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摘要 

 對基因表現分析來說，經由偵測疾病組樣本的離群值來發現對其有影響力

的基因，是一個很新而且很重要的方法。不幸的是，我們在文獻裡找到，為了

建構回歸模型而發展出的離群值最小平方法估計量，它的影響函數(influence 

function)無法限制住對獨立變數的影響。為了建構線性回歸模型，我們用

Mallow's type 離群值有界影響最小平方法估計量及離群值回歸分位數的漸

進分布，產生出一個影響函數(influence function)在獨立變數空間是有界的

統計方法。由蒙地卡羅模擬比較均方差的結果顯示，當過失誤差(gross error)

在獨立變數空間發生時，有界影響的估計量比無界影響的更有效。 

 

 

關鍵字: 基因表現分析, 影響函數, 最小平方法估計量, 線性回歸,  

 回歸分位數 
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Robust Regression Estimators in Gene Expression Analysis

Abstract

Discovering the in�uential genes through the detection of outliers in sam�

ples from disease group subjects is a very new and important approach for

gene expression analysis� Technique of outlier least squares estimator for re�

gression model has been found in literature that� unfortunately� its in�uence

function can not limit the e�ect of independent variables� We present as�

ymptotic distributions of the Mallow�s type bounded�in�uence outlier least

squares estimator and outlier regression quantile for linear regression mod�

els producing statistical techniques with in�uence functions bounded in the

space of independent variables� Monte Carlo simulations comparing mean

squared errors show that the bounded�in�uence ones are more e�cient than

the unbounded�in�uence ones when gross errors occur in the independent�

variable�space�

Key words� Gene expression analysis	 in�uence function	 least squares esti�

mation	 linear regression	 regression quantile�

�� Introduction

Among the existing techniques in in�uential genes detection� common

statistical methods for two�group comparisons� such as t�test� are not ap�

propriate due to a large number of genes and a limited number of subjects

available� Tomlins et al� 
���� observed in a study of prostate cancer that

in�uential genes are over expressed in a small number of disease samples�

The problem of constructing statistical procedures based on outlier samples

has been attracted considerable recent attention� Tibshirani and Hastie


����� and Wu 
����� suggested to use an outlier sum� the sum of all the

gene expression values in the disease group that are greater than a speci�ed

cuto� point and Chen� Chen and Chan 
����� considered the distributional

theory of the outlier mean� These methods show desired e�ciency for tests

based on outliers in detection of in�uential genes�

Typeset by AMS�TEX
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Uncertainties of gene expressions also show causal e�ect upon one or

some predictor variables 
independent variables� such as age� cell line type

or genotype information 
see Jin� Si et al� 
������ Huang and Pan 
������

Rambow� Piton et al� 
������ Muller� Chiou and Leng 
������ Vinciotti and

Yu 
����� and Zapala and Schork 
������� Lai� et al� 
����� considered that

we have gene expressions for normal group subjects with regression model

yai � x�ai�a � �i� i � �� ���� n� 
����

and those for disease group subjects with regression model

ybi � x�bi�b � �i� i � �� ���� n�� 
����

They proposed the outlier least squares estimator 
LSE� for in�uential genes

detection by showing that the outlier LSE has an asymptotic representation

with in�uence function of the form

Maxa�a
�� �Mbxb�b
�� 
����

where Ma and Mb are �xed matrices� �a is a bounded function and �b mea�

sures the tail mean of variable �� The in�uence function is not bounded in

the independent�variable�space� Therefore� one can conjecture that in small

samples the outlier LSE will not be able to handle outliers in the X space�

For a general discussion of in�uence analysis� see Cook and Weisberg 
������

In the literature� consideration has been given to the development of esti�

mators of regression parameters that limit the e�ects of the error variable

and the independent variables� Among them� approaches which simultane�

ously bound the in�uence of the design points and the residuals for the lin�

ear regression model include Krasker and Welsch
����� and Krasker
�����

On the other hand� the approach of the Mallow�s type bounded�in�uence

trimmed mean is to bound the in�uence of the design points and the residu�

als by De Jongh and De Wet 
���� and in the linear regression model by De

Jongh� De Wet and Welsh
������ In a study by Giltinan� Carroll and Rup�

pert 
������ they found these two approaches are competitive in a way that



�

neither is preferable to the other one� They also note that the Mallow�s type

estimators should theoretically give more stable inference than the Krasker�

Welsch approach� This desired property has been further studied by Chen�

Thompson and Hung 
������ In light of the fact that bounded�in�uence type

estimation has not been studied for outliers based estimators� our aim is to

study the Mallow�s type outlier least squares estimator 
LSE� and outlier

regression quantile for regression gene expression data sets� The asymptotic

theory for the outlier LSE is given in Section � for the linear regression

model and a simulation study for it is given in Section �� We introduce the

statistical theory and simulation study for the outlier regression quantile in

Section �� Finally the proofs of theorems are displayed in Section �

�� Mallows Type Bounded In�uence Outlier Least Squares Esti�

mator

For easy expression� let us �x one from thousands of genes for examina�

tion� Suppose that there are n� subjects in the normal control group and

n� subjects in the disease group� We assume that this gene expressions for

normal group subjects have the regression model

yai � x�ai�a � �i� i � �� ���� n� 
����

where xai is p�vector with � as �rst element and �i�s are independent and

identically distribute 
iid� error variables with distribution function F� and

those disease group subjects have the regression model

ybi � x�bi�b � �i� i � �� ���� n� 
����

where xbi is p�vector with � as �rst element and �i�s are iid error variables

with distribution function F�� Motivated from Tomlins et al� 
���� we

need to construct a cuto� from model 
���� to identify outlier observations

in model 
���� and develop a statistic based on these outliers as the basis

for statistical inferences�

We let the sample Mallow�s type bounded�x in�uence regression ��quantile

of Koenker and Bassett 
����� be a vector ��BIa
�� that solves

Minb�Rp

n�X
i��

wai
yai � x�aib�
� � I
yai � x�aib��



�

for de�ning the cuto� where wai� i � �� ���� n� are weights� The Mallows�

type bounded in�uence outlier LSE 
De Jongh� De Wet and Welsh 
������

is de�ned as

��BIb�out � 
X �
bWbABIXb�

��X �
bWbABIyb 
����

where trimming matrix ABI � diagfaii � I
ybi � x�bi
��BIa
���� i � �� ���� n�g

and Wb is a diagonal matrix of weights wbi�s�

We denote 	b�out � P 
� � F��� 
����a���b��� For the class of Mallows�

type bounded in�uence outlier LSE� we assume that the following assump�

tions are valid�

Assumption �� limn��n���
n�
n�

� 
ba and n���
Pn�

i�� x
�
bij � O
�� where

xbij is the jth element of vector xbi�

Assumption �� limn���n
��
� X �

aXa � Qa� limn���n
��
� X �

bXb � Qb�

limn���X
�
aWaXa � Qaw� limn���X

�
aW

�
aXa � Qaww� limn���X

�
bWbXb �

Qbw and limn���X
�
bW

�
bXb � Qbww� where Qa� Qb� Qaw� Qaww� Qbw and

Qbww are p� p positive de�nite matrices�

Assumption �� �a� � �b� where we denote �b �

�
�b�
�b�

�
and �a �

�
�a�
�a�

�

with �b� and �a� the intercept parameters and �b� and �a� being vectors of

slope parameters�

We denote the outlier proportion 	b�out � P 
yb � x��a
���� Under As�

sumption �� we see that 	b�out � P 
� � F��� 
����a���b��� We also denote

f� and f� the densitity functions� respectively� for F� and F�� For the rest

of this paper� we assume that Assumptions ��� are true where � is listed in

Appendix� These assumptions are similar to the standard ones for linear

regression models as given in Ruppert and Carroll 
����� and Portnoy and

Koenker 
������

Theorem ���� 
a� The Mallows type bounded in�uence outlier LSE ��MBb�out



�

has the following representation

n
���
� 
 ��BIb�out � �b�out� � �	��b�out


���
ba 
F��� 
�� � �a� � �b��f�
F

��
� 
�� � �a� � �b��

f��� 
F��� 
���Q��awn
����
�

n�X
i��

waixi
� � I
�i � F��� 
���� � 	��b�outQ
��
bwn

����
�

n�X
i��

wbixi��iI
�i � F��� 
�� � �a� � �b���E
�I
� � F��� 
�� � �a� � �b���� � op
��

where �b�out � �b � ���oute and where e is p vector 
�� �� ���� ��� and ���out �

E
�j� � F��� 
�� � �a� � �b���


b� n
���
� 
 ��BIb�out��b�out� converges in distribution to a normal random vec�

tor with distribution Np
�� �
�
��cQ

��
awQawwQ

��
aw � ����outQ

��
bwQbwwQ

��
bw � where

����out �var
	
��
b�out�I
� � F��� 
�� � �a� � �b��� � 	��b�out

Z �

F��� �����a���b�

��dF�
��

� ����out� and

����c �
�
�� ��

	�b�out

ba�
F

��
� 
�� � �a� � �b��f�
F

��
� 
�� � �a� � �b��

f��� 
F��� 
������

The unbounded outlier LSE of Lai et al� 
����� equals ��b�out � ��BIb�out

with wai � wbi � � for all i�s�

�� Monte Carlo Study

We now compare the e�ciencies of the unbounded�in�uence and the

bounded�in�uence outlier LSE�s through a Monte Carlo study� The pur�

pose of the Monte Carlo study is to evaluate the small�sample behavior of

these two outlier LSE�s� The performance of these two outlier LSE�s in

presence of outliers and leverage points is of particular interest�

Denote the n observations of the 
j����th independent variable by x�j� ���� xnj

for j � �� �� ���� p� Order the n observations x���j � ���� x�n�j and de�ne r�j � ���� rnj

as the ranks of x�j � ���� xnj� Let L � �n� � � and U � n � � � L where 

we call it the Winsorized percentage is speci�ed for ��� as it recommended



�

by De Jongh� De Wet and Welsh 
������ The weights associated with the


j����th independent variable are now de�ned as

wij �

��
�

� if L � �ij � U

x�L�j � x�U�j��Dij if �ij � L

x�U�j � x�L�j��Dij if �ij � U

where Dij � �xij �x�U�j �x�L�j � i � �� ���� n� The Mallow�s weights are now

de�ned as wi � �pj��wij � See Denby and Larsen
����� and De Jongh� De

Wet and Welsh 
����� for these settings in regression parameters estimation

which also perform well in our quantile study� With sample sizes n �

�� ���� the simple linear egression models of 
���� and 
���� are considered�

The distribution of error variable � is the standard normal 
N
����� and

contaminated normal distribution

CN
�� �� � 
�� ��N
�� �� � �N
�� ���

with � � ����

The sample of independent variables is considered in the following de�

signs�

D�� xij � i � �� ���� n are i�i�d N
�� �� for j � �� ���� p�

D�� As D�� but one point is moved out  units in X space�

D�� As D�� but two points are moved out  units in X space�

D�� As D�� but one point is moved out �� units in X space�

D� As D�� but two points are moved out �� units in X space�

Design D� generates ideal observations xij and we expect the unbounded�

in�uence outlier LSE to be more e�cient than the bounded one no matter

what the distribution of the error variable is� On the other hand� in�uential

observations xij would occur for designs D� � D where we expect that the

bounded�in�uence outlier LSE to be more e�cient than the unbounded one	

however� it is interesting to see how much more e�cient it is�

Table �� The e�cencies of unbounded�in�uence outlier LSE and bounded

in�uence outlier LSE 
n � ��



	

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

D�
� � �� ��� �� ��� � ��� �� ��� ��
� � � ��� �� ��� � ��� �� ��� ��
� � �� ��� �� ��� � ��� �� ��� ��
� � � ��� �� ��� � ��� �� ��� ��
� � �� ��� �� ��� �� ��� � ��� ��
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� � ��� � ��� �� ���
� � �� �� ��� � ��� �� ��� � ���
� � � �� ��� � ��� �� ��� � ���
� � �� �� ��� �� ��� �� ���  ���
D�

� � �� �� ��� �� ��� �� ��� � ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
D

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� � ��� �� ���
� � � �� ��� �� ��� � ��� �� ���
� � �� �� ��� �� ��� � ��� �� ���

A total of ��� ��� replications were performed� Table � presents the

Monte Carlo results in the form of e�ciencies compared with the best of the

unbounded�in�uence outlier LSE and the bounded�in�uence outlier LSE	

that is� the e�ciency is equal to the average mean squared error of the best

one times ��� divided by the average mean squared error of the outlier LSE

EffBIb �
minfMSEb�MSEBIbg

MSEBIb
and Effb �

minfMSEb�MSEBIbg

MSEb

where MSEb is the average of MSE�s of the unbounded�in�uence outlier






LSE and MSEBIb is the average of MSE�s of the bounded�in�uence outlier

LSE� In Tables � and �� we consider gross errors appear only on disease

group data 
xbi��

Table �� The e�cencies of unbounded�in�uence outlier LSE and bounded�

in�uence outlier LSE 
na � nb � ����

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

� � ���
Effb� EffBIb

D�
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� �
D�

� � �� �� ���  ��� �� ��� �� ���
� � � �� ��� � ��� �� ��� �� ���
� � �� �� ��� � ��� �� ��� �� ���
� � � �� ��� � ��� �� ��� �� ���
� � �� �� ���  ��� �� ��� �� ���
D�

� � �� � ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� � ��� �� ��� �� ��� �� ���
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
D

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���

Several conclusions can be drawn from the simulated results�


a�� In design D�� the regression matricse are well�behaved and the error



�

variables have distributions with moderate to very heavy tails� The results

are as expected� that is� the unbounded�in�uence outlier LSE is more e��

cient than the Mallow�s type bounded�in�uence outlier LSE� However� the

e�ciency of the Mallow�s type bounded�in�uence outlier LSE is quite robust

in that its e�ciencies are all greater than �� in Table � and �� in Table �

in this idea design of the regression matrices�


b�� In designs D��D� the error variablles follow the distributions exactly as

in design D�� but gross errors are introduced in the regression matrices� The

Mallow�s type bounded�in�uence outlier LSE�s performed much better than

the unbounded�in�uence outlier LSE�s� For the design D�� the unbounded�

in�uence outlier LSE in Table � is very poor with e�ciency less than �� in

Table � and �� in Table ��

In the next we consider the simulation that response variables in model


���� of control group and model 
���� of disease group are both simultane�

ously imposed with gross errors from D� to D to evaluate the e�ciencies

of Mallows type outlier estimators�

The results also show that the Mallows type bounded in�uence outlier LSE

is much better than the unbounded in�uence one when gross erros exist in

x�space�

�� Mallows Type Outlier Regression Quantile

Regression quantile� introduced by Koenker and Bassett 
������ plays the

role of order statistics for the linear regression model that is useful in con�

structing broad class of L�estimators 
Koenker and Zhao 
����� and Portnoy

and Koenker 
������ as di�erent measures of central tendency and statisti�

cal dispersion and also measures of other distributional characteristics� A

regression outlier ��quantile �b�out
�� models the relationship between co�

variates and variable yb with � � P 
yb � x��b�q
��jyb � x��a
��� that could

be seen in the form

�b�q
�� � �b � F��� 
�� 	b�out
�� ���e�

Following Koenker and Bassett 
������ we de�ne the sample bounded�in�uence



��

regression outlier ��quantile as

��BIb�q
�� � argb�Rpmin
nX
i��

wbi
ybi�x
�
bib����I
ybi � x�bib��I
ybi � x�bi

��BIa
���

Table �� The e�cencies of outlier LSE and bounded in�uence outlier LSE


n � ���

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

D�
� � �� ��� �� ��� �� ��� �� ��� �
� � � ��� �� ��� �� ��� �� ��� �
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� ��
D�

� � �� �� ��� � ��� �� ��� �� ���
� � � �� ��� � ��� �� ��� �� ���
� � �� �� ��� � ��� � ��� �� ���
� � � � ��� � ��� � ��� � ���
� � �� � ��� � ��� �� ��� � ���
D�

� � �� � ��� �� ��� �� ��� � ���
� � � � ��� �� ��� �� ��� �� ���
� � �� � ��� �� ��� �� ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� � ��� �� ��� �� ��� �� ���
D�

� � �� � ��� �� ��� �� ��� �� ���
� � � �� ��� � ��� � ��� �� ���
� � �� �� ��� � ��� �� ��� �� ���
� � � �� ��� � ��� �� ��� �� ���
� � �� � ��� � ��� �� ��� �� ���
D

� � �� �� ��� �� ��� �� ��� � ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� �� ��� �� ���

The following theorem gives ��BIb�out
�� the asymptotic representation

and asymptotic distribution�



��

Theorem ���� 
a� A Bahadur representation for the bounded�in�uence

outlier regression quantile is

n
���
� 
 ��BIb�q
��� �b�q
��� � f��� 
F��� 
�� 	b�out
�� ����f�
�a� � �b� � F��� 
���f��� 
F��� 
���



���
ba Q��awn

����
�

n�X
i��

waixai�� � I
�i � F��� 
���� � f��� 
F��� 
�� 	b�out
�� ����Q��bw

n
����
�

n�X
i��

wbixbi��� I
�i � F��� 
�� 	b�out
�� �����I
�i � �a� � �b� � F��� 
��� � op
��


b� n
���
� 
 ��BIb�q
��� �b�q
��� coverges to normal distribution with mean �p

and covariance matrix

����qQ
��
awQawwQ

��
aw � ����outQ

��
bwQbwwQ

��
bw

where

����q ��
�� ��
ba
f
��
� 
F��� 
�� 	b�out
�� ����f�
�a� � �b� � F��� 
���

f��� 
F��� 
������ and

����out �	b�out�
�� ��
f��� 
F��� 
�� 	b�out
�� �������

Let ��b�q
�� be the unbounded�in�uence outlier regression ��quantile of

Lai et al� 
������ We perform a simulation study of replications �� ����

Let MSEBIbq and MSEbq be the average MSE�s of ��BIbq�q
�� and ��b�q
���

respectively� We de�ne e�ciencies of these two unbounded�in�uence and

bounded�in�uence regression quantiles as

Effbq �
minfMSEbq�MSEBIbqg

MSEbq
and EffBIbq �

minfMSEbq�MSEBIbqg

MSEBIbq
�

Table �� The e�cencies of unbounded�in�uence outlier quantile and bounded�

in�uence outlier quantile 
� � ����



��

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

D�
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� ��
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� � ��� �� ��� � ���
� � � �� ��� � ��� �� ��� �� ���
� � �� � ��� � ��� �� ��� � ���
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� � ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� � ��� �� ��� �� ���
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� � ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� � ���
D

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� �� ��� � ��� �� ��� �� ���

Table 	� The e�cencies of unbounded�in�uence outlier quantile and bounded�

in�uence outlier quantile 
� � ����



��

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

� � ���
Effbq� EffBIbq

D�
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� � ��� �� ��� �� ��� ��
� � �� ��� � ��� �� ��� �� ��� ��
D�

� � �� �� ��� �� ��� �� ��� � ���
� � � �� �� �� ��� �� ��� �� ���
� � �� ��� �� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� ��� �� �� �� �� ��� �� ���
D�

� � �� � ��� � ��� �� ��� � ���
� � � �� ��� � ��� �� ��� �� ���
� � �� �� ��� �� ��� � ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� ���	� �� �� �� ��� �� ���
D�

� � �� �� ��� �� ��� �� ��� � ���
� � � � ��� �� ��� � ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� �� ��� � ���  ���
D

� � �� �� ��� � ��� �� ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� � ��� �� ���
� � �� � ��� �� ��� �� ��� �� ���

Several conclusions can be drawn from the simulated results�


a�� In design D�� the regression matricse are well�behaved and the error

variables have distributions with moderate to very heavy tails� The results

are as expected� that is� the unbounded�in�uence outlier regression quantile

is more e�cient than the Mallow�s type bounded�in�uence outlier regression

quantile� However� the e�ciency of the Mallow�s type bounded�in�uence

outlier regression quantile is quite robust in that its e�ciencies are all greater

than �� in Table � and �� in Table � in this idea design of the regression



��

matrices�

Table 
� The e�cencies of outlier quantile and bounded in�uence outlier

quantile 
� � ���� n � ��

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

� � ���
Effoq� Effboq

D�
� � �� ��� �� ��� �� ��� �� ��� ��
� � � ��� �� ��� �� ��� �� ��� ��
� � �� ��� �� ��� �� ��� �� ��� �
� � � ��� � ��� �� ��� �� ��� �
� � �� ��� �� ��� �� ��� �� ��� ��
D�

� � �� �� ��� � ��� � ��� �� ���
� � � � ���  ��� � ��� �� ���
� � �� �� ��� �� ��� �� ��� � ���
� � � �� ��� �� ��� �� ��� � ���
� � �� �� ��� � ��� �� ��� � ���
D�

� � �� �� ��� � ��� �� ��� �� ���
� � � �� ��� � ��� � ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� �� ��� �� ���
D�

� � �� �� ��� �� ��� �� ��� �� ���
� � � �� ��� �� ��� �� ��� �� ���
� � �� �� ��� �� ��� � ��� �� ���
� � � � ��� �� ��� � ��� �� ���
� � �� �� ��� � ��� �� ��� �� ���
D

� � �� �� ��� � ��� �� ��� �� ���
� � � � ��� �� ��� �� ��� �� ���
� � �� � ��� � ��� �� ��� �� ���
� � � � ��� � ��� �� ��� � ���
� � �� �� ��� � ��� �� ��� �� ���


b�� In designs D��D� the error variablles follow the distributions exactly

as in design D�� but gross errors are introduced in the regression matrices�

The Mallow�s type bounded�in�uence outlier regression quantile�s performed

much better than the unbounded�in�uence outlier regression quantile�s� For



��

the design D�� the unbounded�in�uence outlier regression quantile in Table

� is very poor with e�ciency less than �� in Table � and �� in Table ��

In the next we consider the simulation that response variables in model


���� of control group and model 
���� of disease group are both simultane�

ously imposed with gross errors from D� to D to evaluate the e�ciencies

of Mallows type outlier quantile estimators�

The results also show that the Mallows type bounded in�uence outlier re�

gression quantile is much better than the unbounded in�uence one when

gross erros exist in x�space�

	� Appendix

It requires one more assumption for the proofs of theorems in this paper�

Assumption �� Pobability density functions f� and f� are bounded away

from zero� respectively� in neighborhoods of F��� 
�� and F��� 
�� for � �


�� ���

Proof of Theorem ���� From the expression of ��BIb�out of 
���� and model


����� we have

n
���
� 
 ��BIb�out � �b�out� � n

���
� 


n�X
i��

wbixbix
�
biI
ybi � x�i

��aw
����
��f

n�X
i��

wbixbi�i�I
�i � F��� 
��

� �a� � �b� � n
����
� x�iTa�� I
�i � F��� 
�� � �a� � �b���

�

n�X
i��

wbixbi�iI
�i � F��� 
�� � �a� � �b��g� op
�� 
���

where Ta � n
���
� 
 ��BIa
��� �a
����

With Assumption 
�� and Jureckova and Sen 
����� extension of Billingsly�s

Theorem 
see also Koul 
������� the �rst term on the right hand side of 
���

may be expressed as

n
����
�

n�X
i��

wbixbi�i�I
�i � F��� 
�� � �a� � �b� � n
����
� x�iTn�� I
�i � F��� 
�� � �a� � �b���

� �
F��� 
�� � �a� � �b��

���
ba f�
F

��
� 
�� � �a� � �b��QbwTn � op
��


���

for any sequence Tn with Tn � Op
���



��

We know that� from Chen� Thompson and Chuang 
������

n
���
� 
 ��BIa
����a
��� � Q��a�wf

��
� 
F��� 
���n

����
�

n�X
i��

waixai
��I
�i � F��� 
�����op
���


���

By the same rational� we can derive

n
����
�

n�X
i��

wbixbix
�
biI
�i � F��� 
�� � �a� � �b� � n

����
� x�biTa�

� n
����
�

n�X
i��

wbixbix
�
biI
�i � F��� 
�� � �a� � �b�� � op
���

for any sequence Ta � Op
��� This indicates

n���

n�X
i��

wbixbix
�
biI
ybi � x�i

��aw
��� � 	b�outQbw � op
��� 
���

By letting Ta � Tn and combining the results in 
����
���� result 
a� of the

theorem is followed�

The asymptotic normality of 
b� is a direct consequence of the represen�

tation and the central limit theorem� �

Proof of Theorem ���� Let U
t�� t�� � n
����
�

Pn�
i�� wbixbiI
�i � F��� 
��

	b�out
�� ��� � n
����
� x�bit��I
�i � �a� � �b� � F��� 
�� � n

����
� x�bit��� From

Jureckova and Sen�s 
����� extension of Billingsley�s Theorem 
see also Koul


������� we have

U
T�� T��� U
�� �� �Qbwf�
F
��
� 
�� 	b�out
�� ����T� �Qbwf�
�a�

� �b� � F��� 
���

���
ba T� � op
�� 
��

for any sequences T� � Op
�� and T� � Op
��� Following the proof of

Lemma ��� of Chen and Chiang 
����� 
see also Ruppert and Carroll 
�������

it can see that

U
n
���
� 
 ��BIa
��� �a
���� n

���
� 
 ��BIb�q
��� �b�q
����

� n
����
�

n�X
i��

wbixbi��� I
ybi � x�bi
��b�q
����I
ybi � x�bi

��a
���

� op
��� 
���



�	

Also� using the method of Jureckova 
����� Lemma ��� and 
��� one can

show that for 	 � � there exists� �� k and N� such that

Pfinfjt�j�kn
����
� j

n�X
i��

wbixbi��� I
�i � F��� 
�� 	b�out
�� �� � n
����
� x�bit���

I
�i � �a� � �b� � F��� 
�� � n
����
� x�biT
�j � �g � 	 
���

where T
 is any sequence of random vector with T
 � Op
��� Then the

weak consistency of ��BIb�out
�� can be obtained from the root�consistency

of ��BIb�out
�� given by

n
���
� 
 ��BIb�q
��� �b�q
��� � Op
��

which is induced from 
��� and 
���� Result 
a� in Theorem ��� is fol�

lowed from 
�� and 
��� by setting T� � n
���
� 
 ��BIa
�� � �a
��� and

T� � n
���
� 
 ��BIb�q
��� �b�q
���� �
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