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中文摘要 

 

製藥發展是需要長時間和花費的一個過程，而許多機構在執行藥物臨床測試

時，藥物在相對較晚的程序中才宣告失敗停止，因此基於在偵測藥物效能上使用

較快且可靠的方法並且減少受試者人數和試驗所需時間，研發出新式臨床策略或

方法設計，其中的設計是更加有效率不論是在執行上或是花費上在偵測有可能性

的藥物，而新設計在製藥發展中有著迫切的需要。在臨床試驗第二階段(phase II 

clinical trials)，其中兩階段(two-stage)或是多階段(multiple-stage) 無對照組試驗設

計多採用 frequentist的統計方法，另一方面，相對於 frequentist另有貝氏(Bayesian) 

統計方法，貝氏方法可將相關的先前資訊納入臨床結果分析之中，可使之更加符

合直覺並且對試驗更有幫助。在此篇論文當中，針對連續型變數提出兩種貝氏二

階段藥物效用監控設計，並針對此二設計提出數值範例來示範此二貝氏設計並且

與 frequentist 的統計方法做出比較。 
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Bayesian Two-Stage Designs for Phase II Clinical Trials with Continuous 

Endpoints 

 

Student: Szu-Hsuan Chen              Advisor: Ph.D. Chin-Fu Hsiao 

 

Institute of Statistics 

National Chiao Tung University 

 

Abstract 

Pharmaceutical development is a lengthy and expensive process and many of 

these agents fail relatively late in that process. Hence, there is an urgent need of new 

strategies and methodology for efficient and cost-effective designs to screen potential 

candidates based on the idea of the proof of the concept for efficacy in a rapid and 

reliable manner to minimize the total sample size and hence to shorten the duration of 

the trials. In phase II clinical trials, two-stage or multiple-stage designs with no 

control group have been proposed based on frequentist statistical approaches. 

Alternatively, Bayesian methods incorporating relevant prior information into the 

analysis of the trial results may be more intuitive and helpful. In this thesis, two 

Bayesian two-stage screening designs based on continuous efficacy endpoints are 

proposed. Numerical example is presented to illustrate the Bayesian approach. 

Comparisons with other frequentist approaches are also made.  
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1. Introduction 

 The development of pharmaceutical products is risky, challenging, slow, costly 

and time-consuming endeavor. An analysis which takes into account that projects 

which were neither success nor fair suggests that it usually takes about 10-15 years to 

develop one new medicine from the time it is discovered to when it is available for 

commercial marketing and treating patients. The average cost to research and develop 

each successful drug is estimated to be $800 million to $1 billion and 70% of the cost 

of pharmaceutical development is wasted on drugs that do not even make it to market. 

By the time a drug company applies to the Food and Drug Administration (FDA) for 

marketing approval of a new product, on average it has performed more than 70 

clinical studies on at least 4,000 patients. Despite a better understanding of disease 

etiology and advance in medical technology, there is only 1 out of 10,000 candidates 

screened in the laboratory that will survive to market launch, and more than 60% of 

the potential candidates that enter clinical trials fail. Furthermore, the success rate of 

the phase III stage of the clinical development has fallen by 30% [1]. On the other 

hand, the development of biomedical science has been raised to cure many diseases 

nowadays and been full of potential. Nevertheless, the number of the biomedical 

products and new drugs submitted to the FDA and approved by the FDA does not 

increase. One of the probable reasons may be that the drug screening process should 

become more efficient and effective to let the biomedical science fill with full 

potential. As a result, there is an urgent need of new strategies and methodologies for 

overall success improving, efficient, and cost-effective designs to screen potential 

candidates based on the idea of the proof of the concept for efficacy in a rapid and 

reliable manner to minimize the total sample size and hence to shorten the duration of 

the trials. 

 Trials of pharmaceutical agents have been divided into phase Ⅰ─ Ⅳ. The drug 
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first was developed and tested in the laboratory. Once it is done and ready for testing 

in the human subjects, a phase Ⅰ trial is conducted. The purpose of the phase Ⅰ trial 

is to examine the drug tolerance, metabolism and study the drug toxicity in human 

and also identify the best dose to be used. Then, the phase II trial may employ the best 

dose identified in the phase Ⅰ study to assess the efficacy of the drug and determine 

whether it should be tested in further phase Ⅲ trial. The phase Ⅲ trial consists of 

therapeutic confirmatory studies and establishment of the safety profile by comparing 

the drug with other compound being used to treat the condition. The phase Ⅳ trial 

consists of the examination the drug in broad or special population and seeking to 

identify uncommon adverse events, for example Lawrence et al. [2] and Tan and 

Machin [3]. 

 To evaluate the biological activity or efficacy of the drug, the phase II trial is 

conducted. Phase II trials can be a single-stage or a multi-stage design. Among 

two-stage designs, the approaches commonly used are Gehan design, Simon optimal 

design, and the minimax design. These designs are based on the frequentist statistical 

approach. For Simon’s two-stage design, it requires some specific input, including 

uninteresting level, target level, type Ⅰ error and type II error. The sample sizes are 

evaluated subjected to the constraint upon the type Ⅰ error and type II error. The idea 

of the two-stage approach is presented as follows. When the first stage is completed, 

the trial would be terminated if the response rate does not exceed some critical value 

indicating that the drug has low efficacy and is not recommended to the next step of 

the trial. Otherwise, more patients are enrolled and treated in the second stage. After 

the second stage is completed, the final analysis is performed with the outcomes of 

the first and the second stage. The drug would be rejected if the overall response rate 

is less than some critical level and not be recommended to the phase Ⅲ trial. 

Otherwise, the drug would be recommended to the phase Ⅲ trial. Simon [4] proposed 
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the “Optimal two-stage designs for phase II clinical trials” with binary response 

endpoints. Tsou et al. [5] proposed a two-stage screening design based on continuous 

efficacy endpoints under the framework of Simon two-stage design. 

 The main concept of Bayesian approach is the incorporation of the prior 

distribution which brings in the prior experience or information. So, the Bayesian 

design in Simon [4] allows for the formal incorporation of relevant information from 

the other resources of the evidence in the monitoring and analysis of the trial. With a 

Bayesian approach, we can obtain the posterior distribution of the true response rate. 

This allows us to compute the probability that the response rate falls within the region 

of interest. For example, we can derive the interval with a 95 per cent probability of 

containing the true response rate. On the other hand, the frequentist approach cannot 

answer this kind of questions.  

 Several Bayesian designs have been proposed for phase II trials, for example 

methods proposed by Thall [6], Heitjan [7], and Sylverster [8], while most of these 

are not the real two-stage design but the continuous monitoring design of the trial. In 

particular, Thall and Simon proposed a design which involves the continual accrual of 

patients until the new drug is shown with high posterior probability to be either 

promising or not promising, or until a predetermined maximum sample size is reached. 

Their design requires the specifications of an informative clinical prior for the 

response rate of the standard drug which has been found to be the best so far, and a 

non-informative clinical prior for the response rate of the new drug [6]. In contrast, 

instead of the prior for the new drug, Heitjan’s design requires the specification of 

hypothetical skeptical and enthusiastic priors. Both Thall and Simon’s as well as 

Heitjan’s designs make use of probability distributions for both the response 

proportions of the standard drug as well as the new drug. This is unlike the framework 

of the frequentist designs in which only take account of the response rate of the 
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standard drug. 

 Tan and Machin [3] proposed two Bayesian designs for phase II trials which are 

like the frameworks of designs of Thall [6], Heitjan [7] and Sylverster [8]. The design 

does not require the specification of a loss or utility function and only need to specify 

a prior distribution for the response rate of the new drug and not the standard drug as 

well. It would make the design to be similar to the frequentist approach of two stage 

phase II clinical trials.  

 In this thesis, two Bayesian designs for phase II trials with continuous endpoints 

will be developed. One is the single threshold Bayesian design and another is the dual 

threshold Bayesian design. These two designs are presented in Section 2 and 3, 

respectively. The methods to determine the sample size and to determine whether to 

recommend the drug to the phase Ⅲ trial or not are also proposed. In Section 4, the 

numerical results of sample sizes and simulation studies are shown. Comparison with 

Simon design will be given in Section 5. Discussion and conclusion are made in 

Section 6.  
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2. Single Threshold Design 

 We consider a two-stage design for a phase II clinical trial for testing an 

experimental drug based on continuous response endpoints. In our design, let 
1n  be 

the number of patients recruited and treated in the first stage and (possibly) further 

2n  be the number of additional patients recruited at stage 2. Let 1

iX  denote the 

response of the thi  patient among the 
1n  patients in stage 1, 

11,...,i n and 2

jX  

denote the responses of the thj  patient among the 
2n  patients in stage 2, 

21,...,j n . Total sample size would be 
1 2N n n  . Because most continuous 

efficacy endpoints or their log transformation follow normal or approximately normal 

distributions, we assume that 1

iX  and 2

jX  are normally distributed with a mean of 

  and a known variance of 2 . Hence, 11

1 1,....,
n

X X , 21

2 2,....,
nX X are i.i.d. random 

variables with common distribution 2( , )N   . Suppose 
2  is known. For 

convenience of notations, we denote 
1X  and 

2X  the sample means of the 

responses in the stage 1 and 2, respectively. We also define a pair of variables 1 1Y X , 

1 21 1

1 1 2 2 1 1 2 2
2

1 2 1 2

... ...
n nX X X X n X n X

Y
n n n n

     
 

 
 which are beneficial for following 

calculation in two designs. By some algebra (the detail was described in Appendix 1), 

we know that 
1X  is distributed as 

2

1

( , )N
n


  and 

2X  is distributed as 
2

2

( , )N
n


 .  

Considering the single threshold design (STD), we let 
U  be the target 

response mean and   be the true mean for testing the drug. Then the prior 

distribution of   is assumed as a normal distribution with mean   and variance 

2 . Furthermore, let 
1  and 

2  (with 
1 20 1    ) be the minimum desired 
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threshold probabilities, at the interim stage and at the end of the trial, respectively. 

Now, suppose that the (hypothetical) response mean underlying 
1Y  and 

2Y  are just 

larger than the pre-specified 
U , that is 

U U  , where 
U  is some preselected 

small value (say between 0 and 0.1 ).  

To find the suitable minimum total sample size for this trial design, we enable 

two constraints to find the smallest sample size. We enable the posterior probability of 

 over the target response mean U  at the end of stage 1, 
1Pr( | )U Y  , to be at 

least
1 . Moreover, the posterior probability of  over the target response mean U  

at the end of trial, 
1 2Pr( | , )U Y Y  , is at least

2 . We can express two inequalities as  

 
1 1                    Pr( | )                                                            (1)U Y     

and 

 
1 2 2                      Pr( | , ) .                                                      (2)U Y Y     

 According to the Bayesian principal, we obtain that the posterior distribution of 

  given 
1Y  is a normal distribution as (the details are given in Appendix 2). 

2 2
2

2

1 1
1 12 2 2

2 2 2

1 1 1

| ~ ,                                 (3)
n n

Y N y

n n n

 



 

  
  

    
    

    
    

      
    

 

  2

1~ 1 ,N r y r r   , where 

2

1

2
2

1

n
r

n










. 

By the result of (3), the constraint (1) becomes 

  
2

1

22 1

11
 exp    .                       

22
(4)

U

r y r
d

rr

 


 


       
 

  
 



 

Furthermore, by the following computation, we would like to find the posterior 

distribution of   given 
1Y  and 

2Y  that enable us to simplify the constraint (2) and 

find the suitable minimum sample size for the design.  

We get the joint distribution of 
1Y  and 

2Y  given   from the joint distribution 
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of 
1X  and 

2X  given   by multiplying a Jacobian factor J . Then we substitute

1 1X Y , 1 2 1
2 2 1

2 2

n n n
X Y Y

n n


   into expression (5) to get expression (6). The joint 

distribution of 
1Y  and 

2Y  given   can be derived as follows, 

1 2( , | )f y y    

1 2( , | )f x x J    , where 1 2

1 1 2

2

2 2

1 0
n n

J n n n
n

n n


    

1 2( | ) ( | )f x f x J     

2 2

1 2 1 2

2 2 2

2

1 21 2

( ) ( )1
exp                                                (5)

2 2 2

x x n n

n

n nn n

 

  


 
 

   
    

   
  

 

21 2 1
2 12

1 2 2 1 2

2 2 2

2

1 21 2

( )
( )1

exp  .                      (6)

2 2 2

n n n
y y

y n n n n

n

n nn n




  


 
  

  
    

   
  

 

We then get the joint distribution of 
1Y , 

2Y  and   by multiplying the joint 

distribution of 
1Y  and 

2Y  given   and the prior distribution of   that is ( )  , 

that is 

1 2( , , )f y y   

1 2( , | ) ( )f y y      

   

21 2 1
2 12 2

1 2 1 2 2

2 2 2 2

2

1 21 2

( )
( )1 1 ( )

exp exp
22

2 2 2

n n n
y y

n n y n n

n

n nn n


  

   


 
       

        
    

  
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21 2 1
2 12 2

1 2 1 2 2

2 2 2 2
3 2 2

1 21 2

( )
( )1 ( )

exp  .           (7)
2

(2 ) 2 2

n n n
y y

n n y n n

n

n nn n


  

    


 
  

   
     

  
  

 By integrating (7) with respect to , we get the joint p.d.f. of 
1Y  and 

2Y  as in 

(8). Expanding three terms of exponential and also separating the terms irrelevant to 

  out of the integration in expression (8), we get expression (9).  

1 2( , )f y y

21 2 1
2 12 2

1 2 1 2 2

2 2 2 2
3 2 2

1 21 2

( )
( )1 ( )

exp            (8)
2

(2 ) 2 2

n n n
y y

n n y n n
d

n

n nn n


  


    







 
  

   
     

  
  



1 2

2
3 2 2

1 2

2 2 21 2 1 2 1 2 1 2
1 1 22 2 2 2 2 2 2

2 2

1

(2 )

1 1 1
   exp 2 2 2 2     (9)

2

n n
c

n

n n

n n n n n n n n
y y y d

n n

 


       
      






   

   
        
   



 

1 2

2
3 2 2

1 2

1 1 1 2
1 1 22 2 2 2

21 2

2 2 2
1 2

2 2 2

1

(2 )

1

1 1
   exp 2  ,                      (10)

12

n n
c

n

n n

n n n n
y y y

n n
d

n n

 



     

  

  






   

   
      

      
    

   



where 

2 2

2 2 2 21 2 1 2 2 1 2 1 2 1
1 2 1 1 22 2 2 2 2

2 2 2 2

1
exp 2 2 .

2 2 2 2

n n n n n n n n n n
c y y y y y

n n n n


    

      
             

     

  

We multiply and divide a term 

2

1 2
22 2

1 2

2 2 2

1

exp
1

2

n n
y

n n


 

  

  
    

 
    

   
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expression (10). Then the joint p.d.f. of 
1Y  and 

2Y  can be simplified as 
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By definition, the conditional p.d.f. of   given 1Y  and 2Y  is to divide the 

joint p.d.f. of  , 1Y , and 2Y  by the joint pd.d.f. of 1Y  and 2Y ,  
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 We then obtain that the posterior distribution of   given 1Y  and 2Y  is also a 

normal distribution. By the result of (12), the constraint (2) becomes 
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 Once the sample size has been determined and the trial begins, the 
1n  patients 

are recruited in stage 1 of the trial. At the end of stage 1, we evaluated the posterior 

probability 
1Pr( | )U Y   (Note that 

1Y now represents the actual data from the 

stage 1 not the hypothetical data in the design stage). If 
1Pr( | )U Y   is less than 

1 , the trial is terminated and that there is insufficient evidence that the drug is 

efficacious enough to be recommended for the phase Ⅲ trial. On the other hand, if the 
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posterior probability 
1Pr( | )U Y   is greater than or equal to

1 , further 
2n patients 

would be recruited in stage 2 of the trial. At the end of stage 2, we evaluated the final 

posterior probability 
1 2Pr( | , )U Y Y  . If 

1 2Pr( | , )U Y Y  is less than
2 , the trial 

is insufficiently efficacious to be recommended for the phase Ⅲ trial testing. If 

1 2Pr( | , )U Y Y  is greater than or equal to
2 , the product would be tested in the 

phase Ⅲ trial. 
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3. Dual Threshold Design 

 The dual threshold design (DTD) is similar to the single threshold design (STD) 

except that the sample size of stage 1 is not determined on the posterior probability of 

 exceeding c, but on the probability that   will be less than the ‘no further interest 

mean response’ L . This represents the average response mean below which the 

investigators would have no further interest in the new drug. The value L  acts as 

the lower threshold of average response mean, as opposed to the upper threshold 

represented by 
U . The first constraint of stage 1 becomes 

 1 1Pr( | )                                                           (14)L Y     

and the constraint of stage 2 is the same as the one in the STD, as in (2), 

1 2 2                      Pr( | , ) .                                                     (15)U Y Y     

Now, suppose that the (hypothetical) response mean underlying 1Y  is just 

smaller than the pre-specified L , that is L L   and the (hypothetical) response 

mean underlying 
2Y  is just larger than the pre-specified 

U , that is 
U U  , where 

L and U  are some preselected small values.  

 By the same computation in the STD, constraints (14) and (15) become 
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respectively, so we can find the minimum required sample size of two stages 
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according to these two constraints.  

 Once the sample sizes have been determined and the trial stared, the 
1n  patients 

are recruited in stage 1 of the trial. At the end of stage 1, we evaluated the posterior 

probability 1Pr( | )L Y   (Note that 
1Y now represents the actual data from the 

stage 1 not the hypothetical data in the design stage). If 1Pr( | )L Y   is greater 

than or equal to 
1 , the trial is terminated and that there is insufficient evidence that 

the drug is efficacious enough to be recommended for the phase Ⅲ trial. On the other 

hand, if the posterior probability 1Pr( | )L Y   is less than 
1 , further 

2n patients 

would be recruited in stage 2 of the trial. At the end of stage 2, we evaluated the final 

posterior probability 
1 2Pr( | , )U Y Y  . If 

1 2Pr( | , )U Y Y  is less than
2 , the trial 

is insufficiently efficacious to be recommended for the phase Ⅲ trial testing. If 

1 2Pr( | , )U Y Y  is greater than or equal to
2 , the product would be tested in the 

phase Ⅲ trial. 

 

 

  



 

14 

4. Result 

4.1 Sample size of Single Threshold Design 

The purpose of the phase Ⅱ trial is to assess the efficacy of the new drug. Before 

the trial, we know relatively little information regarding the efficacy of the new drug 

being test. It makes sense to make a prior distribution in the design stage. Especially, 

we make the use of the normal distribution which centers on the upper threshold
U . 

We also note that the use of normal distribution allow us easily update the prior 

distribution from the normal data.  

 Before the start of the trial, we help the investigators provide some parameters of 

the normal prior distribution and also the value of 
U . For suggestion, if the variance 

of the data is large, we recommend the choice of the larger variance parameter of the 

prior distribution. Also, the mean of the prior distribution is recommended to be 

around the target average response rate.  

In this section, we give some examples to illustrate our designs. Tables 1－24 

demonstrate the Single Threshold Design for several combinations of parameters with 

1.0U  , 0.5U  , 6  , 8  , 13  , 2 1  , 2 2  , 2 4  , 2 9  . The 

values of   are from 8 to 12 centered around 
U . The rational selections of 

 1 2,   are  0.6,0.7 ,  0.6,0.8  and  0.7,0.8 as listed in the tables. The 

tabulated results contain the minimum required sample sizes determined by using a 

program of numerical technique written in C   corresponding to combinations of 

U ,  ,   and  .  

 For example, as shown in the first row and the first column of the Table 1 

displaying the result corresponding to 
1 2( , ) (0.6,0.7)   , 9U  , 8  , 2 1  , 

112 patients should be enrolled in the stage 1. When the stage 1 trial is completed, if 

1Pr( | )U Y   is less than 
1 , the trial is terminated for futility. Otherwise, we 
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recruit additional 62 patients (which is173 112 ) in stage 2.  

 We investigate some properties of the Single Threshold Design. If the difference 

between center (mean) of the prior distribution   and target average response rate 

U  increases, both the sample sizes of two stages (stage 1 and stage 2) increase. On 

the other hand, with regard to the same prior distribution, as 
U increases, the target 

becomes harder to reach, thus the sample size N  and 
1n  increase. Also, from Table 

1 and Table 9, if the sample variance   increases, the both the sample sizes, 
1n  and 

1N n , increase. 

 It also can be seen that larger values of
2 result in larger sample sizes N . 

Similarly, larger values of 
1  result in larger sample sizes 

1n . The values of 
1  and 

2  are desired success probabilities that the average response rates will exceed the 

target response value, 
U , in the interim and the final stage, respectively. Hence, the 

larger the values of 
1  and 

2 , the greater the amount evidence from data needed. 

  We now investigate the connection between the sample size and the value of 

U . For the selected values of parameters other than 
U , sample size N  decrease as 

U  increase. It make intuitive sense since having data with larger advantage over 
U  

means that the threshold probability can be attained with a smaller sample size. For 

example, the elements in the first row and first column of the Table 1 and Table 2 

respectively, the sample size 69 in Table 2 with larger 1.0U   is smaller than the 

sample size 173 in Table 1 with smaller 0.5U  .  

 

 

4.2 Sample size of Dual Threshold Design 

In this section, we give some examples to illustrate the Dual Threshold Design. 

The same vague normal distribution used in the Single Threshold Design is used in 

the Dual Threshold Design. Also, the suggestions for the prior distribution selection 
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are the same as those given in the Single Threshold Design. Tables 25－29 illustrate 

the Dual Threshold Design for several combinations of parameters with 0.5U  , 

0.5L  , 6  , 8  , 2 24  , 2 25  , 2 26  , 2 27  , 2 215  . The value of  

  is from 8 to 12 centered around 
U . The rational selection of  1 2,   are 

 0.6,0.7 ,  0.6,0.8  and  0.7,0.8 as listed in the tables. The tabulated results 

contain the suitable minimum sample size determined by using a program of 

numerical technique written in C   corresponding to combinations of 
U , 

L , 

 ,   and  .  

 For example, the element in the first row and the first column of the Table 25 

displays the result corresponding to 
1 2( , ) (0.6,0.7)   , 9U  , 8  , 2 24  . 

The entry is 49(38). That means at least 38 patients required for stage 1 trial. When 

the stage 1 trial is completed, if 1Pr( | )L Y   is greater or equal to 
1 , the trial is 

terminated for futility. Otherwise, we recruit another 11 (which is 49 38 ) patients in 

stage 2.  

 We investigate some properties of the Dual Threshold Design. If the mean of the 

prior distribution   increases and the other parameters are fixed, the sample size, 
1n , 

of stage 1 increases but the total sample size N  decreases. On the other hand, with 

regard to the same prior distribution, as 
U increases, the target becomes harder to 

reach. Thus, the sample size N  increases but the stage 1 sample size 
1n stays the 

same.  

 It also can be seen that larger values of
2 result in larger sample sizes N . 

Similarly, larger values of 
1  result in larger sample sizes 

1n . Both Single Threshold 

Design and Dual Threshold Design have the same trend. 

  We investigate the connection between the total sample size N  and the value 
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of 
L . For the selected values of parameters other than 

L , the total sample size N  

increases as 
L  increases. To avoid the too large sample size, the values 

L  and 
U  

are restricted to 0.5 in the Dual Threshold Design.  
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5. Comparison with Tsou et al. [5] 

5.1 Threshold probabilities 

 The optimal and minimax designs proposed by Tsou et al. [5] are two commonly 

used methods in phase Ⅱ two-stage trials with continuous endpoints. We are interest 

in evaluating the threshold probabilities 
1  and 

2  corresponding to these designs 

and making a comparison with the single threshold design and the dual threshold 

design.  

 We choose to work with sample size recommended by Tsou et al. [5] and its 

decision criteria corresponding to the type Ⅰ and Ⅱ  error probabilities of 

(0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. We evaluate the value of the 

probability 
1 2Pr( | , )U Y Y  given the average response rates 

1Y  and 
2Y  to be 

overall critical level 
2C  recommended by Tsou et al. [5], where if the observed 

overall sample mean is less than 
2C , the trial would be terminated. 

1 2Pr( | , )U Y Y   will give us the desired threshold probability 
2 . The choice of 

the prior distribution of   is 
2( ,2 )UN   for each combination of parameters in the 

single threshold design because the sample size of 
2( ,2 )UN   in STD is smaller and 

much similar to the sample size of Tsou et al. [5]. Also, the choice of the prior 

distribution of   in the dual threshold design is 
2( ,6 )UN   for the same reason.  

 For the single threshold design, 
1  is evaluated by 

1Pr( | )U Y   given the 

average response rate 
1Y  to be the critical value of stage 1 

1C  recommended by 

Tsou et al. [5], where if the observed sample mean is less than 
2C , the trial would be 

terminated. For the dual threshold design, 
1  is evaluated by 1Pr( | )L Y   also 

given the average response rate 
1Y  to be the critical value of stage 1 

1C

recommended by Tsou et al. [5].  

 Table 30－33 give the values of 
1  and 

2  under the single threshold design 
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and the dual threshold design, respectively. The values of 
2  are quite low because 

the overall critical level 
2C  is lower than the target average response rate 

U  

although it is higher than L . Thus the drugs recommended to the phase Ⅲ trial have 

quite low posterior probabilities of   exceeding the target average response rate 

U . It also can be seen that the values of 
1  is quite low for both STD and DTD. It 

may give us some sense that low 
1  in the Tsou et al. [5] lower down the chance of 

early termination of the trial. 

 

 

5.2 Probabilities of early termination and expected sample sizes 

 We further compare our designs with the designs of Tsou et al. [5] by evaluating 

the probability of early termination (PET) and the expected sample size (EN) of the 

single threshold and the dual threshold design. For the single threshold design, the 

PET is given by  1 1Pr |UPr Y      . We take 
1Y  as a random variable with the 

normal distribution
2

1

( , )N
n


 . For the dual threshold design, the PET is given by 

 1 1Pr |LPr Y      , where 
1Y  also follows the normal distribution 

2

1

( , )N
n


 . 

As for the expected sample size, EN is given by  1 21n PET n  .  

 Table 34－35 and 36－37give the values of PET and EN corresponding to STD 

and DTD, respectively, with 0.5L U    and 
1 2( , ) (0.6,0.7),(0.6,0.8)    and 

(0.7,0.8) . The values of PET in STD are in the range 0.20 to 0.35 and suggest not 

stopping at the end of the stage 1. The values of PET in STD are lower than what they 

are for the design of Tsou et al. [5]. For the design of Tsou et al. [5], the PET is in the 

range 0.45 to 0.75. For the DTD, the values of PET are in the range 0.75 to 0.85 and 

suggest that the design is likely to recommend terminate at the end of stage 1.  
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 For EN, the range is from 40 to 378 for the STD and from 28 to 98 for the DTD. 

Both generally higher than what they are in Tsou et al. [5]. There is intuitive sense 

that the value of 
1  and PET is related because the lower value of 

1  keeps the 

lower sample size. So, the STD and the DTD keep the higher sample sizes than 

sample size of Tsou et al. [5]. 
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6. Conclusion and Discussion 

 In this thesis, our objective is proposing new Bayesian designs for the phase Ⅱ 

clinical trial based on continuous efficacy endpoints. Although Bayesian methods are 

not in general use for its unfamiliarity and difficulty of implementation to 

investigators, we believe that Bayesian methods can bring much more information to 

analysis of the phase Ⅱ trial. 

To free from complexity of implementation of Bayesian approach, we focus on 

developing designs which are relatively simple and easy compared to original 

Bayesian approaches. For example, we do not require specific utility or loss function 

before the trial. We maintain the adoption of Bayesian designs to process two 

Bayesian designs for phase II clinical trials. These designs were developed to be 

familiar to two-stage frequentist phase II clinical trials. The Bayesian approach allows 

the conjunction of relevant prior information and then the result in that manner is 

more conservative, informative and accurate. 

 We found that the choice of the variance 2 of the prior distribution   has 

strong impact on the sample size of the trial. If the variance 2  is too small, it would 

cause a large sample size (larger than general sample size of the phase Ⅱ trial). So, 

we would suggest investigators choose the variance parameter which is not too small.  

 The choices of the values of threshold probabilities 
1  and 

2  have strong 

impact on the sample size. As shown in Table 1─29, the higher threshold 

probabilities, the larger sample sizes. Although we can lower down the threshold 

probability to pursue smaller sample size for low cost of the trial, we might lower 

down the probability of detecting the true effect. There is a trade-off between pursuing 

a smaller sample size and the threshold probabilities not too low for sure the accuracy 

of the clinical trial.  

 In the Table 34－37, we found that the sample sizes of our designs are higher 
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than the sample size of Tsou et al. [5]. However, in the Table 30－33, we know our 

designs have high threshold probabilities. It shows that our designs is stricter and have 

higher probability of detecting the true effect. It is a intuitive sense that more 

information and more accuracy worth higher sample size to ensure the drug efficacy 

in the clinical trial. 

 Bayesian method is a good approach alternative to the frquentist approach for 

phase Ⅱ clinical trials. Bayesian methods incorporating relevant prior information 

into the analysis of the trial results may be more intuitive and helpful. In this thesis, 

two new Bayesian designs with continuous endpoints in phase Ⅱ trials have been 

developed and made to be easy used and friendly to the investigators. Our next step 

may extend our two designs to take the time-to-event variables into consideration. 
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Appendix 

Lemma 1 

Let 11

1 1,....,
n

X X  be i.i.d. 2( , )N    random variable. Define 
1Y  the sample mean of 

11

1 1,....,
n

X X . 

Then, 
1Y  is distributed as 

2

1

( , )N
n


 . 

Proof: 

According to the property of the normal distribution, the addition of independent and 

identically distributed (i.i.d.) normal distributed random variable preserves the normal 

distribution. Hence, we derive the mean and variance of 
1Y  and 

2Y  to identify the 

exact distribution.  

       
1

1 1

1
1 11 1

1 1 1 1 1

1 1 1

... 1 1
... ...

n
n nX X

E Y E E X X E X E X
n n n

  
          

 
 

       1

1 1

1 1
... n

n n
           

and  

       
1

1 1

1
1 11 1

1 1 1 1 12 2

1 1 1

... 1 1
... ...

n
n nX X

Var Y Var Var X X Var X Var X
n n n

  
          

 

        
2

2 2 2

12 2

1 1 1

1 1
... .n

n n n


          

So, 
1Y is distributed as

2

1

( , )N
n


 .                                         

Lemma 2 

Since that |Y  follows distribution as 
2

1

( , )N
n


  and   is distributed as 2( , )N   . 

The posterior distribution of   given Y , |Y is   21 , ,N r y r r    where 
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2

1

2
2

1

n
r

n










. 

Proof: 

Let  |g Y   and  h   denote the p.d.f. of 
2

1

( , )N
n


 and 2( , )N   , respectively. 

Then, the posterior p.d.f. of   given Y  is denoted as  |k Y  which has the 

following property,  

     | |k Y g Y h     

       
   

2 2

2 2

1 1

1 1
exp

222 2

y

n n

  

   

 
  
    

   
 

. 

If we eliminate all constant factors (including factors involving only y ), we have 

 

2 2
2 2 2

1 1

2
2

1

2

| exp

2

y
n n

k Y

n

 
    






    
        

     
  
  
   

. 

This can be simplified by completing the square to read  

 
  

2

2

1
| exp

2

r y r
k Y

r

 




       
 
 

, where 

2

1

2
2

1

n
r

n










. 

That is, the posterior p.d.f. of the parameter is obviously normal distribution with 

mean 

2 2
2

2

1 1

2 2 2
2 2 2

1 1 1

y
n n

y

n n n

 
 




  
  

   
      

    
   

     
   

 and variance 

2
2

1

2
2

1

n

n







 
 
 

 
 

 

[10].   
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Tables 

Table 1. Minimum required sample size for single threshold design ( 0.5U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 173 (112) 64 (24) * * * 

 302 (112) 142 (24) * * * 

 302 (173) 142 (64) * * * 

10 289 (204) 173 (112) 64 (24) * * 

 489 (204) 302 (112) 142 (24) * * 

 489 (289) 302 (173) 142 (64) * * 

11 410 (302) 289 (204) 173 (112) 64 (24) * 

 729 (428) 489 (204) 302 (112) 142 (24) * 

 729 (410) 489 (289) 302 (173) 142 (64) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 2. Minimum required sample size for single threshold design ( 1.0U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 69 (51) 25 (11) * * * 

 95 (51) 46 (11) * * * 

 95 (69) 46 (25) * * * 

10 112 (90) 69 (51) 25 (11) * * 

 144 (90) 95 (51) 46 (11) * * 

 144 (112) 95 (69) 46 (25) * * 

11 156 (130) 112 (90) 69 (51) 25 (11) * 

 193 (130) 144 (90) 95 (51) 46 (11) * 

 193 (156) 144 (112) 95 (69) 46 (25) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 3. Minimum required sample size for single threshold design ( 0.5U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 109 (64) 54(19) * * * 

 198(64) 123(19) * * * 

 198(109) 123(54) * * * 

10 163(108) 109(64) 54(19) * * 

 278(108) 198(64) 123(19) * * 

 278(163) 198(109) 123(19) * * 

11 219(152) 163(108) 109(64) 54(19) * 

 364(152) 278(108) 198(64) 123(19) * 

 364(219) 278(163) 198(109) 123(54) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 4. Minimum required sample size for single threshold design ( 1.0U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 43(29) 20(8) * * * 

 64(29) 38(8) * * * 

 64(43) 38(20) * * * 

10 65(49) 43(29) 20(8) * * 

 89(49) 64(29) 38(8) * * 

 89(65) 64(43) 38(20) * * 

11 87(69) 65(49) 43(29) 20(8) * 

 113(69) 89(49) 64(29) 38(8) * 

 113(87) 89(65) 64(43) 38(20) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 5. Minimum required sample size for single threshold design ( 0.5U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 77 (40) 48 (15) * * * 

 151 (40) 114 (15) * * * 

 151 (77) 114 (48) 75 (8) * * 

10 104 (62) 77 (40) 48 (15) * * 

 188 (62) 151 (40) 114 (15) * * 

 188 (104) 151 (77) 114 (48) 75 (8) * 

11 131 (84) 104 (62) 77 (40) 48 (15) * 

 227 (84) 188 (62) 151 (40) 114 (15) * 

 227 (131) 188 (104) 151 (77) 114 (48) 75 (8) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 6. Minimum required sample size for single threshold design ( 1.0U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 29 (17) 16 (6) * * * 

 47 (17) 33 (6) * * * 

 47 (29) 33 (16) * * * 

10 41 (28) 29 (17) 16 (6) * * 

 60 (28) 47 (17) 33 (6) * * 

 60 (41) 47 (29) 33 (16) * * 

11 52 (38) 41 (28) 29 (17) 16 (6) * 

 73 (38) 60 (28) 47 (17) 33 (6) * 

 73 (52) 60 (41) 47 (29) 33 (16) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 7. Minimum required sample size for single threshold design ( 0.5U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 58(25) 44(13) * * * 

 125(25) 108(13) * * * 

 125(58) 108(44) 91(28) * * 

10 71(35) 58(25) 44(13) * * 

 141(35) 125(25) 108(13) * * 

 141(71) 125(58) 108(44) 91(28) * 

11 83(46) 71(35) 58(25) 44(13) * 

 158(46) 141(35) 125(25) 108(13) * 

 158(83) 141(71) 125(58) 108(44) 91(28) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 8. Minimum required sample size for single threshold design ( 1.0U  , 6  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 20(10) * * * * 

 36(10) * * * * 

 36(20) 30(13) 22(6) * * 

10 25(15) 20(10) * * * 

 43(15) 36(10) * * * 

 43(25) 36(20) 30(13) 22(6) * 

11 31(20) 25(15) 20(10) * * 

 49(20) 43(15) 36(10) * * 

 49(31) 43(25) 36(20) 30(13) 22(6) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 9. Minimum required sample size for single threshold design ( 0.5U  , 8  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 307 (199) 113 (42) * * * 

 537 (199) 253 (42) * * * 

 537 (307) 253 (113) * * * 

10 513 (363) 307 (199) 113 (42) * * 

 869 (363) 537 (199) 253 (42) * * 

 869 (513) 537 (307) 253 (113) * * 

11 728 (537) 513 (363) 307 (199) 113 (42) * 

 1296 (537) 869 (363) 537 (199) 253 (42) * 

 1296 (728) 869 (513) 537 (307) 253 (113) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 10. Minimum required sample size for single threshold design ( 1.0U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 122 (90) 44 (19) * * * 

 169 (90) 82 (19) * * * 

 169 (122) 82 (44) * * * 

10 199 (160) 122 (90) 44 (19) * * 

 255 (160) 169 (90) 82 (19) * * 

 255 (199) 169 (122) 82 (44) * * 

11 276 (231) 199 (160) 122 (90) 44 (19) * 

 342 (213) 255 (160) 169 (90) 82 (19) * 

 342 (276) 255 (199) 169 (122) 82 (44) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 



 

31 

Table 11. Minimum required sample size for single threshold design ( 0.5U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 193(114) 95(33) * * * 

 352(114) 219(33) * * * 

 352(193) 219(95) * * * 

10 289(191) 193(114) 95(33) * * 

 494(191) 352(114) 219(33) * * 

 494(289) 352(193) 219(95) * * 

11 389(271) 289(191) 193(114) 95(33) * 

 647(271) 494(191) 352(114) 219(33) * 

 647(389) 494(289) 352(193) 219(95) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 12. Minimum required sample size for single threshold design ( 1.0U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 76(51) 35(14) * * * 

 114(51) 67(14) * * * 

 114(76) 67(35) * * * 

10 115(87) 76(51) 35(14) * * 

 158(87) 114(51) 67(14) * * 

 158(116) 114(76) 67(35) * * 

11 154(122) 115(87) 76(51) 35(14) * 

 201(122) 158(87) 114(51) 67(14) * 

 201(154) 158(116) 114(76) 67(35) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 



 

32 

Table 13. Minimum required sample size for single threshold design ( 0.5U  , 

8  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 136 (70) 84 (27) * * * 

 268 (70) 202 (27) * * * 

 268 (136) 202 (84) 133 (14) * * 

10 185 (110) 136 (70) 84 (27) * * 

 334 (110) 268 (70) 202 (27) * * 

 334 (185) 268 (136) 202 (84) 133 (14) * 

11 233 (149) 185 (110) 136 (70) 84 (27) * 

 402 (149) 334 (110) 268 (70) 202 (27) * 

 402 (233) 334 (185) 268 (136) 202 (84) 133 (14) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 14. Minimum required sample size for single threshold design ( 1.0U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 51 (30) 28 (11) * * * 

 84 (30) 58 (11) * * * 

 84 (51) 58 (28) * * * 

10 72 (49) 51 (30) 28 (11) * * 

 107 (49) 84 (30) 58 (11) * * 

 107 (72) 84 (51) 58 (28) * * 

11 92 (67) 72 (49) 51 (30) 28 (11) * 

 130 (67) 107 (49) 84 (30) 58 (11) * 

 130 (92) 107 (72) 84 (51) 58 (28) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 



 

33 

Table 15. Minimum required sample size for single threshold design ( 0.5U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 102(43) 77(22) * * * 

 222(43) 192(22) * * * 

 222(102) 192(77) 161(49) * * 

10 126(63) 102(43) 77(22) * * 

 251(63) 222(43) 192(22) * * 

 251(126) 222(102) 192(77) 161(49) * 

11 148(81) 126(63) 102(43) 77(22) * 

 280(81) 251(63) 222(43) 192(22) * 

 280(148) 251(126) 222(102) 192(77) 161(49) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 16. Minimum required sample size for single threshold design ( 1.0U  ,

8  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 35(18) 24(8) * * * 

 64(18) 52(8) * * * 

 64(35) 52(24) 39(10) * * 

10 45(26) 35(18) 24(8) * * 

 76(26) 64(18) 52(8) * * 

 76(45) 64(35) 52(24) 39(10) * 

11 55(35) 45(26) 35(18) 24(8) * 

 87(35) 76(26) 64(18) 52(8) * 

 87(55) 76(45) 64(35) 52(24) 39(10) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 17. Minimum required sample size for single threshold design ( 0.5U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 810(524) 297(111) * * * 

 1417(524) 666(111) * * * 

 1417(810) 666(297) * * * 

10 1354(958) 810(524) 297(111) * * 

 2294(958) 1417(524) 666(111) * * 

 2294(1354) 1417(810) 666(297) * * 

11 1923(1417) 1354(958) 810(524) 297(111) * 

 3421(1416) 2294(958) 1417(524) 666(111) * 

 3421(1923) 2294(1354) 1417(810) 666(297) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 18. Minimum required sample size for single threshold design ( 1.0U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,1) N(9,1) N(10,1) N(11,1) N(12,1) 

9 322(236) 115(49) * * * 

 446(236) 215(49) * * * 

 466(322) 215(115) * * * 

10 525(422) 322(236) 115(49) * * 

 673(422) 446(236) 215(49) * * 

 673(525) 466(322) 215(115) * * 

11 729(609) 525(422) 322(236) 115(49) * 

 903(609) 673(422) 446(236) 215(49) * 

 903(729) 673(525) 466(322) 215(115) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 19. Minimum required sample size for single threshold design ( 0.5U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 508(299) 250(87) * * * 

 928(299) 577(87) * * * 

 928(508) 577(250) * * * 

10 764(504) 508(299) 250(87) * * 

 1303(504) 928(299) 577(87) * * 

 1303(764) 928(508) 577(250) * * 

11 1027(714) 764(504) 508(299) 250(87) * 

 1707(714) 1303(504) 928(299) 577(87) * 

 1707(1027) 1303(764) 928(508) 577(250) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 20. Minimum required sample size for single threshold design ( 1.0U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,2) N(9,2) N(10,2) N(11,2) N(12,2) 

9 200(134) 91(37) * * * 

 300(134) 177(37) * * * 

 300(200) 177(91) * * * 

10 304(228) 200(134) 91(37) * * 

 416(228) 300(134) 177(37) * * 

 416(304) 300(200) 177(91) * * 

11 406(321) 304(228) 200(134) 91(37) * 

 530(321) 416(228) 300(134) 177(37) * 

 530(406) 416(304) 300(200) 177(91) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 21. Minimum required sample size for single threshold design ( 0.5U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 359(184) 222(70) * * * 

 706(184) 532(70) * * * 

 706(359) 532(222) 350(37) * * 

10 487(290) 359(184) 222(70) * * 

 881(290) 706(184) 532(70) * * 

 881(487) 706(359) 532(222) 350(37) * 

11 614(393) 487(290) 359(184) 222(70) * 

 1062(393) 881(290) 706(184) 532(70) * 

 1062(614) 881(487) 706(359) 532(222) 350(37) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 22. Minimum required sample size for single threshold design ( 1.0U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,4) N(9,4) N(10,4) N(11,4) N(12,4) 

9 133(79) 74(28) * * * 

 220(79) 153(28) * * * 

 220(133) 153(74) * * * 

10 188(128) 133(79) 74(28) * * 

 282(128) 220(79) 153(28) * * 

 282(188) 220(133) 153(74) * * 

11 242(176) 188(128) 133(79) 74(28) * 

 342(176) 282(128) 220(79) 153(28) * 

 342(242) 282(188) 220(133) 153(74) * 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 23. Minimum required sample size for single threshold design ( 0.5U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 269(114) 204(58) * * * 

 585(114) 507(58) * * * 

 585(269) 507(204) 426(128) * * 

10 331(165) 269(114) 204(58) * * 

 662(165) 585(114) 507(58) * * 

 662(331) 585(269) 507(204) 426(128) * 

11 389(213) 331(165) 269(114) 204(58) * 

 739(213) 662(165) 585(114) 507(58) * 

 739(389) 662(331) 585(269) 507(204) 426(128) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 24. Minimum required sample size for single threshold design ( 1.0U  , 

13  ). 

     

prior 

U  

  N(n1)   

N(8,9) N(9,9) N(10,9) N(11,9) N(12,9) 

9 90(46) 61(21) * * * 

 169(46) 137(21) * * * 

 169(90) 137(61) 101(28) * * 

10 117(69) 90(46) 61(21) * * 

 200(69) 169(46) 137(21) * * 

 200(117) 169(90) 137(61) 101(28) * 

11 144(91) 117(69) 90(46) 61(21) * 

 229(91) 200(69) 169(46) 137(21) * 

 229(144) 200(117) 169(90) 137(61) 101(28) 

* : no solution 

For each value of 
U , the first, the second and third rows correspond to 

1 2( , )   of 

(0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 25. Minimum required sample size for dual threshold design ( 0.5L  ,

0.5U  , 6  ). 

   prior 

U  

  N(n1)   

L  
2(8,4 )N  2(9,4 )N  2(10,4 )N  2(11,4 )N  2(12,4 )N  

4 9 49(38) * * * * 

  116(38) 106(42) 97(49) 86(55) 76(59) 

  116(73) 106(80) 97(87) * * 

4 10 58(38) 50(42) * * * 

  125(38) 116(42) 106(49) 97(55) 87(59) 

  125(73) 116(80) 106(87) * * 

4 11 66(38) 58(42) * * * 

  134(38) 125(42) 116(49) 106(55) 97(59) 

  134(73) 125(80) 116(87) 106(93) * 

* : no solution 

For each value of 
U  and 

L , the first, the second and third rows correspond to 

1 2( , )   of (0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 26. Minimum required sample size for dual threshold design ( 0.5L  ,

0.5U  , 6  ). 

   prior 

U  

  N(n1)   

L  
2(8,5 )N  2(9,5 )N  2(10,5 )N  2(11,5 )N  2(12,5 )N  

4 9 47(29) 41(32) * * * 

  112(29) 106(32) 99(36) 93(40) 87(44) 

  112(62) 106(67) 99(71) 93(71) 87(80) 

4 10 52(29) 47(32) 41(36) *(40) * 

  118(29) 112(32) 106(36) 99(40) 93(44) 

  118(62) 112(67) 106(71) 99(71) 93(80) 

4 11 57(29) 52(32) 47(36) * * 

  24(29) 118(32) 112(36) 106(40) 99(44) 

  124(62) 118(67) 112(71) 106(71) 99(80) 

* : no solution 

For each value of 
U  and 

L , the first, the second and third rows correspond to 

1 2( , )   of (0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 27. Minimum required sample size for dual threshold design ( 0.5L  ,

0.5U  , 6  ). 

   prior 

U  

  N(n1)   

L  
2(8,6 )N  2(9,6 )N  2(10,6 )N  2(11,6 )N  2(12,6 )N  

4 9 45(24) 41(26) 37(29) * * 

  109(24) 105(26) 101(29) 96(32) 92(34) 

  109(56) 105(69) 101(62) 96(66) 92(69) 

4 10 49(24) 45(26) 41(29) 37(32) * 

  113(24) 109(26) 105(29) 101(32) 96(34) 

  113(56) 109(59) 105(62) 101(66) 96(69) 

4 11 52(24) 49(26) 45(29) 41(32) * 

  118(24) 113(26) 109(29) 105(32) 101(34) 

  118(24) 113(59) 109(62) 105(66) 101(69) 

* : no solution 

For each value of 
U  and 

L , the first, the second and third rows correspond to 

1 2( , )   of (0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 28. Minimum required sample size for dual threshold design ( 0.5L  ,

0.5U  , 6  ). 

   prior 

U  

  N(n1) with  6   

L  
2(8,7 )N  2(9,7 )N  2(10,7 )N  2(11,7 )N  2(12,7 )N  

4 9 44(21) 41(23) 38(25) 35(27) *( 

  108(21) 105(23) 102(25) 98(27) 95(29) 

  108(52) 105(54) 102(57) 98(59) 95(62) 

4 10 46(21) 44(23) 41(25) 38(27) 35(29) 

  111(21) 108(23) 105(25) 102(27) 98(29) 

  111(52) 108(54) 105(57) 102(59) 98(62) 

4 11 49(21) 46(23) 44(25) 41(27) 38(29) 

  114(21) 111(23) 108(25) 105(27) 102(29) 

  114(52) 111(54) 108(57) 105(59) 102(62) 

* : no solution 

For each value of 
U  and 

L , the first, the second and third rows correspond to 

1 2( , )   of (0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 
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Table 29. Minimum required sample size for dual threshold design ( 0.5L  ,

0.5U  , 8  ). 

   prior 

U  

  N(n1)   

L  
2(8,15 )N  2(9,15 )N  2(10,15 )N  2(11,15 )N  2(12,15 )N  

4 9 72(26) 71(27) 70(27) 69(28) 68(29) 

  186(26) 185(27) 183(27) 182(28) 181(29) 

  186(76) 185(77) 183(78) 182(28) 181(80) 

4 10 73(26) 72(27) 71(27) 70(28) 69(29) 

  187(26) 186(27) 185(27) 183(28) 182(29) 

  187(76) 186(77) 185(78) 183(79) 182(80) 

4 11 75(26) 73(27) 72(27) 71(28) 70(29) 

  188(26) 187(27) 186(27) 185(28) 183(29) 

  188(76) 187(77) 186(78) 185(79) 183(80) 

* : no solution 

For each value of 
U  and 

L , the first, the second and third rows correspond to 

1 2( , )   of (0.6,0.7),(0.6,0.8)  and (0.7,0.8) , respectively. 

 

 

Table 30. Single Threshold Design threshold probabilities with 6   the prior 

distribution 
2( ,2 )UN  . 

For each value of ( L , U ), the first, second and third rows correspond to type Ⅰand 

Ⅱ error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. 

 

 

L  U   Optimal design  Minimax design 

n 1  N 2  n 1  N 2  

4 9 5 0.328 11 0.206 5 0.328 10 0.222 

4 0.356 11 0.206 4 0.356 10 0.222 

6 0.303 14 0.165 6 0.303 13 0.178 

4 10 3 0.333 8 0.166 3 0.333 7 0.191 

3 0.386 7 0.280 4 0.356 7 0.280 

4 0.290 10 0.126 5 0.328 9 0.240 

4 11 2 0.344 6 0.151 2 0.344 6 0.150 

2 0.382 6 0.219 1 0.437 5 0.252 

3 0.333 7 0.191 3 0.333 7 0.191 
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Table 31. Single Threshold Design threshold probabilities with 8   the prior 

distribution 
2( ,2 )UN  . 

For each value of ( L , U ), the first, second and third rows correspond to type Ⅰand 

Ⅱ error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. 

 

 

Table 32. Dual Threshold Design threshold probabilities with 6   the prior 

distribution 
2( ,6 )UN   

For each value of ( L , U ), the first, second and third rows correspond to type Ⅰand 

Ⅱ error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. 

 

 

L  U   Optimal design  Minimax design 

n 1  N 2  n 1  N 2  

4 9 8 0.342 19 0.211 9 0.326 18 0.220 

6 0.275 19 0.211 7 0.258 17 0.230 

10 0.312 26 0.258 11 0.298 23 0.178 

4 10 6 0.316 13 0.183 6 0.375 12 0.285 

5 0.293 13 0.273 5 0.393 12 0.285 

7 0.292 18 0.124 7 0.358 16 0.240 

4 11 4 0.369 10 0.231 5 0.342 9 0.250 

3 0.398 10 0.231 3 0.298 9 0.250 

5 0.342 13 0.182 5 0.341 12 0.198 

L  U   Optimal design  Minimax design 

n 1  N 2  n 1  N 2  

4 9 5 0.150 11 0.145 5 0.238 10 0.157 

4 0.160 11 0.145 4 0.159 10 0.157 

6 0.140 14 0.115 6 0.237 13 0.123 

4 10 3 0.208 8 0.091 3 0.252 7 0.108 

3 0.149 7 0.205 4 0.088 7 0.205 

4 0.143 10 0.066 5 0.135 9 0.171 

4 11 2 0.172 6 0.029 2 0.187 6 0.049 

2 0.097 6 0.128 1 0.190 5 0.154 

3 0.132 7 0.108 3 0.132 7 0.108 
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Table 33. Dual Threshold Design threshold probabilities with 8   the prior 

distribution 
2( ,6 )UN   

For each value of ( L , U ), the first, second and third rows correspond to type Ⅰand 

Ⅱ error probabilities of (0.10,0.10), (0.05,0.20) and (0.05,0.10), respectively. 

 

 

Table 34. PET and EN for Single Threshold Design ( 6  , 0.5U  ). 

 

     

prior 

N(8, 22 ) N(9, 22 ) N(10, 22 ) N(11, 22 ) N(12, 22 ) 

 PET EN PET EN PET EN PET EN PET EN 

9 0.315 65.3 0.346 36.6 * * * * * * 

 0.315 116.0 0.346 79.7 * * * * * * 

 0.274 130.7 0.225 99.1 0.518 40.2 * * * * 

10 0.256 93.3 0.203 69.4 0.345 36.6 * * * * 

 0.256 155.7 0.203 128.4 0.345 79.8 * * * * 

 0.240 38.6 0.179 137.7 0.255 99.1 0.519 40.2 * * 

11 0.133 124.7 0.162 97.2 0.203 69.5 0.345 36.6 * * 

 0.133 207.9 0.162 167.6 0.203 128.4 0.345 79.8 * * 

 0.135 214.0 0.155 174.9 0.179 137.7 0.225 99.2 0.519 40.2 

* : no solution 

For each value of U , the first, second and third rows correspond to 

1 2( , ) (0.6,0.7),(0.6,0.8) (0.7,0.8)and   , respectively. 

 

 

L  U   Optimal design  Minimax design 

n 1  N 2  n 1  N 2  

4 9 8 0.237 19 0.149 9 0.238 18 0.156 

6 0.164 19 0.149 7 0.236 17 0.163 

10 0.144 26 0.109 11 0.237 23 0.124 

4 10 6 0.211 13 0.102 6 0.286 12 0.209 

5 0.150 13 0.199 5 0.150 12 0.209 

7 0.215 18 0.065 7 0.248 16 0.171 

4 11 4 0.132 10 0.137 5 0.185 9 0.152 

3 0.130 10 0.137 3 0.157 9 0.169 

5 0.132 13 0.102 5 0.185 12 0.113 
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Table 35. PET and EN for Single Threshold Design ( 8  , 0.5U  ). 

    

prior 

N(8, 22 ) N(9, 22 ) N(10, 22 ) N(11, 22 ) N(12, 22 ) 

 PET EN PET EN PET EN PET EN PET EN 

9 0.206 122.4 0.343 64.4 * * * * * * 

 0.206 227.2 0.343 141.9 * * * * * * 

 0.180 244.2 0.227 175.2 0.522 70.8 * * * * 

10 0.162 172.8 0.205 122.4 0.343 64.4 * * * * 

 0.162 306.0 0.205 227.3 0.343 141.9 * * * * 

 0.155 319.3 0.180 244.2 0.227 175.2 0.522 70.8 * * 

11 0.138 221.4 0.162 172.8 0.205 122.4 0.343 64.4 * * 

 0.138 366.9 0.162 297.6 0.205 227.2 0.343 141.9 * * 

 0.138 378.5 0.155 310.8 0.180 244.2 0.227 175.2 0.522 70.8 

* : no solution 

For each value of U , the first, second and third rows correspond to 

1 2( , ) (0.6,0.7),(0.6,0.8) (0.7,0.8)and   , respectively. 

 

 

 

Table 36. PET and EN for Dual Threshold Design ( 6  , 0.5L U   ). 

    prior 
2(8,6 )N  2(9,6 )N  2(10,6 )N  2(11,6 )N  2(12,6 )N  

L   PET EN PET EN PET EN PET EN PET EN 

4 9 0.807 28.1 0.814 28.7 0.825 30.4 0.834 * 0.839 * 

  0.807 40.7 0.814 40.6 0.825 40.5 0.834 42.6 0.839 43.3 

  0.842 64.3 0.846 66.0 0.850 67.8 0.855 70.3 0.858 72.2 

4 10 0.807 28.8 0.814 29.5 0.825 31.8 0.834 32.8 0.839 * 

  0.807 41.2 0.814 41.4 0.825 42.3 0.834 43.4 0.839 43.9 

  0.842 64.9 0.846 66.6 0.850 68.5 0.855 71.1 0.858 72.8 

4 11 0.807 28.5 0.814 30.3 0.825 31.8 0.834 33.5 0.839 * 

  0.807 39.3 0.814 42.2 0.825 43.0 0.834 44.1 0.839 44.8 

  0.842 65.8 0.846 67.3 0.850 69.1 0.855 71.6 0.858 73.5 

* : no solution 

For each value of U , the first, second and third rows correspond to 

1 2( , ) (0.6,0.7),(0.6,0.8) (0.7,0.8)and   , respectively. 
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Table 37. PET and EN for Dual Threshold Design ( 8  , 0.5L U   ). 

    prior 
2(8,15 )N  2(9,15 )N  2(10,15 )N  2(11,15 )N  2(12,15 )N  

L   PET EN PET EN PET EN PET EN PET EN 

4 9 0.745 37.7 0.751 37.9 0.750 37.7 0.756 37.9 0.761 38.3 

  0.745 66.7 0.751 66.3 0.750 65.8 0.756 66.5 0.761 65.3 

  0.819 95.9 0.820 96.4 0.821 96.7 0.822 97.2 0.824 97.7 

4 10 0.745 37.9 0.751 38.2 0.750 38.0 0.756 38.2 0.761 38.5 

  0.745 67.0 0.751 66.6 0.750 66.5 0.756 65.8 0.761 65.5 

  0.819 96.1 0.820 96.6 0.821 97.1 0.822 97.5 0.824 97.9 

4 11 0.745 38.5 0.751 38.5 0.750 38.2 0.756 38.5 0.761 38.8 

  0.745 67.3 0.751 66.8 0.750 66.8 0.756 66.3 0.761 65.3 

  0.819 96.3 0.820 96.8 0.821 97.3 0.822 97.8 0.824 98.1 

* : no solution 

For each value of U , the first, second and third rows correspond to 

1 2( , ) (0.6,0.7),(0.6,0.8) (0.7,0.8)and   , respectively. 

 

 

 

 

 

 


