
Statistical Inferences with Categorized Variables and

Its Application to a Trimmed Mean

By Dr. Lin-An Chen and Tzu-Yun Huang

Institute of Statistics, National Chiao Tung University,

Hsinchu, Taiwan.

Abstract

Considerable energy has been devoted to the arguments of possible unde-

sired statistical inference properties resulted from categorization of contin-

uous variables that does not stop its popularity in association research of

epidemiology for its appealing of convenience in presentation and interpre-

tation of analyzed results. For correction of popularly used untrustworthy

statistical methods, we initiate a theoretical study of statistical effect of

categorization with parametric and nonparametric estimations for unknown

means of categorized variables. We show that the parametric sample mean

is very efficient that explains undesired statistical property of classical sta-

tistical methods. In nonparametric estimation of the population mean of

a (noncategorized) variable, we prove that categorization creates auxiliary

information to improve the efficiency of parameter estimation. This shows

that the statistical society is far from knowing the statistical properties of

categorization and the supplementary population information of an extra

variable created by categorization for statistical inferences deserves to re-

ceive more attention in literature.

Key words: Auxiliary information; auxiliary variable; categorization of con-

tinuous variable; estimation; trimmed mean.

1. Introduction

It is very common that the researchers are interested in assessing the

relationship between continuous outcome and explanatory (covariates) vari-

ables. In contemporary epidemiologic practice, it is appealing to epidemiol-

ogist to modify continuous variables into categorical variables to facilitate
1
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data presentation such as low, medium and high risk group. Prock et al.

(2004) reported that 84% of epidemiological papers from leading journals

made categorization of continuous variables. Categorization of continuous

variables is widespread to other areas, for examples, psychology application

(MacCallum, et al. (2002)) and marketing application (Irwin and McClel-

land (2003)). The investigators often then use categorized samples to fit

a regression model or to analyze whether subsequently higher categories

are associated with increased risk of an outcome by multiple comparison

method.

Categorization of continuous variables has been overwhelmingly criticized

for problems of undesired statistical properties such as bias in estimation

and power loss in hypothesis testing caused by loss information (see, for

examples, Royston and Aauerbrei (2008), Taylor and Yu (2002), Walraven

and Hart (2008) and Zhao and Kolonel (1992)). As observed by Han (2008),

the assumptions of normality, independence and constant variance behind

the multiple comparison for these categorized variables are not true (see also

Bennette and Vickers (2012)), and these undesired statistical properties, in

our opinion, are not prevented when theoretically untrustworthy statistical

inference methods are applied.

With categorization still playing important role, it requires theoretically

trustworthy statistical methods to deal with categorized samples. We initi-

ate this study by developing distributional theory for parametric and non-

parametric categorized sample means. With novel idea of parametrization,

the parametric estimation outperforms the classical sample means with very

high efficiency. We also observed a surprising and exceptional new statis-

tical theory that the debated categorization creates the desired auxiliary

information.

In the statistical inference for unknown parameters of a variable’s distri-

bution, any extra variable measured in association with this variable that

is used to increase the accuracy of this inference is called an auxiliary vari-

able. By showing that a categorized trimmed mean for estimating pop-

ulation mean of uncategorized variable has asymptotic variance not only
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smaller than that of the classical trimmed mean but also, more interest-

ingly, smaller than the Cramer-Rao lower bound for this population mean,

an evidence of categorization creating auxiliary information is discovered.

The knowledge in literature is slim in terms of how much categorization con-

tributes the accuracies in statistical parameter inferences, especially when

categorization’s auxiliary information is implemented. This approach has

taken the first step to recognize the theory of categorization but there is

much more waiting for further investigation.

2. Nonparametric Categorized Sample Means

Let Y and X be continuous response and explanatory variables with a

joint probability density function (pdf) fXY (x, y). Consider cutoffs −∞ <

a1 < a2 < ... < ak−1 such that intervalsA1 = (−∞, a1] , A2 = (a1, a2], ..., Ak =

(ak−1,∞) forms a partition of the space of variable X. Cutoffs aj ’s are seen

as known constants and unknown quantiles in practice. Suppose that we

have a random sample

(
Y1

X1

)
,

(
Y2

X2

)
, ...,

(
Yn
Xn

)
from this underlying dis-

tribution. The epidemiologists often categorize the sample of variable Y

into the following categorized samples, as

{Yi : Xi ∈ A1, i = 1, ..., n}, . . . , {Yi : Xi ∈ Ak, i = 1, ..., n} . (2.1)

Then classical statistical methods such as t-test and F -test based on these

categorized samples for inference of unknown population means θ1 = E[Y |X ∈
A1], ..., θk = E[Y |X ∈ Ak], called the categorized means, are applied to ver-

ify the relationship between categorized variables. As observed from Han

(2008), these categorized variables in k groups are no longer normal, inde-

pendent and constant variance and then these classical tests are theoretically

incorrect.

Theoretically trustworthy inference methods may be developed from the

distributional theory of their parametric and nonparametric estimators. We

consider the nonparametric estimation in this section. For constant cutoffs,

the following averages

θ̂cj =

∑n
i=1 YiI(Xi ∈ Aj)∑n
i=1 I(Xi ∈ Aj)

, j = 1, ..., k, (2.2)
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called the categorized sample means, are applied without correct distribu-

tional theory, in classical ANOVA approach. Here c stands for constant

cutoff. Denoting θ̂C = (θ̂c1, ..., θ̂ck)′, a nonparametric estimator of vector

categorized group means θ = (θ1, ..., θk)′, the following theorem states its

distributional theory.

Theorem 2.1. n1/2(θ̂C − θ) converges in distribution to k-dimensional

multivariate normal distribution Nk(0k,ΣC) where

ΣC = Cov


p−1

1 (Y − θ1)I(X ≤ a1)
p−1

2 (Y − θ2)I(X ∈ (a1, a2))
...

p−1
k (Y − θk)I(X ≥ ak)

 = diag(σ2
1 , σ

2
2 , ..., σ

2
k)

and where σ2
j = 1

P (X∈Aj)V ar(Y |X ∈ Aj) is the categorized variance.

If choices in nonparametric estimation are available, we recommend the

constant cutoffs since estimation of asymptotic covariance matrix is simpler

to establish. We define estimator of categorized variance σ2
j by

S2
j =

1∑n
i=1 I(Xi ∈ Aj)

n∑
i=1

(Yi − θ̂j)2I(Xi ∈ Aj), j = 1, ..., k,

calling them the categorized sample variances. Hence the following sample

matrix

Σ̂C = diag(S2
1 , S

2
2 , ..., S

2
k)

consitutes a consistent estimator of unknown covariance matrix ΣC . Its

efficiency will be verified later.

In many applications (Shankar et al. (2007), Luo et al. (2007) and

Letenneur et al. (2007)), categorization is done on quantile partition as

A1 = (−∞, F−1
X (α1)], A2 = (F−1

X (α1), F−1
X (α2)], ..., Ak = (F−1

X (αk−1),∞)

where F−1
X (α) represents the α-th population quantile of random variable

X. Frequently the quantile functions F−1
X (αj)

′s are unknown and are esti-

mated with empirical quantiles F̂−1
X (αj), j = 1, ..., k − 1, of random sample

X1, ..., Xn. This leads to the sample partition

Â1 = (−∞, F̂−1
X (α1)], Â2 = (F̂−1

X (α1), F̂−1
X (α2)], ..., Âk = (F̂−1

X (αk−1),∞),
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and the quantiles based categorized sample means as

θ̂qj =

∑n
i=1 YiI(Xi ∈ Âj)∑n
i=1 I(Xi ∈ Âj)

, j = 1, ...k (2.3)

where q stands for quantile cutoff. We denote θ̂q = (θ̂q1, ..., θ̂qk)′ and λj =

E(Y − µy|X = F−1
X (αj)). A representation and asymptotic distribution for

this categorized sample mean vector θ̂q are introduced below.

Theorem 2.2. (a) The quantile cutoffs based categorized sample mean has

the following Bahadur representation:

√
n(θ̂q−θ) = n−1/2

n∑
i=1


α−1

1 (ψ1(Yi, Xi)− E(ψ1(Y,X)))
(α2 − α1)−1(ψ2(Yi, Xi)− E(ψ2(Y,X)))

...
(1− αk−1)−1(ψk(Yi, Xi)− E(ψk(Y,X)))

+op(1)

where

ψ1(Y,X) =

{
Y − µy if X ≤ F−1

X (α1)

λ1 if X > F−1
X (α1)

, ψk(Y,X) =

{
λk−1 if X ≤ F−1

X (αk−1)

Y − µy if X > F−1
X (αk−1)

and, for j = 2, ..., k − 1,

ψj(Y,X) =


λj−1 if X ≤ F−1

X (αj−1)

Y − µy if F−1
X (αj−1) < X < F−1

X (αj)

λj if X ≥ F−1
X (αj)

.

(b) We have that
√
n(θ̂q − θ) is asymptotically normal with distribution

Nk(0k,Σq) where k × k matrix Σq = (σjm), j,m = 1, ..., k with

σ11 =
1

α2
1

{M1 + (1− α1)λ2
1 − (m1 + (1− α1)λ1)2},

σ1j =
1

α1(αj − αj−1)
{λ1λj−1(αj−1 − α1) + λ1mj + λ1λj(1− αj)

+ λj−1m1 − (m1 + (1− α1)λ1)(αj−1λj−1 + (1− αj)λj +mj)}

σ1k =
1

α1(1− αk−1)
{λ1λk−1(αk−1 − α1) + λ1mk + λk−1m1

− (m1 + (1− α1)λ1)(αk−1λk−1 +mk)}



6

for j = 2, ..., k − 1,

σjj =
1

(αj − αj−1)2
{αj−1λ

2
j−1 + (1− αj)λ2

j +Mj − (αj−1λj−1

+ (1− αj)λj +mj)
2},

σjj+1 =
1

(αj+1 − αj)(αj − αj−1)
{λj(λj−1αj−1 +mj +mj+1 + λj+1(1− αj+1))

− (αj−1λj−1 + (1− αj)λj +mj)(αjλj + (1− αj+1)λj+1 +mj+1)},

σjm =
1

(αj − αj−1)(αm − αm−1)
{λm−1(λj−1αj−1 +mj + λj(αm−1 − αj))

+ λj(mm + λm(1− αm))− (αj−1λj−1 + (1− αj)λj +mj)

(αm−1λm−1 + (1− αm)λm +mm)},m = j + 2, ..., k − 1,

σjk =
1

(αj − αj−1)(1− αk−1)
{λk−1(λj−1αj−1 +mj + λj(αk−1 − αj))

+ λjmk − (αj−1λj−1 + (1− αj)λj +mj)(αk−1λk−1 +mk)},

and

σkk =
1

(1− αk−1)2
{αk−1λ

2
k−1 +Mk − (αk−1λk−1 +mk)2}.

where mj = E[(Y − µy)I(X ∈ Aj)] and Mj = E[(Y − µy)2I(X ∈ Aj)], for

j = 1, ..., k denote the first and second central group moment at jth group

for categorized variable Y ’s.

This theorem generalizes the theory of univariate robust trimmed mean and

the outlier mean of Chen, Chen and Chan (2010) to vector case.

Theorems 2.1 and 2.2 provide a basis for theoretically correct nonpara-

metric inferences for unknown parameters θ.

3. Parametric Categorized Sample Means

We consider the parametric approach with normality assumption as(
Y
X

)
∼ N2(

(
µy
µx

)
,

(
σ2
y σxy

σyx σ2
x

)
). (3.1)

In this normal setting, we fix a permutation of distributional parameters

as Λ = (µx, µy, σ
2
y, σ

2
x, σyx) and consider for simplicity of presentation only
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quantile cutoffs. Given 0 < α1 < α2 < ... < αk−1 < 1, the unknown

quantiles under normality assumption are aj = F−1
x (αj) = µx + zαj

σx,

j = 1, ..., k − 1. The following theorem is a simplified result from Han

(2005).

Theorem 3.1. Consider the quantiles cutoffs and the normal assumption

(3.1). The population categorized means forms a vector θp = (θ1p, ..., θkp)

with

θ1p = µy −
σyx
α1σx

φ(zα1)

...

θjp = µy −
σyx

σx(αj − αj−1)
(φ(zαj )− φ(zαj−1)), j = 2, ..., k − 1

...

θkp = µy +
σyx

σx(1− αk−1)
φ(zαk−1

)

where φ is the probability density function (pdf) of standard normal N(0, 1).

Suppose that we have a random sample

(
Y1

X1

)
,

(
Y2

X2

)
, ...,

(
Yn
Xn

)
. De-

noting X̄ = 1
n

∑n
i=1Xi, Ȳ = 1

n

∑n
i=1 Yi, S

2
Y = 1

n

∑n
i=1(Yi − Ȳ )2, S2

X =
1
n

∑n
i=1(Xi − X̄)2 and SY X = 1

n

∑n
i=1(Xi − X̄)(Yi − Ȳ ), the mle of pa-

rameter vector Λ is

Λ̂mle = (X̄, Ȳ , S2
Y , S

2
X , SY X) (3.2)

and the maximum likelihood estimators (mle) of categorized means are

θ̂1p = Ȳ − syx
α1sx

φ(zα1), θ̂jp = Ȳ − syx
sx(αj − αj−1)

φ(zαj )− φ(zαj−1)),

j = 2, ..., k − 1, θ̂kp = Ȳ +
syx

sx(1− αk−1)
φ(zαk−1

)

and its vector θ̂p = (θ̂1p, ..., θ̂kp)
′.

Theorem 3.2. (a) We have that n1/2(θ̂p − θp) converges in distribution to

k-dimensional normal distribution Nk(0k,Σp) with asymptotic covariance
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matrix Σp = Γ(Λ)Vp(Λ)Γ(Λ)′ where Γ(Λ) =
∂θp(Λ)
∂Λ is the partial derivative

of θp(Λ) with respect to Λ and Vp(Λ) = −[E ∂2lnφN (X,Y )
∂Λ∂Λ′ ]−1 is the Crammer-

Rao’s lower bound for Λ with φN (X,Y ) the pdf of normal distribution in

(3.1).

(b) The quantiles based cutoffs based partial derivative matrix under the

normal distribution is Γ(Λ) = (γij)i=1,...,k,j=1,...,5 with

γ11 = −σxy
σ2
x

φ(zα1)

α1
(
φ(zα1)

α1
+ zα1), γ12 = 1,

γ13 = −σxy
2σ3

x

φ(zα1
)

α1
(
zα1

φ(zα1
)

α1
+ z2

α1
− 1), γ14 = 0, γ15 = − 1

σx

φ(zα1
)

α1

for j = 2, ..., k − 1,

γj1 =
−σxy
σ2
x

1

αj − αj−1
(
(φ(zαj )− φ(zαj−1))2

αj − αj−1
+ (zαj

φ(zαj
)− zαj−1

φ(zαj−1
))),

γj2 = 1, γj3 =
−σxy
2σ3

x

1

αj − αj−1
[(
zαj

φ(zαj
)− zαj−1

φ(zαj−1
)

αj − αj−1
− 1)

(φ(zαj
)− φ(zαj−1

)) + (z2
αj
φ(zαj

)− z2
αj−1

φ(zαj−1
))], γj4 = 0,

γj5 =
−1

σx

φ(zαj
)− φ(zαj−1

)

αj − αj−1
, γk1 =

σxy
σ2
x

φ(zαk−1
)

1− αk−1
(zαk−1

−
φ(zαk−1

)

1− αk−1
),

γk2 = 1, γk3 =
σxy
2σ3

x

φ(zαk−1
)

(1− αk−1
(z2
αk−1

−
zαk−1

φ(zαk−1
)

1− αk−1
− 1)

γk4 = 0, γk5 =
1

σx

φ(zαk−1
)

1− αk−1
.

(c) Defining 2×2 matrixA =

(
σ2
x σ2

xy

σ2
xy σ2

y

)
and 3×3 matrixB =

 2σ4
x 2σ2

xy 2σ2
xσxy

2σ2
xy 2σ4

y 2σ2
xσxy

2σ2
xσxy 2σ2

yσxy σ2
xσ

2
y + σ2

xy

,

the Cramer-Rao lower bound for bivariate normal parameter vector Λ is

Vp(Λ) = −[E
∂2lnφN (X,Y )

∂Λ∂Λ′
]−1 =

(
A 02×3

03×2 B

)
.

Further parametric statistical inferences for categorized means θp can

be constructed with the mle of asymptotic covariance matrix as Σ̂p =

Γ(Λ̂mle)Vp(Λmle)Γ(Λ̂mle)
′.

4. Comparison of Parametric and Nonparametric Estimators
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We would not investigate the accuracies of theoretically correct infer-

ence methods constructed by the parametric and nonparametric categorized

sample means but would desire at this moment to compare the accuracies of

these two estimation methods. We first compare their asymptotic covariance

matrices by evaluating the traces of covariance matrices Γpq(Λ)Vp(Λ)Γ′pq(Λ)

and Σc to compute the relative efficiencies of the nonparametric estimator

of categorized group means as

effN =
min{tr(Γpq(Λ)Vp(Λ)Γ′pq(Λ)), tr(Σc)}

tr(Σc)
.

Considering

(
Y
X

)
∼ N2(

(
1
1

)
,

(
σ2
y σyx

σyx σ2
x

)
), the efficiency values effN

under several values of parameters are displayed in Table 1.

Table 1. Efficiencies of nonparametric estimator of categorized group

means

σyx = 0.2 0.3 0.5 0.7 0.8
(σ2
y, σ

2
x) = (1, 1) 0.556 0.599 0.672 0.701 0.675

(σ2
y, σ

2
x) = (2, 1) 0.530 0.561 0.621 0.671 0.689

(σ2
y, σ

2
x) = (1, 2) 0.530 0.561 0.621 0.670 0.689

Lower values of effN supports the parametric estimation of unknown cat-

egorized means when the underlying distribution is known. Since method

of nonparametric categorized sample mean is applied for classical ANOVA

analysis, this parametric estimation from the new parametrized unknown

categorized means in Theorem 3.1 deserves attention in application and

study with construction of new ANOVA approach of multiple comparison

of categorized means.

Setting the normal distribution N2(

(
1
2

)
,

(
σ2
y σyx

σyx σ2
x

)
), we compare

Σ̂p(Λ) and Σ̂C through simulation for their efficiencies of estimating the

common matrix Σ. Suppose that the categorized sample variance at jth

replication be denoted as Sj = (sji`)i,`=1,...,k and true covariance matrix is

Σ = (σi`)i,`=1,...,k. We define mean squares error (MSE) by

MSE =
1

mk2

m∑
j=1

k∑
`=1

k∑
i=1

(Sji` − σi`)
2
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We re-denote the MSE’s for nonparametric and parametric estimators, re-

spectively, by MSEnp and MSEp. With replications m = 10, 000, sample

size n = 50 and 100 and some values of variances σ2
y and σ2

x, the results of

two MSE’s are displayed in Table 2.

Table 2. MSE’s for parametric estimator of asymptotic covariance matrix

ΓVpΓ
′ (4 groups)

Sample size σyx = 0.2 0.3 0.5 0.7 0.8
(σ2
x, σ

2
y) = (1, 1)

n = 50,MSEnp 4.441 4.422 3.647 2.194 1.338
MSEp 0.079 0.074 0.049 0.023 0.012

n = 100,MSEnp 2.208 2.322 2.148 1.323 0.800
MSEp 0.040 0.036 0.024 0.011 0.006

(σ2
x, σ

2
y) = (2, 1)

n = 50,MSEnp 4.725 4.559 4.528 3.673 3.572
MSEp 0.083 0.081 0.067 0.050 0.041

n = 100,MSEnp 2.153 2.240 2.376 2.350 2.293
MSEp 0.042 0.040 0.034 0.025 0.020

(σ2
x, σ

2
y) = (1, 2)

n = 50,MSEnp 18.61 18.41 17.41 14.86 13.18
MSEp 0.339 0.312 0.268 0.201 0.164

n = 100,MSEnp 8.649 8.990 9.321 8.627 7.800
MSEp 0.165 0.157 0.134 0.103 0.081

The simulated results show that estimation of asymptotic covariance matrix

of parametric categorized sample means is much more efficient than that of

nonparametric version.

We next consider a simulation study to verify the finite sample efficiencies

of parametric and nonparametric estimators of parameter vector θp when Y

and X have a joint normal distribution. Denoting θ̂jN and θ̂jp as, respectively,

nonparametric and parametric estimates of θ at jth replication, we compute

the following MSE’s

MSEN =
1

m

m∑
j=1

(θ̂jN − θp)
′(θ̂jN − θp), MSEp =

1

m

m∑
j=1

(θ̂jp − θp)′(θ̂jp − θp)

and the simulated results are displayed in Table 3 where categorization

number is 4.
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Table 3. MSE’s for parametric and nonparametric estimations

Sample size σyx = 0.2 0.3 0.5 0.7 0.8
n = 30
MSEN 0.145 0.137 0.118 0.087 0.067
MSEp 0.063 0.059 0.051 0.036 0.027
n = 50
MSEN 0.082 0.079 0.066 0.049 0.038
MSEp 0.036 0.034 0.029 0.021 0.016
n = 100
MSEN 0.039 0.038 0.032 0.023 0.018
MSEp 0.018 0.017 0.014 0.010 0.007

We see that MSEp’s are all relatively smaller than corresponding MSEN ’s

that supports our previous observation of superiority of parametric estima-

tion for population categorized means.

Let θ̂ be an estimator of categorized group mean θ that satisfies n1/2(θ̂−
θ) converging in distribution to normal vector Nk(0k,Σ). Suppose that

consistent estimator Σ̂ for Σ is available. Then following quantity

T = n(θ̂ − θ)′Σ̂−1(θ̂ − θ) (4.1)

converges, in distribution, to chi-squares distribution χ2(k) of degrees of

freedom k when sample size n goes to infinity. Theoretically correct inference

methods such as confidence band and test for general linear hypothesis H0 :

Aθ = 0 vs H1 : Aθ 6= 0 may be constructed through a chi-square quantity.

One way to investigate these inference methods is to compare T like quantity

in some way for different approaches. Let the areas of estimated region

(θ̂ − θ)′Σ̂−1(θ̂ − θ) for parametric and nonparametric versions be denoted

by Âp and ÂN . We denote their MSE’s as

MSEp =
1

m

m∑
j=1

(Â(j)
p −Ap)2, MSEN =

1

m

m∑
j=1

(Â
(j)
N −AN )2

where (j) refers to jth replication. With m = 10, 000, categorization number

is 2, we display the simulated results in Table 4.

Table 4. MSE’s for region areas
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MSE σyx = 0.2 0.3 0.5 0.7 0.8
(σ2
y, σ

2
x) = (1, 1), n = 50
MSEN 10.35 7.016 3.462 2.181 2.096
MSEp 1.798 1.643 1.185 0.628 0.387
n = 100
MSEN 9.213 6.103 2.793 1.778 1.746
MSEp 0.876 0.822 0.582 0.314 0.198

(σ2
y, σ

2
x) = (1, 2), n = 50
MSEN 12.97 9.929 5.654 3.295 2.562
MSEp 1.836 1.757 1.539 1.162 0.976
n = 100
MSEN 11.70 8.800 2.560 2.675 2.052
MSEp 0.923 0.851 0.993 0.578 0.493

(σ2
y, σ

2
x) = (2, 1), n = 50
MSEN 51.96 39.67 22.69 14.13 11.34
MSEp 7.375 7.084 5.977 4.724 4.048
n = 100
MSEN 46.82 35.00 19.49 11.31 9.184
MSEp 3.795 3.577 2.998 2.378 2.010

Accuracy in estimation of unknown parameters gives the parametric sample

categorized means the advantage of smaller area of interest. This is another

desired property for parametric estimation of unknown categorized means.

In brief summary, attractive properties shown above for parametric es-

timation is benefited from the new and novel parametrization in Theorem

3.1.

5. Categorization Creating Auxiliary information

In this section, we show that categorization is linked to a theory very

important in efficient estimation. Statistician has long been interested in

looking for inference method with possible improvement of accuracy. Let

Y1, ..., Yn be a random sample from a density function f(y, θy) with θy being

the interest of parameter. We know that Cramer-Rao’s theory gives us no

chance in improving an uniformly minimum variance unbiased estimator

when regularity conditions are assumed. Researchers then turned to find

estimator sequence {θ̂y} asymptotically normal as

√
n(θ̂y − θ)→ N(0, vθy ) (5.1)
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in distribution that has superefficient point θy in parameter space as

vθy < I(θy)−1 (5.2)

where I(θy) is the Fisher information at θy. In 1951, Hodges produced an

estimator (Bickel, et al. (1998)) with one superefficient point. Later, Le

Cam (1953) showed that for any sequence of estimators satisfying (5.1), the

set of superefficient points has Lebesgue measure zero. This also tells us

that estimators with superefficiency is only interesting theoretically but not

in practice.

An interest in theory and practice is then looking for a statistic contain-

ing auxiliary information so that it improves inference’s accuracy. Verifying

existence of auxiliary information has received some attention in literature,

see, for examples, Kuk and Mak (1989), Rao, Kovar and Mantel (1990)

and Martinez-Miranda, Rueda and Arcos (2007) for quantile estimation and

Srivastava (1971) for mean estimation. We prove that categorization con-

tributes this improvement. In robust estimation of population mean µy, the

classical trimmed mean based on random sample Y1, ..., Yn is defined as

µ̂t(α1, α2) =

∑n
i=1 YiI(F̂−1

Y (α1) ≤ Yi ≤ F̂−1
Y (α2)∑n

i=1 I(F̂−1
Y (α1) ≤ Yi ≤ F̂−1

Y (α2))
. (5.3)

Now, suppose that as in our design for categorization we also have an extra

random sample X1, ..., Xn with Yi and Xi correlated. For 0 < α1 < α2 < 1,

we call the following categorized sample mean

µ̂y,cat(α1, α2) =

∑n
i=1 YiI(F̂−1

X (α1) ≤ Xi ≤ F̂−1
X (α2)∑n

i=1 I(F̂−1
X (α1) ≤ Xi ≤ F̂−1

X (α2))
(5.4)

the categorized trimmed mean. This is first example of estimating a distri-

butional parameter of uncategorized variable with estimator based on cate-

gorized sample. We prove that categorization creates auxiliary information

for robust estimation.

The following theorem with α1 = 1 − α2 = α is a direct result from

Theorem 2.2.
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Theorem 5.1. Suppose that the joint distribution of Y and X is spherically

symmetric.

(a) The Barhadur representation for the categorized trimmed mean is

√
n(µ̂y,cat(α, 1− α)− µy) =

1

1− 2α
n−1/2

n∑
i=1

ψ0(Yi, Xi) + op(1)

where

ψ0(Y,X) =


−λ1−α if X ≤ F−1

X (α)

Y − µy if F−1
X (α) < X < F−1

X (1− α)

λ1−α if X ≥ F−1
X (1− α)

.

(b) Then
√
n(µ̂y,cat(α, 1−α)−µy) is asymptotically normal with distribution

N(0, σ2
cat) where

σ2
cat =

1

(1− 2α)2
[2αλ2

1−α +Mα]

where Mα = E[(Y − µy)2I(F−1
X (α) < X < F−1

X (1− α))].

We also denote the asymptotic variance of the classical trimmed mean of

(5.1) by σ2
t (Ruppert and Carroll (1980)).

For verification of our assertion, we design the following setting of mixed

distribution:(
Y
X

)
∼ (1− δ)N2(

(
µy
µx

)
,

(
1 σ12

σ12 1

)
) + δN2(

(
µy
µx

)
,

(
σ2
y σ∗12

σ∗12 1

)
)

indicating the interest of parameter is µy = E(Y ). For each setting of

the distributional parameters, we compute the minimum σ2
t and σ2

cat and

display them in Tables 5 and 6. Note that the values in parentheses in Table

5 are the trimming proportions achieving smallest asymptotic variances and

I(µy)−1 represents Y -variable based inverse of Fisher information and, for

theoretical interest, we list σ2
cat’s when σ2

cat < I(µy)−1 holds.

Table 5. Comparison of asymptotic variances (δ = 0.1)
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σ2
cat

(σ12 = −0.9)
σ2
cat

(−0.8)
σ2
t I(µy)−1

σ2
y = 2

σ∗12 = 1 1.042(0.06) 1.067(0.05) 1.107(0.05) 1.093
1.4 0.951(0.13) 1.003(0.08)

σ2
y = 5

σ∗12 = 2 1.131(0.15) 1.202(0.11) 1.230(0.06) 1.220
2.2 1.019(0.2) 1.118(0.14)

σ2
y = 9

σ∗12 = 2.9 1.150(0.23) 1.296(0.09) 1.256
2.99 1.053(0.26) 1.215(0.2)

Table 6. Comparison of asymptotic variances (δ = 0.2)

σ12 = 0.5 0.7 0.9 0.99 I(µy)−1

σ2
y = 2

σ∗12 = −1 1.179 1.128 1.042 0.974 1.185
−1.4 1.084 0.985 0.788 0.571
σ2
y = 5

σ∗12 = −2.2 1.416 1.228 0.892 0.576 1.448
−2.22 1.401 1.205 0.853 0.494
σ2
y = 9

σ∗12 = −2.9 1.205 0.896 1.532
−2.99 1.460 0.949 0.460

We have several comments for the results in Tables 5 and 6:

(a) Without extra information from other variables, the classical trimmed

mean gains no benefit in outperforming the lower bound I(µy) in any case

while, in the designed distributions in terms of variances and covariances,

the categorized trimmed means outperform the corresponding lower bounds.

(b) We see the power of auxiliary information that σ2
cat can be as small as

0.46 when the lower bound is 1.532. Auxiliary information greatly improves

in reduction of asymptotic variance of trimming estimation.

(c) The fact that the set {µy : σ2
cat < I(µy)−1, µy ∈ R} is Lebesgure measure

greater than zero supports the consideration of using auxiliary information

to modify statistical inference methods.

(d) The auxiliary information exists in this robust estimation when the

extra variable has relatively smaller variance and is highly correlated with

the response variable. This meets the general understanding in literature.



16

(e) Not every extra variable X provides auxiliary information. Suppose that

we have the following normality assumption:(
Y
X

)
∼ N2(

(
µy
µx

)
,

(
σ2
y σ12

σ12 σ2
y

)
).

Let Iyx(µy)−1 be the inverse of Fisher information for µy that is derived from

the above bivariate distribution. We may see that I−1
yx (µy) = I−1(µy) = σ2

y

indicating that auxiliary information does not exists when bivariate normal

is true.

6. Concluding Remarks

For predicting the unknown population means of categorized variables,

we have derived distributional theory for parametric and nonparametric es-

timators that allows us to construct ”theoretically correct” and ”advanced”

inference methods. Both approaches are shown to be valuable in statistical

theory and application. The novel parametrization results in the parametric

estimators being much more efficient than the classical ANOVA used sample

means. On the other hand the nonparametric categorized sample mean is

found involving an auxiliary information that greatly improves the efficiency

of nonparametric robust estimation. Ignorance to theory investigation for

categorization not only blindly face the use of untrustworthy inference meth-

ods but also forfeit the chance to discover interesting information created

by categorization for inference improvement. For long being criticized, we

have finally taken a big step in knowing it but it deserves to receive more

attention in statistical society.

We have several further remarks on this research:

(a) Idea of parametrization provides efficient parametric inference techniques

for unknown distributional parameters of categorized variables. Extension

of this parametrized parametric approach is desired to non-normal distribu-

tion.

(b) The accuracy properties of confidence interval and hypothesis testing

method formulated by quantity (4.1) requires for further investigation where

testing the usual interest of equal means can be done by setting general linear
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hypothesis with

A =


1 −1 0 0 ... 0 0
0 1 −1 0 ... 0 0
...

...
...

... ...
...

...
0 0 0 0 ... 1 −1

 .

(c) Intuitively we can expect that some other robust estimation methods

such as Winsorized mean in L-estimation and Huber’s M-estimation can

be benefited with efficiency improvement when the categorization created

auxiliary information is applied.

(d) It is expected that asymptotic variance σ2
cat can be even reduced more

when multiple auxiliary information is used. The Rao-Blackwell theorem

like theory as for how much capacity of improvement could be reached is an

interesting theoretical problem.

7. Appendix

We only give the proof for Theorem 2.2 while Theorem 3.1 are induced

from Han (2008) and the proofs for Theorems 2.1 and 3.2 being straightfor-

ward are skipped.

Proof of Theorem 2.2. With quantile cutoffs, the sample group means

may be represented as

θ̂qj − µy =

∑n
i=1(Yi − µy)I(F̂−1

X (αj−1) ≤ Xi ≤ F̂−1
X (αj))∑n

i=1 I(F̂−1
X (αj−1) ≤ Xi ≤ F̂−1

X (αj))
. (7.1)

Following the approaches of Ruppert and Carroll (1980) and Chen and Chi-

ang (1996), we may see that

n−1/2
n∑
i=1

(Yi − µy)[I(Xi ≤ F−1
X (α) + n−1/2Tn)− I(Xi ≤ F−1

X (α)]

= E(Y − µy|F−1
X (α))fX(F−1

X (α))Tn + op(1) (7.2)

for any sequence Tn = Op(1). The fact that I(Xi ≤ F̂−1
X (α)) = I(Xi ≤
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F−1
X (α) + n−1/2TX) with TX =

√
n(F̂−1

X (α)− F−1
X (α)) and (7.2) gives

n−1/2
n∑
i=1

(Yi − µy)I(F̂−1
X (αj−1) ≤ Xi ≤ F̂−1

X (αj)) (7.3)

= [E(Y − µy|X = F−1
X (αj))fX(F−1

X (αj)n
1/2(F̂−1

X (αj)− F−1
X (αj))

− E(Y − µy|X = F−1
X (αj−1))fX(F−1

X (αj−1)n1/2(F̂−1
X (αj−1)

− F−1
X (αj−1)) + n−1/2

n∑
i=1

(Yi − µy)I(F−1
X (αj−1) ≤ Xi ≤ F−1

X (αj))] + op(1).

A representation for regression quantile F̂−1
x (α) as

√
n(F̂−1

X (α)−F−1
X (α)) = f−1

X (F−1
X (α))n−1/2

n∑
i=1

(α−I(Xi ≤ F−1
X (α))+op(1).

(7.4)

may be seen in Ruppert and Carroll (1980). Moreover, we also have

n−1
n∑
i=1

I(F̂−1
X (αj−1) ≤ Xi ≤ F̂−1

X (αj)) = αj − αj−1 + op(1). (7.5)

By plugging (7.4) into (7.3) and with careful re-arrangement, the theorem

is followed from (7.1)-(7.3) and (7.5).
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