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Abstract

A pardle Poisson Boltzmann:equation solver using finite element method
with adaptive mesh refinement is proposed. A ‘M onotone iterative method was used to
solve the nonlinear equation arising from the finite element discretization procedure.
A 3D Poisson-Boltzmann equation was used to model the electric double layer field.
And the solver will be using to simulate this phenomenon. First, in order to verify
code accuracy we model the EDL potentia distribution at sphere and cylinder, and
compared with analytical solution and approximant solution. These results are all the
same in small zeta potential. After verification, we couple with parallel adaptive mesh
refinement to compute some simple cases such as two identical charged spherical
particles and computer the interaction force. After five step refinement levels, we
caculate the potential, electric field and interaction force, and compared with

previoudy literature. It has 0.06% inaccuracy between our results and previousy



work. After this case, we apply our code to simulate the situation of two identical
particles in a cylindrical pore, and compared with previously works. It also has 1%
inaccuracy. The mesh distribution may influence the result, but we can not refine
mesh after five level according to computing resources. In the previously works, most
of them are use high order finite element method. If we can use high level mesh in

future, we can have more accuracy result.
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Chapter 1 Introduction

1-1 Motivation

The study of fluid flow in microchannels is of significant interest to engineers
because of microfluid have wide industria applications. For examples, miniaturize
flow injection analysis, micro-reactors for the analysis of biological cells, heat sinks
for the analysis of biological cells, and heat sinks for cooling microchips and laser
diode arrays, etc.

At the small scales channels, the electrica double layer (EDL) phenomena
significantly makes an influence on the fluid behaviors and the electrical double layer
is also the important interfacial effect.

The EDL field in such a microchannels is governed by the Nonlinear
Poisson-Boltzmann (PB) equation.

The Nonlinear Poisson-Boltzmann equation is aso used for the description of the
distribution of electrostatic potential in colloida dispersions. Knowing the
electrostatic potential, one can calculate other quantities such as the force of
particle-particle interaction. Features of particle interaction are great importance for
the stability and properties of colloidal dispersions. Numerical investigation of models
based on the PB equation can provide important information on effective particle
interaction in colloidal systems.

In previous documents and theses, there are not so many reports discussed the
three-dimensional computation model. The two-dimensional computation model was
most commonly mentioned. However, when the geometries is getting complex, the
two-dimensional computation model is gradually losing its accuracy.

Therefore, we have developed a numerical scheme to simulate Electrical double

layer potential distribution by solving 3D Nonlinear Poisson-Boltzmann equation.



1-2 Background

1-2.1 The Like-charge Attractions Phenomenon

Colloidal sphere provide asimple model system for understanding the interactions
of the charge particles in asalt solution. Hence, it came as a great surprise when it was
observed that two like-charge spheres can attract each other when the spheres are
confined by walls. Since both the charge densities and sizes of the spheres are in the
range of large proteins, it would be expected that a charge in sign of this interaction
would have important implications for biological systems.

The attractive interaction between two charge walls can be understood with a
simple picture (Fig 1.1). When the spheres are sufficiently close to the wall, they are
electrostatically repelled from it. The net force on each sphere thus includes both their
mutual electrostatic repulsion and their_repulsion, from the wall. How the spheres
respond depends on their hydrodynamic mobility: when the spheres are close together,
their mutual repulsion overwhelms any:hydradynamic coupling, and the spheres will
separate as hydrodynamic coupling;; the spheres will separate as expected for
like-charge bodies. However, when they are beyond some critical separation, the
hydrodynamic coupling due to the wall force overcomes the electrostatic repulsion, so
that the relative distance between the spheres decreases as they move away from the

wall.

1-2.2 Electric double layer

Electrokinetic phenomena are of considerable importance in many fields of
science and engineering. In particular, they exert a strong influence on the flow
behavior of a fluid in microchannels and capillaries. Most solid surfaces bear

electrostatic charges. When a charge surface is in contact with an electrolyte, the



electrostatic charges on the solid surface will influence the distribution of nearby ions
in the electrolyte solution. lons of opposite of charges to that of the surface are
attracted towards the surface, while ions of like charges are repelled from the surface;
thus, an electric field is established. The charges on the solid surface and the
balancing charge in the liquid are called the “electric double layer” (EDL). The EDL
potential distribution is show in Fig 1.2. The sign and magnitude of the EDL field
depend on the nature of the surface and the liquid.

The distribution of EDL can be class with two regions. One is compact or stern
layer the other is diffusion layer. Guoy and Chapmal modeled the region near the
surface as a diffuse double layer, where they linked the nonuniform ion distribution to
the competing electrical and thermal diffusion forces [1]. Stern later presented the
basis for the current model, in which the Stern plane splits the EDL into an inner,
compact layer and an outer, diffuse layer. In-the inner layer or the Stern layer, the
geometry of the ions and moleculés strongly- influences the charge and potential
distribution, with the Stern plane located near the surface, at roughly the radius of a
hydrated ion. The inner layer between the surface and the Stern plane is considered to
be immobile; if the ions are within the Stern plane, thermal diffusion will not be
strong enough to overcome electrostatic or Van der Waals forces and they will attach
to the surface, becoming specifically adsorbed [1]. In the outer diffuse layer, the ions
are far enough away from the surface that they are mobile. Electrokinetic transport
phenomena such as electroosmosis can be understood in terms of the surface potential
at the surface of shear, because these phenomena are only directly related to the
mobile part of the EDL [1].

Within the diffuse layer, because of the EDL, the net charge density p, is not

zero. If an electric field is applied along the length of the channel, a body force is



exerted on the ions in the diffuse layer of the EDL. The ions will move under the
influence of the applied electrica field, pulling the liquid with them and resulting in
electroosmotic flow. The fluid movement is carried through to the rest of the fluid in

the channel by viscous forces. This electrokinetic processis called electroomosis.

1-3 Literature Survey

The EDL field is described by the Poisson-Boltzmann equation, which is a
three-dimensional, nonlinear, second-order partia differential equation. The
hyperbolic sine term makes the second-order different equation exponentially
nonlinear; therefore. A general analytical solution isnot possible.

The PB equation can model many phenomenon such as the like-charge
interaction, electrokinetic flow and micro-fluidic actuation etc. There are many studies
in the literature dealing with the'solution of Peisson-Boltzmann equation.

Bowen and Sharif [2] they.presentedra-2D FE solution combined with adaptive
mesh refinement. They used the Debye-Huckel solution to initia guess, and the
Newton sequence was used to solve the nonlinear hyperbolic sine term. They used
nine-node quadrilateral elements. Bowen and Sharif also presented some results in
1998 journal of Nature [3]. They said their solver can model the like-charge
attractions phenomenon which is presented in 1997 journa of Nature by Larsen and
Grier [4]. Dyshlovenko [5] also presented a 2D FE solution combined with adaptive
mesh refinement but they used six-node triangular elements. In 2002, Dyshlovenko
publish their result in CPC [6], but Dyshlovenko is different from Bowen and Sharif,
Dyshlovenko do not find the like-charge attractions phenomenon in his results.
Tuinier [7] proposed the approximate solutions to the PB equation in spherical and

cylindrical. The approximate solutions provided me a good initial guess for my PB



solver. Das and Bhattacharjee [8] examine the results in 2004, they presented finite
element simulation results which is considered the roughness on the wall. They think
roughness on the wall can influence the electrostatic forces and the like-charge

attraction.

1.4 Objectives and Organization of the Thesis
Based on previous reviews, the current objectives of the thesis are summarized as
follows:
1 To develop a pardled 3-D finite-element solution of the nonlinear
Poisson-Boltzmann equation.
2. To couple the parallel adaptive mesh refinement with this PB solver.
The organization of this thesis would be stated as follow: First is this
introduction, followed by the:numerical method. Next would be the Results and

discussions, and finally the Conclus onsand:Future work.



Chapter 2 The Numerical Method

This study uses a computer ssmulation code, which is developed by Kuo-Hsien
Hsu, MUST, NCTU. The simulation code is three-dimensional, finite-element,
nonlinear Poisson Boltzmann. General flowchart of the simulation is shown in Fig.

2.1.

2-1 The Poisson-Boltzmann Equation for the EDL Potential VY

Consider a liquid phase containing positive and negative ions in contact with a
planar negatively charged surface. An EDL field will be established. According to the
theory of electrostatics, the relationship between the electrical potentidd and the net

charge density per unit volumes p, | at lany- point in the solution is described by the

three-dimensional Poisson equation.

2 2 2
Oy v Oy __ P [2-1]

o oy’ ozt &,

P, isthe charge density, ¢ is the dimensionless dielectric constant of the solution,
and g, ispermittivity of vacuum. For any fluid consisting of two kinds of two kinds
of ions equal and opposite charge (z* and z), the number of ions of each typeis given
by the Boltzmann equation.

n~ =nyexp(zey | k,bT), n" =nyexp(—zey [ k,bT) [2-2]
n" and N are the concentrations of the positive and negative ions, ng is average
concentration of ions, exp(zey /k,bT) is the Boltzmann factor, k,, and T is the

absolute temperature. The Boltzmann distribution is applicable only when the system

Isin the thermodynamic equilibrium state.



Then the net charge density in aunit volume of the fluid is given by:
p=0n"—n)ze=-2nyzesinh(zey | k,T) [2-3]
Substituting EQ. [2-3] in Eg. [2-1], we can get a nonlinear second-order

three-dimensional Poisson-Boltzmann equation:

2 2 2
8y2/+8y2/+8y2/:2nozesinh zey [2-4]
ox® oyt 0Oz &8, k,T

Nondimensionalizing the above equation via
X
2

-y _ z _ zey
, :—'Z =—, = 2‘5
2T 2V k,T [2-3]

X =
We obtain adimensionless form of Eq. [2-4] that can be written as

o’w 0w ow .,
+ + =sinh 2-6
a)—CZ ayZ 622 (l//) [ ]

Where, k? = 2n,z°e? | ee,k, T is the Debye-Huckel parameter, and 1/x° is the

characteristic of the EDL.

2-2 Discretization Using Finite Element Method
The FEM is the computer-aid mathematical technique for obtaining approximate
numerical solution to the abstract of calculus that predicts the response of physical
system subjected to the external influences.
Such problems arise in many areas of engineering, science, and applied
mathematics. Applications to date have occurred principaly in the areas of solid
mechanics, heat transfer, fluid mechanics, and el ectromagnetism.

There are many salient features in FEM:



The domain is divided into smaller regions called elements. Adjacent elements
touch without overlapping, and there are no gaps between the elements. The
shapes of the elements are intentionally made as simple as possible.

In each element the governing equations, usually in differential or variation
(integral) form, are transformed into algebraic equation. The element equations
are algebraicaly identical for al elements of the same type, which usually need
to be derived for only one or two typical elements.

The resulting numbers are assembled (combined) into a much larger set of
algebraic equations called the system equations. Such huge systems of equations
can be solved economically because the matrix of coefficientsis “spares’.

Solved the matrix problem.

FEM seeks an approximate solutionU , an explicit expression for U, in terms of

known functions, which approximately satisfies-the governing equations and

boundary conditions. It obtains an approximate solution by using the classica

trial-solution procedure. Normally, it'isnet;passible to obtain strong solutions for the

problem at hand. Instead one usually decretive the otherwise continuous problem and

obtai

n so-called weak solutions; weak in the sense of approximate.

Now we star to derive the 3D Nonlinear Poisson solver formulation via FEM

method.

Consider Eq. [2-6]

o’y

o’y oy

ox?

5 + = = sinh(iy)

Stepl: Weuse w  to approximatey , then we set the trial solution:

l/';(e)

ziNfe)(x,y,z)*aj [2-7]

=1

Where x, ), z are the independent variables in the problems. The functions



N, (x,y,z) areknown functions called trial functions (basis).

The purpose is to determine specific numerical values for each of the parameters
a. We use the Galerkin method. For each parameter a; we require that a weighted
average of R (x, y, z; a) over the entire domain be zero. The weighting functions are

trial functions N(x,y,z) associated with each g;.

Step2: Galerkin residual method

§ O (%;‘f n a@;‘f " a;’fjdg = N©* sinh(p a2 [2-8]
The Galerkin residua method is a weighting residual method, which uses the trial
function as the weighting function. NV, is not only the weighting function, but also the
shape function.

Where the integral i} dQ smeansi;integrate over the volume of element. We use

tetrahedral element, which havefour degree of freedom (DOF).

The tetrahedral element’s shape function can desired as.
N© =i(a* +b*x+c*y+d*z) i=1~4
i 6V i i i i

And

X Vi 2k 1y, z, x, 1z, X Vi
af:xl v, z bj:—lyl z cj:xllzl d::—x, Vv,
xm yIn ZIn lyln ZIn xm 1Zm xm yIn
lx, v,z [2-9]
_ 1x, v 2

1x, vy, z

v

Step3: Integrated by part

Take Eq. [2-7] to EQ. [2-8] and integrated by part



7 (e) ~(e)
Z Z m NO |4 O[OV ya| O fov? N Yasdydz
ox 8x i oy\ oy i 82 Oz
(e) aN(e) (e) aN(E) ~(e) aN(E)
—HI ay/ + 2 o Y v
oy Oy 0z Oz

- j j j N© * sinh(y)dxdydz

Step4: Gauss divergence theorem

Use Gauss divergence theorem to Eq. [2-10].

~) Az At .
>Y V5 V5 OV e N ddy
: » Ox %)

oy /4

(e) 6]\7 e) ~(e) N ~(e) N ©
-Jif| % N A 7 i I (A 7o PV S
oy Oy oz Oz

=[] N’@ * sinh(y* )dxdydsz

Taketria function [2-7] into Eq. [2-11] then'we can get Eq. [2-12]

Zzﬁ oy 0z

aN(E) * a, aN(E) aN@ * aj ON@ aN(‘e) * a, ON®
_”] | — | s — (dxdydz
dy oy Oz Oz

_ j j j Nfe’ * Snh(y)dxdydz

ON“*a @ ON“ *a, | aN'%a, s .
] ! j+—= k *Nfe) - ndxdy

We let

Livt——— L)+
Ox oy 0z

T

(GNfe)*a.A ON©*q aNﬁQ)*ajng

And Eq. [2-12] can be rewrote as follows,

ON‘ oN© ) (ON') oN© ) (ON') oN®
z z J:U{( ]+{ : J+{ . Gzt ]J ajdxdydz

oy Oy
= —[[[ N sinh(y)dxdydz - {f Nz, dxdy

Then, take differential

10
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[2-11]

[2-12]

[2-13]

[2-14]



S 1 e e
;; J-.[J-36V2*(bibj+cicj +d,-dj)* a dxdydz

[2-15]

= —J- I I N sinh(y“)dxdydz — ﬁ Nz dxdy
And

[[[dxaydz=v [2-16]
Take [2-16] into [2-15]
Then

4 4

Y o (bb v e, +did) ) a,

— = 36V L tJ L J

- [2-17]
= —J- I I N sinh(y“)dxdydz — ﬁ; N7 dxdy
We let

K®© :i*(b*b*. v +d d) [2-18]

i 36/ i) i i

F = —sinh(y)[[[ N\ dxdydz - [ NOzdxdy [2-19]
Finally we can get the matrix form of the Poisson-Boltzmann Equation.

(KON f={F0}  ei1=n [2-20]

The matrix problem of the Galerkin method is not simple to take numerically. To
obtain an accurate solution it is often necessary to employ a fine mesh containing
many elements. The N x N matrix of Eq. [2-20] thus becomes very large. This
sparsity is utilized fully when implementing good computer codes for the finite
element method. The sparsity leads to a significant reduction in memory requirements
since only the non-zero matrix elements need to be stored together with an index of
where they are stored. Moreover, the sparsity implies a huge reduction in the number

of arithmetic operations needed to solve the problem. For a full matrix problem this

number is proportional to N°® for standard Gauss elimination, but by using

11



direct-banded matrix schemes, or iterative methods like conjugate gradient methods

or multi-grid methods, it can be reduced to becoming proportional to N? or even

N.

2-3 Force Calculations
From the potential distribution obtained by solving the Poisson-Boltzmann
equation, the electrostatic force on the spherical particles is calculated by integrating

the total stress tensor, defined as
1
T, = ATl +&[EE - EE -EI [2-21]

Where E =-Vy isthe eectric field vector; I represents the identity tensor, and
ATl isthe osmoatic pressure difference between'the electrolyte at the particle surface
and bulk solution, A[] can defined as

ATI = 2n,kT(coshy —1) [2-22]
Where n, isthe bulk ion number density of the electricity neutral electrolyte.

We took integral the stress tensor over the surface of a particle, defined as

F= j T, - ndS [2-23]
N

Here F'is the force acting on the spherical particle. We note here that the stress
tensor is calculated from the potential but the force on the sphere also includes a
contribution from the osmotic pressure generated by the electric field; however,
pressure variation due to the field at the sphere surface is normally canceled by
electrical effects so that we can assume the A[] term is zero. Where n is the unit
outward surface normal, and the subscript S represents integration over the closed

surface of the particle. This integration can be performed either on the sphere surface

12



or on the midplane for the case of two identical spherical particles.

2-4 Conjugate Gradient Method for Linear Algebra Equation
In the linear system Ax = b suppose the coefficient matrix 4 is symmetric and

positive definite. Solving Ax = b is equivaent to minimizing the quadratic
functionQ(x)zngAx—be. The conjugate gradient method is based on the idea

that the convergence to the solution could be accelerates if we minimize Q over just

1

the line that points down gradient. To determine x™ we minimize Q over

x° +span(p®, p*, p*,..p")
where the p* represent previous search directions. An added advantage to this
approach isthat, if we can select the p* to.be linearly independent, then the dimension
of the hyperplane will grow one dimension with each iteration of the conjugate
gradient method. This would imply :that (assuming infinite precision arithmetic) the
solution of the linear system Ax =5 ‘would'be obtained in no more than N steps,
where N is the number of unknowns in the system.

Let x° be an initial estimate to the solution of Ax =5. For our first search

direction we proceed down a Q-gradient and choose

xr=x%+ aopo [2-24]
Where
p0 =70 = —VQ(xO)= b— Ax [2-25]

From the discussion of the method of steepest descent, we have

0 .0 0o 0
reer roep

Op = vo= 0. 4,0 [2-26]
r-Ar-  p - Ap

To understand what follows in the description of the conjugate gradient method, it is

13



important to note that

Rather than try to establish the above orthogonality relation with a calculation,
use the following calculus argument. By definition, »'is the gradient of Q atx',
where x* is the conjugate gradient estimate to follow the initial guessx®. Also,
r® = p°is the search direction along the linex’ +a,p°. Calculus tells us that the
gradient of Q at x" must be orthogonal to the search direction.

Not as a proof of the last statement about calculus and orthogonality, but to
motivate the statement, consider the layers of an onion to be surfaces of Q = constant.
Imagine piercing the onion with a skewer. In general, the skewer will pass through
several outer layers of the onion, tangentially:touch one of the inner layers, and again
pass through the other layers and then -exit, The innermost layer that the skewer
touches tangentialy is given by.
vo(xt)=x* [2-27]
and the direction of the skewer is #° = p°.

The conjugate gradient method calls for defining successive approximates by
xt=x"+a,p [2-28]
pr=rt4pp! [2-29]
with the scheme for choosing «.and p;to be discussed next. The things to keep in

mind when choosinga,and p, are:

1. We want the span of the search directions to fill the space we are searching as the
number of iterations increases.
2. Searching down Q-gradients was basically a good idea. But, to guarantee linearly

independent successive search directions, we generaly need to choose conjugate

14



gradient search directions to be perturbations of steepest descent search directions.

We have aready how to define p°anda,, so x'and r*and r'=b- Ax" can
be considered known. To take the next step using the conjugate gradient method, we
must determine values for a,and p, so that we can calculate p'andx®. Then we

will see a pattern emerge.
In taking this next step in the conjugate gradient method we are seeking to

minimize Q over the plane,
x° + Span(p” , pl) [2-30]
this means that the residual »?will have to be orthogonal to both p°and p*. The
orthogonality condition p°-7* =0 will help us set the search direction p*.
plrt=p°[b- A(xl)] =p°t —alpo - Ap* [2-31]
which is zero provided
o,p’-Ap' =0 [2-32]
Definition:

Two vectorsu and v are said to be A-conjugate if u« - Au =0.
From the requirement that p° - »* = 0, it follows that the search direction p*.
Must be A- conjugate to the search direction p° . We can now set  f, as follows:
pr=r+op’
Implies
Ap* = Ar*t + B,Ap°
Now
0=p° dp'=p°- Ar' + B,p° - 4p°

Implies
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3 p°-Art rtArt

pO-Apo__pO-Apo

Bo =

Having decided to proceed from x'to x* aong the search direction defined

by p* = r* + B, p°, the same cal culus argument used to determine gives
rtopt
0 =7 1
p-Ap

So a step of the conjugate gradient method is complete.

2-5 Monotone Iterative Methods

The method of monotone iterations is a classical tool for the study of the
existence of the solution of nonlinear PDE of certain types. It is also useful for the
numerical solution of nonlinear types of problems approximated, for instance, by the
finite difference, finite element or 'boundary element method. It is a constructive
method that depends essentially on-only one parameter, called the monotone
parameter herein, which determinesthe convergence behavior of the iterative process.
Based on adaptive 1-irregular finite element meshes, we extend this classical method
to device smulation the Poisson Boltzmann equation [9]. Compared with the NI
method, the MI method requires no Jacobian matrix and does not encounter any
convergence problems and numerical difficulties. Furthermore, the M1 agorithm is
practical, easy in implementation, and inherently parallel for large-scade 3D
simulation.

Consider an example— Vu = ¢", after discretization using Finite Element Method.
We can get Eq. [2-33]

[A{U} ={F(U)} [2-33]

We set a parameter A, which define as follow:
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A =-F(U) [2-34]
then set the monotone iterative form, which show as
[A{U™ Y} + U AHU ™ ={FU")} + A HU"} [2-39]

where variable with subscript n represents one val ue obtained on previous iteration.

2-6 Parallel Implementation of the P-B Equation Solver

2-6.1 Introduction to Parallel Distributed Computing

A paralld computer, as defined by Almasi and Gottlieb [10], is a collection of
processing element that cooperate and communicate to solve large problems fast.
Parallel computers can be viewed as a collection of processors and memory units
which are connected by an interconnection, network. The purpose of parallel
computing is to get work done i less time and.al so.to solve problems which can not
fit in asingle computers memory.

There are two main architectural “paradigms associated with parallel computing:
Distributed memory and Shared memory [11]. In Distributed Memory architecture
parallel computers, memory is physicaly distributed among processors; each local
memory is directly accessible only by its processor. Synchronization is achieved by
moving data between processors by a fast interconnection network, see Fig2.2
In Shared memory architecture parallel computer the same memory is accessible by
multiple processors. All processors associated with the program access the same
storage as shown in Fig2.3.

In our laboratory, we had setup PC Clusters which are use distributed memory
system. The advantage of this kind of architecture is that it is scalable to a large
number of commodity processors. A major concern with this scheme is data

decomposition; the data being operated should be divided equally to balance the load,
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and also should be done in a efficient manner in order to minimize communication.
The scalability depends on the type of interconnection between the processors.

2-6.2 Parallel Implementation

In order to parallelize the Poisson-Boltzmann solver, we use Message Passing
Interface (MPI) to be the basic toll. MPI is alibrary specification for message-passing,
proposed as a standard by broadly based committee of vendors, implementers, and
users. MPI library of a set of standard subroutine calls which allow parallel programs
to be written in distributed memory system. We use Metis to distribute the cells and
nodes. Running the solver to test and verity on PC Cluster belongs to our MuST
laboratory. In distributed parallél finite element analysis, the domain considered is
first decomposed into a number of subdomains. Then in general, one processor is
assigned for each subdomain, though other variations are also possible. Computations
are then performed on each processor on the local-subdomain and communication
takes place with the other processorswhenever-needed. The domain might be divided
into a set of overlapping subdomains in.which case Overlapping Schwartz methods
are used for the solution of system. If the domain is partition into a set of
non-overlapping subdomains then the methods used are called iterative substructuring
methods. The two basic types of non-overlapping domain decomposition methods
used in the finite element methods are the subdomain-by-subdomain and Schur
complement method [11]. The first approach is based on multi-element group
partitioning of the entire domain. The global stiffness matrix is stored as a partitioned
matrix and the dominant matrix-vector operations of the stiffness matrix and the
precondition solutions in the iterative agorithm are peformed on the
subdomain-by-subdomain basis. In the second approach the iterative algorithm is

applied to the interface problem after first eliminating the internal degrees of freedom.
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In our paralel system, we use the non-overlapping subdomains.

Fig 2.4 illustrates the flow chart of parallel Poisson-Boltzmann solver (PPB).

Detail is described step by step in the followings.

1

2.

0.

Setup initial grids and input data for every processor.

Initialize MPI and synchronize all processors to prepare for paralé
computation.

Compute the coefficients of shape functions.

Setup initial and boundary conditions

Compute each processor’s coefficient matrix and communications among
Processor.

Compute each processor’s loading matrix and communications among
Processor.

Solve each processor’ simatrix and communi€ations among processors

To determine results of- potential-converge or not, if converge go to the next
step, otherwise update potential- and return to step 5.

After gathers all potential data, calculate the electric field.

10. Host gathers al data and output it.

2-7 Parallel Adaptive Mesh Refinement

In this section, the parallel mesh refinement module would be introduced and the

algorithm would be outlined. And in order to understand easily, two-dimensional

mesh would be used to explain additionally. Finally the parallel Poisson-Boltzmann

solver would couple with paralel mesh refinement module to test and verify. The

detail of paralel refinement can refer to[12].

2-7.1 The Basic Algorithm of Parallel Adaptive Mesh Refinement
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In the adaptive mesh refinement module, the data to record new added nodes is
based on cell. In other words, every cell would only know new added nodes that
belong to it. The number of added nodes is fixed in each process. However, before to
divide cells, the number of added nodes must be unique in al processors.

In this module, it needs a neighbor identifying arrays. This array defines the
interfacial cell for each face. It would record the global cell number of interfacial cells
for each face of the cell.

At each mesh refinement step, individual edges are marked for refinement, or no
change, based on an error indicator calculated from the solution, for example, the
electric field. These cells which need to refine would add new nodes on each edge.
They are called isotropic cells. For two-dimensional mesh, a parent cell [13] is
divided to form four child cells. For three-dimensional mesh and tetrahedral cell, the
parent cell is divided to form eight.child cells,-as show in Fig2.5.

When isotropic cells add nodes on-their-edges, the cells neighbor them would
appear one to three handing nodes‘at the same time. The cells which have hanging
nodes but not belong to isotropic cells are called anisotropic cells. In order to remove
hanging nodes in anisotropic cells, it has some procedures to do. Usng
two-dimensional mesh as an example is shown in Fig2.6. \WWhen hanging nodes appear
in a triangular cell, the cell must be divided into different way. However, for
three-dimensional mesh, the division is more complex. The division would consider
the number and position of the hanging nodes, to decide whether to add new nodes to
obey the refinement rules. There are three results. One is to divide into eight child
cells. Another is to divide into four child cells. The other is to divide into two child
cells. The detail refinement rules are be show in Fig2.7.

2-7.2 Cell Quality Controls
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A problem associated with repeated adaptive mesh refinement (AMR)

operations.
Then, most mesh smoothing schemes tend to change the structure of a given mesh to
achieve the “smoothing effect” (a better aspect ratio) by rearranging nodes in the
mesh. The change made by a smoothing scheme, however, could modify the desired
distribution of element density produced by AMR procedure, and the cost of
performing a global mesh smoothing could be high. Alternatively, it is possible to
prevent, or slow down, the degradation of cell quality during a repeated adaptive
refinement process. The cell quality control scheme we have applied classifies
element based on how they will be refined. This allows us to avoid creating elements
with poor aspect ratios during the refinement. After identifying those elements, we
can refine them with a better refinement by contrast.

Detail rules are shown in Fig2.8. For-example, Fig2.9 shows a typical cell
(1-2-3-4). Because it is affecting by other-cell-it has hanging nodes (8, 9, A). In order
to handle hanging nodes, we connect nedes (8,9, A) to node 4. But the aspect ratios
of typica cells (1-4-8-A, 5-4-8-9 and 7-4-9-A) will be worse. However, if we add
three nodes (B, C and D), and connect them with other nodes. Those eight child
typica cells (4-B-C-D, 1-8-A-B, 5-8-9-D, 7-9-A-C, 8-9-A-B, 8-9-B-D, 9-A-B-C and
9-B-C-D) would have better aspect ratios.

However in some cases, previous developed cell-quality-control would not be
effective that is shown in Fig2.10. For example, as showed in Fig2.11. At this
situation, after the last refinement there are four child cells. But at this refinement,
there are three hanging nodes appear on edges (8, B, D). While cells are divided, it
will be divided to four child cells. And these four child cells will not get worse aspect

ratios. And, it would get better aspect ratios. So cell-quality-control will alow this
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division and not to affect it.

If the boundaries of the computational domain are not straight, it is not sufficient
to place the new node in the midway of the edge of the face of the parent cell. If thisis
done, it would dua to a rough piecewise representation of the origina geometry
results. What must be done is to move the new node location onto the real boundary
contour surface. In the current implementation, it is assumed that the boundaries can
be represented in parametric format. Specific neighbor identifiers are assigned to
these non-straight boundary cells to distinguish from straight boundary cells.
Whenever the boundary cells, which require mesh refinement, are identified as a
non-straight boundary cell, the corresponding parametric function representing the
surface contour are called in for mesh refinement to locate the correct node positions

along the parametric surface.

2-7.3 Procedures of Parallel M esh Refinement
Fig2.12 illustrates the flow chart of parallel” adaptive mesh refinement (PAMR).
Details are described step in the followings.
1. Setupinitia gridsand input data.
2. Initiaize MPI and synchronize al processors to prepare for parallel
computation.
3. Read grid and relative cell data, and distribute them to every processor at
the sametime.
4. Find and record the cells which need to be refined, based on the refinement
criterion calculated from the other module.
5. If thereisno cel required to be required, stop the module. Otherwise, go to

next step.
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6. Add new nodes to cells based on the module I., which is described in detail
later. In this step, communications among processors are required.

7. Renumber all new added nodes in this step to “unify” the node numberings
for all processors. Note that the node numberings for all original nodes are
kept the same as those before refinement. In this step, communications
among processors are required.

8. Update connectivity-related datato new child and old parent cells.

9. Build up new neighbor identifier array. Communication among processors
isrequired in this step.

10. Decide if it reaches the preset maximum number of refinement. If it does,
then go to next step, otherwise return to step 4.

11. Synchronize all processors:

12. Host gathers all data and.output the data.at the same time.

In addition, all modules (I-1V inFig2:12)-in the core of the PAMR are explained
in detail asfollows.
Module I. Add nodes on cell edges (Fig2.13):

I-1. Add new nodes on all edges of “isotropic” cells that require refinement.

These cells are called “isotropic” cells since it is refined from one cell to eight

smaller cells.

[-2. Add new nodes to “anisotropic” cells, which may require further treatment
in the following steps, if hanging nodes exits in these cells... Note that
these cells are caled “anisotropic” since they are not those cells
originally require “isotropic” mesh refinement.

[-3. Communicate the hanging-node data to corresponding neighboring

processors if the hanging nodes are located at the IPB (Interface
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Processor Boundary). If hanging-node data are received from other
processors in this stage, then go back to Step 1-2 for updating the node
data. If thereis no hanging-node data received at this stage, then move
on to the next step.l-4. Remove hanging nodes based on refinement rules,
if need to add new nodes go to I-2. If al cells obey the rules without to
affect them, it mean all new nodes are be added.

I-4 . Remove hanging nodes based on Hanging-node Removal rules. Go to
Step 1-2 to add new nodes if some more nodes addition is required. If
there is no more node addition required, then ends this module
execution.

Module I1. Renumber added nodes:

[1-1. Add up the number of‘the new added.nodes in each processor, excluding
those on the IPB.

[1-2. Communicate this numberto-all-precessors. These are used to add up the
total number of added nodes.intheinterior of all processors.

I1-3. Renumber those added nodes in the interior of the processor according to
results from Step-11-2.

[1-4. Communicate data of added nodes on IPBs among all processors.

[1-5. Renumber the added nodes on IPBs on all processors.

Module III. Update connectivity data:

Form all new cells and define the new connectivity datafor al cells.
Module IV. Build neighbor identifier array:

IV-1. Reset the neighbor identifier array.

IV-2. Rebuild the neighbor identifier array for all the cells based on the

new connectivity data. Note that those nbr information on faces of
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the cells on the IPBs are not rebuilt and require further treatment in
the next step.

IV-3. Record the neighbor identifier arrays that are not built in Step-1V-2,
which the neighbor of the interested cell locates in the neighboring
rocessor.

IV-4. Broadcast all the recorded datain Step-1V-3 to al processors.

IV-5. Build the nbr information on the IPBs, considering the overall

connectivity data structure.

2-8 Coupling Procedures of Parallel P-B Equation Solver with PAMR

2-8.1 Refinement Parameter and Criteria

All mesh need some means te detect the requirement of local mesh refinement to
better capture the variations EDL  fields and hence to. obtain more accurate numerical
solutions. This aso applies to parallel-Poisson=Boltzmann solver. It is important for
the refinement parameters to detect @ variety of EDL. In literature, the electric field
usually to be adopted as the refinement parameter. The electric field is the potential
gradient. We use the electric field as the refinement parameter in parallel
Poisson-Boltzmann solver.

To use the electric field value as arefinement parameter, alocal electric field can
be defined as

E=-V¥ [2-36]

Where V¥ is the local cell potential. When the mesh refinement module is
initiated, local cell electric field value will be read in, and take compare with other
cells around local cell. If the variation of electric field value between local cell and

surroundings cell is more then preset value. We will give a symbol to refine both local
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cell and surroundings cell. If not, we do not refine these cells.

2-8.2 Parallel Poisson-Boltzmann Solver with Mesh Refinement

In Fig2.14, it shows couple PPB-PAMR method.

In summary, the following steps describe the mesh refinement:

1.

2.

Setup initial grids and input data.

Process PPB computation to get initial results.

Compute the refinement parametersin each cell.

Refine al the cells which are need to.

Create and update the grids data and input data.

Using the new grid data and input data to run PPB, to get new results.
Return to (4) if the accumulated adaptation levels are less than preset
maximum value.

If the accumulated refinement-levels.are greater than the preset value or no
mesh refinement is required. Stop. the refinement mesh procedure.

Using the finial grids and input data to run PPB, and finish the all

procedure.
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Chapter 3 Results and Discussion

3-1 Code Verifications

To ensure the accuracy of the EDL potential distribution, the numerical results
are also compared along with the anaytical results. For the small electrostatic
potential, Eq. [2-6] can be approximated by the first terms in a Taylor series. In the
literature, this is call the Debye-Huckel linear approximation. This approximation is

valid only for small values of electrostatic potential . In this section, we will

compare our numerical results with the Debye-Huckel approximation and Tuinier’s[7]
approximate solution.

3.1-1 Potential Around a Sphere

Fig 3.1 shows the numerical model for the sphere, the dimensionless electrostatic
potential of the sphere surface is chosen:to. be constant potential. The Neumann
boundary conditions are implied on the ether boundaries of the domain. And in this
case, the normalized radius « ischosen to be 5.

The Debye-Huckel linear approximation for sphere can defined as

¥, (x)= ‘PO( a

a+x

jexp(— x) [3-1]

Where the sub “sp” refersto sphere, and ¢ isnormalized radius.

The approximate solution which proposed by Tuinier [7] is:

‘Psp,l(x){ 2a jlr{lﬂoexp(—x)j 3.2]

a+x 11, exp(—x)

Where ¢, isdefined as
= tanh(%j [3-3]

There are two kinds of different't, is 1.0 and 5.0. In Fig 3.2 we can see three
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kind of different results, are nearly all the same at small ¥, =1. Cleary, our PB solver
has certain accuracy. In Fig 3.3 we apply ¥, =5at sphere surface. We can observe

form the figures; there is a very steep decrease in the numerica results, while the
Debye-Huckel approximation predicts a more gradual decay of the potential. And we
also can discover Tuinier’s approximate solution dightly under predicts the numerical
results.
In Fig 3.4, we discuss the convergence situation between different initial guess.
We use Debye-Huckel and Tuinier’s approximation to be initial guess, and
compared with zero. Cleary, using Tuinier’'s approximation to be initia guess has a
good convergence situation; the Monotone sequence converges within two hundred

iterations.

3.1-2 Potential Around a Cylinder

For cylindrical geometry, ‘we do. the-same thing with sphere. Fig 3.5 is the
numerical model for the cylinder. We aso chose cylinder surface to allow Dirichlet
boundary, the other surface is Neumann boundary conditions.

The Debye-Huckel linear approximation for cylindrical can defined as

Ko(x+a)

Y, (x) =Y, K, (a)

[3-4]

Where the sub “cy” refers to cylinder and K, is the zeroth-order modified

Bessdl function of the second kind.

And the approximate solution for cylinder which proposed by Tuinier [7] is:

3 2K (x+a) N 1+, exp(—x) ]
oale)= K, (a)exp(- x)I (1— 1, exp(— x)j [3-5]

In Fig 3.6 and 3.7 we can discover the same situation which is happened to
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sphere. Debye-Huckel approximation also has wrong potential distribution at largeV .

3-2 Simulation of Two Interacting Identical Particles Coupled with PAMR
The problem deals with two identical colloidal particles immersed in electricity
neutral electrolyte. It was studied in several works [2, 3, 5, and 6] and can server as a
test. The numerical model is shown in Fig 3.8 We let segment AB to be half the
separation distance which is call 7, surface CD and DE are assumed the infinite of
the electrolyte, surface BC represents a midplane for the problems with two particles.
In this case, the force of interaction of two particles of the radiusa =5and the

Separation distances =0.5. The constant potential ¥, on the surfaces of both

particles is equal to 2.0. The Neumann boundary conditions are implied on the other
boundary conditions of the numerical model-

The force of the interaction can be calculated by Eq. [2-23]. Here we will take
integration over the surfaces of the particle.

In the Table 3-1 we can see the resultsin every refinement step; we can see the
force at step 4 and step5 are amost the same. We speculate the mesh has become
optimal at step 5. Fig 3.9 to Fig 3.14 isthe mesh distribution for every refinement step,
and Fig 3.15 isthe potential distribution at final step.

It is ensured that the results shown in this article are independent of finite
element mesh. The results obtained from different steps of the parallel adaptive mesh
refinement are show in Table 3-1. From this table, it is clear that as we refine the
mesh, the scaled of the force of the interaction obtained from the numerical solution
of the Poisson-Boltzmann equation convergence toward afixed value. After compares
with literature [6], we have amost the same results, but still have inaccuracy. The

previoudy literature’'s work is shown in Table 3-2; we can see the force of the
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interaction at the final step is 48.840. After compare with our result, we have 0.4
inaccuracy. At small separation distance2=0.5 the force of the interaction is

repulsion.

3-3 Two Identical Particles in a Cylindrical Pore

In this section, we will computer experiments with a geometrically confined pair
of spheres concern the phenomenon of long-range electrostatic attraction between
particles of like change [4]. The long-range electrostatic interaction of two colloida
particles confined in acylindrical pore was studied in the present paper [3], we use the
same values of parameters and geometry, such as the 1:1 electrolyte, the potential on

surfaces of the sphere particles'W, =3.0, the potential on the cylindrical pore
surface'¥', = 5.0, the radius of the particlesa =1.185, the sphere radius to pore radius

ratio 0.13. The numerical model is shown in Fig 3.8;.1n this case we let surface CD to
be the cylindrical pore surface.
The results of the calculations are shown in Table.3-3. Positive values for the

force F, mean repulsion, negative mean attraction. We calculate four different

separation distances, 2 =0.5, 1, 3.5, 6, 8, respectively.

Fig 3.16 and Fig 3.17 shows the calculated potential distribution for the sphere
confined in a pore at separation distances s~ =0.5and/ = 6. Fig 3.18 and 3.19 shows
the potential along the midplane BC at 2 = 6. We can see the potential along this plane
Is amost decreasing at all distance, but after Z=3.4 the potential become increasing.
After compares with literature, we aso have amost the same results, but still have 1%

inaccuracy.
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Chapter 4 Future Work

4-1 Summary

In the chapter three, we deal with the two cases, one is two free identica
particles, and other is two identica particles in a cylindrical pore. In order to make
sure code validity, we use the same parameter in previously literature. All of the
previously works are assumes the numerica model is symmetry and reduce to
two-dimensional problem. But the calculation of the interaction between two spheres
closed to a planar wall [4] requires a full three-dimensional problem. Assume the
problem to two-dimensional may have some uncertain. We develop this
three-dimensional Poisson-Boltzmann equation just can to deal with this troublesome
problem.

In the propose study, we can obtain the. parallel Poisson-Boltzmann equation
coupled with PAMR is very useful and convenience. It can be more closed to real
situation at colloidal systems.

4-2 Recommendations for Future Work

In this propose study, we meet two difficulties, one is the convergence rate too
slow, the other is refinement level can not over than five. We can use fineinitial guess
to overcome the convergence rate problem, but the cost of the refinement computation,
we can not overcome directly. But there still have some way to overcome this
situation, we can use the high order mesh and coupled different mesh such as
hexahedral cell and pyramid. If we can use high order mesh to capture the EDL
potential distribution, we can reduce the inaccuracy without large computationally

cost.
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Table

Table3-1: Steps of the adaptive process:

Refinement  Number of nodes Number of elements  Force of
level interaction(Fs)
0 924 3821 20.9924
1 3045 14305 34.6570
2 18253 96638 40.4853
3 132477 747048 44.0112
4 187732 1049734 48.0722
5 213224 1190741 48.4066

PS: These cases are runed by six parallel processors.
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Table3-2: Steps of the adaptive process for previoudly literature [6]

Refinement  Number of elements Force of interaction(Fs)
level

0 946 36.518
1 1992 43.716
2 4466 46.596
3 7642 47.597
4 11314 48.472
5 13525 48.630
6 15187 48.862
7 15477 48.826
8 15541 48.840
9 15555 48.843
10 15578 48.841
11 15588 48.840
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Table3-3: The interaction forces of two particles in acylinder pore at different

separation distance.
Separation Distance(h) 0.5 1 35 6 8
Force of interaction(Fs) 26 13 -0.7 -4.7 0.9

PS. These cases are runed by six parallel processors.
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Figure
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Fig 1.1 Theillustration of like-charge attractions phenomenon
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Fig 2.1 Simplified flow chart of the three-dimensional nonlinear Poisson-Boltzmann
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Fig 2.3 Shared memory architecture
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Fig 2.5 Isotropic mesh refinement of tetrahedral mesh (T: Tetrahedron)
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no quality control quality control

Fig 2.8 Schematic diagram of the proposed cell quality control
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Fig2.9 Schematic di agrah"iT Ft)f','.t)"/';')i'(:al' cell quality control
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Fig 2.10 Schematic diagram of simple cell quality control
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Fig 2.11 A case that the proposed cell-quality-control would not affect to it
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Fig 3.1 Geometry of the potential around a sphere case
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Fig 3.5 Geometry of the potential around a cylinder case
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Fig 3.18 Potential along.the midplane between two spheres
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