ERITIEMER

B+ W X

el AN SR T S VAN A (R

Design of Task Assignment and Path Evolution for Missile Defense System (MDS)



HoEIF % 2. T irA fie 2 L AR

Design of Task Assignment and Path Evolution for Missile Defense System (MDS)

oy 2 LEYR Student : Kun-Neng Hung

R 2 e Advisor : Chi-Hsu Wang

A Thesis
Submitted to Institute of Electrical Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor.of Philosophy

in
Electrical Control Engineering

June 2013

Hsinchu, Taiwan, Republic of China



BAPF % L2 T34 fie 2 AL
B EYR e 1pce gl

=2l ~FR a7y o7 L1

g haut i Sechdy IR AL 0 AR B RS B IATOI A E I o B A
3 5 p Ak 2 (MAS, multi-agent system) » H

Hoh s Rk p B §7 4 £ RERBTT > T A A
ThiE N i S 2 AR o P Gk S (MDS, missile defense system) < % -

B kiienus R REN G R RS D B F KW P F S
Bhpol X R EG I) B FEREF AL P R REE S 5
A~ 5 - N edF E s R E R RLING o BT A i

)3}

FHEE KRR R B ARBRE A T L i kel

/

FHABEBH BT A B R LR 0 T A RO e
(SOM, self-organizing map) » H B4t 4305 Mot 5§ #7199 § Bk
Bhendo ] BWRAE G PR RET S B HEE S B L B oope

Aot B F e R EE R S F R KT g BRAE TR o AR
O o Ak PR AGEE 2 R S A A R TR A g

B (FNN, fuzzy neural network)iy#1 % 7 # - 4p #3> CMAC(cerebellar model
articulation controller) - #3BEH 31 i B pFRFE L 2 & HPEYE ~ > [ B -



ol WAk SR S R i D i B
A RN R IRE L g PEF%%%T?’ S8 F Y ¢
Sl o RS RS RV P g P BRI e 2 O
SRRV E AREEI NS S REE 0 Flt T Y ?‘U}F’_&i‘fﬁﬂ:—
B AR 25 NP3 ES ZFE A SR E (HOHNN,
high-order Hopfield-base neural network) j& # &% i % oz #%] o & ¢ £ 4 2=
fAd SR ? and ) s B e 55 (FLN, functional link net) ic 3% i3 ¢ m@l
gz 24 S o g B R § 2=/ % (HNN, Hopfield neural
network) » *# 2“7 D end i B R Rk AL pE S ik A on 2 o
£ -t aciE B 2 00 R e W SR k2 B E
%’ﬁ?%ﬂ?j%%*%iﬂ%i%@_hﬁﬁWﬁ$&¢EWﬁ%o
Pt A B R R AR RO T RS R 2 P E R A

S
Kﬁﬂﬁ%ﬁﬂ#@%ﬂ%&%ﬁ%ﬁﬁ%&%&%ﬁ}&ﬁ%ﬂ&ﬁﬁﬁ

R



Design of Task Assignment and Path Evolution for Missile

Defense System (MDS)

Student: Kun-Neng Hung Advisor: Dr. Chi-Hsu Wang

Institute of Electrical Control Engineering
National Chiao Tung University

ABSTRACT

In this dissertation, two novel-control schemes.are proposed to solve the
control problems of.nonlinear-systems. The first is the multi-agent system (MAS)
consists of multiple autonomous systems which. can activate, interact, and
communicate with each others or from central command, and eventually
complete some missions under the desired conditions. Missile defense system
(MDS) is a suitable application of MAS: threat from multiple attacking missiles,
some limited assets are under attack, and multiple defense missiles (or agents)
are launched to intercept the associated attacking missiles (or targets), and a
fuzzy neural network (FNN) controller with self-organizing map (SOM) for
MAS are investigated in the first part of this thesis. The presented approaches
are better than traditional exhausted method which can find the optimal solution
though time-consuming when the processing data increases. The advantage of
SOM is the less computational load under the condition of minimal total asset
damages. Therefore, SOM can be adopted to not only dispatch the agents toward
the targets, but also lower the computational load under the desired condition.
Based on the missile guidance law, the proposed FNN can deal with the
problems of large computational load and miss distance by the cerebellar model

articulation controller (CMAC). Finally, the proposed SOM-based FNN



controller adopted in the highly nonlinear MDS can be guaranteed stable and the
parameters can be updated via Lyapunov stability criterion. From the
experimental results, it can be demonstrated the possibility of applying the
proposed intelligent control method in MDS. In the second part of the thesis, the
high-order Hopfield-based neural network (HOHNN) is proposed to the
dynamical system identification. The functional link net (FLN) in HOHNN has
additional inputs for each neuron. In comparison with the traditional Hopfield
neural network (HNN), the compact structure of FLN with a systematic order
mathematical representation combined into the proposed HOHNN has additional
inputs for each neuron for faster convergence rate and less computational load.
In addition, the weighting factors-in. HOHNN. are tuned via the Lyapunov
stability theorem to guarantee the convergence performance of real-time system
identification. The. simulation—results and computation analysis for different
Hopfield-based neural networks are conducted to show the effectiveness of

HOHNN in uncertain dynamical system identification.
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Chapter 1

Introduction

1.1 Background and Motivation

The multi-agent system (MAS) has attracted increasing interests among researchers
working on a wide variety of topics due to its broad applications in autonomous underwater
vehicles, unmanned aerial helicopters, mobile multi-robot formations, and so on [1-8]. Some
studies have reported on consensus control and synchronization [1-8], including the
leaderless and modified leader<follower architecture in the presence of actuator faults. The
main part of consensus control'is that the agents communicate with each other via an adjacent
graph and behaves in'a similar manner to-an equilibrium state.'However, the dynamic task
assignment between agents and targets was not considered-in the studies, and few intelligent
control techniques have been applied to find the agent trajectories. The task assignment of
MAS is to decide the dispatching for agents toward the corresponding targets according to
some exhaustive criteria, or.to control a group of agents so. that they can move to their
designated target locations with. the. coordination and cooperation of each robot. Many
researches have been proposed in the task assignment domain, like the intelligent
transportation systems (ITS) [9—-11], transport logistics [12], taxi dispatching [13], and so on.
In [9-14], the most important factor considered in MAS is the total computational loads (or
balance of group resources) which means the total real-time travel period has to be minimized.
However, the considered targets in [9—14] were static, and dynamic task assignments with
intelligent path control algorithms for MAS have not been developed yet. The traditional
exhaustive method used to find the minimal total damaging cost is time-consuming, that is,
the solution can be obtained, and the number of computation steps is D!/(D—-N)!, D> N

when there are N agents and D targets. In practice the task assignment can not accept such an



inefficient method since the computational load will get heavier as N becomes larger. There
are various algorithms proposed for the task assignment problem, such as the genetic
algorithm [15], agent based algorithm [16], dynamic Tabu search algorithm [17], and graph
matching algorithm [18]. However, these algorithms mainly focus on the target assignment
problem without considering the nonlinear control and path planning of robots. In comparison
with leader-following tracking problem, there are no information interchanges among the
agents in our MAS because one agent just has to know whether its corresponding target has
been matched to another agent. Moreover, it is convenient and efficient for task assignments
that we do not need to consider the information delays between neighbors or the other agents
due to the communication constraints. The missile.defense system (MDS) provides a sort of
protective shield against a limited missile attack. The incoming missiles are launched to attack
limited assets which have their own-significances. Once an asset isunfortunately destroyed by
some incoming missiles, it will cause the corresponding damaging cost which can be regarded
as the value of asset. Because the number of assets that are under attacking by unknown
number of incoming:missiles, the ‘allocation -of ‘defending missiles becomes important to
ensure the damaging cost.are minimized (or the surviving assets are maximized). A dynamic
programming for interceptor allocation problem-in theater missile defense (TMD) [43] has
been discussed to develop reliable defense guidelines. However, the approach in [43] is too
complex to be implemented in practice. In this thesis, we will treat the MDS as an important
application of MAS [1-8]. The defending missiles and incoming missiles in MDS represent as
agents and targets in MAS, respectively. Therefore, a task assignment considered in MAS can
easily deal with the allocation problem in MDS.

The self-organizing map (SOM) first proposed in [19] has the winner-takes-all property
that activates the winner among a group of neuron based on competitive learning. The SOM
has been studied for various areas such as web content mining [20], pattern classification [21],

and image processing [22], etc. In [23], SOM has been proposed as a useful dynamic task
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assignment method for a multi-robot system, in which the positions of agents are updated by
the SOM with neighborhood update rule. Once the best match is found by SOM, the agents
start to move their initial targets, using a simple incremental path planning mechanism with
dynamic weighting factors. However, the weighting factors should be updated in the next
iteration via the learning neighborhood vectors to account for the random indexed targets.
Furthermore, the SOM consists of distributed and competitive methods that can efficiently
and dynamically dispatch the agents to the respective targets. In comparison with traditional
SOM algorithm, the SOM proposed in [24] eliminated the time consuming tuning in
neighborhood function to reduce the computational load in task assignment. A simple
incremental path planning [23] has been adopted.to allow the agents to move toward the
chosen targets; however, the high nonlinearities and uncertainties of the agents (such as robots)
have never been considered. The-neural network control technique has been adopted for
various systems in recent works [25-30]. The important element is the parameterized neural
network, which can approximate the unknown system dynamics after the learning process. In
the past decades, the fuzzy logic and neural network have grown into a popular research topic
[31-36]. The fuzzy neural network (FNN) has the advantages of fuzzy systems and neural
network, because of the combination of the fuzzy reasoning capability and the neural network
on-line learning capability [31]. The FNN has been adopted widely for the control and
identification application of complex dynamical systems [32, 33].

In control purpose, the path evolution (or planning) adopted by FNN can smoothly and
robustly be constructed when the nonlinear dynamics and uncertainties of agents are
considered in MDS. The adaptive SOM with FNN controller constructed under the command
line-of-sight (CLOS) missile guidance law [44—46] consists of FNN controller and monitoring
controller. The principle of CLOS missile guidance law is to force the agent to fly as closely
as possible along the instantaneous line-of-sight (LOS) between the ground tracker and the
target. If the missile can continuously stay on the LOS, it will eventually hit the target. The

3



CLOS missile guidance law has been regarded as a low-cost guidance concept because it
emphasizes placement of avionics on the launch platform, as opposed to mounting on the
expendable weapons [44]. Many different guidance laws have been developed over the years,
and with the advent of highly maneuverable targets, research on improved guidance laws is
still active [47-49]. However, their methods have resulted in complicated controllers and
some of the guidance laws require knowledge of the maneuvering model of the targets. These
are limitations for guidance of missiles, therefore, the guidance system should be robust
enough to reject disturbances, and the escaping model of the target should not be considered.
A cerebellar model articulation controller (CMAC) in [46] has been developed under CLOS
for missile guidance law. However, the CMAC structure is too complex to be implemented in
real-time environment, ‘and the enormous weight space and limited modeling capability in
CMAC can be further improvedusing the proposed FNN controller with fewer mappings and
layers. Moreover, the multi-agent-multi-target cases with task assignment have not been
discussed in [44—49]. The surviving assets [43] in MDS are the most important role for the
task assignment to efficiently make an interception list-for agents to intercept targets. As long
as the interception list is done by SOM, the FNN controller will be adopted to force the agents
to intercept their corresponding targets. Finally, the overall task assignment and path
evolution (or planning) (TAPE) in MAS can be achieved to be adopted in MDS. Figure 1-1
illustrates the relationships between TAPE, MAS, and MDS. The MDS (outermost circle)
contains various spatial fields such as sea-based, space-based, and high altitude anti-ballistic
missile systems. In order to cope with task assignment and path evolution (TAPE), the
proposed MAS in this paper is considered as the application of multi-agent-multi-target

space-based missile guidance.



SOM - Self
Organizing Map

FNN - Fuzzy
Neural Network

Fig. 1-1. The relationships between TAPE, MAS, and MDS.

The Hopfield neural network (HNN) proposed in 1982 [50] is an auto-associative
learning network that consists of a set of neurons with a multiple-loop feedback structure in
which the number of feedback loops is equal to the number of neurons. The HNN is a type of
recurrent neural network: (RNN) that has important capabilities that are not found in
feed-forward neural networks (FNNs), such as attractor dynamics and the ability to store
information for later use [51]. The abilities of HNN to deal with time-varying input or output
through their own natural temporal operations [52-54] are particularly interesting.
Researchers have devoted much attention to applying neural networks to identify and model
nonlinear dynamical systems. Neural networks are suitable for identifying nonlinear
dynamical systems because of their learning and memorization capabilities. In recent years,
research on HNN has been conducted for pattern recognition [55], adaptive control [56], and
crossbar switching problem [57]. The effectiveness of functional link net (FLN) in
classification was first proposed in 1989 [58, 59] and has been combined with the HNN to

create the high-order neural networks (HONNs). The extra input patterns of a FLN are formed
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by either a functional expansion representation, tensor representation, or a combination of
these two representations. The FLN may be conveniently used for functional approximation
and pattern classification with faster convergence rate and less computational load than a
multilayer perceptron (MLP) (or the static neural network) from many considerable interests
in exploring the applications of functional link model to deal with nonlinearities and
uncertainties [60—63]. A radial basis function neural network (RBFNN) was combined with a
random-vector FLN to improve the recognition of English language script. In [61], FLN with
higher-order statistics was introduced for signal enhancement. A nonlinear adaptive filter with
pipelined Chebyshev functional link artificial recurrent neural network in [62] used a
modification real-time recurrent learning algorithm. for nonlinear colored signal prediction. In
[63], a functional link net-adaptive neuro fuzzy system was adopted as a controller for robot
path tracking purposes. The advantages of FLN shown.in [64-66] indicated that not only is
the efficiency of supervised learning greatly improved, but a flat net without hidden layer is
sufficiently capable to do the job. However, the functional link artificial neural networks in
[67] did not include the HNN. Furthermore; the weighting factors were tuned by
back-propagation algorithm, which cannot guarantee the convergence of tuning results,
especially in real-time applications.

The applications of MLP for identification were studied in [68]. However, the fact that
RNN involves dynamic elements with lower connectivity and fewer weighting factors results
in the easier learning process of RNN than that of MLP [38, 69]. Thus, a further extension of
RNN to yield HOHNN for dynamical system identification is proposed in this thesis.
HOHNN is basically formed by HNN and a compact functional link structure with a
systematic order mathematical representation. The application of HOHNN in the
identification is explored to show the advantages of extra inputs for each neuron. In [70], the
initial efforts were only reflected toward the effectiveness of the nonlinear system

identification via HOHNN.



From the above discussions of novel neural network structures, there are two
motivations in this thesis. The first motivation is the task assignment for the agents to be
forced in a bounded start region to their corresponding targets in a one-to-one mapping. If any
target is to be inserted at any time instant, the new best-matching pairs will be dynamically
found by SOM. Furthermore, the adaptive process of SOM was replaced by the proposed
FNN control mechanism, in which the path planning of agents can be smoothly and robustly
constructed. In order to effectively lead the high-order nonlinear agents to their targets, a FNN
controller and monitoring controller are adopted in the adaptive process of SOM. Therefore, a
new intelligent adaptive algorithm based on SOM is proposed in this thesis to deal with the
dynamic task assignment and path control problem. In comparison with the traditional SOM,
the total resources can also be minimized by this new approach, in which only the winner
vectors are considered. The intelligent adaptive SOM-based FNN controller is operated in
conjunction with thetraditional SOM in order to find the best paths allowing all agents to go
to their final targets.. The Lyapunov adaptive process is adopted to update the weighting
factors, which is very.different from the simple update-of weighting factors for path planning
in traditional SOM. A new monitoring controller is also designed to work with FNN controller;
thus, the agents can be forced o, go to their corresponding targets within the constraints of
nonlinear dynamics and uncertainties of the agents (or robots). The second motivation in this
thesis is the improvement of Hopfield-based neural networks, in which a compact functional
link structure with a systematic order mathematical representation in FLN can perform
satisfactory results among the other Hopfield-based neural network. A Lyapunov-based tuning
theorem is also proposed to find the optimal weighting factor matrix of HOHNN to achieve
favorable approximation error, which can be attenuated to arbitrary specified level. The robust
learning analysis is also discussed to improve the convergence performance. Finally, the
simulation results and computation analysis for different Hopfield-based neural networks are

conducted to show the effectiveness of HOHNN in uncertain dynamical system identification.
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More detailed discussions and comparisons are proposed in this thesis.

1.2 Major Works

In this dissertation, a SOM-based FNN controller with a monitoring controller is
adopted for the task assignment and path evolution (or planning). The proposed FNN
controller utilized for missile guidance is to mimic an ideal controller, and the monitoring
controller is designed to compensate the tracking error between the FNN controller and the
ideal controller. The parameters of FNN are tuned based on the Lyapunov stability criterion to
achieve a favorable performance. In comparison with CMAC, the FNN controller behaves
less miss distance and computational load in one-to-one .agent-target missile guidance. In
comparison with the result in [46] using CMAC, our control mechanism is much simplified
with nearly the samesaccuracy. In-the-simulation results, it can be seen that the proposed FNN
controller can not only effectively be adopted in the scenario, but also the computational load
of proposed FNN controller is better than that by using CMAC [46]. Furthermore in the MAS,
the SOM has the advantage, of the dimension-reduction from inputs and the efficient
dispatching between agents and targets under the desired condition. From the results, the FNN
controller combined with SOM can not only deal with the agent-target matching in
two-dimensional space, but also force a group of agents to different number of targets in the
real-time MDS environment. The objective of this new MDS system is to minimize the total
damaging cost after executing the TAPE system, which is an immediate application of MAS.
Excellent simulation results are obtained under three scenarios via TAPE to achieve
successful MDS.

In addition, for the system identification, the other purpose of the dissertation is to
develop a new Hopfield-based neural network in which the FLN structure with systematic
mathematical representation can efficiently perform the nonlinear dynamical system

identification. The proposed HOHNN can be guaranteed stable by the Lyapunov stability
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criterion and its weighting factors can be adjusted to minimize the approximation error by the
robust learning analysis. Finally, the proposed scheme is applied to identify the regular-order
Chen system to illustrate its effectiveness. The illustrated examples demonstrate that the
proposed HOHNN can obtain better identification performance than the other Hopfield-based

neural networks.

1.3 Dissertation Overview

Four MAS systems are illustrated to achieve successful results using this new approach.
It is noted that this new proposed approach.can also handle the insertion of random targets at
any time instant and moving targets, which is illustrated in Cases 2 and 3 of Section VI.

This thesis is organized as follows. The problem of formulation of MAS and SOM
algorithm for task assignment 1s-first defined in Chapter 2. Chapter 3 presents the task
assignment and path evolution (or planning) for MDS. The proposed FNN controller and
Lyapunov stability analysis are also provided in Chapter 2 and Chapter 3. In Chapter 4, the
HOHNN is proposed:for nonlinear dynamical system-identification. Finally, the discussions
and future works of the proposed approach are given in Chapter 5.

The major contributions of this thesis are the successful developments of the following:
1) an adaptive fuzzy neural network (FNN) control system in which the Lyapunov stability
theorem is used for on-line tuning of the missile guidance design parameters. 2) a monitoring
controller is used to compensate the residual of the tracking error. 3) an online dispatching in
multi-agent system (MAS) under the desired condition is adopted for the task assignment
problem. 4) a battle scenario environment of the missile defense system (MDS) is constructed.
5) a novel high-order Hopfield-based neural network (HOHNN) is proposed for nonlinear

dynamical system identification.



Chapter 2

Dynamic Task Assignment with Path Control for Multi-Agent
System using Intelligent Adaptive SOM-based Fuzzy Neural

Network

2.1 Background and Motivation

The traditional self-organizing map (SOM) aims to exclusively search the real-time
shortest paths for all agents, thus-allowing them to go to their targets. After this traditional
task assignment, the weighting factors of our new SOM-based fuzzy neural network (FNN)
controller are activated to force the agents toward their corresponding targets. The FNN
controller is the main controller-combining the fuzzy rules with the neural network. A
monitoring controller is also designed to reduce the error between FNN controller and ideal
controller. Using the Lyapunov constraints, the weighting factors for the proposed

SOM-based FNN controller are updated to guarantee the stability of the path control system.

2.2 Problem Formulation

Consider a group of N agents in the M-dimensional workspace, it is desired to first
perform task assignment by self-organizing map (SOM), after which the path control is
activated so that all the agents are capable of going to their targets under the agent dynamics

constraints. The dynamics for the i™ agent can be described by [37]

Ma, +f =u,, I<i<N (2-1)
where aieﬂ%M is the position; MiefRMXM is the mass or inertia matrix; fl.eiRM
represents the centripedal, Corriolis, gravitational effects and additive disturbances; and

u, € R" represents the control input. We assume that
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f =F'+F/ (2-2)
where F' and F' represent the known and the unknown vectors of the i" agent,

respectively. We also assume that the unknown vector is bounded by a known bound F,. In

other words, let

F_u

1

<F (2-3)

for all the N agents. Moreover, it is assumed that, M; is nonsingular and its lower and upper

bounds are bounded by a known bound. In other words, the matrices M; satisfy

Mu”()z”2 <a'M,(x,)o< MUI.”oz”2 (2-4)

h

where M;; > 0 and My; < o are the known lower and upper bounds of the i agent,

respectively, and a'eRY is ~an arbitrary ~vector. Assume that the initial positions
A={a,a,,.,a,} ofagentsare located randomly in-a given bounded space, and the initial
positions T ={t ,t,....,t,} of targets are distributed randomly in.the same M-dimensional
workspace. Then the'main control objective is-to-find the best-matching pairs iteratively by
SOM, such that agents-can find<their relatively shorter paths to the final chosen targets.
Therefore, the planning paths for.allragents may have initial chattering (or transient) effects;
nevertheless, these disappear once the best-match time #, is reached. The stability of the
closed-loop system can be guaranteed by adaptively adjusting the weighting factors for the
proposed SOM-based FNN controller with the aid of a monitoring controller. Define the

control mputs U = {u,,u,,..,u,} for all the agents, the overall concept proposed in this

chapter can be illustrated in the following Fig. 2-1.
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Fig. 2-1. The closed-loop adaptive SOM-based FNN controller for MAS.

2.3 The Self-Organizing Map (SOM)
2.3.1  Description of SOM

The principal‘goal of SOM is to transform an input pattern of arbitrary dimension into a
one- or two-dimensional discrete map as well as to perform this transformation adaptively in a
topologically orderedfashion [19, 38]. The SOM is suitable for dealing with the dynamic task
assignment because the dimension of the targets can'be simplified, and mapped to the
relatively corresponding agents. Furthermore, the SOM can iteratively search the
best-matching pairs if the targets and agents are dynamically inserted into the workspace. The
overall MAS system can be considered a self-organizing system which can adjust its basic

structure when its environment changes.

2.3.2  Major Works
The algorithm of the SOM proceeds first by initializing the synaptic weights in the

network, such that it can be done by assigning them in random indexed patterns. Thus, no
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prior index is imposed on the feature map. Once the network has been properly initialized,
there are three essential processes involved in the formation of the SOM, as follows.
Random Indexed Process:

In order to prevent the dependence of an agent on the initial workspace configuration and
the input data order, all targets are placed in random indexed patterns in iterations after the
first sampling time 7s. For each input pattern shown in Fig. 2-2, the random indexed input
vectors chosen from the positions of targets are denoted as

R={r,r,,...v,,...r,}, t>T; (2-5)
where T is the sampling time. As long as an,iteration starts, the target vector is transformed
to the random indexed input vector. The neurons.in the network compute their respective
values of a discriminant function. This discriminant function then provides the basis for
competition among the neurons.-The-particular neuron” with the largest value of discriminant
function is declared'the winner of the competition. The synaptic weight vector of each neuron
in the network has the same dimension as the input space. Let the synaptic weight vector

corresponding to the input r; be denoted by
P, =[P, Py ° Pha ]T . (2-6)

To find the best match for the input vector r; with the synaptic weight vectors p,,, we
compare the inner products pi’dTrd to the N agents and select the largest. Based on

maximizing the inner product pi,dTrd , the best-matching criterion is mathematically

equivalent to minimizing the Euclidean distance. If we use the index i, to identify the neuron
that best matches the input vector r,;, we may then determine the index of winner neuron i,,

which satisfies the following condition

, i=12,.,N (2-7)

i, =i(r,) =arg mjn”rd “Pia
l
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that sums up the essence of the random indexed process among the neurons. Depending on
the application of interest, the response of the network could either be the index of the

winning neuron or the synaptic weight vector closest to the input vector in a Euclidean sense.

4
oo

Fig. 2-2. The structure of self-organizing map (SOM).

Competitive Process:

The winner neuron determines the spatial location of a topological neighborhood of
excited neurons. In traditional SOM, the winning neuron locates the center of a topological
neighborhood of cooperating neurons. In this chapter, the neighborhood of the winner is
neglected since the agents move toward their corresponding targets without any cooperative
process. For a given target as an input, the output neurons compete to be the winner according
to a specified criterion described as

li,,i,]=min{D, ;,i=12,..,N;d =1,2,...,D; {i,d} ¢ O} (2-8)
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where [iy, i;] denotes that the pair in which the itth target from the iwth agent is the winner, and
Q is the set of neurons in which the winner has been chosen in an iteration. The distance D;,
is given as

D, =[r, -a,]. (2-9)
As long as the N winners are found in an iteration, the index of agents A are re-allocated to

obtain a new W ={w,,w,,..,w,} corresponding to the targets to be used in the adaptive

process. From the above two processes, the computational load for finding the best-matching
pairs can be obtained as O(N?). In comparison with traditional SOM method, the new adaptive
SOM method eliminates the time consuming tuning in neighborhood function and is able to
reduce the computational load in the task assignment.of MAS.

Adaptive Process:

The last process enables the excited neurons to increase the individual values of their
discriminant functions in relation to the input patterns through suitable adjustments applied to
their synaptic weights. In the competitive process; we define the group vector consisting of
the winner agents defined as W. This group vector is then utilized to obtain the error matrix to
update the weights of the winner. In.comparison-with incremental adjustment in traditional
SOM, the proposed adaptive FNN controller can handle the overall path control for

high-order nonlinear agents. This updating method is explained in the following section.

2.4  Design of Fuzzy Neural Network (FNN) Controller
2.4.1  Description of FNN

The FNN architecture in this thesis shown in Fig. 2-3 is a fully linked layer, in which
the input layer accepts the input variables, the fuzzification layer calculates the Gaussian
membership function and represents the fuzzy rules, and the output layer sums the output of

the fuzzification layers. The fuzzy system in internal FNN is trained by the neural network
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adaptive algorithm. Therefore, the fuzzy inference system and artificial neural network can
complementarily operate for the controlling of nonlinear dynamical systems. For each layer in
the following figure, the superscripted number represents each layer and the subscripted
number represents the neuron in this layer. The detailed net input and net output are

represented as follows.

Vo
- AN VARN RN J
4 Y Y Y

Input layer Fuzzification layer Inference layer Output layer

Fig. 2-3. The architecture of fuzzy neural network (FNN).

Input layer:
An input vector is fed into the input layer of the /™ agent. The net input and output of

the input layer are presented as follows.
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net, = x, (2-10)

yi = fi (net,) = net, (2-11)
where net, represents the net input in this layer, and x} and y! are defined as the A"

input and output to the node of input layer, respectively. Each node in this layer represents an
input linguistic variable. The presentations of notation in following layers are similar to those
defined in this layer.
Fuzzification layer:

Each node performs the fuzzification operation and acts as an element for membership
degree calculation, in which the Gaussian function.is‘adopted as the membership function of

the IF-parts of the fuzzy rules given by

2 2
net, = _w (2-12)
Vin
¥, = (nety) = exp(net; ) (2-13)

where my;, and v, are-referred to as the mean and the standard deviation of the Gaussian
function, respectively.

Inference layer:
Let Alh , Azh s ey A,’} , and B”" denote the fuzzy sets characterized by their

corresponding membership function in (2-12) and (2-13) in the function layer, the 4™ fuzzy

rule can be defined as
Rule 7: IF x] is A' AND x; is 4’ AND ..., x; is A, THEN x, is B".

The inference layer implements the fuzzy AND aggregation operation which is chosen as the
simple PRODUCT operation. Each node multiplies the incoming signals and outputs the

result of this product as
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net, = [ [ws, % (2-14)
h=1
3 3 3 net;
y, =1, net)) = (2-15)

where w,, represents the rule weight of the 4" fired rule between the function layer and the

inference layer.
Output layer:

Each node multiplies the incoming signals and outputs the result of this product as

follows
P
net! = Z wfmx; (2-16)
p=1
y;‘ £ f04 (netf) S net: (2-17)

where w?  represents the output action strength of the o™ output associated with the p™ rule.

Finally, the overall representation is given by

P H
Yo = yj & ZwinHeXp(_(xllc _mkh)2 /(th)2)~ (2-18)
p=1 h=1
In summary, the FNN output.can be presented as
P
Yo :ijaoep(xllcvmkhsvkh) (2-19)
p=1
where
1 Z 1 2 2
ep (X5 My Vi) = H exp(—(x, —my, )" /[(v,)"). (2-20)

h=1

The above (2-20) represents the firing weight of the p™ neuron in the rule layer. The output in

the output layer of FNN is adopted as the main controller to the MAS.

2.4.2  Major Works
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The control problem of the MAS is to control the position of the winner target so that
they can move to the desired target. The error matrix of MAS is defined as
e=R-W={ee,,.e,..e,}. (2-21)
Considering the /™ agent, the tracking error vector defined as

¢, (2-22)

represents the input vector fed into the input node of FNN controller. For the ease of notation,
the tracking error vector for single agent is denoted as es. Assuming all the system dynamics
are well known and that there exists an ideal controller for i agent and 4™ target based on the
optimal control design, we then arrive at [39]:

u, =M, +f.+M. (ke +ke,), 1Si<N, 1<d<D. (2-23)
Applying (2-23) into (2=1), the following error dynamics in two-dimensional workspace can
be given

¢, =Ke, (2-24)

0 1
K:
Lkz —kj

1s a Hurwitz matrix by choosing proper 4; and k,. However, the ideal controller u;, is difficult

where

to implement in practice since the system dynamics is highly nonlinear and sometimes
unavailable. Therefore, in order to control the output state efficiently, the control law is

assumed to take the following form:

u =u, +u, (2-25)
where uy,, is a FNN controller, and u,, is a monitoring controller. The FNN control ug, is the
main tracking controller used to imitate the ideal controller in (2-23), and the monitoring

controller w,, is designed to recover the residual approximation error. The monitoring

controller, which is similar to a hitting controller in a traditional sliding mode controller, is

19



derived in the sense of Lyapunov theorem to cope with all system uncertainties to guarantee
the stability of the system. Fig. 2-4 illustrates the concept of (2-25) in our new approach. The
FNN structure shown in Figs. 2-3 and 2-4 has been considered. For simplicity, the following

m and v vectors are defined to collect all parameters in the hidden layer of Fig. 2-3 given as

m=[m Mg My, < My "'mKH]T (2-26)
V=[vove Viat Ve, Vi "'VKH]T (2-27)
Monitoring U
Controller
¢;
eSl_ =1 . +
ei . . ' ui
» Adaptive Algorithm §3—>

FNN Controller

Fig. 2-4. The configuration of g, and u,, for the i agent.

Then, the output of FNN can be represented in vector form as

y, =W, 0(x,m,v) (2-28)

where y, =y}, w,=[w,, w,, - w1 ,and 0=[6 6, - 6,] .By the universal

el

approximation theorem, there exists an ideal yo* =y, (x, we*, m’,v’) such that [40, 41]

vy =y, +E=w, 0(x,m",v)+E (2-29)
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where E denotes the approximation error and w,, m’, and v are the optimal parameter
vectors of w,, m, and v, respectively. In fact, the optimal parameter vectors needed to best
approximate a given nonlinear function are difficult to determine. Thus, an estimate function

is defined as

¥, =y,(x,W,,m,v)=w,0(x,m,V) (2-30)
where Ww,, m, and Vv are the estimates of we*, m*, and v*, respectively. For notational
convenience, we denote 0 =0(x,m",v’) and 0=0(x,m,V) . Then, we define the

estimation error as

(2-31)

*

where W, =w_, —w, and 0<0"<0. In the following, some tuning laws are derived to

on-line tune the parameters of the FNN to achieve favorable estimation. To achieve this goal,
we use the linearization technique to transform thenonlinear Gaussian functions into partially

linear form so that the Lyapunov theorem extension can be applied [40] as follows

1 [0 [ea]
~ |7 om ov , ,
0= : |=| : m+| v+H=0 m+60 v+H (2-32)
gH 00, 00,
arn—m:rfl av—v:Q
where fi=m'—th, V=v -V, Om:[% %} , QV:[% %} ,
om om | . ov ov |,
96,

and H is the higher-order term, and 20, and

are defined respectively as
om ov
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00, 00, tolv)
|:a_n;:|:{0(hl)><k % 57; O(Hh)xk:| (2-33)

00, 00, 00,
[ GVI } =|:0(h1)><k ﬁ 8\),:,, 0(Hh)><kj|' (2-34)

Substituting (2-32) into (2-31) gives

~ ~ T
Yo =W,
T
e

==%i

+w,” 0 "m+0 V+H)+W,0+E
" (2-35)
m

[«=)]

T & ~Tn 4
0w, +vow, +d

I
)]

+

~ A A T T~ ~ A .
=m’'0,Ww, and W, 0 V=V'0 W, are used since they are scalars, and the

g
S
2
(¢}
=
3
=
|

uncertain term d=v3'eTH+vVeT§+E is -assumed ‘to. be bounded by ||d]|=A. Since the

uncertainty bound A is difficult'to determine, it is on-line estimated in the following section.

2.5 The Lyapunov Stability Analysis

The proposed control system is comprised of an FNN. identifier and an optimal
controller defined in(2-25), in which wg, 1s used to-mimic the ideal controller u;;, and the
compensation tangent controller u,, is used to compensate for the difference between the FNN
controller and the ideal controller. Substituting (2-25) into (2-1) and using (2-23), the error

dynamic equation becomes

é; =Keg +B(u, —u,, —u,)=Ke, +B(W,0+m'0,W,+¥0 W, +d-u,) (2-36)

-1 . . . . . . . .
where B=M, is a bounded matrix. Since K is a Hurwitz matrix, given a symmetric

positive-definite matrix Q e R>* , there exists a symmetric positive-definite matrix
P € R, such that the following Lyapunov equation [39, 42]
K'P+PK =-Q (2-37)

is satisfied.
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Theorem 2-1: Consider the dynamic nonlinear system represented by (2-1) with the control
law in (2-25), where the FNN identifier is designed as (2-30). Then, the weighting vectors
m, and v will remain bounded, and the performance errors will approach zero. The

w

e

parameters are updated by the following learning rules:

W, =-w,=ne,PBO (2-38)
m=-m=7e, PBO W, (2-39)
Vv=-vV=ne,/PBO W, (2-40)
u; =Atanh(es PB) (2-41)

where 7, 17,, and 7, are the positive real values. Then; the stability of the FNN control system
can be guaranteed.
Proof:

Let the Lyapunov-like function candidate be

1

4 =EeSTPeS + Y | K2l (2-42)

V=—é/Pe,+=e,/Péy r=—w ', Tl vy
n, n, n,
= %eST(KTP +PK)e, +e, PB(W,0+1’0 W, +7'0 W)
re, PB(A—u,)+——% ¥ + @4V 2-43)
nw nm 77\}

1 ~ ~ 1 - ~ . l -
= —EeSTQeS +wer(eSTPBO+—we)+mT(eSTPB9mwe +—m)
7714’ 777’1

- A
+V (e, PBO,W, +—V)+e, PB(d-u,)

v

Substituting the learning rules (2-38)—(2-41) into (2-43), (2-43) becomes
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p - —%eSTQeS te,PB(d-u,)
< —%eSTQeS +[e;"PB|jd] - Ae,PBtanh(e,  PB)
< —%eSTQeS +Ale,"PB] (2-44)
< —llles [Paia Qs |+ [P B

<=2 (@ =Dl + [P ]

where A_. (Q) is the minimum eigenvalue of Q. Since A_. (Q) can be chosen as

‘min min

(Q) > 1, then (2-44) reveals that

mm

(|V(O)| V@0))) + |PB|’ I(]|A||dt (2-45)

4 (Q)—1

‘min

I()t||es||2dt —
ﬂ’mm (Q)

for all 1=0. Furthermore, if A is'squared integratable, then from (2-45), e, € L, has been

proven [39]. In addition, the right-hand side of (2-45) is bounded, that is, €, € L . Using
Barbalat’s Lemma [39], we can prove that lirn||es|| =0 when I(:”A”dt <. The stability of
—0

the overall approximation scheme is guaranteed based on the above results and the Lyapunov
stability theorem. Based on (2-38)(2-40), the adaptive law of weighting factors in an element
form can be obtained. Thus, the Lyapunov stability theorem is guaranteed under the optimal

approximation model with no‘modeling error. Q.E.D.

2.6 llustrated Examples
In this section, four numerical simulation cases are presented in order to illustrate the
effectiveness of the proposed new intelligent SOM-based FNN controller discussed in
previous section. For ease of plotting, we only consider agents and targets in a bounded
two-dimensional space; however, qualitatively, the results are expected to be the same for
higher dimensions. We consider agents with point-mass dynamics with unknown mass and
additive sinusoidal disturbances. In other words, we consider the model
Ma, +f =u,, 1<i<N. (2-46)
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Without loss of generality, we assume that unity mass M; = 1 are for all the N agents, and that
there exists the following unknown uncertainties.

Case2-1: N=D=6

(- e - e _ cos(t?)
lsing®) [ eos@) [ | e |

in(c’) (1)sin(s*)  sin(1) =
— sin — cos(t) sin e’ sin
f,=| = s ,andf, =| )
e cos(t) e sin(¢) sin(z) cos(t”)
Cases 2-2 and 2-3: N=D =28
f, ~f, are thesameas Casel,
-3t 2 o 2-48
f, - e 5 Cf)S(t) L e 5 sin(z) (2-48)
e sin(t) e cos(t)
Case2-4: N=D =64
f-=sin(*)e A, 1 <i <N (2-49)

where A e R isva random vector with all the elements bounded in [-1, 1]. Note that it

satisfies the bounded assumption |[fj|=1, 1=i=64. As controller parameters in the

2 0 22 02
Q= > P: 2
{o 2} {o.z 0.24}

and k; = k» = 5. The weighting factors #,, =5 and #,, = #, = 0.2 are chosen. Figure 2-5 shows

simulations below, we.choose

the closed-loop configuration of SOM-based FNN for MAS dynamic task assignment and

path control.
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Fig. 2-5. The closed-loop SOM-based FNN for MAS dynamic task assignment and path

control:

The best-match time:#,.is'added and-shown in the simulation results. In the following figures,
the agents marked as ‘X’ are randomly located in the grey circle, and the points marked as
‘>’ are the positions of targets which are the input to the SOM for finding the winner agents.
When the number of agents and targets are different, our proposed approach can also be
applied and implemented in the MAS. In this chapter, the agent-target matching pairs of SOM
are assumed to be completed before the control inputs are fed to the MAS for path control. In
other words, time delay is not considered in the proposed SOM. Moreover, we assume that
the number of agents and targets are the same at any time moment in the following cases in
order to construct the agent-target matching pair. Therefore, if there is one target inserted into
the MAS, there should be one more agent inserted.

Case 2-1: Static random targets

Consider 6 agents and 6 targets in the same two-dimensional (2D) workspace shown in Fig.
2-6. The targets find their matching agents that are then forced to their corresponding targets
via SOM-based FNN controller. In order to ensure and check whether or not the

best-matching pair is chosen, the dash line shows the best-matching pairs for all the agents
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and targets. It is apparent that the transient chattering effects in all paths disappeared after the
time is larger than #,. In Fig. 2-7, it can be seen that #, = 1.91 seconds is the best-match time;
after #,, the errors and change of errors will no longer chatter because the best-matching pairs
are found. Finally, the best match is completed and the tracking error converges to a

satisfactory small value.

X : start point

40 < 1 target point
— :agent’s trajectory
300 - - - best-match path

bounded region

-20

-30 L

-40 | | | | | |
-20 -10 0 10 20 30

X (m)

Fig. 2-6. The trajectories of 6 agents with 6 targets.
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Fig. 2-7. The errors and change of errors of MAS.

Case 2-2: Insertion of random targets

Consider 6 agents and. 6 targets in the same two-dimensional (2D) workspace shown in Fig.
2-8. Define the insertion time ¢ for the MAS are the time point when the additional random
targets are inserted into the workspace. In this case, the 7" and 8" targets and their
corresponding agents are inserted when #; = 2 seconds and # = 4 seconds. As soon as one
target is inserted, there will be an agent produced at a random location in the given bounded
region, and the best match will be automatically completed by the adaptive SOM for all the
new agent-target pairs as shown in Fig. 2-8. In Fig. 2-9, it can be seen that the best match is
reached after #, = 4 seconds even if the chattering transient peak happened twice at the two

insertion times.
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Fig. 2-9. The errors and change of errors of MAS.
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On the other hand, the traditional exhaustive method has no obvious advantage on the
dynamic task assignment when additional targets and agents are inserted into the workspace.
However, in order to search the shortest total patch length, the computational load in the
traditional exhaustive method will take from 6! (= 720) to 8! (= 40,320) computational loads
each iteration according to the number of targets after the insertion time.

Case 2-3: Moving random targets

Assume that the targets move a random bounded distance in [-2, 2] each 7,, = 1 seconds for
the first five seconds which can be defined by the user. However, the targets have to be static
before the simulation time to avoid the racing situation for the agents and targets. Consider 8
agents and 8 moving targets.in the same two-dimensional (2D) workspace shown in Fig. 2-10.
The red ‘>’ points indicate the initial target positions; the green ‘>’ points indicate the
temporary positions every 7, seconds, and the incrementally move paths with directions are
marked as gray dash'lines and black arrows. Finally, the targets stop at the dark ‘>’ points
which represent the static positions after four seconds. It can be obviously seen that no matter
where the targets move, the agents instantly update their: trajectories toward their

corresponding targets.
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Fig.2-10. The trajectories of 8 agents with 8 moving targets.
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Fig. 2-11. The errors and change of errors of MAS.
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As shown in Table 2-1, the shortest and longest total path lengths are both obtained by the
exhaustive method. In comparison with the optimal match obtained by the exhaustive method,
the total path length of the adaptive SOM-based FNN control method are slightly similar to
those of the optimal match by the exhaustive method. However, the benefit for the shortest
total path length of the exhaustive method is the loss of computational load if there is large

number of random targets which will be indicated in Case 2-4.

Table 2-1 Total path length comparisons for the three cases.

Optimal match by the Worst match by the SOM-based

exhaustive ' method (m) exhaustive method (m) FNN (m)
Case 2-1 210.4025 242.3714 211.0147
Case 2-2 211.4181 741.2715 222.6199
Case 2-3 291.1972 754.3930 310.7617

Case 2-4: Large number of random targets

Consider 64 agents and 64 targets in the same 2D workspace shown in Fig. 2-12. The number
of targets and their corresponding agents. in this c¢ase is much larger than those in cases 2-1,
2-2 and 2-3. The total path length of MAS by the proposed adaptive SOM-based FNN control
method is calculated as 2168.8 meters which displays a satisfactory tracking performance.
Moreover, it also can be seen that the best match is reached after #, = 7.38 seconds in Fig.
2-13. In this case, it can be seen that the proposed SOM-based FNN controller is capable of
effectively handling the best match even if huge number of targets and agents with nonlinear

uncertainties is considered.
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From the simulation results, the adaptive SOM-based FNN control method is capable of
handling dynamic task assignment of the agents and then smoothly control the agents toward
the corresponding targets. Moreover, the computational load in the traditional exhaustive
method is 64! (= 1.2689x10*") for each iteration in Case 2-4. It is only 64> (= 4096) in our
adaptive SOM-based FNN method. It can be seen that the advantage of our new adaptive
SOM-based FNN is the tremendous saving of computational load, which is shown in the

following Table 2-2.

Table 2-2 Comparisons of computational loads in an iteration for all the cases.

Optimal match by the

exhaustive method

Worst.match by the

exhaustive method

SOM-based FNN

Case 2-1 720 720 36
Case 2-2 720 ~ 40320 720 ~ 40320 36 ~ 64
Case 2-3 40320 40320 64
Case 2-4 1.2689%10% 1:2689x 10" 4096

2.7 Conclusions

In this chapter, a SOM-based FNN controller is adopted in the MAS to choose the
best-matching pairs between agents and targets and perform path planning using intelligent
adaptive methodology. Compared with the simple incremental path planning adopted in the
traditional SOM to let the agents move toward the chosen targets, the high nonlinearities and
uncertainties of the agents have been considered in this chapter. The intelligent adaptive
SOM-based FNN controller is operated in conjunction with the traditional SOM to find the
best paths allowing all agents to go to their final targets. The proposed main controller is the

FNN controller, in which the fuzzy rule is combined into the neural network, and a new
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monitoring controller is also designed to work with FNN controller. This forces the agents to
go to their corresponding targets within the constraints of nonlinear dynamics and
uncertainties of the agents. It is obvious that the weighting factors are updated via the
Lyapunov stability constraints, a process which is very different from the simple update
method used by the traditional SOM. From the simulation results, excellent path planning for

all agents has been obtained via the intelligent adaptive SOM-based FNN controller.
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Chapter 3

Toward a New Task Assignment and Path Evolution (TAPE) for
Missile Defense System (MDS) using Intelligent Adaptive SOM

with Fuzzy Neural Networks

3.1 Background and Motivation

In this thesis, we assume that there are limited N defending missiles and D incoming
missiles in MDS. The D incoming ‘missiles are launched to attack the limited assets which
have their own significances. Once an asset is destroyed by .some incoming missiles, it will
lose its asset value (or‘the damaging cost). Because the number of assets that are under attack
is unknown, the assignment of M-defending missiles becomes important to minimize the total
damaging costs (ormmaximize the total surviving assets). In the first part of this chapter, a
one-to-one agent-target missile guidance law using fuzzy neural network is proposed in
comparison with the cerebellar model articulation controller (CMAC) [46], however, the
CMAC structure is too complex to be implemented in real-time environment, and the
enormous weight space and limited modeling capability in CMAC can be further improved
using the proposed FNN controller with fewer mappings and layers. In the second part of this
chapter, an adaptive SOM with FNN controller is proposed for multi-agent-multi-target task

assignment and missile guidance.

3.2 Problem Formulation

In multi-agent system (MAS) with a group of N agents in the three-dimensional

workspace, we assume that the positions and angles of agents A = {a,,a,,..,a,} are initially

in a user defined region, and the positions and angles of targets T ={t,t,,..,t,} are
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initially distributed randomly in the same three-dimensional workspace. The MAS can rapidly

and efficiently complete an assigned task via the control inputs U = {u U T | I for all the

agents. In the MAS, it is desired to first perform task assignment by self-organizing map
(SOM), after which the path evolution is activated so that all the agents are capable of going
to their corresponding targets under the agent dynamics constraints. The architecture of MAS
can be extended to missile defense system (MDS), in which the defending interceptors and
incoming missiles can be seen as agents and targets, respectively. Furthermore, we consider in

the MDS that the assets S with different asset values and will be attacked by targets. For any

asset §; in S, it contains its own asset value I7(sl) denoted by 171, which can be regarded as

the damaging cost when the asset is attacked and then destroyed. Thus the overall damaging

cost by all the targetsican be denoted by V = {171, 172,_,_, I7D}. The main control objective is to

D
find the minimal total damaging cost ZVd to all the assets by SOM, which will be

d=1

discussed in Section 3.5. After task assignment for all the agents, the fuzzy neural network
(FNN) controller is adopted for the agents to intercept the targets. The overall concept

proposed in this chapter can be.illustrated in the following Fig. 3-1.
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Adaptive Fuzzy Neural Network (FNN)
Controller

Fig. 3-1. The overall concept of adaptive SOM with FNN controller for MDS.
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Before considering multi-agent-multi-target scenarios, a new intelligent algorithm for single
agent-target command line-of-sight (CLOS) guidance law will be first proposed in the

following sections.

3.3 The Three-Dimensional CLOS Guidance Model

The three-dimensional CLOS guidance problem in Fig. 3-2 is a well-known guidance
model [44, 46] which can be formulated as a tracking problem for a time-varying nonlinear
system. The three-dimensional CLOS guidance model in [44, 46] will be repeated here for
convenience. The origin of the inertial frame.is located at the ground tracker. The Z; axis is
vertical upward and the X;-Y; plane is horizontal. The origin of the agent body frame is fixed
at the agents’ center of mass, with the X, axis forward along the agent centerline. The

dynamics of all the agents in the inertial frame can be represented. [44] as

E cO.y, 1, 15 a, 0

Y, |=|cOsy, I I, a, =9

Z, 50, s¢.cl, cg.co. | a,

[t G-
_l/'/a} A E v,cO, ]

00 J0 {2 C_

) va Va

where
l,=-s¢,.s0cy,—cd. sy, I,=—cd sOcy,+5¢,.s5v,

I, ==s4,.s0,sv, +cd.cy,,and I, =—cg sO,sy,—sp.cy,-
A tracking error is defined in order to convert the CLOS guidance problem into a tracking
problem. The CLOS guidance involves guiding the agent along the line-of-sight (LOS) to the
target. The LOS frame is shown in Fig. 3-3 in which the origin is located at the ground tracker.
The X} axis forwards along the LOS to the target, and the Y; axis is horizontal to the left of

the X;-Y; plane. Then, the coordinates (R,, e, e>) indicated in Fig. 3-3 represent the agent
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position in the LOS frame, and they are related to (x,, v, z,) through rotations as follows:

e —-so co o °
[H ’ ’ Yo | (3-2)
€, -sy.co, —Sy,sS0, cCy,
Z]
A
Z |
Za '-.><_.:..: ZA YA ........................ Target tj
afd T
N =,
Mlissile a, .
R /"
Ground tracker LY \% %’a yt > Y

Ground tracker

Fig. 3-3. Definition of tracking error [44, 46].
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The tracking error is defined as e = [e, ez]T. Since e; and e, can not be measured directly,
these quantities must be computed indirectly using the polar position data of the agent

available from the ground tracker as

{el} { R.c(Ay +y,)sAc } (3-3)
e= = . -
e, R s(Ay+y,)cy,—R,c(Ay +y,)sy,cAoc

Note that ||e|| represents the distance from the agent to the LOS. Therefore, the agent will
eventually hit the target if the tracking error is driven to zero before the target crosses the
agent. The three-dimensional CLOS guidance problem has been formulated a tracking

problem. Define

X=[Go%, x, xSl e, X7
=[x, vz, % ¥ z w 01 (3-4)
a,]’.

T
u=lu—ul =la,

Using the previous notations, (3-1), (3-2), and (3-4) can be put into the following state-space

form:
>
x=f(x,0)+» g.(X)u,
2 (3-5)
e=h(x,?)
where
— T I O ]
X, 0
Xs 0
( )X6 o S¢acsx80x7 - C¢GCSX7
a, (t)cx,cxg
x —50,.5X%8%; + ¢, Cx
f(x,1) = a, (1)sx;cx; > 8= s8¢ 7Cx i
ac 8
a (t)sx;—g P,
0 2hxl+x’
gex, \/x4 TXs T+ X CXg

S ¢ac

2 2 2
| \/x4 + x5+ xg
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- c¢acsx8 Cx7 +s ¢acsx7
—C ¢ac SXgSX7 —§ ¢ac Xy

c ¢ac ch
s ac

g,(x)=

_and h(x,t):{hl(x’t)}:{ —X,S0, + X,CO, }

h,(x,1) —X,8Y,CO, —X,8),50, + X;,¢Y,

2 2 2
\/x4 + x5 + x4 exg
P

2 2 2
\/x4 + x5+ X4

The objective of CLOS guidance control is to find a control law to drive the tracking error e(¢)

to zero. For the system shown in (3-5), define the vector fields X, j =0, 1, 2 by

0 < 0
Xo=—+ filx,0)==
Otyn = ox; (3-6)

8
0
X = L (x)—
A, Z_l‘,g,,,( ) o
where fi(x, t), g;{x) and x; are the i components of f(x, ), g/(x) and x, respectively [44, 46].
Direct computation yields

Xh = =0,%,00,~0,X,80, —X,50, +X;CO,
=—0,R cy,+0,6,—x,50, + X0,
X\ Xohy ==8@,5%38(x; —0,) + @, c(x; =6,)
X, Xoh =—c@,sx8(x; =0,)=89,.c(x; —0,)
X,h, =(c,50,87, —y,cyco)x, —(y.cy,so, +0,co,8Y7,)x,
- ]}IX3S]/[ —X4COSY, —XsSO, Sy, + XcCY,

=—0,6S57, _%R —X4COSY, — XSO Sy, + XCY,

P
X, X h, ={cy,cxg +sy,sx5¢(x; —0,) s, +c@,.sy,5(x, —0,)
X, X h, ={cy,cxy + sy, sxe(x; —0,)}ed,, —5@,.57,5(x, —0,)
Xoh =(26,7,57,—6,cy)R, + 6 e, +(26,7,c7, + 5,57,)e,
- 20",Rpc7[ +20.6,5y, +a (t)cxgs(x, —o,)
Xgh2 =—(y, + o",zsytcy/l)Rp —-o.esy, + (o",z|s;/,|2 + 7'/[2)e2
- 27,1? —20,6,5y, +{sxscy, —cxgsy,c(x, —o,)}a ()
— 8¢,
Rp =—(6,s0,cy,—7,87,c0)X, —(V,87,80, —6,c0,CY,)x, (3-7)

+ 7./[‘x3c]/[ + x4cylcal +XSC]/ISJ[ + 'x6S7/l
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After manipulations, the tracking error in (3-5) can be shown concisely into the following

form:
é | |F&x0) G, (x,1) G,(x,1) y
o |7 R Tlemn Gumn Y (3-8)
=F(x,t) + G(x,)u(?)
where Ex,n=Xoh , Ex0N=Xh , Gx)=XXh , G,(x)=X,Xh ,

G, (x,1) =X, X h,,and G,(X,t)=X,Xh,.

3.4 One-To-One Agent-Target Path Evolution using FNN

A new intelligent. FNN “controller to realize the. single agent-target command
line-of-sight (CLOS) guidance law-will be discussed in this section. In comparison with the
cerebellar model articulation controller (CMAC)  structure in [46], the proposed FNN
controller is with fewer mappings and layers and the enormous weight space and limited
modeling capability in CMAC can be improved using FNN. The tracking error obtained in
(3-8) can be further formed as the tracking error vector and beinput to the input layer of FNN.
The output in the output layer of FNN is adopted as the main controller to the MAS to
evolutes the positions of the winner targets to their corresponding desired targets. Assuming
all the system dynamics are well known and that there exists an ideal controller for a single

agent based on the feedback linearization control design, we then arrive from (3-8):
u, =G (x,0)[-F(x,)-K,e-K,e]. (3-9)

Applying (3-9) into (3-8), the following error dynamics for a single agent can be given
e+Ke+K,e=0,, (3-10)

where
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are Hurwitz matrices by choosing proper ki1, k21, k12 and k»». However, the ideal controller u;,
is difficult to implement in practice since the system dynamics is highly nonlinear and
sometimes unavailable. Therefore, in order to control the output state efficiently, the control

law is assumed to take the following form:
u=u, +u, (3-11)

where ug,, is a FNN controller, and u,, is a monitoring controller. The FNN control ug, is the
main tracking controller used to imitate the ideal controller in (3-9), and the monitoring
controller w, is designed to recover the residual approximation error. The monitoring
controller, which is similar to a hitting controller /in.a traditional sliding mode controller, is
derived in the sense of Lyapunov theorem to cope with all system uncertainties to guarantee
the stability of the system. The control input u in (3-11) is used for the input of agent in (3-8).
Figure 3-4 illustrates the concept-of (3-11) in our new approach. The tracking error vector eg
and neural network output y, in Fig. 3-4 will later be defined as the input and output of the
FNN controller, respectively. The limiterin Fig. 3-4 1s the maneuvering limiter of the agent to

perform a practical behavior for simulations.

Monitoring Z
controller

_|_
e u
» Adaptive algorithm %:—> —/_ >
Limiter
+
A
FNN ufnn - yo
controller

Fig. 3-4. The configuration of uy,, and u,, for single agent.

The fully linked FNN architecture shown in Fig. 2-3 is also adopted in this section. Repeat
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from (2-19) and (2-20), the FNN output can be presented as
P H
Yo = Z W;oé/p (X s M5 Vi) = HGXP(_(J_Ck - mkh)2 /(th)z) (3-22)
p=1 h=1
where X, denotes the K™ input to the node of input layer for distinguishing the state variables

of agent x in MAS. The above (3-22) represents the firing weight of the pth neuron in the rule
layer. For simplicity, the following m and v vectors are defined to collect all parameters in the

hidden layer of Fig. 2-3 given as

m=[m, =My My-mg, - mlH"'mKH]T (3-23)

V=V Vet WV o Ve Vi T (3-24)
Then, the output of the FNN can be represented in a vector form as

Y, =W, ¢(X,m,v) (3-25)
where y, =7, W,=[W, W, - w,l ., and §=[¢ ¢, - ¢,]". By the

universal approximation theorem, there exists an ideal y, =y, (X:w",m",v") such that [40,
41]

yo=y, +E=w {@Em v)+E (3-26)
where E denotes the approximation ‘error and ‘w., m’, and v are the optimal parameter
vectors of w,, m, and v, respectively. In fact, the optimal parameter vectors needed to best

approximate a given nonlinear function are difficult to determine. Thus, an estimate function

is defined as
y,=y,(X,W,,m,¥) =W, {X,m,V) (3-27)
where w,, m, and Vv are the estimates of w., m,and v, respectively. For notational

convenience, we denote { =¢{(X,m",v’) and & ={(x,m, V). Then, we define the estimation

€I1or1 as

44



Y. =Y, Y,
=y, -y, +E

Y. A~ TD
=w, { —-w,{+E

AT o~ TN T A TS (3-28)
=(w, +W, )+ -w, +E
=W, C+W, C+w,C+w, C-w,/C+E
=W, C+W,C+W,"C+E

*

where W, =w, —w,_, and Z:g* —@. In the following, some tuning laws are derived to

on-line tune the parameters of the FNN to achieve favorable estimation. To achieve this goal,
we use the linearization technique to transform the nonlinear Gaussian functions into partially

linear form so that the Lyapunov theorem extension can be applied [40] as follows

> [@4] 96,
~ é_,l om ov > .
C=| .= m+| v+H={ m+{ Vv+H (3-29)
Ay foch 2,
< arn—m:lil —av V=V
where m=m -y V=v -V, § = 96l %} , QV:{% %} ,
| Om om | . ov ov |

and H is the higher-order term, and 9%, and %, are defined respectively as

om
o¢ o¢, o¢
|:8_ni} = |:0(h—l)><k 871}; % 0(H—h)><kj| (3'30)
oc oc oc
[Eﬂ = {O(h_l)xk ﬁ ﬁ O(H_h)xk} (3-31)

Substituting (3-29) into (3-28) gives

W (¢, M+ V+H)+W,C+E

(3-32)
W, +vVEw, +d

ATy Trw  ~T A Te Te  ~Ty A .
where w, {, m=m { w, and w, { v=v { w, are used since they are scalars, and the

uncertain term d=w, H + VNVeTZ+E 1s assumed to be bounded in the uncertainty bound,
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that is ||d||SA. The proposed control system is comprised of an FNN identifier and an

optimal controller defined in (3-11), in which ug,, is used to mimic the ideal controller u,4, and
the compensation tangent controller u,, is used to compensate for the difference between the
FNN controller and the ideal controller. Considering a single agent in the state-space form, the

tracking error vector defined as
e;=[e, ¢ e &J (3-33)

which represents the input vector fed into the input node of FNN controller. Substituting (3-11)

into (3-8) and using (3-33), the error dynamic equation becomes

éS = KeS +Ga(uid _ufnn _um) = KeS +Ga(WeTa+ﬁlTmee + VTQV‘;\ve-i_d_um) (3_34)

0 G, 0 G,

Kl O2><2
where K = and G, =
0 G, 0 G,

T
K } . Since K is also a Hurwitz matrix,
given a symmetric’ positive-definite matrix Qe R , there exists a symmetric
positive-definite matrix | P € 3° | such that the following Lyapunoy equation [39, 42]

K'P+ PK=-Q (3-35)
is satisfied.
Theorem 3-1: Consider the nonlinear.dynamic system represented by (3-1) with the control
law in (3-11), where the FNN identifier is designed as (3-27). Then, the weighting vectors
m, and v will remain bounded, and the performance errors will approach zero. The

W

e

parameters are updated by the following learning rules:

W, =—w, =16, PG (3-36)
m=-m=7e¢, PG W, (3-37)
v=—v=ne,/PG{ W, (3-38)
u, = Atanh(e,' PG ) (3-39)
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where 7,,, #m, and 7, are the positive real values. Then the stability of the FNN control system
can be guaranteed.
Proof:

Let the Lyapunov-like function candidate be

V= %eSTPeS + LW]W + v, (3-40)

e

1
2n, 2n, 27,

-1, 1 . 1
V:EeSTPeS +EeSTPeS +—

_ %eST(KTP L PK +Q)e, +e, PG (W.C+ ¢ W, +¥( W)

+e,/ PG (d—u )+—w. W, +—m m+—5y'v (3-41)
77W 77"1 nv

= —%eSTQeS + V~VeT (eSTPGaa+LW8)

w

N =1 I P %
+m’ (e; PG W, +=—m)+ V' (e; PG LW, +—V)+e, PG, (d-u,)

m v

Substituting the learning rules (3-36)—(3-39) into (3-41), (3-41) becomes
= —%eSTQeS +eSTPGa(d -u,)
< —%eSTQeS + ‘eSTPGa‘”d” —Aeg PG tanh(e, PG )

< —%eSTQeS + A‘eSTPGa

(3-42)

1
<=2 s (Qles| + Ales[[PlIG.

‘Il

1
<=2 Gain@ - Dles| +[PG,

where A_. (Q) is the minimum eigenvalue of Q. Since A (Q) can be chosen as
A.:.(Q) >1, then (3-42) reveals that

"2 1 1 2 i 112

[Jles] dtSm(|V(O)|+|V(t)|)+m”PGa ([ de (3-43)

for all 1=0. Furthermore, if A is squared integratable, then from (3-43), e, € L, has been

proven [39]. In addition, the right hand side of (3-43) is bounded, that is, ¢, € L, . Using
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Barbalat’s Lemma [39], we can prove that }im”e S” =0 when JZ”A”zdt <. The stability of

the overall approximation scheme is guaranteed based on the above results and the Lyapunov
stability theorem. Based on (3-36)—(3-38), the adaptive law of weighting factors in an element
form can be obtained. Thus, the Lyapunov stability theorem is guaranteed under the optimal

approximation model with no modeling error. Q.E.D.

3.5 The Design of SOM for Task Assignment of MDS

After the single agent-target control system is constructed, the overall MDS (or MAS)
consists of (N + D) numbers of agent-target matches will be discussed in this section. Suppose
that D> N ,ittakes P(D,N)=D!/(D - N)! computation steps to find the total distances or
damaging cost in traditional = exhaustive method. In real-time MDS environment, this
pre-computation before the targets-are lunched is_time-consuming. Therefore, the principal
goal of SOM is to transform an input pattern of arbitrary dimension into a one- or
two-dimensional discrete map- as well-as to perform this transformation adaptively in a
topologically ordered fashion [19, 38]. The SOM is suitable for dealing with task assignment
because the dimension of the targets can be simplified, and mapped to the corresponding
agents. The overall MAS system can be considered a self-organizing system which can adjust
its basic structure when its environment changes. The algorithm of the SOM proceeds first by
initializing the synaptic weights in the network, such that it can be done by assigning them in
random indexed patterns. Considering a multi-agent-multi-target scenario, the positions and

angles of i agent and dt target can be further defined as
ai = [xa,i ya,i Zai x [ ya,i Z [ l//a,i ea,i] ! € A ’

a,i a,i a,i

_ . . T
=Xy Ve Zia Xia Via Za Vi et,d] eT,

respectively. The proposed control inputs of the /™ agent can also be defined as
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T T
u =[a azc,,.] =[uu uz’i] elU

i ye,i

where a,.; and a..; are the yaw and pitch acceleration commands of the i™ agent, respectively.

T

Define the positions of agents A ={a,a,,.,a,} where a, =[x, Vai Za;1 1 the

position of the i™ agent, and denote the random indexed input vectors chosen from the
positions of targets as
R={r,r,,...r,,...I}

where r, =[x, y,, z,]' €T is the position of d" target. Once the positions of agents

and targets are initialized, the competitive process of SOM can start to find the winner
neurons. In traditional SOM, the winning neuron locates the center of a topological
neighborhood of excited neurons. In this thesis, the neighborhood of the winner is neglected
since the agents move toward their-corresponding targets without-any cooperative process. In
the traditional competitive process, the total Euclidean distances and total damaging cost have
to be considered. Therefore, we first assume that all the asset values are neglected, and the
competitive mechanism will choose the Euclidean distance between the i agent and the 4"

target defined as

Doy =lri =1, (3-44)

1

In traditional SOM, this Euclidean distance is the parameter for the competitive process.
However, the other parameters, like total Euclidean distances in [23], should also be
considered with the distance expression. The values of assets in MDS is more important than
their corresponding Euclidean distances and the motivation of SOM in this chapter is to
minimize the total damaging cost, therefore, a new distance expression from (3-44) with the

equitable distribution of workload can be defined as

— S+V,
D, —fotal |y 3-45
i,d [ 5+ Vd ] i,d ( )
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where

I/totazl =

D
Vd
d=

is the total value of all the assets; ¢ is the adjustment parameter defined by the user to
determine the importance of asset value. The smaller the ¢ is, the more important of asset
value is. As shown in Fig. 3-5, the new distance expression constructed by the input of J, a,,

and r, forms a new N-by-D distance matrix

D1,1 DI,D
D=| ¢ . (3-46)

DN,I DN,D

For some given o, agent, and target-as input, the-output neurons compete to be the winner

according to a specified criterion described as
liyi)] = min{D,.i = 1,2,.;N; d =12,..., D; {isr} & Q} (3-47)

where [i,, i;] denotes-that the match in which the i, target from the i agent is the winner,
and Q is the set of neurons in which the winner has been chosen in an iteration. From (3-47),

the N winners can be found to obtain a new W ={w,,w,...;w,} which is the re-allocated

index of agents A that corresponds. to the random indexed targets R to be used in the adaptive

process.
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Fig."3-5. The structure of self-organizing map (SOM).

Algorithm 3-1:

Step1 N agents are created in A
D targets with random indexed are created in R

D damaging costs are created in V.

Vi

DMs

calculate

total —
d=1
define the adjustment parameter o

Step2 foragent a,i=12,..,N in A
for target r,,d =1,2,...,.D inR
calculate Euclidean distance D, , = ||rd —El.”

find the new distance D, , = (M)Di y

S+V,

end

end

Step3 fortarget r,,d =1,2,...,D in D matrix
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i; 1s d, find the winner neuron with index i,

[i,.i,] is obtained in the i, row, d" column
append the index i,, to the interception list L
end

Step 4  agents are dispatched to hit the targets with orders in L

From the above two processes, the number of computation steps for finding the minimal total
damaging cost can be obtained, which is equal to N*D. In comparison with traditional
SOM method, the new adaptive SOM method eliminates the time consuming tuning in
neighborhood function and is able to reduce the computational load in the task assignment of
MAS. Note that in this thesis, the‘hit probability of agent is assumed as 100 %. However, the
SOM mechanism can also find the minimal total damaging cost even if the leakage of agents
is considered. By arranging the winner agents W, the interception list L can be obtained
which is ordered by'the index.of agent. The list is-a useful command or decision for MDS to
determine which target should be intercepted by which agent in the future. The last
mechanism of SOM is the adaptive process which enables the winner agents W to update the

positions of the winners.

Example 3-1: SOM-based dispatching

Step 1
Figure 3-6 shows four steps for SOM example in MDS in which there are the positions of

agents K={§l,§2,§3,54}cA (N = 4), and the positions of targets with random indexed
R={r,r, 1,1, r. 1.} (D = 6), and three surviving assets S={s,,s,,s,} with their values

V(s)=1, V(s,)=2, and V(s,)=3. The damaging costs caused from the attacking targets

si, t; will attack s;, t; will attack s;, t4 will attack s;, etc. Before the beginning of attack of

targets, the total damaging cost
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can be obtained.
Step 2

6
7total = z 7d = 12
d=l1

In the SOM mechanism, the positions of agents A and random indexed targets R will first be

used to calculate the Euclidean distance as

{Di,d = ”I‘d -a

, i=L2,...,4d=12,..,6}.

If 0 is chosen as 0.1, the new distance matrix from (3-45) can be obtained for all the agents as:

[0.1+12 d+12 d+12
0.1+ D, 0.1+ D, 0.1+ .
0.1+1 ’ 0.1+3 0.1+1 ’
O.1+12D21 0.1+12D22 0.1+12 3
pD=| 0.1+1 = 0.1+3 =~ 0.1+1_ =
0.1+12 0.1+12 0.1+12
D31 D3z 33
0.1+1 ’ 0.1+3 ’ 0:1+1 ’
O.1+12D41 0.1+12D42 0.1+12 »
L 0.1+1 ’ 0.1+3 ’ 0.1+1 ’
(121 121 121 121
TDII HDlz 11 Py P
121 121 121 121
BT 2.1 ? 22 10 E 2.4
121 121 121 121
11 3,1 ? 3,2 11 3.3 E 3,4
121 121 121 121
_T 4.1 E 4,2 T 43 E 4.4

0.1+12 0.1+12 0.1+12
0.1+2 " 01+3 7 01+2 "
0.1+12 0.1+12 0.1+12
0.1+2 ** 01+3 > 0.1+2 *°
0.1+12 0.1+12 0.1+12
0.142° ** 01+3 7 01+2 *°
0.1%12 0.1+12 0.1+12
0.1+2 " 01+3 % 0.1+2 *]
121 121 ]

31 \2p21\¢

121 121

S5 1

121 121 :

ETTY -

121 121

didd JUY

Because we are focusing on the.task assignment to'minimize the damaging cost, we can

assume that the distances between the agents and targets are the same and are normalized to

one. This implies that

D, =1, i=12,..4d=12,.6}.

Therefore, the minimum for each agent can be found from the following new distance matrix:

11
11
11
11

D~

Step 3

39 11
39 11
39 11
39 11

576 3.9 5.76
576 3.9 5.76
576 39 5.76|
576 3.9 5.76

In the first row of new distance matrix D, the winner neuron is D,, which means the

matching pair is {a;, t;}. Therefore, after repeating from the first row to the fourth row, the

winner-target pairs {a;, t;}, {ay, ts}, {as, t4}, and {a4, ts} can be obtained by using the
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competitive process in (3-47) list.
Step 4
Picking the indexes of the targets in the matching pairs, the interception list L = {2,5,4,6}

can further be constructed as a MDS command which shows that the t,, ts, ts, and t¢ targets
should be intercepted by the a,, a,, a3, and a4 agents, respectively. Defended by the agents, all

the assets after this attacking wave have the remaining damaging costs V' ={1,0,1,0,0,0} and

!

6
the final total damaging cost becomes V., = ZVd =2 which is the minimal value. In this
d=1

example, although the Euclidean distances are almost neglected, the situation for the two or
more assets have the same value and there exists relatively short Euclidean distance from

some agent to its corresponding target should be taken into consider.

C T oy T | Agents are input
| A:{al a, a, a4} i . g P
!l N G I e mto SOM
SOM »L={2 S 4 6} Interceptions
3 / l\‘\ by the list
R
Random | | T=if . 60 &ttt | Targets with
indexed |[¢— e .
process vV i [ damaging costs

Assets are
under attacks

Fig. 3-6. The self-organizing map (SOM) example in MDS.

In traditional exhaustive method to find the minimal total damaging cost, it will take

6!/(6 —4)!(=360) computation steps. However, it only takes at most 4=*6(=24)
computation steps by the proposed SOM. Consider N agents and D targets in MDS, if we

have to find the optimal (or worst) matching pairs under some condition such as the minimal
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total paths, the computational load of traditional exhaustive method is D!/(D — N)!, however,
the computational load of the proposed SOM is N * D . Therefore, as shown in the following
Table 3-1, the SOM has relatively smaller computational load than exhaustive method if there

are more number of agents and targets.

Table 3-1 Comparisons of computational loads for the task assignment using exhaustive
methods and the proposed SOM.

Optimal (or worst) match by

, SOM
the exhaustive method
N=D=6 720 36
N=6,D=38 20160 48
N=D=8 40320 64
N=8,D=64 1.7846x10" 512
N=D=64 1.2689x10% 4096

In comparison with incremental adjustment in traditional SOM, the proposed adaptive SOM
with the proposed FNN controller can handle the overall TAPE problems in MDS. The

closed-loop configuration of SOM with FNN controller for MDS TAPE is shown in Fig. 3-7.

1
i 1 1

! : I o u, U : A
T [t maened] | o Montoring | U /LU A
! rocess i ' + Limiter 1
1 p 1
! 1 1 + 1
' ' H 1
i R ' ! e H
! 1 1 . [ . !
H v ! i Tracking | ~ S Adaptive !
VA - 1 i d Error algorithm !
: A Competitive W : i Z s g — 1 i
: process : : We,lﬁ, 0 !
! . ; ‘
oWl ] N i
i ' i Controller !
. !

1
Self-Organizing Map (SOM) e P :

Adaptive Fuzzy Neural Network (FNN) controller

Fig. 3-7. The closed-loop configuration of SOM with FNN controller for MDS TAPE.
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3.6 llustrated Examples

In this section, computer simulations are performed to illustrate the effectiveness of the
proposed FNN guidance law. In order to assess the performance characteristics in a
closed-loop engagement scenario, it is necessary to specify target dynamics. The target
motion model is assumed to produce no axial acceleration or roll motion. Then, the simplified

dynamics of target motion can be represented in the inertial frame as follows [44]:

jét =—4a,s v, = atzsgtc v,
j}z =a,c v, - atzSHtS v,
Z,=a,cl-g

 a, (3-48)
W, =

v,co,

9' — a.— gcet

t v,

where a,, and a,. are‘the y-axial and z-axial acceleration of target, respectively. For all the
scenarios, assume that the target maneuvers with @, =0 g;az= -1 g for all the time. To limit
the missile’s maneuverability, a 30 g (g = 9:8 m/s°) maneuvering limiter is considered for
simulations. The pitch and yaw autopilot dynamics-are chosen as second-order time invariant
linear systems and the- ground tracker as a simplified differential tracking system with
damping ration 0.6 and natural frequency 67 rad/s; as'shown in Fig. 3-8. The ground tracker
provides the estimated values of o,," y,, '6,, and y,, as well as the measurement data of
Ao and Ay. In the following, the estimated value is distinguished from its true value by
inserting the symbol " to the corresponding variable. To evaluate the influence of
measurement noise, random noises with magnitude between +0.3 degrees are included. The

controller parameters in the simulations below are chosen as follows [46]:

= 0 0 38 s - - ) - - s Hw =2, a m_”v_o-z-
Q 5 73 kll kZl 8 k12 k22 5 n 5, and n

0 0 73 16

In Case 3-1, the one-to-one agent-target missile guidance laws using CMAC and FNN
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controller are discussed to show the capability and efficiency of the proposed FNN controller.

Followed by the tow control algorithm comparisons, the proposed SOM is adopted to handle

the task assignment for MAS in MDS in Case 2.

z
J f{a
- !
o,—> X —» % >
+ Ao
+
Vo> X z >
A Ay
- g
7
z

7t —>

(3-3)

Fig. 3-8. Block diagram representation of estimation algorithm for guidance information [44,

Case 3-1:

46).

The closed-loop configuration of FNN controller for missile guidance law is shown in Fig.

3-9. For large scale simulation purpose, we have generated 25 initial positions with angles for

target in Fig. 3-10, which shows an X;-¥; coordinate system. The subscripted number of target

in Fig. 3-10 represents the number of scenario, and the position of target in the i™ scenario is

defined as
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t, : (R, cos(30°)cos(o, ), R, cos(30°)sin(o, ), R, sin(30°)),

t,.1, 1 (R, cos(60°) cos(o, ), R, cos(60°)sin(c, ), R, sin(60°)),
t,s:(0,0,R), i=12,---,12. (3-49)
In fact, our agent is at (10, 10, 6), which is very close to the ground base in X-Y-Z; coordinate
system. There are only three initial positions/angles of target in [4, 6], which were specifically
chosen to guarantee the success of convergence. Therefore there are 25 battle scenarios in
which R; is set as 7000 meters from the ground base, and each initial position and angle of
target is chosen from the 25 locations as shown in Fig. 3-10. Once the position of target is

chosen, the initial angle of target will also be applied asthe heading angle to the ground base.

1
! !
E __,| Monitoring U _/_ Y i 5| Defending | + —_|Attacking
! controller + 4 . I missile missile
! Limiter 1
: + i
' i
I e 1
' > . |e . !
' Tracking | =S Adaptive !
: 4 error algorithm !
| dt|a & I
! W,.mh, ¢ :
| v |
: u nn !
, L, FNN / :
' controller !
i :
Adaptive Fuzzy Neural Network (FNN) controller

Fig. 3-9. The closed-loop configuration of FNN controller for missile guidance.

58



« : Initial position of targets

---: Contour line

8000 o, =90° [ ]: Asset region
O't5 =120° E o =60°
6000 RS T "
,-’\'\’— 4i t;;’l\
4000, o, =150° ts (! o, =30°
AN o AN ___1_6 ——— tlSI/, ‘\\ ’v'—
".’-_ t17’,." : ‘;‘\ . t—z—‘.,
2000 | L I N T
’ N \ ! , . 4 =30
! s N =90 '\ y,=60° 1
| { e 7« Ol v H
Y, VS R 3 -.f ----------- B epanes o, =0°
! o, F180° 1 t, o el 'tzg\ -~ ; ts -,"tl '
-2000 | i A N L /
Y e 20 N P : N 4 . ’
Phd 1 - - t
P S
-4000 ¢ o, = élOo \\ < B ' t, . o 0, = 330
-\:‘\Eg ! t ___»“:'t“
-6000 | ST PRI N
o, =240° [ o ‘:3000
H LN
-8000 0, %210°

1 1 1 1 1 |
-8000 -6000 -4000 -2000 2000 4000 6000 8000

Fig. 3-10. The initial positions and angles of targets in the X;-Y; plane.

The errors and change of errors of FNN controlleran 25 battle scenario simulations are shown
in Fig. 3-11. From Fig. 3-11,. it can be obviously seen that our proposed adaptive FNN
controller is capable of performing missile guidance. The control input u of FNN controller
shown in Fig. 3-12 contains the yaw and pitch acceleration commands which are denoted as
d,. and d.., respectively. In comparison with the CMAC used for missile guidance in [4, 6], all
the 25 guidance results under the same scenario are listed in Table 3-2 for computational load

(CL) and miss distance (MD) of DM.
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Fig. 3-11. The errors and change of errors of FNN controller in 25 battle scenario simulations.
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Fig. 3-12. The control inputs of FNN controller in 25 battle scenario simulations.
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Table 3-2 The 25 guidance results (MD: Miss Distance; CL: Computational Load).

controller CMAC FNN controller
. MD (m) | CL (sec) | MD (m) CL (sec)
scenario

1 2.7600 6.641 4.7312 0.641
2 2.9284 6.594 1.9743 0.625
3 3.1054 6.578 3.7066 0.640
4 5.8901 6.594 5.9765 0.641
5 0.1236 6.594 10.6379 0.765
6 6.0915 6.594 9.1060 0.766
7 11.4619 6.625 2.6917 0.766
8 7.7567 6.672 2.1204 0.641
9 8.1750 6.609 0.7921 0.641
10 8.6591 6.578 2.0889 0.625
11 3.8047 6.562 8.3483 0.625
12 0.9872 6.578 9.7337 0.750
13 6.6148 8.610 4.0755 0.813
14 0.6873 8.625 4.8888 0.672
15 0.9697 8.625 47711 0.672
16 4.6191 8.609 5.0199 0.671
17 2.0204 8.641 5.9066 0.688
18 1.9740 8.625 7.6901 0.688
19 4.5209 8.641 5:8192 0.656
20 4.8498 8:609 2.5172 0.796
21 2.1815 8.625 2.9209 0.672
22 5.8322 8.609 6.2649 0.687
23 4.8678 8.625 7.0819 0.687
24 5.1705 8.609 4.6043 0.672
25 42.5002 9.500 3.6836 0.671

In Table 3-2, the average MD of CMAC is 5.9421 meters which is larger than that of FNN,
which is 5.0861 meters. In Table 3-2, it is obvious that the CMAC will fail in 25" scenario
due to its MD equals to over 40 meters, whereas the agent in using our FNN controller is only

3.6836 meters. It can be seen that the scenarios for CMAC should be chosen carefully to
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prevent the divergence of missile guidance. For the comparison of computational load, Table
3-2 also shows the running time under the same Windows XP system. It is amazing to see that
the average CL (in seconds) of CMAC is ten times larger than that of FNN. In real-time
control system, the larger CL is not preferred, especially when the intelligent missile guidance
law is applied to agent. From the above simulation results, the proposed adaptive FNN
controller is capable of efficiently maneuvering the agent toward the target in finite time, and
the MD of agent can also be reduced to a satisfactory level. Moreover, the proposed FNN
controller has much smaller CLs than those of CMAC in all the simulation results.

Case 3-2:

The adjustment parameter is chosen as'd = 0.1 to emphasize the importance of asset value. For
ease of simulation in the following scenarios, the asset value will be randomly chosen as an
integer from 1 to 3; the numbers-of-assets, agents, and targets are-also randomly chosen from
1 to 15. The initial positions and angles of targets in [44, 46] are chosen without any reason,
which is very sensitive during simulation. If more scenarios are needed, it is time-consuming
for the user to determine these initial parameters, even for simulation purpose. In this case, the
ground tracker is set at the original point and the initial LOS ranges of targets are also set as
7000 meters. Also, the positions of -assets and-initial agents are randomly located in the
bounded asset region. For ease of simulation, a random number of targets are chosen from the
25 initial positions to represent the attacking targets, which are incoming from different
degrees as shown in Fig. 3-10. Once an attacking target is moving toward some asset, the
initial angle of this attacking target can be decided by calculating the heading angle to the
asset. The hit probability of all the targets for assets is also assumed as 100 % such that the
assets will not be destroyed if the agents are forced to intercept the corresponding targets.
Scenario 1:

Consider 9 agents and 9 targets in the same three-dimensional workspace shown in Fig. 3-13.
Because the number of agents is the same as the number of targets and the hit probability is
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not considered, scenario 1 can be regarded as the extension of single agent-target guidance
problem. In this scenario, the asset damaging cost by all the targets is listed as
V ={1,2,3,1,1,2,3,3,2} without interception. After the task assignment, the 9 agents are forced
to their corresponding targets. The interception list L ={3,7,8,9,6,2,1,4,5} can be obtained
via SOM with the consideration of the physical distances between the agents and targets. The
interception list of L ={1,2,3,4,5,6,7,8,9} will be obtained if the physical distances between
the agents and targets are not considered in our SOM. The agents will find their matching
targets by L, and then be forced to the incoming targets via adaptive SOM with FNN
controller. From the simulation result, it shows_that the total damaging cost is reduced to 0
which is the minimal total damaging cost. The error and change of error of all the agents also

approaches to zero as shownin Fig. 3-14.
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Fig. 3-13. The trajectories of 9 agents with 9 targets.
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Fig. 3-14. The errors and change of errors of MAS.

Scenario 2:

Consider 3 agents and 9 targets in the same three-dimensional workspace shown in Fig. 3-15.
In this scenario, the asset damaging cost by all the targets is listed as V ={1,2,1,3,2,1,3,3,2}
without interception. The interception list L ={7,8,4} can be obtained via SOM. It can be
obviously seen that the interception list L command to the FNN for the 1%, 2", and 3™ agent
to intercept the Sth, Sth, and 4™ target. Therefore, from the simulation result it shows that the
total damaging cost is reduced to 9 which is the minimal total damaging cost. The error and
change of error of all the agents also approaches to zero as shown in Fig. 3-16. In this
scenario, the traditional exhaustive method will take 9!/(9 —3)!(=504) computation steps to

find the minimal total damaging cost.
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Fig. 3-15. The trajectories of 3 agents with 9 targets.
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Fig. 3-16. The errors and change of errors of MAS.

Scenario 3
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Consider 4 agents and 12 targets in the same three-dimensional workspace shown in Fig. 3-17.
In this scenario, the asset damaging cost by all the targets is listed as
V ={3,2,1,1,1,3,2,2,2,3.3,1} without interception. The interception list L ={11,1,6,10} can be
obtained via SOM. From the simulation result, it shows that the total damaging cost is
reduced to 18 which is the minimal total damaging cost. The error and change of error of all
the agents also approaches to zero as shown in Fig. 3-18. In this scenario, the traditional
exhaustive method will take more time-consuming 12!/(12 —4)!(=11880) computation steps

than that of SOM to find the minimal total damaging cost.
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Fig. 3-17. The trajectories of 4 agents with 12 targets.
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Fig. 3-18. The errors-and change of errors of MAS.

From the above simulation results, the adaptive SOM with ENN control method is capable of
handling task assignment of the agents and then efficiently maneuvering the agents toward the
corresponding targets in finite time. The control errors of all the agents can also be reduced to
a satisfactory level. Moreover, the total damaging cost can be minimized and the number of

computation steps takes no more than “N* D 'in'our adaptive SOM with FNN method.

3.7 Conclusions

In this chapter, a SOM with FNN controller is adopted in the MDS to find the minimal
total damaging cost from the asset values and perform path evolution (or planning). In
comparison with the traditional exhaustive method and simple incremental path planning in
traditional SOM to determine the interception list, the proposed adaptive SOM with FNN
structure can efficiently handle task assignment under the high nonlinearities and uncertainties

of the agents in this chapter. The proposed main controller combined with CLOS guidance
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law is the FNN controller, in which fuzzy rules are combined into the neural network, and a
new monitoring controller is also designed to work with FNN controller. This forces the
agents to go to their corresponding targets within the constraints of nonlinear dynamics and
uncertainties of the agents. It is obvious that the weighting factors are updated via the
Lyapunov stability constraints, a process which is very different from the simple update
method used by the traditional SOM. From the simulation results, excellent TAPE for all
agents has been obtained via the intelligent adaptive SOM with FNN controller. Summarizing
the above approaches proposed in this chapter, not only the MDS model is delineated, but also
the effective parallelized interception decision is established for the agents from a bounded

region to efficiently intercept their corresponding targets.
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Chapter 4

Dynamical System Identification using High-Order

Hopfield-based Neural Network (HOHNN)

4.1 Background and Motivation

The high-order Hopfield-based neural network (HOHNN) with functional link net
(FLN) has been developed in this chapter for the purpose of uncertain dynamical system
identification. In comparison with the traditional Hopfield neural network (HNN) and the
high-order neural network (HONN), the compact structure of FLN with a systematic order
mathematical representation combined into the proposed HOHNN has additional inputs for
each neuron for faster convergence rate and less computational load. The weighting factors in
HOHNN are tuned via the Lyapunov stability theorem to guarantee the convergence
performance of real-time system identification. The robust learning analysis of HOHNN to

improve the convergence in the performance is also discussed.

4.2 High-Order Hopfield-based Neural Network (HOHNN) Models

Three different types of artificial neural networks can be classified based on their
feedback link connection architecture. This chapter focuses on the recurrent neural networks.
Figure 4-1 shows an HNN structure that forms a multiple-loop feedback system where the
number of feedback loops is equal to the number of neurons [38]. The output of each neuron
fed back as an input to each neuron in the network. Considering the architecture of HNN, as
illustrated in Fig. 4-1, the synaptic weighting vector w'(¢) = [wi'(f) w2'(¢) ... w,/(¢)] represents
conductance, the input vector x'(¢) = [x(¢) x2'(¢) ... x,/(¢)] represents voltages, and n represents
the number of inputs. In Fig. 1, the input vector x'(¢) is fed back from the output vector y(f) =

1) y2(f) ... yvu(©)] = [vi(£) va(?) ... vi(2)], and a current source /; represents the externally
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applied bias. The nonlinear function ¢( - ) is a sigmoid function that limits the permissible
amplitude range of the sum of the inputs as defined by the following hyperbolic tangent

function:
o(v) = tanh(%) (4-1)
which has a slope of a; /2 at the origin, as shown by

a; _do()

2 dv (4-2)

v;=0
where a; and v; are referred to as the gain and the output voltage of /™ neuron, respectively.

Based on the Kirchhoff’s current law, the following dynamic node equation can be obtained:

C, dvi(7) - V(1) _
dt R,

1

PR AGE SGES NFE RS (4-3)
i=1
Because the input is the feedback of the combination of the output, Equation (4-3) becomes

Ci%ﬂ"?@:iwf@)%@i(g)ui, i=len. (4-4)

The stability analysis of the above HNN was proven in [38], in which an energy function was

defined, and the derivative of, the energy function was negative to yield an asymptotically

stable system.
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Input patterns Neurons Outputs

Fig. 4-1. The architecture of Hopfield neural network.

4.2.1  Description of HOHNN
The FLN recently studied in [71-73] was a single-layer network whose need for hidden
layer was removed. The FLN in [58] was formed by the i-dimensional input vector x and

enhanced to the j-dimensional input vector x, with elements {x,1, x50, ..., Xpi, ..., X5} by a
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systematic order or non-ordered mathematical representation. The expansions of the
first-order Hopfield model with non-ordered mathematical representation in [74] formed
high-order neural networks (HONNSs). However, the systematic order mathematical

representation is adopted into the proposed HOHNN in this thesis.

4.2.2  Major Works

The systematic-ordered enhanced patterns are considered with high-order terms beyond
third-order terms to form the fully extended HOHNN (FHOHNN) structure. However, such
expansive transforms increase the number of components greatly as the dimensions of input

vector increases as shown in Table 4-1-

Table 4-1 Increase number of input pattern components with enhancement.

HNN HOHNN FHOHNN

Number of Number of Number of

initial patterns {x;}*"| components {x;, x;x;},j>i | components{x;, x; xj, x; X; X¢}, k>j>i

2 3 3
3 6 7
4 10 14
10 35 155

Hence, it was suggested in [58] that high-order terms beyond the second-order terms are not
required in the enhanced patterns of input vector of HOHNN by omitting the terms with two
or more equal indices. Therefore, a compact FLN is defined with rigorous formulae as shown
in Fig. 4-2 and the equations below. The input pattern vector Z in Fig. 4-2 is defined precisely

as follows:
L=z, z, - zy Zy, °- ZN(N+1)/2] (4-5)

and
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{ Zny, T 420 | £
{ Zon-yt, = 220,40 | £, =
14

Z(3N-3)rt;, — 232043 |

(4-6)
{ Zliv—k(h-1)2)re, = ZkZ0, 1k | Ly =12,..,N—k }

U Zvovovarahes . = ZvaZe o | Lyn =12 N=(N=1) }
The above (4-5) states that the Z vector has N (N + 1) / 2 terms, in which N is the number of
original input variables. In addition, Equation (4-6) describes all the extra second-order terms
for {zv+1 zv+2 ... Zv@w+1y/2}. The input vector of HNN shown in Fig. 4-1 can act as a

compact FLN, as defined in Fig. 4-2.

Z)
25 ‘
Z4 ‘
Z
N1
_ > z,
Zl Zy .
z
2 Z\Z —
. 1<2 |7 = ZN
Zyn
Zy .
- Z,Z,
| ZN(V+1)/2 |
ZkZkn
ZN-12N
\ /o~ - S
~ —~ ~
Input pattern Functional link net Enhanced pattern

Fig. 4-2. A compact structure of functional link net.

In this thesis, the HNN with a compact FLN is to form HOHNN, which can be demonstrated
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to be an approximation by the Stone-Weierstrass theorem for continuous time dynamical

systems. The detailed proof is given in the next section.

4.3 The Function Approximation using HOHNN
Consider a continuous-time nonlinear dynamical system of the following form:
x = F(x,u)
y=x

(4-7)

where x = [x; x3 ... x,,]T 1s the system state vector assumed to be available for measurement, u
and y are the input and output vectors of the system, and F(x, u) is the nonlinear function
which describes either affine or non-affine system dynamics. In addition, a bounded-input,
bounded-output (BIBO) condition is also imposed for (4-7) (i.e., if the admissible control
input is bounded then the state-trajectories are uniformly bounded for any finite initial
condition). The aim.of this chapter-is to discuss the capability of function approximation of
HOHNN for unknown nonlinear systems. In order to approximate the unknown nonlinear
system, HOHNN with single-layer, fully‘connected, recurrent nets and functional link model
is proposed. Assuming that.n neurons are needed to identify an.sn™ order unknown nonlinear
dynamical system and from (4-4), the mathematical model of the proposed HOHNN for
system identification with zero bias can be expressed as follows:

= AR +BWZ (4-8)

A

where f(:[)%] X, e ‘Qn]r :[Vl v, e Vn]T

i1s the n-dimensional state vector; A =

diag[-1/R\C) —1/R,C; ... =1/R,C,] and B = diag[1/C, 1/C; ... 1/C,] are both n x n diagonal
matrices. For this compact FLN, the dimension of input pattern has been expanded to N' = (n
+ M) x (n+ M+ 1)/ 2. Thus, the N'-dimension input vector Z can be defined as

Z=[® U 7, (4-9)

Furthermore, the associated weight can also be defined as an » x N’ matrix of synaptic
weighting factor matrix
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W=[w, w, w,] (4-10)

[ u
where w,, w,, and w; are the weighting factors of feedback input, control voltage input, and

high-order term, respectively. By assumption, (x(¢),u(?))e S, V¢e€[0,7T]. Let

S, = {GweR™ :[Ru)-&,u,) <5 R,u,)eS | 4-11)

where S is an (n + M)-dimensional compact subset to be properly chosen. Clearly, S; is also a
compact subset of R and ScS,. In other words, S, is larger than S by an arbitrary

small value €. Because of the universal approximation theorem [38, 75, 76] and the bound of

the input, the modeling error can be arbitrarily. small. Substituting (4-9) and (4-10) into (4-8),

x=A%+Bw, ®+Bw,U+Bw,Z, (4-12)

where
O =[gp(%,) qpEy) - qp(,)]5 (4-13)
U=[u_u, - u,l, (4-14)

and
Z,=[qp(¥)-qp@,) - qe(X)-qpE) v e wycuy, ] (4-15)

In Fig. 4-3, @ is the n-dimension vector of the network feedback in a standard HNN with ¢( - )
being a nonlinear sigmoid function, and ¢ is a positive feedback constant; U is the
M-dimension vector of the control force, and Z; in (4-15) is the high-order nonlinear vector to
the system which comes from (4-6) in the compact FLN shown in Fig. 4-2. This combination
is the HOHNN for a single neuron, which is shown in Fig. 4-3. The input pattern of HOHNN
produced from the FLN is the enhanced pattern in which the neural feedback, control voltage
input, and the combination of these two inputs are contained. The function approximation
problem consists of determining whether to allow sufficient high-order connections with

weighting factor matrix W, such that the HOHNN model approximates the input-output
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behaviour of an arbitrary unknown nonlinear dynamical system. To come up with a
well-posed problem, assume that W has an optimal W = [qu* W wh*] that can approximate
the nonlinear dynamical system to any degree of accuracy. Therefore, the state equation in
(4-7) can be approximated by an HOHNN using the following optimal form:

x=Ax+Bw, ®+Bw, U+Bw, Z,. (4-16)

Moreover, the optimal matrices can be further defined as [38, 75, 76]

(w,,w, ,w,")=argmin| sup|F(x,u)- (A% + Bw,®+Bw, U+Bw,Z,) (4-17)
W(pEqu, N 1(69,‘,
il =
where
Q. ={w, :tr(w,'w,) <D, } (4-18)
Q. ={w, :ir(w, w)<D, } (4-19)
Q, ={w, (w,'w,)<D, } (4-20)

are compact constraint sets for w,, w,, and w;, respectively, specified by designers. Here,

D, , D, ,and D, can been seen as bounded in<a ball of radius, also specified by

designers to avoid the arbitrarily large weight values. Secondly, suppose that F' is continuous
and satisfies a local Lipschitz condition such that (4-7) has a unique solution and
(X(t),u(t)) €S for all 7 in some time interval /7= {#: 0=¢=T}. The interval I; represents the

time period over which the approximation is to be performed.
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Fig. 4-3. The HOHNN structure for a single neuron.

Assume that F(x, u).1s a continuous-function that satisfies the local Lipschitz condition, such
that the states can be confined in the compact set S. Based on the above assumptions, the
following result can'be obtained.

Lemma 4-1 [75]: Suppose that the system in (4-8) is initial at X(0) = x(0). For the small

degree of approximation ¢> 0 and any finite time.interval 7' > 0, there exists an optimal

weighting matrix W’. Thus, the state X(7) of the HOHNN model (4-8) with N’ high-order
connections and weight values W = W' satisfies

sup|[x(f) - X(t)| < & (4-21)

0<t<T

where | - | denotes the Euclidean vector norm. Using the Bellman-Gronwall Lemma [76], the

error function e(f) can be limited in the following bounded value:
le() < £ (4-22)
2
Supposing that [X(¢),u(¢)] does not belong to the set S, for all #€[0,7], then, by the

continuity of X(¢), there exists a 7 where 0 < 7" < T. Thus, [X(7"),u(T")]€dS, where 65,
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denotes the boundary of S, If the same analysis for ¢e[0,7°] is carried out,
|x(t)—f((t)|£g/2 is obtained in this interval. Therefore, the proposed HOHNN model is

capable of approximating the behavior of dynamical systems to any degree of accuracy if a

sufficiently large number of high-order connections between neurons is allowed.

4.4 The Lyapunov Tuning of HOHNN for Ildentification
From above discussion, clearly, for a given nonlinear system, the HOHNN model with
a sufficiently large number of high-order connections can be obtained to approximate any
dynamical system to any degree of accuracy. Here, the adaptive laws for weighting factors
training have to be appropriately designed to guarantee the approximation performance. The
approximation error between states-of the HOHNN identifier and the real system is defined as
e=X—X. (4-23)
Thus, the derivative.of e with respect to time can be obtained by (4-12) and (4-16)

¢=Ae+BW,®+BWw,U+BW,Z, (4-24)

* * *

where W, =w, -w_, W, =w, -w,_ and W, =w,_~W,. Because A is a stable matrix

(since |sI — A| is stable), there exists a unique positive definite symmetric #» X n matrix P that
satisfies the Lyapunov equation PA + A'P = —Q, where Q is an arbitrary n x n positive
definite matrix. The weight adaptive laws that guarantee nonlinear dynamical system for
approximation error minimization and approximation process convergence have been
considered in Theorem 4-1 based on the absence of the modeling error. The theorem states the
main result concerning the convergence of the proposed approximation scheme.

Theorem 4-1: A nonlinear dynamical system considered in (4-7) is assumed to be modeled
exactly by (4-16) and the approximation system is designed as (4-12). If the adaptive law of

. . . .th
weighting factors in i neuron are chosen as
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W, =-1,q00 )bpye., for j=12,...n, (4-25)
ww,{; =-nub,p.e, fork=12,... .M, (4-26)

and
Wi noran = ~Thzbapaers forl=12,..,(n+M)n+M —1)/2 (4-27)

where 7,, 1, and 7, are positive learning rates; and b; and p;; are the diagonal elements of B
and P, respectively. The stability of the overall identification scheme is therefore guaranteed.
Proof:

Consider the Lyapunov candidate function as

V= %eTPe + Ltr(v“vjvv(p) + er(v“‘vuTvau) + Ltr(va,vavh (4-28)
7] u 7711

where P > 0 is chosen to satisfy the Lyapunov equation PA + A’P = —Q. Taking the derivative

of V' with respect to time and using (4-24) yields

V :E(eTPe+eTPe)+—tr(w¢,Tw¢,)+—tr(quwu)+—tr(thwh)
(2 u h

_ _%eTQe N %@TW/BTPe UL B Pe 4 Z,"W, B Pe

+¢'PBW, @ +¢' PBW, U+e"BBW,Z,) +— tr(¥, W4 — tr(¥, %) + —1r(¥," ).
[ u h

Because ®'W,'B'Pe , U'W,B'Pe, Z,'W,'B'Pe , ¢'PBW,® , ¢'PBW,U, and
e'PBW,Z, are all scalars, the relationships can hold as

®'Ww, B'Pe=(®"W,'B'Pe)’ =¢'PBW @,

U'w,'B"Pe=(U"W, B"Pe)” =¢’PBW,U,
and

72, W,/ B'Pe=(Z,"W,'B"Pe)’ =¢'PBW,Z,.

Hence, the derivative of J with respect to time can be reorganized as
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y— _%eTQe +@'W, "B'Pe+U'W, B'Pe+Z,’ W, B Pe

+irr(v*vjv~v¢) + itr(v‘v[vm + itr(v’“e,fwh) . (4-29)
4 u h

Here, select the following equations

Ltr(erﬁw) =-®'W,"B'Pe, (4-30)
My
1 <~ T~ T TpT
—ur(w, w,)=-Uw,_ B Pe, (4-31)
and
irr(v*thvah) =-7,"W,'B"Pe. (4-32)
ur

Substituting (4-30)—(4-32) into (4-29) gives
V=—%eTQe£O. (4-33)

Therefore, the stability of overall-approximation scheme is guaranteed based on the above
results and the Lyapunov stability theorem. Based on (4-30)+(4-32), the adaptive law of
weighting factors in_an element form can be obtained. The Lyapunov stability theorem is

guaranteed under the optimal approximation model with no modeling error. Q.E.D.

4.5 Robust Learning Analysis

The above assumptions are violated in many cases because of the existing modeling
error in the HOHNN model. The adaptive laws of weighting factors cause the modeling error
to achieve infinity if the standard adaptive laws are used for updating the weighting factors.
Therefore, the modified weight adjustment laws are discussed to avoid the parameter drift
problem. In formulating the problem, the identification model in (4-16) with modeling error

can be corrected as
x=Ax+Bw, ®+Bw, U+Bw, Z, +m (4-34)

where m is a modeling error changing with respect to time, and the optimal weight vectors are
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defined by (4-17)—(4-20). If m is not equal to zero but is small, the stability proof may not be

guaranteed, that is, V > 0. Assume that there exists a finite bounded constant J so that

[[m@)'dz <5, 0<t<co. (4-35)
Thus, from the BIBO stable, the time-varying m is assumed to be bounded in a finite constant
o0 in (4-35). Using (4-12) and (4-34), the state error satisfies

¢=Ae+Bw ®+Bw U+BW,Z, +75 (4-36)
where w,, W, and W, as defined earlier. Because the change of weighting factors can not

be guaranteed to be bounded in the ball of radius, the learning laws given by (4-25)—(4-27) are

modified as follows:

- 77¢Q¢7(V ')biipiiei’ U(‘ ‘W ‘ < D and q(D(V )bupu 0,j l e = 0

i

W, = s (4-37)
Pri=n,qo(v)bpie > if Wy, | > Dy, and qp(v,)b; p;w, ;e <0
) —nu,b;pe;, if wu,(n+k)i‘ < Dwu and ”kbﬁpiiwu,(mk)i ;20 (4-38)
Wu n+, = i i > -
o Pr{-n,u.b,p,e},if Wy (nsky |~ Dwu and ukbiipiiwu,(nJrk) e, <0
and
. i _thlbupu t’ Up Wh (n+M+l) < D and nhzlbnpnwh (n+M+l) l =
Wi nedsty = ‘ (4 39)

Pr{ ﬂhzlbllpuet} lf‘ ‘Wh (n+M+l) > D and nhzlbnpnwh (n+M+1) e <0
where the projection operator Pr{ - } is defined as [40]

‘J¢(V,- )biipiiw(p,jiei i

Pr{_n¢Q¢(vj b, pe} = _U¢Q¢(Vj )b, pye; + 7, ' 2 — W
W%/‘
ub.p.w ‘e
_ kZii 0 W u(nvk) i i
Pri{-nub,p,e}=-nub,p.e +n, P Wy (ntk)
Wu,(n+k)

and

i
Zlbiipiiwh,(n+M+l) € i
2 Wi (M 4Dy -

Pr{-n,z,b,p.e;} =-n,z,b,pe +n,

i

‘wh,(n-%—M-%—l)

The closed-loop configuration of HOHNN for function approximation is shown in Fig. 4-4.
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Fig. 4-4. The closed-loop-configuration of HOHNN for funetion approximation.

Considering the same Lyapunov candidate function in (4-28) and using (4-36). Taking the

derivative of V" with respect to time, the following can-be obtained:

[eTATPeJr(I)TN 'B'Pe+U’'W,'B'Pe+Z, W, B Pe+5 Pe+e PAe
+e"PBW @+ e’ PBW U+ e'PBW,Z, +e'PJ]

| | R | R
+—tr(w¢TW¢)+—tr(quwu)+—tr(thwh)
] u h

= —%eTQe + %(@T\vaTBTPe +U'W,'B"Pe+e"PBW,Z, + 5" Pe +e'PJ5)

~ ~ ~ | O U 1 o7 |
+7,'W,B" Pe+eTPBw(pd)+eTPBqu+—tr(waW¢,)+—tr(quwu)+—tr(thwh)

] u h

T~ T

Because ®'W,'B'Pe, U'W,'B'Pe, Z,'W,'B'Pe, ¢'PBW @, ¢'PBW, U, ¢'PBW,Z,,
6"Pe and e’PJ are all scalars, the relationships can hold as

®'w, B'Pe=(®"W, B'Pe)’ =¢'PBW @,
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U'w,"B"Pe=(U"w,'B"Pe)’ =e'PBW, U,
72, W, B'Pe=(Z,'W,'B"Pe) =¢'PBW,Z,,
and
S'Pe=(5"Pe)’ =e'Ps.
Hence, the derivative of V' with respect to time can be arranged as
V= —%eTQe +®'W,'B'Pe+U'W,'B'Pe+Z," W, B'Pe+e'Ps

L tr(w, W,)+ Lo, )+, ). (4-40)
4 u h

Some useful variables are defined.as

Y itr(v*vﬁvq,) +®"w, B Pe,

Wo
4

= 1 ~
J,=—tr(w, w)+U'Ww, B Pe;

Wy
u

and

Iy = Ltr(WhTWh) +Z,' W, B Pe.
/i

Thus, the equation shown in (4-40) can be rewritten as

V= —%eTQe+JW¢ + AT, +e'PS. (4-41)
By using (4-37) and assuming qu, =0 , the conditions ‘w(p’j’ SDWW and
qo(v;)b,;p,w,, jie[ >0 can be obtained. For the conditions ‘w(p,j" =D,  and
qp(v,)b;p;w, e, <0,
Zq(p(V) a o b,,pl, w, e (4-42)
W</’]

can be obtained. Because W¢* belongs to the compact constraint set Q , the inequality

can be obtained. The inequality equation then becomes
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2

. . K .12 12
~ 1 1 1 1 ~ 1 . .
W, W, 5( A ‘wm - ‘wm ) <0. Thus, Equation (4-42) can be rewritten as
| i? |~ i
w,oo | —=w, | =W,
qo(v;) |"ei ‘ 0.j ‘ 9.j ;
JWW = Z 9 ) fE) : bi[piiw(p,j e, <0. (4-43)
n ‘W(/’ J

Similarly, by using (4-38) and (4-39), the following inequality equations can be obtained:

#? 12 e 12
w —|w —\w
u u,(n+k) u,(n+k) ‘ u,(n+k) ‘ X
_ k i
‘]Wu - z 2 ’ 2 'biipiiwu,(n+k> e, <0 (4-44)
ik w "
u,(n+k)
and
P " 4 i|?
z, Wit 1) —‘Wh,(nJrMJrl) _‘Wh,(n+M+l) }
th = Z 3 2 ’bnpnwh,(mMJrz) ;<0. (4-45)
ikl ‘W
h(ntM+1)

Hence, for any possible condition that occurs in (4-37)—(4-39), the conditions J. < 0,
Jy, <0,and J <0 can be satisfied. Then; Equation (4-41) can'be simplified to
V= —%eTQe +J,, +I5, +J, +e' RS
< —%eTQe+eTP5
1 2 1 2
< _EM‘““‘ Q) —1le| + E||1>5|| (4-46)

where Anmin(Q) is the minimum eigenvalue of Q. Integrating both sides of (4-46) from ¢ =0 to ¢

=T (0 < T <), and choosing Anin(Q) > 1 (because Q is determined by the designer), we have
1 Ty 2 Loz (74 <2
2 (@) =1] [ e[ ar <) -v oy +— [Pl [ o] ar (4-47)
In particular, V(f) = 0, Equation (4-47) can be arranged as

T 2 2 1 2 ¢T 2
Jl s O g Pl LT e -ty

V(0) and ||P||2 are constants and 6 defined by (4-35) is a

where

_ 2 _
ﬂ’min (Q) -1 ﬂ’min (Q) -1

34



maximum bounded for m. If J is squared integrable, that is, I0w|5(t)|2dt<w , then

lim|e(t)| =0. Therefore, from (4-48), the approximation performance with HOHNN identifier

T—0

is proven to converge to a certain small boundary.

4.6 lllustrated Examples

In this section, the simulation results of nonlinear system identification are presented.
The uncontrolled regular-order Chen system [77, 78] simulated in Fig. 4-5 is the sort of
stochastic fractional-order chaotic systems within 50 seconds. The application of proposed
HOHNN to identify the regular-order Chen system in the presence of external disturbances is
illustrated. The overall detailed structure for the third-order nonlinear dynamical system
identification is shownuin the Fig.4-6, where there exist three neurons and one control force u

for the HOHNN.
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Fig. 4-6. The overall 1dentification diagram of regular-order Chen system.

Assume the feedback constant g=1, the inputs from the network feedback vector
®={p(x,) ¢(x,) @(x,;)} and the control force vector U = {u} are combined with the extra
compact high-order term Z, ={p(x)¢(x,) @(x)@(%;) @(x)u  @()p(%;) @(%)u o(x;)u}
to form the full input vector Z = [®@ U Z,]” for the Hopfield-based neural network. The
dynamic motion equation of the regular-order Chen system in this thesis is designed as
follows:

X, =a(x,—x)+u+d (4-49)

x, =(c—a)x, —xx; +cx, +u+d (4-50)
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X, =xx, —bx; +u+d (4-51)

where a =21, b =2, ¢ = 13; x1, x», and x3 are the state variables; u = 3sin(1.5¢7) is chosen as the
control force. In order to examine the robustness of the proposed scheme, an external
disturbance d = 1.5sin(3¢) + 2cos(2¢) is added to the system after 10 seconds. In the simulation,
the regular-order Chen system is shown in Fig. 4-6 with a sampling time of 0.005 second and
within total simulation time of 15 seconds. In the three HOHNN neurons, the parameters are
selected as R = 100Q, C = 0.01F; the initial voltages are set as v(0) = v»(0) = v3(0) = 1V, and
the weighting factors are set as w,(0) = 0.08, w,(0) = 0.025, and w,;(0) = 0.01, respectively.
For comparison purpose, the recurrent HONN (RHONN), traditional HNN, and FHOHNN
models have been adopted to show the approximation performance on the same regular-order
Chen system.

Figure 4-7(a) shows the -system " approximation comparisons between these
Hopfield-based neural networks. Figures 4-7(b) and (c) show the detailed performances for ¢
=0 ~ 0.5 seconds and ¢ = 9.9 ~ 10.4 seconds, respectively. The error comparisons of system
approximation are shown in Fig. 4-8(a), and the detailed approximation errors are shown in
Figs. 4-8(b) and (c) for = 0 ~0.5.seconds and t = 9.9~10.4 seconds, respectively. Although
the detailed performance comparisons between the networks for # = 9.9 ~ 10.4 seconds are not
obvious, the detailed error comparisons can clarify that HOHNN can perform the best system
identification above the other Hopfield-based neural networks. The mean square error
comparisons for all the Hopfield-based neural networks and their detailed drawing for r = 0 ~
0.5 seconds and # = 9.9 ~ 10.4 seconds are shown in Figs. 4-9(a), (b), and (c), respectively. It
can be obviously seen from Figs. 4-7 to 4-9 show that the HOHNN structure behaves the best

approximation performance among the other structures.
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and HOHNN (a) for 1 = 0 ~ 15 seconds, and the detailed drawing for (b) # =0 ~ 0.5 seconds

and (¢) 1= 9.9~ 10.4 seconds.
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Fig. 4-9. The mean squate error.comparisons of system approximation between RHONN,
HNN, FHOHNN, and HOHNN (a) for.z = 0 ~ 15.seconds, and the detailed drawing for (b) t =

0~ 0.5 seconds and (c) = 9.9 ~ 10.4 seconds.

The following Table 4-2 shows a computation index that indicates the RHONN and
FHOHNN structures perform longer execution time than the HNN and HOHNN structures. In
the proposed HOHNN structure, there are four components considered in the original input
pattern to produce ten enhanced input components; however, the same number of components
is largely extended to sixteen and fourteen components in the RHONN and FHOHNN
structures, respectively. This number of components does not only increase the execution time,

but also decreases the tracking performance caused by the large number of redundant
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weighting factors. Furthermore, the traditional HNN has the advantage of average execution
time; however, it has the disadvantage of slowest approximation performance. Thus, the
system identification of the proposed HOHNN is the best among those of the other
Hopfield-type neural networks in simulation results and computation analysis within a proper

given time interval, even under a certain external disturbance.

Table 4-2 Execution time for all the Hopfield-based neural networks.

Execution
time (sec) ) .
Network Maximum Minimum Average
architecture
FHOHNN 0.2040 0.1870 0.1906
HOHNN 0.1870 0.1720 0.1765
HNN 0.1880 0.1560 0.1688
RHONN 0.2350 0.2190 0.2283

4.7 Conclusions

In this thesis, HOHNN has been proposed for the unknown nonlinear dynamical system
identification. In comparison with. the non-ordered-mathematical representation in FLN, a
compact structure of FLN with systematic order mathematical representation has been
combined into the proposed HOHNN. The approximation capability of HOHNN is first
discussed to show that the proposed FLN is capable of approximating the behavior of
dynamical systems to any degree of accuracy if a sufficiently large number of high-order
connections between neurons is allowed. The adaptive laws via Lyapunov tuning theorem to
the weighting factor matrix can reduce the approximation error to a small yet satisfactory
level. In case modeling errors are present, the robust learning analysis is then proposed to
guarantee the stability of the overall scheme. The simulation results for the RHONN,

FHOHNN, HNN, and HOHNN are finally conducted to show the effectiveness of HOHNN in
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uncertain dynamical system identification. The system identification performance for
HOHNN is better than that of RHONN, FHOHNN, and HNN. Even when the dynamical
system is perturbed by unwanted disturbance, the improved performance of the proposed
HOHNN is evident in the computer simulation established with the benchmark examples in

this chapter.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

For decades, there have been many researches focused on one-to-one tracking control.
The fuzzy neural network (FNN) controller proposed in Chapter 2 and 3 is easier to be
implemented than the other complicated neural network controllers for guidance purpose. In
the FNN controller, the Gaussian function is adopted as the membership function and the
fuzzy operations are utilized as-the inference mechanism. The online learning methodology is
developed in the Lyapunov sense, meanwhile the stability of the closed-loop system can also
be guaranteed. The multi-agent system (MAS)-extends the one-to-one tracking control to an
environment for the consensus and communication of a group of agents and targets. From the
help of self-organizing map (SOM) in MAS, the task assignment between agents and targets
can efficiently be handled within a satisfactory computational load. In Chapter 3, the missile
defense system (MDS) is established for two case of simulations. The one-to-one agent-target
missile guidance using FNN controlis.proposed.in the first case; the multi-agent-multi-target
battle scenarios are proposed in the second case. From the simulation results, not only the
proposed FNN controller has better performance than the cerebellar model articulation
controller (CMAC), but the SOM-based FNN controller for MDS can also completely
establish a real-time battle environment.

In addition, the high-order Hopfield-based neural network (HOHNN) is proposed for
the nonlinear dynamical system identification. The proposed functional link net (FLN) with a
systematic mathematical representation for the input patterns is capable of approximating the
behavior of nonlinear dynamical systems. The Lyapunov tuning theorem and the robust

learning analysis for weighting factors can not only reduce the approximation error to a small
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satisfactory level, but the stability of the overall closed-loop system can also be guaranteed.
From the simulation results and computational analysis, the system identification performance
for HOHNN is better than that of the other Hopfield-based neural networks even under

disturbances.

5.2 Suggestions for Future Works

In the first part of the thesis, the agents are located on the fixed positions. Because in
the real missile battle scenario, there are unknown number of objects and parameters which
can directly or indirectly affect to our system. In order for missile battle reality, the
corresponding variables will be considered for future works. In the second part of the thesis,
the more complicated nonlinear dynamical system will be discussed and a more complete

stability theorem will.be proposed:
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