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CHAPTER 3 

SOLUTION METHOD 

 

The solution method to be used in the present study and the verification of its 

applicability to the mixed convective impinging jet flow considered here are detailed 

in this chapter. 

 

3.1 Numerical Scheme and Solution Procedures 

The governing differential equations given in Chapters 2 are discretized by the 

SIMPLE algorithm [34] which is a finite volume (FV) method. These discretized 

equations are solved by the commercial software STAR-CD [35]. More specifically, 

the differential equations are integrated over the chosen individual computational cells 

and over a finite time increment in the present transient problem with the values of the 

dependent variables approximated in terms of those at the cell-centred nodes. For 

convenience, the general conservation equations can be expressed as 

( ) ( ) φφ φφρρφ sgradudivg
tg

=Γ−+
∂
∂1   (3.1) 

where u represents u, v or w; φ could express any of the dependent variables, like u, 

v, w and T ; φΓ and φs  are respectively the associated diffusion and source 

coefficients. Here g  is a metric tensor. 
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Now Eq. (3.1) can be integrated over a closed surface S valid for an arbitrary 

control volume ∀  to give 

( )∫ ∫∫
∀∀

=⋅Γ−+
S

dVsSdgradudV
dt
d

φφ φφρρφ
r

  (3.2) 

where S
r

 is the surface vector. If the ∀  and S are respectively taken to be the 

volume pV  and discrete faces ),1( fj NjS = of a computational cell as that in Fig. 

3.1, Eq. (3.2) becomes 

( )∑ ∫ ∫∫ =⋅Γ−+
j S VV j pp

dVsSdgradudV
dt
d

φφ φφρρφ
r

  (3.3) 

For convenient discussion, the first and second terms on the left hand side of Eq. 

(3.3) are represented by 1T  and 2T , respectively. And 3T  represents the right-hand 

side of Eq. (3.3). Here T1 is discretised as 

( ) ( )
t

VVT
o
P

n
P

δ
ρφρφ −

≈1   (3.4) 

where the subscript “P” in Eq. (3.4) means the node P, and the superscripts “n” and 

“o” denote the new value and old value, respectively. 

    The second term 2T  can be separated into convection and diffusion terms by the 

separate contributions jC  and jE , respectively. Thus 2T  can be approximated by 

the average value over each face of the cell as 

≈2T ( ) ( ) ∑∑∑∑ −≡⋅Γ−⋅
j

j
j

j
j

j
j

j ECSgradSu
rr

φφρ φ   (3.5) 

Upwind differencing is used to approximate the convection term jC  as shown in Fig. 
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3.2: 

( ) ⋅⋅≡ jj SuC
r

ρ Pφ      ,for 0≥jF   (3.6) 

( ) ⋅⋅≡ jj SuC
r

ρ +Nφ     ,for 0<jF   (3.7) 

and the diffusion term jE  is represented by the face-centred expressions as 

( ) [ ]{ }
jPN

l
jPN

l
jjj dfSfE

rrrr
⋅∇−⋅∇+−Γ≈ φφφφφ ,   (3.8) 

where jf is a geometry factor, PNd
r

 is the vector from P to N, j,φΓ  is the diffusion 

coefficient at the surface. 

Finally, 3T  can be expressed as 

PssT φ213 −≈   (3.9) 

Substitution of the results in Equs. (3.4)-(3.9) into Eq. (3.3) gives 

( ) ( ) 0=+
− ∑ j

on

F
t

VV
δ

ρφρφ   (3.10) 

which can be put in a more compact form as 

o
PP

m

n
mm

n
Pp BsAA φφφ ++=∑ 1   (3.11) 

where mA  represents the effects of the convection and diffusion and ∑ denotes the 

effects of the overall neighbor nodes shown in Fig. 3.2 for the flux discretisation. 

Besides, PA  is defined as P
m

m BsA ++∑ 2  and PB  is equal to ( ) tV o δρ / . 
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    When implementing the above solution method, the convergence condition is 

chosen as 

( )∑ −= o
P

o
P

n
P

n
P

k BBC φφφ  < conservative value  (3.12) 

We set the conservative values of velocity field as 0.01, pressure field as 0.001 and 

temperature field as 0.01 in this study. The simulation procedures are briefly 

illustrated by a flow chart in Fig. 3.3. 

 

3.2 Verification of Numerical Scheme 

The computation domain includes the entire injection pipe and the space between 

two horizontally parallel disks. We will verify the above solution method by two 

typical ways: the grid test and comparison with the published experimental results. 

 

3.2.1 Grid Test 

    The grid distribution is frequently an important issue in numerical computation. 

It affects the efficiency and accuracy of thermofluid analysis. There are many choices 

of the grid structure and distribution in STAR-CD including hexahedron, tetrahedron, 

triangular prism, and pyramid, as shown in Fig. 3.4. Considering the model geometry 

and physical phenomena, we choose the uniform hexahedron cell in the present 

simulation. Then we use the subdomains of the cell in the numerical solution of the 

differential conservation equations. The grid distribution for the impinging jet flow 

investigated here is shown in Fig. 3.5. The corresponding side view and top view of 
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the half domain are shown in Fig. 3.6. The grid number for the injection pipe is 5 × 

36  × 300 and in the space between the disks we have 220 × 36 × 20 grids. Hence 

a total of 212,400 cells are used in the computation. For the cases with Dj = 10.0 mm, 

Qj = 1-5 slpm, and ΔT = 0-25 ℃ the computed results using this grid distribution are 

compared with those computed from the 53,100 and 309,600 cells. Selected results to 

compare the computation from these three different grids are shown in Fig. 3.7. It is 

noted that the results from the 212,400 and 309,600 cells are in good agreement. The 

differences in the magnitude of velocity computed from these two grid distributions 

are less than 12%. Thus the chosen grid distribution with the 212, 400 cells is used in 

the subsequent computation. Then the time interval test is conducted. Sample results 

from this test are shown in Figs. 3.8 and 3.9 for the case with Dj = 10.0 mm, H = 10.0 

mm, Ra = 1,880 (ΔT = 20.0 ℃), Rej = 270 (Qj = 2.0 slpm) for three time intervals Δt 

= 0.05, 0.1, 0.15. The predicted vortex flow patterns revealed from vector velocity 

maps and contours of velocity components are also in good agreement. Thus we 

choose the time step Δt = 0.1 in the subsequent computation. Finally, we test the 

suitable length of the insulated annular section. Selected results for the chosen case 

computed by two insulated section lengths of 20.0 and 80.0 mm are shown in Figs. 

3.10 and 3.11. The predicted vortex flow patterns from using the two insulated section 

lengths agree well with each other. Thus we choose the length of insulated annular 

section of 20.0 mm to save the computation time in the present study. 

 

3.2.2 Verification with Experimental Results 

    To further verify the proposed solution method, the present results are compared 

with some experimental data reported in the literature. This is illustrated in Fig. 3.12 
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by comparing our predicted vortex flow pattern with that from Santen et al. [26, 27] 

for the case with Re = 40, Ra = 3,800 and Pr =0.7 for H = 20.0 mm, Dj = 20.0 mm 

and D = 500 mm. Note that our prediction is in qualitative agreement with the results 

from Santen et al. We also note that for this case the vortex flow is unstable. The 

results shown in Fig. 3.12 are those observed at some time instant in the statistical 

state. In fact, the vortex flow pattern changes significantly with time during the 

statistical state.  
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Fig. 3.1 The locations of the centred node P in a typical cell and centred node N in 

the neighbor cell. 
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Fig. 3.2 The upwind differencing with node labeling for flux discretization. 
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Fig. 3.3 Flow chart for the simulation procedures. 
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Fig. 3.4 The cell structures available in STAR-CD. 
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Fig. 3.5 The mesh distribution from the three dimensional view for the chamber and 
part of the injection pipe. 
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Fig. 3.6 The mesh distribution in the chamber from (a) side view at the vertical 
plane θ=0∘& 180∘and (b) top view. 
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Fig. 3.7 The vertical variations of the steady velocity magnitude at the locations on 
the line r = 16 mm and θ= 0° predicted from three different grids. 

Grid number 309600
Grid number 212400
Grid number 53100



 29

 
 
 
 
 
 
 

 0.2 m/s 
 

 
(a) 

 
 

(b) 
 

 
(c) 

 
 

 
 
 

 
 

Fig. 3.8 Velocity vectors on the cross plane θ = 0 & 180∘ ∘ at steady state for Dj = 10.0 mm, H = 10.0 mm, Ra = 1,880 (∆T = 20.0℃), Rej = 
270 (Qj=2.0slpm) for different time step size ∆t = (a) 0.05, (b) 0.1, and (c) 0.15. 

θ=180° Heating plate θ=0° 

∆t = 0.1 

∆t = 0.05

∆t = 0.15
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Fig. 3.9 Contours of vertical velocity component w at long time at the horizontal plane at z = - 5.0 

mm for Dj = 10.0 mm, H = 10.0 mm, Ra = 1,880 (∆T = 20.0℃), Rej = 270 (Qj=2.0slpm) for 
different time step size ∆t = (a) 0.05, (b) 0.1, and (c) 0.15. 
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Fig. 3.10 Velocity vectors on the cross plane θ = 0 & 180∘ ∘ at steady state for Dj = 10.0 mm, H = 10.0 mm, Ra = 1,880 (∆T = 20.0℃), Rej = 
270 (Qj=2.0 slpm) for varied lengths of the insulated annular section (a) 20 mm and (b) 80 mm. 
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Jet 
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Fig. 3.11 Contours of vertical velocity component w at long time at the horizontal plane at z = - 5 

mm for Ra = 1,880 (∆T = 20.0 ) ℃ and Dj = 10.0mm at H = 10.0 mm, Rej = 270 
(Qj=2.0slpm) for varied lengths of the insulated annular section (a) 20 mm and (b) 80 mm. 
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Fig. 3.12 Transient vortex flow for the case with D = 500 m, Dj = 20.0 mm, H = 20.0 mm, Rej = 203 ( Qj = 3 slpm) and Ra = 3800 (∆T=5˚C): (a) 
our predicted velocity vectors on the cross plane θ= 0° & 180° at t = 9 sec., and (b) our predicted velocity vectors on the plane θ= 180° 
at t = 9 sec., (c) side view flow photo at θ= 180° from Santen et al. (2000), and (d) numerically computed vortex flow at θ= 180° from 
Santen et al. (2000). 
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