

Fig. 4.13 Velocity vectors on the cross plane $\theta = 0^{\circ}$ & 180° at steady state for $D_j = 10.0 \text{ mm}$, H = 10.0 mm, $Ra = 940 (\Delta T = 10^{\circ}C)$ for $Re_j = (a) 135 (Q_j=1.0 \text{ slpm})$, (b) 270 ($Q_j=2.0 \text{ slpm}$), (c) 406 ($Q_j=3.0 \text{ slpm}$), (d) 541 ($Q_j=4.0 \text{ slpm}$), and (e) 676 ($Q_j=5.0 \text{ slpm}$).

Fig. 4.14 Velocity vectors on the cross plane $\theta = 0^{\circ}$ & 180° at steady state for $D_j = 10.0 \text{ mm}$, H = 10.0 mm, $Ra = 1,409 (\Delta T = 15.0^{\circ}\text{C})$ for $Re_j = (a) 135 (Q_j=1.0 \text{ slpm})$, (b) 270 ($Q_j=2.0 \text{ slpm}$), (c) 406 ($Q_j=3.0 \text{ slpm}$), (d) 541 ($Q_j=4.0 \text{ slpm}$), and (e) 676 ($Q_j=5.0 \text{ slpm}$).

Fig. 4.15 Velocity vectors on the cross plane $\theta = 0^{\circ}$ & 180° at steady state for $D_j = 10.0 \text{ mm}$, H = 10.0 mm, Ra = 1,880 ($\Delta T = 20.0^{\circ}$ C) for $Re_j = (a) 135$ ($Q_j=1.0 \text{ slpm}$), (b) 270 ($Q_j=2.0 \text{ slpm}$), (c) 406 ($Q_j=3.0 \text{ slpm}$), (d) 541 ($Q_j=4.0 \text{ slpm}$), and (e) 676 ($Q_j=5.0 \text{ slpm}$).

Fig. 4.16 Velocity vectors on the cross plane $\theta = 0^{\circ}$ & 180° at steady state for $D_j = 10.0 \text{ mm}$, H = 10.0 mm, Ra = 2,348 ($\Delta T = 25.0^{\circ}$ C) for $Re_j = (a) 135$ ($Q_j=1.0 \text{ slpm}$), (b) 270 ($Q_j=2.0 \text{ slpm}$), (c) 406 ($Q_j=3.0 \text{ slpm}$), (d) 541 ($Q_j=4.0 \text{ slpm}$), and (e) 676 ($Q_j=5.0 \text{ slpm}$).

Fig. 4.17 Contours of vertical velocity component w at long time at the horizontal plane z = -5 mm for Ra = 470 ($\Delta T = 5.0^{\circ}$ C) and D_j = 10.0mm at H = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.18 Contours of vertical velocity component w at long time at the horizontal plane z = -5 mm for Ra = 940 ($\Delta T = 10.0^{\circ}$ C) and D_j = 10.0mm at H = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.19 Contours of vertical velocity component w at long time at the horizontal plane at z = -5 mm for Ra = 1,409 ($\Delta T = 15.0^{\circ}$ C) and D_j = 10.0mm at H = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.20 Contours of vertical velocity component w at long time at the horizontal plane at z = -5 mm for Ra = 1,880 ($\Delta T = 20.0^{\circ}$ C) and D_j = 10.0mm at H = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.21 Contours of vertical velocity component w at long time at the horizontal plane at z = -5 mm for Ra = 2,348 ($\Delta T = 25.0^{\circ}$ C) and D_j = 10.0mm at H = 10.0 mm for Re_j = (a) 135, (b) 270, (c) 406, (d) 541, and (e) 676.

Fig. 4.22 Steady side view flow photo on the cross plane $\theta = 0^{\circ}$ & 180° from Hsieh and Lin [36] and predicted velocity vectors from the present study on the same plane for D_j = 10.0 mm, H = 10.0 mm, Ra = 470 ($\Delta T = 5^{\circ}C$) for Re_j = (a) 406 (Q_j=3.0 slpm), (b) 541 (Q_j=4.0 slpm), and (c) 676 (Q_j=5.0 slpm).