. 3-2. Three-dimensional agent-target pursuit diagram [44, 46]. 
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Fig. 3-3. Definition of tracking error [44, 46]. 
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The tracking error is defined as e = [e1, e2]T. Since e1 and e2 can not be measured directly, 

these quantities must be computed indirectly using the polar position data of the agent 

available from the ground tracker as 

⎥
⎦

⎤
⎢
⎣

⎡
Δ+Δ−+Δ

Δ+Δ
=⎥

⎦

⎤
⎢
⎣

⎡
=

σγγγγγγ
σγγ

cscRcsR
scR

e
e

ttatta

ta

)()(
)(

2

1e .            (3-3) 

Note that ||e|| represents the distance from the agent to the LOS. Therefore, the agent will 

eventually hit the target if the tracking error is driven to zero before the target crosses the 

agent. The three-dimensional CLOS guidance problem has been formulated a tracking 

problem. Define 
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Using the previous notations, (3-1), (3-2), and (3-4) can be put into the following state-space 

form: 
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The objective of CLOS guidance control is to find a control law to drive the tracking error e(t) 

to zero. For the system shown in (3-5), define the vector fields Xj, j = 0, 1, 2 by 
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where fi(x, t), gj,i(x) and xi are the ith components of f(x, t), gj(x) and x, respectively [44, 46]. 

Direct computation yields 
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After manipulations, the tracking error in (3-5) can be shown concisely into the following 

form: 
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where , ,1
2
01 ),( hXtF =x 2

2
02 ),( hXtF =x 10111 ),( hXXtG =x , , 

, and . 

10212 ),( hXXtG =x

201 hXX= G21 ),( tG x 202), hXXt =x22(

 

3.4 One-To-One Agent-Target Path Evolution using FNN 

A new intelligent FNN controller to realize the single agent-target command 

line-of-sight (CLOS) guidance law will be discussed in this section. In comparison with the 

cerebellar model articulation controller (CMAC) structure in [46], the proposed FNN 

controller is with fewer mappings and layers and the enormous weight space and limited 

modeling capability in CMAC can be improved using FNN. The tracking error obtained in 

(3-8) can be further formed as the tracking error vector and be input to the input layer of FNN. 

The output in the output layer of FNN is adopted as the main controller to the MAS to 

evolutes the positions of the winner targets to their corresponding desired targets. Assuming 

all the system dynamics are well known and that there exists an ideal controller for a single 

agent based on the feedback linearization control design, we then arrive from (3-8): 

]),()[,( 21
1 eKeKxFxGu −−−= − &ttid .                  (3-9) 

Applying (3-9) into (3-8), the following error dynamics for a single agent can be given 

1221 ×=++ 0eKeKe &&&                         (3-10) 
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are Hurwitz matrices by choosing proper k11, k21, k12 and k22. However, the ideal controller uid 

is difficult to implement in practice since the system dynamics is highly nonlinear and 

sometimes unavailable. Therefore, in order to control the output state efficiently, the control 

law is assumed to take the following form: 

mfnn uuu +=                            (3-11) 

where ufnn is a FNN controller, and um is a monitoring controller. The FNN control ufnn is the 

main tracking controller used to imitate the ideal controller in (3-9), and the monitoring 

controller um is designed to recover the residual approximation error. The monitoring 

controller, which is similar to a hitting controller in a traditional sliding mode controller, is 

derived in the sense of Lyapunov theorem to cope with all system uncertainties to guarantee 

the stability of the system. The control input u in (3-11) is used for the input of agent in (3-8). 

Figure 3-4 illustrates the concept of (3-11) in our new approach. The tracking error vector eS 

and neural network output yo in Fig. 3-4 will later be defined as the input and output of the 

FNN controller, respectively. The limiter in Fig. 3-4 is the maneuvering limiter of the agent to 

perform a practical behavior for simulations. 
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Fig. 3-4. The configuration of ufnn and um for single agent. 

 

The fully linked FNN architecture shown in Fig. 2-3 is also adopted in this section. Repeat 
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from (2-19) and (2-20), the FNN output can be presented as 
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where kx  denotes the kth input to the node of input layer for distinguishing the state variables 

of agent x in MAS. The above (3-22) represents the firing weight of the pth neuron in the rule 

layer. For simplicity, the following m and v vectors are defined to collect all parameters in the 

hidden layer of Fig. 2-3 given as 

             (3-23) Tmmmmmm ][ KLLL=m KHHKK 1212111

               (3-24) 

Then, the output of the FNN can be represented in a vector form as 

Tvvvvvv ][ KLLL=v KHHKK 1212111

),,( vmxζwy T
eo =                          (3-25) 

where 4
Oo y=y , , and . By the 

universal approxim  ideal 

T
Heeee www ][ ,2,1, L=w

ation theorem, there exists an

T
H ][ 21 ζζζ L=ζ

),,,( **** vmwxyy oo =  such that [40, 

41] 

EvmxζwEyy +=+= ),,( **** T

eoo

where E denotes the approximation error and we , m , and v  are the optimal parameter 

vectors of we, m, and v, respectively. In fact, the optimal parameter vectors needed to best 

approximate a given nonlinear function are dif

                  (3-26) 

* * *

ficult to determine. Thus, an estimate function 

is defined as 

)ˆ,ˆ,(ˆ)ˆ,ˆ,ˆ,(ˆ vmxζwvmwxyy T
eeoo ==                  (3-27) 

where , and are the estimates of we
*, m*, and v*, respectively. For notational eŵ , m̂

convenience, we denote 

v̂  

),,( *** vmxζζ =  and )ˆ,ˆ,(ˆ vmxζζ = . Then, we define the estimation 

error as 

 44



Eζwζwζw

Eζwζwζwζwζw

Eζwζζww

Eζwζw

Eyy

yyy

+++=

+−+++=

+−++=

+−=

+−=

−=

~~ˆ~~ˆ     

ˆˆ~~ˆ~~ˆˆˆ     

ˆˆ)~ˆ)(~ˆ(     

ˆˆ     

ˆ     

ˆ~

**

*

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T

e

oo

ooo

               (3-28) 

where eee www ˆ~ * −=  and . In the following, some tuning laws are derived to 

on-line tune the parameters of the FNN to achieve favorable estimation. To achieve this goal, 

we use the linearization technique to transform the nonlinear Gaussian functions into partially 

linear form so that the Lyapunov theorem extension can be applied [40] as follows 
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Substituting (3-29) into (3-28) gives 
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 are used since they are scalars, and the 

uncertain term ζwHwd +=
~~ˆ T

e
T

e  is assumed to be bounded in the uncertainty bound, 
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that is Δd ≤ . The proposed control system is comprised of an FNN identifier and an 

optimal controller defined in (3-11), in which ufnn is used to mimic the ideal controller uid, and 

the compensation tangent controller um is used to compensate for the difference between the 

FNN controller and the ideal controller. Considering a single agent in the state-space form, the 

tracking error vector defined as 

T
S ][ 2211 eeeee &&=                        (3-33) 

which represents the input vector fed into the input node of FNN controller. Substituting (3-11) 

into (3-8) and using (3-33), the error dynamic equation becomes 
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where  and . Since K is also a Hurwitz matrix, 

given a symmetric positive-definite matrix , there exists a symmetric 

positive-definite matrix , such that the following Lyapunov equation [39, 42] 
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is satisfied. 

Theorem 3-1: Consider the nonlinear dynamic system represented by (3-1) with the control 

law in (3-11), where the FNN identifier is designed as (3-27). Then, the weighting vectors 

, , and  will remain bounded, and the performance errors will approach zero. The 

parameters are updated by the following learning rules: 

eŵ m̂ v̂
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)(tanh a
T

Sm PGeΔu =                        (3-39) 
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where ηw, ηm, and ηv are the positive real values. Then the stability of the FNN control system 

can be guaranteed. 

Proof: 

Let the Lyapunov-like function candidate be 
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Taking the derivative of V in (3-40) with respect to time and using (3-34) and (3-35), yields 
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Substituting the learning rules (3-36)–(3-39) into (3-41), (3-41) becomes 
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where )(min Qλ  is the minimum eigenvalue of Q. Since )(min Qλ  can be chosen as 

1) >(min Qλ , then (3-42) reveals that 
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for all t 0. Furthermore, if ≧ Δ is squared integratable, then from (3-43),   has been 

proven [39]. In addition, the right hand side of (3-43) is bounded, that is, . Using 

2LS ∈e

∈Se& ∞L
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Barbalat’s Lemma [39], we can prove that 0lim =
∞→ St

e  when ∞<∫
t

dt
0

2Δ . The stability of 

the overall approximation scheme is guaranteed based on the above results and the Lyapunov 

stability theorem. Based on (3-36)–(3-38), the adaptive law of weighting factors in an element 

form can be obtained. Thus, the Lyapunov stability theorem is guaranteed under the optimal 

approximation model with no modeling error.                                 Q.E.D. 

 

3.5 The Design of SOM for Task Assignment of MDS 

After the single agent-target control system is constructed, the overall MDS (or MAS) 

consists of (N + D) numbers of agent-target matches will be discussed in this section. Suppose 

that , it takes ND ≥ )!N/(!),( DDNDP −=  computation steps to find the total distances or 

damaging cost in traditional exhaustive method. In real-time MDS environment, this 

pre-computation before the targets are lunched is time-consuming. Therefore, the principal 

goal of SOM is to transform an input pattern of arbitrary dimension into a one- or 

two-dimensional discrete map as well as to perform this transformation adaptively in a 

topologically ordered fashion [19, 38]. The SOM is suitable for dealing with task assignment 

because the dimension of the targets can be simplified, and mapped to the corresponding 

agents. The overall MAS system can be considered a self-organizing system which can adjust 

its basic structure when its environment changes. The algorithm of the SOM proceeds first by 

initializing the synaptic weights in the network, such that it can be done by assigning them in 

random indexed patterns. Considering a multi-agent-multi-target scenario, the positions and 

angles of ith agent and dth target can be further defined as 

Aa ∈= T
iaiaiaiaiaiaiai zyxzyx  
,,,,,,, ][ θψ&&& , ia,

d, Tt ∈= T
dtdtdtdttdtdtdtd zyxzyx  

,,,,,,, ][ θψ&&& , 

respectively. The proposed control inputs of the ith agent can also be defined as 
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Uu ∈== T
ii

T
izciyci uuaa  

,2,1
 

,, ][][  

where ayc,i and azc,i are the yaw and pitch acceleration commands of the ith agent, respectively. 

Define the positions of agents },...,,{ 21 NaaaA =  where T
iaiaiai zyx ][ ,,,=a  is the 

position of the ith agent, and denote the random indexed input vectors chosen from the 

positions of targets as 

},...,,...,,{ 21 Dd rrrrR =  

where Tr ∈= T
itititd zyx ][ ,,,  is the position of dth target. Once the positions of agents 

and targets are initialized, the competitive process of SOM can start to find the winner 

neurons. In traditional SOM, the winning neuron locates the center of a topological 

neighborhood of excited neurons. In this thesis, the neighborhood of the winner is neglected 

since the agents move toward their corresponding targets without any cooperative process. In 

the traditional competitive process, the total Euclidean distances and total damaging cost have 

to be considered. Therefore, we first assume that all the asset values are neglected, and the 

competitive mechanism will choose the Euclidean distance between the ith agent and the dth 

target defined as 

iddiD ar −=, .                          (3-44) 

In traditional SOM, this Euclidean distance is the parameter for the competitive process. 

However, the other parameters, like total Euclidean distances in [23], should also be 

considered with the distance expression. The values of assets in MDS is more important than 

their corresponding Euclidean distances and the motivation of SOM in this chapter is to 

minimize the total damaging cost, therefore, a new distance expression from (3-44) with the 

equitable distribution of workload can be defined as 

di
d

total
di D

V
VD ,, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

=
δ
δ                         (3-45) 
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where 

∑
=

=
D

d
dtotal VV

1
 

is the total value of all the assets; δ is the adjustment parameter defined by the user to 

determine the importance of asset value. The smaller the δ is, the more important of asset 

value is. As shown in Fig. 3-5, the new distance expression constructed by the input of δ, ia , 

and rd forms a new N-by-D distance matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

DNN

D

DD

DD

,1,

,11,1

L

MOM

L

D .                       (3-46) 

For some given δ, agent, and target as input, the output neurons compete to be the winner 

according to a specified criterion described as 

}},{ ;,...,2,1 ;,...,2,1,min{],[ , Ω∉=== riDdNiDii ditw            (3-47) 

where [iw, it] denotes that the match in which the it
th target from the iw

th agent is the winner, 

and Ω is the set of neurons in which the winner has been chosen in an iteration. From (3-47), 

the N winners can be found to obtain a new },...,,{ 21 NwwwW =  which is the re-allocated 

index of agents A that corresponds to the random indexed targets R to be used in the adaptive 

process. 

 

 50



⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

dt

dt

dt

d

z
y
x

,

,

,

r

1,1D
2,1D

1,2D

1,ND

DD ,1

DND ,

tw iiD ,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ia

ia

ia

i

z
y
x

,

,

,

a

winner 
neuron

D

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

dt

dt

dt

d

z
y
x

,

,

,

r

1,1D
2,1D

1,2D

1,ND

DD ,1

DND ,

tw iiD ,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ia

ia

ia

i

z
y
x

,

,

,

a

winner 
neuron

D

 

Fig. 3-5. The structure of self-organizing map (SOM). 

 

Algorithm 3-1: 

Step 1 N agents are created in A  
  D targets with random indexed are created in R 
  D damaging costs are created in V  

calculate ∑
=

=
D

d
dtotal VV

1

 

define the adjustment parameter δ 

Step 2 for agent Ni ,...,2,1, =ai  in A  

   for target  in R Ddd ,...,2,1, =r

    calculate Euclidean distance iddiD ar −=,  

    find the new distance di
d

total
di D

V
VD ,, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

=
δ
δ  

   end 
  end 

DStep 3 for target  in  Dd ,...,2,1, =r  matrix d
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   i  find the winner neuron with index iw t is d,

nd the index iw to the interception list L 

tep 4 agents are dispatched to hit the targets with orders in L 

   ],[ tw ii  is obtained in the iw
th row, dth column 

   appe
  end 
S

 

From the above two processes, the number of computation steps for finding the minimal total 

damaging cost can be obtained, which is equal to DN ∗ . In comparison with traditional 

SOM method, the new adaptive SOM method eliminates the time consuming tuning in 

neighborhood function and is able to reduce the computational load in the task assignment of 

MAS. Note that in this thesis, the hit probability of agent is assumed as 100 %. However, the 

SOM mechanism can also find the minimal total damaging cost even if the leakage of agents 

is considered. By arranging the winner agents W, the interception list L can be obtained 

which is ordered by the index of agent. The list is a useful command or decision for MDS to 

determine which target should be intercepted by which agent in the future. The last 

mechanism of SOM is the adaptive process which enables the winner agents W to update the 

ositions of the winners. 

le 3-1: SOM-based dispatching 

agents 

p

 

Examp

Step 1 
Figure 3-6 shows four steps for SOM example in MDS in which there are the positions of 

AaaaaA ⊂= },,,{ 4321

},,,,,

 (N = 4), and the positions of targets with random indexed 

 (D = 6), and three surviving assets { 654321 rrrrrrR = },,{ 321 sssS =  with their values 

1)( 1 =sV , 2)( 2 =sV , and 3)( 3 =sV . The damaging costs caused  the attacking targets  from

in MDS can be formed as }2,3,2,1,3,1{},,,,,{ 654321 == VVVVV  which means t1 will attack 

s1, t2 will attack s3, t3 will attack 

VV

s1, t4 will attack s2, etc. Before the beginning of attack of 
targets, the total damaging cost 
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12
6

1
==∑

=d
dtotal VV  

can be obtained. 
Step 2 
In the SOM mechanism, the positions of agents A and random indexed targets R will first be 
used to calculate the Euclidean distance as 

}6,...,2,1;4,...,2,1,{ , ==−= diD iddi ar . 

If δ is chosen as 0.1, the new distance matrix from (3-45) can be obtained for all the agents as: 
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Because we are focusing on the task assignment to minimize the damaging cost, we can 
assume that the distances between the agents and targets are the same and are normalized to 
one. This implies that 

}6,...,2,1;4,...,2,1,1{ , === diD di . 

Therefore, the minimum for each agent can be found from the following new distance matrix: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≈

76.59.376.5119.311
76.59.376.5119.311
76.59.376.5119.311
76.59.376.5119.311

D . 

Step 3 

In the first row of new distance matrix D , the winner neuron is 2,1D  which means the 

matching pair is {a1, t2}. Therefore, after repeating from the first row to the fourth row, the 
winner-target pairs {a1, t2}, {a2, t5}, {a3, t4}, and {a4, t6} can be obtained by using the 
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competitive process in (3-47) list. 
Step 4 

Picking the indexes of the targets in the matching pairs, the interception list  

can further be constructed as a MDS command which shows that the t2, t5, t4, and t6 targets 

should be intercepted by the a1, a2, a3, and a4 agents, respectively. Defended by the agents, all 

the assets after this attacking wave have the remaining damaging costs 

}6,4,5,2{=L

}0,0,0,1,0,1{=′V  and 

the final total damaging cost becomes 2
6

1
=′=′ ∑

=d
dtotal VV  which is the minimal value. In this 

example, although the Euclidean distances are almost neglected, the situation for the two or 

more assets have the same value and there exists relatively short Euclidean distance from 

some agent to its corresponding target should be taken into consider. 
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Fig. 3-6. The self-organizing map (SOM) example in MDS. 

 

In traditional exhaustive method to find the minimal total damaging cost, it will take 

 computation steps. However, it only takes at most )360()!46/(!6 =− )24(64 =∗  

computation steps by the proposed SOM. Consider N agents and D targets in MDS, if we 

have to find the optimal (or worst) matching pairs under some condition such as the minimal 
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total paths, the computational load of traditional exhaustive method is , however, 

the computational load of the proposed SOM is 

)!/(! NDD −

DN ∗ . Therefore, as shown in the following 

Table 3-1, the SOM has relatively smaller computational load than exhaustive method if there 

are more number of agents and targets. 

 

Table 3-1 Comparisons of computational loads for the task assignment using exhaustive 
methods and the proposed SOM. 

 
Optimal (or worst) match by 

the exhaustive method 
SOM 

N = D = 6 720 36 
N = 6, D = 8 20160 48 
N = D = 8 40320 64 

N = 8, D = 64 1.7846×1014 512 
N = D = 64 1.2689×1089 4096 

 

In comparison with incremental adjustment in traditional SOM, the proposed adaptive SOM 

with the proposed FNN controller can handle the overall TAPE problems in MDS. The 

closed-loop configuration of SOM with FNN controller for MDS TAPE is shown in Fig. 3-7. 
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Fig. 3-7. The closed-loop configuration of SOM with FNN controller for MDS TAPE. 
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3.6 Illustrated Examples 

In this section, computer simulations are performed to illustrate the effectiveness of the 

proposed FNN guidance law. In order to assess the performance characteristics in a 

closed-loop engagement scenario, it is necessary to specify target dynamics. The target 

motion model is assumed to produce no axial acceleration or roll motion. Then, the simplified 

dynamics of target motion can be represented in the inertial frame as follows [44]: 

⎪
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                      (3-48) 

where aty and atz are the y-axial and z-axial acceleration of target, respectively. For all the 

scenarios, assume that the target maneuvers with aty = 0 g, atz = –1 g for all the time. To limit 

the missile’s maneuverability, a 30 g (g = 9.8 m/s2) maneuvering limiter is considered for 

simulations. The pitch and yaw autopilot dynamics are chosen as second-order time invariant 

linear systems and the ground tracker as a simplified differential tracking system with 

damping ration 0.6 and natural frequency 6π rad/s, as shown in Fig. 3-8. The ground tracker 

provides the estimated values of tσ , tγ , tσ& , and tγ& , as well as the measurement data of 

σΔ  and γΔ . In the following, the estimated value is distinguished from its true value by 

inserting the symbol  to the corresponding variable. To evaluate the influence of 

measurement noise, random noises with magnitude between 

 ̂

3.0±  degrees are included. The 

controller parameters in the simulations below are chosen as follows [46]: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

167300
7358800
001673
0073588

Q , k11 = k21 = 18, k12 = k22 = 51, ηw = 5, and ηm = ηv = 0.2. 

In Case 3-1, the one-to-one agent-target missile guidance laws using CMAC and FNN 
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controller are discussed to show the capability and efficiency of the proposed FNN controller. 

Followed by the tow control algorithm comparisons, the proposed SOM is adopted to handle 

the task assignment for MAS in MDS in Case 2. 
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Fig. 3-8. Block diagram representation of estimation algorithm for guidance information [44, 

46]. 

 

Case 3-1: 

The closed-loop configuration of FNN controller for missile guidance law is shown in Fig. 

3-9. For large scale simulation purpose, we have generated 25 initial positions with angles for 

target in Fig. 3-10, which shows an XI-YI coordinate system. The subscripted number of target 

in Fig. 3-10 represents the number of scenario, and the position of target in the ith scenario is 

defined as 
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))30sin(),sin()30cos(),cos()30cos((: °°° ttttti RRR
ii

σσt , 

))60sin(),sin()60cos(),cos()60cos((:12 °°°+ ttttti RRR
ii

σσt , 

),0,0(:25 tRt , 12,,2,1 L=i .                      (3-49) 

In fact, our agent is at (10, 10, 6), which is very close to the ground base in XI-YI-ZI coordinate 

system. There are only three initial positions/angles of target in [4, 6], which were specifically 

chosen to guarantee the success of convergence. Therefore there are 25 battle scenarios in 

which Rt is set as 7000 meters from the ground base, and each initial position and angle of 

target is chosen from the 25 locations as shown in Fig. 3-10. Once the position of target is 

chosen, the initial angle of target will also be applied as the heading angle to the ground base. 
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Fig. 3-9. The closed-loop configuration of FNN controller for missile guidance. 
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Fig. 3-10. The initial positions and angles of targets in the XI-YI plane. 

 

The errors and change of errors of FNN controller in 25 battle scenario simulations are shown 

in Fig. 3-11. From Fig. 3-11, it can be obviously seen that our proposed adaptive FNN 

controller is capable of performing missile guidance. The control input u of FNN controller 

shown in Fig. 3-12 contains the yaw and pitch acceleration commands which are denoted as 

dyc and dzc, respectively. In comparison with the CMAC used for missile guidance in [4, 6], all 

the 25 guidance results under the same scenario are listed in Table 3-2 for computational load 

(CL) and miss distance (MD) of DM. 
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Fig. 3-11. The errors and change of errors of FNN controller in 25 battle scenario simulations. 
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Fig. 3-12. The control inputs of FNN controller in 25 battle scenario simulations. 
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Table 3-2 The 25 guidance results (MD: Miss Distance; CL: Computational Load). 

CMAC FNN controller controller 
 

scenario 
MD (m) CL (sec) MD (m) CL (sec) 

1 2.7600 6.641 4.7312 0.641 
2 2.9284 6.594 1.9743 0.625 
3 3.1054 6.578 3.7066 0.640 
4 5.8901 6.594 5.9765 0.641 
5 0.1236 6.594 10.6379 0.765 
6 6.0915 6.594 9.1060 0.766 
7 11.4619 6.625 2.6917 0.766 
8 7.7567 6.672 2.1204 0.641 
9 8.1750 6.609 0.7921 0.641 
10 8.6591 6.578 2.0889 0.625 
11 3.8047 6.562 8.3483 0.625 
12 0.9872 6.578 9.7337 0.750 
13 6.6148 8.610 4.0755 0.813 
14 0.6873 8.625 4.8888 0.672 
15 0.9697 8.625 4.7711 0.672 
16 4.6191 8.609 5.0199 0.671 
17 2.0204 8.641 5.9066 0.688 
18 1.9740 8.625 7.6901 0.688 
19 4.5209 8.641 5.8192 0.656 
20 4.8498 8.609 2.5172 0.796 
21 2.1815 8.625 2.9209 0.672 
22 5.8322 8.609 6.2649 0.687 
23 4.8678 8.625 7.0819 0.687 
24 5.1705 8.609 4.6043 0.672 
25 42.5002 9.500 3.6836 0.671 

 

In Table 3-2, the average MD of CMAC is 5.9421 meters which is larger than that of FNN, 

which is 5.0861 meters. In Table 3-2, it is obvious that the CMAC will fail in 25th scenario 

due to its MD equals to over 40 meters, whereas the agent in using our FNN controller is only 

3.6836 meters. It can be seen that the scenarios for CMAC should be chosen carefully to 
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prevent the divergence of missile guidance. For the comparison of computational load, Table 

3-2 also shows the running time under the same Windows XP system. It is amazing to see that 

the average CL (in seconds) of CMAC is ten times larger than that of FNN. In real-time 

control system, the larger CL is not preferred, especially when the intelligent missile guidance 

law is applied to agent. From the above simulation results, the proposed adaptive FNN 

controller is capable of efficiently maneuvering the agent toward the target in finite time, and 

the MD of agent can also be reduced to a satisfactory level. Moreover, the proposed FNN 

controller has much smaller CLs than those of CMAC in all the simulation results. 

Case 3-2: 

The adjustment parameter is chosen as δ = 0.1 to emphasize the importance of asset value. For 

ease of simulation in the following scenarios, the asset value will be randomly chosen as an 

integer from 1 to 3; the numbers of assets, agents, and targets are also randomly chosen from 

1 to 15. The initial positions and angles of targets in [44, 46] are chosen without any reason, 

which is very sensitive during simulation. If more scenarios are needed, it is time-consuming 

for the user to determine these initial parameters, even for simulation purpose. In this case, the 

ground tracker is set at the original point and the initial LOS ranges of targets are also set as 

7000 meters. Also, the positions of assets and initial agents are randomly located in the 

bounded asset region. For ease of simulation, a random number of targets are chosen from the 

25 initial positions to represent the attacking targets, which are incoming from different 

degrees as shown in Fig. 3-10. Once an attacking target is moving toward some asset, the 

initial angle of this attacking target can be decided by calculating the heading angle to the 

asset. The hit probability of all the targets for assets is also assumed as 100 % such that the 

assets will not be destroyed if the agents are forced to intercept the corresponding targets. 

Scenario 1: 

Consider 9 agents and 9 targets in the same three-dimensional workspace shown in Fig. 3-13. 

Because the number of agents is the same as the number of targets and the hit probability is 
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not considered, scenario 1 can be regarded as the extension of single agent-target guidance 

problem. In this scenario, the asset damaging cost by all the targets is listed as 

}2,3,3,2,1,1,3,2,1{=V  without interception. After the task assignment, the 9 agents are forced 

to their corresponding targets. The interception list }5,4,1,2,6,9,8,7,3{=L  can be obtained 

via SOM with the consideration of the physical distances between the agents and targets. The 

interception list of  will be obtained if the physical distances between 

the agents and targets are not considered in our SOM. The agents will find their matching 

targets by L, and then be forced to the incoming targets via adaptive SOM with FNN 

controller. From the simulation result, it shows that the total damaging cost is reduced to 0 

which is the minimal total damaging cost. The error and change of error of all the agents also 

approaches to zero as shown in Fig. 3-14. 

}9,8,7,6,5,4,3,2,1{=L
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Fig. 3-13. The trajectories of 9 agents with 9 targets. 
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Fig. 3-14. The errors and change of errors of MAS. 

Scenario 2: 

Consider 3 agents and 9 targets in the same three-dimensional workspace shown in Fig. 3-15. 

In this scenario, the asset damaging cost by all the targets is listed as }2,3,3,1,2,3,1,2,1{=V  

without interception. The interception list }4,8,7{=L

!9

 can be obtained via SOM. It can be 

obviously seen that the interception list L command to the FNN for the 1st, 2nd, and 3rd agent 

to intercept the 5th, 8th, and 4th target. Therefore, from the simulation result it shows that the 

total damaging cost is reduced to 9 which is the minimal total damaging cost. The error and 

change of error of all the agents also approaches to zero as shown in Fig. 3-16. In this 

scenario, the traditional exhaustive method will take )504()!39/( =−  computation steps to 

find the minimal total damaging cost. 
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Fig. 3-15. The trajectories of 3 agents with 9 targets. 
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Fig. 3-16. The errors and change of errors of MAS. 

 

Scenario 3: 
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Consider 4 agents and 12 targets in the same three-dimensional workspace shown in Fig. 3-17. 

In this scenario, the asset damaging cost by all the targets is listed as 

}1,3,3,2,2,2,3,1,1,1,2,3{=V  without interception. The interception list  can be 

obtained via SOM. From the simulation result, it shows that the total damaging cost is 

reduced to 18 which is the minimal total damaging cost. The error and change of error of all 

the agents also approaches to zero as shown in Fig. 3-18. In this scenario, the traditional 

exhaustive method will take more time-consuming 

}10,6,1,11{=L

)11880()!412/(!12 =−  computation steps 

than that of SOM to find the minimal total damaging cost. 
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Fig. 3-17. The trajectories of 4 agents with 12 targets. 
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Fig. 3-18. The errors and change of errors of MAS. 

 

From the above simulation results, the adaptive SOM with FNN control method is capable of 

handling task assignment of the agents and then efficiently maneuvering the agents toward the 

corresponding targets in finite time. The control errors of all the agents can also be reduced to 

a satisfactory level. Moreover, the total damaging cost can be minimized and the number of 

computation steps takes no more than DN ∗  in our adaptive SOM with FNN method. 

 

3.7 Conclusions 

In this chapter, a SOM with FNN controller is adopted in the MDS to find the minimal 

total damaging cost from the asset values and perform path evolution (or planning). In 

comparison with the traditional exhaustive method and simple incremental path planning in 

traditional SOM to determine the interception list, the proposed adaptive SOM with FNN 

structure can efficiently handle task assignment under the high nonlinearities and uncertainties 

of the agents in this chapter. The proposed main controller combined with CLOS guidance 
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law is the FNN controller, in which fuzzy rules are combined into the neural network, and a 

new monitoring controller is also designed to work with FNN controller. This forces the 

agents to go to their corresponding targets within the constraints of nonlinear dynamics and 

uncertainties of the agents. It is obvious that the weighting factors are updated via the 

Lyapunov stability constraints, a process which is very different from the simple update 

method used by the traditional SOM. From the simulation results, excellent TAPE for all 

agents has been obtained via the intelligent adaptive SOM with FNN controller. Summarizing 

the above approaches proposed in this chapter, not only the MDS model is delineated, but also 

the effective parallelized interception decision is established for the agents from a bounded 

region to efficiently intercept their corresponding targets. 
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Chapter 4 
Dynamical System Identification using High-Order 

Hopfield-based Neural Network (HOHNN) 

 

4.1 Background and Motivation 

The high-order Hopfield-based neural network (HOHNN) with functional link net 

(FLN) has been developed in this chapter for the purpose of uncertain dynamical system 

identification. In comparison with the traditional Hopfield neural network (HNN) and the 

high-order neural network (HONN), the compact structure of FLN with a systematic order 

mathematical representation combined into the proposed HOHNN has additional inputs for 

each neuron for faster convergence rate and less computational load. The weighting factors in 

HOHNN are tuned via the Lyapunov stability theorem to guarantee the convergence 

performance of real-time system identification. The robust learning analysis of HOHNN to 

improve the convergence in the performance is also discussed. 

 

4.2 High-Order Hopfield-based Neural Network (HOHNN) Models 

Three different types of artificial neural networks can be classified based on their 

feedback link connection architecture. This chapter focuses on the recurrent neural networks. 

Figure 4-1 shows an HNN structure that forms a multiple-loop feedback system where the 

number of feedback loops is equal to the number of neurons [38]. The output of each neuron 

fed back as an input to each neuron in the network. Considering the architecture of HNN, as 

illustrated in Fig. 4-1, the synaptic weighting vector wi(t) = [w1
i(t) w2

i(t) … wn
i(t)] represents 

conductance, the input vector xi(t) = [x1
i(t) x2

i(t) … xn
i(t)] represents voltages, and n represents 

the number of inputs. In Fig. 1, the input vector xi(t) is fed back from the output vector y(t) = 

[y1(t) y2(t) … yn(t)] = [v1(t) v2(t) … vn(t)], and a current source Ii represents the externally 
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applied bias. The nonlinear function φ(．) is a sigmoid function that limits the permissible 

amplitude range of the sum of the inputs as defined by the following hyperbolic tangent 

function: 

⎟
⎠
⎞

⎜
⎝
⎛=

2
tanh)( ii

i
vavϕ                           (4-1) 

which has a slope of ai /2 at the origin, as shown by 

0

)(
2

=

=
ivi

ii

dv
vda ϕ                            (4-2) 

where ai and vi are referred to as the gain and the output voltage of ith neuron, respectively. 

Based on the Kirchhoff’s current law, the following dynamic node equation can be obtained: 

i

n

i

iTi

i

ii
i Itt

R
tv

dt
tdvC +=+ ∑

=1
)()()()( xw , ni ,,1L= .              (4-3) 

Because the input is the feedback of the combination of the output, Equation (4-3) becomes 

i

n

i
i

Ti

i

ii
i Itvt

R
tv

dt
tdvC +=+ ∑

=1
))(()()()( ϕw , ni ,,1L= .             (4-4) 

The stability analysis of the above HNN was proven in [38], in which an energy function was 

defined, and the derivative of the energy function was negative to yield an asymptotically 

stable system. 
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Fig. 4-1. The architecture of Hopfield neural network. 

 

4.2.1 Description of HOHNN 

The FLN recently studied in [71–73] was a single-layer network whose need for hidden 

layer was removed. The FLN in [58] was formed by the i-dimensional input vector x and 

enhanced to the j-dimensional input vector xp with elements {xp1, xp2, …, xpi, …, xpj} by a 
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systematic order or non-ordered mathematical representation. The expansions of the 

first-order Hopfield model with non-ordered mathematical representation in [74] formed 

high-order neural networks (HONNs). However, the systematic order mathematical 

representation is adopted into the proposed HOHNN in this thesis. 

 

4.2.2 Major Works 

The systematic-ordered enhanced patterns are considered with high-order terms beyond 

third-order terms to form the fully extended HOHNN (FHOHNN) structure. However, such 

expansive transforms increase the number of components greatly as the dimensions of input 

vector increases as shown in Table 4-1. 

 

Table 4-1 Increase number of input pattern components with enhancement. 

HNN HOHNN FHOHNN 
Number of 

initial patterns {xi} 
Number of 

components {xi, xi xj}, j > i
Number of 

components {xi, xi xj, xi xj xk}, k > j > i
2 3 3 
3 6 7 
4 10 14 
10 35 155 

 

Hence, it was suggested in [58] that high-order terms beyond the second-order terms are not 

required in the enhanced patterns of input vector of HOHNN by omitting the terms with two 

or more equal indices. Therefore, a compact FLN is defined with rigorous formulae as shown 

in Fig. 4-2 and the equations below. The input pattern vector Z in Fig. 4-2 is defined precisely 

as follows: 

][ 2/)1(121 ++= NNNN zzzzz LLZ                 (4-5) 

and 
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     (4-6) 

The above (4-5) states that the Z vector has N (N + 1) / 2 terms, in which N is the number of 

original input variables. In addition, Equation (4-6) describes all the extra second-order terms 

for {zN + 1 zN + 2 … zN (N + 1) / 2}. The input vector of HNN shown in Fig. 4-1 can act as a 

compact FLN, as defined in Fig. 4-2. 
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Fig. 4-2. A compact structure of functional link net. 

 

In this thesis, the HNN with a compact FLN is to form HOHNN, which can be demonstrated 
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to be an approximation by the Stone-Weierstrass theorem for continuous time dynamical 

systems. The detailed proof is given in the next section. 

 

4.3 The Function Approximation using HOHNN 

Consider a continuous-time nonlinear dynamical system of the following form: 

xy
uxx

=
= ),(F&

                             (4-7) 

where x = [x1 x2 … xn]T is the system state vector assumed to be available for measurement, u 

and y are the input and output vectors of the system, and F(x, u) is the nonlinear function 

which describes either affine or non-affine system dynamics. In addition, a bounded-input, 

bounded-output (BIBO) condition is also imposed for (4-7) (i.e., if the admissible control 

input is bounded then the state trajectories are uniformly bounded for any finite initial 

condition). The aim of this chapter is to discuss the capability of function approximation of 

HOHNN for unknown nonlinear systems. In order to approximate the unknown nonlinear 

system, HOHNN with single-layer, fully connected, recurrent nets and functional link model 

is proposed. Assuming that n neurons are needed to identify an nth order unknown nonlinear 

dynamical system and from (4-4), the mathematical model of the proposed HOHNN for 

system identification with zero bias can be expressed as follows: 

BWZxAx += ˆ&̂                            (4-8) 

where  is the n-dimensional state vector; A = 

diag[–1/R1C1 –1/R2C2 … –1/RnCn] and B = diag[1/C1 1/C2 … 1/Cn] are both n × n diagonal 

matrices. For this compact FLN, the dimension of input pattern has been expanded to N' = (n 

+ M) × (n + M + 1) / 2. Thus, the N'-dimension input vector Z can be defined as 

T
nxxx ]ˆˆˆ[ˆ 21 L=x T

nvvv ][ 21 L=

T
h ][ ZUΦZ = .                         (4-9) 

Furthermore, the associated weight can also be defined as an n × N' matrix of synaptic 

weighting factor matrix 
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][ hu wwwW ϕ=                        (4-10) 

where wφ, wu, and wh are the weighting factors of feedback input, control voltage input, and 

high-order term, respectively. By assumption, Stt ∈))(),(( ux , ],0[ Tt∈∀ . Let 

{ } ),ˆ( ,),ˆ(),ˆ(:),ˆ( SS mmmm
Mn ∈≤−ℜ∈= + uxuxuxux εε           (4-11) 

where S is an (n + M)-dimensional compact subset to be properly chosen. Clearly, Sε is also a 

compact subset of  and . In other words, Sε is larger than S by an arbitrary 

small value ε. Because of the universal approximation theorem [38, 75, 76] and the bound of 

the input, the modeling error can be arbitrarily small. Substituting (4-9) and (4-10) into (4-8), 

Mn+ℜ εSS ⊂

hhu ZBwUBwΦBwxAx +++= ϕˆ&̂                    (4-12) 

where 

T
nxqxqxq ])ˆ()ˆ()ˆ([ 21 ϕϕϕ L=Φ ,                 (4-13) 

Tuuu ][ L=U M21

h

,                      (4-14) 

and 

.])ˆ()ˆ()ˆ()ˆ([ 1121
T

MMnh uuxqxqxqxq ⋅⋅⋅= −LLL ϕϕϕϕZ      (4-15) 

In Fig. 4-3, Φ is the n-dimension vector of the network feedback in a standard HNN with φ(．) 

being a nonlinear sigmoid function, and q is a positive feedback constant; U is the 

M-dimension vector of the control force, and Z  in (4-15) is the high-order nonlinear vector to 

the system which comes from (4-6) in the compact FLN shown in Fig. 4-2. This combination 

is the HOHNN for a single neuron, which is shown in Fig. 4-3. The input pattern of HOHNN 

produced from the FLN is the enhanced pattern in which the neural feedback, control voltage 

input, and the combination of these two inputs are contained. The function approximation 

problem consists of determining whether to allow sufficient high-order connections with 

weighting factor matrix W, such that the HOHNN model approximates the input-output 
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behaviour of an arbitrary unknown nonlinear dynamical system. To come up with a 

well-posed problem, assume that W has an optimal W* = [wφ
* wu

* wh
*] that can approximate 

the nonlinear dynamical system to any degree of accuracy. Therefore, the state equation in 

(4-7) can be approximated by an HOHNN using the following opt

              (4-16) 

Moreover, the optimal matrices can be further defined as [38, 75, 76] 

imal form: 
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where 

are compa rain

es 

}. The interval IT represents the 

me period over which the approximation is to be performed. 

 

})(:{
ϕϕ ϕϕϕ ww wwwΩ Dtr T ≤=                     (4-18) 

})(:{
uu

Dtr u
T

uu ww wwwΩ ≤=                     (4-19) 

})(:{
hh

Dtr h
T

hh ww wwwΩ ≤=                     (4-20) 

ct const t sets for wφ, wu, and wh, respectively, specified by designers. Here, 

ϕwD , 
u

Dw , and 
h

Dw  can been seen as bounded in a ball of radius, also specified by 

designers to avoid the arbitrarily large weight values. Secondly, suppose that F is continuous 

a local Lipschitz condition such that (4-7) has a unique solution and 

( ) Stt ∈)(),( ux  for all t in some time interval IT = {t: 0≦t≦T

and satisfi

ti
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Fig. 4-3. The HOHNN structure for a single neuron. 

 

Assume that F(x, u) is a continuous function that satisfies the local Lipschitz condition, such 

that the states can be confined in the compact set S. Based on the above assumptions, the 

following result can be obtained. 

Lemma 4-1 [75]: Suppose that the system in (4-8) is initial at . For the small 

degree of approximation ε > 0 and any finite time interval T > 0, there exists an optimal 

weighting matrix W*. Thus, the state  of the HOHNN model (4-8) with N' high-order 

connections and weight values W = W* satisfies 

)0()0(ˆ xx =

)(ˆ tx

ε≤−
≤≤

)(ˆ)(sup
0

tt
Tt

xx                         (4-21) 

where |．| denotes the Euclidean vector norm. Using the Bellman-Gronwall Lemma [76], the 

error function e(t) can be limited in the following bounded value: 

2
)( ε
≤te .                            (4-22) 

Supposing that  does not belong to the set Sε for all , then, by the 

continuity of , there exists a T* where 0 < T* < T. Thus,  where 

)](),(ˆ[ tt ux

)t

],0[ Tt∈

ST ∂∈)]( *u(x̂ εT ),(ˆ[ *x εS∂  
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denotes the boundary of Sε. If the same analysis for  is carried out, ],0[ *Tt∈

2/)(ˆ)( ε≤− tt xx  is obtained in this interval. Therefore, the proposed HOHNN model is 

capable of approximating the behavior of dynamical systems to any degree of accuracy if a 

sufficiently large number of high-order connections between neurons is allowed. 

 

4.4 The Lyapunov Tuning of HOHNN for Identification 

From above discussion, clearly, for a given nonlinear system, the HOHNN model with 

a sufficiently large number of high-order connections can be obtained to approximate any 

dynamical system to any degree of accuracy. Here, the adaptive laws for weighting factors 

training have to be appropriately designed to guarantee the approximation performance. The 

approximation error between states of the HOHNN identifier and the real system is defined as 

xxe ˆ−= .                            (4-23) 

Thus, the derivative of e with respect to time can be obtained by (4-12) and (4-16) 

hhu ZwBUwBΦwBAee ~~~ +++= ϕ&                    (4-24) 

where ϕϕϕ www −= *~ , uuu www −= *~  and hhh www −= *~ . Because A is a stable matrix 

(since |sI – A| is stable), there exists a unique positive definite symmetric n × n matrix P that 

satisfies the Lyapunov equation PA + ATP = –Q, where Q is an arbitrary n × n positive 

definite matrix. The weight adaptive laws that guarantee nonlinear dynamical system for 

approximation error minimization and approximation process convergence have been 

considered in Theorem 4-1 based on the absence of the modeling error. The theorem states the 

main result concerning the convergence of the proposed approximation scheme. 

Theorem 4-1: A nonlinear dynamical system considered in (4-7) is assumed to be modeled 

exactly by (4-16) and the approximation system is designed as (4-12). If the adaptive law of 

weighting factors in ith neuron are chosen as 
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iiiiij
i

j epbvqw )(, ϕηϕϕ −=& , njfor ,,2,1 K= ,               (4-25) 

iiiiiku
i

knu epbuw η−=+ ),(& , Mkfor ,,2,1 K= ,               (4-26) 

and 

iiiiilh
i

lMnh epbzw η−=++ ),(& , 2/)1)((,,2,1 −++= MnMnlfor K        (4-27) 

where ηφ, ηu and ηh are positive learning rates; and bii and pii are the diagonal elements of B 

and P, respectively. The stability of the overall identification scheme is therefore guaranteed. 

Proof: 

Consider the Lyapunov candidate function as 

)~~(
2
1)~~(

2
1)~~(

2
1

2
1

h
T

h
h

u
T

u
u

TT trtrtrV wwwwwwPee
ηηη ϕϕ

ϕ

+++=        (4-28) 

where P > 0 is chosen to satisfy the Lyapunov equation PA + ATP = –Q. Taking the derivative 

of V with respect to time and using (4-24) yields 

)~~(1)~~(1)~~(1)(
2
1

h
T

h
h

u
T

u
u

TTT trtrtrV wwwwwwePePee &&&&&&
ηηη ϕϕ

ϕ

++++=  

PeBwZPeBwUPeBwΦQee TT
h

T
h

TT
u

TTTTT ~~~(
2
1

2
1

+++−= ϕ  

)~~~
hh

T
u

TT ZwPBeUwPBeΦwPBe +++ ϕ )~~(1)~~(1)~~(1
h

T
h

h
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T
u

u

T trtrtr wwwwww &&&
ηηη ϕϕ

ϕ

+++ . 

Because , , , , PeBwΦ TTT
ϕ

~ PeBwU TT
u

T ~ PeBwZ TT
h

T
h

~ ΦwPBe ϕ
~T UwPBe u

T ~ , and 

hh
T ZwPBe ~  are all scalars, the relationships can hold as 

ΦwPBePeBwΦPeBwΦ ϕϕϕ
~)~(~ TTTTTTTT == , 

UwPBePeBwUPeBwU u
TTTT

u
TTT

u
T ~)~(~ == , 

and 

hh
TTTT

h
T

h
TT

h
T

h ZwPBePeBwZPeBwZ ~)~(~ == . 

Hence, the derivative of V with respect to time can be reorganized as 

 79



PeBwZPeBwUPeBwΦQee TT
h

T
h

TT
u

TTTTTV ~~~
2
1

+++−= ϕ
&  

)~~(1)~~(1)~~(1
h

T
h
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u
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T trtrtr wwwwww &&&
ηηη ϕϕ

ϕ

+++ .            (4-29) 

Here, select the following equations 

PeBwΦww TTTTtr ϕϕϕ
ϕη

~)~~(1
−=& ,                    (4-30) 

PeBwUww TT
u

T
u

T
u

u

tr ~)~~(1
−=&

η
,                     (4-31) 

and 

PeBwZww TT
h

T
hh

T
h

h

tr ~)~~(1
−=&

η
.                    (4-32) 

Substituting (4-30)–(4-32) into (4-29) gives 

0
2
1

≤−= QeeTV& .                         (4-33) 

Therefore, the stability of overall approximation scheme is guaranteed based on the above 

results and the Lyapunov stability theorem. Based on (4-30)–(4-32), the adaptive law of 

weighting factors in an element form can be obtained. The Lyapunov stability theorem is 

guaranteed under the optimal approximation model with no modeling error.         Q.E.D. 

 

4.5 Robust Learning Analysis 

The above assumptions are violated in many cases because of the existing modeling 

error in the HOHNN model. The adaptive laws of weighting factors cause the modeling error 

to achieve infinity if the standard adaptive laws are used for updating the weighting factors. 

Therefore, the modified weight adjustment laws are discussed to avoid the parameter drift 

problem. In formulating the problem, the identification model in (4-16) with modeling error 

can be corrected as 

mZBwUBwΦBwAxx ++++= hhu
***

ϕ&                 (4-34) 

where m is a modeling error changing with respect to time, and the optimal weight vectors are 
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defined by (4-17)–(4-20). If m is not equal to zero but is small, the stability proof may not be 

guaranteed, that is, . Assume that there exists a finite bounded constant δ so that 0>V&

δτ <∫
t

dt
0

2)(m , ∞<≤ t0 .                     (4-35) 

Thus, from the BIBO stable, the time-varying m is assumed to be bounded in a finite constant 

δ in (4-35). Using (4-12) and (4-34), the state error satisfies 

δϕ ++++= hhu ZwBUwBΦwBAee ~~~&                  (4-36) 

where ,  and  as defined earlier. Because the change of weighting factors can not 

be guaranteed to be bounded in the ball of radius, the learning laws given by (4-25)–(4-27) are 

modified as follows: 
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where the projection operator Pr{．} is defined as [40] 
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The closed-loop configuration of HOHNN for function approximation is shown in Fig. 4-4. 
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Fig. 4-4. The closed-loop configuration of HOHNN for function approximation. 

 

Considering the same Lyapunov candidate function in (4-28) and using (4-36). Taking the 

derivative of V with respect to time, the following can be obtained: 
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 and  are all scalars, the relationships can hold as PeTδ δPeT

ΦwPBePeBwΦPeBwΦ ϕϕϕ
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Hence, the derivative of V with respect to time can be arranged as 
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Some useful variables are defined as 
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Thus, the equation shown in (4-40) can be rewritten as 

δ
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By using (4-37) and assuming 0=
ϕwJ , the conditions 
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can be obtained. Because wφ
* belongs to the compact constraint set , the inequality 

ϕwΩ

i
j

i
j wDw ,

*

, ϕϕ ϕ
=≤ w  can be obtained. The inequality equation then becomes 
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Similarly, by using (4-38) and (4-39), the following inequality equations can be obtained: 
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Hence, for any possible condition that occurs in (4-37)–(4-39), the conditions 0≤
ϕwJ , 

, and 0≤J wu
0≤

h
J w  can be satisfied. Then, Equation (4-41) can be simplified to 
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where λmin(Q) is the minimum eigenvalue of Q. Integrating both sides of (4-46) from t = 0 to t 

= T (0 < T < ∞), and choosing λmin(Q) > 1 (because Q is determined by the designer), we have 
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In particular, V(t)  0, ≧ Equation (4-47) can be arranged as 
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where )0(
1)(

2

min

V
−Qλ

 and 2

min 1)(
1 P
Q −λ

 are constants and δ defined by (4-35) is a 
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maximum bounded for m. If δ is squared integrable, that is, ∞<∫
∞

0

2)( dttδ , then 

0)(lim =
∞→

t
T

e . Therefore, from (4-48), the approximation performance with HOHNN identifier 

is proven to converge to a certain small boundary. 

 

4.6 Illustrated Examples 

In this section, the simulation results of nonlinear system identification are presented. 

The uncontrolled regular-order Chen system [77, 78] simulated in Fig. 4-5 is the sort of 

stochastic fractional-order chaotic systems within 50 seconds. The application of proposed 

HOHNN to identify the regular-order Chen system in the presence of external disturbances is 

illustrated. The overall detailed structure for the third-order nonlinear dynamical system 

identification is shown in the Fig. 4-6, where there exist three neurons and one control force u 

for the HOHNN. 
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Fig. 4-5. The uncontrolled regular-order Chen system plotted in the (a) x3-x2-x1 space, and (b) 

time series within 50 seconds. 
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Fig. 4-6. The overall identification diagram of regular-order Chen system. 

 

Assume the feedback constant 1=q , the inputs from the network feedback vector 

})ˆ()ˆ()ˆ({ 321 xxx ϕϕϕ=Φ  and the control force vector U = {u} are combined with the extra 

compact high-order term })ˆ()ˆ()ˆ()ˆ()ˆ()ˆ()ˆ(){ 32321312 uxuxxxuxxxh ˆ()ˆ( 1 xx ϕϕϕϕϕϕϕϕϕ=Z  

to form the full input vector Z = [Φ U Zh]T for the Hopfield-based neural network. The 

dynamic motion equation of the regular-order Chen system in this thesis is designed as 

follows: 

duxxax ++−= )( 121&                         (4-49) 

ducxxxxacx +++−−= 23112 )(&                     (4-50) 
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dubxxxx ++−= 3213&                         (4-51) 

where a = 21, b = 2, c = 13; x , x , and x  are the state variables; u = 3sin(1.5t) is chosen as the 

control force. In order to examine the robustness of the proposed scheme, an external 

disturbance d = 1.5sin(3t) + 2cos(2t) is added to the system after 10 seconds. In the simulation,

the regular-order Chen system is shown in Fig. 4-6 with a sampling time of 0.005 second and 

within total simulation time of 15 seconds. In the three HOHNN neurons, the parameters are 

selected as R = 100Ω, C = 0.01F; the initial voltages are set as v (0) = v (0) = v (0) = 1V, and 

the weighting factors are set as w (0) = 0.08, w (0) = 0.025, and w (0) = 0.01, respectively. 

For comparison purpose, the recurrent HONN (RHONN), traditional HNN, and FHOHNN 

models have been adopted to show the approxi

1 2 3

 

1 2 3

φ u h

mation performance on the same regular-order 

Chen system. 

cture behaves the best 

ation performance among the other structures. 

 

Figure 4-7(a) shows the system approximation comparisons between these 

Hopfield-based neural networks. Figures 4-7(b) and (c) show the detailed performances for t 

= 0 ~ 0.5 seconds and t = 9.9 ~ 10.4 seconds, respectively. The error comparisons of system 

approximation are shown in Fig. 4-8(a), and the detailed approximation errors are shown in 

Figs. 4-8(b) and (c) for t = 0 ~ 0.5 seconds and t = 9.9 ~ 10.4 seconds, respectively. Although 

the detailed performance comparisons between the networks for t = 9.9 ~ 10.4 seconds are not 

obvious, the detailed error comparisons can clarify that HOHNN can perform the best system 

identification above the other Hopfield-based neural networks. The mean square error 

comparisons for all the Hopfield-based neural networks and their detailed drawing for t = 0 ~ 

0.5 seconds and t = 9.9 ~ 10.4 seconds are shown in Figs. 4-9(a), (b), and (c), respectively. It 

can be obviously seen from Figs. 4-7 to 4-9 show that the HOHNN stru

approxim
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Fig. 4-7. The system approximation comparisons between RHONN, HNN, FHOHNN, and 

HOHNN (a) for t = 0 ~ 15 seconds, and the detailed drawing for (b) t = 0 ~ 0.5 seconds and (c) 

t = 9.9 ~ 10.4 seconds. 
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Fig. 4-8. The error comparisons of system approximation between RHONN, HNN, FHOHNN, 

and HOHNN (a) for t = 0 ~ 15 seconds, and the detailed drawing for (b) t = 0 ~ 0.5 seconds 

and (c) t = 9.9 ~ 10.4 seconds. 
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Fig. 4-9. The mean square error comparisons of system approximation between RHONN, 

HNN, FHOHNN, and HOHNN (a) for t = 0 ~ 15 seconds, and the detailed drawing for (b) t = 

0 ~ 0.5 seconds and (c) t = 9.9 ~ 10.4 seconds. 

 

The following Table 4-2 shows a computation index that indicates the RHONN and 

FHOHNN structures perform longer execution time than the HNN and HOHNN structures. In 

the proposed HOHNN structure, there are four components considered in the original input 

pattern to produce ten enhanced input components; however, the same number of components 

is largely extended to sixteen and fourteen components in the RHONN and FHOHNN 

structures, respectively. This number of components does not only increase the execution time, 

but also decreases the tracking performance caused by the large number of redundant 
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weighting factors. Furthermore, the traditional HNN has the advantage of average execution 

time; however, it has the disadvantage of slowest approximation performance. Thus, the 

system identification of the proposed HOHNN is the best among those of the other 

Hopfield-type neural networks in simulation results and computation analysis within a proper 

given time interval, even under a certain external disturbance. 

 

Table 4-2 Execution time for all the Hopfield-based neural networks. 

Execution 
time (sec) 

Network 
architecture 

Maximum Minimum Average 

FHOHNN 0.2040 0.1870 0.1906 
HOHNN 0.1870 0.1720 0.1765 

HNN 0.1880 0.1560 0.1688 
RHONN 0.2350 0.2190 0.2283 

 

4.7 Conclusions 

In this thesis, HOHNN has been proposed for the unknown nonlinear dynamical system 

identification. In comparison with the non-ordered mathematical representation in FLN, a 

compact structure of FLN with systematic order mathematical representation has been 

combined into the proposed HOHNN. The approximation capability of HOHNN is first 

discussed to show that the proposed FLN is capable of approximating the behavior of 

dynamical systems to any degree of accuracy if a sufficiently large number of high-order 

connections between neurons is allowed. The adaptive laws via Lyapunov tuning theorem to 

the weighting factor matrix can reduce the approximation error to a small yet satisfactory 

level. In case modeling errors are present, the robust learning analysis is then proposed to 

guarantee the stability of the overall scheme. The simulation results for the RHONN, 

FHOHNN, HNN, and HOHNN are finally conducted to show the effectiveness of HOHNN in 
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uncertain dynamical system identification. The system identification performance for 

HOHNN is better than that of RHONN, FHOHNN, and HNN. Even when the dynamical 

system is perturbed by unwanted disturbance, the improved performance of the proposed 

HOHNN is evident in the computer simulation established with the benchmark examples in 

this chapter. 
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Chapter 5 
Conclusions and Future Works 

 

5.1 Conclusions 

For decades, there have been many researches focused on one-to-one tracking control. 

The fuzzy neural network (FNN) controller proposed in Chapter 2 and 3 is easier to be 

implemented than the other complicated neural network controllers for guidance purpose. In 

the FNN controller, the Gaussian function is adopted as the membership function and the 

fuzzy operations are utilized as the inference mechanism. The online learning methodology is 

developed in the Lyapunov sense, meanwhile the stability of the closed-loop system can also 

be guaranteed. The multi-agent system (MAS) extends the one-to-one tracking control to an 

environment for the consensus and communication of a group of agents and targets. From the 

help of self-organizing map (SOM) in MAS, the task assignment between agents and targets 

can efficiently be handled within a satisfactory computational load. In Chapter 3, the missile 

defense system (MDS) is established for two case of simulations. The one-to-one agent-target 

missile guidance using FNN control is proposed in the first case; the multi-agent-multi-target 

battle scenarios are proposed in the second case. From the simulation results, not only the 

proposed FNN controller has better performance than the cerebellar model articulation 

controller (CMAC), but the SOM-based FNN controller for MDS can also completely 

establish a real-time battle environment. 

In addition, the high-order Hopfield-based neural network (HOHNN) is proposed for 

the nonlinear dynamical system identification. The proposed functional link net (FLN) with a 

systematic mathematical representation for the input patterns is capable of approximating the 

behavior of nonlinear dynamical systems. The Lyapunov tuning theorem and the robust 

learning analysis for weighting factors can not only reduce the approximation error to a small 
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satisfactory level, but the stability of the overall closed-loop system can also be guaranteed. 

From the simulation results and computational analysis, the system identification performance 

for HOHNN is better than that of the other Hopfield-based neural networks even under 

disturbances. 

 

5.2 Suggestions for Future Works 

In the first part of the thesis, the agents are located on the fixed positions. Because in 

the real missile battle scenario, there are unknown number of objects and parameters which 

can directly or indirectly affect to our system. In order for missile battle reality, the 

corresponding variables will be considered for future works. In the second part of the thesis, 

the more complicated nonlinear dynamical system will be discussed and a more complete 

stability theorem will be proposed. 

 

 95



References 
[1] S.-K. Elham and K. Khorasani, “Optimal consensus algorithms for cooperative team of 

agents subject to partial information,” Automatica, vol. 44, no. 11, pp. 2766–2777, 2008. 

[2] L. Cheng, Z.-G. Hou, and M. Tan, “Decentralized robust adaptive control for the 

multiagent system consensus problem using neural networks,” IEEE Trans. on Systems, 

Man, and Cybernetics–Part B: Cybernetics, vol. 39, no. 3, pp. 636–647, 2009. 

[3] Y.-G. Sun and L. Wang, “Consensus of multi-agent systems in directed networks with 

nonuniform time-varying delays,” IEEE Trans. on Automatic Control, vol. 54, no. 7, pp. 

1607–1613, 2009. 

[4] W. Ren, “Distributed cooperative attitude synchronization and tracking for multiple 

rigid bodies,” IEEE Trans. on Control Systems Technology, vol. 19, no. 2, pp. 383–392, 

2010. 

[5] L. Cheng, Z.-G. Hou, M. Tan, Y. Lin, and W. Zhang, “Neural-network-based adaptive 

leader-following control for multiagent systems with uncertainties,” IEEE Trans. on 

Neural Networks, vol. 21, no. 8, pp. 1351–1358, 2010. 

[6] S.-K. Elham and K. Khorasani, “Team consensus for a network of unmanned vehicles in 

presence of actuator faults,” IEEE Trans. on Control Systems Technology, vol. 18, no. 5, 

pp. 1155–1161, 2010. 

[7] X. Liu, W. Lu, and T. Chen, “Consensus of multi-agent systems with unbounded 

time-varying delays,” IEEE Trans. on Automatic Control, vol. 55, no. 10, pp. 2396–2401, 

2010. 

[8] E. Nuno, R. Ortega, L. Basanez, and D. Hill, “Synchronization of networks of 

nonidentical Euler-Lagrange systems with uncertain parameters and communication 

delays,” IEEE Trans. on Automatic Control, vol. 56, no. 4, pp. 935–941, 2011. 

[9] N. Papadoglou and E. Stipidis, “Investigation for a global AVL system,” IEEE Trans. on 

 96



Intelligent Transportation Systems, vol. 2, no. 3, pp. 121–126, Sep. 2001. 

[10] V. de Nitto Persone and V. Grassi, “Performance analysis of caching and prefetching 

stratagies for palmtop-based navigational tools,” IEEE Trans. on Intelligent 

Transportation Systems, vol. 4, no. 1, pp. 23–34, Mar. 2003. 

[11] S. Kim, M.-E. Lewis, I. Chelsea, and C. White, “Optimal vehicle routing with real-time 

traffic information,” IEEE Trans. on Intelligent Transportation Systems, vol. 6, no. 2, pp. 

178–188, Jun. 2005. 

[12] K. Dorer and M. Calisti, “An adaptive solution to dynamic transport optimization,” Proc. 

4th Int. Joint Conf. Autonomous Agents and Multi-Agent Systems (AAMAS’05): Industry 

Track, Utrecht, The Netherlands, pp. 45–51, Jul. 2005. 

[13] Z. Liao, “Taxi dispatching via global positioning systems,” IEEE Trans. on Engineering 

Management, vol. 48, no. 3, pp. 342–347, Aug. 2001. 

[14] K.-T. Seow, N.-H. Dang, and D.-H. Lee, “A collaborative multiagent taxi-dispatch 

system,” IEEE Trans. on Automation Science and Engineering, vol. 7, no. 3, pp. 

607–616, July 2010. 

[15] P.-C. Chu and J.-E. Beasley, “A genetic algorithm for the generalized assignment 

problem,” Computers and Operations Research, vol. 24, no. 1, pp. 17–23, 1997. 

[16] R. Akkiraju, P. Keskinocak, S. Murthy, and F. Wu, “An agent-based approach for 

scheduling multiple machines,” Applied Intelligence, vol. 14, pp. 135–144, 2001. 

[17] A.-J. Higgins, “A dynamic tabu search for large-scale generalized assignment 

problems,” Computers and Operations Research, vol. 28, pp. 1039–1048, 2001. 

[18] K.-S. Kwok, B.-J. Driessen, and C.-A. Phillips, “Analyzing the 

multiple-target-multiple-agent scenario using optimal assignment algorithms,” Journal 

of Intelligent and Robotic Systems, vol. 35, pp. 111–122, 2002. 

[19] T. Kohonen, Self-Organizing Maps, 2nd ed. New York: Springer-Verlag, 1997. 

[20] K.-J. Kim and S.-B. Cho, “Fuzzy integration of structure adaptive SOMs for web 

 97



content mining,” Fuzzy Sets and Systems, vol. 148, pp. 43–60, 2004. 

[21] M.-S. Yang, and W.-L. Hung, D.-H. Chen, “Self-organizing map for symbolic data,” 

Fuzzy Sets and Systems, vol. 203, pp. 49–73, 2012. 

[22] R. Rathi, M. Choudhary, and B. Chandra, “An Application of Face Recognition System 

using Image Processing,” Int. Joint Comp. Tech. Appl., vol. 3, no. 1, pp. 45–49, 2012. 

[23] A. Zhu and S.-X. Yang, “A neural network approach to dynamic task assignment of 

multirobots,” IEEE Trans. on Neural Networks, vol. 17, no. 5, pp. 1278–1287, 

September 2006. 

[24] H. Kusumoto and Y. Takefuji, “O(log2M) Self-Organizing Map Algorithm Without 

Learning of Neighborhood Vectors,” IEEE Trans. on Neural Networks, vol. 17, no. 6, pp. 

1656–1661, November 2006. 

[25] D. Wang and J. Huang, “Neural network-based adaptive dynamic surface control for a 

class of uncertain nonlinear systems in strict-feedback form,” IEEE Trans. on Neural 

Networks, vol. 16, pp. 195–202, 2005. 

[26] K.-P. Tee, S.-S. Ge, and F. E. H. Tay, “Adaptive Neural Network Control for Helicopters 

in Vertical Flight,” IEEE Trans. on Control Systems Technology, vol. 16, no. 4, pp. 

753–762, July 2008. 

[27] Z. Sun and A.-K. Sen, “Neural Network Control of Resistive Wall Modes in Tokamaks,” 

IEEE Trans. on Plasma Science, vol. 38, no. 11, pp. 3226–3233, November, 2010. 

[28] H.-D. Patino, R. Carelli, and B.-R. Kuchen, “Neural networks for advanced control of 

robot manipulators,” IEEE Trans. on Neural Networks, vol. 13, no. 2, pp. 343–354, Mar. 

2002. 

[29] S.-X. Yang and M. Q. H. Meng, “Real-time collision-free motion planning of a mobile 

robot using a neural dynamics-based approach,” IEEE Trans. on Neural Networks, vol. 

14, no. 6, pp. 1541–1552, Nov. 2003. 

[30] R. Reeve and J. Hallam, “An analysis of neural models for walking control,” IEEE 

 98



Trans. on Neural Networks, vol. 16, no. 3, pp. 733–742, May 2005. 

[31] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to 

Intelligent Systems, Englewood Cliffs, NJ: Pretice-Hall, 1996. 

[32] X. Deng and X. Wang, “Incremental learning of dynamic fuzzy neural networks for 

accurate system modeling,” Fuzzy Sets and Systems, vol. 160, pp. 972–987, 2009. 

[33] D. Lin and X. Wang, “Observer-based decentralized fuzzy neural sliding mode control 

for interconnected unknown chaotic systems via network structure adaptation,” Fuzzy 

Sets and Systems, vol. 161, pp. 2066–2080, 2010. 

[34] C.-F. Juang, Y.-Y. Lin, and C.-C. Tu, “A recurrent self-evolving fuzzy neural network 

with local feedbacks and its application to dynamic system processing,” Fuzzy Sets and 

Systems, vol. 161, pp. 2552–2568, 2010. 

[35] Y. Yu, C.-L. Hui, T.-M. Choi, and R. Au, “Intelligent Fabric Hand Prediction System 

With Fuzzy Neural Network,” IEEE Trans. on Systems, Man, and Cybernetics-part C: 

Applications and Reviews, vol. 40, no. 6, pp. 619–629, November 2010. 

[36] C.-F. Juang, T.-C. Chen, and W.-Y. Cheng, “Speedup of Implementing Fuzzy Neural 

Networks With High-Dimensional Inputs Through Parallel Processing on Graphic 

Processing Units,” IEEE Trans. on Fuzzy Systems, vol. 19, no. 4, pp. 717–728, August 

2011. 

[37] V. Gazi, “Swarm aggregations using artificial potentials and sliding-mode control,” 

IEEE Trans. on Robotics, vol. 21, no. 6, pp. 1208–1214, 2005. 

[38] S. Haykin, Neural Networks, Upper Saddle River, NJ: Prentice-Hall, 1999. 

[39] J. J. E. Slotine, and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: 

Prentice-Hall, 1991. 

[40] L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, 

Englewood Cliffs, NJ: Prentice-Hall, 1994. 

[41] D. W. C. Ho, P.-A. Zhang, and J. Xu, “Fuzzy Wavelet Networks for Function Learning,” 

 99



IEEE Trans. on Fuzzy Systems, vol. 9, no. 1, pp. 200–211, 2001. 

[42] K.-J. Astrom and B. Wittenmark, Adaptive Control, Reading, MA: Addison-Wesley, 

1995. 

[43] D. P. Bertsekas, Mark L. Homer, David A. Logan, Stephen D. Patek, and Nils R. Sandell, 

“Missile Defense and Interceptor Allocation by Neuro-Dynamic Programming,” IEEE 

Trans. on Systems, Man, and Cybernetics–Part A: Systems and Humans, vol. 30, no. 1, 

pp. 42–51, January 2000. 

[44] I. J. Ha and S. Chong, “Design of a CLOS guidance law via feedback linearization,” 

IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 1, pp. 51–63, Jan. 1992. 

[45] C. Y. Kuo, D. Soetanto, and Y. C. Chiou, “Geometric Analysis of Flight Control 

Command for Tactical Missile Guidance,” IEEE Trans. on Control Systems Technology, 

vol. 9, no. 2, pp. 234–243, 2001. 

[46] C.-M. Lin and Y.-F. Peng, “Missile Guidance Law Design Using Adaptive Cerebellar 

Model Articulation Controller,” IEEE Trans. on Neural Networks, vol. 16, no. 3, pp. 

636–644, May 2005. 

[47] Y. Oshman and D. Arad, “Differential-Game-Based Guidance Law using Target 

Orientation Observations,” IEEE Trans. on Aerospace and Electronic Systems, vol. 42, 

no. 1, pp. 316–326, 2006. 

[48] M. Innocenti, L. Pollini, and D. Turra, “A Fuzzy Approach to the Guidance of 

Unmanned Air Vehicles Tracking Moving Targets,” IEEE Trans. on Control Systems 

Technology, vol. 16, no. 6, pp. 1125–1137, 2008. 

[49] H. Yan and H.-B. Ji,  “Guidance Laws Based on Input-to-State Stability and High-Gain 

Observers,” IEEE Trans. on Aerospace and Electronic Systems, vol. 48, no. 3, pp. 

2518–2529, 2012. 

[50] J. J. Hopfield, “Neural networks and physical systems with emergent collective 

computational abilities,” Proc. National Academy of Sciences, vol. 79, pp. 2554–2558, 

 100



1982. 

[51] Z.-G. Hou, M. M. Gupta, P. N. Nikiforuk, M. Tan, and L. Cheng, “A recurrent neural 

network for hierarchical control of interconnected dynamic systems,” IEEE Trans. on 

Neural Networks, vol. 18, no. 2, pp. 466–481, 2007. 

[52] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully 

recurrent neural networks,” Neural Computation, vol. 1, pp. 270–280, 1989. 

[53] T. W. S. Chow, X.-D. Li, and Y. Fang, “A real-time learning control approach for 

nonlinear continuous-time system using recurrent neural networks,” IEEE Trans. on 

Industrial Electronics, vol. 47, no. 2, pp. 478–486, 2000. 

[54] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent neural network 

model for time-varying matrix inversion,” IEEE Trans. on Neural Networks, vol. 16, no. 

6, pp. 1477–1490, 2005. 

[55] D.-L. Lee, “Pattern sequence recognition using a time-varying Hopfield network,” IEEE 

Trans. on Neural Networks, vol. 13, no. 2, pp. 330–342, 2002. 

[56] Z. Ma and A. Jutan, “Control of a pressure tank system using a decoupling control 

algorithm with a neural network adaptive scheme,” IEE Trans. on Control Theory, vol. 

150, no. 4, pp. 389–400, 2003. 

[57] Y. Li, Z. Tang, G.-P. Xia, R.-L. Wang, “A positively self-feedbacked Hopfield neural 

network architecture for crossbar switching,” IEEE Trans. on Circuits and Systems-part 

I: Regular papers, vol. 52, no. 1, pp. 200–206, 2005. 

[58] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, 

Reading, 1989. 

[59] Y. H. Pao, Functional-Link Net Computing: Theory, System Architecture, and 

Functionalities, Computer, 1992. 

[60] G. H. Park, Y. H. Pao, “Unconstrained word-based approach for offline script 

recognition using density-based random-vector functional-link net,” Neurocomputing, 

 101



vol. 31, no. 1–4, pp. 45–65, 2000. 

[61] B.-S. Lin, B.-S. Lin, F.-C. Chong, and F. Lai, “A functional link network with higher 

order statistics for signal enhancement,” IEEE Trans. on Signal Processing, vol. 54, no. 

12, pp. 4821–4826, 2006. 

[62] H. Zhao and J. Zhang, “Pipelined Chebysheb functional link artificial recurrent neural 

network for nonlinear adaptive filter,” IEEE Trans. on Systems Man Cybernetics, Part B, 

Cybernetics, vol. 40, no. 1, pp. 162–172, 2010. 

[63] I. Hassanzadeh, S. Khanmohammadi, J. Jiang, and G. Alizadeh, “Implementation of a 

functional link net-ANFIS controller for a robot manipulator,” Proc. International 

Workshop on Robot Motion and Control, pp. 399–404, 2002. 

[64] C. L. Giles and T. Maxwell, “Learning, invariance, and generalization in higher-order 

neural networks,” Applied Optics, no. 26, pp. 4972–4978, 1987. 

[65] M. Klassen, Y. H. Pao, and V. Chen, “Characteristics of the functional-link net: A 

higher order delta rule net,” Proc. IEEE Annual International Conf. on Neural Networks, 

San Diego, CA, USA, pp. 507–513, July 1988. 

[66] A. Sierra, J. A. Macias, and F. Corbacho, “Evolution of functional link networks,” IEEE 

Trans. on Evolutionary Computation, vol. 5, no. 1, pp. 54–65, 2001. 

[67] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of nonlinear dynamic 

systems using functional link artificial neural networks,” IEEE Trans. on Systems Man 

Cybernetics, Part B, Cybernetics, vol. 29, no. 2, pp. 254–262, 1999. 

[68] G. A. Barreto and A. F.R. Araújo, “Identification and control of dynamical systems using 

the self-organizing map,” IEEE Trans. on Neural Networks, vol. 15, no. 5, pp. 

1244–1259, 2004. 

[69] Z. Xiang and X. Deyun, “Fault diagnosis based on the fuzzy-recurrent neural network,” 

Asian Journal of Control, vol. 3, no. 2, pp. 89–95, 2001. 

[70] C.-H. Wang and K.-N. Hung, “High-order Hopfield-based neural network for nonlinear 

 102



system identification,” IEEE International Conference on Systems, Man, and 

Cybernetics, San Antonio, TX, USA, pp. 3346–3351, 2009. 

[71] J. C. Patra and A. C. Kot, “Nonlinear dynamic system identification using Chebyshev 

functional link artificial neural networks,” IEEE Trans. on Systems Man Cybernetics, 

Part B, Cybernetics, vol. 32, no. 4, pp. 505–511, 2002. 

[72] Y.-C. Hu and F.-M. Tseng, “Functional-link net with fuzzy integral for bankruptcy 

prediction,” Neurocomputing, vol. 70, pp. 2959–2968, 2007. 

[73] C.-H. Chen, C.-J. Lin, and C.-T. Lin, “A functional-link-based neurofuzzy network for 

nonlinear system control,” IEEE Trans. on Fuzzy Systems, vol. 16, no. 5, pp. 1362–1378, 

2008. 

[74] G. A. Rovithakis, “Tracking control of multi-input affine nonlinear dynamical systems 

with unknown nonlinearities using dynamical neural networks,” IEEE Trans. on Systems 

Man Cybernetics, Part B, Cybernetics, vol. 29, no. 2, pp. 179–189, 1999. 

[75] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P. A. Ioannou, 

“High-order neural network structures for identification for dynamical systems,” IEEE 

Trans. on Neural Networks, vol. 6, no. 2, pp. 422–431, 1995. 

[76] J. K. Hale, Ordinary Differential Equations, New York: Wiley, 1969. 

[77] C. Li and G. Chen, “Chaos and hyperchaos in fractional-order Rössler equations,” Phys. 

A, vol. 341, pp. 55–61, 2004. 

[78] J. G. Lu and G. Chen, “A note on the fractional-order Chen system,” Chaos, Solitons, 

Fractals, vol. 27, pp. 685–688, 2006. 

 

 103



Vita 
 

Name: Kun-Neng Hung 

 

Personal Details: 

 Place of Birth: Tainan, Taiwan, R.O.C. 

 Day of Birth: January 19, 1982 

 Gender: Male 

 

Education Background: 

  Degree    Date     School 

    B.S. E.E.   2000/9 – 2004/6  Yuan-Ze University, 

           Department of Electrical Engineering 

    M.S. E.E.   2004/9 – 2006/6  Yuan-Ze University, 

           Department of Electrical Engineering 

    Ph.D. E.E.   2006/9 – 2013/6  National Chiao Tung University, 

           Department of Electrical Engineering 

 

Advisor(s): 

M.S. –  

          Professor Chih-Min Lin, Yuan-Ze Universiry 

Ph.D. –  

          Professor Chi-Hsu Wang, National Chiao Tung Universiry 

 

 104



 105

Publication List 
 

Accepted Journal Papers: 
[1] Chi-Hsu Wang, and Kun-Neng Hung, “Intelligent Adaptive Law for Missile Guidance 

Using Fuzzy Neural Networks,” International Journal of Fuzzy Systems, 2013. 
[2] Chi-Hsu Wang, and Kun-Neng Hung, “Dynamical System Identification using 

High-Order Hopfield-based Neural Network (HOHNN),” Asian Journal of Control, vol. 
14, no. 6, pp. 1-14, 2012. 

 
Submitted Journal Papers: 
[1] Chi-Hsu Wang, and Kun-Neng Hung, “Dynamic Task Assignment with Path Control for 

Multi-Agent System using Intelligent Adaptive SOM-Based Fuzzy Neural Network,” 
submitted to Fuzzy Sets and Systems, Nov. 2012. 

[2] Chi-Hsu Wang, and Kun-Neng Hung, “Toward a New Task Assignment and Path 
Evolution (TAPE) for Missile Defense System (MDS) using Intelligent Adaptive SOM 
with Fuzzy Neural Networks,” submitted to IEEE Trans. on Systems, Man, and 
Cybernetics—Part B: Cybernetics, Oct. 2012. 

 
International Conference Papers: 
[1] Chi-Hsu Wang, and Kun-Neng Hung, “Adaptive SOM-Based Fuzzy Neural Network 

Controller Design for Multi-Agent System Dispatching and Path Planning,” IEEE World 
Congress on Computational Intelligence, Brisbane, Australia, pp. 1-7, June 2012. 

[2] Chi-Hsu Wang, and Kun-Neng Hung, “Adaptive High-Order Hopfield-based Neural 
Network Tracking Controller for Uncertain Nonlinear Dynamical System,” IEEE 
International Conference on Networking, Sensing, and Control, Chicago, IL, USA, pp. 
382-387, April 2010. 

[3] Chi-Hsu Wang, and Kun-Neng Hung, “High-Order Hopfield-based Neural Network for 
Nonlinear System Identification,” IEEE International Conference on Systems, Man, and 
Cybernetics, San Antonio, Texas, USA, pp. 3346-3351, Oct. 2009. 

 
國內研討會論文： 
[1] Chi-Hsu Wang, and Kun-Neng Hung, “Direct Adaptive Control Design using 

High-Order Hopfield-based Neural Network for Affine Nonlinear System,” National 
Conference on Fuzzy Theory and Its Applications, Kaohsiung, Taiwan, pp. 717-722, 
Dec. 2009. 

 


	
	Design of Task Assignment and Path Evolution for Missile Defense System (MDS)

	
	Design of Task Assignment and Path Evolution for Missile Defense System (MDS)


