
Chapter 2 Numerical method 

2.1 Basic molecular dynamics 

In this section, we introduce briefly for completeness the basis of the molecular 

dynamics simulations and the definition of the model used to simulate the behavior 

of a droplet impacting a liquid film laid on the solid substrate. 

In a molecular dynamics simulation, all atoms are considered as point masses 

defined by a position and its time derivatives. Each particle is interacting with the 

other particles through interaction forces derived from the interaction potentials 

detailed in this section, and time evolution is governed by Newtonian mechanics. At 

each time step, particle accelerations are calculated using Newton’s second law and 

their positions are then updated. 
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Molecular dynamics method is used to solve the dynamics of a N-particle (atom 

or molecule) system by integrating the Newton’s equation of motion, as shown in 

equations (2.1) and (2.2), for each particle to obtain the position of the particle as a 

function of time [23,24].  
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where  is the mass of atom i , and  are its position and velocity 

vectors, respectively.  is a force term, which describes pairwise interactions 

between atoms,  is a force term, which describes three-body interactions, and 

many-body interactions can be added if needed. Force on each atom is the spatial 

derivative of potential energy that is generally written as a function of the position of 

itself and other atoms. The general procedure of MD simulation is shown in Fig 2.1. 
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Simulation programs are conventionally written so that all quantities are 

unitized that may avoid overflows of calculation by the computer. As units of 

distance and energy we use the potential parameters σ and ε , respectively, and as 

the unit of mass, that of one atom. 

2.2 Equation of motion 

The potential energy is a function of the atomic positions (3N) of all the atoms 

in the system. Due to the complicated nature of this function, there is no analytical 

solution to the equations of motion; they must be solved numerically. Numerous 

numerical algorithms have been developed for integrating the equations of motion. 

One very simple numerical scheme that is widely used in MD is known as the 

leapfrog method; it is completely equivalent algebraically. In its simplest form the 

method yield coordinates that are accurate to third order in t∆ . However, it tends to 
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be considerably better than the higher-order methods from the viewpoint of energy 

conservation. In addition, its storage requirements are also minimal. The leapfrog 

method introduces in detail as follows: 

The leapfrog method is equally simple to derive. Rewrite the Taylor expansion 

as 
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The term multiplying h is just , so (.2.6) becomes (2.8) below. The 

result (2.7) is obtained by subtracting from the corresponding expression 

for . The leapfrog integration formulate are then 
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The fact that coordinates and velocities are evaluated at different times dose not 

present a problem; if an estimate for  is required there is a simple connection 

that can be expressed in either of two ways: 
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The initial conditions can be handled in a similar manner, although a minor 

inaccuracy in describing the starting state, namely, the distinction between  

and , is often ignored [23][24]. 
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The Leapfrog method may directly find the new position of the atom next step; 

it does not have to revises. Therefore, it may simplify the process of calculation, its 

method as follows: 
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At first, we utilize the known velocity at 2
dtt −  to find a velocity of an atom 

at 2
dtt + , from (2.10), then utilizing the known position and velocity (2.11) to 

calculate a new position of an atom at dtt + . In order to reduce the error of 

calculation, using the velocity at 2
dtt +  is better than at . It also corresponds to 

utilizing the mean value of velocity at  and 

t

t dtt +  to find the new position of an 

atom, of course, it is more accuracy. 

2.3 Interaction potentials 

Choice of potentials is a very important project in MD simulation. Potential 

energy can also be categorized as short-ranged and long-ranged interaction in nature. 

The former (e.g., L-J potential) [24] only considers the interaction between the atoms 

geometrically nearby the interested atom, while the later (e.g., Columb potential in 

ionic solid or biological system) needs to consider the interaction even from the 

atoms far away from the interested atom. Albeit its simplicity of the short-ranged 

interaction, it have been applied extensively in many MD simulations in the past, 
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especially for liquids and solids. In contrast, long-ranged interaction models are not 

commonly used in classical MD simulation except for polarized molecules, such as 

water [23,24]. 

2.3.1 Lennard-Jones potential 

In this study, we are only interested in dealing with classical MD using 

short-ranged interaction. The Lennard-Jones potential were used to He-He, Ar-Ar 

and Xe-Xe interaction whether the droplet, liquid film or solid substrate. 

At first, the main step is to define the force field containing all potentials of 

interaction between atoms. The basic interaction applied between all atoms, solid as 

well as liquid, is the pairwise Lennard-Jones (12-6) interactions: 
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where r is the distance between any pair of atoms i and j. The parametersε  

andσ defines the strength of the interaction and the length scale, respectively. 

Force resulting from LJ potential is written as  
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 the force drops to zero, so that there is no discontinuity at ;  and higher cr cr f

 12



derivatives are discontinuous. The Lennard-Jones potential and force are shown in 

Fig. 2.2. 

    In general, to express these equations used in MD in dimensionless format. 

There are several reasons for doing this, not the least being the ability to work with 

numerical values not far from unity, instead of the extremely values normal 

associated with the atomic scale. Another benefits of using dimensionless units are 

that the equations of motion are simplified because some, if not all, of the parameters 

defining the model are absorbed into the units. From practical view point, the switch 

to such units removes any risk of encountering values lying outside the range that is 

represent by the computer hardware. The non-dimensional units relate to MD 

equations is listed in Table.2.1. 

2.4 Force computations 

2.4.1 All pairs 

It is the simplest to implement, but extremely inefficient when the interaction 

range is relatively small compared to the linear size of simulation region. All pairs 

of atoms must be examined, because it is not known in advance which atoms actually 

interact owing to the continual rearrangement that characterizes the fluid state. 

Although testing whether atoms are separated by less than is only a part of the 

overall interaction computation, the fact that the amount of computation needed 
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grows as O(N2), where N is the number of particles. This rules out the method for all 

but the smallest values of N. Two techniques for reducing the growth rate to a more 

acceptable O(N) level, often used in tandem to within a numerical factor. This 

clearly represents the lower bound for the amount of work required to process all 

atoms. [23] (Fig. 2.3) N

2.4.2 Cell subdivision 

Cell subdivision provides a means of organizing the information about atom 

positions into a form that avoids most of the unnecessary work and reduces the 

computational effect. Imagine that the simulation region is divided into a lattice of 

small cells, and that the cell edges all exceed . Then if atoms are assigned to cells 

based on basis of their current positions it is obvious that interactions are only 

possible between atoms that are either in the same cell or in immediately adjacent 

cells; if neither of these conditions are met, then the atoms must be at least apart. 

Because of symmetry only half the neighboring cells need to be considered; thus a 

total of 14 neighboring cells must be examined in three dimensions (these numbers 

include the cell itself). The wraparound effect due to periodic boundaries is readily 

incorporated into the scheme. Clearly, the region size must be at least 4 for this 

method to be useful [23,24]. (Fig.2.3) 
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2.4.3 Neighbor lists 

The neighbor list method is constructing the relation (neighbor lists) between 

every atom and surrounded atoms for a period of the assigned time step. As fig.2-3, 

take the atom i as the center, where is the radius of the neighbor list, and 

. In order to calculate the force of atom due to the effect of the 

surrounded atoms for a period of assigned time step, it only judges by if these nearby 

atoms in the circle (sphere in 3-D) of radius are in the circle (sphere) of radius , 

and it dose not to calculate distances between all atoms. However, it only 

re-calculates the distribution of all atoms at the next of the assigned timestep. In 

order to allow this list to be useful over several successive timesteps we replay in 

the test of interatomic separation by 
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benefit from this reduced neighborhood size. The success of the approach relies on 

the slowly changing microscopic environment, which implies that the list of 

neighbors remains valid over a number of time steps typically between 10 and 20 

even for relatively small r∆ (in general ≈∆r 0.3-0.4) [23]. (Fig.2.3 and Fig.2.4) 

2.4.4 Neighbor list + link-cell 

In the current study, in combining with the neighbor list, we utilize the concept 

of link-cell that stores the atoms in each cell for the purpose of reducing the 

searching time as mentioned in the above. During the update of each neighbor list, 
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we only search the atoms in the other 26 cells nearby and the cell where it locates. 

This can also reduce dramatically the time required to build up the neighbor list. Past 

results show that this combination represents the most efficient technique nowadays 

in classical molecular dynamics [23,24]. (Fig.2.3 and Fig.2.5) 

2.5 Boundary conditions 

2.5.1 Periodic boundary conditions 

Unless the purpose of the MD simulation is to capture the physics near real 

walls, a problem that is actually of considerable importance, walls are better 

eliminated by using periodic boundary conditions (PBC). The introduction of PBC is 

equivalent to considering an infinite space-filling array of identical copies of 

simulation region [23,24]. 

2.5.2 Wall boundary conditions 

To simulate the MD system, we would like to keep the wall isothermal. For the 

purpose, we define a corrected layer on wall. In the study, we use the rescaling 

method to modify corrected layer. 

Rescaling method keep wall isothermal by modifying total kinetic energy. 

Under the micro-vision scale, the temperature is the performance of the atomic 

average kinetic. When we set the temperature of correction layer, it means to set the 

average kinetic energy of atoms on the correction layer, so we must keep the kinetic 
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energy fixed. (Eq.2.18), so we have a reference valve. Then, use Eq.2.19 we compute 

the total kinetic energy of atoms. Finally, we start rescaling by using Eq.2.20 to 

make the total kinetic energy in the correction layer is the same as reference value 

which we computed in Eq.2.19 [25]. 
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where 

N  : Total atoms in the correction layer 

K  : Boltzmann constant 

kdE  : The total kinetic energy defines by  dT

kaE  : The total kinetic energy of atoms in the correction layer 

dT   : The temperature of boundary, which we need 

aT   : The average temperature of atoms in the correction layer before 

modification 

old
iv  : The velocity of atom in the correction layer before modification 

new
iv  : The velocity of atom in the correction layer after modification 
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2.6 Parallel molecular dynamics method 

There is no doubt about that MD simulation is a useful and valuable tool. But 

MD simulation is very time-consuming due to large number of time steps and 

possibly large number of atoms required to complete a meaningful simulation. In 

liquids and solids, MD simulation is required to resolve the vibration of the atoms, 

which limits the time step to be on the order of fentosecond. Many hundreds of 

thousand or even millions of time steps are needed to simulate a nanosecond in 

“real” time scale. In addition, up to hundreds of thousand or millions of atoms are 

needed in the MD simulation, even for a system size in the nanometer scale. 

In the past, there have been considerable effort that concentrated on 

parallelizing MD simulation on the memory-distributed machine by taking the 

inherently parallelism. Generally, parallel implementation of the MD method can be 

divided into three categories, including the atom decomposition, the force 

decomposition and the spatial decomposition among processors. 

2.6.1 Atomic–decomposition algorithm 

In the atom decomposition method, each processor, which owns nearly the same 

number of atoms as other processors and in which atoms are not necessarily 

geometrically nearby, integrates the Newton’s equation for all atoms and moves the 

atoms of their owns. However, this method requires global communication at each 
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time step, which becomes unacceptably expensive as compared with the “useful” 

MD computation when the number of atoms increases to a certain amount, since 

each processor has to know all information (position and velocities) of all atoms at 

each time step. Or equivalently, the communication is O(N), where N is the number 

of atoms in the system that is independent of the number of the processors, P. Thus, 

the atom decomposition method is generally suitable for small-scale problem 

2.6.2 Force–decomposition algorithm 

In the force decomposition method, it is based on a block-decomposition of the 

force matrix rather than a row-wise decomposition in the atom-decomposition 

method. It improves the O(N) scaling to be )/( PNO . It generally performs much 

better that the atom decomposition method; however, there exists some 

disadvantages. First, the number of processors has to be square of an integer. Second, 

load imbalance may become an issue. From previous experience, it is suitable for 

small- and intermediate-size problems. 

2.6.3 Spatial–decomposition algorithm 

In the spatially static domain decomposition method, simulation domains are 

physically divided and distributed among processors. This method so far represents 

the best parallel algorithm for large-scale problem in MD simulation for short-ranged 

interaction ; however, it only works well for a system, in which the atoms move only 
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a very short distance during simulation or possibly distribute uniformly in space. MD 

simulation of solids represents one of the typical examples. In contrast, if the 

distribution of the atoms tends to vary very often in the configuration space, then the 

load imbalance among processors develops very fast during simulation, which 

detriments the parallel performance. Thus, a parallel MD method capable of adaptive 

domain decomposition may represent a better solution for resolving this difficulty. 

2.6.4 PCMD (Parallel Cellular Molecular Dynamics) algorithm 

A new parallel algorithm for MD simulation, named parallel cellular molecular 

dynamics (PCMD), is developed by MuST (Multiscale Science & Technology) 

laboratory in NCTU in Taiwan, employing dynamic domain decomposition to 

address the issue of load imbalance among processors in the spatially static 

domain-decomposition method. We focus on developing a parallel MD method using 

dynamic domain decomposition by taking advantage of the existing link-cells as 

mentioned earlier. In this proposed method, not only are the cells used to reduce the 

cost for building up neighbor list, but also are used to serve as the basic partitioning 

units. Similar idea has been applied in the parallel implementation of direct 

simulation Monte Carlo (DSMC) method, which is a particle simulation technique 

often used in rarefied gas dynamics. Note that in the following IPB stands for 

interprocessor boundary. General procedures (Fig. 2.6) in sequence include:  
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1. initialize the positions and velocities of all atoms and equally distribute the 

atoms among processors;  

2. Check if load balancing is required. If required, then first repartition the 

domain, followed by communicate cell/atom data between processors, 

renumber the local cell and atom numbers, and update the neighbor list for 

each atom due to the data migration;  

3. Receive positions and velocities of other atoms in the neighbor list for all 

cells near the IPB;  

4. Compute force for all atoms; 

5. Send force data to other atoms in the neighbor list for all cells near the IPB;  

6. Integrate the acceleration to update positions and velocities for all atoms; 

7. Apply boundary conditions to correct the particle positions if necessary; 

8. Check if preset total runtime is exceeded. If exceeded, then output the data 

and stop the simulation. If not, check if it is necessary to rebuild the neighbor 

list of all atoms using the most update atom information. 
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9. If it is necessary to rebuild the neighbor list (N=8 in the current study), then 

communicate atom data near the IPB and repeated the steps 2-8. If not 

necessary, then repeat steps 3-8. 

In the above, in addition to the necessary data communication when atoms cross 

the IPB and particle/cell data near the IPB, there are two more important steps in the 

proposed parallel MD method as compared with the serial MD implementation. One 

is how to repartition the domain effectively and the other is the decision policy for 

repartitioning. These two steps are described next, respectively. 
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