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Abstract 
 

 A method to impose boundary conditions for pseudospectral approximations 
to heat equations is suggested. In this study, the boundary conditions are weakly 
enforced to the scheme with the penalty parameters which are determined 
analytically by using the discrete energy estimate. Numerical experiments based 
on the proposed scheme are performed including homogeneous heat equations 
and inhomogeneous heat equations where exact solutions exist, and the 
numerical results show that the accuracy as we expected. 
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1. Introduction

Heat equation is one of the basic partial differential equations. It is of fundamental

importance in diverse scientific regions such as physics [2, 12], image analysis [5, 15],

financial mathematics [1, 19], and biology [11, 14]. For instance, the diffusion phenomena

can be used to describe the change of molecular distribution. In computer graphics,

it’s useful in de-noise processing of image or filling holes in a certain data. In financial

mathematics, the Black-Scholes model can be simplified into the heat equation boundary

value problems to discuss the prices change in derivative financial products. In bionomics,

the diffusion equations can be representative as the change in the number of species, or

the process of gas exchange in protists.

Although heat equations are widely used in various fields, analytic methods for solving

partial differential equations are limited, because the problem domain may be complex or

the problems may involve non-linearity. Due to the rapid development of computing facil-

ity and numerical methods, one may seek approximation solutions to partial differential

equations. Hence, how to get accurate and stable numerical results with great efficiency

for partial differential equations becomes an important research topic called numerical

partial differential equations.

The Lax-Richtmyer equivalent theorem [9] plays a fundamental role in numerical par-

tial differential equations. It states that for a well-posed linear problem the numerical

solution obtained by a consistent scheme converges to the exact solutions of the problem if

and only if the scheme is stable. Thus, studying the convergence property of a numerical

scheme boils down to examining both the consistency and the stability of a scheme. Ex-

amining the consistency of a scheme heavily relies on the approximation theory which has

been developed for a long time. For example, the Euler scheme for ordinary differential

equations has been constructed for more than centuries and the consistency study of the

schemes relies on Taylor series expansion. However, the stability theory for numerical

schemes are mainly developed since the mid twentieth century. The most fundamental

stability theory for numerical scheme is due to von Neumann who proposed a stability

analysis in 1944 [13] for periodic problems.

Generally speaking, by exploring the consistency and stability of a scheme, we can
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estimate the convergence conditions and the convergence rate in advance. For examples,

if we use explicit Euler method [16, 17], we will get second order convergence. We need

use more time in the calculation because it is conditionally stable. If using the implicit

Euler method [8, 17], this form is unconditionally stable, but it only have first-order

convergence accuracy when the grid points are increased. Crank-Nicolson form [4, 17] can

reach second-order convergence accuracy and unconditionally stable. However, it needs

more grid points by using finite difference method. Hence, requires more computing time

on computation inverse matrix is its shortcomings. For this reason, we will focus on how

to use less grid points more efficiently to reach the second order convergence accuracy.

In this study, we present a scheme, based on the spectral approximation in space

and Crank-Nicolson method in time, for model heat equations defined on square domains

subject to various types of boundary conditions. It can be expected that the scheme

achieve second order convergence in time. As we know, spectral method can use less grid

points to reached the same accuracy as finite different method. So we select the Legendre-

Gauss-Labatto grid points [7] for the space discretization. Stable imposing of boundary

conditions in spectral methods is very delicate. In this study, boundary conditions are

imposed to the scheme through the penalty methodology [6], and we paid special attention

to the stability analysis of the scheme based on conducting discrete energy estimates.

Though the stability analysis the values of the penalty parameters are found to ensure

stable computations. The proposed method is implicit and it requires inverting a matrix

to update numerical solution for each time step, which can be expensive. In this study we

adopt the eigen-function decomposition approach [3, 10] to efficiently conduct the matrix

inversion. Because the matrix size is relatively smaller than finite difference method, and

the time step is larger than finite difference method. Hence, cut down the computation

time can be achieved.

This thesis is organized as follow. In Section 2, we will introduce the heat equations,

domain definition in Cartesian coordinate system, and discuss the stability analysis. In

Section 3, we will give detail about the Legendre pseudospectral method, and propose

the pseudospectral penalty scheme. Then, we discuss how to determine the penalty

conditions. Finally, we present the direct solver for calculation. In Section 4, we give

2



some basic heat equations example in one-dimension and two-dimension for numerical

test. Then, we extend it to more complicated heat equations and compare the differences

among different time step, CFL condition, and the number of grid points. Conclusions

are given in Section 5.

2. Formulation

In this section we first discuss boundary conditions for heat equations.

2.1. Well-posed boundary operator for heat equation

Without losing generality we consider the space domain Ω ⊂ R
2 with its boundary denoted

by ∂Ω. Let x = (x, y) and t be the space and time coordinates, respectively. We consider

the function u(x, t) satisfying the initial boundary value problem (IBVP):

∂u(x, t)

∂t
= ν∇2u(x, t), x ∈ Ω, t > 0, (1a)

u(x, 0) = f(x), x ∈ Ω, (1b)

Bu(x, t) = α(x)u+ β(x)
∂u

∂n
= g(t), x ∈ ∂Ω, t > 0, (1c)

where ν > 0 is the diffusion constant, ∇2 is the Laplace operator, f is the initial profile of

u, and Bu = g is the boundary condition imposed at the domain boundary. The symbol

B is the term of the boundary operator which is parameterized by non-negative smooth

functions α(x) and β(x) satisfying the constrain α2(x) +β2(x) 6= 0 on ∂Ω. The notation

∂u/∂n is the usual normal derivative of u on the domain boundary.

Consider homogeneous boundary condition, that is, g(t) = 0. Assuming that there

exists an unique solution to the IBVP, one can easily obtain an energy rate equation for

the described IBVP as follows. Multiplying u to Eq. (1a), integrating over the domain Ω,

invoking the divergence theorem, and applying the boundary condition, one obtains

1

2

d

dt

∫

Ω

u2dx = −ν

∮

Ω

α

β
u2dx− ν

∫

Ω

|∇u|2 dx

≤ 0

provided that β 6= 0. Notice that if the boundary condition is of Dirichlet or Neumann

kind then the boundary integration term vanishes. Thus, integrating the above expression
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with respect to time and applying the initial condition lead to an energy bound for u at

any given time t > 0 as

∫

Ω

u2(x, t)dx ≤

∫

Ω

f 2(x)dx.

Therefore, the problem is well-posed.

Since our concern is about constructing stable imposition of boundary condition for

numerical computations, we consider the problem defined Ω = [−1, 1]2 for simplicity. The

problem becomes

∂

∂t
u(x, y, t) = ν∇2u(x, y, t), (x, y) ∈ Ω, t > 0 (2a)

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (2b)

B(a)u(−1, y, t) = g−(y, t), B(a) = α(a) − β(a) ∂

∂x
, y ∈ [−1, 1], t > 0. (2c)

B(b)u(+1, y, t) = g+(y, t), B(b) = α(b) + β(b) ∂

∂x
, y ∈ [−1, 1], t > 0. (2d)

B(c)u(x,−1, t) = h−(x, t), B(c) = α(c) − β(c) ∂

∂y
, x ∈ [−1, 1], t > 0. (2e)

B(d)u(x,+1, t) = h+(x, t), B(d) = α(d) + β(d) ∂

∂y
, x ∈ [−1, 1], t > 0. (2f)

The symbols B(γ) for γ ∈ {a, b, c, d} are the boundary operators defined on the edges of

the square domain. Along each edge, the associated boundary operator is parameterized

by a pair of constant real numbers, α(γ) ≥ 0 and β(γ) ≥ 0, satisfying the constrain

(α(γ))2 + (β(γ))2 6= 0.

Later in this report, we propose pseudospectral schemes with stable imposition of

boundary conditions for the problem described by Eqs. (2a)-(2f).

2.2. Legendre pseudospectral method: Basic concepts

Consider the interval I = [−1, 1]. Let N be a positive integer. Denoted by xi, for

i = 0, 1, · · · , N , the Legendre-Gauss-Lobatto (LGL) points ordered increasingly as −1 =

x0 < x1 < · · · < xN = 1, are roots of the polynomial Q(x) = (1− x2)P ′
N(x), where PN(x)

is the Legendre polynomial of degree N and ′ denotes the differentiation.

Based on LGL points, we can construct the Lagrange interpolation basis functions
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lj(x) as

lj(x) =
Q(x)

(x− xj)Q′(xj)
=

−1

N(N + 1)

(1− x2)P ′
N(x)

(x− xj)PN(xj)
, j = 0, 1, · · · , N,

satisfying the property:

lj(xi) =







0, if i 6= j

1, if i = j
.

For a function f(x) defined on x ∈ I, we can approximate f(x) and its p-th derivative

as follows,

f(x) ≈ fN(x) =

N
∑

j=0

lj(x)f(xj), f (p)(xi) ≈ f
(p)
N (xi) =

N
∑

j=0

dplj(xi)

dxp
f(xj).

The numerical derivatives can be computed through a matrix-vector multiplication,

f (p) = Dpf ,

where f (p) and f are vectors given as

f (p) =
[

f
(p)
N (x0), f

(p)
N (x1), · · · , f

(p)
N (xN )

]T

,

f = [fN(x0), fN(x1), · · · , fN(xN)]
T ,

with T being the vector transpose, and D is call the differential matrix with entries given

as Dij = l′j(xi). The values of l′j(xi) can be found in [7].

For each N , the set of LGL points is associated with a set of quadrature weights

{ωi}
N
i=0 such that

N
∑

i=0

f(xi)ωi =

∫ 1

−1

f(x)dx, (3)

provided that f(x) being a polynomial of degree at most 2N − 1. Equation (3) is also

known as the LGL integration quadrature rule, and it leads to the following result. Let

u and v both be polynomials of degree at most N . Then uv′ is a polynomial of degree at

most 2N − 1, and we have

N
∑

i=0

u(xi)v
′(xi)ωi = u(xN)v(xN )− u(x0)v(x0)−

N
∑

i=0

u′(xi)v(xi)ωi, (4)
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followed by the quadrature rule. Equation (4) is the discrete analog of the integration-

by-parts rule
∫ 1

−1
uv′dx = uv|1−1 −

∫ 1

−1
vu′dx. We will later use this formula to establish

the stability of the proposed schemes for heat equations.

Employing the tensor product formulation, we can extend the above one-dimensional

concepts to approximate functions defined on the two dimensional domain I
2 = [−1, 1]2.

Define the two-dimensional collocation points as

xij = (xi, yj), 0 ≤ i ≤ M, 0 ≤ j ≤ N,

where xi and yj are the LGL points along x and y axes, respectively. The two-dimensional

Lagrange basis polynomials, based on the grid points (xi, yj), are constructed as

Lij(x, y) = lxi (x)l
y
j (y),

where lxi (x) and lyj (y) are the one-dimensional Lagrange interpolation polynomials based

on xi and yj, respectively. Thus, we can approximate a function f(x) defined on I
2 as

f(x, y) ≈ fMN(x, y) =
MN
∑

ij

Lij(x, y)f(xi, yj),
MN
∑

ij

=
N
∑

j=0

M
∑

i=0

,

where we have used
∑MN

ij as a shorthand notation of
∑N

j=0

∑M
i=0. The partial derivatives

of f at a grid point (xi, yj) are approximated as

∂f(xi, yj)

∂x
≈

∂fMN (xi, yj)

∂x
=

MN
∑

i′j′

∂Li′j′(xi, yj)

∂x
f(xi′ , yj′),

∂f(xi, yj)

∂y
≈

∂fMN (xi, yj)

∂y
=

MN
∑

i′j′

∂Li′j′(xi, yj)

∂y
f(xi′ , yj′).

The numerical derivatives can be evaluated through a matrix-vector multiplication as

follows,

F x = DxF , F y = FDT
y ,

where F is a (M +1)× (N +1) matrix with entries being Fij = f(xi, yj), Dx and Dy are

the (M+1)×(M+1) and (N+1)×(N+1) differentiation matrices in x- and y-directions,

respectively, and F x and F y are the matrices whose elements are the numerical partial

derivatives ∂fMN (xi, yj)/∂x and ∂fMN (xi, yj)/∂y, respectively.
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The one dimensional quadrature rule, Eq. (3), can be applied dimension by dimen-

sion to conduct discrete integration-by-parts of functions defined on I
2. Define the two-

dimensional LGL quadrature weights as ωij = ωx
i ω

y
j where ωx

i and ωy
j are the quadrature

weights associated with the LGL points xi and yj, respectively. Let u(x, y) and v(x, y)

both be polynomials of degree at most M and N in x and y, respectively. For simplicity

we denote uij = u(xi, yj) and vij = v(xi, yj). Then, we have

MN
∑

ij

(

u
∂v

∂x
ω

) ∣

∣

∣

∣

ij

=
N
∑

j=0

[(uv)|Mj − (uv)|0j]ω
y
j −

MN
∑

ij

(

∂u

∂x
vω

)∣

∣

∣

∣

ij

, (5a)

MN
∑

ij

(

u
∂v

∂y
ω

) ∣

∣

∣

∣

ij

=

N
∑

j=0

[(uv)|iN − (uv)|i0]ω
x
i −

MN
∑

ij

(

∂u

∂y
vω

)∣

∣

∣

∣

ij

. (5b)

For further concepts of the Legendre pseudospectral methods, we refer the reader to [7].

2.3. Semi-discrete schemes

We now present the semi-discrete numerical schemes for the heat equations defined on one-

and two-dimensional spaces. The conceptual ideas of the methods will be demonstrated

through the one-dimensional problem in details. The two-dimensional schemes will be

extended from the one-dimensional schemes through a tensor product formulation.

2.3.1. One-dimension problem

Let us consider the one dimension problem:

∂u(x, t)

∂t
= ν

∂u2(x, t)

∂x2
, x ∈ I, t > 0,

u(x, 0) = f(x), x ∈ I,

B+u(+1, t) = α+u(+1, t) + β+
∂u(+1, t)

∂x
= g+(t), t > 0,

B−u(−1, t) = α−u(−1, t)− β−
∂u(−1, t)

∂x
= g−(t), t > 0.

We introduce N + 1 LGL grid points on I. Let vj(t) be the collocated field values at

the LGL grid points xj . To numerically solve the problem we seek a numerical solution

v(x, t) of the form.

v(x, t) =

N
∑

j=0

lj(x)vj(t), (6)
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satisfying the collocation equations

∂v(xi, t)

∂t
= ν

∂F (xi, t)

∂x
, i = 0, 1, ..., N, (7a)

v(xi, 0) = f(xi), i = 0, 1, ..., N, (7b)

where F (x, t) is given as

F (x, t) =
∂v(x, t)

∂x
+ τ−l0(x) (B−v0 − g−(t))− τ+lN (x) (B+vN − g+(t)) , (7c)

with

B−v0 = α−v(−1, t)− β−
∂v(−1, t)

∂x
, B+vN = α+v(+1, t) + β+

∂v(+1, t)

∂x
.

The present approach of imposing boundary condition follows the method in [18] for

second-order wave equations. In the above expression, the boundary conditions are weakly

enforced to the scheme, and we have introduced two free penalty parameters τ− and τ+.

The values of these parameters will be determined later such that the scheme is stable,

in the sense that the scheme has a bounded energy estimate.

We now proceed on determining the values of τ− and τ+ such that the scheme is stable.

For stability analysis, it is sufficient to consider homogeneous boundary conditions, that

is, g±(t) = 0. Multiplying Eq. (7a) by ν−1viωi and summing over the index i = 0 to N ,

we have the energy rate equation of the form

1

2ν

d

dt

N
∑

i=0

v2i ωi =
N
∑

i=0

ωivi
∂F (xi, t)

∂x
. (8)

Since v(xi, t)(∂F (xi, t)/∂x) are values of the polynomial v(x, t)(∂F (x, t)/∂x) which is of

degree at most 2N − 1 in x, we invoke the LGL quadrature rule, Eq. (3), to evaluate the

discrete summation on the right hand side of Eq. (8). The result is given as follows

N
∑

i=0

(

ωv
∂F

∂x

) ∣

∣

∣

∣

i

=vN
∂vN
∂x

− v0
∂v0
∂x

−

N
∑

i=0

ωi

(

∂vi
∂x

)2

− α−τ−v
2
0 + (β−τ− − α−τ−ω0) v0

∂v0
∂x

+ β−τ−ω0

(

∂v0
∂x

)2

− α+τ+v
2
N − (β+τ+ − α+τ+ωN) vN

∂vN
∂x

+ β+τ+ωN

(

∂vN
∂x

)2

.
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Define a vector function V and a matrix function A as follows,

V (V1, V2) = (V1, V2)
T , A(α, β, τ, ω) =





−2ατ 1 + ατω − βτ

1 + ατω − βτ −2ω(1− βτ)



 . (9)

Let

V − = V (v0,−∂v0/∂x), V + = V (vN , ∂vN/∂x), A± = A(α±, β±, τ±, ω̄), (10)

with ω̄ = 2
N(N+1)

. The energy rate equation can be further expressed as

ν−1 d

dt

N
∑

i=0

v2i ωi = V T
−A−V − + V T

+A+V + − 2

N−1
∑

i=1

(

∂vi
∂x

)2

ωi,

The detail of derivation can be found in Appendix A. For stability, we require

d

dt

N
∑

i=0

v2i ωi ≤ 0.

Thus, a sufficient condition for stability is that the quadratic terms, V T
+A+V + and

V T
−A−V −, are non-positive. Hence, we are led to find the value of τ± such that the

eigenvalues of A± are non-positive. A simply computation (in Appendix C) reveals that

τ± =
1

α±ω̄ + β±

(11)

ensures the desired property.

2.3.2. Two-dimensional problem

We can apply a similar approach to construct a pseudospectral scheme for the IBVP

described by Eqs. (2a)-(2f). Introduce the two dimensional LGL grid points (xi, yj) on I.

Let vij(t) be the collocated field values at the grid points. We seek a numerical solution

v(x, y, t) of the form

v(x, y, t) =

MN
∑

i′j′

Li′j′(x, y)vi′j′(t),

satisfying the semi-discrete scheme:

1

ν

∂vij(t)

∂t
=

∂Fx(xi, yj, t)

∂x
+

∂Fy(xi, yj, t)

∂y
, 0 ≤ i ≤ M, 0 ≤ j ≤ N, (12a)

vij(0) = f(xi, yj), 0 ≤ i ≤ M, 0 ≤ j ≤ N, (12b)

9



with

Fx(x, y, t) =
∂v(x, y, t)

∂x
+

N
∑

j′=0

τ (a)L0j′(x, y)
(

B(a)v0j′(t)− g−(yj′, t)
)

−
N
∑

j′=0

τ (b)LMj′(x, y)
(

B(b)vMj′(t)− g+(yj′, t)
)

, (12c)

Fy(x, y, t) =
∂v(x, y, t)

∂y
+

M
∑

i′=0

τ (c)Li′0(x, y)
(

B(c)vi′0(t)− h−(xi′ , t)
)

−
M
∑

i′=0

τ (d)Li′N(x, y)
(

B(d)vi′N(t)− h+(xi′ , t)
)

, (12d)

Notice that τ (a), τ (b), τ (c), and τ (d) are the penalty parameters associated with the edges,

and their values will be determined such that the scheme is stable.

For stability analysis, it is sufficient to consider the problem subject to homogeneous

boundary conditions, that is, g±(y, t) = 0 and h±(x, t) = 0. Multiplying vijωij to Eq. (12a)

and summing all resultant collocation equations, we have the energy rate equation

1

2ν

d

dt

MN
∑

ij

(v2ω)|ij =

MN
∑

ij

(

ωv
∂Fx

∂x

) ∣

∣

∣

∣

ij

+

MN
∑

ij

(

ωv
∂Fy

∂y

) ∣

∣

∣

∣

ij

, (13)

Notice that v ∂Fx

∂x
is a polynomial of degree at most 2M − 1 in x for a fixed yj and v ∂Fy

∂y

is a polynomial of degree at most 2N − 1 in y for a fixed xi. Hence, we can use Eqs. (5a)

and (5b) to evaluate the discrete summations on the right hand side of Eq. (13) as follows

MN
∑

ij

(

ωv
∂Fx

∂x

) ∣

∣

∣

∣

ij

=
1

2

N
∑

j=0

ωy
j (V

(a)
j )TA(a)V

(a)
j +

1

2

N
∑

j=0

ωy
j (V

(b)
j )TA(b)V

(b)
j

−
N
∑

j=0

M−1
∑

i=1

ωij

(

∂v

∂x

)2 ∣
∣

∣

∣

ij

,

MN
∑

ij

(

ωv
∂Fy

∂y

) ∣

∣

∣

∣

ij

=
1

2

M
∑

i=0

ωx
i (V

(c)
i )TA(c)V

(c)
i +

1

2

M
∑

i=0

ωx
i (V

(d)
i )TA(d)V

(d)
i

−

N
∑

j=0

M−1
∑

i=1

ωij

(

∂v

∂x

)2 ∣
∣

∣

∣

ij

,

where through Eq. (9)

V
(a)
j =V (v0j ,−(∂v0j/∂x)), V

(b)
j = V (vMj, ∂vMj/∂x), (14a)

V
(c)
i =V (vi0,−(∂vi0/∂y)), V

(d)
i = V (viN , ∂viN/∂y), (14b)
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and for γ =a, b, c, and d

A(γ) = A(α(γ), β(γ), τ (γ), ω(γ)), ω(γ) =







2
M(M+1)

if γ = a, b

2
N(N+1)

if γ = c, d
. (14c)

Thus, Eq. (13) can be written as

1

ν

d

dt

MN
∑

ij

(v2ω)|ij ≤

N
∑

j=0

ωy
j (V

(a))Tj A
(a)V

(a)
j +

N
∑

j=0

ωy
j (V

(b))Tj A
(b)V

(b)
j

+
M
∑

i=0

ωx
i (V

(c))Ti A
(c)V

(c)
i +

M
∑

i=0

ωx
i (V

(d))Ti A
(d)V

(d)
i .

The detail of derivation can be found in Appendix B. Similarly, if the eigenvalues of A(γ)

are non-positive, the scheme is stable. Immediately, we have

τ (γ) =
1

α(γ)ω(γ) + β(γ)
, ω(γ) =







2
M(M+1)

if γ = a, b

2
N(N+1)

if γ = c, d
. (15)

ensuring A(γ) being semi-negative definite. Therefore, the scheme is stable.

2.4. Fully-discrete scheme

Equations (7) and (12) are the semi-discrete schemes for one-dimensional and two di-

mensional space problems, respectively. To march the solution in time, we adopt the

Crank-Nicolson (CN) algorithm [4, 17]. We will first present the fully-discrete version of

Eq. (7) and then present the fully-discrete version of Eq. (12).

Denote the time step by ∆t and the discrete time tn = n∆t. Let vni = vi(tn) = v(xi, tn).

For convenience we use the notation v(tn+1/2) = vn+1/2 = (vn+1 + vn)/2, and likewise for

other variables. We have the fully-discrete version of Eq. (7), based on the CN method,

as

vn+1
j − vnj
ν∆t

=
∂F (xi, tn+1/2)

∂x
, i = 0, 1, ..., N, (16a)

v0i = f(xi), i = 0, 1, ..., N, (16b)

where F (x, t) is given Eq. (7c).

The stability condition obtained at the semi-discrete remains valid for the fully-discrete

scheme. Assuming homogeneous boundary conditions, multiplying Eq. (16a) by 2v
n+1/2
i ωi,

11



summing the resultant equations, and following a similar approach shown in the semi-

discrete stability analysis, one obtains the following

1

ν∆t

N
∑

i=0

(

(vn+1
i )2 − (vni )

2
)

ωi =(V −)
TA−V − + V T

+A+V + − 2

N−1
∑

i=1

(

∂v
n+ 1

2

i

∂x

)2

ωi,

where V ± and A± given in Eq. (10) with symbols v0 and vN replaced by v
n+1/2
0 and

v
n+1/2
N . For τ− and τ+ given by Eq. (11), A± are semi-negative definite. Hence, we have

N
∑

i=0

(vn+1
i )2ωi ≤

N
∑

i=0

(vni )
2ωi ≤ · · · ≤

N
∑

i=0

f 2(xi)ωi

indicating the stability of the fully-discrete scheme.

For computations it is convenient to express the fully-discrete scheme in a matrix-

vector representation. We introduce the following notations

vn = [v0(tn), v1(tn), ..., vN(tn)]
T , I

(N)
i = diag(δ0i, 0, ..., δNi), e

(N)
i = [δ0i, 0, ..., δNi]

T ,

with δij being the Kronecker delta function. Then the fully-discrete scheme can be ex-

pressed as

vn+1 − vn

ν∆t
= L

(

vn+1 + vn

2

)

+
gn+1 + gn

2
,

v0 = f ,

where f is a vector with f(xi) being the vector components, L is a matrix operator given

as

L = D
(

D + τ−(α−I
(N)
0 − β−I

(N)
0 D)− τ+(α+I

(N)
N + β+I

(N)
N D)

)

,

with D being the LGL pseudospactral differentiation matrix, and

gm = −τ−g−(tm)De
(N)
0 + τ+g+(tm)De

(N)
N , m = n, n+ 1.

This leads to

(

I −
ν∆t

2
L

)

vn+1 =

(

I +
ν∆t

2
L

)

vn + (ν∆t)

(

gn+1 + gn

2

)

,

with I being the identity matrix. Assuming that I − ν∆t
2
L is invertible, we can solve vn

iteratively by providing v0.

12



Similarly, the fully-discrete scheme for the two-dimensional heat equation, Eq. (12),

based on the CN method can be written as

vn+1
ij − vnij
ν∆t

=
∂Fx(xi, yj, tn+1/2)

∂x
+

∂Fy(xi, yj, tn+1/2)

∂y
, 0 ≤ i ≤ M, 0 ≤ j ≤ N, (17a)

vij(0) = f(xi, yj), 0 ≤ i ≤ M, 0 ≤ j ≤ N, (17b)

where Fx(x, y, t) and Fy(x, y, t) are given in Eqs. (12c) and (12d).

The stability condition obtained at the semi-discrete level applicable to the fully-

discrete scheme. We can use the same approach to conduct a stability analysis. Assuming

homogeneous boundary conditions, multiplying Eq. (17a) by 2v
n+1/2
ij ωij , summing the

resultant equations, and following a similar approach shown in the semi-discrete stability

analysis, one obtains the following

1

ν∆t

MN
∑

ij

(

(vn+1
ij )2 − (vnij)

2
)

ωij ≤
N
∑

j=0

ωy
j (V

(a))Tj A
(a)V

(a)
j +

N
∑

j=0

ωy
j (V

(b))Tj A
(b)V

(b)
j

+

M
∑

i=0

ωx
i (V

(c))Ti A
(c)V

(c)
i +

M
∑

i=0

ωx
i (V

(d))Ti A
(d)V

(d)
i ,

where V
(a)
j , V

(b)
j , V

(c)
i , V

(d)
i and A(γ) are given in Eq. (14) with symbols v0j , vMj, vi0

and viN replaced by v
n+1/2
0j , v

n+1/2
Mj , v

n+1/2
i0 and v

n+1/2
iN . For τ (γ) given by Eq. (15), A(γ) are

semi-negative definite. Hence, we can ensure that the fully-discrete scheme is stable.

The fully-discrete scheme also can be written in a matrix-vector form. We define the

numerical solution matrix vm ∈ R
(M+1)×(N+1) whose entries are

vij(tm), 0 ≤ i ≤ M, 0 ≤ j ≤ N, m = n, n + 1.

Thus, the Eq. (17) can be rewritten as

vn+1 − vn

ν∆t
= L

(

vn+1 + vn

2

)

+

(

vn+1 + vn

2

)

R +
gn+1 + gn

2
+

hn+1 + hn

2
, (18a)

v0 = f , (18b)

where f ∈ R
(M+1)×(N+1) with components fij = f(xi, yj), L and R are square matrices

operator given as

L = Dx(Dx + τ (a)(α(a)I
(M)
0 − β(a)I

(M)
0 Dx)− τ (b)(α(b)I

(M)
M + β(b)I

(M)
M Dx)),

R = (DT
y + τ (c)(α(c)I

(N)
0 − β(c)DT

y I
(N)
0 )− τ (d)(α(d)I

(N)
N + β(d)DT

y I
(N)
N ))DT

y ,

13



in which Dx ∈ R
(M+1)×(M+1), and Dy ∈ R

(N+1)×(N+1) are the LGL pseudospactral differ-

entiation matrices in x and y directions, respectively, and

gm =− τ (a)g−(tm)Dxe
(M)
0 (e

(N)
0 )T + τ (b)g+(tm)Dxe

(M)
M (e

(N)
N )T , m = n, n + 1,

hm =τ (c)h−(tm)e
(M)
0 (e

(N)
0 )TDT

y − τ (d)h+(tm)e
(M)
M (e

(N)
N )TDT

y , m = n, n + 1.

Using the above notions, we can rewrite Eq. (18a) as

Avn+1 + vn+1
B = F , (19)

where

A =
1

2
I(M) −

ν∆t

2
L, B =

1

2
I(N) −

ν∆t

2
R,

F =vn +Avn + vn
B +

ν∆t

2
(gn+1 + gn) +

ν∆t

2
(hn+1 + hn),

with I(M) ∈ R
(M+1)×(M+1), and I(N) ∈ R

(N+1)×(N+1) are identity matrices. Assuming that

both A and B are diagonalizable, we can solve vn+1 by the two-step direct solver [3, 10].

The method is summarized as follows.

2.5. Direct solver

Let λ and ε are the eigenvalues of A and B, respectively. P and Q are associated

eigenvector matrices, that is,

P−1
A = ΛAP

−1, BQ = QΛB, (21)

where ΛA = diag(λ1, · · · , λM+1), and ΛB = diag(ε1, · · · , εN+1). Then, multiplying

Eq. (19) by P−1 from the left, and by Q from the right, and using Eq. (21), we get

for s given pair (i, j),

M+1
∑

i′=1

N+1
∑

j′=1

P−1
ii′ v

n+1
i′j′ Qj′j =

1

λi + εj

M+1
∑

i′=1

N+1
∑

j′=1

P−1
ii′ Fi′j′Qj′j .

Define a matrix G with entries given as

Gij =
1

λi + εj

M+1
∑

i′=1

N+1
∑

j′=1

P−1
ii′ Fi′j′Qj′j .

We can get solution matrix vn+1 as

vn+1 = PGQ−1.
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3. Numerical Result

In this study, we provide convergence study results illustrating the performance of the

methods.

Through out the whole report, we compute time step ∆t as

∆t =
CFL

νDN

unless stated otherwise, where CFL is the Courant-Friedrichs-Lewy number, and D is the

number of the space dimension. To measure the performance of the scheme, we measure

the maximum pointiest error ǫ(N) and the order of convergence q defined as

‖ǫ(N)‖∞ = max
ij

|uij − vij |, q =
log ‖ǫ(N1)‖∞

‖ǫ(N2)‖∞

log N2

N1

, (22)

where N , N1 and N2 are the degrees of the approximation solutions, and where uij and

vij are the pointiest exact and numerical solutions, respectively.

3.1. One-dimensional problem

Consider the one-dimensional heat equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, x ∈ I, t ≥ 0, (23a)

u(x, 0) = sin(kπx), x ∈ I, (23b)

B±u(±1, t) = (α± sin(±kπ)± β±kπ cos(±kπ))e−kπ2t, t > 0. (23c)

The exact solution to the problem is given as

u(x, t) = e−k2π2t sin(πx).

We use the one-dimentional scheme, Eq. (16), to solve the problem with boundary con-

ditions imposed at x = ±1 of different kinds. The penalty parameters are computed by

Eq. (11). The convergence study results are illustrated in Table 1-5.

In our computation experiments, we choose T = 0.1, and k = 2 with six different

combinations of boundary conditions at x = ±1. From these results, we see that the error

decreases when the degree of the approximation polynomial N increases. The convergence
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Table 1: Maximum error and converge rate of Eq. (23) subject to both Dirichlet boundary conditions

(α± = 1, β± = 0) at x = ±1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 5.28E-04 - 2.48E-03 - 8.32E-03 -

12 2.07E-04 2.31 1.22E-03 1.75 4.54E-03 1.49

16 1.16E-04 2.03 6.87E-04 2.00 2.75E-03 1.74

20 7.35E-05 2.03 4.60E-04 1.79 1.85E-03 1.77

Table 2: Maximum error and converge rate of Eq. (23) subject to Dirichlet and Neumann boundary

conditions (α− = 1, α+ = 0, β− = 0, β+ = 1) at x = −1 and x = 1, respectively.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 9.64E-04 - 3.23E-03 - 1.05E-02 -

12 2.29E-04 3.55 1.36E-03 2.13 5.11E-03 1.79

16 1.31E-04 1.93 7.83E-04 1.93 3.12E-03 1.71

20 8.45E-05 1.98 5.28E-04 1.77 2.12E-03 1.74

Table 3: Maximum error and converge rate of Eq. (23) subject to Dirichlet and Robin boundary conditions

(α± = 1, β− = 0, β+ = 1) at x = −1 and x = 1, respectively.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 8.78E-04 - 3.09E-03 - 1.01E-02 -

12 2.25E-04 3.36 1.33E-03 2.08 4.94E-03 1.77

16 1.29E-04 1.93 7.69E-04 1.90 3.06E-03 1.66

20 8.26E-05 2.00 5.17E-04 1.78 2.07E-03 1.76
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Table 4: Maximum error and converge rate of Eq. (23) subject to Neumann and Robin boundary condi-

tions (α− = 0, α+ = 1, β± = 1) at x = −1 and x = 1, respectively.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 9.64E-04 - 3.23E-03 - 1.05E-02 -

12 2.29E-04 3.55 1.36E-03 2.13 5.10E-03 1.79

16 1.31E-04 1.93 7.83E-04 1.93 3.12E-03 1.71

20 8.45E-05 1.98 5.28E-04 1.77 2.12E-03 1.74

Table 5: Maximum error and converge rate of Eq. (23) subject to Neumann boundary conditions (α− =

0, α+ = 1, β− = 0, β+ = 1) at x = ±1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 1.96E-03 - 5.45E-03 - 1.90E-02 -

12 4.38E-04 3.69 2.60E-03 1.82 9.75E-03 1.65

16 2.38E-04 2.12 1.43E-03 2.09 5.69E-03 1.87

20 1.58E-04 1.84 9.90E-04 1.64 3.98E-03 1.61

Table 6: Maximum error and converge rate of Eq. (23) subject to both Robin boundary conditions

(α± = 1, β± = 1) at x = ±1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

8 8.78E-04 - 3.09E-03 - 1.01E-02 -

12 2.25E-04 3.36 1.33E-03 2.08 4.94E-03 1.77

16 1.29E-04 1.93 7.69E-04 1.90 3.06E-03 1.66

20 8.26E-05 2.00 5.17E-04 1.78 2.07E-03 1.75
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Table 7: Maximum error and converge rate of Eq. (24). Computational parameters: ν = 1, k = 2,

T = 0.1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

12 9.24E-03 - 9.58E-03 - 1.01E-02 -

14 5.81E-04 17.95 5.56E-04 18.47 8.46E-04 16.11

16 3.07E-05 22.03 1.33E-04 10.68 5.03E-04 3.89

18 1.93E-05 3.95 1.09E-04 1.73 3.37E-04 3.40

rate is second order accurate. While the CFL increases, the error also increases because

the time step increases, for the same N .

In the previous example, the solution vanishes as time evolves. Consequently, we are

unable to know whether the scheme is stable after long-time computations. Hence, we

consider the following problem which has an exact solution profile that does not vanish

as time evolves. Consider the problem:

∂u(x, t)

∂t
= ν

∂2u(x, t)

∂x2
+ F (x, t), x ∈ I, t > 0, (24a)

u(x, 0) = sin(kπx), x ∈ I, (24b)

B±u(±1, t) = sin(kπ(±1− t))± π cos(kπ(±1− t)), t > 0, (24c)

where F (x, t) is a source term given explicitly

F (x, t) = νk2π2 sin(kπ(x− t))− kπ cos(kπ(x− t)).

The solution of the problem is

u(x, t) = sin(kπ(x− t)).

In the following computations, we use different combinations of ν, k, and T . The

convergence results are shown in Table 7-10. The exact and numerical solution at time

T = 0.1 are plot at Figure 1 for different values of N . The exact and numerical solution

from T = 0 to T = 1 with N = 16 are plot at Figure 2.
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Table 8: Maximum error and converge rate of Eq. (24). Computational parameters: ν = 2, k = 2,

T = 0.1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

12 1.60E-02 - 1.59E-02 - 1.68E-02 -

14 1.01E-03 17.89 1.00E-03 17.93 9.32E-04 18.76

16 4.81E-05 22.83 5.34E-05 21.97 8.08E-05 18.31

18 4.11E-06 20.88 1.65E-05 9.97 6.08E-05 2.41

Table 9: Maximum error and converge rate of Eq. (24). Computational parameters: ν = 2, k = 3,

T = 0.1.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

16 4.41E-02 - 4.43E-02 - 4.46E-02 -

18 3.90E-03 20.58 3.95E-03 20.52 3.96E-03 20.56

20 2.64E-04 25.55 2.88E-04 24.84 3.96E-04 21.86

22 1.80E-05 28.22 3.50E-05 22.12 1.02E-04 14.20

Table 10: Maximum error and converge rate of Eq. (24). Computational parameters: ν = 1, k = 2,

CFL= 0.25.

N
T = 0.1 T = 1 T = 10 T = 100

error order error order error order error order

12 9.58E-3 - 2.45E-3 - 2.44E-3 - 2.44E-03 -

14 5.56E-4 18.47 4.93E-4 10.39 4.95E-4 10.35 4.95E-04 10.35

16 1.33E-4 10.68 2.72E-4 4.46 2.73E-4 4.45 2.73E-04 4.45

18 1.09E-4 1.73 2.12E-4 2.10 2.13E-4 2.10 2.13E-04 2.10
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Figure 1: Numerical solution profiles (green lines with hallow circle markers) obtained by Eq. (24)

for various values of N at T = 0.1, and the corresponding exact solution profiles (solid blue lines).

Computational parameters: ν = 1, k = 2.
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Figure 2: Field plots of the numerical solution profiles (green lines with hallow circle markers) obtained

by Eq. (24) at different times, and the exact solution profiles (solid blue lines) at the corresponding time.

Computational parameters: ν = 1, k = 2, CFL= 0.25.
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Table 11: Maximum error and converge rate of Eq. (24) subject to h∆t = CFL/(νN2). The boundary

conditions and computational parameters are given in Table 7.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

12 9.25E-03 - 9.25E-03 - 9.25E-03 -

14 5.78E-04 8.99 5.78E-04 8.99 5.78E-04 8.99

16 2.66E-05 11.53 2.66E-05 11.53 2.64E-05 11.56

18 9.49E-07 14.15 9.79E-07 14.01 2.03E-06 10.89

From Table 7-10, the error decreases when N increases, and the convergence rate is

second order accuracy. For same total number of grid points, the error increases when the

CFL increases. When we increase the number of k, we need to use more grid points to

achieve second-order convergence result. In this example, we can extend the terminal time

T to 100, and the numerical result still have second-order convergence. Figure 1 shows

that our scheme captures the behavior of wave with few grid points. Figure 2 shows that

if we extend the computational time T , the waveform does not change when T extends.

In the previous experiments the computational time step ∆t are of O(1/N), and the

convergence second order accurate, which clearly demonstrated the convergence rate of the

CN method. To illustrate the exponential convergence of the scheme due to the spectral

method, we use the same equation, Eq. (24) and the same computational parameters

given in Table 7, but with time step ∆t, and the convergence order q computed as

∆t =
CFL

νDN2
, q =

log ‖ǫ(N1)‖∞
‖ǫ(N2)‖∞

2 log N2

N1

.

Notice that the time step is smaller than that in the pervious experiments. The numerical

results are shown in Table 11.

Indeed, comparing the results shown in Table 7 and Table 11, we observe exponential

convergence of the numerical results as the degree of the approximation solution N in-

creases. However, due to the smaller time step the numerical experiments require more

computational time to conduct.
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Figure 3: Description of the boundary conditions enforced at the four edges of the square domain [−1, 1]2.

The letters N, D, and R are designated as the Neumann, Dirichlet, and Robin boundary conditions,

respectively. The values of the associated parameters α and β on each edge are: (α, β) = (1, 0) if Dirichlet

boundary condition is applied; (α, β) = (0, 1) if Neumann boundary condition is applied; (α, β) = (1, 1)

if Robin boundary condition is applied.

3.2. Two-dimensional problem

We now present convergence results of the methods for two dimensional examples. Con-

sider

u(x, y, t) = e−k2π2t sin(kπx) sin(kπy)

satisfying the following two-dimensional heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, x ∈ I

2, t ≥ 0, (25a)

u(x, y, 0) = sin(kπx) sin(kπy), x ∈ I
2, (25b)

B(a)u(−1, y, t) =
(

α(a) sin(−kπ)− β(a)kπ cos(−kπ)
)

e−k2π2t sin(kπy), t ≥ 0, (25c)

B(b)u(+1, y, t) =
(

α(b) sin(+kπ) + β(b)kπ cos(+kπ)
)

e−k2π2t sin(kπy), t ≥ 0, (25d)

B(c)u(x,−1, t) =
(

α(c) sin(−kπ)− β(c)kπ cos(−kπ)
)

e−k2π2t sin(kπx), t ≥ 0, (25e)

B(d)u(x,+1, t) =
(

α(d) sin(+kπ) + β(d)kπ cos(+kπ)
)

e−k2π2t sin(kπx), t ≥ 0. (25f)

In this example, the boundary conditions on the four edges are illustrated in Figure (3)

with parameters chosen as T = 0.5, k = 2. The convergence study results are presented

in Table 12 and 13.

From the results shown in Table 12 and 13, the numerical result as we expected. In

this example, the solution vanishes to 0 when we extend the terminal time T . Hence,
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Table 12: Maximum error and converge rate of Eq. (25) subject to boundary conditions specified in

Figure 3(a). Computational parameters: k = 2, T = 0.5.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

12× 12 6.86E-05 - 4.25E-04 - 1.66E-03 -

14× 14 5.05E-05 1.98 3.14E-04 1.97 1.24E-03 1.88

16× 16 3.88E-05 1.98 2.41E-04 1.97 9.54E-04 1.96

18× 18 3.05E-05 2.03 1.90E-04 2.02 7.59E-04 1.94

Table 13: Maximum error and converge rate of Eq. (25) subject to boundary conditions in Figure 3(b).

Computational parameters: k = 2, T = 0.5.

N
CFL = 0.1 CFL = 0.25 CFL = 0.5

error order error order error order

12× 12 5.75E-05 - 3.57E-04 - 1.39E-03 -

14× 14 4.24E-05 1.98 2.63E-04 1.97 1.04E-03 1.88

16× 16 3.25E-05 1.98 2.02E-04 1.97 8.01E-04 1.96

18× 18 2.56E-05 2.03 1.59E-04 2.02 6.38E-04 1.93
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we can not observe the stability of the scheme after a long time computations. We also

design a two-dimensional example involving inhomogeneous source term as follows.

Consider the problem with inhomogeneous source term

∂u

∂t
=
∂2u

∂x2
+

∂2u

∂y2
+ F (x, y, t), x ∈ I

2, t ≥ 0 (26a)

u(x, y, 0) = sin(πx) sin(πy), x ∈ I
2, t ≥ 0, (26b)

B(a)u(−1, y, t) =α(a) sin(kπ(−1− t)) sin(kπy)

− β(a)kπ cos(kπ(−1− t)) sin(kπy), t ≥ 0, (26c)

B(b)u(+1, y, t) =α(b) sin(kπ(+1− t)) sin(kπy)

+ β(b)kπ cos(kπ(+1− t)) sin(kπy), t ≥ 0, (26d)

B(c)u(x,−1, t) =
(

α(c) sin(−kπ)− β(c)kπ cos(−kπ)
)

sin(kπx− kπt), t ≥ 0, (26e)

B(d)u(x,+1, t) =
(

α(d) sin(+kπ) + β(d)kπ cos(+kπ)
)

sin(kπx− kπt), t ≥ 0, (26f)

where F (x, y, t) is a source term given explicitly as

F (x, y, t) = −kπ cos(kπ(x− t)) sin(kπy) + 2(kπ)2 sin(kπ(x− t)) sin(kπy).

The exact solution to the problem is

u(x, y, t) = sin(kπ(x− t)) sin(kπy).

For numerical experiments, the boundary conditions are specified in Figure 4, and the

parameters are given as k = 2, T = 0.5, CFL= 0.25. The numerical result on presented in

Table 14 and Table 15. Table 16 presents the numerical results with boundary conditions

in specified in Figure 4(d), and the parameters are given as k = 2, CFL= 0.25.

From these experiments, we observe that the error decreases when N increases, and

the convergence rate is of second-order accuracy. When we extend the terminal time T

to 100, we still have second-order convergence.

4. Concluding remarks

In this study, we proposed a stable pseudospectral penalty scheme for heat equations. The

scheme is based on Legendre psudospectral penalty method in space and Crank-Nicolson
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Figure 4: Description of the boundary conditions enforced at the four edges of the square domain [−1, 1]2.

The letters N, D, and R are designated as the Neumann, Dirichlet, and Robin boundary conditions,

respectively. The values of the associated parameters α and β on each edge are: (α, β) = (1, 0) if Dirichlet

boundary condition is applied; (α, β) = (0, 1) if Neumann boundary condition is applied; (α, β) = (1, 1)

if Robin boundary condition is applied.
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Table 14: Maximum error and converge rate of Eq. (26) subject to boundary conditions given in Figure (4).

Computational parameters: T = 0.5, k = 2, CFL= 0.25.

N ×N
Fig. (c) Fig. (d) Fig. (e)

error order error order error order

12× 12 1.10E-02 - 1.13E-02 - 1.07E-02 -

14× 14 6.71E-04 18.13 6.94E-04 18.12 6.85E-04 17.83

16× 16 4.56E-05 20.14 4.71E-05 20.15 5.47E-05 18.93

18× 18 1.91E-05 7.39 1.93E-05 7.57 2.57E-05 6.40

20× 20 1.57E-05 1.85 1.56E-05 2.00 2.11E-05 1.89

Table 15: Maximum error and converge rate of Eq. (26) subject to boundary conditions given in Figure (4).

Computational parameters: T = 0.5, k = 2, CFL= 0.25.

N ×N
Fig. (f) Fig. (g) Fig. (h)

error order error order error order

12× 12 1.13E-02 - 1.67E-02 - 1.72E-02 -

14× 14 6.94E-04 18.12 1.07E-03 17.85 1.10E-03 17.85

16× 16 4.71E-05 20.15 7.07E-05 20.33 7.22E-05 20.37

18× 18 1.93E-05 7.57 2.26E-05 9.70 2.27E-05 9.81

20× 20 1.56E-05 2.00 1.78E-05 2.22 1.80E-05 2.22
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Table 16: Maximum error and converge rate of Eq. (26) subject to boundary conditions given as N-R in

x axis, and R-R in y axis. Computational parameters: k = 2, CFL= 0.25.

N ×N
T=0.1 T=1 T=10 T=100

error order error order error order error order

12× 12 2.43E-05 - 2.68E-05 - 2.99E-05 - 1.01E-02 -

14× 14 1.48E-05 3.21 1.82E-05 2.52 1.92E-05 2.88 6.17E-04 18.16

16× 16 1.09E-05 2.28 1.36E-05 2.18 1.43E-05 2.18 4.30E-05 19.95

18× 18 8.75E-06 1.89 1.11E-05 1.75 1.17E-05 1.72 1.90E-05 6.92

20× 20 7.47E-06 1.51 8.96E-06 1.99 9.45E-06 2.02 1.55E-05 1.96

method in time. The boundary conditions are enforced through the penalty method. By

conducting discrete energy estimates, we determine the values of the penalty parameters

which are suitable for the stable computations. A series of numerical results showed that

the convergence rate is consistent with the theoretical stability analysis.

In the future, we hope to adopt a high order numerical scheme in time such as using

Runge-Kutta method. Furthermore, We hope to develop methods for anisotropic heat

equations or Schrödinger equations.
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Appendix

A. Stability analysis of one-dimensional semi-discrete schemes

Assuming homogeneous boundary conditions, multiplying Eq. (7a) by ν−1viωi and sum-

ming over the index i = 0 to N , we have the energy rate equation of the form

1

ν

N
∑

i=0

ωivi
∂v

∂t

∣

∣

∣

i
=

N
∑

i=0

ωivi
∂F (xi, t)

∂x
.

The left hand side can be written as

1

ν

N
∑

i=0

viωi
∂v

∂t

∣

∣

∣

i
=

1

2ν

d

dt

N
∑

i=0

v2i ωi.

There has three term on the right hand side, we will discuss each one as follows, respec-

tively. The first term of right hand side

N
∑

i=0

(

vω
∂2v

∂x2

∣

∣

∣

i

)

=

∫ 1

−1

vd

(

∂v

∂x

)

=

[

v
∂v

∂x

∣

∣

∣

1

−1
−

∫ 1

−1

(

∂v

∂x

)2

dx

]

=

[

vN
∂vN
∂x

− v0
∂v0
∂x

−

N
∑

i=0

(

ωi
∂vi
∂x

)2
]

.

The second term of right hand side

N
∑

i=0

τ0ℓ
′
0(xi)

(

α−v0 − β−
∂v0
∂x

)

viωi = α−τ0v0

∫ 1

−1

vℓ′0(x)dx− β−τ0
∂v0
∂x

∫ 1

−1

vℓ′0(x)dx

=

(

α−τ0v0 − β−τ0
∂v0
∂x

)(

vℓ0(x)
∣

∣

∣

1

−1
−

∫ 1

−1

v′ℓ0(x)dx

)

=

(

α−τ0v0 − β−τ0
∂v0
∂x

)

(

vNℓ0(xN )− v0ℓ0(x0)−

N
∑

i=0

ωi
∂vi
∂x

ℓ0(xi)

)

=

(

α−τ0v0 − β−τ0
∂v0
∂x

)(

−v0 − ω0
∂v0
∂x

)

= −α−τ0 (v0)
2 + (β−τ0 − α−τ0ω0) v0

∂v0
∂x

+ β−τ0ω0

(

∂v0
∂x

)2

.
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The third term of right hand side

N
∑

i=0

τNℓ
′
N(xi)

(

α+vN + β+
∂vN
∂x

)

viωi = α+τNvN

∫ 1

−1

vℓ′N(x)dx+ β+τN
∂vN
∂x

∫ 1

−1

vℓ′N(x)dx

=

(

α+τNvN + β+τN
∂vN
∂x

)(

vℓN(x)
∣

∣

∣

1

−1
−

∫ 1

−1

v′ℓN(x)dx

)

=

(

α+τNvN + β+τN
∂vN
∂x

)

(

vNℓN(xN )− vNℓN(xN )−

N
∑

i=0

ωi
∂vi
∂x

ℓN(xi)

)

=

(

α+τNvN + β+τN
∂vN
∂x

)(

−vN − ωN
∂vN
∂x

)

= α+τN (vN)
2 + (β+τN − α+τNωN) vN

∂vN
∂x

− β+τNωN

(

∂vN
∂x

)2

.

Thus, the energy rate equation can be written as

1

2ν

d

dt

N
∑

i=0

v2i ωi =vN
∂vN
∂x

− v0
∂v0
∂x

−
N
∑

i=0

(

ωi
∂vi
∂x

)2

− α−τ0v
2
0 + (β−τ0 − α−τ0ω0) v0

∂v0
∂x

+ β−τ0ω0

(

∂v0
∂x

)2

− α+τNv
2
N − (β+τN − α+τNωN) vN

∂vN
∂x

+ β+τNωN

(

∂vN
∂x

)2

=
1

2
V T

−A−V − +
1

2
V T

+A+V + −
N−1
∑

i=1

(

∂vi
∂x

)2

ωi.

For τ± given by Eq. (11), A± are semi-negative definite. Hence, we can ensure that the

fully-discrete scheme is stable.

B. Stability analysis of two-dimensional semi-discrete schemes

Assuming homogeneous boundary conditions, multiplying vijωij to Eq. (12a) and summing

all resultant collocation equations, we have the energy rate equation

1

2ν

d

dt

MN
∑

ij

(v2ω)|ij =
MN
∑

ij

(

ωv
∂Fx

∂x

) ∣

∣

∣

∣

ij

+
MN
∑

ij

(

ωv
∂Fy

∂y

) ∣

∣

∣

∣

ij

.
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There has six term on the right hand side, we will discuss each one as follows, respectively.

The first term of right hand side

MN
∑

ij

(

vω
∂2v

∂x2

)

∣

∣

∣

ij
=

N
∑

j=0

ωy
j

M
∑

i=0

(

ωxvj
∂2vj
∂x2

)

∣

∣

∣

i

=
N
∑

j=0

ωy
j

∫ 1

x=−1

vj
∂2vj
∂x2

dx

=

N
∑

j=0

ωy
j

[

(

vj
∂2vj
∂x2

)

∣

∣

∣

1

x=−1
−

∫ 1

x=−1

(

∂2vj
∂x2

)2

dx

]

=

N
∑

j=0

ωy
j vMj

∂vMj

∂x
−

N
∑

j=0

ωy
j v0j

∂v0j
∂x

−

MN
∑

ij

[

(

∂v

∂x

)2

ω

]

∣

∣

∣

ij
.

The second term of right hand side

M
∑

i=0

N
∑

j=0

N
∑

j′=0

vijωijτ
(a) ∂

∂x
L0j′(xi, yj)

(

α(a)v0j′ − β(a)∂v0j′

∂x

)

=
N
∑

j=0

N
∑

j′=0

ωy
j τ

(a)ℓxj′(yj)

(

α(a)v0j′ − β(a)∂v0j′

∂x

) M
∑

i=0

vijω
x
i

∂

∂x
ℓx0(xi)

=
N
∑

j=0

ωy
j τ

(a)

(

α(a)v0j − β(a) ∂v0j
∂x

)
∫ 1

x=−1

vjd (ℓ
x
0(x))

=
N
∑

j=0

ωy
j τ

(a)

(

α(a)v0j − β(a) ∂v0j
∂x

)[

(vjℓ
x
0(x))

∣

∣

1

x=−1
−

∫ 1

x=−1

∂vj
∂x

ℓx0(x)dx

]

=

N
∑

j=0

ωy
j τ

(a)

(

α(a)v0j − β(a) ∂v0j
∂x

)

(

−v0j −

M
∑

i=0

∂vij
∂x

ℓx0(xi)ω
x
i

)

= −τ (a)α(a)

N
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j=0

(v0j)
2ωy

j + τ (a)
(

β(a) − α(a)ωx
0

)

N
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j=0

v0j
∂v0j
∂x

ωy
j + τ (a)β(a)

N
∑

j=0

(

∂v0j
∂x

)2

ω0j .
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The third term of right hand side

M
∑

i=0

N
∑

j=0

N
∑

j′=0

vijωijτ
(b) ∂

∂x
LMj′(xi, yj)

(

α(b)vMj′ + β(b)∂vMj′

∂x

)

=
N
∑

j=0

N
∑

j′=0

ωy
j τ

(b)ℓxj′(yj)

(

α(a)vMj′ + β(b)∂vMj′

∂x

) M
∑

i=0

vijω
x
i

∂

∂x
ℓxM(xi)

=
N
∑

j=0

ωy
j τ

(b)

(

α(b)vMj + β(b)∂vMj

∂x

)
∫ 1

x=−1

vjd (ℓ
x
M(x))

=

N
∑

j=0

ωy
j τ

(b)

(

α(a)vMj + β(b)∂vMj

∂x

)[

(vjℓM(x))
∣

∣

1

x=−1
−

∫ 1

x=−1

∂vj
∂x

ℓxM(x)dx

]

=

N
∑

j=0

ωy
j τ

(b)

(

α(a)vMj + β(b)∂vMj

∂x

)

(

vMj −

M
∑

i=0

∂vij
∂x

ℓxM(xi)ω
x
i

)

= τ (b)α(b)
N
∑

j=0

(vMj)
2ωy

j + τ (b)
(

β(b) − α(b)ωx
M

)

N
∑

j=0

vMj
∂vMj

∂x
ωy
j − τ (b)β(b)

N
∑

j=0

(

∂vMj

∂x

)2

ωMj.

The 4th term of right hand side

MN
∑

ij

(

vω
∂2v

∂y2

)

∣

∣

∣

ij
=

M
∑

i=0

ωx
i

N
∑

j=0

(

ωvi
∂2vi
∂x2

)

∣

∣

∣

j

=

M
∑

i=0

ωx
i

∫ 1

y=−1

vi
∂2vi
∂x2

dx

=
M
∑

i=0

ωX
i

[

(

vi
∂2vi
∂x2

)

∣

∣

∣

1

y=−1
−

∫ 1

y=−1

(

∂2vi
∂x2

)2

dx

]

=

N
∑

i=0

ωx
i viN

∂vNj

∂x
−

M
∑

i=0

ωx
i vi0

∂vi0
∂x

−

MN
∑

ij

[

(

∂v

∂x

)2

ω

]

∣

∣

∣

ij
.
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The 5th term of right hand side

M
∑

i=0

N
∑

j=0

M
∑

i′=0

vijωijτ
(c) ∂

∂y
Li′0(xi, yj)

(

α(c)vi′0 − β(c)∂vi′0
∂x

)

=
M
∑

i=0

M
∑

i′=0

ωx
i τ

(c)ℓxi′(xi)

(

α(c)vi′0 − β(c)∂vi′0
∂y

) N
∑

j=0

vijω
y
j

∂

∂y
ℓy0(yj)

=

M
∑

i=0

ωx
i τ

(c)

(

α(c)vi0 − β(c)∂vi0
∂x

)
∫ 1

y=−1

vid (ℓ
y
0(y))

=

M
∑

i=0

ωx
i τ

(c)

(

α(c)vi0 − β(c)∂vi0
∂x

)[

(viℓ
y
0(y))

∣

∣

1

y=−1
−

∫ 1

y=−1

∂vi
∂y

ℓy0(y)dy

]

=
M
∑

i=0

ωx
i τ

(c)

(

α(c)vi0 − β(c)∂vi0
∂x

)

(

−vi0 −
N
∑

j=0

∂vij
∂y

ℓy0(yj)ω
y
j

)

= −τ (c)α(c)
M
∑

i=0

(vi0)
2ωx

i + τ (c)
(

β(c) − α(c)ωy
0

)

M
∑

i=0

vi0
∂vi0
∂y

ωx
i + τ (c)β(c)

M
∑

i=0

(

∂vi0
∂y

)2

ωi0.

The 6th term of right hand side

M
∑

i=0

N
∑

j=0

M
∑

i′=0

vijωijτ
(d) ∂

∂y
Li′N(xi, yj)

(

α(d)vi′N + β(d)∂vi′N
∂x

)

=

M
∑

i=0

M
∑

i′=0

ωx
i τ

(d)ℓxi′(xi)

(

α(d)vi′N + β(d)∂vi′N
∂y

) N
∑

j=0

vijω
y
j

∂

∂y
ℓyN(yj)

=

M
∑

i=0

ωx
i τ

(d)

(

α(d)viN + β(d)∂viN
∂x

)
∫ 1

y=−1

vid (ℓ
y
N(y))

=
M
∑

i=0

ωx
i τ

(d)

(

α(d)viN + β(d)∂viN
∂x

)[

(viℓ
y
N (y))

∣

∣

1

y=−1
−

∫ 1

y=−1

∂vi
∂y

ℓyN(y)dy

]

=

M
∑

i=0

ωx
i τ

(d)

(

α(d)viN + β(d)∂viN
∂x

)

(

viN −

N
∑

j=0

∂vij
∂y

ℓyN(yj)ω
y
j

)

= τ (c)α(d)

M
∑

i=0

(viN)
2ωx

i + τ (d)
(

β(d) − α(d)ωy
N

)

M
∑

i=0

viN
∂viN
∂y

ωx
i − τ (d)β(d)

M
∑

i=0

(

∂viN
∂y

)2

ωiN .

Thus, the energy rate equation can be written as

1

ν

d

dt

MN
∑

ij

(v2ω)|ij ≤

N
∑

j=0

ωy
j (V

(a))Tj A
(a)V

(a)
j +

N
∑

j=0

ωy
j (V

(b))Tj A
(b)V

(b)
j

+

M
∑

i=0

ωx
i (V

(c))Ti A
(c)V

(c)
i +

M
∑

i=0

ωx
i (V

(d))Ti A
(d)V

(d)
i .

For τ (γ) given by Eq. (15), A(γ) are semi-negative definite. Hence, we can ensure that the

fully-discrete scheme is stable.
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C. Stability analysis for penalty parameter τ

Let λ be the eigenvalue of the matrix function A, and the characteristic polynomial of A

is

λ2 + 2 (ατ + ω(1− βτ)) λ+ 4ατω(1− βτ)− (1 + ατω − βτ)2 = 0. (27)

Let λ1 and λ2 be the roots of above equation, and we can get

λ1λ2 =4ατω(1− βτ)− (1 + ατω − βτ)2 (28a)

=− ((αω + β)τ − 1)2 , (28b)

and

λ1 + λ2 =− 2 (ατ + ω(1− βτ)) (29a)

=− 2((α− βω)τ + ω). (29b)

For stability, we need λ1 ≤ 0 and λ2 ≤ 0. One can obtain λ1λ2 ≥ 0, and λ1 + λ2 ≤ 0.

From Eq. (28b), we can get

τ =
1

αω + β
. (30)

Then we check that for τ defined as Eq. (30)

λ1 + λ2 =− 2((α− βω)τ + ω) (31a)

=− 2
α+ αω2

αω + β
< 0, (31b)

indicating that A is semi-definite matrix.
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