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Abstract

The purpose of this thesis'is to address synchronous chaos on a Julia set
in complex-valued coupled map-lattices (CCMLs). «Our main results contain
the following.” First, a unified formulation for the study-of global and local
synchronization CCMLIs is presented. Second, we solve an inf min max prob-
lem for which. its solution gives the fastest synchronized rate -among a class
of coupling matrices. Third, variousresults for global and local synchroniza-
tion on the Julia set are presented.

Keywords: Complex-Valued Coupled Map Lattices, Julia Set, Fastest Synchro-

nized Network.
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1 Introduction

In recent years, models of complex-valued neural networks have widened the scope
of application in optoelectronics, image, remote sensing, quantum neural devices
and systems, spatiotemporal analysis of physiological neural systems, and artificial
neural information processing [1, 2]. One typical such model is a fully connected
complex-valued neural network as the mathematical extension of an ordinary real-
valued Hopfield network. Their basic mathematical theory and applications have
been extensively studied. Coupled map lattices (CMLs) are comparable to neural
networks in that the value of each oscillator in both models depends on the neigh-
bors. The major differences lie on the facts that the dynamics on the (uncoupled)
oscillator for CMLs is usually assumed to be chaotic while that of the neural net-
works is simple. One of<the major mathematical questions for neural networks,
among others, is the global attractivity of the model. " On the other hand, CMLs
are predominantly used to qualitatively study the chaotic dynamics of spatially ex-
tended systems. Another interesting form of dynamical behavier occurs in CMLs
when all of the individual systems or oscillators acquire identical chaotic behavior.
Such synchronizedibehavior of a network can be constructed as models in many sys-
tems of interest in physics, biology, and engineering. Some progress in the theory
of synchronization has been made in CMLs. ~ Indeed, for general (real) CMLs, the
study of local synchronization can be found in [3, 4, 5, 6; 7]... Not much progress has
been made for the investigation ofiits global synehronization. There are, however,
globally synchronous results for'some special cases (see e.g., [8, 9]).

The purpose of this thesis is to investigate the theory of synchronization of CCMLs.
There are some notable differences between the (real) CMLs and CCMLs as far as
the synchrony is concerned. The same function when considered in the complex
plane generates much more complex and interesting dynamics. For instance, the
real valued function f(x) = 2+ ¢ has simple dynamics whenever |c| is small. How-
ever, its counterpart, defined in the complex plane, could generate chaotic dynamics
on its Julia set. Moreover, if the coupling coefficient between two nodes is assigned
to be a complex number, equipped with both the amplitude and phase, then find-

ing the optimal coupling coefficient yielding the fastest synchronization speed is a



taunting task. It should be remarked that finding the optimal coupling, leading
to an min max problem, is a key step toward establishing both local and global
synchronization theory of CMLs. In this thesis, we first present a unified formu-
lation for the study of both local and global synchronization of CCMLs. Second,
the problem of constructing a network for which the fastest synchronized speed can
be made by choosing a suitable coupling coefficient is investigated. The question
then becomes an inf min max problem. In particular, we prove that given a class
of coupling matrices of size 4, the equality between the nonzero and non-diagonal
elements gives the fastest synchronized speed. Third, synchronized theory on its
Julia set is presented.

We conclude this introductory section by mentioning the organization of the the-
sis. The unified formulation for investigating both local and global synchronization
theory of CCMLs is presented'in Section 2. The resultsconcerning the min max
problem is placed in Section 3.~ The needed results for Julia set are contained in
Section 4. The main results, the inf min max problem and the synchronization
on its Julia set, are recorded in Section 5. = Some concluding remarks about future

research are addressed in Section 6.

2 Unified Framework

Consider a network of (CCMLs) consisting of m oscillators. ~ The equations of the
motion then read as follow.
zi(n+1) = f(zn) +d (Z gikh(zk(n))> ci=1,...,m. (2.1)
k=1
Here f : C — C, represents the individual complex-valued function, and h: C — C
is an arbitrary nonlinear function to give how each oscillator’s variables are used in
the coupling. The quantities g;z; € C are the coupling coefficients between the

oscillators ¢ and k. To consider the notion of synchronization, we assume that

Zgik =0 foreachi, (2.2a)
k=1
and
0 is the simple eigenvalue of the coupling matrix G = (g;x). (2.2b)
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The quantity d represents the coupling strength, which is also allowed to be a

complex-valued number. In vector-matrix form with h = f, (2.1) becomes
z(n + 1) = F(z(n)) + dGF(z(n)). (2.3)

Here, z(n) = (21(n), ..., 2zm(n))T and F(z(n)) = (f(z1(n)), ..., f(zm(n)))T. In the
following, we shall derive a unified formulation for the study of both local and global
synchronization. To this end, we first make a coordinate change to decompose the

synchronous manifold. Let A be an m x m matrix of the form

1 -1 0 0

o 1 -1 .-+ 0 C
A= ::<eT>’

O -0 1 =1

1 1 - 1 1

where e’ = (1,1,...,1).
It is then easy to see.that CC™ is invertible and that
A*::(chcTrlyi).
m
Multiplying A to both sides of Equation(2.3), we get

Az(n + 1) =AF(z(n)) +dAGA 'AF(z(n))

cGclecch-tl o
0

= AF(z(n))+d ( ) AF(z(n)). (2.4a)

0
Let
G* —'cea’(cety, (2.4Db)
z1(n) — z(n)
) = o) r(n+1) ern+ 1)
._ o _ : , e(n + 1) =
s (1)~ 2n() e 1(n+1) enr(nt 1)
3 i) sy

and



Here D(n) is an (m — 1) x (m — 1) diagonal matrix of the form

fz1(n) = f(z2(n) f(2) = flz0)  flana(n) —f(zm(n))).

z1(n) — za(n) za(n) —z3(n) 77 Zm-1(n) = z2m(n)

D(n) = diag (
Then we have that the dynamics of e(n) is satisfied by the following equation
e(n+1) = (I+dG*)D(n)e(n). (2.5)

The task of obtaining global synchronization of system (2.1) is now reduced to
showing that the origin is globally asymptotically stable with respect to system
(2.5). It should be remarked that for the study of local synchronization, D(n)
reduces to the form f'(z(n))I. Here {z(n)}°, is the orbit defined by (2.1) on
the synchronous manifold. Consequently, we say that (2.1) is locally synchronized

provided that the origin of the linear system
6(7 1) =f/(2(n) JIHAG e(n) (2.6)

is asymptotically stable. Note-that (2:6) is-equivalent to the well-known master

stability equation {7, 10].

3 Min Max Problem

In view of (2.5) and (2.6), to study the synchronous dynamics of (2.1), we need
find an optimal coupling coefficient d so that the spectral radius of 1 + dG™ is the
smallest. We are then led to consider the following min max problem. Assume

that (2.2a) and (2.2b) are satisfied. ~We also assume from here on that
real parts of the eigenvalues of G are non-positive. (3.1)
Let the spectrum o(G) of G be denoted by
0(G)={ M =0, As,..., A\ }.

Here Re(A;) <0, 2 < j <m,and 0 < |A| < |A3] < -+ < |An|. It then follows
from (2.4a) and (2.4b) that

o(G) =0(AGA™) =0o(GT)U{0}.

4



Consequently, 0(GT) = {A2,A3,..., A\n}. To minimize the spectral radius of 1 4+

dG™, we consider the following min max problem:

min max |1 +d)\;| = min min max |1+ re? )]
deC 2<j<m —n<6<nm reR+ 2<j<m
= min  min max |1+ re),| (3.2)

—0p, <0<0p, reRT 2<j<m

=: min  min max v;(r,0,6;),
0, <0<6,, reR+ 2<j<m

|
IA
=
IA

and ¢,, = min _ej_f:_3_”<9j§_f}.
The second equality holds due to the fact that if o € [—7w,—6,,) U (6,,, 7] and
6 € [—0,,,0,,], then

’yjz(r, a,0;) .= 142rr; cos(a + 6;) + rN 2> fyjz(’r, 6,0;).
For each fixed 6 € [—0,;,0,,], wefirst need to solve the following min max problem

min max sl Lo o U M W (1, 0). (3.3)
The solution to (3.3) with § =0 was given in [7]. By treating eigenvalues having
the form )\jei(gwﬂ'), the case 0 # 0 becomes similarly to the case’® = 0. Hence, for

each 6, we may apply the efficient procedure proposed in [7] for solving (3.3). For

ease of reference, we also recall a result from [7].

Theorem 3.1. (Theorem 2.4 of [7}). Suppose-themm X m coupling matric G has
non-positive real eigenvalues. Denote by {)\i}i@Q, m < m, where \; are eigenvalues
of G and 0 < |Xg| < |A3] < -+ < |A|.  Then

-2

d=———=:d 3.4a
Ao+ /\m / ( )
solves min maz problem (3.3). Moreover,
A — A
min max |14 d\;| = 222 —. 5, (3.4Db)
deR 2<5<m Ay, + A2

It should be noted that dy gives the fastest convergence rate § of the initial values
toward the synchronous state. We next show that given a real-valued matrix G,

there exists a unique positive real d solves the min max (3.2).

5
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Proposition 3.1. Let G € R™*™. Then

min max |1+ d\;| = min max |1 4 d\;| = min max |1+ d},|. (3.5)
deC 2<5j<m deR 2<j<m d>0 2<j<m

Proof: For G € R™*™ 0, =0,,. Let \; be an eigenvalue of G. If ); is real and

negative, then

Vi(r,0,0; = m) > 77 (r,0,7) for any 6 € [—0,,,0,,].

Suppose A\; = r;e' is complex. Then ;\j is also an eigenvalue of G.  Without lose

of generality, we may assume that

Y. — _ i0; _ —
>\j = )‘j—i-l = Tj+1€7' 7+1, where Tiy1 = T5 and 8j+1 = —49]'.

For any 6 € [—0,,,0,,], we have

maX{V? (Tv 6)’ ej)a ’7]2-5-1 (T, 0a ‘9j+1)} > max{’yf-(r, 0; ej)v ’7J2+1(r7 0, 0j+1)}
= 7]2 (Ta 0, ‘9])
= i (1,0,0;11).
Thus,
ngnjag}fn Yj (Ta 95 9]) > 2%%);1 Yy (7’, Oa 6])

We have just completed. the proof of the proposition.

Remark 3.1. For a complezr<valued G finding the solution for (3.2) is more chal-
lenging. For each 6, the synchronization curve Sy, composed a certain of pieces of
|1 + d\;|, termed transverse Lyapunov exponent curves (LECs), can be found effi-
ciently as described in [7].  This, in turn, gives the fastest convergence rate § = 6(0)
occurring at d = r(0)e?. As one gradually various 0 from —0,, to 0,,, the pieces
of LECs for the corresponding synchronization curve are most likely to change. To

illustrate our point, let G be a circulant matriz [11] of the form

cire(—10 + 44,9 — 5,0,0,1 + ).



The eigenvalues of G is Ay &~ —1.2035 + 10.37244, A3 ~ —12.6162 — 4.8445i, My ~
—14.5635+11.93832, and A5 = —21.6169+2.5338i.  Using the procedure provided in
[7], we have that for —0.1155 < 6 < 0.0570, the synchronization curve is composed
of the LEC's corresponding to |1+dXs|, |[14+dAs| and |1+dXs|.  As 0 keeps varying,
we list the exact pieces of the LECSs for its associated synchronization curve in Table

3.1.  The graph of 6(0) is shown in Fig3.1. Pictorially, we have that
0 ~ 0.5440 and r ~ 0.051344,
solves min maz (3.2). Moreover,

min max |1+ d\;| =~ 0.793995.

deC 2<5<5

05 <0< 0, LECs
0y = —0.1155 < 0 < 0.0570 \| (2,4,5)
0.0570 < 0-<-0.4920 (2,5)
0.4920 < -<-0.6440 (2,3,5)
0.6440 < 6 < 1.2041 = 6, (375

Table 3.1: The synchronization curve S is decided by three LECS |1+dXs|, |1+dA4|
and |1 + d\s5|, whenever —0.1155 <0 <0.0570. The numbers in other columns of
the table is similarly explained.

0.95

Q.85

os

o

T

L N : " . N x
0'7-%A2 o o2 O.a fo.6 0.8 1 1.2 1.4

Figure 3.1: The graph of §(0), —6,, < 6 < 6,,. Its minimum occurs at (r,d) ~
(0.051344,0.793995)



4 Julia Set

Since synchronization of CCMLs is considered on its Julia set, we shall recall some
well-known definitions and results (see e.g., [12]). Some needed estimates for the
size of Julia sets are also derived in this section. We shall concentrate on considering

polynomial maps of the form,
fo(2) = 2% + ¢, where z,c € C and g.(z) = 2° + cz. (4.1)

Definition 4.1. Let P. : C — C be a polynomial with a parameter ¢ € C. Then
Julia set of P., denote by J(P,), is the closure of the set of repelling periodic points
of P..

1
Proposition 4.1. (See e.g [12]) Suppose |ej-< 1 (resp., |c| < 1). Then J(f.)
(resp., J(g.)) is a simple closed curve. If, in addition, ¢ is complex, then J(f.)

(resp., J(g.)) containsmo smooth-ares.

The proof for J(g.)-being a simple-curve with |¢| <1 is similar to:that of J(g.) with

| < T and is, thus, omitted.

Theorem 4.1. (See e.g., [12]) J(FP:) s a perfect set and is completely invariant.

Moreover, P, is chaotic on J(P.) in the sense of Devaney.

Remark 4.1.

(i) Clearly, the Julia set P(fy) S the-unit ¢circle, and so fo : P(fo) — P(fo)

reduces to the chaotic map of the form 6 — 26.

(ii) Let f_o(2) = 22—2. Then J(f_o) is the closed interval [—2,2] (see e.g., Exam-
ple 5.11 of [12]). Moreover, the map f_o(2) : J(f-2) = J(f-2) is topological

conjugate to the map x — 4x(1 — x).

In the following, the size of the Julia sets of f. and g. are to be estimated.

Proposition 4.2.

1 2 1
+2\/_. Then J(f.) C B.(0), where |c| < 1

(i) Let r =



(ii) Letr =+/2. Then J(g.) C B,(0), where |¢| < 1.
Proof: To prove (i), we have that

z 212 — e z z—i)
L) > J¢ \|z||<|| =)

1 2 1

Now, if z ¢ B,(0), then |z| > +2\/—. Consequently, |z| — 2 > 1. Therefore,
z

if z ¢ B.(0), then |f.(z)| > |z|]. Consequently, |f(z)] — oo as n — oco. It then

follows from Theorem 4.1 and Proposition 4.1 that J(f.) C B,(0) as claimed.

To see (ii), we have that for z ¢ B,.(0),

|9:(2)| > 2° — |zl= |2] (12" — 1) > |<].

Similarly, we conclude that ‘J(g¢) @B, (0).

5 Main Results

In this section, the questions of fastest synchronized network and the theory of
synchronization onvits Julia set are to be addressed.  To this end, we begin with
considering how the network of the system should be constructed to have its system
synchronized fastest among a class of coupling matrices. Let &7 be a class of cou-
pling matrices satisfying (2.2a), (2:2b) and (3:1):= The above mentioned problem is
then amount to solving

inf min‘max |1+ d\;| := inf §(G). (5.1)
Ged/ deC 2<j<m Ged

Here, o, which depends on G, is defined in Theorem 3.1 such inf, if exists, is called
the fastest synchronized rate among the class 7. To simplified problem, we shall

consider the set of circulant matrices of the form
cire(C1, Cmy Cm1y - - -, C3, C2). (5.2a)

Note that the spectrum (use e.g., [11]) of the circulant matrix of the form in (5.2a)

2(7 — 1)me
{cl+cmwj+---—|—02w]m_1:wj:exp(u), jzl,...,m}.

18
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To get some theoretical results, we further simplify our case.
Specifically, let
o ={G = circ(—a; — ags — as, ay, as, ag) : exactly one of (5.2b)

a1, as and ag is zero, the others are positive real}.

To emphasize the dependence of G, d; and § on a;, we shall write, for instance,
G = G(a1,a2), df = df(ar,a2) and § = §(ar,a2). The dependency on a; will be

dropped, should no confusion arise.

Theorem 5.1. Let o be given as in (5.2b). Then

ég{é(G) = i NG) = e (5.3)

Moreover, the min min maz 1S -achieved whenever two monzero a; are equal.

Proof: Let of = oy Uk U ofy, where & C o/ and G € o7 if'and only if a; =0, i =
1,2,3. We shall start out with-finding Ginf{ 0(G).  Let
€972

G = cire(—ay — ag, a1,0, as).
Then for G € a7,
o(G") = {—2(a +as),—(a + ag) + ilar— da3), —(ay+as) — i(a — a3)}

= {—2r(cos0+sind), —r[(cosf + sin §)—i(cos f — sin )],
—r[(cos 6 + sing) +a(cos @ — sinh)]}.

Here r = y/a? 4+ a3 and 0 <9 < g In view of (3.5), we may assume without lose
of generality that
o(GT) = {—2(cosf +sinf), —(cosd + sinf) + i(cos § — sin ),
—(cos @ +sinf) —i(cosf —sinf)}
= {717 Y25 73}

Note that |1 4+ dvys| = |1 + dvys|. Moreover, we have, via Proposition 3.1, that

min max |1 + dv;| = min max |1 + dv;| := min max v;(d).
deC 1<5<2 d>0 1<;j<2 d>0 1<5<2

10



Let I';(d) = ~7(d), j=1,2and d > 0. Then
['y(d) = (1 — 2d(cos + sin 9))?
and

[y(d) = 2d* — 2d(cos @ + sin @) + 1.
cosf + sin 6

1+ 2sin20°
Let A and C be, respectively, the d—coordinate of the vertices of the parabolas

['y and I's. Let B # 0 be the d—coordinate of the intersection of I'y and I's. In

Clearly, two parabolas Iy and I's intersect at d = 0 and d =

particular,

= 1 ' 7B:cosﬁ%—‘sme andC:COSQ-i-Sln@.
2(cos @ +sin0) 1 4+ 2sin 26 2

For0<f< - or F <p< B USOaBTFor Lxo< A<B<C
127 12 ) 12 12

QU

5
Figure 5.1: The case that 0. <6< % or % <0< g Then A< C < B.

5
Figure 5.2: The case that - <0< T

< —. Then A< B<C(C.
12 12

Typical graphs of I'y and I'y are shown in Figs 5.1 and 5.2. From Fig 5.1, we have

5
thatforOSQSior_ﬂgggz,
12 12 2
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1
) 1—sin20\2 _ 1
(@) = et = (A2 =
For - <0< 5—7,
12 12
S(G) =14+ By| = — > 1
N T T 2sin20 < 3
Consequently,
1
inf §(G)= min §(G) = =.
Gedh Gedh 3

7
Furthermore, such minimum can be achieved provided that 6§ = T or, equivalently,
az = a1, which corresponds to a symmetric G.

Let G € @ and H € . Then

o(GT) ={=2a1, — (a1 +2as) + ari,~(ar+2az) — a3}
and

o(H) = {—2a3, —(ag + 2as) + asi, —(az + 2a;) — asi}.
Hence,

J2, NG Tzl o

To complete the proof of the theorem, it then suffices'to show that

|
1 > —.
a2 e=;

As in the case of inf 0(G), the corresponding I'y and I'y are, respectively, given as

GeEo
in the following.

[1(d) = (1 —2day)* and Ty(d) = (1 — d(ay + 2as))* + (day)*.

Here d is defined on (0,00). A direct calculation would yield that I'y and I'y inter-

2a0 — a
sects at d =0 and d = -— 2 ! 5 =: a. Moreover,
2a5 + 2a1a9 — af

['a(d) > T'1(d) (resp., I'y(d) < T'y(d)) provided that d > a (resp., 0 < d < a). (5.4)

12



To further pursue our goal, we need to know the relative position of @ and the

minimum points of I'y and I'; on the real line. To this end, let ay = ra;. Then,

V3—1 1 V3—1 1
0r7“>§ (resp., 5 <7"<§),

we have that @ > 0 (resp., a < 0). (5.5)

for0<r<

1
Moreover, a = 0 provided that r = 3 The proof then breaks into three cases.

V3-1
2

(Case i)

DN | —

<r<

Combining (5.4) and (5.5), we get that, for

31
f2 -

& % Ta(dy>Tyld) fof dve (0, 00).

Therefore, if

V31
2

Ay =-ray, <r < =y

DN | —

then the corresponding (a1, as) has the property that

[

1 2 1
sl = g ) 2

where d, is the minimum point of the parabola T'y(d). Note that

s 1+ 2r 1
T (22 ey

hy(r).

N | —

(Case ii) r >

In this case, @ > 0 and so
min max [';(d) = { min I'y(d), min Fg(d)} :
d>0 1<5<2 0<d<a d>a

Writing @ in terms of a; and r, we get that

2r—1 1
a = = —h .
“ a;(2r2 4+2r —1) a; 2(r)

Let r. be the unique real solution of

13



493 —2r2 —1=0.
1
Here 3 <r.<l.
Some direct calculations would yield that
ho(r) > hq(r),or, equivalently, a > d,
(resp., ha(r) < hq(r),or, equivalently, a < d.),

provided that r > r. (resp., r < r.). Hence, for r > r,, r§1>i[1 y(d) = Ty(a).
This is because that B
the minimum point d, of the parabola is to the left of @ for all r € [0,00). (5.6)
Moreover, min I'y(d) = I'y(a).
0<d<a

1
For in this situation, the minimum point of T'y(d) is'—=, which is to the right of a.

ay
Consequently, for r > .|
1 100t or Bl el
Oa0s) = Bxtai= File) <5 55 7 5m

1
The minimum of §(ay, a;) occurs at r = 1 or a; = ag. For 5 <r <r. we have, via

(5.4), (5.5) and (5!6), that

v - (et )
V31
5

DN o=

(5(@1, a2> =TI

(Case iii) 0 < r <

In this case, a > 0,7 < r. and a' <'d.. Thus,
. 1 P
d(ar, az) =T3(de) = (m) > ok
Combining all three cases, we conclude that (5.3) holds true and that the minimum

is achieved whenever two nonzero a; are equal.

Remark 5.1. Theorem 3.1 is amount to saying that for the class of real-valued
coupling matrices of size 4 that are circulant but not all-to-all coupled, the equal
coupling weights would yield the fastest synchronized rate. For these matrices with

complex entries, our computation seems to suggest that the assertion in Theorem

3.1 holds as well, as seen in Table 5.1.

14



(a1, a3) (9+i, 14i) (8+i, 2+1) (T+i, 3+i) (641, 4+1) (541, 5+i)

d 0.0610 0.0734 0.0688 0.0661 0.0654

) 0.6201 0.5090 0.4092 0.3559 %

Table 5.1: The coupling matrix G € % with complex-valued entries. The compu-

tation seems to suggest that G with the equal weight yields the smallest §, which is
1

3

The network configuration under consideration is the 2k nearest neighbor coupled

network, which is a symmetric circulant matrix Gy of the following form:

k—CZ’/’C( 2 g az,al,ag,...,ak,0,0,...,O,ak,...,ag,m).

The case with equal weights on coupling coefficients.is considered. We assume

that a; = 1,1 < ¢ < 'k Note-that the dimension of the matrix is m and so
m—1

1<k< { ] . “Then the spectrum of such Gy is

)7
7 (G)y= {Zk—l—QZCOS g j:1,2,...,m}. (5.7)

2(j—1
For k =1, 0(Gy) reduces to § —2+ 2COSu, j=A420..m
m
Armed with the formulafor eigenvalues of Gy, Proposition3.1 and Theorem 3.1, we

obtain the following tables of d; and §-for-various (m, k).

m | 3 4 5 6 7 8
de | & 5 04000 04000 04391  0.4361
5 | 0 & 04472 0.6000  0.6693  0.7445

Table 5.2: Let k = 1. For various size m of coupling matrix Gy, the corresponding
ds and ¢, as defined in (3.4a) and (3.4Db), respectively, are listed in the table.

To obtain global synchronization theory, we need to have a bounded dissipative

region for CMMLs (2.1).
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Proposition 5.1. Let G = Gy. Let f : J(f) — J(f). Suppose |z(0)| < r for
1

somer > 0. Then, for all0 < d < 2’ |zi(n)| <r foralln € N and all 1 <i < m.

Here, z;(n) are defined as in (2.1).

Proof: We shall prove the proposition by the induction. It is clear, via the assump-
tions, that the assertion of proposition holds for n = 0. Suppose |z;(k)| < r for all
1. Then

|2i(k + D] < (1= 2d)|f(zi1(K))| + d| f (z:(k))| + d| f (zisa ()| < 7

We have used the fact that f is invariant on J(f) to justify the above inequality.
The proof of the proposition is completed.

1
Theorem 5.2. Consider CCMLs (4.1) with f(z) = f.(2), where |c| < 7 and G =
G1. Then CCMLs (2.1) acquires global synchrony en its Julia set with m = 3 and
4.

Proof: To acquire synchrony for-(2.1), it suffices to show, via (2.5), that

(min max |1 +d)\j|> ID(n)]] < 1. (5.8)

deC 2<j<m
Let f(z) = f.(2). Then
D(n) = diag(z.(n) + z2(n), 52,50 (n) 42, (n)).
It then follows from Propositions4.2 and 5.1 that
DI < 1532,

Using Proposition 3.1, Theorem 3.1 and (5.7), we have that

2cos® L +cos & —1

m is odd
- A — A2 —2cos2 = + cos = + 3’ ’
m1nmax|1—|—d)\j|:6:m—: m o m
deC 2<j<m )\m + Ay cos” - )
m is even.

2 —2cos2 I’
m

Clearly, for m = 3 and m = 4, the corresponding Ay = —3 = A, A2 = —2 and

Aim = —4.  Moreover, using Proposition 4.2-(i), we have that
ID(z)|| <1+ V2.
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In both cases, (5.8) are satisfied, as evidently seen in Table 5.2. The proof of the

assertion of the theorem is thus completed.
Theorem 5.3. Consider f(z) = f.(z), and G = G1.

(i) Forc =0, the local synchronization of (2.1) on its Julia set is lost with m > 6.
On the other hand, the local synchronization of (2.1) on its Julia set is achieved

with m = 3,4, 5.

(ii) Forc= —2, CCMLs (2.1) is locally synchronized on its Julia set with m = 3,4

and 5. Its synchronization is lost whenever m > 6.
Proof: Following Remark 4.1-(i), we have that. (2.6) becomes
e(n +1) = 2(I+ dG*)e(n).
Applying (5.7), we get. that
Ao = —2+ 2608 2—7T

m

and -
{ —2—2cos—, m is odd,
)\m = m

—4, m 1S even.
L : : Ay =X /. .
In both cases, it is easily to wverify that § = ———— is increasing in m and ap-
)\m + )\2

proaches to one as m goes toinfinity. Upon using Table 5.2, we have that 2§ < 1 if
and only if m = 3,4 and 5. We have just completed the first part of the theorem.
To prove the second assertion of the theorem, we first note that the logistic map
f(z) = 4z(1 — x) exists an invariant measure u (see e.g., [13]), and is topological
transitive. It then follows from the Birkhoff’s Ergodic theorem that its Lyapunov
exponent A(z) is constant almost everywhere (see e.g., [13]). In fact, A\(z) = In2
for all x € [0,1] except those whose orbit containing zero (see e.g., [13]). Upon
using Remark 4.1-(ii), we conclude that e(n), as defined in (2.6), converges to zero

provided that

h+Ind = In2d < 0, or, equivalently, 26 < 1,
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where h = [n2 is the Lyapunov exponent of f o(x) =22 —2, —2 < x <2 and § is
defined as in (3.4b).

Remark 5.2. For f(z) = g.(2), the corresponding D(n) has the form of

D(n) = diag(c+ 22(n) + z1(n)z2(n) + 22(n), c + 25(n) + 22(n)zs(n) + 22(n), ...,
c+ 22 () + zm_1(n)zm(n) + 22 (n)).

Moreover, we have, via Proposition 4.2-(ii), that |D(n)|| < 7. Using Table 5.3, we
conclude that for Gg or Gg with the matriz size m = 21, the corresponding CCMLs
is globally synchronized on its Julia set. Finally, we see, via Table 5.4, that, for
Gy with the matriz size > 17, global synchronization of the corresponding CCMLs

on its Julia set can also be acquired.

k 5 6 7 8 9 10
dy 0.1139 0.0907 0.0713 0.0599 0.0527 0.0476
o 0.5091 0.3877 0.3048 0.2078 0.1025 0

Table 5.3: Let m/= 21 be fixed. d; and ¢ for various Gy are listed in the table.

(m,mT_l—1> (11,4) (13,5 =56 (4.7 (19,8 (2L, 9)

dy 0.1126 0.0916 0.0773 0.0669 0.0590 0.0527
0 0.2027 0.1701 0:1462 0.1281 0.1139 0.1025
m—1 . .
Table 5.4: Let k = —5 1. The table gives dy and 4 for various m.

6 Concluding Remarks

We shall conclude this thesis by mentioning the possible future work.

(1) For a real-valued coupling matrix, an efficient procedure was proposed in [7] to
solve min max problem (3.2). It would be desirable to solve corresponding min

max problem (3.2) efficiently provided that a complex-valued coupling matrix

is given.

18



(2)

Constructing a network under a certain constraints so as to give the fastest syn-
chronized speed is both an interesting and challenging problem. Specifically,
the problem of solving inf min max (5.1) for a class &7 of coupling matrices is

worthwhile to pursue.

For non-smooth Julia sets, the numerical verification of the synchronization
1

seems to be a nontrivial problem. For instance, if |¢| < 1 and c is a complex

number, how one can verify computationally the theoretical results provided in

Theorem 5.2.
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