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Abstract

Pharmaceutical development is a lengthy and expensive process and many of
these agents fail relatively late in that process. Hence, there is an urgent need of new
strategies and methodology for efficient and cost-effective designs to screen potential
candidates based on the idea of the proof of the concept for efficacy in a rapid and
reliable manner to minimize the total sample size and hence to shorten the duration of
the trials. In phase Il clinical trials, two-stage or multiple-stage designs with no
control group have been propesed based- on- frequentist statistical approaches.
Alternatively, Bayesian methods incorporating relevant prior information into the
analysis of the trial results may be more intuitive and helpful. In this thesis, two
Bayesian two-stage screening designs based on continuous efficacy endpoints are
proposed. Numerical example is presented to illustrate the Bayesian approach.

Comparisons with other frequentist approaches are also made.
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1. Introduction

The development of pharmaceutical products is risky, challenging, slow, costly
and time-consuming endeavor. An analysis which takes into account that projects
which were neither success nor fair suggests that it usually takes about 10-15 years to
develop one new medicine from the time it is discovered to when it is available for
commercial marketing and treating patients. The average cost to research and develop
each successful drug is estimated to be $800 million to $1 billion and 70% of the cost
of pharmaceutical development is wasted on drugs that do not even make it to market.
By the time a drug company applies to the Food and Drug Administration (FDA) for
marketing approval of a new product, on average it has performed more than 70
clinical studies on at least 4,000 patients. Despite a better understanding of disease
etiology and advance in medical-technology, there is only 1 out of 10,000 candidates
screened in the laboratory that will survive to market launch, and more than 60% of
the potential candidates that enter clinical trials fail. Furthermore, the success rate of
the phase Il stage of the clinical development has fallen by 30% [1]. On the other
hand, the development of biomedical science has been raised to cure many diseases
nowadays and been full of potential.-Nevertheless, the number of the biomedical
products and new drugs submitted to the FDA and approved by the FDA does not
increase. One of the probable reasons may be that the drug screening process should
become more efficient and effective to let the biomedical science fill with full
potential. As a result, there is an urgent need of new strategies and methodologies for
overall success improving, efficient, and cost-effective designs to screen potential
candidates based on the idea of the proof of the concept for efficacy in a rapid and
reliable manner to minimize the total sample size and hence to shorten the duration of
the trials.

Trials of pharmaceutical agents have been divided into phase I — IV. The drug
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first was developed and tested in the laboratory. Once it is done and ready for testing
in the human subjects, a phase I trial is conducted. The purpose of the phase I trial
is to examine the drug tolerance, metabolism and study the drug toxicity in human
and also identify the best dose to be used. Then, the phase Il trial may employ the best
dose identified in the phase I study to assess the efficacy of the drug and determine
whether it should be tested in further phase II trial. The phase II trial consists of
therapeutic confirmatory studies and establishment of the safety profile by comparing
the drug with other compound being used to treat the condition. The phase IV trial
consists of the examination the drug in broad or special population and seeking to
identify uncommon adverse events, for example Lawrence et al. [2] and Tan and
Machin [3].

To evaluate the biological-activity or efficacy of the drug, the phase Il trial is
conducted. Phase Il trials can be a single-stage or a multi-stage design. Among
two-stage designs, the approaches commonly used are Gehan design, Simon optimal
design, and the minimax design. These designs are based on the frequentist statistical
approach. For Simon’s two-stage design, it requires some specific input, including
uninteresting level, target level, type 1. error-and type Il error. The sample sizes are
evaluated subjected to the constraint upon the type I error and type Il error. The idea
of the two-stage approach is presented as follows. When the first stage is completed,
the trial would be terminated if the response rate does not exceed some critical value
indicating that the drug has low efficacy and is not recommended to the next step of
the trial. Otherwise, more patients are enrolled and treated in the second stage. After
the second stage is completed, the final analysis is performed with the outcomes of
the first and the second stage. The drug would be rejected if the overall response rate
is less than some critical level and not be recommended to the phase II trial.

Otherwise, the drug would be recommended to the phase I trial. Simon [4] proposed
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the “Optimal two-stage designs for phase Il clinical trials” with binary response
endpoints. Tsou et al. [5] proposed a two-stage screening design based on continuous
efficacy endpoints under the framework of Simon two-stage design.

The main concept of Bayesian approach is the incorporation of the prior
distribution which brings in the prior experience or information. So, the Bayesian
design in Simon [4] allows for the formal incorporation of relevant information from
the other resources of the evidence in the monitoring and analysis of the trial. With a
Bayesian approach, we can obtain the posterior distribution of the true response rate.
This allows us to compute the probability that the response rate falls within the region
of interest. For example, we can derive the interval with a 95 per cent probability of
containing the true response rate. On-the other hand, the frequentist approach cannot
answer this kind of questions.

Several Bayesian designs have been proposed for phase Il trials, for example
methods proposed by Thall [6], Heitjan [7], and Sylverster [8], while most of these
are not the real two-stage design but the continuous monitoring design of the trial. In
particular, Thall and Simon proposed a design which involves the continual accrual of
patients until the new drug Is shown.with-high posterior probability to be either
promising or not promising, or until a predetermined maximum sample size is reached.
Their design requires the specifications of an informative clinical prior for the
response rate of the standard drug which has been found to be the best so far, and a
non-informative clinical prior for the response rate of the new drug [6]. In contrast,
instead of the prior for the new drug, Heitjan’s design requires the specification of
hypothetical skeptical and enthusiastic priors. Both Thall and Simon’s as well as
Heitjan’s designs make use of probability distributions for both the response
proportions of the standard drug as well as the new drug. This is unlike the framework

of the frequentist designs in which only take account of the response rate of the
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standard drug.

Tan and Machin [3] proposed two Bayesian designs for phase Il trials which are
like the frameworks of designs of Thall [6], Heitjan [7] and Sylverster [8]. The design
does not require the specification of a loss or utility function and only need to specify
a prior distribution for the response rate of the new drug and not the standard drug as
well. It would make the design to be similar to the frequentist approach of two stage
phase Il clinical trials.

In this thesis, two Bayesian designs for phase Il trials with continuous endpoints
will be developed. One is the single threshold Bayesian design and another is the dual
threshold Bayesian design. These two designs are presented in Section 2 and 3,
respectively. The methods to determine the sample size and to determine whether to
recommend the drug to the phase-1II trial or not are also propased. In Section 4, the
numerical results of sample sizes and simulation studies are shown. Comparison with
Simon design will be given in Section 5. Discussion and conclusion are made in

Section 6.



2. Single Threshold Design
We consider a two-stage design for a phase Il clinical trial for testing an

experimental drug based on continuous response endpoints. In our design, let n, be

the number of patients recruited and treated in the first stage and (possibly) further

n, be the number of additional patients recruited at stage 2. Let X, denote the

response of the i™ patient among the n, patients in stage 1, i=1,..,nand X

denote the responses of the j" patient among the n, patients in stage 2,

j=1..,n,. Total sample size would be N =n,+n,. Because most continuous

efficacy endpoints or their log transformation follow normal or approximately normal

distributions, we assume that—X,-and X, are normally distributed with a mean of
u and a known variance of &*. Hence, X, X{*, X3y, X32 are i.i.d. random
variables with “common distribution  N(z,o?) . Suppose o? is known. For
convenience of notations, we denote X, and X, the sample means of the
responses in the stage 1 and 2, respectively. We also define a pair of variablesY, = 71 ,

X A XX X X AN,

Y2
n, +n, n +n,

which are beneficial for following

calculation in two designs. By some algebra (the detail was described in Appendix 1),
- o o o

we know that X, is distributed as N(,u,n—) and X, isdistributed as N(y,n—).
1 2

Considering the single threshold design (STD), we let 4, be the target

response mean and u be the true mean for testing the drug. Then the prior

distribution of « is assumed as a normal distribution with mean & and variance

. Furthermore, let 4, and 4, (with 0<4 <4, <1) be the minimum desired



threshold probabilities, at the interim stage and at the end of the trial, respectively.

Now, suppose that the (hypothetical) response mean underlying Y, and Y, are just
larger than the pre-specified g, , that is u, +&,, where g, is some preselected
small value (say between 0 and 0.1).

To find the suitable minimum total sample size for this trial design, we enable
two constraints to find the smallest sample size. We enable the posterior probability of
wover the target response mean g4, at the end of stage 1, Pr(u> 4, |Y,), to be at
least 4,. Moreover, the posterior probability of x over the target response mean g,

at the end of trial, Pr(u> 1, |Y;,Y,), IS at least4,. We can express two inequalities as

Pr(u> 1, [Y) 2 4 @
and
Pr(e > 14, Y1, Y,) 2 4, (2)

According to the Bayesian-principal, we obtain that the posterior distribution of

4 given Y, isanormal distribution as (the details are given in Appendix 2).

ot ) ot
2
T n n
p#Yi=N 7 |t oG )
g s e SR
nl nl nl
O_Z
n
~N((@-r)y,+ro,rz*), where r=—=—.
2+7
r]l
By the result of (3), the constraint (1) becomes
2
e “—(1-r)y, +r0
[ =—=o0 Aoy o Ly, 5, (4)
i E I'T 2I’T

Furthermore, by the following computation, we would like to find the posterior
distribution of 4 given Y, and Y, that enable us to simplify the constraint (2) and
find the suitable minimum sample size for the design.

We get the joint distribution of Y, and Y, given x from the joint distribution



of X_1 and X_2 given u by multiplying a Jacobian factor |J| Then we substitute

71=Yl, X, = Ll YszﬁY1 into expression (5) to get expression (6). The joint
n2 r]2

distribution of Y, and Y, given x can be derived as follows,

f(yn Y. |l 4)
1 0
:f(Z’X_2|,U)'|J| , Where |J|:—_n1 n,+n, _n+n
n, n, 2
LIV R{CHIOEN
— a7 .
:;zexp _ /? &, !Zl) n+n, -
2r - o Zi 20_7 n,
nlnz n]_ n2
Tl L PPN
1 R A S e
:7@(‘) o o’ = F : b b (6)
2r - 2.9 FO 1
annZ n n,

We then get the joint distribution of Y;, Y, and x by multiplying the joint
distribution of Y, and Y, given x and the prior distribution of x that is z(u),
that is
f (Y10 Y20 10)

= £ (Yo Y, | 20)- (1)

ey My
1 n+n, o) (- " n, " 7" B e I (0— p)*
- 2 p 2 2 \/_ p 2 2
or. O n, 5.0 2.0° 2t T
nan nl nZ




1y )2
1 n1+n2 exp _(yl_ﬂ)z_ n, ’ n, _(g_lu)z

(7)

32 G T n2 . .O_
Jn n, n n,

By integrating (7) with respect to «, we get the joint p.d.f. of Y, and Y, asin

(2)

(8). Expanding three terms of exponential and also separating the terms irrelevant to

4 out of the integration in expression (8), we get expression (9).

f (Y1, Y,)
n +n n
(—2y, -2y, —u)?
© _ 2 2 1 _ 2
R fep )l 4 @
(2 )3/2 o’r n, < 2.(77 2_0; 2T
nlnz nl n2
1 nl+n2.c_
o0 32 O T O'T n2
( ) .

T 1( n n 1 n, N+n 1
jexp{—g[—éu“—iﬂ“—zu ~2 g+ 222 —ylﬂ—z—zzgyzﬂ—z—zﬂ‘gj}dﬂ 9)
O (o2 T O- n o n T

2 2

—0

B 1 nl+n2.c'

O' T n
(2 )3/2 2

r11”2

n n n +n 1
“ ifn n, 17 , ;éyl 0712y1+ 1022y2+729
Jexp _E|:_2+_2+_2} ool n n, 1 du 10)
- o o v 7124-7224‘72
(o2 (o2 T

where

2 2
n , N, (n+n, , Nh, [N . N, n+n, n 1 .,
C=exp<— - — -1 + 2. 2.1 +2.—9°\,
p{ 20° Y 202( n, ] % Zaz(n j Y 20° n, n %Yz r? }

n+n 1 T
Enard
We multiply and divide a term exp e simultaneously to
2(012+022+sz
expression (10). Then the joint p.d.f. of Y, and Y, can be simplified as
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n +n, ie
1 n+n 2 720 g2
h > O T
C-exp
(7)Y ot n, 2(”1+r12 1)
2 2 2
nan (@2 (2 T
n n +n 1
1 1 1 2
i e 1] e et g Bl
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1 2
- ot ot
(2 (2 T
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172
n +n, 1 0 A
Tex EEIRLUERL» N (N 2
J p 2 0_2 TZ 'Ll nl nz 1 'Ll
R
2
n +n, 1
+—0
3 1 -n1+n2~c~exp { o V2 7’ J _ 27 (1)
B 2 n n, 1
(o 7= 2(12+2+2 J” T
Jnn, o° o T ot o 1

By definition, the conditional p.d.f. of x given Y, and Y, is to divide the
jointp.d.f.of x, Y,,and Y, by thejointpd.d.f.of Y, and YV,,
f(ulyYs)

R
(% Y,)



n, +n,

1 1
L 2_o5, 0" * 20 o ?0
eXpi—=| S +-2+ || 4 —2u +
2|6 o 7? n n, 1 n n, 1
St S5t 3 st ot %
(o2 (o2 T O O T
x/27z
n n 1
st 5t
O o T
2
n, +n, 1
2 2 79
Iu o T
n n2+1
1 1 2 2 2
_ expl—= c°- o 1
P 1 2 1
2r - 1 n- n
n n 1 2
Balie SEREs
o o T (o2 O T
n +n 1
: 2ZY2+78 1
O T
~N ) ) (12)
n n, 1 n n, 1
prarl. IR

o o T (o) o T
We then obtain that the posterior distribution of x given Y,.and Y, isalso a

normal distribution. By the result of (12), the constraint (2) becomes

n +n, 1 V]
o7 V2t
ﬂ_

) 1 it
j T exps — 1 du >4, . 13)
w27 2-——

n n 1 n,n 1

2t et 27 52 g2

o o T O (o2 T

Once the sample size has been determined and the trial begins, the n, patients
are recruited in stage 1 of the trial. At the end of stage 1, we evaluated the posterior
probability Pr(z >, 1Y,) (Note that Y,now represents the actual data from the
stage 1 not the hypothetical data in the design stage). If Pr(u >z, |Y,) is less than
4., the trial is terminated and that there is insufficient evidence that the drug is
efficacious enough to be recommended for the phase III trial. On the other hand, if the
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posterior probability Pr(z > g4, |Y,) is greater than or equal to 4, further n, patients

would be recruited in stage 2 of the trial. At the end of stage 2, we evaluated the final
posterior probability Pr(z > s, |Y,,Y,). If Pr(u> 14, |Y,,Y,)is less than 4,, the trial
is insufficiently efficacious to be recommended for the phase I trial testing. If
Pr(u> 14, |Y,,Y,) is greater than or equal to 4,, the product would be tested in the

phase I trial.
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3. Dual Threshold Design

The dual threshold design (DTD) is similar to the single threshold design (STD)
except that the sample size of stage 1 is not determined on the posterior probability of
uexceeding c, but on the probability that x will be less than the ‘no further interest
mean response’ g, . This represents the average response mean below which the
investigators would have no further interest in the new drug. The value g, acts as

the lower threshold of average response mean, as opposed to the upper threshold

represented by 4, . The first constraint of stage 1 becomes

Priu < |Y) <4 14
and the constraint of stage 2 is the same as the one.in'the STD, as in (2),
Pr(se > 1ty [ Yo Yy) 2 A (15)

Now, suppose that the (hypothetical) response mean underlying Y, is just
smaller than the pre-specified z, , that is s, —¢&, and the (hypothetical) response
mean underlying Y, is just larger than the pre-specified . , thatis ., +&,, where

g and g, are some preselected small values.

By the same computation in the STD, constraints (14) and (15) become
2

(4] i i
Hy u—{(1l=r)y,+r0 n
j 1 exp{ — N i du <A, wherer = ! > (16)
2 27 ¢ 2.9
n
and
1 1 1 Y
— Yty +—0
T n + 1 n, + 1
© o 22 2
J — xpl———F—C T2 lduzh,  @7)
m 27 2-
1 1 1 1
\/Uznl'FGznz'i'T2 02 r]1_'_ 2n2+ 2

respectively, so we can find the minimum required sample size of two stages
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according to these two constraints.

Once the sample sizes have been determined and the trial stared, the n, patients
are recruited in stage 1 of the trial. At the end of stage 1, we evaluated the posterior
probability Pr(z <z |Y,) (Note that Y,now represents the actual data from the
stage 1 not the hypothetical data in the design stage). If Pr(u <y |Y;) is greater
than or equal to A, the trial is terminated and that there is insufficient evidence that
the drug is efficacious enough to be recommended for the phase III trial. On the other
hand, if the posterior probability Pr(u < |Y,) is less than A, further n,patients
would be recruited in stage 2 of the trial. At the end of stage 2, we evaluated the final
posterior probability Pr(u> 2, 1Y,.Y,). If Pr(u >y |Y,,Y,)is less than 4, , the trial
is insufficiently efficacious; to-be recommended for the phase I trial testing. If
Pr(u> 1, |Y,,Y,)is greater than-or equal to 4,, the product would be tested in the

phase III trial.
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4. Result
4.1 Sample size of Single Threshold Design

The purpose of the phase II trial is to assess the efficacy of the new drug. Before
the trial, we know relatively little information regarding the efficacy of the new drug
being test. It makes sense to make a prior distribution in the design stage. Especially,
we make the use of the normal distribution which centers on the upper threshold 4, .
We also note that the use of normal distribution allow us easily update the prior
distribution from the normal data.

Before the start of the trial, we help the investigators provide some parameters of
the normal prior distribution and also the value of "&;. For suggestion, if the variance
of the data is large, we recommend the choice of the larger variance parameter of the
prior distribution. Also, the mean of the prior distribution is recommended to be
around the target average response rate.

In this section, we give some examples to illustrate our designs. Tables 1—24

demonstrate the Single Threshold Design for several.combinations of parameters with
& =10, =05, 6=6, 0=8,0=13, t°=1,2"=2, =4, °=9. The
values of ¢ are from 8 to 12 centered around 4, . The rational selections of

(4.,4,) are (0.6,0.7), (0.6,0.8) and (0.7,0.8) as listed in the tables. The

tabulated results contain the minimum required sample sizes determined by using a
program of numerical technique written in C++ corresponding to combinations of
&, o, t and 4.

For example, as shown in the first row and the first column of the Table 1
displaying the result corresponding to (4,4,)=(0.6,0.7), x4, =9, 6=8, %=1,

112 patients should be enrolled in the stage 1. When the stage 1 trial is completed, if
Pr(ge> 14, |Y,) is less than A, the trial is terminated for futility. Otherwise, we

14



recruit additional 62 patients (which is173—-112) in stage 2.

We investigate some properties of the Single Threshold Design. If the difference
between center (mean) of the prior distribution € and target average response rate
4, increases, both the sample sizes of two stages (stage 1 and stage 2) increase. On
the other hand, with regard to the same prior distribution, as ., increases, the target
becomes harder to reach, thus the sample size N and n, increase. Also, from Table
1 and Table 9, if the sample variance o increases, the both the sample sizes, n, and
N —n,, increase.

It also can be seen that larger values of 4, result in larger sample sizes N.
Similarly, larger values of 4, result in larger sample sizes n,. The values of 4 and
A, are desired success probabilities-that the average response rates will exceed the
target response value, g, , in-the-interim and the final stage, respectively. Hence, the
larger the values of 4, and A4,, the greater the amount evidence from data needed.

We now investigate the connection between the sample size and the value of
&, - For the selected values of parameters other than - g, , sample size N decrease as
g, Increase. It make intuitive sense since having data with larger advantage over g,
means that the threshold probability can be-attained with a smaller sample size. For

example, the elements in the first row and first column of the Table 1 and Table 2

respectively, the sample size 69 in Table 2 with larger &, =1.0 is smaller than the

sample size 173 in Table 1 with smaller ¢, =0.5.

4.2 Sample size of Dual Threshold Design
In this section, we give some examples to illustrate the Dual Threshold Design.
The same vague normal distribution used in the Single Threshold Design is used in

the Dual Threshold Design. Also, the suggestions for the prior distribution selection
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are the same as those given in the Single Threshold Design. Tables 25— 29 illustrate

the Dual Threshold Design for several combinations of parameters with &, =0.5,

g =05, o0=6, o=8, 2=4% 2 =5%, *=6%, r?=7%, r*=15%. The value of
¢ is from 8 to 12 centered around g, . The rational selection of (/11,/12) are

(0.6,0.7), (0.6,0.8) and (0.7,0.8)as listed in the tables. The tabulated results

contain the suitable minimum sample size determined by using a program of
numerical technique written in C++ corresponding to combinations of g,, ¢,
o, r and 4.

For example, the element in the first row and the first. column of the Table 25
displays the result corresponding to (4,,4,)=(0.6,0.7), 1, =9, =8, > =4%,

The entry is 49(38). That means at least 38 patients required for stage 1 trial. When
the stage 1 trialiis completed, if Pr(z <z |Y;) Is greater or equalto 4, the trial is
terminated for futility. Otherwise, we recruit another 11 (which is49—38) patients in
stage 2.

We investigate some properties of the Dual Threshold Design. If the mean of the
prior distribution @ increases and the other parameters are fixed, the sample size, n,,
of stage 1 increases but the total sample size N decreases. On the other hand, with
regard to the same prior distribution, as g4, increases, the target becomes harder to
reach. Thus, the sample size N increases but the stage 1 sample size n, stays the
same.

It also can be seen that larger values of A, result in larger sample sizes N.
Similarly, larger values of A, result in larger sample sizes n,. Both Single Threshold
Design and Dual Threshold Design have the same trend.

We investigate the connection between the total sample size N and the value

16



of ¢,_. For the selected values of parameters other than ¢ _, the total sample size N

increases as ¢, increases. To avoid the too large sample size, the values ¢ and ¢,

are restricted to 0.5 in the Dual Threshold Design.
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5. Comparison with Tsou et al. [5]
5.1 Threshold probabilities

The optimal and minimax designs proposed by Tsou et al. [5] are two commonly
used methods in phase II two-stage trials with continuous endpoints. We are interest
in evaluating the threshold probabilities 4, and A, corresponding to these designs
and making a comparison with the single threshold design and the dual threshold
design.

We choose to work with sample size recommended by Tsou et al. [5] and its
decision criteria corresponding to the type 1I.and II error probabilities of
(0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. We evaluate the value of the
probability Pr(u >y, |Y;,Y;)given. the average response rates Y, and Y, to be
overall critical level C, recommended by Tsou et al. [5], where if the observed
overall sample mean is less than C, , the trial would be terminated.

Pr(u> 1, |Y,,Y,) will give us the desired threshold probability 4,. The choice of

the prior distribution of. z is N(z,,2°) for each combination of parameters in the

single threshold design because.the sample size of N(z,,2°) in STD is smaller and
much similar to the sample size of Tsou et al. [5]. Also, the choice of the prior

distribution of £ in the dual threshold design is N (4, ,6%) for the same reason.

For the single threshold design, 4, is evaluated by Pr(uz >, |Y,) given the
average response rate Y, to be the critical value of stage 1 C, recommended by
Tsou et al. [5], where if the observed sample mean is less than C,, the trial would be
terminated. For the dual threshold design, A, is evaluated by Pr(u <z |Y,) also
given the average response rate Y, to be the critical value of stage 1 C,
recommended by Tsou et al. [5].

Table 30—33 give the values of 4 and A, under the single threshold design
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and the dual threshold design, respectively. The values of A, are quite low because
the overall critical level C, is lower than the target average response rate
although it is higher than , . Thus the drugs recommended to the phase 1II trial have
quite low posterior probabilities of x exceeding the target average response rate
4, - It also can be seen that the values of 4, is quite low for both STD and DTD. It

may give us some sense that low 4, in the Tsou et al. [5] lower down the chance of

early termination of the trial.

5.2 Probabilities of early termination and expected sample sizes

We further compare our designs with the designs. of Tsou et al. [5] by evaluating
the probability of early termination (PET) and the expected sample size (EN) of the

single threshold ‘and the dual-threshold design. For the single threshold design, the

PET is given by Pr[Pr(,u > 1y Y1) <21]. We take Y, as a random variable with the

2
normal distribution N(,u,g—). For the dual threshold design, the PET is given by
n

1

2
Pr{Pr(u<p |Y,)> 4], where Y, also follows the normal distribution N(,u,(:—).

1
As for the expected sample size, EN is given by n; +(1— PET)nZ.

Table 34—35 and 36 —37give the values of PET and EN corresponding to STD
and DTD, respectively, with ¢ =¢, =05 and (4,4,)=(0.6,0.7),(0.6,0.8) and
(0.7,0.8) . The values of PET in STD are in the range 0.20 to 0.35 and suggest not
stopping at the end of the stage 1. The values of PET in STD are lower than what they
are for the design of Tsou et al. [5]. For the design of Tsou et al. [5], the PET is in the
range 0.45 to 0.75. For the DTD, the values of PET are in the range 0.75 to 0.85 and

suggest that the design is likely to recommend terminate at the end of stage 1.
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For EN, the range is from 40 to 378 for the STD and from 28 to 98 for the DTD.

Both generally higher than what they are in Tsou et al. [5]. There is intuitive sense

that the value of 4, and PET is related because the lower value of 4 keeps the
lower sample size. So, the STD and the DTD keep the higher sample sizes than

sample size of Tsou et al. [5].
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6. Conclusion and Discussion

In this thesis, our objective is proposing new Bayesian designs for the phase II
clinical trial based on continuous efficacy endpoints. Although Bayesian methods are
not in general use for its unfamiliarity and difficulty of implementation to
investigators, we believe that Bayesian methods can bring much more information to
analysis of the phase II trial.

To free from complexity of implementation of Bayesian approach, we focus on
developing designs which are relatively simple and easy compared to original
Bayesian approaches. For example, we do not require specific utility or loss function
before the trial. We maintain the adoption of Bayesian designs to process two
Bayesian designs for phase Ii-clinical trials. These designs were developed to be
familiar to two-stage frequentist-phase Il clinical trials. The Bayesian approach allows
the conjunction of relevant prior information and then the result in that manner is
more conservative, informative and accurate.

We found that the choice of the variance- z°of the prior distribution x has
strong impact on the sample size of the trial. If the variance ¢* is too small, it would
cause a large sample size (larger than general-sample size of the phase II trial). So,
we would suggest investigators choose the variance parameter which is not too small.

The choices of the values of threshold probabilities 4 and A, have strong
impact on the sample size. As shown in Table 1—29, the higher threshold
probabilities, the larger sample sizes. Although we can lower down the threshold
probability to pursue smaller sample size for low cost of the trial, we might lower
down the probability of detecting the true effect. There is a trade-off between pursuing
a smaller sample size and the threshold probabilities not too low for sure the accuracy
of the clinical trial.

In the Table 34 —37, we found that the sample sizes of our designs are higher
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than the sample size of Tsou et al. [5]. However, in the Table 30 —33, we know our
designs have high threshold probabilities. It shows that our designs is stricter and have
higher probability of detecting the true effect. It is a intuitive sense that more
information and more accuracy worth higher sample size to ensure the drug efficacy
in the clinical trial.

Bayesian method is a good approach alternative to the frquentist approach for
phase I clinical trials. Bayesian methods incorporating relevant prior information
into the analysis of the trial results may be more intuitive and helpful. In this thesis,
two new Bayesian designs with ‘continuous endpoints in phase II trials have been
developed and made to be easy used and friendly to the investigators. Our next step

may extend our twa designs to take the time-to-event variables into consideration.
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Appendix
Lemma 1

Let X,...,X* beiid. N(uoc?) random variable. Define Y, the sample mean of

X2, X

2
Then, Y, is distributed as N(,u,g—).

1
Proof:
According to the property of the normal distribution, the addition of independent and

identically distributed (i.i.d.) normal distributed random variable preserves the normal

distribution. Hence, we ‘derive the mean and variance of Y, and Y, to identify the

exact distribution.

1 n
E(Y,)= E[%J:%E(xhﬁ xl"l)=%[E(xll)+...+E(x;‘l)}

1
:—(,u+...+,u):n—-nl u=pu
1
and
XL+ XD 1 1
Var(Yl)=Var(ln—llj=n—12Var(Xll+...+Xl"l)=n—lz[Var(Xll)+...+Var(Xl"l)]
=i(02+ +62)=i-n1-0' Lo
n12 B r]l2 nl
2
So, V,is distributed aSN(,u,i—). 4

1
Lemma 2
2

Since that Y |  follows distribution as N(ﬂ’i_) and g is distributed as N (8,7?) .
1

The posterior distribution of 4« given Y, u|Yis N((1-r)y+ré@ ,rz*), where
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Proof:

2

Let g(Y|x) and h(x) denote the p.d.f. of N(y,i—)and N(8,7°), respectively.

1

Then, the posterior p.d.f. of 4 given Y is denoted as k(u|Y) which has the

following property,

k(alY)ocg(Y|u)h(u)

1 ool DRI ()

2
JEJ_ J_ LiCh ¢
nl

If we eliminate all constant factors (including factors involving only 'y ), we have

2 2

2,0 2 2 o

b — -2y rt°+0-—
(T n J,U [y ‘ n J#

k(p|Y)ocexp|—

This can be simplified by completing the square to read

2
- (1- o
(ﬂ [( 222y+r ]) ,Where r = =
2

k(p|Y)ocexp|—

That is, the posterior p.d.f. of the parameter is obviously normal distribution with

2 2 2
o o o
y'T2+9'7 P — (njfz
n T n .
mean —L = 7 |y+| — |¢ andvariance ~—+—<[10]. o
2,0 2,0 2,0 » O
T2+ T Tl — 249
n n n n,

24



References

1.

2.

10.

Mercky prospects; pharmaceuticals. The Economist. 2002;364:60.

Lawrence M. Friedman, Curt D. Furberg and David L. DeMets. Fundamentals of
Clinical Trials, Fourth edition. Springer; 2010.

Say-Beng Tan and David Machin (2002). Bayesian two-stage designs for phase
Il clinical trials. Statistics In Medicine, 21, 1991-2012.

Simon, R. (1989). Optimal two-stage designs for phase Il clinical trials,
Controlled Clinical Trials, 10, 1-10.

Tsou, H. H., Hsiao, C. F., Chow, S. C., and Liu, J. P. (2008). A two-stage design
for drug screening trials based on continuous endpoints, Drug Information
Journal, 42, 253-262.

Thall PF, Simon R (1994). Practical Bayesian guidelines for phase 11B clinical

trials. Biometrics, 50(2), 337—349.

Heitjan DF (1997). Bayesian interim analysis of phase Il cancer clinical trials.
Statistics in Medicine, 16(16), 1791-1802.

Sylvester RJ(1988). A Bayesian approach to the design of phase Il clinical trials.
Biometrics, 44(3), 823-836.

Kevin P. Murphy (2007).. Conjugate Bayesian analysis of the Gaussian
distribution.
Robert V. Hogg, Joseph W. Mckean and Allen T. Craig. Introduction to

Mathematical Statistics, Sixth edition. Prentice Hall; 2004.

25



Tables

Table 1. Minimum required sample size for single threshold design (&, =0.5,0 =6).

H N(ny)
priar  N(8.1) N(9.1) N(10,1) N(1L,1) N(12,1)

Hy

9 173(112) 64 (24) x x x
302 (112) 142 (24)  * x x
302 (173) 142 (64)  * x x

10 289 (204) 173 (112) 64 (24) x *
489 (204) 302 (112) 142 (24)  * *
489 (289) 302 (173) 142 (64)  * x

11 410 (302) 289 (204)  173(112) 64 (24) *
720 (428) 489 (204)  302(112) 142 (24)  *
729 (410). 489 (289) 302 (173) . 142 (64)  *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and. (0.7,0.8), respectively.

Table 2. Minimum required sample size for single threshold design (s, =1.0,0=6).

H N(ny)
priQr N(8,1) N(9,1) N(10,1) N(11,1) N(12,1)

Hy

9 69 (51) 25 (11) # * *
95 (51) 46 (11) * * *
95 (69) 46 (25) * * *

10 112 (90) 69 (51) 25 (11) * *
144 (90) 95 (51) 46 (11) * *
144 (112) 95 (69) 46 (25) * *

11 156 (130) 112 (90) 69 (51) 25 (11) *
193 (130) 144 (90) 95 (51) 46 (11) *
193 (156) 144 (112) 95 (69) 46 (25) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 3. Minimum required sample size for single threshold design (g, =0.5,0=6).

H N(ny)
priQr N(8,2) N(9,2) N(10,2) N(11,2) N(12,2)

Hy

9 109 (64) 54(19) * * *
198(64) 123(19) * * *
198(109) 123(54) * * *

10 163(108) 109(64) 54(19) * *
278(108) 198(64) 123(19) * *
278(163) 198(109) 123(19) * *

11 219(152) 163(108) 109(64) 54(19) *
364(152) 278(108) 198(64) 123(19) *
364(219) 278(163) 198(109) 123(54) *

* 1 no solution
For each value of 4, the first, the second and third rows correspond to (4, 4,) of

(0.6,0.7),(0.6,0.8) .and (0.7,0.8), respectively.

Table 4. Minimum required sample size for single threshold design (&, =1.0,0 =6).

H N(n;)
priar N(8;2) N(9,2) N(10,2) N(11,2) N(12,2)

Hy

9 43(29) 20(8) * % *
64(29) 38(8) % * *
64(43) 38(20) 3 * *

10 65(49) 43(29) 20(8) * *
89(49) 64(29) 38(8) * *
89(65) 64(43) 38(20) * *

11 87(69) 65(49) 43(29) 20(8) *
113(69) 89(49) 64(29) 38(8) *
113(87) 89(65) 64(43) 38(20) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4,,4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

27



Table 5. Minimum required sample size for single threshold design (&, =0.5,0=6).

H N(n;)
priQr N(8,4) N(9,4) N(10,4) N(11,4) N(12,4)
Hy
9 77 (40) 48 (15) * * *
151 (40) 114 (15) * * *
151 (77) 114 (48) 75 (8) * *
10 104 (62) 77 (40) 48 (15) * *
188 (62) 151 (40) 114 (15) * *
188 (104) 151 (77) 114 (48) 75 (8) *
11 131 (84) 104 (62) 77 (40) 48 (15) *
227 (84) 188 (62) 151 (40) 114 (15) *
227 (131) 188 (104) 151 (77) 114 (48) 75 (8)

* 1 no solution
For each value of 4, the first, the second and third rows correspond to (4, 4,) of
(0.6,0.7),(0.6,0.8) .and (0.7,0.8), respectively.

Table 6. Minimum required sample size for single threshold design (&, =1.0,0 =6).

H N(ny)
priar N(8,4) N(9,4) N(10,4) N(11,4) N(12,4)

Hy

9 29 (17) 16 (6) * R *
47 (17) 33 (6) * 7 *
47 (29) 33 (16) A * *

10 41 (28) 29 (17) 16 (6) * *
60 (28) 47 (17) 33 (6) * *
60 (41) 47 (29) 33 (16) * *

11 52 (38) 41 (28) 29 (17) 16 (6) *
73 (38) 60 (28) 47 (17) 33 (6) *
73 (52) 60 (41) 47 (29) 33 (16) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4,,4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 7. Minimum required sample size for single threshold design (&, =0.5,0=6).

H N(ny)
phiQr N(8,9) N(9,9) N(10,9) N(11,9) N(12,9)

Hy

9 58(25) 44(13) * * *
125(25) 108(13) * * *
125(58) 108(44) 91(28) * *

10 71(35) 58(25) 44(13) * *
141(35) 125(25) 108(13) * *
141(71) 125(58) 108(44) 91(28) *

11 83(46) 71(35) 58(25) 44(13) *
158(46) 141(35) 125(25) 108(13) *
158(83) 141(71) 125(58) 108(44) 91(28)

*: no solution

For each value of 4, the first, the second and third rows correspond to (4, 4,) of
(0.6,0.7),(0.6,0.8) .and (0.7,0.8), respectively.

Table 8. Minimum required sample size for single threshold design (&, =1.0,0 =6).

H N(ny)
priar N(8,9) N(9,9) N(10,9) N(11,9) N(12,9)

Hy

9 20(10) N * R *
36(10) * * * *
36(20) 30(13) 22(6) * *

10 25(15) 20(10) * * *
43(15) 36(10) * * *
43(25) 36(20) 30(13) 22(6) *

11 31(20) 25(15) 20(10) * *
49(20) 43(15) 36(10) * *
49(31) 43(25) 36(20) 30(13) 22(6)

* - no solution

For each value of 4, , the first, the second and third rows correspond to (A4,,4,) of
(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 9. Minimum required sample size for single threshold design (&, =0.5,0 =8).

H N(n;)
priQr N(8,1) N(9,1) N(10,1) N(11,1) N(12,1)

Hy

9 307 (199) 113 (42) * * *
537 (199) 253 (42) * * *
537 (307) 253 (113) * * *

10 513 (363) 307 (199) 113 (42) * *
869 (363) 537 (199) 253 (42) * *
869 (513) 537 (307) 253 (113) * *

11 728 (537) 513 (363) 307 (199) 113 (42) *
1296 (537) 869 (363) 537(199) 253 (42) *
1296 (728) . 869 (513) 537 (307) 253 (113) *

* 1 no solution
For each value of 4, the first, the second and third rows correspond to (4, 4,) of

(0.6,0.7),(0.6,0.8) .and (0.7,0.8), respectively.

Table 10. Minimum required sample size for single threshold design (¢, =1.0,

o =8).
H N(ny)
phiqQr N(8,1) N(9,1) N(10,1) N(11,1) N(12,1)

Hy

9 122 (90) 44 (19) * % *
169 (90) 82 (19) #* * *
169 (122) 82 (44) * * *

10 199 (160) 122 (90) 44 (19) * *
255 (160) 169 (90) 82 (19) * *
255 (199) 169 (122) 82 (44) * *

11 276 (231) 199 (160) 122 (90) 44 (19) *
342 (213) 255 (160) 169 (90) 82 (19) *
342 (276) 255 (199) 169 (122) 82 (44) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 11. Minimum required sample size for single threshold design (&, =0.5,

o =8).
H N(ny)
piar  N(8,2) N(9.2) N(10,2) N(1L,2) N(12,2)

My

9 193(114)  95(33) x x x
352(114)  219(33) x * x
352(193)  219(95) x * x

10 289(191)  193(114)  95(33) x x
494(191)  352(114)  219(33)  * *
494(289)  352(193)  219(95) x *

1 389(271)  289(191)  193(114)  95(33) x
647(271)  494(191)  352(114)  219(33) *
647(389) . 494(289)  352(193)  219(95)  *

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 12. Minimum required sample size for single threshold design (&, =1.0,

c=8).
H N(na)
piar  N(8.2) N@©.2) N(10,2) N(1L,2) N(12,2)

My

9 76(51) 35(14) x * *
114(51) 67(14) x x x
114(76) 67(35) x x x

10 115(87) 76(51) 35(14) x x
158(87) 114(51)  67(14) * *
158(116)  114(76)  67(35) * *

11 154(122)  115(87)  76(51) 35(14) *
201(122)  158(87)  114(51) 67(14) *
201(154)  158(116)  114(76) 67(35) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 13. Minimum required sample size for single threshold design (&, =0.5,

o =8).
H N(ny)
priar  N(8.4) N(9,4) N(10,4) N(11,4) N(12,4)
My
9 136 (70)  84(27) * * *
268 (70)  202(27)  * * *
268 (136) 202 (84)  133(14)  * *
10 185(110)  136(70) 84 (27) * x
334 (110)  268(70)  202(27)  * *
334 (185)  268(136) 202 (84) 133 (14)  *
11 233(149)  185(110)  136(70) 84 (27) *
402 (149) 334 (110) 268 (70). 202 (27)  *
402 (233) . 334 (185)  268(136) 202 (84) 133 (14)

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 14. Minimum required sample size for single threshold design (&, =1.0,

c=8).
H N(n1)
phiQr N(8,4) N(9,4) N(10,4) N(11,4) N(12,4)

My

9 51 (30) 28 (11) x * *
84 (30) 58 (11) x x x
84 (51) 58 (28) x x x

10 72 (49) 51 (30) 28 (11) x x
107 (49) 84 (30) 58 (11) x x
107 (72) 84 (51) 58 (28) * *

1 92 (67) 72 (49) 51 (30) 28 (11) x
130 (67) 107 (49) 84 (30) 58 (11) x
130(92)  107(72)  84(51) 58 (28) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 15. Minimum required sample size for single threshold design (&, =0.5,

o =8).
Hu N(ns)
phiQr N(8,9) N(9,9) N(10,9) N(11,9) N(12,9)
Hy
9 102(43) 77(22) * * *
222(43) 192(22) * * *
222(102) 192(77) 161(49) * *
10 126(63) 102(43) 77(22) * *
251(63) 222(43) 192(22) * *
251(126) 222(102) 192(77) 161(49) *
1 148(81) 126(63) 102(43) 77(22) *
280(81) 251(63) 222(43) 192(22) *
280(148) 251(126) 222(102) 192(77) 161(49)

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 16. Minimum required sample size for single threshold design (&, =1.0,

c=8).
H N(n1)
piar  N(8,9) N(9,9) N(10,9) N(1L,9) N(12,9)
My
9 35(18) 24(8) x * *
64(18) 52(8) x x x
64(35) 52(24) 39(10) x x
10 45(26) 35(18) 24(8) x x
76(26) 64(18) 52(8) x x
76(45) 64(35) 52(24) 39(10) *
11 55(35) 45(26) 35(18) 24(8) x
87(35) 76(26) 64(18) 52(8) x
87(55) 76(45) 64(35) 52(24) 39(10)

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 17. Minimum required sample size for single threshold design (&, =0.5,

o =13).
H N(ny)
piar  N(8,1) N(9.1) N(10,1) N(1L,1) N(12,1)

My

9 810(524)  297(111)  * x x
1417(524)  666(111)  * x x
1417(810)  666(297)  * x x

10 1354(958)  810(524)  297(111)  * x
2204(958)  1417(524)  666(111)  * *
2204(1354)  1417(810)  666(297)  * *

11 1023(1417)  1354(958)  810(524)  207(111)  *
3421(1416)  2294(958)  1417(524)  666(111)  *
3421(1923) . 2294(1354) 1417(810)  666(297)  *

* - no solution

For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 18. Minimum required sample size for single threshold design (&, =1.0,

o =13).
H N(n2)
piar  N(8,1) N@,D) N(10,1) N(1L,1) N(12,1)

My

9 322(236)  115(49) x x x
446(236)  215(49) x x x
466(322)  215(115)  * x x

10 525(422)  322(236)  115(49)  * x
673(422)  446(236)  215(49)  * *
673(525)  466(322)  215(115)  * x

11 729(609)  525(422)  322(236)  115(49)  *
003(609)  673(422)  446(236)  215(49)  *
003(729)  673(525)  466(322)  215(115)  *

* - no solution

For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.



Table 19. Minimum required sample size for single threshold design (&, =0.5,

o =13).
H N(ny)
piar  N(8,2) N(9.2) N(10,2) N(1L,2) N(12,2)

My

9 508(299)  250(87) x x x
928(209)  577(87) x x x
928(508)  577(250)  * x x

10 764(504)  508(299)  250(87)  * x
1303(504)  928(299)  577(87)  * x
1303(764)  928(508)  577(250)  * x

1 1027(714)  764(504)  508(299)  250(87)  *
1707(714)  1303(504) = 928(299)  577(87)  *
1707(1027) . 1303(764)  928(508)  577(250)  *

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 20. Minimum required sample size for single threshold design (&, =1.0,

o =13).
H N(ny)
priqr N(8,2) N(9,2) N(10,2) N(11,2) N(12,2)

ey

9 200(134) 91(37) X s *
300(134) 177(37) 3 * *
300(200) 177(91) * * *

10 304(228) 200(134) 91(37) * *
416(228) 300(134) 177(37) * *
416(304) 300(200) 177(91) * *

11 406(321) 304(228) 200(134) 91(37) *
530(321) 416(228) 300(134) 177(37) *
530(406) 416(304) 300(200) 177(91) *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 21. Minimum required sample size for single threshold design (&, =0.5,

o =13).
H N(n1)
priar  N(8.4) N(9.4) N(10,4) N(1L,4) N(12,4)
My
9 350(184)  222(70) x x *
706(184)  532(70) x x *
706(359)  532(222)  350(37)  * *
10 487(290)  359(184)  222(70) * *
881(290)  706(184)  532(70)  * *
881(487)  706(359)  532(222)  350(37)  *
11 614(393)  487(290)  359(184)  222(70)  *
1062(393)  881(200)  706(184)  532(70)  *
1062(614) . 881(487)  706(359)  532(222)  350(37)

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 22. Minimum required sample size for single threshold design (&, =1.0,

o =13).
H N(n1)
priar  N(8,4) N@©.2) N(10,4) N(11,4) N(12,4)

My

9 133(79) 74(28) x x x
220(79) 153(28) x x x
220(133)  153(74) x x x

10 188(128)  133(79) 74(28) x x
282(128)  220(79) 153(28)  * *
282(188)  220(133)  153(74)  * *

11 242(176)  188(128)  133(79) 74(28) x
342(176)  282(128)  220(79)  153(28)  *
342(242)  282(188)  220(133)  153(74)  *

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 23. Minimum required sample size for single threshold design (&, =0.5,

o =13).
H N(n1)
priar  N(8.9) N(9,9) N(10,9) N(1L,9) N(12,9)

My

9 269(114)  204(58) x x *
585(114)  507(58) * x *
585(269)  507(204)  426(128)  * *

10 331(165)  269(114)  204(58) * *
662(165)  585(114)  507(58) * *
662(331)  585(269)  507(204)  426(128)  *

11 389(213)  331(165)  269(114)  204(58)  *
739(213)  662(165)  585(114)  507(58)  *
739(389) _  662(331)  585(269)  507(204)  426(128)

* 1 no solution
For each value of g, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 24. Minimum required sample size for single threshold design (&, =1.0,

o =13).
H N(n,)
piar  N(8,9) N(9.9) N(10.9) N(11,9) N(12.,9)
My
9 90(46) 61(21) x x x
169(46) 13721) | * x x
169(90) 137(61) 101(28)  * x
10 117(69) 90(46) 61(21) x x
200(69) 169(46)  137(21)  * *
200(117)  169(90)  137(61)  101(28)  *
1 144(91) 117(69) 90(46) 61(21) *
229(91) 200(69)  169(46)  137(21)  *
229(144)  200(117)  169(90)  137(61)  101(28)

* 1 no solution
For each value of 4, , the first, the second and third rows correspond to (A4, 4,) of

(0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 25. Minimum required sample size for dual threshold design (¢, =0.5,

&, =05,0=6).
prior N(ny)

H N(8,4%)  N(9,4°) N(0,4%) N(14%)  N(12,4%)

4 9 49(38) * * * *
116(38) 106(42)  97(49) 86(55) 76(59)
116(73) 106(80)  97(87) * *

4 10 58(38) 50(42) * * *
125(38)  116(42) 106(49) 97(55) 87(59)
125(73)  116(80) 106(87) * *

4 11 66(38) 58(42) & * *
134(38)"  125(42) - 116(49) 106(55) 97(59)
134(78) -~ 125(80) 116(87) 106(93) *

* 1 no solution
For each value of "z, and g, the first;.the second and third rows correspond to
(4, 4,) of (0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.

Table 26. Minimum required sample size for dual threshold design (&, =0.5,

&, =05,0=6).
prior N(ny)

H H N(8,5%) . N(9,5%)  N(10,5) = N(@L5%)  N(12,5%)

4 9 47(29)  41(32) * x x
112(29)  106(32)  99(36) 93(40) 87(44)
112(62)  106(67)  99(71) 03(71) 87(80)

4 10 52(29) 47(32) 41(36) *(40) *
118(29)  112(32)  106(36)  99(40) 93(44)
118(62)  112(67)  106(71)  99(71) 93(80)

4 11 57(29) 52(32) 47(36) * x
24(29) 118(32)  112(36)  106(40)  99(44)
124(62)  118(67)  112(71)  106(71)  99(80)

*: no solution
For each value of 4, and g, , the first, the second and third rows correspond to

(4, 4,) of (0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 27. Minimum required sample size for dual threshold design (¢, =0.5,

&, =05,0=6).
prior N(ny)
e N(8,6%)  N(9,6°) N@0,6°) N(@L6%) N(12,6?)
4 9 45(24) 41(26) 37(29) * *
109(24)  105(26)  101(29) 96(32) 92(34)
109(56)  105(69)  101(62) 96(66) 92(69)
4 10 49(24) 45(26) 41(29) 37(32) *

113(24)  109(26)  105(29)  101(32)  96(34)

113(56)  109(59)  105(62)  101(66)  96(69)

4 11 52(24) 49(26) 45(29) 41(32) *

118(24) ~ 113(26) . 109(29)  105(32)  101(34)

118(24) ~ 113(59)  109(62) . 105(66)  101(69)

* 1 no solution
For each value of g, and g, , the first, the second and third rows correspond to
(4, 4,) of (0.6,0.7),(0.6,0.8)and (0.7,0.8), respectively.

Table 28. Minimum required sample size for dual threshold design (¢, =0.5,

&, =05,0=6).
prior N(n;) with c=6
H H N@, 7).  N(9,7)  N(@0,7%) ~ N@1L7%) N@12,7%)
4 9 44(21) 41(23) 38(25) 35(27) *(
108(21)  105(23) 102(25) 98(27) 95(29)
108(52)  105(54) 102(57) 98(59) 95(62)
4 10 46(21) 44(23) 41(25) 38(27) 35(29)

111(21)  108(23)  105(25)  102(27)  98(29)

111(52)  108(54)  105(57)  102(59)  98(62)

4 11 49(21) 46(23) 44(25) 41(27) 38(29)

114(21)  111(23)  108(25)  105(27)  102(29)

114(52)  111(54)  108(57)  105(59)  102(62)

* 1 no solution
For each value of 4, and g, , the first, the second and third rows correspond to

(4, 4,) of (0.6,0.7),(0.6,0.8) and (0.7,0.8), respectively.
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Table 29. Minimum required sample size for dual threshold design (¢, =0.5,

& =0.5,0=8).
prior N(n1)
e N(8,15%) N(9,15°) N(10,15%) N(@1115%) N(12,15%)
4 9 72(26) 71(27) 70(27) 69(28) 68(29)

186(26)  185(27)  183(27) 182(28)  181(29)

186(76)  185(77)  183(78)  182(28)  181(80)

4 10 73(26) 72(27) 71(27) 70(28) 69(29)

187(26)  186(27)  185(27)  183(28)  182(29)

187(76)  186(77)  185(78)  183(79)  182(80)

4 11 75(26) 73(27) 72(27) 71(28) 70(29)

188(26) « 187(27) . 186(27)  185(28)  183(29)

188(76) ~ 187(77)  186(78). . 185(79)  183(80)

* 1 no solution
For each value of g, and g, , the first, the second and third rows correspond to

(4, 4,) of (0.6,0.7),(0.6,0.8)and (0.7,0.8), respectively.

Table 30. Single Threshold Design threshold probabilities with =6 the prior

distribution N(z,2%).

Mo My Optimal design Minimax design
n % N Ay n % N A
4 9 5 0328 11 0.206 |5 0.328 10 0.222
4 0356 11 0.206 |4 0.356 10 0.222
6 0.303 14 0.165 |6 0.303 13 0.178
4 10 3 0.333 8 0.166 |3 0333 7 0.191
3 0.386 7 0.280 |4 0356 7 0.280
4 0.290 10 0.126 |5 0328 9 0.240
4 1 2 0344 6 0.151 |2 0344 6 0.150
2 0382 6 0219 |1 0.437 5 0.252
3 0333 7 0.191 |3 0333 7 0.191

For each value of (4 , 44, ), the first, second and third rows correspond to type T and
II error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively.
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Table 31. Single Threshold Design threshold probabilities with o =8 the prior

distribution N(,,2%).

My Optimal design Minimax design
n % N Ay n % N Ay
4 9 8 0.342 19 0211 |9 0326 18 0.220
0.275 19 0211 |7 0.258 17 0.230

10 0312 26 0258 |11 0.298 23 0.178

4 10 6 0316 13 0.183 |6 0375 12 0.285
5 0.293 13 0273 |5 0393 12 0.285
7 0.292 18 0.124 |7 0.358 16 0.240
4 1 4 0.369 10 0.231 |5 0342 9 0.250
3 0.398 10 0.231 |3 0.298 9 0.250

5 0.342 13 0.182 |5 0341 12 0.198

For each value of (g, , #4, ), the first, second and third rows correspond to type T and
II error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively.

Table 32. Dual Threshold Design threshold probabilities with & =6 the prior

distribution N (y,6%)

Mo My Optimal design Minimax design
n A N Ay n A4 N A
4 9 5 0.150 11 0.145 |5 0.238 10 0.157
4 0.160 11 0.145 |4 0.159 10 0.157
6 0.140 14 0.115 |6 0.237 13 0.123
4 10 3 0.208 8 0.091 |3 0252 7 0.108
3 0149 7 0.205 |4 0.088 7 0.205
4 0.143 10 0.066 |5 0135 9 0.171
4 1 2 0172 6 0.029 |2 0.187 6 0.049
2 0.097 6 0128 |1 0190 5 0.154
3 0132 7 0.108 |3 0132 7 0.108

For each value of (, , 44, ), the first, second and third rows correspond to type T and
II error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively.
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Table 33. Dual Threshold Design threshold probabilities with o =8 the prior

distribution N(z,,6%)

M My Optimal design Minimax design
% N Ay n % N Ay
4 9 8 0.237 19 0.149 |9 0.238 18 0.156
0.164 19 0.149 |7 0.236 17 0.163
10 0.144 26 0.109 |11 0.237 23 0.124
4 10 6 0.211 13 0.102 |6 0.286 12 0.209
5 0.150 13 0.199 |5 0.150 12 0.209
7 0.215 18 0.065 |7 0.248 16 0.171
4 11 4 0.132 .10 0.137 |5 0.185 9 0.152
3 0.130 10 0.137 3 0.157 9 0.169
5 0.132 13 0.102 |5 0.185 12 0.113

For each value of (., 14, ), the first, second and third rows correspond to type T and
1T error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively.

Table 34. PET and EN for Single Threshold Design (o =6, ¢, =0:5).

M N(8,2%) N(9,2?) N(10,2%) N(11,2?) N(12,2?)
pri

PET EN PET EN PET EN PET EN PET EN

9 0315 653 0.346 36.6 * * * * * *
0.315 116.0 0.346 79.7 * * * * * *
0.274 130.7 0.225 99.1 0518 402 * * * *

10 0.256 933 0.203 694 0345 366 * * * *
0.256 155.7 0.203 1284 0.345 798 * * * *
0.240 38.6 0.179 137.7 0.255 99.1 0519 402 * *

11 0.133 1247 0.162 97.2 0.203 695 0.345 36.6 * *
0.133 207.9 0.162 1676 0.203 128.4 0.345 798 * *
0.135 214.0 0.155 1749 0.179 137.7 0.225 99.2 0.519 40.2

* 1 no solution
For each value of 44, , the first, second and third rows correspond to
(A4, 4,)=(0.6,0.7),(0.6,0.8)and (0.7,0.8) , respectively.
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Table 35. PET and EN for Single Threshold Design (o =8, g, =0.5).

y7i
prior

N(8, 2%)

N(9, 2%)

N(10, 2%)

N(11,2?)

N(12,2?%)

PET EN

PET EN

PET EN

PET

EN

PET

EN

0.206 1224
0.206 227.2
0.180 244.2

0.343
0.343
0.227

64.4
141.9
175.2

* *

* *

0.522 70.

8

*

*

*

*

*

*

10

0.162 172.8
0.162 306.0
0.155 319.3

0.205
0.205
0.180

122.4
227.3
244.2

0.343 64.
0.343
0.227

4

141.9
175.2

*

*

0.522

*

*

70.8

11

0.138 221.4
0.138 366.9
0.138 3785

0.162
0.162
0.155

172.8
297.6
310.8

0.205
0.205
0.180

122.4
227.2
244.2

0.343
0.343

0.

227

64.4
141.9
175.2

0.522

70.8

* . no solution
For each value of 4, ; the first, second and third rows correspond to

(4, 4,) =(0.6,0.7),(0.6,0.8)and(0.7,0.8) , respectively.

Table 36. PET and EN for Dual Threshold Design (o =6, &, =&, =0.5).

\\%ﬁfi\N@ﬁQ N@©,6)  N@§) N@LE)  N(26%)

H

PET

EN

PET

EN

PET

EN

PET

EN

PET

EN

4

0.807
0.807
0.842

28.1
40.7
64.3

0.814
0.814
0.846

28.7
40.6
66.0

0.825
0.825
0.850

30.4
40.5
67.8

0.834
0.834
0.855

*

42.6
70.3

0.839
0.839
0.858

*

43.3
72.2

10

0.807
0.807
0.842

28.8
41.2
64.9

0.814
0.814
0.846

29.5
41.4
66.6

0.825
0.825
0.850

31.8
42.3
68.5

0.834
0.834
0.855

32.8
43.4
71.1

0.839
0.839
0.858

43.9
72.8

11

0.807
0.807
0.842

28.5
39.3
65.8

0.814
0.814
0.846

30.3
42.2
67.3

0.825
0.825
0.850

31.8
43.0
69.1

0.834
0.834
0.855

33.5
44.1
71.6

0.839
0.839
0.858

44.8
73.5

* 1 no solution
For each value of 44, , the first, second and third rows correspond to

(A4, 4,)=(0.6,0.7),(0.6,0.8)and (0.7,0.8) , respectively.
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Table 37. PET and EN for Dual Threshold Design (o =8, & =g, =0.5).

W N@B15")  N@I5)  N@015) N@L15)  N(@215Y)

H

PET

EN

PET

EN

PET

EN

PET

EN

PET

EN

4

0.745
0.745
0.819

37.7
66.7
95.9

0.751
0.751
0.820

37.9
66.3
96.4

0.750
0.750
0.821

37.7
65.8
96.7

0.756
0.756
0.822

37.9
66.5
97.2

0.761
0.761
0.824

38.3
65.3
97.7

10

0.745
0.745
0.819

37.9
67.0
96.1

0.751
0.751
0.820

38.2
66.6
96.6

0.750
0.750
0.821

38.0
66.5
97.1

0.756
0.756
0.822

38.2
65.8
97.5

0.761
0.761
0.824

38.5
65.5
97.9

11

0.745
0.745
0.819

38.5
67.3
96.3

0.751
0.751
0.820

38.5
66.8
96.8

0.750
0.750
0.821

38.2
66.8
97.3

0.756
0.756
0.822

38.5
66.3
97.8

0.761
0.761
0.824

38.8
65.3
98.1

*: no solution

For each value of 4, ; the first, second and third rows correspond to
(A4, 4,)=(0.6,0.7),(0.6,0.8)and (0.7,0.8) , respectively.
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