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Robust Regression Estimators in Gene Expression Analysis

Abstract

Discovering the influential genes through the detection of outliers in sam-
ples from disease group subjects is a very new and important approach for
gene expression analysis. Technique of outlier least squares estimator for re-
gression model has been found in literature that, unfortunately, its influence
function can not limit the effect of independent variables. We present as-
ymptotic distributions of the Mallow’s type bounded-influence outlier least
squares estimator and outlier regression quantile for linear regression mod-
els producing statistical techniques with influence functions bounded in the
space of independent variables. Monte Carlo simulations comparing mean
squared errors show that the bounded-influence ones are more efficient than
the unbounded-influence ones when gross errors occur in the independent-

variable-space.

Key words. Gene expression analysis; influence function; least squares esti-

mation; linear regression; regression quantile.

1. Introduction

Among the existing techniques in influential genes detection, common
statistical methods for two-group comparisons, such as f-test, are not ap-
propriate due to a large number of genes and a limited number of subjects
available. Tomlins et al. (2005) observed in a study of prostate cancer that
influential genes are over expressed in a small number of disease samples.
The problem of constructing statistical procedures based on outlier samples
has been attracted considerable recent attention. Tibshirani and Hastie
(2007) and Wu (2007) suggested to use an outlier sum, the sum of all the
gene expression values in the disease group that are greater than a specified
cutoff point and Chen, Chen and Chan (2010) considered the distributional
theory of the outlier mean. These methods show desired efficiency for tests

based on outliers in detection of influential genes.
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Uncertainties of gene expressions also show causal effect upon one or
some predictor variables (independent variables) such as age, cell line type
or genotype information (see Jin, Si et al. (2006), Huang and Pan (2003),
Rambow, Piton et al. (2008), Muller, Chiou and Leng (2008), Vinciotti and
Yu (2009) and Zapala and Schork (2006)). Lai, et al. (2013) considered that

we have gene expressions for normal group subjects with regression model
Yai = Th;Ba + €0 =1,...,n1 (1.1)
and those for disease group subjects with regression model
Ybi = TpiBp + 0yt = 1, ..., na. (1.2)

They proposed the outlier least squares estimator (LSE) for influential genes
detection by showing that the outlier LSE has an asymptotic representation

with influence function of the form
Maxa,qsa (6) + bebd)b((s) (13)

where M, and M, are fixed matrices, ¢, is a bounded function and ¢, mea-
sures the tail mean of variable . The influence function is not bounded in
the independent-variable-space. Therefore, one can conjecture that in small
samples the outlier LSE will not be able to handle outliers in the X space.
For a general discussion of influence analysis, see Cook and Weisberg (1982).
In the literature, consideration has been given to the development of esti-
mators of regression parameters that limit the effects of the error variable
and the independent variables. Among them, approaches which simultane-
ously bound the influence of the design points and the residuals for the lin-
ear regression model include Krasker and Welsch(1982) and Krasker(1985).
On the other hand, the approach of the Mallow’s type bounded-influence
trimmed mean is to bound the influence of the design points and the residu-
als by De Jongh and De Wet (1985) and in the linear regression model by De
Jongh, De Wet and Welsh(1988). In a study by Giltinan, Carroll and Rup-
pert (1986), they found these two approaches are competitive in a way that



neither is preferable to the other one. They also note that the Mallow’s type
estimators should theoretically give more stable inference than the Krasker-
Welsch approach. This desired property has been further studied by Chen,
Thompson and Hung (2000). In light of the fact that bounded-influence type
estimation has not been studied for outliers based estimators, our aim is to
study the Mallow’s type outlier least squares estimator (LSE) and outlier
regression quantile for regression gene expression data sets. The asymptotic
theory for the outlier LSE is given in Section 2 for the linear regression
model and a simulation study for it is given in Section 3. We introduce the
statistical theory and simulation study for the outlier regression quantile in

Section 4. Finally the proofs of theorems are displayed in Section 5.

2. Mallows Type Bounded Influence Outlier Least Squares Esti-
mator

For easy expression; let us fix one from thousands of genes for examina-
tion. Suppose that there are ni subjects in the normal control group and
ne subjects in the disease group. We assume that this gene expressions for

normal group subjects have the regression model
Yai :x:nﬂa—i-ei,i: 1,...,n1 (2.1)
where x,; is p-vector with 1 as first element and ¢;’s are independent and

identically distribute (iid) error variables with distribution function F, and

those disease group subjects have the regression model

Yoir =@ Fp + 03y =1, ..iy (2.2)
where x; is p-vector with 1 as first element and 90;’s are iid error variables
with distribution function Fs. Motivated from Tomlins et al. (2005) we
need to construct a cutoff from model (2.1) to identify outlier observations
in model (2.2) and develop a statistic based on these outliers as the basis
for statistical inferences.

We let the sample Mallow’s type bounded-x influence regression y-quantile

of Koenker and Bassett (1978) be a vector Bprq(7) that solves

n1
Minge gr Z Wai(Yai — Toib) (7 — I (Yai < 24;0))
i=1



for defining the cutoff where wg;, i = 1,...,ny are weights. The Mallows-
type bounded influence outlier LSE (De Jongh, De Wet and Welsh (1988))

is defined as

Beiv.out = (XiWyApr Xp) "' X Wy Aprus (2.3)

where trimming matrix Ap; = diag{a;; = I(yp; > a:;nﬂABIa (7)),i=1,...,n2}

and W, is a diagonal matrix of weights wy;’s.

We denote Ap out = P(8 > F=1 () 4 Ba0 — Bro)- For the class of Mallows-
type bounded influence outlier LSE, we assume that the following assump-

tions are valid.

Assumption 1t limp, n, 560 pe = Cbe and NG x,‘;j = O(1) where

Tpij is the jth element of vector xy;.

Assumption 2: limnl_,oonl_lX(’lXa o ) lian_,oonz_lX,’)Xb = Q,
limnl—)ooX(IJ,Wa,Xa K2 Qaw, limnl—)ooXé,Wa?Xa = Qaww, hmnz—)ooX(/)WbXb =
wa and hmn2—>ooX1/)Wb2Xb — wawa where Qaa Qba Qaw,Qaww,wa and

Qpww are p X p positive definite matrices.

Assumption 3: 8,1 = [p1 where we denote [, = (gb()) and 3, = <g‘10>
b1 al

with B9 and (.0 the intercept parameters and (3, and (3,1 being vectors of

slope parameters.

We denote the outlier proportion-Ayeur = P(yp > ='G.(7v)). Under As-
sumption 3, we see that Ay our = P(8 > FZ ()4 Bao — Bro). We also denote
fe and fs the densitity functions, respectively, for F. and Fjs. For the rest
of this paper, we assume that Assumptions 1-4 are true where 4 is listed in
Appendix. These assumptions are similar to the standard ones for linear
regression models as given in Ruppert and Carroll (1980) and Portnoy and
Koenker (1989).

Theorem 2.1. (a) The Mallows type bounded influence outlier LSE B M Bb,out



has the following representation

1y 2 (BB1b.out — Bo.out) = — N surlss (FH) + Bao — Boo) f5(FH(Y) + Bao — Bro)

ni
FNET () Qaint 2D waimi(y — I(ei < FZH () + Ap @iz
=1

iwbixi[(sil((sz’ > F7H ) + Bao — Bro) — E(6I(6 = F7H(v) 4 Bao — Br0))] + 0p(1)

=1

where b out = Bb + to,oute and where e is p vector (1,0, ...,0)" and 5, out =
E(6]6 > FZ1(v) + Bao — Bro)-

(b) n;/ 2(33 Ib,0ut — Pb.out) converges in distribution to a normal random vec-
tor with distribution N, (0, ag,cQ;ﬁQawa;ﬁ + aiothb_u}wale;j) where

02 ot =00 Ay L 01(0 2 B Bao — Boo)) =il /F s 52dFy(5)
e (7)+Bao—DBro
- 'u’t25,out’ and
1 _
Cr(%,c :yfba[(ﬂ_l(’)’) + Ba0 = Boo) Fs(F () + Bao —Bro)

b,out

JSET @)

The unbounded_outlier LSE of Lai et al. (2013) equals Bb,out = BBIb,out

with wg,; = wy; = 1 for all'¢’s.

3. Monte Carlo Study

We now compare the efficiencies of the unbounded-influence and the
bounded-influence outlier LSE’s through a Monte Carlo study. The pur-
pose of the Monte Carlo study is to evaluate the small-sample behavior of
these two outlier LSE’s. The performance of these two outlier LSE’s in
presence of outliers and leverage points is of particular interest.

Denote the n observations of the (j-1)-th independent variable by x4, ..., 2y
for j = 2,3,...,p. Order the n observations x(y);, ..., T(n); and define ry;, ..., 7y
as the ranks of zyj,...,zp;. Let L = [rn]+ 1 and U =n + 1 — L where 7

we call it the Winsorized percentage is specified for 0.15 as it recommended
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by De Jongh, De Wet and Welsh (1988). The weights associated with the

(j-1)-th independent variable are now defined as

1 if L <#;; <U

wij = 4 (@@ —xwy;)/Dij v <L

(z@y; — z(1);)/Dij if v, >U
where D;; = 2x;j — x(@)j —T(r);,¢ = 1,...,n. The Mallow’s weights are now
defined as w; = 7r§’:2w,-j. See Denby and Larsen(1977) and De Jongh, De
Wet and Welsh (1988) for these settings in regression parameters estimation
which also perform well in our quantile study. With sample sizes n =
50, 100, the simple linear egression models of (1.1) and (1.2) are considered.
The distribution of error variable € is the standard normal (N(0,1)) and

contaminated normal distribution
CN(@, ) = (1= 5)N(0, 1) +3N(u, 1),

with § = 0.1.

The sample of independent variables is considered in the following de-
signs:

D1: x5, = 1,...;n are i.i.d N(0,1) for j =2,...,p.

D2: As D1, but one point is moved out 5 unitsin X space.

D3: As D1, buti two points are moved out 5 units in X space.

D4: As D1, but one point is moved out 10 units in X space.

D5: As D1, but two points are moved-out 10 units in X space.

Design D1 generates ideal observations x;; and we expect the unbounded-
influence outlier LSE to be more efficient than the bounded one no matter
what the distribution of the error variable is. On the other hand, influential
observations z;; would occur for designs D2 - D5 where we expect that the
bounded-influence outlier LSE to be more efficient than the unbounded one;

however, it is interesting to see how much more efficient it is.

Table 1. The efficencies of unbounded-influence outlier LSE and bounded
influence outlier LSE (n = 50)
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v = 0.6 v=0.7 v=0.8 v=20.9
Effe, Effern |Effo, Effen | Effe, Effenn | Effe, Ef fBm
D1
uw=0.5 100 84 100 85 100 87 100 91
w=1 100 84 100 85 100 87 100 90
=15 100 84 100 85 100 86 100 89
=2 100 84 100 85 100 86 100 88
=25 100 84 100 84 100 85 100 88
D2
uw=0.5 19 100 24 100 31 100 48 100
p=1 19 100 23 100 30 100 45 100
=15 19 100 23 100 29 100 42 100
=2 21 100 24 100 30 100 41 100
w=2.5 23 100 26 100 31 100 41 100
D3
pw=10.5 30 100 37 100 47 100 64 100
p=1 29 100 35 100 45 100 61 100
w=1.5 297100 35 100 43 100 08 100
=2 29 100 35 100 43 100 06 100
=25 30 100 36 100 43 100 55 100
D4
uw=0.5 63 100 70 100 77 100 85 100
w=1 62 100 68 100 76 100 84 100
=15 61 100 67 100 74 100 83 100
=2 61 100 67 100 73 100 81 100
=25 61 100 67 100 73 100 81 100
D5
uw=0.5 78 100 32 100 87 100 90 100
p=1 77.100 82 100 86 100 90 100
=15 77100 81 100 85100 89 100
=2 77 100 81 100 85 100 89 100
w=2.5 77 100 81 100 85 100 89 100

A total of 10,000 replications were performed. Table 1 presents the
Monte Carlo results in the form of efficiencies compared with the best of the
unbounded-influence outlier LSE and the bounded-influence outlier LSE;
that is, the efficiency is equal to the average mean squared error of the best
one times 100 divided by the average mean squared error of the outlier LSE

min{MSEb,MSEBIb} min{MSEb,MSEBIb}
MSEBIb MSEb

Effpm = and Ef f, =

where M SE} is the average of MSE’s of the unbounded-influence outlier
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LSE and M SEpRy;, is the average of MSE’s of the bounded-influence outlier

LSE. In Tables 1 and 2, we consider gross errors appear only on disease

group data (zp;).

Table 2. The efficencies of unbounded-influence outlier LSE and bounded-
influence outlier LSE (n, = n; = 100)

=0.6 =0.7 =0.8 =0.9
EffbaEffBIb Effb,EffBrb EffbaEffBIb Effb,EffBrb
D1
pw=10.5 100 83 100 84 100 84 100 88
p=1 100 83 100 84 100 84 100 87
w=1.5 100 82 100 83 100 84 100 86
=2 100 82 100 83 100 84 100 86
w=2.5 100 83 100 83 100 84 100 85
D2
pw=10.5 47100 595 100 64 100 77 100
w=1 47 100 54 100 63 100 76 100
w=1.5 47100 53 100 61 100 73 100
=2 47 100 53 100 62 100 72 100
=25 49 100 95 100 62 100 72 100
D3
uw=0.5 65 100 71 100 78 100 86 100
w=1 64 100 70 100 77 100 85 100
=15 64 100 70 100 76 100 84 100
=2 64 100 70 100 76100 83 100
w=2.5 65 100 70 100 76 100 83 100
D4
pw=10.5 86100 88 100 90.100 92 100
p=1 86 100 88 100 89 100 91 100
w=1.5 86 100 88100 89 100 91 100
=2 86 100 88 100 89 100 91 100
=25 86 100 88 100 89 100 91 100
D5
pw=10.5 92 100 93 100 93 100 93 100
w=1 92 100 92 100 93 100 93 100
w=1.5 92 100 92 100 93 100 94 100
=2 92 100 93 100 93 100 94 100
=25 92 100 93 100 93 100 94 100

Several conclusions can be drawn from the simulated results:

(a).

In design D1, the regression matricse are well-behaved and the error




variables have distributions with moderate to very heavy tails. The results
are as expected, that is, the unbounded-influence outlier LSE is more effi-
cient than the Mallow’s type bounded-influence outlier LSE. However, the
efficiency of the Mallow’s type bounded-influence outlier LSE is quite robust
in that its efficiencies are all greater than 84 in Table 1 and 82 in Table 2
in this idea design of the regression matrices.

(b). In designs D2-D5, the error variablles follow the distributions exactly as
in design D1, but gross errors are introduced in the regression matrices. The
Mallow’s type bounded-influence outlier LSE’s performed much better than
the unbounded-influence outlier LSE’s. For the design D2, the unbounded-
influence outlier LSE in Table 1 is very poor with efficiency less than 19 in
Table 1 and 47 in Table 2.

In the next we consider.the simulation that response variables in model
(2.1) of control group and medel (2.2) of disease group are both simultane-
ously imposed with gross errors from D1 to D5 to evaluate the efficiencies
of Mallows type outlier estimators.

The results also show that the Mallows type bounded influence outlier LSE
is much better than the unbounded influence one when gross erros exist in

xr-space.

4. Mallows Type Outlier Regression Quantile

Regression quantile, introduced by Koenker and Bassett (1978), plays the
role of order statistics for the linear regression model that is useful in con-
structing broad class of L-estimators (Keenker and Zhao (1994) and Portnoy
and Koenker (1989)) as different measures of central tendency and statisti-
cal dispersion and also measures of other distributional characteristics. A
regression outlier a-quantile (B ot () models the relationship between co-
variates and variable y, with o = P(yp < &' o()|yp > 2’ B4 (7)) that could

be seen in the form

ﬁb,q(a’) = ﬁb + F(;_1(1 - Ab,out(l - a))e-

Following Koenker and Bassett (1978), we define the sample bounded-influence
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regression outlier a-quantile as

BB,q() = argpe peminy  wyi (Yoi—4;0) =1 (yoi < 24:0)1 1 (yi > 74, 8p1a (7))

=1

Table 3. The efficencies of outlier LSE and bounded influence outlier LSE

(n = 30)
v = 0.6 v=0.7 v=0.8 v=20.9
B Effoanffboq Effoquffboq Effoanffboq Effoquffboq
pw=10.5 100 83 100 83 100 83 100 85
p=1 100 82 100 83 100 84 100 85
=15 100 83 100 82 100 83 100 84
=2 100 83 100 83 100 83 100 84
©w=2.5 100 83 100.83 100 83 100 84
D2
pw=10.5 47100 03 100 61 100 69 100
p=1 47 100 53 100 60 100 68 100
=15 48100 53 100 09 100 66 100
=2 50 100 54 100 09 100 65 100
=25 53 100 57 100 61 100 65 100
D3
pw=10.5 o7 100 62 100 67 100 75 100
p=1 56 100 61 100 67 100 74 100
pw=15 57 100 60 100 66 100 74 100
=2 58 100 61 100 66100 73 100
=25 59 100 62 100 66 100 73 100
D4
pw=10.5 51 100 60 100 66 100 71 100
p=1 49 100 59 100 65 100 69 100
=15 49 100 08100 63 100 69 100
=2 49 100 a7 100 62 100 67 100
=25 50 100 57 100 61 100 67 100
Db
pw=10.5 64 100 68 100 72 100 75 100
p=1 63 100 67 100 71 100 75 100
pw=15 63 100 66 100 70 100 74 100
=2 62 100 66 100 70 100 75 100
=25 64 100 66 100 69 100 74 100

The following theorem gives Bg b,out (@) the asymptotic representation

and asymptotic distribution.
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Theorem 4.1. (a) A Bahadur representation for the bounded-influence

outlier regression quantile is

n3*(Bo1n,q(@) = Boa(@) = f57 (F5 (1= Aour (1 = @))) f5(Bao = oo + FZ ) FTH(FTH ()

6Qukn ;““’Zwaixm—meisn— (O] + £ FH = Apour (1 — ) Q)

=1

22 wnmnila = 105 < Fy (1= Xpoun(1 = ) = fao = o + F1(3)) + 0,(1)

=1

(b) n;/2(BBIb,q(a) — Bp,q()) coverges to normal distribution with mean 0,

and covariance matrix

2 -1 i 2 ~1 ~1
p(s;qQan‘“UWQGw + p6,othbw QbU”Uwa

where

p _’Y( )‘gba(f (F(s_l(l — )\b,out(l = a)))f&(ﬁao . /BbO + Fe_l(’Y))
foHFZA()))?, and

)
p(%,out =Ap outa( )(f5 ( ( = )‘b,out(l = a))))z.

Let th(a) be the unbounded-influence outlier regression a-quantile of
Lai et al. (2013). We perform a simulation study of replications 1,000.
Let MSEp,, and MSEy,; be the average MSE’s of 351pq.4() and By 4(cv),
respectively. We define efficiencies of these two unbounded-influence and

bounded-influence regression quantiles as

min{MSEp,, MSEBrp}

min{M S Ep,, MSEBrbq}
MSEy, '

E =
fqu MSEBIbq

and Ef fproq =

Table 4. The efficencies of unbounded-influence outlier quantile and bounded-

influence outlier quantile (o = 0.8)
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v = 0.6 v=0.7 v=0.8 v=20.9
Ef fogs Ef fB1vg [Ef foqs Ef [B10g [E f fog: Ef [B10g [E f fog, Ef [BIbg
D1
uw=0.5 100 90 100 88 100 89 100 96
w=1 100 90 100 88 100 89 100 97
=15 100 90 100 88 100 89 100 96
=2 100 91 100 88 100 89 100 96
=25 100 91 100 89 100 89 100 96
D2
uw=0.5 77 100 39 100 19 100 61 100
p=1 79 100 42 100 20 100 58 100
=15 80 100 45 100 24 100 57 100
=2 82 100 50 100 31 100 61 100
w=2.5 85 100 58 100 43 100 65 100
D3
pw=10.5 44 100 22 100 28 100 84 100
p=1 48 100 23 100 28 100 80 100
w=1.5 537100 28 100 30 100 77 100
=2 60 100 38 100 38 100 77 100
=25 70100 52 100 48 100 78 100
D4
uw=0.5 20 100 11 100 12 100 48 100
w=1 23.100 13 100 12 100 45 100
=15 27 100 16 100 15 100 43 100
=2 35 100 22 100 19 100 46 100
=25 46 100 33 100 29 100 50 100
D5
uw=0.5 20 100 13 100 23 100 88 100
p=1 23 100 14 100 21 100 84 100
=15 27100 17 100 23100 80 100
=2 35 100 23 100 29 100 79 100
w=2.5 46 100 35 100 39 100 89 100

Table 5. The efficencies of unbounded-influence outlier quantile and bounded-

influence outlier quantile (o = 0.9)
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v = 0.6 v=0.7 v=0.8 v=20.9
Ef foqs Ef fB10g [Ef fogs Ef [B16q |E f foqs B f [BI6q B f foq; Ef fBIbg
D1
uw=0.5 100 94 100 92 100 91 100 97
w=1 100 94 100 92 100 91 100 97
=15 100 94 100 92 100 91 100 96
=2 100 95 100 92 100 91 100 97
=25 100 95 100 93 100 91 100 96
D2
uw=0.5 91 100 68 100 34 100 65 100
p=1 92 92 72 100 38 100 62 100
=15 100 92 83 100 60 100 67 100
=2 94 100 83 100 60 100 67 100
w=2.5 100 92 89 89 71 100 71 100
D3
pw=10.5 75 100 53 100 42 100 85 100
p=1 78 100 58 100 43 100 81 100
w=1.5 837100 68 100 51 100 79 100
=2 89 100 80 100 63 100 79 100
=25 10040 89 89 73 100 81 100
D4
uw=0.5 48 100 34 100 22 100 51 100
w=1 52100 39 100 25 100 47 100
=15 61 100 48 100 31 100 46 100
=2 73 100 62 100 43 100 50 100
=25 84 100 77 100 56 100 55 100
D5
uw=0.5 48 100 35 100 32 100 89 100
p=1 52 100 39 100 32 100 86 100
=15 61 100 49 100 39100 83 100
=2 73 100 63 100 50 100 83 100
w=2.5 85 100 78 100 64 100 84 100

Several conclusions can be drawn from the simulated results:

().

In design D1, the regression matricse are well-behaved and the error

variables have distributions with moderate to very heavy tails. The results

are as expected, that is, the unbounded-influence outlier regression quantile

is more efficient than the Mallow’s type bounded-influence outlier regression

quantile. However, the efficiency of the Mallow’s type bounded-influence

outlier regression quantile is quite robust in that its efficiencies are all greater

than 88 in Table 1 and 92 in Table 2 in this idea design of the regression
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matrices.

Table 6. The efficencies of outlier quantile and bounded influence outlier

quantile (o = 0.8, n = 50)

v = 0.6 v=0.7 v=0.8 v=20.9
o1 Effoq,Effboq Effoanffboq Effoq,Effboq Effoanffboq
pw=10.5 100 94 100 92 100 91 100 97
p=1 100 94 100 92 100 91 100 96
w=1.5 100 94 100 92 100 91 100 95
=2 100 95 100 92 100 91 100 95
=25 100 94 100 92 100 91 100 94
D2
pw=10.5 72 100 53 100 59 100 86 100
p=1 75 100 96 100 59 100 86 100
pw=15 77 100 60 100 62 100 85 100
=2 80 100 67 100 68 100 85 100
=25 84 100 75 100 76 100 85 100
D3
pw=10.5 61 100 29 100 77100 91 100
p=1 63 100 29 100 75 100 90 100
=15 68 100 62 100 74 100 90 100
=2 75100 67 100 74 100 89 100
w=2.5 81 100 74 100 77 100 88 100
D4
pw=10.5 40 100 31 100 48100 81 100
p=1 44 100 33 100 48 100 79 100
pw=15 49100 37100 o0 100 79 100
=2 57 100 47 100 06 100 78 100
=25 66100 59 100 64 100 79 100
D5
pw=10.5 42 100 20 100 76 100 88 100
w=1 45 100 48 100 73 100 88 100
=15 50 100 50 100 72 100 87 100
=2 58 100 56 100 72 100 85 100
=25 68 100 65 100 76 100 84 100

(b). In designs D2-D5, the error variablles follow the distributions exactly

as in design D1, but gross errors are introduced in the regression matrices.

The Mallow’s type bounded-influence outlier regression quantile’s performed

much better than the unbounded-influence outlier regression quantile’s. For
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the design D2, the unbounded-influence outlier regression quantile in Table
1 is very poor with efficiency less than 11 in Table 1 and 22 in Table 2

In the next we consider the simulation that response variables in model
(2.1) of control group and model (2.2) of disease group are both simultane-
ously imposed with gross errors from D1 to D5 to evaluate the efficiencies
of Mallows type outlier quantile estimators.
The results also show that the Mallows type bounded influence outlier re-
gression quantile is much better than the unbounded influence one when

gross erros exist in x-space.

5. Appendix
It requires one more assumption for the proofs of theorems in this paper.
Assumption 4: Pobability density functions f. and fs are bounded away
from zero, respectively, in neighborhoods of F=1(a) and F; '(a) for a €
(0,1).
Proof of Theorem 2.1. From the expression of BBIb,Out of (2.3) and model
(2.2), we have

n2/2 (BBIb,out I /Bb,out) — nz Zwbszszzl(ybz Z x; ﬁaw 1{2 wbszz 6 > F (’Y)

=1
+ Bao — B + 15 P2T,) < T(65 > F7 ) + Bao — Boo)]

+ Zwbi$b15iI(5i > B () 4 Bao=0s0)} 05, (1) (5.1)

=1

where T, = ”1 >(Ba1a(¥) = Ba(Y)):
With Assumption (4) and Jureckova and Sen (1987) extension of Billingsly’s

Theorem (see also Koul (1992)), the first term on the right hand side of (5.1)

may be expressed as

ny /2 Zwbziﬁbz 1(6; > FZ1 () + Bao — Boo + 17 /22iT) — 1(8; 2 FZH() + Bao — Bro)]

= _(Fe_ (’Y) + /BaO - /BbO)E;ézf(s(Fe_l(’Y) + /BaO - /BbO)waTn + Op(l) ( )
5.2

for any sequence T, with T,, = Op(1).
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We know that, from Chen, Thompson and Chuang (2000),

m(Bp1a (1) =0a() = Qe ST E )P Y wastas (=T (6 < F7H(3))) 0y (1),

(5.3)

By the same rational, we can derive

n2
ny V2 wniaihid (0 > F2H) + Bao — oo+ ny 2t )
=1

= ny '/ Zwbixbiiﬁgil((si > F () + Bao — Bro) + 0p(1),
i=1
for any sequence T, = O,(1). This indicates

n2

ny 'Y whiteih I Yo > @ Baw (1)) = Apout Qow + 0p(1).  (5.4)
i=1

By letting T, = T, and combining the results in (5.1)-(5:4), result (a) of the
theorem is followed.

The asymptotic normality-of (b) is a direct consequence of the represen-
tation and the central limit theorem. [l
Proof of Theorem 4.1. Let Ul(ty,ts) = nz_l/2 2 wpirpd(6; < Fy (1 -
Nosout(1 = @) 43 “wyit2) (0 = Bag = oo + E'(7) + 07
Jureckova and Sen’s (1987) extension of Billingsley’s Theorem (see also Koul
(1992)), we have

xy;t1). From

U(TlaTZ) - U(Ov 0) :waf6(F5_1(1 - )\b,out(l ~ a)))TZ - waf5(/8a0
£ Boo F F )T+ 0,(1) (5.5)
for any sequences Ty = O,(1) and T» = O,(1). Following the proof of

Lemma 3.3 of Chen and Chiang (1996) (see also Ruppert and Carroll (1980)),

it can see that
Uny*(Bera(v) — Ba(r))s 1y (BB11,q(c) — Boq()))
=y S whiwile — T(ysi < whiBhg (@) (o > whiBa (7))

=1

= op(1). (5.6)
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Also, using the method of Jureckova (1977, Lemma 5.2) and (5.5), one can
show that for A > 0 there exists, n, k and Ny such that

n2
P{infi, seny 1Y whimsilor = 10; < Fy (1= Mpout(1 — @) + 1y 2afits)]
=1
I(8; > Bao — Byo + F7H(y) +ny 2, T5)] <} < A (5.7)

where T3 is any sequence of random vector with T3 = O,(1). Then the

weak consistency of BB 1b,0ut (@) can be obtained from the root-consistency

of BB1p,out() given by
1/2, 4
1y (BB1b,q(@) = Bo,q()) = Op(1)
which is induced from (5.6) and (5.7). Result (a) in Theorem 4.1 is fol-

lowed from (5.5) and (5.7) by setting. T} = n1/2(331a(7) — Ba(v)) and
Ty = > (Bp1.q(e) — Bpaf@))= O
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