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搭配調適網格加密功能之平行化 Poisson-Boltzmann之方程式 

之有限元素數值分析研究 
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國立交通大學機械工程學系 

 

摘要 

 本研究完成平行化三維Poisson-Boltzmann 之程式建立，主要是利用有限元

素法搭配Monotone iteration 處理非線性項的部份，搭配本實驗室發展的平行化

調適網格模組，將需要加密的區域，做適當的加密。在程式的驗證上，主要是以

模擬圓球體，圓柱體的電雙層電位分佈，在和解析解與文獻中發表的近似解做比

較。,於邊界電位等於一的情形下，解析解，模擬解與近似解，三者的結果一致，

由此可驗證程式的正確性。驗證完程式的正確性後，再將本程式與平行化調適網

格做搭配後模擬兩顆帶電離子於無限遠空間內的電雙層電位分佈，將結果與歷年

的文獻做比較，經歷五個階段的網格加密後，計算電位，電場值與作用力後，比

較文獻上的資料，大約有 0.06%的誤差。於後，模擬兩帶電離子於圓柱型電洞內

的電雙層電位分佈，計算並比較作用力值後，與文獻上的資料大約有 1%上的誤

差，這些誤差推測是網格的緊密度不足所導致，但因電腦資源的問題，網格也無
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法再繼續加密下去。在文獻中，都是以二階以上的有限元素分析電雙層電位，在

未來如能提高本程式的有限元素階數，相信可以獲得更有效率，更精準的分析。 

此程式可用來解析電雙層內的電位分布，也可解析膠體間的交互作用力的分

析。對於電滲流分析及薄膜效率分析上，都有不錯的應用。 
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Abstract 

 A parallel Poisson Boltzmann equation solver using finite element method 

with adaptive mesh refinement is proposed. A Monotone iterative method was used to 

solve the nonlinear equation arising from the finite element discretization procedure. 

A 3D Poisson-Boltzmann equation was used to model the electric double layer field. 

And the solver will be using to simulate this phenomenon. First, in order to verify 

code accuracy we model the EDL potential distribution at sphere and cylinder, and 

compared with analytical solution and approximant solution. These results are all the 

same in small zeta potential. After verification, we couple with parallel adaptive mesh 

refinement to compute some simple cases such as two identical charged spherical 

particles and computer the interaction force. After five step refinement levels, we 

calculate the potential, electric field and interaction force, and compared with 

previously literature. It has 0.06% inaccuracy between our results and previously 
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work. After this case, we apply our code to simulate the situation of two identical 

particles in a cylindrical pore, and compared with previously works. It also has 1% 

inaccuracy. The mesh distribution may influence the result, but we can not refine 

mesh after five level according to computing resources. In the previously works, most 

of them are use high order finite element method. If we can use high level mesh in 

future, we can have more accuracy result.  
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Chapter 1 Introduction 

1-1 Motivation 

The study of fluid flow in microchannels is of significant interest to engineers 

because of microfluid have wide industrial applications. For examples, miniaturize 

flow injection analysis, micro-reactors for the analysis of biological cells, heat sinks 

for the analysis of biological cells, and heat sinks for cooling microchips and laser 

diode arrays, etc. 

At the small scales channels, the electrical double layer (EDL) phenomena 

significantly makes an influence on the fluid behaviors and the electrical double layer 

is also the important interfacial effect. 

The EDL field in such a microchannels is governed by the Nonlinear 

Poisson-Boltzmann (PB) equation. 

The Nonlinear Poisson-Boltzmann equation is also used for the description of the 

distribution of electrostatic potential in colloidal dispersions. Knowing the 

electrostatic potential, one can calculate other quantities such as the force of 

particle-particle interaction. Features of particle interaction are great importance for 

the stability and properties of colloidal dispersions. Numerical investigation of models 

based on the PB equation can provide important information on effective particle 

interaction in colloidal systems. 

In previous documents and theses, there are not so many reports discussed the 

three-dimensional computation model. The two-dimensional computation model was 

most commonly mentioned. However, when the geometries is getting complex, the 

two-dimensional computation model is gradually losing its accuracy.  

Therefore, we have developed a numerical scheme to simulate Electrical double 

layer potential distribution by solving 3D Nonlinear Poisson-Boltzmann equation.  
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1-2 Background 

1-2.1 The Like-charge Attractions Phenomenon 

Colloidal sphere provide a simple model system for understanding the interactions 

of the charge particles in a salt solution. Hence, it came as a great surprise when it was 

observed that two like-charge spheres can attract each other when the spheres are 

confined by walls. Since both the charge densities and sizes of the spheres are in the 

range of large proteins, it would be expected that a charge in sign of this interaction 

would have important implications for biological systems.  

The attractive interaction between two charge walls can be understood with a 

simple picture (Fig 1.1). When the spheres are sufficiently close to the wall, they are 

electrostatically repelled from it. The net force on each sphere thus includes both their 

mutual electrostatic repulsion and their repulsion from the wall. How the spheres 

respond depends on their hydrodynamic mobility: when the spheres are close together, 

their mutual repulsion overwhelms any hydrodynamic coupling, and the spheres will 

separate as hydrodynamic coupling; the spheres will separate as expected for 

like-charge bodies. However, when they are beyond some critical separation, the 

hydrodynamic coupling due to the wall force overcomes the electrostatic repulsion, so 

that the relative distance between the spheres decreases as they move away from the 

wall. 

 

1-2.2 Electric double layer 

Electrokinetic phenomena are of considerable importance in many fields of 

science and engineering. In particular, they exert a strong influence on the flow 

behavior of a fluid in microchannels and capillaries. Most solid surfaces bear 

electrostatic charges. When a charge surface is in contact with an electrolyte, the 
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electrostatic charges on the solid surface will influence the distribution of nearby ions 

in the electrolyte solution. Ions of opposite of charges to that of the surface are 

attracted towards the surface, while ions of like charges are repelled from the surface; 

thus, an electric field is established. The charges on the solid surface and the 

balancing charge in the liquid are called the “electric double layer” (EDL). The EDL 

potential distribution is show in Fig 1.2. The sign and magnitude of the EDL field 

depend on the nature of the surface and the liquid.  

The distribution of EDL can be class with two regions. One is compact or stern 

layer the other is diffusion layer. Guoy and Chapmal modeled the region near the 

surface as a diffuse double layer, where they linked the nonuniform ion distribution to 

the competing electrical and thermal diffusion forces [1]. Stern later presented the 

basis for the current model, in which the Stern plane splits the EDL into an inner, 

compact layer and an outer, diffuse layer. In the inner layer or the Stern layer, the 

geometry of the ions and molecules strongly influences the charge and potential 

distribution, with the Stern plane located near the surface, at roughly the radius of a 

hydrated ion. The inner layer between the surface and the Stern plane is considered to 

be immobile; if the ions are within the Stern plane, thermal diffusion will not be 

strong enough to overcome electrostatic or Van der Waals forces and they will attach 

to the surface, becoming specifically adsorbed [1]. In the outer diffuse layer, the ions 

are far enough away from the surface that they are mobile. Electrokinetic transport 

phenomena such as electroosmosis can be understood in terms of the surface potential 

at the surface of shear, because these phenomena are only directly related to the 

mobile part of the EDL [1].  

Within the diffuse layer, because of the EDL, the net charge density eρ  is not 

zero. If an electric field is applied along the length of the channel, a body force is 
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exerted on the ions in the diffuse layer of the EDL. The ions will move under the 

influence of the applied electrical field, pulling the liquid with them and resulting in 

electroosmotic flow. The fluid movement is carried through to the rest of the fluid in 

the channel by viscous forces. This electrokinetic process is called electroomosis. 

 

1-3 Literature Survey 

The EDL field is described by the Poisson-Boltzmann equation, which is a 

three-dimensional, nonlinear, second-order partial differential equation. The 

hyperbolic sine term makes the second-order different equation exponentially 

nonlinear; therefore. A general analytical solution is not possible. 

The PB equation can model many phenomenon such as the like-charge 

interaction, electrokinetic flow and micro-fluidic actuation etc. There are many studies 

in the literature dealing with the solution of Poisson-Boltzmann equation.  

Bowen and Sharif [2] they presented a 2D FE solution combined with adaptive 

mesh refinement. They used the Debye-Huckel solution to initial guess, and the 

Newton sequence was used to solve the nonlinear hyperbolic sine term. They used 

nine-node quadrilateral elements. Bowen and Sharif also presented some results in 

1998 journal of Nature [3]. They said their solver can model the like-charge 

attractions phenomenon which is presented in 1997 journal of Nature by Larsen and 

Grier [4]. Dyshlovenko [5] also presented a 2D FE solution combined with adaptive 

mesh refinement but they used six-node triangular elements. In 2002, Dyshlovenko 

publish their result in CPC [6], but Dyshlovenko is different from Bowen and Sharif, 

Dyshlovenko do not find the like-charge attractions phenomenon in his results. 

Tuinier [7] proposed the approximate solutions to the PB equation in spherical and 

cylindrical. The approximate solutions provided me a good initial guess for my PB 



 5

solver. Das and Bhattacharjee [8] examine the results in 2004, they presented finite 

element simulation results which is considered the roughness on the wall. They think 

roughness on the wall can influence the electrostatic forces and the like-charge 

attraction.  

 

1.4 Objectives and Organization of the Thesis 

Based on previous reviews, the current objectives of the thesis are summarized as 

follows: 

1. To develop a parallel 3-D finite-element solution of the nonlinear 

Poisson-Boltzmann equation. 

2. To couple the parallel adaptive mesh refinement with this PB solver. 

The organization of this thesis would be stated as follow: First is this 

introduction, followed by the numerical method. Next would be the Results and 

discussions, and finally the Conclusions and Future work. 
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Chapter 2 The Numerical Method 

 This study uses a computer simulation code, which is developed by Kuo-Hsien 

Hsu, MUST, NCTU. The simulation code is three-dimensional, finite-element, 

nonlinear Poisson Boltzmann. General flowchart of the simulation is shown in Fig. 

2.1. 

 

2-1 The Poisson-Boltzmann Equation for the EDL Potential Ψ 

 Consider a liquid phase containing positive and negative ions in contact with a 

planar negatively charged surface. An EDL field will be established. According to the 

theory of electrostatics, the relationship between the electrical potentialΨ and the net 

charge density per unit volume eρ  at any point in the solution is described by the 

three-dimensional Poisson equation. 

 
0
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2

2

2
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∂
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∂
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∂
∂                                        [2-1] 

eρ  is the charge density, ε  is the dimensionless dielectric constant of the solution, 

and oε  is permittivity of vacuum. For any fluid consisting of two kinds of two kinds 

of ions equal and opposite charge (z+ and z-), the number of ions of each type is given 

by the Boltzmann equation. 

)/exp(   ),/exp( 00 bTkzennbTkzenn bb ψψ −== +−                        [2-2] 

n+ and n- are the concentrations of the positive and negative ions, n0 is average 

concentration of ions, )/exp( bTkze bψ  is the Boltzmann factor, kb, and T is the 

absolute temperature. The Boltzmann distribution is applicable only when the system 

is in the thermodynamic equilibrium state. 
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Then the net charge density in a unit volume of the fluid is given by: 

)/sinh(2)( 0 Tkzezenzenn bψρ −=−= −+                                [2-3] 

Substituting Eq. [2-3] in Eq. [2-1], we can get a nonlinear second-order 

three-dimensional Poisson-Boltzmann equation: 
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Nondimensionalizing the above equation via 
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We obtain a dimensionless form of Eq. [2-4] that can be written as  
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Where, Tkezn b0
22

0
2 /2 εεκ =  is the Debye-Huckel parameter, and 2/1 κ  is the 

characteristic of the EDL. 

 

2-2 Discretization Using Finite Element Method 

 The FEM is the computer-aid mathematical technique for obtaining approximate 

numerical solution to the abstract of calculus that predicts the response of physical 

system subjected to the external influences. 

Such problems arise in many areas of engineering, science, and applied 

mathematics. Applications to date have occurred principally in the areas of solid 

mechanics, heat transfer, fluid mechanics, and electromagnetism.  

 There are many salient features in FEM: 
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1. The domain is divided into smaller regions called elements. Adjacent elements 

touch without overlapping, and there are no gaps between the elements. The 

shapes of the elements are intentionally made as simple as possible. 

2. In each element the governing equations, usually in differential or variation 

(integral) form, are transformed into algebraic equation. The element equations 

are algebraically identical for all elements of the same type, which usually need 

to be derived for only one or two typical elements. 

3. The resulting numbers are assembled (combined) into a much larger set of 

algebraic equations called the system equations. Such huge systems of equations 

can be solved economically because the matrix of coefficients is “spares”. 

4. Solved the matrix problem. 

FEM seeks an approximate solutionU~ , an explicit expression for U, in terms of 

known functions, which approximately satisfies the governing equations and 

boundary conditions. It obtains an approximate solution by using the classical 

trial-solution procedure. Normally, it is not possible to obtain strong solutions for the 

problem at hand. Instead one usually decretive the otherwise continuous problem and 

obtain so-called weak solutions; weak in the sense of approximate. 

Now we star to derive the 3D Nonlinear Poisson solver formulation via FEM 

method. 

Consider Eq. [2-6]  

( )ψψψψ sinh2
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Step1: We use ψ~  to approximateψ , then we set the trial solution: 

∑
=

=
4

1

)()( *),,(~
j

j
ee azyxN

j
ψ                                            [2-7] 

 Where x, y, z are the independent variables in the problems. The functions 
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( )zyxN j ,,  are known functions called trial functions (basis). 

The purpose is to determine specific numerical values for each of the parameters 

a. We use the Galerkin method. For each parameter aj we require that a weighted 

average of R (x, y, z; a) over the entire domain be zero. The weighting functions are 

trial functions ( )zyxN ,,  associated with each aj. 

Step2: Galerkin residual method 
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The Galerkin residual method is a weighting residual method, which uses the trial 

function as the weighting function. iN  is not only the weighting function, but also the 

shape function. 

Where the integral Ω∫Ω d  means integrate over the volume of element. We use 

tetrahedral element, which have four degree of freedom (DOF).  

The tetrahedral element’s shape function can desired as: 
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Step3: Integrated by part 

Take Eq. [2-7] to Eq. [2-8] and integrated by part 
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Step4: Gauss divergence theorem 

Use Gauss divergence theorem to Eq. [2-10].  
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Take trial function [2-7] into Eq. [2-11] then we can get Eq. [2-12] 
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We let  
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And Eq. [2-12] can be rewrote as follows, 
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Then, take differential 
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And 

Vdxdydz =∫∫∫                                                    [2-16] 

Take [2-16] into [2-15] 
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We let 
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Finally we can get the matrix form of the Poisson-Boltzmann Equation. 

{ } { } neFaK e
j

e
j

e
ij ~1:       ][ )()()( =                                        [2-20] 

The matrix problem of the Galerkin method is not simple to take numerically. To 

obtain an accurate solution it is often necessary to employ a fine mesh containing 

many elements. The NN × matrix of Eq. [2-20] thus becomes very large. This 

sparsity is utilized fully when implementing good computer codes for the finite 

element method. The sparsity leads to a significant reduction in memory requirements 

since only the non-zero matrix elements need to be stored together with an index of 

where they are stored. Moreover, the sparsity implies a huge reduction in the number 

of arithmetic operations needed to solve the problem. For a full matrix problem this 

number is proportional to 3N  for standard Gauss elimination, but by using 
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direct-banded matrix schemes, or iterative methods like conjugate gradient methods 

or multi-grid methods, it can be reduced to becoming proportional to 2N  or even 

N . 

 

2-3 Force Calculations 

 From the potential distribution obtained by solving the Poisson-Boltzmann 

equation, the electrostatic force on the spherical particles is calculated by integrating 

the total stress tensor, defined as  

 ]
2
1[ EIEEETij ⋅−+∏∆= ε                                      [2-21] 

Where ψ−∇=E  is the electric field vector; I  represents the identity tensor, and 

∏∆  is the osmotic pressure difference between the electrolyte at the particle surface 

and bulk solution, ∏∆  can defined as  

    ( )1cosh2 −=∏∆ ψkTnb                                        [2-22] 

Where bn  is the bulk ion number density of the electricity neutral electrolyte. 

 We took integral the stress tensor over the surface of a particle, defined as  

    ∫ ⋅=
S

ij ndSTF                                                 [2-23] 

Here F is the force acting on the spherical particle. We note here that the stress 

tensor is calculated from the potential but the force on the sphere also includes a 

contribution from the osmotic pressure generated by the electric field; however, 

pressure variation due to the field at the sphere surface is normally canceled by 

electrical effects so that we can assume the ∏∆  term is zero. Where n  is the unit 

outward surface normal, and the subscript S represents integration over the closed 

surface of the particle. This integration can be performed either on the sphere surface 
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or on the midplane for the case of two identical spherical particles. 

 

2-4 Conjugate Gradient Method for Linear Algebra Equation 

In the linear system Ax = b suppose the coefficient matrix A is symmetric and 

positive definite. Solving Ax = b is equivalent to minimizing the quadratic 

function ( ) bxAxxxQ TT −=
2
1 . The conjugate gradient method is based on the idea 

that the convergence to the solution could be accelerates if we minimize Q over just 

the line that points down gradient. To determine 1+ix  we minimize Q over 

),...,,( 210 io ppppspanx +  

where the kp represent previous search directions. An added advantage to this 

approach is that, if we can select the kp to be linearly independent, then the dimension 

of the hyperplane will grow one dimension with each iteration of the conjugate 

gradient method. This would imply that (assuming infinite precision arithmetic) the 

solution of the linear system bAx =  would be obtained in no more than N steps, 

where N is the number of unknowns in the system. 

 Let 0x  be an initial estimate to the solution of bAx = . For our first search 

direction we proceed down a Q-gradient and choose  

0
0

01 pαxx +=                                                    [2-24] 

Where 

( ) AxbxQrp −=−∇== 000                                          [2-25] 

From the discussion of the method of steepest descent, we have 

00

00

00

00

0 App
pr

Arr
rrα

⋅
⋅

=
⋅
⋅

=                                            [2-26] 

To understand what follows in the description of the conjugate gradient method, it is 
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important to note that 

00101 =⋅=⋅ prrr  

 Rather than try to establish the above orthogonality relation with a calculation, 

use the following calculus argument. By definition, 1r is the gradient of Q at 1x , 

where 1x  is the conjugate gradient estimate to follow the initial guess 0x . Also, 

00 pr = is the search direction along the line 0
0

0 pαx + . Calculus tells us that the 

gradient of Q at 1x must be orthogonal to the search direction. 

 Not as a proof of the last statement about calculus and orthogonality, but to 

motivate the statement, consider the layers of an onion to be surfaces of Q = constant. 

Imagine piercing the onion with a skewer. In general, the skewer will pass through 

several outer layers of the onion, tangentially touch one of the inner layers, and again 

pass through the other layers and then exit. The innermost layer that the skewer 

touches tangentially is given by 

( ) 11 xxQ =∇                                                     [2-27] 

and the direction of the skewer is 00 pr = . 

 The conjugate gradient method calls for defining successive approximates by 

i
i

ii pαxx +=+1                                                    [2-28] 

i
i

ri pβrp += ++ 11                                                   [2-29] 

with the scheme for choosing iα and iβ to be discussed next. The things to keep in 

mind when choosing iα and iβ are: 

1. We want the span of the search directions to fill the space we are searching as the 

number of iterations increases. 

2.  Searching down Q-gradients was basically a good idea. But, to guarantee linearly 

independent successive search directions, we generally need to choose conjugate 
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gradient search directions to be perturbations of steepest descent search directions.  

 We have already how to define 0p and 0α , so 1x and 1r and 11 Axbr −=  can 

be considered known. To take the next step using the conjugate gradient method, we 

must determine values for 0α and 1β  so that we can calculate 1p and 2x . Then we 

will see a pattern emerge. 

 In taking this next step in the conjugate gradient method we are seeking to 

minimize Q over the plane,  

( )10 , ppspanx o+                                                  [2-30] 

this means that the residual 2r will have to be orthogonal to both 0p and 1p . The 

orthogonality condition 020 =⋅ rp  will help us set the search direction 1p . 

( ) 10
1

101020 ][ AppαrpxAbprp ⋅−⋅=−⋅=⋅                            [2-31] 

which is zero provided 

010
1 =⋅ Appα                                                     [2-32] 

Definition: 

 Two vectors u and v are said to be A-conjugate if .0=⋅ Auu  

From the requirement that 020 =⋅ rp , it follows that the search direction 1p . 

Must be A- conjugate to the search direction 0p . We can now set 0β as follows: 

0
0

11 pβrp +=  

Implies 

0
0

11 ApβArAp +=  

Now 

00
0

10100 AppβArpApp ⋅+⋅=⋅=  

Implies 
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00

11

00

10

0 App
Arr

App
Arpβ

⋅
⋅
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⋅
⋅

−=  

Having decided to proceed from 1x to 2x  along the search direction defined 

by 0
0

11 pβrp += , the same calculus argument used to determine gives 

11

11

1 App
prα

⋅
⋅

=  

So a step of the conjugate gradient method is complete. 

 

2-5 Monotone Iterative Methods 

 The method of monotone iterations is a classical tool for the study of the 

existence of the solution of nonlinear PDE of certain types. It is also useful for the 

numerical solution of nonlinear types of problems approximated, for instance, by the 

finite difference, finite element or boundary element method. It is a constructive 

method that depends essentially on only one parameter, called the monotone 

parameter herein, which determines the convergence behavior of the iterative process. 

Based on adaptive 1-irregular finite element meshes, we extend this classical method 

to device simulation the Poisson Boltzmann equation [9]. Compared with the NI 

method, the MI method requires no Jacobian matrix and does not encounter any 

convergence problems and numerical difficulties. Furthermore, the MI algorithm is 

practical, easy in implementation, and inherently parallel for large-scale 3D 

simulation. 

Consider an example ueu =∇− , after discretization using Finite Element Method. 

We can get Eq. [2-33] 

)}({}]{[ UFUA =                                              [2-33] 

We set a parameterλ , which define as follow: 
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)(' UF
ii −=λ                                                      [2-34] 

then set the monotone iterative form, which show as 

}}{]{[)}({}}{]{[}]{[ 11 nnnnnn UIUFUIUA
ii

λλ +=+ ++                      [2-35] 

where variable with subscript n represents one value obtained on previous iteration.  

 

2-6 Parallel Implementation of the P-B Equation Solver 

 2-6.1 Introduction to Parallel Distributed Computing 

 A parallel computer, as defined by Almasi and Gottlieb [10], is a collection of 

processing element that cooperate and communicate to solve large problems fast. 

Parallel computers can be viewed as a collection of processors and memory units 

which are connected by an interconnection network. The purpose of parallel 

computing is to get work done in less time and also to solve problems which can not 

fit in a single computers memory. 

There are two main architectural paradigms associated with parallel computing: 

Distributed memory and Shared memory [11]. In Distributed Memory architecture 

parallel computers, memory is physically distributed among processors; each local 

memory is directly accessible only by its processor. Synchronization is achieved by 

moving data between processors by a fast interconnection network, see Fig2.2 

In Shared memory architecture parallel computer the same memory is accessible by 

multiple processors. All processors associated with the program access the same 

storage as shown in Fig2.3. 

In our laboratory, we had setup PC Clusters which are use distributed memory 

system. The advantage of this kind of architecture is that it is scalable to a large 

number of commodity processors. A major concern with this scheme is data 

decomposition; the data being operated should be divided equally to balance the load, 
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and also should be done in a efficient manner in order to minimize communication. 

The scalability depends on the type of interconnection between the processors. 

2-6.2 Parallel Implementation 

In order to parallelize the Poisson-Boltzmann solver, we use Message Passing 

Interface (MPI) to be the basic toll. MPI is a library specification for message-passing, 

proposed as a standard by broadly based committee of vendors, implementers, and 

users. MPI library of a set of standard subroutine calls which allow parallel programs 

to be written in distributed memory system. We use Metis to distribute the cells and 

nodes. Running the solver to test and verity on PC Cluster belongs to our MuST 

laboratory. In distributed parallel finite element analysis, the domain considered is 

first decomposed into a number of subdomains. Then in general, one processor is 

assigned for each subdomain, though other variations are also possible. Computations 

are then performed on each processor on the local subdomain and communication 

takes place with the other processors whenever needed. The domain might be divided 

into a set of overlapping subdomains in which case Overlapping Schwartz methods 

are used for the solution of system. If the domain is partition into a set of 

non-overlapping subdomains then the methods used are called iterative substructuring 

methods. The two basic types of non-overlapping domain decomposition methods 

used in the finite element methods are the subdomain-by-subdomain and Schur 

complement method [11]. The first approach is based on multi-element group 

partitioning of the entire domain. The global stiffness matrix is stored as a partitioned 

matrix and the dominant matrix-vector operations of the stiffness matrix and the 

precondition solutions in the iterative algorithm are performed on the 

subdomain-by-subdomain basis. In the second approach the iterative algorithm is 

applied to the interface problem after first eliminating the internal degrees of freedom. 
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In our parallel system, we use the non-overlapping subdomains. 

Fig 2.4 illustrates the flow chart of parallel Poisson-Boltzmann solver (PPB). 

Detail is described step by step in the followings. 

1. Setup initial grids and input data for every processor. 

2. Initialize MPI and synchronize all processors to prepare for parallel 

computation. 

3. Compute the coefficients of shape functions. 

4. Setup initial and boundary conditions 

5. Compute each processor’s coefficient matrix and communications among 

processor. 

6. Compute each processor’s loading matrix and communications among 

processor. 

7. Solve each processor’s matrix and communications among processors 

8. To determine results of potential converge or not, if converge go to the next 

step, otherwise update potential and return to step 5. 

9. After gathers all potential data, calculate the electric field. 

10. Host gathers all data and output it. 

  

2-7 Parallel Adaptive Mesh Refinement 

 In this section, the parallel mesh refinement module would be introduced and the 

algorithm would be outlined. And in order to understand easily, two-dimensional 

mesh would be used to explain additionally. Finally the parallel Poisson-Boltzmann 

solver would couple with parallel mesh refinement module to test and verify. The 

detail of parallel refinement can refer to [12]. 

 2-7.1 The Basic Algorithm of Parallel Adaptive Mesh Refinement 
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 In the adaptive mesh refinement module, the data to record new added nodes is 

based on cell. In other words, every cell would only know new added nodes that 

belong to it. The number of added nodes is fixed in each process. However, before to 

divide cells, the number of added nodes must be unique in all processors. 

 In this module, it needs a neighbor identifying arrays. This array defines the 

interfacial cell for each face. It would record the global cell number of interfacial cells 

for each face of the cell. 

 At each mesh refinement step, individual edges are marked for refinement, or no 

change, based on an error indicator calculated from the solution, for example, the 

electric field. These cells which need to refine would add new nodes on each edge. 

They are called isotropic cells. For two-dimensional mesh, a parent cell [13] is 

divided to form four child cells. For three-dimensional mesh and tetrahedral cell, the 

parent cell is divided to form eight child cells, as show in Fig2.5. 

 When isotropic cells add nodes on their edges, the cells neighbor them would 

appear one to three handing nodes at the same time. The cells which have hanging 

nodes but not belong to isotropic cells are called anisotropic cells. In order to remove 

hanging nodes in anisotropic cells, it has some procedures to do. Using 

two-dimensional mesh as an example is shown in Fig2.6. When hanging nodes appear 

in a triangular cell, the cell must be divided into different way. However, for 

three-dimensional mesh, the division is more complex. The division would consider 

the number and position of the hanging nodes, to decide whether to add new nodes to 

obey the refinement rules. There are three results. One is to divide into eight child 

cells. Another is to divide into four child cells. The other is to divide into two child 

cells. The detail refinement rules are be show in Fig2.7. 

 2-7.2 Cell Quality Controls 
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 A problem associated with repeated adaptive mesh refinement (AMR) 

operations. 

Then, most mesh smoothing schemes tend to change the structure of a given mesh to 

achieve the “smoothing effect” (a better aspect ratio) by rearranging nodes in the 

mesh. The change made by a smoothing scheme, however, could modify the desired 

distribution of element density produced by AMR procedure, and the cost of 

performing a global mesh smoothing could be high. Alternatively, it is possible to 

prevent, or slow down, the degradation of cell quality during a repeated adaptive 

refinement process. The cell quality control scheme we have applied classifies 

element based on how they will be refined. This allows us to avoid creating elements 

with poor aspect ratios during the refinement. After identifying those elements, we 

can refine them with a better refinement by contrast.  

Detail rules are shown in Fig2.8. For example, Fig2.9 shows a typical cell 

(1-2-3-4). Because it is affecting by other cell, it has hanging nodes (8, 9, A). In order 

to handle hanging nodes, we connect nodes (8, 9, A) to node 4. But the aspect ratios 

of typical cells (1-4-8-A, 5-4-8-9 and 7-4-9-A) will be worse. However, if we add 

three nodes (B, C and D), and connect them with other nodes. Those eight child 

typical cells (4-B-C-D, 1-8-A-B, 5-8-9-D, 7-9-A-C, 8-9-A-B, 8-9-B-D, 9-A-B-C and 

9-B-C-D) would have better aspect ratios. 

However in some cases, previous developed cell-quality-control would not be 

effective that is shown in Fig2.10. For example, as showed in Fig2.11. At this 

situation, after the last refinement there are four child cells. But at this refinement, 

there are three hanging nodes appear on edges (8, B, D). While cells are divided, it 

will be divided to four child cells. And these four child cells will not get worse aspect 

ratios. And, it would get better aspect ratios. So cell-quality-control will allow this 
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division and not to affect it.  

If the boundaries of the computational domain are not straight, it is not sufficient 

to place the new node in the midway of the edge of the face of the parent cell. If this is 

done, it would dual to a rough piecewise representation of the original geometry 

results. What must be done is to move the new node location onto the real boundary 

contour surface. In the current implementation, it is assumed that the boundaries can 

be represented in parametric format. Specific neighbor identifiers are assigned to 

these non-straight boundary cells to distinguish from straight boundary cells. 

Whenever the boundary cells, which require mesh refinement, are identified as a 

non-straight boundary cell, the corresponding parametric function representing the 

surface contour are called in for mesh refinement to locate the correct node positions 

along the parametric surface. 

 

 2-7.3 Procedures of Parallel Mesh Refinement 

Fig2.12 illustrates the flow chart of parallel adaptive mesh refinement (PAMR). 

Details are described step in the followings. 

1. Set up initial grids and input data. 

2. Initialize MPI and synchronize all processors to prepare for parallel 

computation. 

3. Read grid and relative cell data, and distribute them to every processor at 

the same time. 

4. Find and record the cells which need to be refined, based on the refinement 

criterion calculated from the other module. 

5. If there is no cell required to be required, stop the module. Otherwise, go to 

next step. 
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6. Add new nodes to cells based on the module I., which is described in detail 

later. In this step, communications among processors are required. 

7. Renumber all new added nodes in this step to “unify” the node numberings 

for all processors. Note that the node numberings for all original nodes are 

kept the same as those before refinement. In this step, communications 

among processors are required. 

8. Update connectivity-related data to new child and old parent cells. 

9. Build up new neighbor identifier array. Communication among processors 

is required in this step. 

10. Decide if it reaches the preset maximum number of refinement. If it does, 

then go to next step, otherwise return to step 4. 

11. Synchronize all processors. 

12. Host gathers all data and output the data at the same time.  

In addition, all modules (I-IV in Fig2.12) in the core of the PAMR are explained 

in detail as follows. 

Module I. Add nodes on cell edges (Fig2.13): 

I-1. Add new nodes on all edges of “isotropic” cells that require refinement. 

These cells are called “isotropic” cells since it is refined from one cell to eight 

smaller cells. 

I-2. Add new nodes to “anisotropic” cells, which may require further treatment 

in the following steps, if hanging nodes exits in these cells... Note that 

these cells are called “anisotropic” since they are not those cells 

originally require “isotropic” mesh refinement. 

I-3. Communicate the hanging-node data to corresponding neighboring 

processors if the hanging nodes are located at the IPB (Interface 
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Processor Boundary). If hanging-node data are received from other 

processors in this stage, then go back to Step I-2 for updating the node 

data.  If there is no hanging-node data received at this stage, then move 

on to the next step.I-4. Remove hanging nodes based on refinement rules, 

if need to add new nodes go to I-2. If all cells obey the rules without to 

affect them, it mean all new nodes are be added. 

I-4 . Remove hanging nodes based on Hanging-node Removal rules. Go to 

Step I-2 to add new nodes if some more nodes addition is required. If 

there is no more node addition required, then ends this module 

execution.   

Module II. Renumber added nodes: 

II-1. Add up the number of the new added nodes in each processor, excluding 

those on the IPB.  

II-2. Communicate this number to all processors. These are used to add up the 

total number of added nodes in the interior of all processors. 

II-3. Renumber those added nodes in the interior of the processor according to 

results from Step-II-2. 

II-4. Communicate data of added nodes on IPBs among all processors. 

II-5. Renumber the added nodes on IPBs on all processors. 

Module III. Update connectivity data: 

Form all new cells and define the new connectivity data for all cells. 

Module IV. Build neighbor identifier array: 

IV-1. Reset the neighbor identifier array.  

IV-2. Rebuild the neighbor identifier array for all the cells based on the 

new connectivity data. Note that those nbr information on faces of 
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the cells on the IPBs are not rebuilt and require further treatment in 

the next step. 

IV-3. Record the neighbor identifier arrays that are not built in Step-IV-2, 

which the neighbor of the interested cell locates in the neighboring 

processor.  

IV-4. Broadcast all the recorded data in Step-IV-3 to all processors. 

IV-5. Build the nbr information on the IPBs, considering the overall 

connectivity data structure. 

 

2-8 Coupling Procedures of Parallel P-B Equation Solver with PAMR 

 2-8.1 Refinement Parameter and Criteria 

 All mesh need some means to detect the requirement of local mesh refinement to 

better capture the variations EDL fields and hence to obtain more accurate numerical 

solutions. This also applies to parallel Poisson-Boltzmann solver. It is important for 

the refinement parameters to detect a variety of EDL. In literature, the electric field 

usually to be adopted as the refinement parameter. The electric field is the potential 

gradient. We use the electric field as the refinement parameter in parallel 

Poisson-Boltzmann solver. 

 To use the electric field value as a refinement parameter, a local electric field can 

be defined as  

 Ψ−∇=E                                                    [2-36] 

 Where Ψ  is the local cell potential. When the mesh refinement module is 

initiated, local cell electric field value will be read in, and take compare with other 

cells around local cell. If the variation of electric field value between local cell and 

surroundings cell is more then preset value. We will give a symbol to refine both local 
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cell and surroundings cell. If not, we do not refine these cells. 

 

 2-8.2 Parallel Poisson-Boltzmann Solver with Mesh Refinement 

 In Fig2.14, it shows couple PPB-PAMR method. 

 In summary, the following steps describe the mesh refinement: 

1. Setup initial grids and input data. 

2. Process PPB computation to get initial results. 

3. Compute the refinement parameters in each cell. 

4. Refine all the cells which are need to. 

5. Create and update the grids data and input data. 

6. Using the new grid data and input data to run PPB, to get new results. 

7. Return to (4) if the accumulated adaptation levels are less than preset 

maximum value. 

8. If the accumulated refinement levels are greater than the preset value or no 

mesh refinement is required. Stop the refinement mesh procedure. 

9. Using the finial grids and input data to run PPB, and finish the all 

procedure. 
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Chapter 3 Results and Discussion 

3-1 Code Verifications 

 To ensure the accuracy of the EDL potential distribution, the numerical results 

are also compared along with the analytical results. For the small electrostatic 

potential, Eq. [2-6] can be approximated by the first terms in a Taylor series. In the 

literature, this is call the Debye-Huckel linear approximation. This approximation is 

valid only for small values of electrostatic potentialψ . In this section, we will 

compare our numerical results with the Debye-Huckel approximation and Tuinier’s [7] 

approximate solution. 

 3.1-1 Potential Around a Sphere 

 Fig 3.1 shows the numerical model for the sphere, the dimensionless electrostatic 

potential of the sphere surface is chosen to be constant potential. The Neumann 

boundary conditions are implied on the other boundaries of the domain. And in this 

case, the normalized radius a  is chosen to be 5. 

The Debye-Huckel linear approximation for sphere can defined as 

( ) ( )x
xa

axsp −







+
Ψ=Ψ exp0                                           [3-1] 

Where the sub “sp” refers to sphere, and a  is normalized radius. 

 The approximate solution which proposed by Tuinier [7] is: 

( ) ( )
( )
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
−−
−+









+
=Ψ

xt
xt

xa
axsp exp1

exp1ln2

0

0
1,                                     [3-2] 

Where 0t  is defined as  







 Ψ=

4
tanh 0

0t                                                      [3-3] 

There are two kinds of different 0Ψ  is 1.0 and 5.0. In Fig 3.2 we can see three 
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kind of different results, are nearly all the same at small 10 =Ψ . Cleary, our PB solver 

has certain accuracy. In Fig 3.3 we apply 50 =Ψ at sphere surface. We can observe 

form the figures; there is a very steep decrease in the numerical results, while the 

Debye-Huckel approximation predicts a more gradual decay of the potential. And we 

also can discover Tuinier’s approximate solution slightly under predicts the numerical 

results.  

In Fig 3.4, we discuss the convergence situation between different initial guess.

 We use Debye-Huckel and Tuinier’s approximation to be initial guess, and 

compared with zero. Cleary, using Tuinier’s approximation to be initial guess has a 

good convergence situation; the Monotone sequence converges within two hundred 

iterations. 

 

3.1-2 Potential Around a Cylinder  

 For cylindrical geometry, we do the same thing with sphere. Fig 3.5 is the 

numerical model for the cylinder. We also chose cylinder surface to allow Dirichlet 

boundary, the other surface is Neumann boundary conditions.  

The Debye-Huckel linear approximation for cylindrical can defined as 

( ) ( )
)(0

0
0 aK

axKxcy
+

Ψ=Ψ                                            [3-4] 

Where the sub “cy” refers to cylinder and 0K  is the zeroth-order modified 

Bessel function of the second kind. 

And the approximate solution for cylinder which proposed by Tuinier [7] is: 

( ) ( )
( ) ( )
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In Fig 3.6 and 3.7 we can discover the same situation which is happened to 
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sphere. Debye-Huckel approximation also has wrong potential distribution at largeΨ . 

 

3-2 Simulation of Two Interacting Identical Particles Coupled with PAMR 

 The problem deals with two identical colloidal particles immersed in electricity 

neutral electrolyte. It was studied in several works [2, 3, 5, and 6] and can server as a 

test. The numerical model is shown in Fig 3.8 We let segment AB to be half the 

separation distance which is call h , surface CD and DE are assumed the infinite of 

the electrolyte, surface BC represents a midplane for the problems with two particles. 

In this case, the force of interaction of two particles of the radius 5=a and the 

separation distance 5.0=h . The constant potential 0Ψ  on the surfaces of both 

particles is equal to 2.0. The Neumann boundary conditions are implied on the other 

boundary conditions of the numerical model. 

 The force of the interaction can be calculated by Eq. [2-23]. Here we will take 

integration over the surfaces of the particle. 

 In the Table 3-1 we can see the results in every refinement step; we can see the 

force at step 4 and step5 are almost the same. We speculate the mesh has become 

optimal at step 5. Fig 3.9 to Fig 3.14 is the mesh distribution for every refinement step, 

and Fig 3.15 is the potential distribution at final step. 

 It is ensured that the results shown in this article are independent of finite 

element mesh. The results obtained from different steps of the parallel adaptive mesh 

refinement are show in Table 3-1. From this table, it is clear that as we refine the 

mesh, the scaled of the force of the interaction obtained from the numerical solution 

of the Poisson-Boltzmann equation convergence toward a fixed value. After compares 

with literature [6], we have almost the same results, but still have inaccuracy. The 

previously literature’s work is shown in Table 3-2; we can see the force of the 
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interaction at the final step is 48.840. After compare with our result, we have 0.4 

inaccuracy. At small separation distance 5.0=h  the force of the interaction is 

repulsion. 

 

3-3 Two Identical Particles in a Cylindrical Pore 

 In this section, we will computer experiments with a geometrically confined pair 

of spheres concern the phenomenon of long-range electrostatic attraction between 

particles of like change [4]. The long-range electrostatic interaction of two colloidal 

particles confined in a cylindrical pore was studied in the present paper [3], we use the 

same values of parameters and geometry, such as the 1:1 electrolyte, the potential on 

surfaces of the sphere particles 0.3=Ψs , the potential on the cylindrical pore 

surface 0.5=Ψp , the radius of the particles 185.1=a , the sphere radius to pore radius 

ratio 0.13. The numerical model is shown in Fig 3.8; in this case we let surface CD to 

be the cylindrical pore surface. 

 The results of the calculations are shown in Table.3-3. Positive values for the 

force sF  mean repulsion, negative mean attraction. We calculate four different 

separation distances, 5.0=h , 1, 3.5, 6, 8, respectively. 

 Fig 3.16 and Fig 3.17 shows the calculated potential distribution for the sphere 

confined in a pore at separation distances 5.0=h and 6=h . Fig 3.18 and 3.19 shows 

the potential along the midplane BC at 6=h . We can see the potential along this plane 

is almost decreasing at all distance, but after Z=3.4 the potential become increasing. 

After compares with literature, we also have almost the same results, but still have 1% 

inaccuracy. 
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Chapter 4 Future Work 
4-1 Summary 

 In the chapter three, we deal with the two cases, one is two free identical 

particles, and other is two identical particles in a cylindrical pore. In order to make 

sure code validity, we use the same parameter in previously literature. All of the 

previously works are assumes the numerical model is symmetry and reduce to 

two-dimensional problem. But the calculation of the interaction between two spheres 

closed to a planar wall [4] requires a full three-dimensional problem. Assume the 

problem to two-dimensional may have some uncertain. We develop this 

three-dimensional Poisson-Boltzmann equation just can to deal with this troublesome 

problem.  

In the propose study, we can obtain the parallel Poisson-Boltzmann equation 

coupled with PAMR is very useful and convenience. It can be more closed to real 

situation at colloidal systems. 

4-2 Recommendations for Future Work 

In this propose study, we meet two difficulties, one is the convergence rate too 

slow, the other is refinement level can not over than five. We can use fine initial guess 

to overcome the convergence rate problem, but the cost of the refinement computation, 

we can not overcome directly. But there still have some way to overcome this 

situation, we can use the high order mesh and coupled different mesh such as 

hexahedral cell and pyramid. If we can use high order mesh to capture the EDL 

potential distribution, we can reduce the inaccuracy without large computationally 

cost. 
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Table 

 

Table3-1: Steps of the adaptive process: 

 

Refinement 
level 

Number of nodes Number of elements Force of 
interaction(Fs) 

0 924 3821 20.9924 
1 3045 14305 34.6570 
2 18253 96638 40.4853 
3 132477 747048 44.0112 
4 187732 1049734 48.0722 
5 213224 1190741 48.4066 
 
PS: These cases are runed by six parallel processors. 
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Table3-2: Steps of the adaptive process for previously literature [6] 
 

Refinement 
level 

Number of elements Force of interaction(Fs) 

0 946 36.518 
1 1992 43.716 
2 4466 46.596 
3 7642 47.597 
4 11314 48.472 
5 13525 48.630 
6 15187 48.862 
7 15477 48.826 
8 15541 48.840 
9 15555 48.843 
10 15578 48.841 
11 15588 48.840 
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Table3-3: The interaction forces of two particles in a cylinder pore at different 

separation distance. 

 

Separation Distance(h) 0.5 1 3.5 6 8 

Force of interaction(Fs) 26 13 -0.7 -4.7 0.9 

 
PS: These cases are runed by six parallel processors. 
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Figure 

 

 

Fig 1.1 The illustration of like-charge attractions phenomenon 



 39

 

Fig 1.2 The Electric Double Layer distribution 
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Fig 2.1 Simplified flow chart of the three-dimensional nonlinear Poisson-Boltzmann 
solver 
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Fig 2.2 Distributed memory architecture 
 

 

 

Fig 2.3 Shared memory architecture 
 



 42

 

 
 

Fig 2.4 The flow chart of parallel Poisson-Boltzmann solver 
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Fig 2.5 Isotropic mesh refinement of tetrahedral mesh (T: Tetrahedron) 
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Fig 2.6 Mesh refinement rules for two-dimensional triangular cell 
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Fig 2.7 Schematic diagram for mesh refinement rules of tetrahedron 
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Fig 2.8 Schematic diagram of the proposed cell quality control 
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Fig 2.9 Schematic diagram of typical cell quality control 
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Fig 2.10 Schematic diagram of simple cell quality control 
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Fig 2.11 A case that the proposed cell-quality-control would not affect to it  
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Fig 2.12 Flow chart of parallel mesh refinement module 
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Fig 2-13 Flow chart of moduleⅠ 
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Fig 2-14 Coupled PPBS-PAMR method  
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Fig 3.1 Geometry of the potential around a sphere case 
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Fig 3.2 The comparison of different result at 1=Ψ (sphere) 
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Fig 3.3 The comparison of different result at 5=Ψ (sphere) 
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Fig 3.4 The relationship between iteration and residual with different initial guess 
( 5=Ψ ) 
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Fig 3.5 Geometry of the potential around a cylinder case 
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Fig 3.6 The comparison of different result at 1=Ψ (cylinder) 
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Fig 3.7 The comparison of different result at 5=Ψ (cylinder) 
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Fig 3.8 The illustration the case of two interacting identical particles 
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Fig 3.9 Level 0 initial mesh of two interacting identical particles case 
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Fig 3.10 Level 1 refinement mesh of two interacting identical particles case 
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Fig 3.11 Level 2 refinement mesh of two interacting identical particles case 
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Fig 3.12 Level 3 refinement mesh of two interacting identical particles case 
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Fig 3.13 Level 4 refinement mesh of two interacting identical particles case 
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Fig 3.14 Level 5 refinement mesh of two interacting identical particles case 
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Fig 3.15 The potential distribution of two identical particles 
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Fig 3.16 The potential distribution for the sphere confined in a pore at separation 
distances h=0.5 
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Fig 3.17 The potential distribution for the sphere confined in a pore at separation 
distances h=6 
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Fig 3.18 Potential along the midplane between two spheres 
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Fig 3.19 Potential along midplane between two spheres (in local) 


