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Abstract

A method to impose boundary conditions for pseudospectral approximations
to heat equations 1s suggested. In this study, the boundary conditions are weakly
enforced to the scheme with the penalty parameters which are determined
analytically by using the discrete energy estimate. Numerical experiments based
on the proposed scheme are performed including homogeneous heat equations
and inhomogeneous heat equations where exact solutions exist, and the
numerical results show that the accuracy as we expected.
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1. Introduction

Heat equation is one of the basic partial differential equations. It is of fundamental
importance in diverse scientific regions such as physics [2, 12], image analysis [5, 15],
financial mathematics [1, 19], and biology [11, 14]. For instance, the diffusion phenomena
can be used to describe the change of molecular distribution. In computer graphics,
it’s useful in de-noise processing of image or filling holes in a certain data. In financial
mathematics, the Black-Scholes model can be simplified into the heat equation boundary
value problems to discuss the prices change in derivative financial products. In bionomics,
the diffusion equations can be representative as the change in the number of species, or
the process of gas exchange in protists.

Although heat equations are widely used inwvarious fields, analytic methods for solving
partial differential equations are limited; because the problem domain may be complex or
the problems may involve non=linearity..Due to the rapid development of computing facil-
ity and numerical.methods, one may seek approximation solutions to partial differential
equations. Hence; how to get accurate and stable numerical results with great efficiency
for partial differential equations becomes an important research topic called numerical
partial differential equations.

The Lax-Richtmyer equivalent theorem [9] plays a fundamental role in numerical par-
tial differential equations. It states that for a well-posed linear problem the numerical
solution obtained by a consistent scheme converges to the exact solutions of the problem if
and only if the scheme is stable. Thus, studying the convergence property of a numerical
scheme boils down to examining both the consistency and the stability of a scheme. Ex-
amining the consistency of a scheme heavily relies on the approximation theory which has
been developed for a long time. For example, the Euler scheme for ordinary differential
equations has been constructed for more than centuries and the consistency study of the
schemes relies on Taylor series expansion. However, the stability theory for numerical
schemes are mainly developed since the mid twentieth century. The most fundamental
stability theory for numerical scheme is due to von Neumann who proposed a stability
analysis in 1944 [13] for periodic problems.

Generally speaking, by exploring the consistency and stability of a scheme, we can



estimate the convergence conditions and the convergence rate in advance. For examples,
if we use explicit Euler method [16, 17], we will get second order convergence. We need
use more time in the calculation because it is conditionally stable. If using the implicit
Euler method [8, 17], this form is unconditionally stable, but it only have first-order
convergence accuracy when the grid points are increased. Crank-Nicolson form [4, 17] can
reach second-order convergence accuracy and unconditionally stable. However, it needs
more grid points by using finite difference method. Hence, requires more computing time
on computation inverse matrix is its shortcomings. For this reason, we will focus on how
to use less grid points more efficiently to reach the second order convergence accuracy.

In this study, we present a scheme, based on the spectral approximation in space
and Crank-Nicolson method.in time, for model heat equations defined on square domains
subject to various types of boundary conditions. It can be expected that the scheme
achieve second order convergence-in time. As we know, spectral method can use less grid
points to reached the same accuracy as finite different. method. So we select the Legendre-
Gauss-Labatto grid points [7] for the space discretization. Stable imposing of boundary
conditions in spectral methods is very delicate. In this study, boundary conditions are
imposed to the scheme through the penalty methodology (6], and we paid special attention
to the stability analysis of the scheme based on conducting discrete energy estimates.
Though the stability analysis the values of the penalty parameters are found to ensure
stable computations. The proposed method is implicit and it requires inverting a matrix
to update numerical solution for each time step, which can be expensive. In this study we
adopt the eigen-function decomposition approach [3, 10] to efficiently conduct the matrix
inversion. Because the matrix size is relatively smaller than finite difference method, and
the time step is larger than finite difference method. Hence, cut down the computation
time can be achieved.

This thesis is organized as follow. In Section 2, we will introduce the heat equations,
domain definition in Cartesian coordinate system, and discuss the stability analysis. In
Section 3, we will give detail about the Legendre pseudospectral method, and propose
the pseudospectral penalty scheme. Then, we discuss how to determine the penalty

conditions. Finally, we present the direct solver for calculation. In Section 4, we give



some basic heat equations example in one-dimension and two-dimension for numerical
test. Then, we extend it to more complicated heat equations and compare the differences
among different time step, CFL condition, and the number of grid points. Conclusions

are given in Section 5.

2. Formulation

In this section we first discuss boundary conditions for heat equations.

2.1. Well-posed boundary operator for heat equation

Without losing generality we consider the space domain 2 C R? with its boundary denoted
by 0. Let @ = (z,y) and ¢ be the space and time coordinates, respectively. We consider

the function u(x, t) satisfying the initial boundary value problem (IBVP):

ou(xst)
ot

u(a,0) = f(x), x € (), (1b)

Buf@it) = a(a)u s @) g =

where v > 0 is the diffusion constant, V? is the Laplace opetator, f is the initial profile of

= vViu(z, 1), xcQt>0, (1a)

g(t), x € 00,t >0, (1c)

u, and Bu = g is the boundary condition imposed at the domain boundary. The symbol
B is the term of the boundary operator-which is parameterized by non-negative smooth
functions a(x) and B(x) satisfying the constrain o?(x) + 5%(x) # 0 on 9Q. The notation
Ou/0n is the usual normal derivative of u on the domain boundary.

Consider homogeneous boundary condition, that is, g(t) = 0. Assuming that there
exists an unique solution to the IBVP, one can easily obtain an energy rate equation for
the described IBVP as follows. Multiplying u to Eq. (1a), integrating over the domain €2,

invoking the divergence theorem, and applying the boundary condition, one obtains

1d
5T Quzal:c: —V% —u2dw—u/ \Vu|? da

<0

provided that § # 0. Notice that if the boundary condition is of Dirichlet or Neumann

kind then the boundary integration term vanishes. Thus, integrating the above expression

3



with respect to time and applying the initial condition lead to an energy bound for u at

any given time ¢t > 0 as

/QuZ(m,t)dwg/QfZ(m)dw.

Therefore, the problem is well-posed.
Since our concern is about constructing stable imposition of boundary condition for
numerical computations, we consider the problem defined Q = [—1, 1]? for simplicity. The

problem becomes

%u(:p,y,t) = vV2u(x,y,t), (r,y) € Q,t >0 (2a)
u(z,y,0) = f(z,y); (z,y) € Q, (2b)
BYu(=1,y,t) =g (y,8), B =a - 5@%, y € [~1,1],t > 0. (2¢)
BOu(+1,y, tV= g, (v, ), B = o 4 B(b)(%, y e [-1,1],t > 0. (2d)
BOu(z, —1,t) = h_(2,8), B = ald= B(C)(%, z€ [—1,1],t > 0. (2e)
BDu(z, +1,t) = hy(z,1), BY =al4 ﬁ(d)a%, € [-1,1],t > 0. (2f)

The symbols B":for 5 € {a,b;e, d} are the boundary operators defined on the edges of
the square domain.” Along each edge, the associated boundary operator is parameterized
by a pair of constant real numbers, o > 0 and B9 > 0, satisfying the constrain
(@) 4+ (B2 £ 0.

Later in this report, we propose pseudospectral schemes with stable imposition of

boundary conditions for the problem described by Egs. (2a)-(2f).

2.2. Legendre pseudospectral method: Basic concepts

Consider the interval | = [—1,1]. Let N be a positive integer. Denoted by z;, for
i=0,1,---, N, the Legendre-Gauss-Lobatto (LGL) points ordered increasingly as —1 =
Tg < x1 < -+ < xy = 1, are roots of the polynomial Q(z) = (1 — 2?)Py(z), where Py(z)
is the Legendre polynomial of degree N and ' denotes the differentiation.

Based on LGL points, we can construct the Lagrange interpolation basis functions
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satisfying the property:

0, ifi;

1, ifi=j

L () =

For a function f(z) defined on x € |, we can approximate f(x) and its p-th derivative

as follows,

£() = fnle) = Y1) @y g £0A) = S = 3 T (),

7=0 7=0

The numerical derivatives can be computed through a matrix-vector multiplication,
f(p) — D"f,

where £f® and f are vectors given as

ln

19 = [P0 @) - 1 )]
F,= o), frlen)s = | ofw (@)l

with T" being the vector transpose, and D is call the differential matrix with entries given
as Di; = lj(x;). The values of [5(%;) can be found in [7].
For each N, the set of LGL points is associated with a set of quadrature weights

{wi}¥, such that
> g = [ fayd, ®)

provided that f(z) being a polynomial of degree at most 2N — 1. Equation (3) is also
known as the LGL integration quadrature rule, and it leads to the following result. Let
u and v both be polynomials of degree at most N. Then uv’ is a polynomial of degree at

most 2N — 1, and we have

Z w(z)v () w; = u(zy)v(zy) — ul(ze)v(zg) — ZUI(%)U(%)M, (4)



followed by the quadrature rule. Equation (4) is the discrete analog of the integration-
by-parts rule fil w'dr = uv|t, — fjl vu'de. We will later use this formula to establish
the stability of the proposed schemes for heat equations.

Employing the tensor product formulation, we can extend the above one-dimensional
concepts to approximate functions defined on the two dimensional domain 1> = [—1,1]2.

Define the two-dimensional collocation points as
x;; = (v;,y;), 0<i<M, 0<j<N,

where z; and y; are the LGL points along x and y axes, respectively. The two-dimensional

Lagrange basis polynomials, based on the grid points (z;,y;), are constructed as

Lij(z,y) = [ (@) l{(y),

where [f(z) and I3 (y) are the one-dimensional Lagrange interpolation polynomials based

on z; and y;, respectively. Thus, we can approximate a function f(x) defined on I? as

MN MNW N M
fery) ~ fun(z.y) = ZLij(xvy)f(xiayj)a Z - Z Z,
g ij — j=0 i=0

where we have used Zf\jN as a shorthand notation of Z;V:o Yo, The partial derivatives
of f at a grid point (&;,y;) are;approximated as

MN

Of (@i, ;) Ofrnd@iy Yj) o= L (i, ;)
O = r = ; or f(l‘l’a y]')a
MN
Of (w5, y) ~ Ofun (s, y5) _ Z 3Lz’/j’(~”€z',yj)f(m, yi)-
8y 8y o 8y 1y Jd]

The numerical derivatives can be evaluated through a matrix-vector multiplication as

follows,
F,=D,F, F,=FD],

where F'is a (M +1) x (N + 1) matrix with entries being F;; = f(;,y;), D, and D, are
the (M +1)x(M+1) and (N+1) x (N +1) differentiation matrices in z- and y-directions,
respectively, and F', and F', are the matrices whose elements are the numerical partial

derivatives Ofyn(z;,y;)/0x and Ofyn (24, y;)/0y, respectively.



The one dimensional quadrature rule, Eq. (3), can be applied dimension by dimen-
sion to conduct discrete integration-by-parts of functions defined on I2. Define the two-
dimensional LGL quadrature weights as w;; = wfw? where w! and w;-’ are the quadrature
weights associated with the LGL points x; and y;, respectively. Let u(x,y) and v(z,y)
both be polynomials of degree at most M and N in x and y, respectively. For simplicity

we denote u;; = u(x;,y;) and v;; = v(z;,y;). Then, we have

% (w552 | {é ()]s = (wo)lof) o} - %V (Ge)| o
g <ug—2w) y = :] [(uv)lin = (wv)]io] wi — Aij <g—va) . (5b)

For further concepts of the Legendre pseudospectral methods, we refer the reader to [7].

2.3. Semi-discrete schemes

We now present the semi-discrete numerical schemes for the heat equations defined on one-
and two-dimensional spaces. The conceptual ideas of the methods will be demonstrated
through the one-dimensional problem in details. The two-dimensional schemes will be

extended from theone-dimensional schemes through a tensor product formulation.

2.3.1. One-dimension problem

Let us consider the one dimension problem:

Ou(z,t) V@uz(a:, t)

T EICEaE relt>0,
u(z,0) = f(z), z €|,
Ou(+1,1)
Biu(+1,t) = aju(+1,t) + 5+T = g+(t), t>0,
B u(—1,1) = a_u(—1,4) — 5% — g (). L0,

We introduce N + 1 LGL grid points on I. Let v;(t) be the collocated field values at
the LGL grid points ;. To numerically solve the problem we seek a numerical solution

v(z,t) of the form.

(e t) = D L(u0) 0



satisfying the collocation equations

ov(ws,t)  OF(z4,1) .
5 =V g 1=0,1,..., N, (7a)

v(x;,0) = f(x), 1=0,1,..., N, (7b)

where F'(z,t) is given as

P, t) =200 ) (B — g-(0)) — 7l (o) (Bovw — go(1)) . (70
with
B_vy=a_v(-1,t) — BW, Bioy = ayv(+1,t) + BJFW.

The present approach of imposing boundary. condition follows the method in [18] for
second-order wave equations. In the above expression, the boundary conditions are weakly
enforced to the scheme, and we have introduced two free penalty parameters 7_ and 7.
The values of these parameters will be determined later such that the scheme is stable,
in the sense that the scheme has a bounded energy estimate.

We now proceed on determining the values of 7. and 7, such that the scheme is stable.
For stability analysis, it is sufficient to consider homogeneous boundary conditions, that
is, g+(t) = 0. Multiplying Eq. (7a) by v~lvw; and summing over the index i = 0 to N,
we have the energy rate equation of the form

N

a 7/7
2ydth Wy = Zwlvz F (z; (8)

Since v(z;,t)(OF (x;,t)/0z) are values of the polynomial v(z,t)(OF (x,t)/0z) which is of
degree at most 2N — 1 in z, we invoke the LGL quadrature rule, Eq. (3), to evaluate the

discrete summation on the right hand side of Eq. (8). The result is given as follows

5 (o) P 0§, (0
— or Z._ N o " dx — “\ Oz
ov Ovo \
_ a_r_vg + (BT — a_T_wp) voﬁ—a? + B_T_wo (8—3?)
vy ov
— ay vy — (BT — agTiwy) UN% + By Trwn (a_;v)



Define a vector function V' and a matrix function A as follows,

- —2aT 1+ arw— B
V(Vvla VYQ) = (VL ‘/2) ’ A(OZ,B,T,CU) = : (9)
l+arw—pr —2w(l— 1)
Let
V_ =V (v, —0vy/0z), V,=V(uy,0vy/0x), Ai=A(ag,ft, T+, 0), (10)
with w = m The energy rate equation can be further expressed as

v,
*dtszz VIA V_ +VTA+V+—QZ( ”) wi,

The detail of derivation can be found in Appendix A. For stability, we require

d N
— vawi <0.
dt &

Thus, a sufficient” condition for-stability is-that the quadratic terms, VJTFAJFVJr and
VT A_V_, are non-positive. Hence, we are led to find the value of 7, such that the

eigenvalues of Ag are non-positive. A simply computation (in Appendix C) reveals that

1
= Ofi@'i‘ﬂj:

(11)

ensures the desired property.

2.3.2. Two-dimensional problem

We can apply a similar approach to construct a pseudospectral scheme for the IBVP
described by Eqgs. (2a)-(2f). Introduce the two dimensional LGL grid points (x;,y;) on I.
Let v;;(t) be the collocated field values at the grid points. We seek a numerical solution

v(x,y,t) of the form

v(z,y,t ZLH (. y)viy (8),

satisfying the semi-discrete scheme:

laUU@) . 8Fx<x27yj7t) + 8Fy(xi7yj7t>
v ot Ox oy ’ - =

vZJ(O):f(x,,yj), 0§Z<M, OSJSNa (12b)

0<j<N, (12a)



with

Fo(e,y.1) :% + g: 7 Loj (2, y) (B vy (1) — 9-(yjr.1))
=0
- i 7O Loy (2, y) (B varye(t) — g4 (yyr. 1)) (12¢)
/=0
Fy(z,y,t) = G y, ZT(C w0(7,y) (Bvi(t) — h_(z4,1))
- ZT o, y) (BDvon(t) = hy (2o, 1)) (124)

Notice that 7@, 7 7 and 7(9 are the penalty parameters associated with the edges,
and their values will be determined such that the scheme is stable.

For stability analysis; it is sufficient to consider the problem subject to homogeneous
boundary conditions; thatis, g4 (y,t) = 0 and he(z,¢) = 0. Multiplying v;;w;; to Eq. (12a)

and summing all resultant collocation equations, we have the energy rate equation

17 My ; MN OF, MN OF,

Notice that va;; = is a polynomial of degree at most 2/ — 1 in a for a fixed y; and vaa—?

is a polynomial of degree at most 2NV — 1 iny for a fixed &;. Hence, we can use Egs. (5a)
and (bb) to evaluate the discrete summations on the right hand side of Eq. (13) as follows
- Ox

ij

N N
1 - \ ¥
=5 YL (VENTALWE + 23w/ (vP) AOV
J=0

ij ij =0 Z Z 1=0 Z
N M-1 v\ 2
5L
7=0 =1 a.ﬁlf ij
where through Eq. (9)
VIO =V (vj, (00 /02)), V) = V(was, doar;/0n), (14a)
V9 =V (vig, —(0vi0/0y)), VI =V (vin, Dvin /D), (14b)

10



and for v =a, b, ¢, and d

2 e
AD = A(a™) gO) 0 ) o) = { MO ity=ab . (14c)
2 .
m if Y =C, d
Thus, Eq. (13) can be written as
A N N
a a a b
— > (W)l <) Wi (V)T Al WS v TAL YD
ij =0 =0
M M
+ Y W (VOTAOVE 3 wr (VO Ay,
i=0 i=0

The detail of derivation can be found in Appendix B. Similarly, if the eigenvalues of A7)

are non-positive, the scheme is stable. Immediately, we have

2 : _
@) (% @) A 2 : (15)
aPw) + ()7 2 : _
g N by =6 d

+) —

ensuring A being semi-negative definite. Therefore; the scheme is stable.

2.4. Fully-discrete scheme

Equations (7) and (12) are the semi-discrete schemes for one-dimensional and two di-
mensional space problems, respectively. To march the solution in time, we adopt the
Crank-Nicolson (CN) algorithm+[4, 17]. We will first present the fully-discrete version of
Eq. (7) and then present the fully-discrete version of Eq. (12).

Denote the time step by At and the discrete time ¢,, = nAt. Let v = v;(t,) = v(x;, t,,).
For convenience we use the notation v(t,11/2) = v"*/2 = (v"+! 4+ v") /2, and likewise for

other variables. We have the fully-discrete version of Eq. (7), based on the CN method,

as
I — 0 F (x4, ts o)
j 7 79 n+1/2 .
VAL oz ’ 1=0,1,..., , (162)
V) = f(zy), i=0,1,...,N, (16b)

where F'(x,t) is given Eq. (7c).
The stability condition obtained at the semi-discrete remains valid for the fully-discrete

scheme. Assuming homogeneous boundary conditions, multiplying Eq. (16a) by 2v;" 1/ Zwi,

11



summing the resultant equations, and following a similar approach shown in the semi-

discrete stability analysis, one obtains the following

2

N N—-1 n+i
n n 8vi 2
N E : ((UZ +1)2 _ (Uz' )2) W; :(Vﬁ)TA,V, + VIA+V+ —2 E ( 7 ) wi,
‘ i=1

where VL and A given in Eq. (10) with symbols vy and vy replaced by USLH/ ? and

UJT\L,H/ ?. For 7_ and 7, given by Eq. (11), AL are semi-negative definite. Hence, we have
N N N
D@ w < (0w << P (ww
=0 i=0 =0

indicating the stability of the fully-discrete scheme.
For computations it is convenient to express the fully-discrete scheme in a matrix-

vector representation. We introduce the following notations
0" = [Vo(tn), V1 (Ed)yeeey O @ A = diag(80i30, . 30ne)s €\ = [605, 0, ..., O] T,

with d;; being the Kronecker delta function. Then the fully-discrete scheme can be ex-

pressed as

,Un—l—l — " : (vn+12+ ,Un) N gn+12+ gn7

where f is a vector with f(x;) being the vector components, L is a matrix operator given

as
L=D(D+7 (1" = 510D) - r(a. 1Y + 5,13 D))

with D being the LGL pseudospactral differentiation matrix, and

g’ = —T_g_(tm)DeéN) + T+g+(tm)De%V), m=mn,n+ 1.

This leads to

n+1 n
(I - VTNL) o = <I n VTNL> v" + (vAl) <%) ,

with I being the identity matrix. Assuming that I — ”TML is invertible, we can solve v"

iteratively by providing v°.

12



Similarly, the fully-discrete scheme for the two-dimensional heat equation, Eq. (12),

based on the CN method can be written as

ot — o OF, (i, 4.t ) OF, (x5, ;1 )
ij iJ x\Lis Yjy In+1/2 y\Ti, Yj, n+1/2 . .
= 0<:1<M 0O0<j3<N 17
VAL oz + By , 0SisMO0<js N, (17a)
0i;(0) = (2, ), 0<i<M0<j<N, (17b)

where F,(z,y,t) and F,(z,y,t) are given in Egs. (12c) and (12d).

The stability condition obtained at the semi-discrete level applicable to the fully-
discrete scheme. We can use the same approach to conduct a stability analysis. Assuming
homogeneous boundary conditions, multiplying Eq. (17a) by 21}"+1/ 2w,j, summing the
resultant equations, and following a similar approach shown in the semi-discrete stability

analysis, one obtains the following

MN N N

L nt1y2 a)\T'A(a (a) DNT A (b) 1/ (b)
oag 2 (05 S 5)°) wy SZ WVDFAVD 23 (V)T A0V
v

where V(»a), V(»b), V(C) ng) and AV are given in Eq. (14) with symbols vo;, varj, Vio

n+1/2 n+1/2° n41/2

1/2
and v;y replaced by vy, ", 037 Vg and v n+ /

. For 7(7) given by Eq. (15), A™ are
semi-negative definite. Hence, we can ensure that the fully-discrete scheme is stable.
The fully-discrete scheme also can be written in a matrix-vector form. We define the

(M) x (N0 whose entries are

numerical solution matrix v™ € R

Thus, the Eq. (17) can be rewritten as

,vn+1 — " ,Un—l—l + " ,vn+1 + " gn+1 + gn hn+1 + hn
- -r(—= 7 \Rr 1
VAL ( 2 ) * ( 2 ) L R e G

v =f, (18b)

where f € RM+ADXINHD) with components fij = f(zi,y;), L and R are square matrices

operator given as

L=D,(D,+799I{M - @1 D,) — O O14) + 80130 D,)),

R= (D" + 791 — pODIIN) — 7DD} + @O DTT) DT,
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in which D, € RM+DXM+D) “and D, € RVFUXWHD are the LGL pseudospactral differ-

entiation matrices in  and y directions, respectively, and

g" =—79g (t,,)D,ef" (e + 7Vg, (t,)D,el) (e, m=nn+1,

" =rOh_(tn)ey" (eg") Dy — T ho(ta)el” () Dy m=nnt 1.

Using the above notions, we can rewrite Eq. (18a) as

Av" "B = F, (19)
where
A:lI(M) _ V_AtL B = EI(N) _ V_AtR
2 2 2
At vAt
:F':,Un+A,vn+vnB+V_(gn+1+gn)+_(hn+1+hn)’

3 2

with I™) e RIMADx(M#D) “and JOV) ¢ RINHDX(N+1) ape jdentity matrices. Assuming that
both A and B are diagonalizable, we can solve v™! by the two-step direct solver [3, 10].

The method is summarized as follows.

2.5. Direct solver

Let A and ¢ are the eigenvalues of A and B, respectively. P and Q are associated

eigenvector matrices; that is,
PlA=ALP- 7 BQ = QA (21)

where Ay = diag(A, -+, Ayy1), and Ay = diag(ey, - ,eny1). Then, multiplying
Eq. (19) by P! from the left, and by @ from the right, and using Eq. (21), we get

for s given pair (i, j),

M+1 N+1 M+1 N+1

E,E,P 1UT}+I1QJJ: E,E,P FFay Qe
bt 4 i +e]

/=1 j'=1 i'=1 j/=1

Define a matrix G with entries given as

M+1 N+1

Gij = i +EJZZP Fii Qs

i'=1 j/'=1

We can get solution matrix v"*! as

vt = PGQ.

14



3. Numerical Result

In this study, we provide convergence study results illustrating the performance of the
methods.

Through out the whole report, we compute time step At as

_ CFL
VDN

At

unless stated otherwise, where CFL is the Courant-Friedrichs-Lewy number, and D is the
number of the space dimension. To measure the performance of the scheme, we measure

the maximum pointiest error €(/N) and the order of convergence ¢ defined as

e(N1)]|oc
108 .l (22)

HE(N)Hoo:mi?XWij—Uiﬂa q= g2

where N, N; and N, are the degrees of the approximation solutions, and where u;; and

v;; are the pointiest exact and-numerical solutions, respectively.

3.1. One-dimensional problem

Consider the one-dimensional heat equation

Ou(x,t) _ Ou(w, t)

T BN rel, t>0, (23a)
u(z,0) = sin(kmz), z €|, (23b)
Biu(£1,t) = (s sin(+kr) £ Brkmcos(£kr))e ™, t>0. (23c)

The exact solution to the problem is given as

—k‘27'(2

u(z,t) =e Psin(mr).

We use the one-dimentional scheme, Eq. (16), to solve the problem with boundary con-
ditions imposed at x = +1 of different kinds. The penalty parameters are computed by
Eq. (11). The convergence study results are illustrated in Table 1-5.

In our computation experiments, we choose T' = 0.1, and k = 2 with six different
combinations of boundary conditions at x = +1. From these results, we see that the error

decreases when the degree of the approximation polynomial N increases. The convergence

15



Table 1: Maximum error and converge rate of Eq. (23) subject to both Dirichlet boundary conditions

(ax =1,64 =0) at z = £1.

CFL =0.1 CFL =0.25 CFL =0.5
N
error order error order error order
8 5.28E-04 - 2.48E-03 - 8.32E-03 -

12 2.07E-04 231 1.22E-03 1.75 4.54E-03 1.49

16 1.16E-04 2.03 6.87E-04 2.00 2.75E-03 1.74

20 7.35E-05 2.03 4.60E-04 1.79 1.85E-03 1.77

Table 2: Maximum error and converge rate of Eq. (23) subject to Dirichlet and Neumann boundary

conditions (a— =1,y =0,6- =0,84 = 1) at # = —1 and « = 1, respectively.

CFL = 0.1 CFL = 0.25 CFL =0.5
N
error order error order error order
8179.64E-04 = 3.23E-03 - 1:05E-02 -

12 ¢ 2.29E-04° 355 1.36E-03 . 2.13 5.11E-03 1.79

16 1.31E-04  1.93 7.83E-04 1.93 3.12E-03 1.71

20 8.45E-05 198 5.28E-04 1.77  2.12E-03 1.74

Table 3: Maximum error and converge rate of Eq. (23) subject to Dirichlet and Robin boundary conditions

(ax =1,- =0,y =1) at z = —1 and = = 1, respectively.

CFL =0.1 CFL =0.25 CFL =0.5
N
error order error order error order
8 8.78E-04 - 3.09E-03 - 1.01E-02 -

12 2.25E-04 3.36 1.33E-03 2.08 4.94E-03 1.77

16 1.29E-04 1.93 7.69E-04 1.90 3.06E-03 1.66

20 8.26E-05 2.00 5.17E-04 1.78 2.07E-03 1.76
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Table 4: Maximum error and converge rate of Eq. (23) subject to Neumann and Robin boundary condi-

tions (a_ = 0,a; = 1,8+ = 1) at 2 = —1 and z = 1, respectively.
CFL =0.1 CFL =0.25 CFL =0.5
N error order error order error order
8 9.64E-04 - 3.23E-03 - 1.05E-02 -
12 2.29E-04 3.55 1.36E-03 2.13 5.10E-03 1.79
16 1.31E-04 1.93 7.83E-04 193 3.12E-03 1.71
20 845HE-05 198 5.28E-04 1.77 2.12E-03 1.74

Table 5: Maximum error and converge rate of Eq. (23) subject to Neumann boundary conditions (a— =

0,0é+:1,6_:0,6+:1) atx = +1.

CFL =0-1 CFL = 0.25 CFL = 0.5
N error order error order error order
8 1.96E-03 - 5.45E-03 - 1.90E-02 -
12.74.38E-04 . 3.69. 2.60E-03.1.82 9.75E-03 1.65
16 «2.38E-04 = 2.12 1.43E-03  2.09 5.69E-03 1.87
20 1.58E-04 . 1.84 990E-04 1.64 3.98E-03 1.61

Table 6: Maximum error and converge rate of Eq. (23) subject to both Robin boundary conditions

(ax =1,0L =1) at z = £1.

CFL =0.1 CFL =0.25 CFL =0.5
N error order error order error order
8 8.78E-04 - 3.09E-03 - 1.01E-02 -
12 2.25E-04 3.36 1.33E-03 2.08 4.94E-03 1.77
16 1.29E-04 193 7.69E-04 1.90 3.06E-03 1.66
20 8.26E-05 2.00 5.17E-04 1.78 2.07E-03 1.75
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Table 7: Maximum error and converge rate of Eq. (24). Computational parameters: v = 1, k = 2,

T=0.1.

CFL =0.1 CFL =0.25 CFL =0.5
N
error order error order error order
12 9.24E-03 - 9.58E-03 - 1.01E-02 -

14 5.81E-04 17.95 5.56E-04 18.47 8.46E-04 16.11

16 3.07E-05 22.03 1.33E-04 10.68 5.03E-04 3.89

18 1.93E-05 3.95 1.09E-04 1.73 3.37E-04 3.40

rate is second order accurate. While the CFL increases, the error also increases because
the time step increases, for the same N.

In the previous example, the solution vanishes as time evolves. Consequently, we are
unable to know whether the scheme is stable after long-time computations. Hence, we
consider the following problem which has an exact solution profile that does not vanish

as time evolves. ‘Consider the problem:

ou(z,t) V82u(x, t)

5 T IR F(x,t), r€elt>0, (24a)
u(z,0) = sin(kaz), x €l (24b)
Biu(£1,t) = sin(kn(£1l =t)) + 7 cos(kn(£l—1¢)), t >0, (24c)

where F'(x,t) is a source term given explicitly
F(z,t) = vk*m*sin(kr(x —t)) — kr cos(km(z —t)).
The solution of the problem is
u(x,t) = sin(km(x —t)).

In the following computations, we use different combinations of v, k, and T. The
convergence results are shown in Table 7-10. The exact and numerical solution at time
T = 0.1 are plot at Figure 1 for different values of N. The exact and numerical solution

from T'=0to T =1 with N = 16 are plot at Figure 2.
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Table 8: Maximum error and converge rate of Eq. (24). Computational parameters: v = 2, k = 2,

T=0.1.
CFL =0.1 CFL =0.25 CFL =0.5
N
error order error order error order
12 1.60E-02 - 1.59E-02 - 1.68E-02 -

14 1.01E-03 17.89 1.00E-03 17.93 9.32E-04 18.76

16 4.81E-05 22.83 5.34E-05 21.97 8.08E-05 18.31

18 4.11E-06 20.88 1.65E-05 9.97 6.08E-05 241

Table 9: Maximum error and converge rate of Eq. (24). Computational parameters: v = 2, k = 3,

T=0.1.
CFL =0.1 CFL = 0.25 CFL =0.5
N
error order error order error order
16 4.41E-02 = 4.43E-02 - 4.46E=02 -

183.90E-03 - 20.58 3.95E-03 20.52 3.96E-03 20.56

20 +2.64E-04 25.55 2.88E-04  24.84 3.96E-04 21.86

22 1.80E-05..28.22 3.50E-05 2212 1.02E-04 14.20

Table 10: Maximum error and converge rate of Eq. (24). Computational parameters: v = 1, k = 2,

CFL=0.25.
T=0.1 T=1 T =10 T =100
N
error order error order error order error order
12 9.58E-3 - 2.45E-3 - 2.44E-3 - 2.44E-03 -

14 5.56E-4 1847 493E-4 10.39 4.95E-4 10.35 4.95E-04 10.35

16 1.33E-4 10.68 2.72E-4 4.46 2.73E-4 445 273E-04 4.45

18 1.09E-4 1.73 212E-4 210 2.13E4 210 213E-04 2.10
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Figure 1: Numerical solution profiles (green lines with hallow circle markers) obtained by Eq. (24)
for various values of N at T = 0.1, and the corresponding exact solution profiles (solid blue lines).

Computational parameters: v =1, k = 2.
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Figure 2: Field plots of the numerical solution profiles (green lines with hallow circle markers) obtained
by Eq. (24) at different times, and the exact solution profiles (solid blue lines) at the corresponding time.

Computational parameters: v =1, k = 2, CFL= 0.25.
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Table 11: Maximum error and converge rate of Eq. (24) subject to hAt = CFL/(vN?). The boundary

conditions and computational parameters are given in Table 7.

CFL =0.1 CFL =0.25 CFL =0.5
N
error order error order error order
12 9.25E-03 - 9.25E-03 - 9.25E-03 -

14 5.78E-04 899 5.78E-04 8.99 5.78E-04 8.99

16 2.66E-05 11.53 2.66E-05 11.53 2.64E-05 11.56

18 9.49E-07 14.15 9.79E-07 14.01 2.03E-06 10.89

From Table 7-10, the error decreases when N increases, and the convergence rate is
second order accuracy. For same total number of grid points, the error increases when the
CFL increases. When we increase the number of &, we need to use more grid points to
achieve second-order convergence result. In this example, we can extend the terminal time
T to 100, and the numerical result still have second-order convergence. Figure 1 shows
that our scheme captures the behavior of wave with few grid points. Figure 2 shows that
if we extend the computational time 7', the waveform does not change when T extends.

In the previous experiments the computational time step At are of O(1/N), and the
convergence second order accurate, which clearly demonstrated the convergence rate of the
CN method. To illustrate the exponential convergence of the scheme due to the spectral
method, we use the same equation, Eq. (24) and the same computational parameters
given in Table 7, but with time step At, and the convergence order ¢ computed as

le(V1)lloo
CFL _ log Iam

At = ——
yDN2 1T Tol0g

Notice that the time step is smaller than that in the pervious experiments. The numerical
results are shown in Table 11.

Indeed, comparing the results shown in Table 7 and Table 11, we observe exponential
convergence of the numerical results as the degree of the approximation solution N in-
creases. However, due to the smaller time step the numerical experiments require more

computational time to conduct.
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Figure 3: Description of the boundary conditions enforced at the four edges of the square domain [—1, 1]2.

The letters N, D, and R are designated as the Neumann, Dirichlet, and Robin boundary conditions,

respectively. The values of the associated parameters « and 8 on each edge are: («, 8) = (1,0) if Dirichlet

boundary condition is applied; («, 8) = (0, 1):if Neumann boundary condition is applied; (o, 8) = (1,1)

if Robin boundary condition is applied.

3.2. Two-dimensional problem

We now present convergence results of the methods for two dimensional examples. Con-

sider
u(z, Y, t) =€ ™ sin(kr ) sin(kmy)

satisfying the following two-dimensional heat equation

ou  O%*u - *u

T 9.9 .09 €|27 t>07
5~ 01 & >

u(z,y,0) = sin(krz) sin(kmy), € I,

B@u(—1,y,t) = (oz(“) sin(—km) — fWkn cos(—k)) e Mt sin(kmy), ¢ >0,

BOu(+1,y,t) = (o sin(+kr) + BPkx cos(+km)) e sin(kmy), >0,

BOu(z, —1,1)

(a9 sin(—kr) — BOkn cos(—k)) e sin(kra), t >0,

BDy(z, +1,t) = (oD sin(+kr) + B Dkr cos(+k7)) e ¥ sin(knx), t>0.

(25a)

(25b)
(25¢)
(25d)
(25¢)

(25¢)

In this example, the boundary conditions on the four edges are illustrated in Figure (3)

with parameters chosen as T' = 0.5, k = 2. The convergence study results are presented

in Table 12 and 13.

From the results shown in Table 12 and 13, the numerical result as we expected. In

this example, the solution vanishes to 0 when we extend the terminal time T'. Hence,
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Table 12: Maximum error and converge rate of Eq. (25) subject to boundary conditions specified in

Figure 3(a). Computational parameters: k = 2, T = 0.5.

CFL=0.1 CFL =0.25 CFL =0.5
N
error order error order error order
12 x 12 6.86E-05 - 4.25E-04 - 1.66E-03 -

14 x 14 5.05E-05 1.98 3.14E-04 197 1.24E-03 1.88

16 x 16  3.88E-05. 198 241E-04 197 9.54E-04 1.96

18 x 18 3.05E-05 ~2.03 1.90E-04 2.02 7.59E-04 1.94

Table 13: Maximum error and. converge rate of Eq. (25):subject to boundary conditions in Figure 3(b).

Computational parameters: k = 2, T' = 0.5.

CFL=0.1 CFL =0.25 CFL =0.5
N
error order error order error order
12 x 12 5.75E-05 - 3.57E-04 - 1.39E-03 -

14 x 14 4.24E-05 198 2.63E-04 197 1.04E-03 1.88

16 x 16  3.25E-05 1.98 2.02E-04 197 &8.01E-04 1.96

18 x 18 2.56E-05 2.03 1.59E-04 2.02 6.38E-04 1.93
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we can not observe the stability of the scheme after a long time computations. We also
design a two-dimensional example involving inhomogeneous source term as follows.

Consider the problem with inhomogeneous source term

ou  *u  u
—=—+——+F ¢ 1>, t>0 26
u(z,y,0) =sin(nz)sin(my), x €l?, >0, (26b)

B@u(—1,y,t) =a'@ sin(kr(—1 — t)) sin(kry)

— B9Er cos(km(—1 — t))sin(kmy), t>0, (26¢)
BOu(+1,y,t) =a® sin(kn(+1 — t)) sin(kmy)

+ B8O ka cos(km(+1 = t))sin(kny), t >0, (26d)
Bu(x, —1,t) = (a(c) sin(—kn) — fOkr cos(—km))sin(krx — krt), >0, (26€)

BDy(z,4+1,t) = (oz(d) sit{-Fem) - B krr cos(+kn)) sin(krz — knt), >0, (26f)
where F(x,y,t)isa source term given explicitly as
F(x,y,t) = —kn cos(km(x — t))sin(kry) + 2(k7)? sin(ka(x — t)) sin(kry).
The exact solution to the problem is
u(z,y,t) = sin(kn(x —t)) sin(kry).

For numerical experiments, the boundary conditions are specified in Figure 4, and the
parameters are given as k = 2, T' =0.5, CFL=0.25. The numerical result on presented in
Table 14 and Table 15. Table 16 presents the numerical results with boundary conditions
in specified in Figure 4(d), and the parameters are given as k = 2, CFL= 0.25.

From these experiments, we observe that the error decreases when N increases, and
the convergence rate is of second-order accuracy. When we extend the terminal time T’

to 100, we still have second-order convergence.

4. Concluding remarks

In this study, we proposed a stable pseudospectral penalty scheme for heat equations. The

scheme is based on Legendre psudospectral penalty method in space and Crank-Nicolson
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Figure 4: Description of the boundary conditions enforced at the four edges of the square domain [—1, 1]2.
The letters N, D, and R are designated as the Neumann, Dirichlet, and Robin boundary conditions,
respectively. The values of the associated parameters a and 3 on each edge are: («, 8) = (1,0) if Dirichlet
boundary condition is applied; («, 8) = (0,1) if Neumann boundary condition is applied; (o, 8) = (1,1)

if Robin boundary condition is applied.
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Table 14: Maximum error and converge rate of Eq. (26) subject to boundary conditions given in Figure (4).

Computational parameters: 7' = 0.5, k = 2, CFL= 0.25.

Fig. (¢) Fig. (d) Fig. (e)

N x N

error order error order error order
12 x 12 1.10E-02 - 1.13E-02 - 1.07E-02 -
14 x 14 6.71E-04 18.13 6.94E-04 18.12 6.85E-04 17.83
16 x 16 4.56E-05 20.14 4.71E-05 20.15 5.47E-05 18.93
18 x 18 1.91E-05 7.39 1.93E-05 7.57 2.57E-05 6.40
20 x 20 1.57E-05 1.85 1.56E-05 +2.00 ~2.11E-05 1.89

Table 15: Maximum error and converge rate of Eq. (26) subjectito boundary conditions given in Figure (4).

Computational parameters: T'= 0.5, k= 2, CFL=10.25.

Fig. (f) Fig. (g) Fig. (h)

N x N

error order error order error order
12 x 12 1.13E-02 - 1.67E-02 - 1.72E-02 -
14 x 14 6.94E-04 18.12 1.07E-03 17.85 1.10E-03 17.85
16 x 16 4.71E-05 20.15 7.07E-05 20.33 7.22E-05 20.37
18 x 18 1.93E-05 7.57 2.26E-05 9.70 2.27E-05 9.81
20 x 20 1.56E-05 2.00 1.78E-05 2.22 1.80E-05 2.22
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Table 16: Maximum error and converge rate of Eq. (26) subject to boundary conditions given as N-R in

x axis, and R-R in y axis. Computational parameters: k = 2, CFL= 0.25.

T=0.1 T=1 T=10 T=100
N x N
error order error order error order error order
12 x 12 2.43E-05 - 2.68E-05 - 2.99E-05 - 1.01E-02 -

14 x14 148E-05 3.21 1.82E-05 2.52 1.92E-05 2.88 6.17E-04 18.16

16 x 16 1.09E-05 2.28 1.36E-05 2.18 1.43E-05 2.18 4.30E-05 19.95

18 x 18 8.75E-06 1.89 1.11E-05 1.75 1.17E-05 1.72 1.90E-05 6.92

20 x 20 7.47E-06 1.51 8.96E-06 1.99 9.45E-06 2.02 1.55E-05 1.96

method in time. The boundary conditions are enforced through the penalty method. By
conducting discrete energy estimates, we determine the values of the penalty parameters
which are suitable for the stable computations. A series of numerical results showed that
the convergence rate is consistent with the theoretical stability analysis.

In the future, we hope to adopt a high order numerical scheme in time such as using
Runge-Kutta method. Furthermore, We hope to develop methods for anisotropic heat

equations or Schrodinger equations.
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Appendix

A. Stability analysis of one-dimensional semi-discrete schemes

Assuming homogeneous boundary conditions, multiplying Eq. (7a) by v~ tv;w; and sum-

ming over the index ¢ = 0 to N, we have the energy rate equation of the form

N
xza
- wzvz wzvz

The left hand side can be written as

8@
_Z i "ot 2ydtZ i i

There has three term on the right hand side, we will discuss each one as follows, respec-
tively. The first term of right hand side
1
ov Ju
— d - — ——
z) / / ((%) [U oz

1 L ov\?
— — | d
P /—1 (8:6) x]
N

. a'UN 81)0 avi ?
) [“Na—x “ge 3 (45 ] -

1=

N

82
> b

1=

The second term of right hand side

1
g e (a vo—ﬁ_ﬁvo)viwi:a_mvo/ vlg(x)da — [ 7‘0%/ vly(x)dx
-1

i

11 - /_ 11 v'eo(x)dx)

ov N o
— (arovo — 8:60) (vNEO zn) — volo(To) Zwl 83:160(3:2))
=0

o) (o)
—Vg — Wy

ov oo \
= —a_7 (vo)2 + (B_To — a_Towp) an—:co + B_Towo (a—;) )

(wo(x)
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The third term of right hand side

N 1 1

0 0
g TNy () <a+vN + ﬁ+%) Viw; = a+7'NvN/ vl (z)dx + BJFTN% vl (z)dx
i=0 v -1 I

1 1
— / U'EN(x)dx)
ov M o,
= (aJrTNUN + 5+TN8—;V) (UNeN(xN) — undn(TN) — sza—:;EN(fﬂi))

i=0
0 0
= <0é+7'NUN + 5+TN%> <—UN - WN%)

82}]\7

= <Oé+TNUN + &JNE) (UEN(SU)

ov ov 2
= 04 TN (UN)2 + (/BJrTN - OZ+TNWN) UNa—;V — BJFTNMN (8—;\[) .

Thus, the energy rate equation can-be written as

N N 2
1 d ov o ov; ov
S ;v?wi :vNa—;V - voa—; - ZZ; (wla—x) —a_Tust+ (B_To — a_Towp) voa—;
Avo \ > v dun \ >
+ BLmowo (6—360> — afrN U — (BeTh,— Gy UNa—;V + BiTnwN <8—;V)
N1 2
=VIAV_+ VIAV = Z (w) Wi

=1
For 7. given by Eq. (11), A4 are semi-negative definite. Hence, we can ensure that the

fully-discrete scheme is stable.

B. Stability analysis of two-dimensional semi-discrete schemes

Assuming homogeneous boundary conditions, multiplying v;;w;; to Eq. (12a) and summing

all resultant collocation equations, we have the energy rate equation

| g My ) MN OF, MN OF,
oo 2 =3 (57 )| 43 ()

i i

ij
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There has six term on the right hand side, we will discuss each one as follows, respectively.

The first term of right hand side

y 0x?

) 7=0 1=0
N 1 2
0%,
— jgow;’ /;,;:1 v; e dx
N 2
0%v:\ | ! 0%v;
_ Y J J
| [ [ (52)
MN

LA (a) O (a) () Oy
ZZZUUMJT %L(]j/(xiuyj> a gy — 3 o

=0 j=0 j'=0
N N | Y " "
a) px o a 03" i x
- ZZ“’?T( )ej/<yj) (Oé( )UOJ'/ - ﬁ( ) azj ) Z'Uijwi %eo(l’z)
=0 /=0 =
N
Ovg; y
=2 Wz (a(%w a °J> / uyd (65())
7=0 T rz=—1
al 1
Qvy; 1 v
= Y (a) (a) e (a) 0j T Y _]Ex d
;WJT (a vg; — P 31:) {( () |w,_1 /93_1 5 2(x) }
N M
81} i 6’01 . -
=3 (o ) ( > bl )
=0 ~ i=0
N
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The third term of right hand side

0 ov
o ® 9 () (v) PVnr
ZZZUUWUT i (Zi, yj) (a vpj+ S )
par e errd o0x ox
N N Py M 5
X a M‘/ X
= Z Zw;.’f(b)ﬁj/(yj) (a( Joagj + ﬁ(b)a—;) vawl a—ﬁ (x;)
7=0 5'=0 1=0
N v 1
M -
=) wir® (a(b)ij + 5% 81’]) / v (65(x)
j=0 ==
N
a Ovss 1 ! ov; 2
= ZW?T(E)) (a( )ij + 5(5’)%) [(vij(x)) }x:_l — / 1 a—xjﬁ (x )dx]
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al ov ov;
_ b a b Mj Y] px :1:
—;W?T() (&( )UM]_'_ﬁ()WJ) < Z Jg )
N ov ST
= 70 ® Z(v 5w +7'(b) ( —al wM Z Ungj—— MJ — g0 Z < 81‘;]) WLy
5=0 §=0

The 4" term of right hand side
MN P
> (o) [ ()

1 2
= wa/ ’Uia U; dx
i=0 y=—1 02
M
9?v; \ |1
N N i .
SaCln
N
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ov — ov MN o\ >
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The 5 term of right hand side

8 a’l}/
(027, (©)y,., _ )220
ZZZUUWUT 2’0($layj) < (% 6 )
i=0 j=0 /=0 Oy Ox
M M . (c) (c 61)2/0 y
=3 w9 () | v — B 5 > vy i3 6 (y;)
i=0 /=0
M
81}
— z,_(c) (e) 10 Y
> urr® (=950 ) [ wato)
M
ov L ow
_ z(e) [ (@), p3(c) 270 Y _ oy
> urr? (oo = 502 ) |t~ [ s
M N
z (¢ c 8v,~ 82}1
:ZWZT() <Oé( )UZO_B() al‘o) <_U20_ : 8] g( ])w]y>
=0 7=0
M ¢ ov v\ 2
_ _T(c)a(c) Z(Uzo) W T c) (/B(C — )wg) szo 8@0 WE C)B Z < 820) Wi
i=0 i=0 i=0
The 6" term of right hand side
M N M
8 (%i/
Z Z Z UijwijT(d)a—yLi'N(CEi, ) ( Doy n + 5 81;N)
i=0 j=0 /=0
M M 8@ N
= Z waT(d)ff, (x;) ( Dty +BD— N) Zv”w fy ()
i=0 /=0 §=0
= > w9 o waley )
=0 oz y=-1
M
ov; L o,
z, .(d d d iN 1 i
:;wi 7@ <a< P ) [w*]’v(y))@:l - /y oy e%(y)dy]
= iw%(d) a(d)v-N + 5(d) vin Vin — Z i Vi Y (y )
par ! ‘ ox ‘ oy “i

M

M M 2
8’02‘ 8Ui
= 790Dy () wf + 7@ (B9 — aDut) vma—ywa — 7 ABDY < &yN) WiN -

1=0 =0 1=0

1d MN N N
a a a b
L 0l <D wl (VA £ 3w (v O A0V
ij =0 =0
M M
+ 3w (VETALOVE 3w (V)T AD Y,
=0 =0

For 7 given by Eq. (15), A are semi-negative definite. Hence, we can ensure that the

fully-discrete scheme is stable.
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C. Stability analysis for penalty parameter 7

Let X be the eigenvalue of the matrix function A, and the characteristic polynomial of A

is
M+ 2(ar +w(l—B71) A +datw(l — B7) — (1 +arw — B1)* = 0. (27)

Let A\; and Ay be the roots of above equation, and we can get

My =daTw(l — B7) — (1 + atw — B7)? (28a)
= — ((aw + B)T —1)%, (28D)
and
A+ X =—2(ar +w(l—=p7)) (29a)
=—2((a = Pw)T + w). (29b)

For stability, we meed Ay << 0-and X3 < 0. One can obtain A{As > 0, and \; + Ay < 0.

From Eq. (28b),'we can get

1

= : 30
P B (30)
Then we check that for 7 defined as Eq. (30)
M+ Xo=—2((a= Sw)T + w) (31a)
a+ aw?
=—2 1b
i d < 0, (31b)

indicating that A is semi-definite matrix.
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