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Abstract
Considerable energy has been devoted to the arguments of possible unde-
sired statistical inference properties resulted from categorization of contin-
uous variables that does not stop its popularity in association research of
epidemiology for its appealing of convenience in presentation and interpre-
tation of analyzed results. For correction of popularly used untrustworthy
statistical methods, we initiate a theoretical study of statistical effect of
categorization with parametric and nonparametric estimations for unknown
means of categorized variables. We show that the parametric sample mean
is very efficient that explains undesired statistical property of classical sta-
tistical methods. In nonparametric-estimation of the population mean of
a (noncategorized) variable; we prove-that categorization creates auxiliary
information to improve the efficiency of parameter estimation. This shows
that the statistical society is far from knowing the statistical properties of
categorization and the supplementary population information of ‘an extra
variable created by categorization for statistical inferences deserves to re-

ceive more attention inliterature.

Key words: Auxiliary information; auxiliary variable; categorization of con-

tinuous variable; estimation; trimmed mean.

1. Introduction

It is very common that the researchers are interested in assessing the
relationship between continuous outcome and explanatory (covariates) vari-
ables. In contemporary epidemiologic practice, it is appealing to epidemiol-

ogist to modify continuous variables into categorical variables to facilitate
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data presentation such as low, medium and high risk group. Prock et al.
(2004) reported that 84% of epidemiological papers from leading journals
made categorization of continuous variables. Categorization of continuous
variables is widespread to other areas, for examples, psychology application
(MacCallum, et al. (2002)) and marketing application (Irwin and McClel-
land (2003)). The investigators often then use categorized samples to fit
a regression model or to analyze whether subsequently higher categories
are associated with increased risk of an outcome by multiple comparison

method.

Categorization of continuous variables has been overwhelmingly criticized
for problems of undesired statistical properties such as bias in estimation
and power loss in hypothesis testing caused by loss information (see, for
examples, Royston and Aauerbrei (2008), Taylor and Yu (2002), Walraven
and Hart (2008) and Zhao and Kolonel (1992)). As observed by Han (2008),
the assumptions of normality, independence and constant variance behind
the multiple comparison for these categorized variables are not true (see also
Bennette and Vickers (2012)), and these undesired statistical properties, in
our opinion, are not prevented when-theoretically untrustworthy statistical

inference methods are ‘applied.

With categorization.still playing important role, it requires theoretically
trustworthy statistical methods to deal with categorized samples. 'We initi-
ate this study by developing distributional theory for parametric and non-
parametric categorized-sample means: With novel idea of parametrization,
the parametric estimation outperforms the classical sample means with very
high efficiency. We also observed a surprising and exceptional new statis-
tical theory that the debated categorization creates the desired auxiliary

information.

In the statistical inference for unknown parameters of a variable’s distri-
bution, any extra variable measured in association with this variable that
is used to increase the accuracy of this inference is called an auxiliary vari-
able. By showing that a categorized trimmed mean for estimating pop-

ulation mean of uncategorized variable has asymptotic variance not only



smaller than that of the classical trimmed mean but also, more interest-
ingly, smaller than the Cramer-Rao lower bound for this population mean,
an evidence of categorization creating auxiliary information is discovered.
The knowledge in literature is slim in terms of how much categorization con-
tributes the accuracies in statistical parameter inferences, especially when
categorization’s auxiliary information is implemented. This approach has
taken the first step to recognize the theory of categorization but there is

much more waiting for further investigation.

2. Nonparametric Categorized Sample Means

Let Y and X be continuous response and explanatory variables with a
joint probability density function (pdf) fxy (z,y). Consider cutoffs —oo <
a1 < ag < ... < ak_1 such that intervals Ay = (—o0, a1], 42 = (a1, a2], ..., Ap =
(ar—1,00) forms a partition of the space of variable X. Cutoffs a;’s are seen

as known constants and unknown quantiles.in practice. Suppose that we

Yl Y2 Yn ’ . .
have a random sample < X, ) ; ( X2> .~ ( Xn) from this underlying dis-

tribution. The epidemiologists often categorize the sample of variable Y

into the following categorized samples;-as
{V,: X; € Ayi =100 n}, oY X, € Api =1, . qn}. (2.1)

Then classical statistical methods such as t-test and F-test based on these
categorized samples for inference of unknown population means ¢, = E[Y|X €
Aq],...,0r = E[Y|X €], called the categorized means, are applied to ver=
ify the relationship between categorized variables. As observed from Han
(2008), these categorized-wvariables in k- groups are ne longer normal, inde-
pendent and constant variance and then these classical tests are theoretically
incorrect.

Theoretically trustworthy inference methods may be developed from the
distributional theory of their parametric and nonparametric estimators. We
consider the nonparametric estimation in this section. For constant cutoffs,
the following averages
6., - 2%1 ViI(X; € 4;)

>t I(X; € Aj)

j=1,..k (2.2)



called the categorized sample means, are applied without correct distribu-
tional theory, in classical ANOVA approach. Here ¢ stands for constant
cutoff. Denoting éc = (écl, ...,éck)', a nonparametric estimator of vector
categorized group means 6 = (61, ...,0x)’, the following theorem states its

distributional theory.

Theorem 2.1. n'/2(fc — 0) converges in distribution to k-dimensional
multivariate normal distribution N (0, 3¢ ) where

pr (Y —01)I(X < ay)
py (Y — 02)I(X € (a1,az))

Yo = Cov _ = diag(0?,03, ...,0%)
(Y = O0x)I(X > ax)
and where o} = P(X;eAj)Var(ﬂX € A,) is the categorized variance.

If choices in nonparametric estimation are available, we recommend the
constant cutoffs since estimation of asymptotic covariance matrix is simpler
to establish. We define estimator of categorized variance U? by

(Y; — é])ZI(Xl S AJ)’] = 17 "'7k7

=1

$2 = !
Ty IXieA)

calling them the categorized sample-variances. Henege the following sample

matrix

S = diag(Sf,Sg,...,S,%)

consitutes a consistent estimator of unknown covariance matrix Y. = Its
efficiency will be verified later.
In many applications (Shankar et al. (2007), Luo et al. (2007) and

Letenneur et al. (2007)), categorization is done on quantile partition as
Ay = (=00, il ()], A2 = (Bt (aa)oEx  (a2)], ooy Ap = (S (1), 00)

where F'y 1(a) represents the a-th population quantile of random variable
X. Frequently the quantile functions F'y, 1(ozj)'s are unknown and are esti-
mated with empirical quantiles Fgl(aj),j =1,....,k — 1, of random sample
X1,...,X,. This leads to the sample partition

A A

Al = (_OO,F);l(Oél)]7A2 = (F);l(al)vF);l(QQ)]v“'vAk = (F)Zl(ak—l)voo)a



and the quantiles based categorized sample means as

i i Yil(Xi € 4))

» = S0 =1,k (2.3)
Yoo I(X; € Ay)

where ¢ stands for quantile cutoff. We denote éq = (éql, e éqk)’ and \; =
E(Y — py|X = F5'(;)). A representation and asymptotic distribution for

this categorized sample mean vector éq are introduced below.

Theorem 2.2. (a) The quantile cutoffs based categorized sample mean has

the following Bahadur representation:

o (1 (Yi, X;) — E(er (Y, X))
(2 — a1) M (¥2(Vs, X;) — E(v2(Y, X))) fon(D)

Vi@ =0) =n V2
TN = ) (G (i) = (Y X))

where

Y —p, if X <Fg (o) Xew1 wif X< Fel(on_1)
ni(Ys X) { A X > P M) @6 X) Y —p, 68X >0 (apo1)

and, for j =2,....k — 1,

)\j—l if X S F)}l(aj_l)
VYV, X) =Y —p, if Fy'(aj1)< X< Fy'(a;) .
Aj if X > Fy'(aj)

(b) We have that /n(f; = 6) is asymptotically normal with distribution
N (0, X,) where k x k matrix X, = (651,), J,m =1, ..k with

1
o1 =5 (M1 + (1 - an) AT =i (b 01) M),
1
1

;= A A_ i — X+ A A (1 — o
015 041(043'—0@'—1){ 1Aj—1(ag—1 — a1) + Aamy + A A ( ;)
+ Aj—1ma = (my 4+ (1 — o)) (-1 A1 + (1 — o)A +my)}
1
o1k = { M1 (ag—1 — 1) + Aimg + Ag—1my

—(m1 + (1 — ap)\)(g—1 =1 +myp)}
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for j=2,...,k—1,

1

044 :m{aj_lka_l + (1 - Oéj))\? + Mj — (Oéj_1>\j_1

+ (1= )X +mj)?},
1

a1 — o) (e — aj-1)

— (a1 Ajo1 + (L= aj)A; + my)(ayA; + (1 — ajp1)Aj1 +mypa)},
1

I oy = 1) (Cm — 1) PAm=1 Qg1 45 + Ay — eg)

+ )\J(mm + )\m(l — Oém)) — (aj—l)\j—l + (1 — Oéj))\j + mj)

%ist1 = A1 +my +mi + A (1= @)

(m—1Am—1+ (1 —ap) A\ +mp)},m=7+2,..,k—1,
1

i Ao 1 (s 1cvs (et — o
Ojk (aj—aj—l)(l_akz—l){ k=1(Xj-10g-1 +m; + A (k-1 — ay))
A = (@j—1 A1+ (1= aj)A; +my)(ag—1Ak—1 + )},
and
1 5 ;
Tkk = (1 —ap-1)? {ak—1X;_1 + My =(am=1Ae 1+ mi)"}.

where m; = E[(Y — uy)I(X € A;)fand-M; = E[(Y. - u,)2 (X € A;)], for
J =1,...,k denote the first and second central group mement at jth group

for categorized variable Y’s.

This theorem generalizes the theory of univariate robust trimmed mean and
the outlier mean of Chen, Chen and Chan (2010) to vector case.
Theorems 2.1 and 2.2 provide a basis for theoretically correct nonpara-

metric inferences for unknown parameters 6.

3. Parametric Categorized Sample Means

We consider the parametric approach with normality assumption as

(i) NNQ((ZZ)’(%% ?gy)>- (3.1)

In this normal setting, we fix a permutation of distributional parameters

as A = (ug, Ly, 05, 02,0,,) and consider for simplicity of presentation only
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quantile cutoffs. Given 0 < a3 < as < ... < agp_1 < 1, the unknown
quantiles under normality assumption are a; = F 1(aj) = Wz + Za;0z,
7 = 1,...,k — 1. The following theorem is a simplified result from Han
(2005).

Theorem 3.1. Consider the quantiles cutoffs and the normal assumption
(3.1). The population categorized means forms a vector 6, = (01p, ..., 0kp)

with

Oye
O1p = 1y — alya ?(2a,)

Opp =ty — —— 2" ($(2a,) — B2, )i j = 2,k — 1

o
Orp = — V(%
kp :uy+ 0'37(1 _ak_1)¢(z k—l)

where ¢ is the probability density function (pdf)of standard normal N(0, 1).

Yi Y5 Ya
Suppose that we have a random sample <X1> y (X2> P (Xn ) De-

noting X = 370 Xo ¥ = o Y Ye Spe= N (= ¥)2 5% =
LS (X — X)? andeSyx = 2300 (X; — X)(Y; = Y); the mle of pas

rameter vector A is
Amze = (X4Y . S2,5% Sy x) (3:2)

and the maximum likelihood estimators (mle) of categorized means are

~ A

Grp = ¥ = 226 (z0,), O ez S Bz ),

1Sy Sx(Oéj —aj_l)

A _ S
=2 ... k=10, =Y+ —¥  _s(z,
J 3oy y Ukp +3x(1—ak—l)¢(z k—l)

and its vector 0, = (f1p, ..., Orp)’-

Theorem 3.2. (a) We have that n'/2(, — 6,) converges in distribution to

k-dimensional normal distribution N (0x,%,) with asymptotic covariance



8

matrix 3, = T'(A)V,(A)T(A) where T(A) = 22W) g the partial derivative
P P oA

of 6,(A) with respect to A and V,(A) = —[E%]_l is the Crammer-
Rao’s lower bound for A with ¢x(X,Y") the pdf of normal distribution in
(3.1).

(b) The quantiles based cutoffs based partial derivative matrix under the

normal distribution is I'(A) = (7i;)i=1,... k,j=1,....5 With

)

o zZ z
Y1 = — 3329 ¢( Oél)(¢( al)+za1)7 712:17

(o=t (651} (03]

Ogy qb(zal) Zal¢(za1) 2 1 ¢(Za1)
713 - ( - +25, — 1), 114 =0, 715 p—

for j=2,...,k—1,

—Oxy 1 (¢(zaj) - ¢(Zaj—1))2

Vi1 = 0925 a; — Oéj—l( a; — aj_ + (Zaj(b(zaj) - Zajfld)(zajfl)))?
= 1, iy = _20? : [ <O R RAREN S 1)
Oy O — 051 Qj — Qi1
(¢(Zaj) - ¢(Z05j—1)) + (chj ¢(Z0¢j) V4 zij_lqs(zaj—l))]? 734 = 0’
s = —_1¢(Za3) - ¢(Zozj_1) — Oxy ¢(Z(Xk—1) ( . ¢(zak71))
a5 Oy Qj — Qi1 / in 0'323 1T — Af—1 ~ 1 1— Nf—1 '
Ozy PZau{) Zan 19 (Za, L)
=1 — %y k—1 2 o k—1 k=1/. 1
1 9(2a5 1)
Ya =0, Y5 = — 7.
o 1 —ag
o202 2075 ZUgy 2020,y
(c) Defining 2x 2 matrix A = (029” ;Zy ) and 3x3matrix B= [ 207, 20, 2020,y
Yy )

2 2 2 2 2
\ 205803.61, 20,04y 0,0,+ 0%,
the Cramer-Rao lower bound for bivariate normal parameter vector A is

_ Plndy(X,¥). 1 [ A 0axs
Vo) =P 05 L= (03><2 B >

Further parametric statistical inferences for categorized means 6, can

be constructed with the mle of asymptotic covariance matrix as ¥, =
F(Amle)vp(Amle)F(Amle),~

4. Comparison of Parametric and Nonparametric Estimators



We would not investigate the accuracies of theoretically correct infer-
ence methods constructed by the parametric and nonparametric categorized
sample means but would desire at this moment to compare the accuracies of
these two estimation methods. We first compare their asymptotic covariance
matrices by evaluating the traces of covariance matrices I'pq (A)V,(A)T7,, (A)
and Y. to compute the relative efficiencies of the nonparametric estimator
of categorized group means as
min{tr(I'pq (A)V, (AL, (A)), tr(Ec)}

efIn = tr(X.)

2
Considering (};) ~ Ng((}) , < %y Uy;)), the efficiency values ef fn

Oyx Og
under several values of parameters are displayed in Table 1.

Table 1. Efficiencies of nonparametric estimator of categorized group

means
Oye =02 [ 0.3 0.5 0.7 0.8
(02,02) = (1,1) 0.556 0:599 0.672 0.701 0.675
(aé,ag) = (2,1) 0.530 0.561 0.621 0.671 0.689
(02,02) = (1,2) 0.530 0.561 0.621 0.670 0.689

Lower values of ef fy supports the parametric_estimation of unknown cat-
egorized means when the underlying-distribution 'is known. Since method
of nonparametric categorized sample mean is applied for classical ANOVA
analysis, this parametric estimation from the new parametrized unknown
categorized means inyTheorem 3.1 deserves attention in application and
study with construction of new ANOVA-approach of multiple comparison

of categorized means.

2
Setting the normal distribution Ng((;) , <;y ?237 >), we compare
yx x

>,(A) and X¢ through simulation for their. efficiencies of ‘estimating the
common matrix . Suppose that the categorized sample variance at jth
replication be denoted as S7 = (Szg)i,gzl,m,k and true covariance matrix is

Y = (0it)ie=1,.. k- We define mean squares error (MSE) by

m k
MSE = # 222 (Sh—ow)

k
Jj=14¢=11i=1
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We re-denote the MSE’s for nonparametric and parametric estimators, re-

spectively, by M SE,,, and MSE,. With replications m = 10,000, sample

2

2 and 02, the results of

size n = 50 and 100 and some values of variances o

two MSE’s are displayed in Table 2.

Table 2. MSE’s for parametric estimator of asymptotic covariance matrix
I'V,I" (4 groups)

Sample size Oyz = 0.2 0.3 0.5 0.7 0.8

(0926,0'32/) =(1,1)

n =50, MSE,, 4.441 4.422 3.647 2.194 1.338
MSE, 0.079 0.074 0.049 0.023 0.012

n =100, MSE,), 2.208 2.322 2.148 1.323 0.800
MSE, 0.040 0.036 0.024 0.011 0.006

(03257 05) = (2a 1)

n =50, MSE,, 4.725 4.559 4.528 3.673 3.572
MSE, 0.083 0.081 0.067 0.050 0.041

n =100, M SE,,, 2.153 2.240 2.376 2.350 2.293
MSE, 0.042 0:040 0.034 0.025 0.020

(09207 0-;3) =(1,2)

n =50, MSE,, 18.61 18.41 17.41 14.86 13.18
MSE, 0.339 0.312 0.268 0.201 0.164

n =100, M SE,), 8.649 8.990 9.321 8.627 7.800
MSE, 0.165 0.157 0.134 0.103 0.081

The simulated results show that estimation of asymptetic covariance matrix
of parametric categorized sample means is much - more efficient than that of
nonparametric version.

We next consider a simulation study to verify the finite sample efficiencies
of parametric and nonparametric estimators of parameter vector 6, when'Y
and X have a joint normaldistribution. Denoting HA?\, and ég, as, respectively,
nonparametric and parametricestimates of 6 at jth replication, we compute
the following MSE’s

m m
Ny 1

(ég\f - Op)’(% - 9p)> MSEP = E Z(égja o 9p)'(é§ - ep)
=1

=1

1
MSENy = —
m “

J
and the simulated results are displayed in Table 3 where categorization

number is 4.



Table 3. MSE’s for parametric and nonparametric estimations

11

Sample size Oyz = 0.2 0.3 0.5 0.7 0.8

n =30

MSEN 0.145 0.137 0.118 0.087 0.067
MSE, 0.063 0.059 0.051 0.036 0.027
n = 50

MSFEN 0.082 0.079 0.066 0.049 0.038
MSE, 0.036 0.034 0.029 0.021 0.016
n = 100

MSFEN 0.039 0.038 0.032 0.023 0.018
MSE, 0.018 0.017 0.014 0.010 0.007

We see that M SE,’s are all relatively smaller than corresponding M SEnN’s
that supports our previous observation of superiority of parametric estima-
tion for population categorized means.

Let 6 be an estimator of categorized group mean 6 that satisfies n'/ 2(@ —
) converging in distribution to normal vector Ni(0x,;%). Suppose that

consistent estimator 3 for ¥ is available. Then following quantity

e ~

To=n(0—0)S"(H=0) (4.1)

converges, in distribution, to chi-squares distribution y*(k) of degrees of
freedom k when samplésize n.goes to infinity. Theoretically correct inference
methods such as confidence band and test for general linear hypothesis Hj :
Af =0 vs Hy : Af #.0 may be constructed through a chi-square quantity:
One way to investigate these inference methods is to compare 7" like quantity
in some way for different approaches. Let the areas of estimated region
(0 — 0)S1(0 — 0) for parametric and nonparametric versions bé denoted
by Ap and Ay. We denote their MSE’s as
1 <N s —
MSE, = —% (A — A,)* AIMSEn == STAR"- Ay

j=1 =1

where (j) refers to jth replication. With m = 10, 000, categorization number

is 2, we display the simulated results in Table 4.

Table 4. MSE’s for region areas
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MSE Oyz = 0.2 0.3 0.5 0.7 0.8

(07,02) = (1,1),n =50

MSEN 10.35 7.016 3.462 2.181 2.096

MSE, 1.798 1.643 1.185 0.628 0.387

n = 100

MSEN 9.213 6.103 2.793 1.778 1.746

MSE, 0.876 0.822 0.582 0.314 0.198
(07,07) = (1,2),n =50

MSEN 12.97 9.929 5.654 3.295 2.562

MSE, 1.836 1.757 1.539 1.162 0.976

n = 100

MSEN 11.70 8.800 2.560 2.675 2.052

MSE, 0.923 0.851 0.993 0.578 0.493
(07,02) = (2,1),n =150

MSEN 51.96 39.67 22.69 14.13 11.34

MSE, 7.375 7.084 5.977 4.724 4.048

n = 100

MSEN 46.82 35.00 19.49 11.31 9.184

MSE, 3.795 3.577 2.998 2.378 2.010

Accuracy in estimation of unknown parameters gives the parametric sample
categorized means the advantage of smaller area of interest. This is another
desired property for parametric estimation of unknown categorized means.

In brief summary, attractive properties shown above for parametric es-
timation is benefited from' the new and novel parametrization in Theorem
3.1.

5. Categorization Creating Auxiliary information

In this section, we show that categorization is linked to a theory very
important in efficient estimation. Statistician has long been interested in
looking for inference method with possible improvement of accuracy. Let
Y1, ..., Y, be a random sample from a density function f(y;0,) with 6, being
the interest of parameter. We know that Cramer-Rao’s theory gives us no
chance in improving an uniformly minimum variance unbiased estimator
when regularity conditions are assumed. Researchers then turned to find

estimator sequence {éy} asymptotically normal as

~

Vb, —0) = N(0,vp,) (5.1)
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in distribution that has superefficient point 6, in parameter space as
vy, < I(Hy)_1 (5.2)

where 1(6,) is the Fisher information at 6,. In 1951, Hodges produced an
estimator (Bickel, et al. (1998)) with one superefficient point. Later, Le
Cam (1953) showed that for any sequence of estimators satisfying (5.1), the
set of superefficient points has Lebesgue measure zero. This also tells us
that estimators with superefficiency is only interesting theoretically but not
in practice.

An interest in theory and practice is then looking for a statistic contain-
ing auxiliary information so that it improves inference’s accuracy. Verifying
existence of auxiliary information has received some attention in literature,
see, for examples, Kuk and Mak (1989), Rao, Kovar and Mantel (1990)
and Martinez-Miranda, Rueda and Areos (2007) for quantile estimation and
Srivastava (1971) for mean estimation.-We prove that eategorization con-
tributes this improvement. Inxobust estimation of population mean ji,, the

classical trimmed mean based on randem-sample Y7, ..., Y,, is defined as

Zz 1YI(F ( )S ’LS
i Iy Hen) Y, S By

L (o)
1

(2))

Now, suppose that as in our design for categorization we also have an extra

fu(an, ag) = (5:3)

random sample X7, ...;X,, with Y; and X, correlated. For 0 < a1 < as < 14

we call the following categorized sample mean

Sorny ViI (@ (a1) < X, < M)
Zi:l I(Fxl(al) <X; < F);l(O‘Z))

fiy,cat(0r1, 0v2) = (5.4)
the categorized trimmed mean. This is first example of estimating a distri-
butional parameter of uncategorized variable with estimator based on cate-
gorized sample. We prove that categorization creates auxiliary information
for robust estimation.

The following theorem with oy = 1 — as = « is a direct result from
Theorem 2.2.
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Theorem 5.1. Suppose that the joint distribution of Y and X is spherically

symmetric.

(a) The Barhadur representation for the categorized trimmed mean is

. 1 v
\/ﬁ(ﬂy,cat(a’a 1- (1/) - ,UJy) = 1 — 2an 1/2 ;7/}0(}/17)(1) + Op(l)
where
~A_a if X < Fyl'(a)
VoV, X) =X Y —p, if Fy'(a) <X < Fx'(1—a) .
M-—a if X > F¢'(1-a)

(b) Then v/n(fiy,cat (e, 1 —a)— 1) is asymptotically normal with distribution
N(0,02,,) where

» Y cat

1
2 _ 2
Ocat = mpa)u—a + Ma]

where M, = E[(Y — )2 I(Fx (o) < X < Fx'(1=a))]:

We also denote the asymptotic variance-of the classical trimmed mean of
(5.1) by o2 (Ruppert and Carroll (1980)).
For verification of our assertion, we design the following setting of mixed

distribution:

BRSNS ey

indicating the interest of parameter is pu, = E(Y). For each setting of
the distributional parameters, we compute the minimum o7 and o2,, and
display them in Tables 5 and 6. Note/that the values in parentheses in Table
5 are the trimming proportions achieving smallest asymptotic variances and
I(uy)~" represents Y-variable based inverse of Fisher information and, for

theoretical interest, we list 02,,’s when ¢2,, < I(u,)~" holds.

Table 5. Comparison of asymptotic variances (§ = 0.1)



Jéa aga 2 —1
(015 — —0.9) (—0.8) 7 I(py)
03 =2
019 =1 1.042(0.06) 1.067(0.05) 1.107(0.05) 1.093
1.4 0.951(0.13) 1.003(0.08)
03 =5
019 =2 1.131(0.15) 1.202(0.11) 1.230(0.06) 1.220
2.2 1.019(0.2) 1.118(0.14)
03 =9
019 =29 1.150(0.23) 1.296(0.09) 1.256
2.99 1.053(0.26) 1.215(0.2)

Table 6. Comparison of asymptotic variances (§ = 0.2)

o120 = 0.5 0.7 0.9 0.99 I(,U,y)_l
02 =2
Yy
ol = —1 1.179 1.128 1.042 0.974 1.185
—1.4 1.084 0.985 0.788 0.571
o2 =5
Y
019 = —2.2 1.416 1.228 0.892 0.576 1.448
—2.22 1.401 1.205 0.853 0.494
02 =9
Yy
019 = —2.9 1.205 0.896 1.532
—-2.99 1.460 0.949 0.460

We have several comments for the results in Tables.5 and 6:

(a) Without extra information from other variables, the classical trimmed
mean gains no benefit in outperforming the lower beund /() in any case
while, in the designed. distributions in terms of variances and covariances,
the categorized trimmed means outperform the corresponding lower hounds.
(b) We see the power of auxiliary information that ‘o2, can be as'small as
0.46 when the lower bound is 1.532. Auxiliary information greatly dmproves
in reduction of asymptotic variance of trimming estimation:

(c) The fact that the set {u, : 02, & I(fy)= 'y 4y € R}is Lebesgure measure
greater than zero supports the consideration of using ‘auxiliary information
to modify statistical inference methods.

(d) The auxiliary information exists in this robust estimation when the
extra variable has relatively smaller variance and is highly correlated with

the response variable. This meets the general understanding in literature.
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(e) Not every extra variable X provides auxiliary information. Suppose that

we have the following normality assumption:

()= (i2)- (2 %)

Let I, (1) ~! be the inverse of Fisher information for x, that is derived from

2
Y

indicating that auxiliary information does not exists when bivariate normal

the above bivariate distribution. We may see that I, ' (1) = 1" (uy) = o

is true.

6. Concluding Remarks

For predicting the unknown population means of categorized variables,
we have derived distributional theory for parametric and nonparametric es-
timators that allows us to construct ”theoretically correct” and ”advanced”
inference methods. Both approaches are shown to be valuable in statistical
theory and application. The novel parametrization results in the parametric
estimators being much moreefficient than the classical ANOVA used sample
means. On the other hand the nonparametric categorized sample mean is
found involving an auxiliary information that greatly improves the efficiency
of nonparametric robust estimation.. Ignorance to theory investigation for
categorization not onlyblindly face the use of untrustworthy inference meth-
ods but also forfeit the chance to discover interesting information created
by categorization for inference improvement. For long being criticized, we
have finally taken a big step in knowing it but-it-deservesstorreceive more
attention in statistical society.

We have several further remarks on this research:
(a) Idea of parametrization provides efficient parametric inference techniques
for unknown distributional parameters of categorized variables. Extension
of this parametrized parametric approach is desired to non-normal distribu-
tion.
(b) The accuracy properties of confidence interval and hypothesis testing
method formulated by quantity (4.1) requires for further investigation where

testing the usual interest of equal means can be done by setting general linear
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hypothesis with

1 -1 0 O 0 0

0 1 -1 0 0 0
A= .

0 0 0 O 1 -1

(¢) Intuitively we can expect that some other robust estimation methods
such as Winsorized mean in L-estimation and Huber’s M-estimation can
be benefited with efficiency improvement when the categorization created

auxiliary information is applied.

2

2.+ can be even reduced more

(d) It is expected that asymptotic variance o
when multiple auxiliary information is used. The Rao-Blackwell theorem
like theory as for how much capacity of improvement could be reached is an

interesting theoretical problem.

7. Appendix

We only give the prooffor Theorem 2.2 while Theorem 3.1 are induced
from Han (2008) and the proofs for Theorems 2.1 and 3.2 being straightfor-
ward are skipped.

Proof of Theorem 12:2. With quantile cutoffs, the sample group means

may be represented as

>

Zz (Y — :“y)j( (a] 1) <

SATECS T E a)

. s5< )

)

Following the approaches of Ruppert and Carroll (1980) and Chen and Chi-
ang (1996), we may see that

n1/? Z(n — ) [I(X; < F' (@) +n7V2T,) — I(X; < Fy'(a)]
= B(Y — py| Fx' (@) fx (Fx' (@) T + 0,(1) (7.2)

for any sequence T;, = O,(1). The fact that I(X; < Fy'(a)) = I(X; <
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F'(a) +n'2Tx) with Tx = /n(Fx'(a) — Fx'(a)) and (7.2) gives

nt? Z (Y — py )1 (ozj 1) < X; < ﬁ);l(o‘j)) (7.3)

= [E(Y—My|X = Fx (o) fx (Fx (a)n' P (Fg (ag) — FxHay)
— B(Y — py|X = Fx'(aj-1)) fx (F ' (—1)n' 2 (Fx (1)
— Fy' (1)) +n71/2 Z(Yz’ — ) I(Fx'(aj-1) < X; < Fx'(ay))] + op(1).

A representation for regression quantile F-1(a) as

Vi(Fxta)=FxH(a) = fx (Fx' (@) 1/2Za I(X; < F'(a)+o,(1).
= (7.4)

may be seen in Ruppert and Carroll (1980). Moreover, we also have
712[ Oé] 1 Xz S F);l(aj)) = Qjy —Oéj,1+0p(1). (75)

By plugging (7.4) into (7.3). and with careful re=arrangement, the théorem
is followed from (7.1)-(7.3) and (7.5):
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