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摘         要 

 

本篇論文主要目的是為了解決 Julia 集上複數耦合網格系統

（Complex Valued Coupled Map Lattices（CCMLs））的同步現

象。首先，我們介紹一個研究全域同步與局部同步的統一形式。其次，

我們解決一個 inf min max 的問題，這個問題，是在給定的一群耦

合矩陣中，找到一個耦合矩陣和其相對應的耦合係數使得系統的同步

收斂速度最快。最後，我們給出對應系統在 Julia 集上的全域同步

與局部同步之結果。 
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Abstract

The purpose of this thesis is to address synchronous chaos on a Julia set
in complex-valued coupled map lattices (CCMLs). Our main results contain
the following. First, a unified formulation for the study of global and local
synchronization CCMLs is presented. Second, we solve an inf min max prob-
lem for which its solution gives the fastest synchronized rate among a class
of coupling matrices. Third, various results for global and local synchroniza-
tion on the Julia set are presented.

Keywords: Complex-Valued Coupled Map Lattices, Julia Set, Fastest Synchro-

nized Network.
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1 Introduction

In recent years, models of complex-valued neural networks have widened the scope

of application in optoelectronics, image, remote sensing, quantum neural devices

and systems, spatiotemporal analysis of physiological neural systems, and artificial

neural information processing [1, 2]. One typical such model is a fully connected

complex-valued neural network as the mathematical extension of an ordinary real-

valued Hopfield network. Their basic mathematical theory and applications have

been extensively studied. Coupled map lattices (CMLs) are comparable to neural

networks in that the value of each oscillator in both models depends on the neigh-

bors. The major differences lie on the facts that the dynamics on the (uncoupled)

oscillator for CMLs is usually assumed to be chaotic while that of the neural net-

works is simple. One of the major mathematical questions for neural networks,

among others, is the global attractivity of the model. On the other hand, CMLs

are predominantly used to qualitatively study the chaotic dynamics of spatially ex-

tended systems. Another interesting form of dynamical behavior occurs in CMLs

when all of the individual systems or oscillators acquire identical chaotic behavior.

Such synchronized behavior of a network can be constructed as models in many sys-

tems of interest in physics, biology, and engineering. Some progress in the theory

of synchronization has been made in CMLs. Indeed, for general (real) CMLs, the

study of local synchronization can be found in [3, 4, 5, 6, 7]. Not much progress has

been made for the investigation of its global synchronization. There are, however,

globally synchronous results for some special cases (see e.g., [8, 9]).

The purpose of this thesis is to investigate the theory of synchronization of CCMLs.

There are some notable differences between the (real) CMLs and CCMLs as far as

the synchrony is concerned. The same function when considered in the complex

plane generates much more complex and interesting dynamics. For instance, the

real valued function f(x) = x2 +c has simple dynamics whenever |c| is small. How-

ever, its counterpart, defined in the complex plane, could generate chaotic dynamics

on its Julia set. Moreover, if the coupling coefficient between two nodes is assigned

to be a complex number, equipped with both the amplitude and phase, then find-

ing the optimal coupling coefficient yielding the fastest synchronization speed is a
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taunting task. It should be remarked that finding the optimal coupling, leading

to an min max problem, is a key step toward establishing both local and global

synchronization theory of CMLs. In this thesis, we first present a unified formu-

lation for the study of both local and global synchronization of CCMLs. Second,

the problem of constructing a network for which the fastest synchronized speed can

be made by choosing a suitable coupling coefficient is investigated. The question

then becomes an inf min max problem. In particular, we prove that given a class

of coupling matrices of size 4, the equality between the nonzero and non-diagonal

elements gives the fastest synchronized speed. Third, synchronized theory on its

Julia set is presented.

We conclude this introductory section by mentioning the organization of the the-

sis. The unified formulation for investigating both local and global synchronization

theory of CCMLs is presented in Section 2. The results concerning the min max

problem is placed in Section 3. The needed results for Julia set are contained in

Section 4. The main results, the inf min max problem and the synchronization

on its Julia set, are recorded in Section 5. Some concluding remarks about future

research are addressed in Section 6.

2 Unified Framework

Consider a network of (CCMLs) consisting of m oscillators. The equations of the

motion then read as follow.

zi(n+ 1) = f(zi(n)) + d

(
m∑
k=1

gikh(zk(n))

)
, i = 1, . . . ,m. (2.1)

Here f : C→ C, represents the individual complex-valued function, and h : C→ C
is an arbitrary nonlinear function to give how each oscillator’s variables are used in

the coupling. The quantities gik ∈ C are the coupling coefficients between the

oscillators i and k. To consider the notion of synchronization, we assume that

m∑
k=1

gik = 0 for each i , (2.2a)

and

0 is the simple eigenvalue of the coupling matrix G = (gik). (2.2b)
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The quantity d represents the coupling strength, which is also allowed to be a

complex-valued number. In vector-matrix form with h = f , (2.1) becomes

z(n+ 1) = F(z(n)) + dGF(z(n)). (2.3)

Here, z(n) = (z1(n), . . . , zm(n))T and F(z(n)) = (f(z1(n)), . . . , f(zm(n)))T . In the

following, we shall derive a unified formulation for the study of both local and global

synchronization. To this end, we first make a coordinate change to decompose the

synchronous manifold. Let A be an m×m matrix of the form

A =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −1
1 1 · · · 1 1

 =:

(
C
eT

)
,

where eT = (1, 1, . . . , 1).

It is then easy to see that CCT is invertible and that

A−1 =
(

CT (CCT)−1 e

m

)
.

Multiplying A to both sides of Equation (2.3), we get

Az(n+ 1) = AF(z(n)) + dAGA−1AF(z(n))

= AF(z(n)) + d

(
CGCT (CCT )−1 0

0 0

)
AF(z(n)). (2.4a)

Let

G+ := CGCT (CCT )−1, (2.4b)



z1(n)− z2(n)
z2(n)− z3(n)

...
zm−1(n)− zm(n)

m∑
i=1

zi(n)


:=


e1(n+ 1)

...
em−1(n+ 1)
es(n+ 1)

 , e(n+ 1) :=

 e1(n+ 1)
...

em−1(n+ 1)



and

AF(z(n)) =

(
D(n)e(n)
∗

)
.
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Here D(n) is an (m− 1)× (m− 1) diagonal matrix of the form

D(n) = diag

(
f(z1(n))− f(z2(n))

z1(n)− z2(n)
,
f(z2(n))− f(z3(n))

z2(n)− z3(n)
, . . . ,

f(zm−1(n))− f(zm(n))

zm−1(n)− zm(n)

)
.

Then we have that the dynamics of e(n) is satisfied by the following equation

e(n+ 1) = (I + dG+)D(n)e(n). (2.5)

The task of obtaining global synchronization of system (2.1) is now reduced to

showing that the origin is globally asymptotically stable with respect to system

(2.5). It should be remarked that for the study of local synchronization, D(n)

reduces to the form f ′(z(n))I. Here {z(n)}∞n=0 is the orbit defined by (2.1) on

the synchronous manifold. Consequently, we say that (2.1) is locally synchronized

provided that the origin of the linear system

e(n+ 1) = f ′(z(n))(I + dG+)e(n) (2.6)

is asymptotically stable. Note that (2.6) is equivalent to the well-known master

stability equation [7, 10].

3 Min Max Problem

In view of (2.5) and (2.6), to study the synchronous dynamics of (2.1), we need

find an optimal coupling coefficient d so that the spectral radius of 1 + dG+ is the

smallest. We are then led to consider the following min max problem. Assume

that (2.2a) and (2.2b) are satisfied. We also assume from here on that

real parts of the eigenvalues of G are non-positive. (3.1)

Let the spectrum σ(G) of G be denoted by

σ(G) = {λ1 = 0, λ2, λ3, . . . , λm}.

Here Re(λj) ≤ 0, 2 ≤ j ≤ m, and 0 < |λ2| ≤ |λ3| ≤ · · · ≤ |λm|. It then follows

from (2.4a) and (2.4b) that

σ(G) = σ(AGA−1) = σ(G+) ∪ {0}.
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Consequently, σ(G+) = {λ2, λ3, . . . , λm}. To minimize the spectral radius of 1 +

dG+, we consider the following min max problem:

min
d∈C

max
2≤j≤m

|1 + dλj| = min
−π≤θ≤π

min
r∈R+

max
2≤j≤m

|1 + reiθλj|

= min
−θp1≤θ≤θp2

min
r∈R+

max
2≤j≤m

|1 + reiθλj| (3.2)

=: min
−θp1≤θ≤θp2

min
r∈R+

max
2≤j≤m

γj(r, θ, θj),

where d = reiθ, λj = rje
iθj , rj ∈ R+,

π

2
≤ θj ≤

3π

2
, θp1 = min

{
θj −

π

2
:
π

2
≤ θj ≤

3π

2

}
and θp2 = min

{
−θj −

π

2
: −3π

2
≤ θj ≤ −

π

2

}
.

The second equality holds due to the fact that if α ∈ [−π,−θp1) ∪ (θp2 , π] and

θ ∈ [−θp1 , θp2 ], then

γ2
j (r, α, θj) = 1 + 2rrj cos(α + θj) + r2|λj|2 ≥ γ2

j (r, θ, θj).

For each fixed θ ∈ [−θp1 , θp2 ], we first need to solve the following min max problem

min
r∈R+

max
2≤j≤m

γj(r, θ, θj) = min
r∈R+

max
2≤j≤m

γj(r, 0, θ + θj) =: min
r∈R+

γ(r, θ). (3.3)

The solution to (3.3) with θ = 0 was given in [7]. By treating eigenvalues having

the form λje
i(θ+θj), the case θ 6= 0 becomes similarly to the case θ = 0. Hence, for

each θ, we may apply the efficient procedure proposed in [7] for solving (3.3). For

ease of reference, we also recall a result from [7].

Theorem 3.1. (Theorem 2.4 of [7]) Suppose the m × m coupling matrix G has

non-positive real eigenvalues. Denote by {λi}mi=2, m ≤ m, where λi are eigenvalues

of G and 0 < |λ2| < |λ3| < · · · < |λm|. Then

d =
−2

λ2 + λm
=: df (3.4a)

solves min max problem (3.3). Moreover,

min
d∈R

max
2≤j≤m

|1 + dλj| =
λm − λ2

λm + λ2

=: δ. (3.4b)

It should be noted that df gives the fastest convergence rate δ of the initial values

toward the synchronous state. We next show that given a real-valued matrix G,

there exists a unique positive real d solves the min max (3.2).
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Proposition 3.1. Let G ∈ Rm×m. Then

min
d∈C

max
2≤j≤m

|1 + dλj| = min
d∈R

max
2≤j≤m

|1 + dλj| = min
d>0

max
2≤j≤m

|1 + dλj|. (3.5)

Proof : For G ∈ Rm×m, θp1 = θp2 . Let λj be an eigenvalue of G. If λj is real and

negative, then

γ2
j (r, θ, θj = π) ≥ γ2

j (r, 0, π) for any θ ∈ [−θp1 , θp2 ].

Suppose λj = rje
iθj is complex. Then λj is also an eigenvalue of G. Without lose

of generality, we may assume that

λj = λj+1 = rj+1e
iθj+1 , where rj+1 = rj and θj+1 = −θj.

For any θ ∈ [−θp1 , θp2 ], we have

max{γ2
j (r, θ, θj), γ

2
j+1(r, θ, θj+1)} ≥ max{γ2

j (r, 0, θj), γ
2
j+1(r, 0, θj+1)}

= γ2
j (r, 0, θj)

= γ2
j+1(r, 0, θj+1).

Thus,

max
2≤j≤m

γj(r, θ, θj) ≥ max
2≤j≤m

γj(r, 0, θj).

We have just completed the proof of the proposition.

Remark 3.1. For a complex-valued G, finding the solution for (3.2) is more chal-

lenging. For each θ, the synchronization curve Sθ, composed a certain of pieces of

|1 + dλj|, termed transverse Lyapunov exponent curves (LECs), can be found effi-

ciently as described in [7]. This, in turn, gives the fastest convergence rate δ = δ(θ)

occurring at d = r(θ)eiθ. As one gradually various θ from −θp1 to θp2, the pieces

of LECs for the corresponding synchronization curve are most likely to change. To

illustrate our point, let G be a circulant matrix [11] of the form

circ(−10 + 4i, 9− 5i, 0, 0, 1 + i).
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The eigenvalues of G is λ2 ≈ −1.2035 + 10.3724i, λ3 ≈ −12.6162 − 4.8445i, λ4 ≈
−14.5635+11.9383i, and λ5 = −21.6169+2.5338i. Using the procedure provided in

[7], we have that for −0.1155 ≤ θ ≤ 0.0570, the synchronization curve is composed

of the LECs corresponding to |1+dλ2|, |1+dλ4| and |1+dλ5|. As θ keeps varying,

we list the exact pieces of the LECs for its associated synchronization curve in Table

3.1. The graph of δ(θ) is shown in Fig3.1. Pictorially, we have that

θ ≈ 0.5440 and r ≈ 0.051344,

solves min max (3.2). Moreover,

min
d∈C

max
2≤j≤5

|1 + dλj| ≈ 0.793995.

−θp1 ≤ θ ≤ θp2 LECs

−θp1 = −0.1155 ≤ θ ≤ 0.0570 (2, 4, 5)

0.0570 ≤ θ ≤ 0.4920 (2, 5)

0.4920 ≤ θ ≤ 0.6440 (2, 3, 5)

0.6440 ≤ θ ≤ 1.2041 = θp2 (3, 5)

Table 3.1: The synchronization curve Sθ is decided by three LECs, |1+dλ2|, |1+dλ4|
and |1 + dλ5|, whenever −0.1155 ≤ θ ≤ 0.0570. The numbers in other columns of
the table is similarly explained.

Figure 3.1: The graph of δ(θ), −θp1 ≤ θ ≤ θp2 . Its minimum occurs at (r, δ) ≈
(0.051344, 0.793995)

.

7



4 Julia Set

Since synchronization of CCMLs is considered on its Julia set, we shall recall some

well-known definitions and results (see e.g., [12]). Some needed estimates for the

size of Julia sets are also derived in this section. We shall concentrate on considering

polynomial maps of the form,

fc(z) = z2 + c,where z, c ∈ C and gc(z) = z3 + cz. (4.1)

Definition 4.1. Let Pc : C → C be a polynomial with a parameter c ∈ C. Then

Julia set of Pc, denote by J(Pc), is the closure of the set of repelling periodic points

of Pc.

Proposition 4.1. (See e.g., [12]) Suppose |c| < 1

4
(resp., |c| < 1). Then J(fc)

(resp., J(gc)) is a simple closed curve. If, in addition, c is complex, then J(fc)

(resp., J(gc)) contains no smooth arcs.

The proof for J(gc) being a simple curve with |c| < 1 is similar to that of J(gc) with

|c| < 1

4
, and is, thus, omitted.

Theorem 4.1. (See e.g., [12]) J(Pc) is a perfect set and is completely invariant.

Moreover, Pc is chaotic on J(Pc) in the sense of Devaney.

Remark 4.1.

(i) Clearly, the Julia set P (f0) is the unit circle, and so f0 : P (f0) → P (f0)

reduces to the chaotic map of the form θ → 2θ.

(ii) Let f−2(z) = z2−2. Then J(f−2) is the closed interval [−2, 2] (see e.g., Exam-

ple 5.11 of [12]). Moreover, the map f−2(z) : J(f−2) → J(f−2) is topological

conjugate to the map x→ 4x(1− x).

In the following, the size of the Julia sets of fc and gc are to be estimated.

Proposition 4.2.

(i) Let r =
1 +
√

2

2
. Then J(fc) ⊂ Br(0), where |c| < 1

4
.
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(ii) Let r =
√

2. Then J(gc) ⊂ Br(0), where |c| < 1.

Proof : To prove (i), we have that

|fc(z)| ≥ |z|2 − |c| ≥ |z|
(
|z| − 1

4|z|

)
.

Now, if z /∈ Br(0), then |z| > 1 +
√

2

2
. Consequently, |z| − 1

4|z|
> 1. Therefore,

if z /∈ Br(0), then |fc(z)| > |z|. Consequently, |fnc (z)| → ∞ as n → ∞. It then

follows from Theorem 4.1 and Proposition 4.1 that J(fc) ⊂ Br(0) as claimed.

To see (ii), we have that for z /∈ Br(0),

|gc(z)| > |z|3 − |z| = |z|
(
|z|2 − 1

)
> |z|.

Similarly, we conclude that J(gc) ⊂ Br(0).

5 Main Results

In this section, the questions of fastest synchronized network and the theory of

synchronization on its Julia set are to be addressed. To this end, we begin with

considering how the network of the system should be constructed to have its system

synchronized fastest among a class of coupling matrices. Let A be a class of cou-

pling matrices satisfying (2.2a), (2.2b) and (3.1). The above mentioned problem is

then amount to solving

inf
G∈A

min
d∈C

max
2≤j≤m

|1 + dλj| := inf
G∈A

δ(G). (5.1)

Here, δ, which depends on G, is defined in Theorem 3.1 such inf, if exists, is called

the fastest synchronized rate among the class A . To simplified problem, we shall

consider the set of circulant matrices of the form

circ(c1, cm, cm−1, . . . , c3, c2). (5.2a)

Note that the spectrum (use e.g., [11]) of the circulant matrix of the form in (5.2a)

is {
c1 + cmωj + · · ·+ c2ω

m−1
j : ωj = exp

(
2(j − 1)πi

m

)
, j = 1, . . . ,m

}
.

9



To get some theoretical results, we further simplify our case.

Specifically, let

A = {G = circ(−a1 − a2 − a3, a1, a2, a3) : exactly one of (5.2b)

a1, a2 and a3 is zero, the others are positive real}.

To emphasize the dependence of G, df and δ on ai, we shall write, for instance,

G = G(a1, a2), df = df (a1, a2) and δ = δ(a1, a2). The dependency on ai will be

dropped, should no confusion arise.

Theorem 5.1. Let A be given as in (5.2b). Then

inf
G∈A

δ(G) = min
G∈A

δ(G) =
1

3
. (5.3)

Moreover, the min min max is achieved whenever two nonzero ai are equal.

Proof : Let A = A1∪A2∪A3, where Ai ⊂ A and G ∈ Ai if and only if ai = 0, i =

1, 2, 3. We shall start out with finding inf
G∈A2

δ(G). Let

G = circ(−a1 − a3, a1, 0, a3).

Then for G ∈ A2,

σ(G+) = {−2(a1 + a3),−(a1 + a3) + i(a1 − a3),−(a1 + a3)− i(a1 − a3)}

= {−2r(cos θ + sin θ),−r[(cos θ + sin θ)− i(cos θ − sin θ)],

−r[(cos θ + sin θ) + i(cos θ − sin θ)]}.

Here r =
√
a2

1 + a2
3 and 0 ≤ θ ≤ π

2
. In view of (3.5), we may assume without lose

of generality that

σ(G+) = {−2(cos θ + sin θ),−(cos θ + sin θ) + i(cos θ − sin θ),

−(cos θ + sin θ)− i(cos θ − sin θ)}

:= {γ1, γ2, γ3}.

Note that |1 + dγ2| = |1 + dγ3|. Moreover, we have, via Proposition 3.1, that

min
d∈C

max
1≤j≤2

|1 + dγj| = min
d>0

max
1≤j≤2

|1 + dγj| := min
d>0

max
1≤j≤2

γj(d).
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Let Γj(d) = γ2
j (d), j = 1, 2 and d > 0. Then

Γ1(d) = (1− 2d(cos θ + sin θ))2

and

Γ2(d) = 2d2 − 2d(cos θ + sin θ) + 1.

Clearly, two parabolas Γ1 and Γ2 intersect at d = 0 and d =
cos θ + sin θ

1 + 2 sin 2θ
.

Let A and C be, respectively, the d−coordinate of the vertices of the parabolas

Γ1 and Γ2. Let B 6= 0 be the d−coordinate of the intersection of Γ1 and Γ2. In

particular,

A =
1

2(cos θ + sin θ)
, B =

cos θ + sin θ

1 + 2 sin 2θ
and C =

cos θ + sin θ

2
.

For 0 ≤ θ ≤ π

12
or

5π

12
≤ θ ≤ π

2
, A ≤ C ≤ B. For

π

12
≤ θ ≤ 5π

12
, A ≤ B ≤ C.

Figure 5.1: The case that 0 ≤ θ ≤ π

12
or

5π

12
≤ θ ≤ π

2
. Then A ≤ C ≤ B.

Figure 5.2: The case that
π

12
≤ θ ≤ 5π

12
. Then A ≤ B ≤ C.

Typical graphs of Γ1 and Γ2 are shown in Figs 5.1 and 5.2. From Fig 5.1, we have

that for 0 ≤ θ ≤ π

12
or

5π

12
≤ θ ≤ π

2
,

11



δ(G) = (Γ2(C))
1
2 =

(
1− sin 2θ

2

) 1
2

≥ 1

2
.

For
π

12
≤ θ ≤ 5π

12
,

δ(G) = |1 +Bγ1| =
1

1 + 2 sin 2θ
≥ 1

3
.

Consequently,

inf
G∈A2

δ(G) = min
G∈A2

δ(G) =
1

3
.

Furthermore, such minimum can be achieved provided that θ =
π

4
, or, equivalently,

a3 = a1, which corresponds to a symmetric G.

Let G ∈ A3 and H ∈ A1. Then

σ(G+) = {−2a1,−(a1 + 2a2) + a1i,−(a1 + 2a2)− a1i}

and

σ(H) = {−2a3,−(a3 + 2a2) + a3i,−(a3 + 2a2)− a3i}.

Hence,

inf
G∈A3

δ(G) = inf
G∈A1

δ(G).

To complete the proof of the theorem, it then suffices to show that

inf
G∈A3

δ(G) ≥ 1

3
.

As in the case of inf
G∈A2

δ(G), the corresponding Γ1 and Γ2 are, respectively, given as

in the following.

Γ1(d) = (1− 2da1)2 and Γ2(d) = (1− d(a1 + 2a2))2 + (da1)2.

Here d is defined on (0,∞). A direct calculation would yield that Γ1 and Γ2 inter-

sects at d = 0 and d =
2a2 − a1

2a2
2 + 2a1a2 − a2

1

=: a. Moreover,

Γ2(d) ≥ Γ1(d) (resp., Γ2(d) ≤ Γ1(d)) provided that d ≥ a (resp., 0 < d ≤ a). (5.4)

12



To further pursue our goal, we need to know the relative position of a and the

minimum points of Γ1 and Γ2 on the real line. To this end, let a2 = ra1. Then,

for 0 < r <

√
3− 1

2
or r >

1

2
(resp.,

√
3− 1

2
< r <

1

2
),

we have that a > 0 (resp., a < 0). (5.5)

Moreover, a = 0 provided that r =
1

2
. The proof then breaks into three cases.

(Case i)

√
3− 1

2
< r ≤ 1

2
.

Combining (5.4) and (5.5), we get that, for
√

3− 1

2
< r ≤ 1

2
, Γ2(d) ≥ Γ1(d) for d ∈ (0,∞).

Therefore, if

a2 = ra1,

√
3− 1

2
< r ≤ 1

2
,

then the corresponding δ(a1, a2) has the property that

δ(a1, a2) = (Γ2(dc))
1
2 =

(
1

1 + (1 + 2r)2

) 1
2

≥ 1√
5
,

where dc is the minimum point of the parabola Γ2(d). Note that

dc =
1 + 2r

a1(1 + (1 + 2r))2
=:

1

a1

h1(r).

(Case ii) r ≥ 1

2
.

In this case, a > 0 and so

min
d>0

max
1≤j≤2

Γj(d) =

{
min

0<d≤ā
Γ1(d), min

d≥ā
Γ2(d)

}
.

Writing a in terms of a1 and r, we get that

a =
2r − 1

a1(2r2 + 2r − 1)
=:

1

a1

h2(r).

Let rc be the unique real solution of

13



4r3 − 2r2 − 1 = 0.

Here
1

2
< rc < 1.

Some direct calculations would yield that

h2(r) ≥ h1(r), or, equivalently, a ≥ dc

(resp., h2(r) ≤ h1(r), or, equivalently, a ≤ dc),

provided that r ≥ rc (resp., r ≤ rc). Hence, for r ≥ rc, min
d≥ā

Γ2(d) = Γ2(a).

This is because that

the minimum point dc of the parabola is to the left of a for all r ∈ [0,∞). (5.6)

Moreover, min
0<d≤ā

Γ1(d) = Γ1(a).

For in this situation, the minimum point of Γ1(d) is
1

2a1

, which is to the right of a.

Consequently, for r ≥ rc,

δ(a1, a2) = Γ
1
2
2 (a) = Γ

1
2
1 (a) =

2r2 − 2r + 1

2r2 + 2r − 1
≥ 1

3
.

The minimum of δ(a1, a2) occurs at r = 1 or a1 = a2. For
1

2
≤ r < rc, we have, via

(5.4), (5.5) and (5.6), that

δ(a1, a2) = Γ
1
2
2 (dc) =

(
1

1 + (1 + 2r)2

) 1
2

≥
(

1

1 + (1 + 2rc)2

) 1
2

>
1

3
.

(Case iii) 0 < r <

√
3− 1

2
.

In this case, a > 0, r < rc and a ≤ dc. Thus,

δ(a1, a2) = Γ
1
2
2 (dc) =

(
1

1 + (1 + 2r)2

) 1
2

≥ 1√
2
.

Combining all three cases, we conclude that (5.3) holds true and that the minimum

is achieved whenever two nonzero ai are equal.

Remark 5.1. Theorem 3.1 is amount to saying that for the class of real-valued

coupling matrices of size 4 that are circulant but not all-to-all coupled, the equal

coupling weights would yield the fastest synchronized rate. For these matrices with

complex entries, our computation seems to suggest that the assertion in Theorem

3.1 holds as well, as seen in Table 5.1.
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(a1, a3) (9+i, 1+i) (8+i, 2+i) (7+i, 3+i) (6+i, 4+i) (5+i, 5+i)

d 0.0610 0.0734 0.0688 0.0661 0.0654

δ 0.6201 0.5090 0.4092 0.3559 1
3

Table 5.1: The coupling matrix G ∈ A2 with complex-valued entries. The compu-
tation seems to suggest that G with the equal weight yields the smallest δ, which is
1

3
.

The network configuration under consideration is the 2k nearest neighbor coupled

network, which is a symmetric circulant matrix Gk of the following form:

Gk = circ

(
−2

k∑
i=1

ai, a1, a2, . . . , ak, 0, 0, . . . , 0, ak, . . . , a2, a1

)
.

The case with equal weights on coupling coefficients is considered. We assume

that ai = 1, 1 ≤ i ≤ k. Note that the dimension of the matrix is m and so

1 ≤ k ≤
[
m− 1

2

]
. Then the spectrum of such Gk is

σ(Gk) =

{
−2k + 2

k∑
l=1

cos
2l(j − 1)π

m
, j = 1, 2, . . . ,m

}
. (5.7)

For k = 1, σ(G1) reduces to

{
−2 + 2 cos

2(j − 1)π

m
, j = 1, 2, . . . ,m

}
.

Armed with the formula for eigenvalues of Gk, Proposition3.1 and Theorem 3.1, we

obtain the following tables of df and δ for various (m, k).

m 3 4 5 6 7 8

df
1
3

1
3

0.4000 0.4000 0.4391 0.4361

δ 0 1
3

0.4472 0.6000 0.6693 0.7445

Table 5.2: Let k = 1. For various size m of coupling matrix G1, the corresponding
df and δ, as defined in (3.4a) and (3.4b), respectively, are listed in the table.

To obtain global synchronization theory, we need to have a bounded dissipative

region for CMMLs (2.1).
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Proposition 5.1. Let G = G1. Let f : J(f) → J(f). Suppose |zi(0)| ≤ r for

some r > 0. Then, for all 0 < d ≤ 1

2
, |zi(n)| ≤ r for all n ∈ N and all 1 ≤ i ≤ m.

Here, zi(n) are defined as in (2.1).

Proof : We shall prove the proposition by the induction. It is clear, via the assump-

tions, that the assertion of proposition holds for n = 0. Suppose |zi(k)| ≤ r for all

i. Then

|zi(k + 1)| ≤ (1− 2d)|f(zi−1(k))|+ d|f(zi(k))|+ d|f(zi+1(k))| ≤ r.

We have used the fact that f is invariant on J(f) to justify the above inequality.

The proof of the proposition is completed.

Theorem 5.2. Consider CCMLs (4.1) with f(z) = fc(z), where |c| < 1

4
, and G =

G1. Then CCMLs (2.1) acquires global synchrony on its Julia set with m = 3 and

4.

Proof : To acquire synchrony for (2.1), it suffices to show, via (2.5), that(
min
d∈C

max
2≤j≤m

|1 + dλj|
)
‖D(n)‖ < 1. (5.8)

Let f(z) = fc(z). Then

D(n) = diag(z1(n) + z2(n), . . . , zm−1(n) + zm(n)).

It then follows from Propositions 4.2 and 5.1 that

‖D(n)‖ ≤ 1 +
√

2.

Using Proposition 3.1, Theorem 3.1 and (5.7), we have that

min
d∈C

max
2≤j≤m

|1 + dλj| = δ =
λm − λ2

λm + λ2

=


2 cos2 π

m
+ cos π

m
− 1

−2 cos2 π
m

+ cos π
m

+ 3
, m is odd,

cos2 π
m

2− 2 cos2 π
m

, m is even.

Clearly, for m = 3 and m = 4, the corresponding λ2 = −3 = λm, λ2 = −2 and

λm = −4. Moreover, using Proposition 4.2-(i), we have that

‖D(z)‖ ≤ 1 +
√

2.
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In both cases, (5.8) are satisfied, as evidently seen in Table 5.2. The proof of the

assertion of the theorem is thus completed.

Theorem 5.3. Consider f(z) = fc(z), and G = G1.

(i) For c = 0, the local synchronization of (2.1) on its Julia set is lost with m ≥ 6.

On the other hand, the local synchronization of (2.1) on its Julia set is achieved

with m = 3, 4, 5.

(ii) For c = −2, CCMLs (2.1) is locally synchronized on its Julia set with m = 3, 4

and 5. Its synchronization is lost whenever m ≥ 6.

Proof : Following Remark 4.1-(i), we have that (2.6) becomes

e(n+ 1) = 2(I + dG+)e(n).

Applying (5.7), we get that

λ2 = −2 + 2 cos
2π

m

and

λm =

{
−2− 2 cos

π

m
, m is odd,

−4, m is even.

In both cases, it is easily to verify that δ =
λm − λ2

λm + λ2

is increasing in m and ap-

proaches to one as m goes to infinity. Upon using Table 5.2, we have that 2δ < 1 if

and only if m = 3, 4 and 5. We have just completed the first part of the theorem.

To prove the second assertion of the theorem, we first note that the logistic map

f(x) = 4x(1 − x) exists an invariant measure µ (see e.g., [13]), and is topological

transitive. It then follows from the Birkhoff’s Ergodic theorem that its Lyapunov

exponent λ(x) is constant almost everywhere (see e.g., [13]). In fact, λ(x) = ln2

for all x ∈ [0, 1] except those whose orbit containing zero (see e.g., [13]). Upon

using Remark 4.1-(ii), we conclude that e(n), as defined in (2.6), converges to zero

provided that

h+ lnδ = ln2δ < 0, or, equivalently, 2δ < 1,

17



where h = ln2 is the Lyapunov exponent of f−2(x) = x2 − 2, −2 ≤ x ≤ 2 and δ is

defined as in (3.4b).

Remark 5.2. For f(z) = gc(z), the corresponding D(n) has the form of

D(n) = diag(c+ z2
1(n) + z1(n)z2(n) + z2

2(n), c+ z2
2(n) + z2(n)z3(n) + z2

3(n), . . . ,

c+ z2
m−1(n) + zm−1(n)zm(n) + z2

m(n)).

Moreover, we have, via Proposition 4.2-(ii), that ‖D(n)‖ ≤ 7. Using Table 5.3, we

conclude that for G9 or G10 with the matrix size m = 21, the corresponding CCMLs

is globally synchronized on its Julia set. Finally, we see, via Table 5.4, that, for

Gm
2
−1 with the matrix size ≥ 17, global synchronization of the corresponding CCMLs

on its Julia set can also be acquired.

k 5 6 7 8 9 10

df 0.1139 0.0907 0.0713 0.0599 0.0527 0.0476

δ 0.5091 0.3877 0.3048 0.2078 0.1025 0

Table 5.3: Let m = 21 be fixed. df and δ for various Gk are listed in the table.

(
m,

m− 1

2
− 1

)
(11, 4) (13, 5) (15, 6) (17, 7) (19, 8) (21, 9)

df 0.1126 0.0916 0.0773 0.0669 0.0590 0.0527

δ 0.2027 0.1701 0.1462 0.1281 0.1139 0.1025

Table 5.4: Let k =
m− 1

2
− 1. The table gives df and δ for various m.

6 Concluding Remarks

We shall conclude this thesis by mentioning the possible future work.

(1) For a real-valued coupling matrix, an efficient procedure was proposed in [7] to

solve min max problem (3.2). It would be desirable to solve corresponding min

max problem (3.2) efficiently provided that a complex-valued coupling matrix

is given.
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(2) Constructing a network under a certain constraints so as to give the fastest syn-

chronized speed is both an interesting and challenging problem. Specifically,

the problem of solving inf min max (5.1) for a class A of coupling matrices is

worthwhile to pursue.

(3) For non-smooth Julia sets, the numerical verification of the synchronization

seems to be a nontrivial problem. For instance, if |c| < 1

4
and c is a complex

number, how one can verify computationally the theoretical results provided in

Theorem 5.2.
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