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Chapter 1

Introduction

Binary translation emulates one ISA through another ISA. It has applica-

tions such as program instrumentation [18], fast simulation [17] and security

investigation [19]. In the thesis, the emulated ISA is called guest, and the

emulating ISA is called host. Our work is based on mc2llvm [13]. mc2llvm

is a process-level ARM-to-x86 32 hybrid binary translation system which is

able to do static and dynamic binary translation. Currently, it is only able

to emulate sequential programs. Our work focuses on translating issues on

emulation of multi-threaded binary code using dynamic binary translation.

DBT (dynamic binary translator) takes the guest executable file as data.

At run time, guest instructions are translated to host instructions whenever

needed. The host instructions are cached in the code cache so further em-

ulation can be done by directly executing codes in the code cache without

repeated translation. In the system, the action of a guest thread is emulated
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by an individual host thread called emulating thread. The task of the

emulating thread can be briefly described as follows:

1. Given the address of an guest basic block, it looks up the address

mapping table for the starting address of the corresponding host in-

structions. If the thread fails to find it, goto (3). Otherwise, goto

(2).

2. It executes the host instructions stored in the code cache. After that,

it will be given the address of the next guest basic block then goto (1).

3. It translates the guest basic block to the host instructions, keeps host

instructions in the code cache and stores the mapping of the address of

the guest basic block and the starting address of host instructions into

the address mapping table. Then goto (2).

When DBT is emulating multi-threaded binary code, each emulating

thread would access to the same components in the translation system such

as the code cache, the instruction translator and the address mapping table.

One thing to do with is the synchronization of them because threads may

access to them simultaneously. This issue would be discussed later.

To further speed up the emulation, we do trace compilation. A trace has

a single entry and multiple exits. In binary translation, frequently successive

emulated guest basic blocks are collected to become a trace. We split trace

compilation into 2 parts: trace selection and trace generation. The emulat-

ing threads would do trace selection. The form of the collected trace is a
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vector of guest addresses. The emulating thread pushes its collected trace

in a queue called trace queue. Since trace generation is a time consuming

task, the system has 3 extra threads called optimizing threads dedicated to

trace generation. They periodically try to pull the trace out from the trace

queue. Once the optimizing thread succeeds in pulling a trace, it does code

generation for the trace.

In summary, we study the issues on translation of multi-threaded binary

code and implement a scalable and efficient binary translator for emulating

multi-thread binaries. In this thesis, We make the following contribution:

• turn mc2llvm to emulate multi-thread ARM binaries

• design the shared code cache

• craft efficient lock-free address mapping tables

• speed up emulation speed by trace compilation

• support x86 64 backend

In the following sections, some terms are used very often and they are stated

here for clarity.

Translation Block: It is a container to store LLVM IR that corresponds

to guest instructions in a basic block. A translation block has two

addresses. One is the guest address. It is the address of the guest basic

block. The other is the host address. It is the starting address of the

host instructions that emulate the actions of guest basic block.
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Emulating Thread: It is a host thread that emulates the actions of the

guest thread.

Optimizing Thread: It is a host thread dedicated to trace compilation.

The rest of the paper is organized as follows: Chapter 2 discusses related

work. Chaper 3 discuss the background knowledge on multi-threaded pro-

grams. Chaper 4 describes the design and implementation. Chapter 5

presents the optimization technique of the system. Chapter 6 talks about

the synchronization in the translation system. Chaper 7 presents the ex-

periment result. Chapter 8 concludes the work and talks about the future

work.
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Chapter 2

Related Work

This chapter introduces some existing systems related to binary translation

and optimization techniques used in dynamic binary translation.

2.1 Binary Translation

Dynamo [20] is a dynamic optimization system. It states that some opti-

mization opportunity is not available to the static compiler. For example,

optimization of executables with dynamic linked libraries as a whole is not

possible. To speed up emulation speed, Dynamo picks the trace. The desti-

nation address of a backward branch is a candidate of the trace head. The

candidate becomes the trace head when it has been visited over a certain

times and the rest of the trace is selected based on the execution flow once

the trace head is found. After a trace is selected, Dynamo optimizes the trace

and emits it in the cache. Thus, subsequent encounter of trace entry address
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would cause control transfer to the trace. Trace compilation has several ad-

vantages. For example, due to its larger scope, it gains much optimization

opportunity, and there is no joint point in it. The experiment result delivers

good news that optimization during runtime is possible.

HDTrans [8] is a IA-32 to IA-32 dynamic instrumentation system. It

lists many simple and effective optimization to translate branch instructions.

To translate unconditional direct branches, it elides the branch instruction

and keeps on translating at the destination of the branch instruction. To

translate conditional branches, if the destination of the true/false branch is

already translated before, it patches a jump to existing translated block.To

handle return instructions, it draws on the return caching. To handle the

rest of indirect branches, it uses the address mapping table.

mc2llvm [13] is a LLVM-based hybrid binary translation system. It is an

variation of static binary translation. Basically, it performs just like the way

of a static binary translator but when it cannot deal with the code location

problems, it turns into a dynamic binary translator to solve the problem at

runtime.

QEMU [21] is a open source and fast portable dynamic translator. It

supports to emulate a wide range of different architectures such as x86, ARM,

MIPS, SPARC. QEMU first translates guest instructions into its own TCG

IR then turns TCG IR into host instructions. Two steps translation is a good

technique to make it retargetable easily. Besides, QEMU can be a user-mode

or system-mode emulator. PQEMU [6] is an variation of QEMU. PQEMU
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modifies QEMU to utilize the underlying real multi-core machines when it

does full-system emulation. In addition, PQEMU can configure threads to

use shared or private cache. COREMU [2] is another variation of QEMU

which also aims at full system emulation. Each thread is equipped with an

individual QEMU instance and threads use private code cache. HQEMU

[7] is also derived from QEMU. It picks traces and has dedicated threads

to do trace generation. Furthermore, it merges frequently executed traces

together.

2.2 Shared Code Cache

Having a shared code cache seems required when the translation system is

doing emulation for multi-threaded applications. Some applications have

threads to do similar tasks and having a shared code cache prevents mem-

ory explosion from duplication of translation blocks. [3] proposes to use the

shared code cache. It scrutinizes the issues on synchronization of the shared

code cache, and provides light-weight techniques to do with the synchroniza-

tion.

2.3 Trace Selection

Building traces is an effective method to accelerate the emulation. Frequently

consecutive emulated guest basic blocks are usually picked to become a trace.
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The first thing to do with building a trace is trace selection. Concerning trace

selection, some papers [20] [9] [7] focus on selecting the trace head while

some [5] focus on the whole structure. In [20], the block whose address is

the destination of a backward branch executed over a certain times is a trace

head. Once the trace head is found, the rest of the trace is speculatively

chosen based on the execution flow. In [7], it records the guest address of the

visited blocks into a list and searches for a sequence which starts and ends at

the same guest adress and that sequence is picked as a trace. Moreover, [9]

improves it by filtering false loop. [5] also records visited blocks, it tries to

reconstruct the program structure by sequitur algorithm and extracts the hot

region in the structure. The above methods do trace selection at run time.

All the methods need to be light-weight in order not to influence the speed

of emulation. Next, the collected trace has to be optimized and generated

to host instructions. This task can be time consuming. Some systems stop

emulation to do it while some spawn another thread dedicated to it.
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Chapter 3

Background

In this part, we first describe how mc2llvm works and then discuss the fol-

lowing issues on multi-threaded programs.

• How is a thread created and terminated?

• How to manipulate TLS (thread local stroage) base address?

• Atomic operations

3.1 Program flow of mc2llvm

In figure 3.1.
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Figure 3.1: Program flow of mc2llvm

1 32ba0 : e3a07078 mov r7 , #120 ; 0x78

2 32ba4 : e f000000 svc 0x00000000

3 32ba8 : e3500000 cmp r0 , #0 ; 0x0

4 32bac : 0a000002 beq 32bbc < c l o n e+0x4c>

5 32bb0 : e8bd0090 pop { r4 , r7 }

6 32bb4 : ba000919 b l t 35020 < s y s c a l l e r r o r >

7 32bb8 : e 1 2 f f f 1 e bx l r

Figure 3.2: A code snippet to do clone system call

3.2 Thread Creation and Termination

A thread is created by Linux clone system call. Figure 3.2 contains a code

snippet to do clone system call dumped by GNU objdump. On the ARM ar-

chitecture, system call is triggered by svc instruction with system call number
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passed in r7.

Line 1: set r7 to 120, 120 is the clone system call.

Line 2: the current thread calls clone system call.

Line 3: Now there is one more thread. The value of r0 in the parent

thread is the id of the child thread. The value of r0 in the child thread is 0.

Line 4: The child thread branches to 0x32bbc while the parent thread

ignores the instruction.

Line 5: The parent thread executes the instruction following ”beq 32bbc”.

A thread is terminated by Linux exit or exit group system call. exit

kills the current thread while exit group kills all the threads.

Because clone system call is more complex than exit and group exit sys-

tem calls, we discuss more on it by delving into its parameters passed in

the clone system call. The following is the prototype of clone system call

extracted from linux kernel.

asmlinkage int s y s c l o n e (unsigned long c l o n e f l a g s , unsigned long newsp ,

int u s e r ∗ par en t t i dp t r , int t l s v a l , int u s e r ∗ c h i l d t i d p t r ,

struct p t r e g s ∗ r eg s ) ;

• clone flags: specify what is inherited from the parent

• newsp: the address of the stack for the new thread

• parent tidptr: a memory place to store the pointer to

child id if CLONE PARENT SETTID is on

• tls val: the base address of the thread local storage for the new thread
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• child tidptr: a memory place to store the pointer to

child id if CLONE CHILD SETTID is on

• regs: the registers’ state of the parent thread

Understanding the parameters passed in clone system call is important to

emulating clone system call. This is because we can know what is already

done before creating a new thread. For example, the stack of the new thread

is already allocated before executing clone system call.

3.3 Manipulation of TLS Base

In a high level language like C, if a static or global variable is specified with

thread, it is a thread local variable and stored in tls (thread local storage).

On the ARM architecture , the base address of thread local stroage is kept

by a specific register set called cp15. On older ARM architecture (v5 and

earlier ), there is no such register set, Linux takes a software approach by

calling a function at a specific address. The function is given as follows:

typedef void*(__kuser_get_tls_t)(void);

#define __kuser_get_tls(*(__kuser_get_tls_t*)0xffff0fe0)

This function kuser get tls would return tls base address. To set tls base,

we should call ARM-private system call named set tls to set the tls base.
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3.4 Atomic Operations

Atomic operations can be performed in two ways:

• atomic instructions. For example, ARM has ldrex, strex, swp instruc-

tions.

• Linux kernel support. For example, the function named kuser cmpxchg

typedef int (__kuser_cmpxchg_t)(int oldval,int newval,volatile int* ptr);

#define __kuser_cmpxchg(*(__kuser_cmpxchg_t*)0xffff0fc0);

performs atomic compare-and-exchange operation and sets the condi-

tional flag C if the operation is successful.

A typical program which requires mutex, conditional variable or semaphore

would demand the library like pthread to support the operations. In other

words, how the programs do synchronization depends on the implementa-

tion of the library function. Our benchmark uses openmp to support multi-

thread. The lock operation is done by calling Linux system call futex. It

is futex which uses atomic instructions to implement the atomic operations.

Since mc2llvm is a process-level binary translator, it does not need to emu-

late atomic instructions except that the emulated program is embedded with

inline assembly which uses atomic instructions.
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Chapter 4

Design and Implementation

The whole translation system is graphically presented in figure 4.1. In this

part, we spell out how the translation system does the emulation.

First, we do some initialization such as mapping the code and data of

executable file into the main memory. Then we would be given an entry

point. We find in the address mapping table the address of translated codes.

If we do not find it, we use turn guest instructions at the guest address to

Figure 4.1: The architecture of the translation system
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LLVM IR. Then we use LLVM optimizer and JIT to help us generate host

instructions or called translated instructions of good quality. Next, we insert

the mapping of guest and host address to the address mapping table and

store the translated instructions into the code cache. We find in the address

mapping table again. If we find the mapping, we execute the codes in the

code cache. After executing code in the code cache, we would be given the

guest address of the next instruction to execute.

4.1 Memory Initialization

DBT would need to read guest instructions to do instruction translation and

access to the global and static variables of the guest program. Thus, it needs

to map guest text, data, bss sections into host memory. On the other hand,

it has to prepare the guest heap and guest stack for the main guest thread.

The guest stack of the main thread thread and the guest heap are allocated

from the host heap through mmap system call. By default, the size of the

guest stack is set to 8MB and the guest heap is set to 200MB. Besides, we

need to prepare argc, argv, envp, auxv for the guest stack. argc, argv, envp

are borrowed from the stack of the host thread and auxv is handcrafted.

On the ARM architecture, the starting address of text section is 0x8000 by

convention. mc2llvm maps those sections to the host memory at 0x8000

directly. You can see the memory layout of the system in the figure 4.2.

Figure 4.2 shows that the host text section starts at 0x50000000. This is

15



Figure 4.2: Memory layout

because the guest stack and heap are allocated from the host heap and they

should be put within 32-bit boundary.

4.2 State Mapping

mc2llvm originally mapped each guest register and condition flag to a LLVM

global variable, respectively. But it is impossible to use this mapping tech-

nique to have a shared code cache. Instead, a new method is devised to do

state mapping. We have a data structure GuestState to keep the guest

registers and the condition flag. Each thread has its own GuestState. Fig-

16



ure 4.3 shows the difference between the original and the new method.

Figure 4.3: State mapping

4.3 Emulating Threads

Each guest thread is emulated by host thread, called an emulating thread.

Each emulating thread has a structure called ThreadCtx in mc2llvm. It

contains thread id, guest architecture state, guest stack, thread-local storage,

child tidptr and etc. child tidptr is a parameter passed in the clone system

call. This value is important when the thread emulates the exit system call.

Except for the emulating thread which emulates the guest main thread, other

emulating threads are created when mc2llvm is emulating the clone sytem

call. Emulating threads are terminated when mc2llvm is emulating the exit

or exit group system call.
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Figure 4.4: The procedure of instruction translation

4.4 Instruction Translation

In the system, instruction translation is divided into 3 parts: (1) turn guest

instructions to LLVM IR (2) optimize LLVM IR (3) turn LLVM IR to host

instructions. The step is graphically presented in figure 4.4. mc2llvm di-

vides a guest instruction into 3 parts because most ARM instructions are

predicated. They are the prolog, body, epilog.

• prolog: Test the related condition flags. This determines whether to

execute the instruction.

• body: Execute the instruction and modify the necessary condition

flags.

• epilog: Direct program flow to the next guest instruction.

An example of instruction translation is given in figure 4.5. We describe

LLVM IR in figure 4.5 as follows:

Line 1,8,10: LLVM label, the number(b15c) in the label indicates the

address of the guest instruction.

Line 2,3,4,5: the instructions load the condition flag Z from the guest

architecture state.
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the ARM instruction

1 beq b1a0

the LLVM IR used to emulate the instruction:

1 L 0000b15c pro log

2 %49 = load { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗∗ %2, a l i g n 4

3 %50 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %49, i 32 0 , i 32 1

4 %51 = gete l ementptr inbounds [32 x i32 ]∗ %50, i 32 0 , i 32 18

5 %52 = load i 32 ∗ %51

6 %53 = icmp eq i32 %52, 1

7 br i 1 %53, label %L 0000b15c body , label %L 0000b15c ep i l og

8 L 0000b15c body

9 r e t i 32 45472

10 L 0000b15c ep i l og

11 r e t i 32 45408

Figure 4.5: The translated LLVM IR of an guest instruction
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Figure 4.6: How the translation block is formed

Line 6: test if Z is 1.

Line 7: if Z is 1, branch to body; otherwise, branch to epilog.

Line 9: direct the program flow to the next guest instruction if the branch

is taken. 45472 equals to b1a0 in hex.

Line 11: direct the program flow to the next guest instruction if the

branch is not taken. 45408 equals to b160 in hex.

Instructions in a guest basic block are translated into LLVM IR and stored

in a container called translation block. In mc2llvm, the translation block

is the unit of translation. A graph of how the translation block is formed

is presented in figure 4.6. A translation block is in fact a LLVM function.

An example of a translation block is shown in figure 4.7. In figure 4.7, the

LLVM function returns a 32 bit integer and it has an argument which is a

structure called ThreadCtx. The structure contains 4 members - a 32-bit

integer, an array of 32-bit integers, 3 64-bit integers. The structure is in fact

a subset of the thread context mentioned in section Emulating Threads.

The most important member among the 4 members is the second one. Let’s

20



1 de f i n e i32 @L 000080d4 ({ i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx ) a lway s i n l i n e {

2 L 00000000 :

3 %0 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx , i 32 0 , i 32 3

4 store i 64 1885165184 , i 64 ∗ %0

5 %1 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx , i 32 0 , i 32 4

6 store i 64 −1, i 64 ∗ %1

7 %2 = load i 64 ∗ i n t t op t r ( i 64 1885165192 to i64 ∗)

8 %3 = icmp eq i64 %2, 1

9 . . .

10 r e t i 32 %10

11 }

Figure 4.7: A snapshot of translation block in LLVM IR

call it A[32]. It corresponds to the guest architecture state. We map guest

registers r0 - r15 to A[0] - A[15] and N,Z,C,V to A[17] to A[20]. The rest

elements in the array either is not used or is used for debugging.

The return value of the LLVM function is the address of the next guest

instruction after the translation block is executed. In the translation block,

instruction accessing to the guest architecture would do operation on the

second member of the ThreadCtx. When a translation block is formed, a

lot of LLVM IR seems redundant. We use LLVM optimizer to eliminate it.

Finally, we utilize LLVM JIT to emit host instructions. The procedure is

presented in figure 4.8.
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Figure 4.8: Turning LLVM IR to host instructions

4.5 Address Mapping Table and Shared Code

Cache

A translation block keeps two addresses. One is the guest address of the

original guest basic block and the other is the address of its host instruc-

tions. The system keeps the emitted code in a code cache to avoid repeated

translation and stores the mapping of the guest address and the host address

in the address mapping table. Thus, before translating at a guest address,

the system looks up the table to find if its corresponding host instructions

exist. The relationship between address mapping table and code cache is

presented in figure 4.9. The original data structure of the address mapping

table in mc2llvm is a C++ STL map. We modify the data structure to a hash

table and it is not just a single address mapping table anymore. In the cur-

rent implementation, there are two types of tables: a global-shared table

and a thread-private table per emulating thread. The global-shared table
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Figure 4.9: Address mapping table and code cache

contains the complete address mappings. The thread-private table contains

the mappings recently used by the emulating thread. The global table [4]

contains 214 entries. Each entry points to a list. The list contains host ad-

dresses that are hashed to the same value. The thread table also contains

214 entries. Each entry contains a host address. The global-shared table and

the thread-private table all use the same hash function. The hash function is

hash(x) = (x >> 2)&((1 << 14) − 1). Both types of tables are graphically

presented in figure 4.10.

The global-shared and the thread-private table collaborate to complete

the access operation and it is presented in figure 4.11.

4.6 System Call Handler

mc2llvm is a process-level binary translator. It has to specially handle the

system call instructions (svc in ARM). By convention in ARM processors,

the system-call number is in r7 and the parameters are in r0 - r5 when

the svc instruction is executed. To emulate system calls, mc2llvm generates
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Figure 4.10: Data structure of the global-shared and thread-private address

mapping table

Figure 4.11: Access to address mapping tables
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1 %11 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 7

2 %12 = load i 32 ∗ %11

3 %13 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 0

4 %14 = load i 32 ∗ %13

5 %15 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 1

6 %16 = load i 32 ∗ %15

7 %17 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 2

8 %18 = load i 32 ∗ %17

9 %19 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 3

10 %20 = load i 32 ∗ %19

11 %21 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 4

12 %22 = load i 32 ∗ %21

13 %23 = gete l ementptr inbounds [32 x i32 ]∗ %8, i32 0 , i 32 5

14 %24 = load i 32 ∗ %23

15 %25 = ca l l i 32 ( i32 , . . . ) ∗ @mc2llvmSyscall ( i 32 %12, i 32 %14,

16 i32 %16, i 32 %18, i 32 %20, i 32 %22, i 32 %24)

17 store i 32 %25, i 32 ∗ %13

Figure 4.12: How svc instruction is translated into LLVM IR

LLVM instructions to load guest r0 - r5 and r7 registers into LLVM vari-

ables and translates svc to an instruction that calls the wrapper function

mc2llvmSyscall. Finally, it generates an instruction that saves the return

value from the wrapper function in r0. The procedure is presented in fig-

ure 4.12. The system translates svc instruction into the following steps:

1. Line 1 - 14, load r0 - r5, r7 from the guest architecture state

2. Line 15, 16, call a helper function to handle the system call with pa-

rameters r0 - r5 and r7

3. Line 17, store the return value of the wrapper function to r0.

The internals of the wrapper function (mc2llvmSyscall) are shown in fig-

ure 4.13. The original mc2llvm does not support system calls used in multi-
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int mc2llvmSysCall ( int syscal l num , int r0 , int r1 , int r2 , int r3 , int r4 , int r5 ){

int r e t ;

switch ( sysca l l num ) {

case Linux : : g e t r l im i t :{

struct r l im i t t1 ;

r e t = e r r ( g e t r l im i t ( r0 ,& t1 ) ) ;

h o s t t o g u e s t r l im i t (&t1 , ( struct g u e s t r l im i t ∗) r1 ) ;

break ;

case Linux : : wr i t e :

r e t = e r r ( wr i t e ( r0 , r1 , r2 ) ;

break ;

case Linux : : brk :

r e t = mc2llvm brk ( . . ) ;

break ;

. . .

}

return r e t ;

}

Figure 4.13: Internals of system call handler

threaded programs such as clone, set tid address, futex and etc. In multi-

threaded programs, new threads are created with the clone system call. Mu-

tex, semaphores are implemented with the futex system call. On the x64

host machine, we treat variables of the long or pointer type used in system

calls as 32 bits. For example, the prototype of getrlimit in figure 4.13 is

int getrlimit(int resource, struct rlimit *rlim);, its second argument

is a pointer type. In our case, we create a temp variable t1 and pass t1 to

getrlimit then we pass the values in t1 to r1.
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4.7 Emulate multi-threaded programs

A binary translator able to emulate multi-threaded programs needs to con-

sider the following things:

• How to emulate thread creation and termination?

• How to emulate atomic operations?

• How to access TLS (thread local storage)?

• What are shared in the translation system?

4.7.1 How to emulate thread creation and termina-

tion?

A thread is created by Linux clone system call. We do the following things

to emulate clone system call.

1. Create a new thread called emulating thread by pthread create

2. Copy the guest architecture state of the parent thread to the child

thread.

3. Set guest stack registers to newsp. (refer to the parameter newsp passed

in clone system call in Chapter 3)

4. Set guest thread-local storage of the child thread.
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5. Set r0 in the child and parent threads. The return value of the parent

thread is the id of the child thread while the return value of the child

thread is 0. On the ARM architecture, the return value is saved in r0.

6. Set child id to parent tidptr and child tidptr if the CLONE PARENT SETTID

and CLONE CHILD SETTID is on.

7. Keep a copy of child tidptr for the new thread if the CLONE CHILD CLEARTID

is on.

8. Both threads do emulation from the instruction after svc instruction.

A thread is terminated when mc2llvm encounters an exit or exit group system

call. The exit system call terminates the current thread. But before termi-

nating itself, it should clear the location child tidptr and do a futex wakeup

if the thread is created with CLONE CHILD CLEARTID on. exit group

system call terminates all the emulating threads.

4.7.2 How to emulate the atomic operations?

We observe that our benchmarks do not use atomic instructions in user pro-

grams except one case. There are two reasons. First, regular programs would

not contain atomic instructions directly. Instead, those atomic instructions

are embedded in the system call such as futex. Second, mc2llvm only support

ARMv5 instructions. Such architecture does not have atomic instructions

like ldrex and strex. We found that there is only one atomic operation used
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in all benchmarks. This is kernel supported function: kuser cmpxchg.

We emulate what the kuser cmpxchg does and guard the actions with a

global lock. The function kuser cmpxchg does compare-and-swap and sets

the condition flag C if the operation is successful.

4.7.3 How to access TLS base address?

On the ARM architecture, TLS base address is read by kuser get tls and

is set by ARM-private system call set tls. The declaration of kuser get tls

is shown as follows:

typedef void*(__kuser_get_tls_t)(void);

#define __kuser_get_tls(*(__kuser_get_tls_t*)0xffff0fe0)

To emulate the TLS base, mc2llvm uses a thread-local variable to keep the

TLS base since each thread has its only TLS base.

4.7.4 What are shared in the translation system?

We design mc2llvm to have

• a shared instruction translator

• two types of address mapping tables(one is global-shared and the

other is thread-private)

• a shared code cache
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A single instruction translator is enough to handle translation request from

multiple emulating threads because each guest basic block is translated only

once. Host address lookup is done by first searching in the thread-private

table followed by searching in the global-shared table if necessary. The

thread-private table can alleviate the synchronization overhead incurred by

accessing to the global-shared table because accessing to global-shared table

is protected by a lock. A shared code cache can be shared among all the

emulating threads so no duplicate translation is needed.

4.8 32-bit ARM on 64-bit x64 machine

Originally, our supported host machine is x86 32 machine. If we want to

support x64 one, some tuning of the translation system is needed. In the

following, we describe what we have done to make mc2llvm able to run on

x64 machine.

4.8.1 Memory Address Space

we need to make sure all the memory used by the guest binary code is

allocated within 32-bit memory address space. To complete this task, guest

stack and heap are allocated by host mmap system call with flag MAP 32BIT.

Besides, runtime memory allocation such as guest mmap system call is also

allocated with mmap system call with flag MAP 32BIT. argc, argv, envp

,auxv put onto the guest stack should be also reachable by 32-bit pointer.
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4.8.2 ABI Size of System Call Parameter

On the 32-bit ARM architecture, long and pointer type is 32-bit address.

When we executes system call handler, we need to notice those guest system

call parameters. For example,

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

timespec is a structure used by clock gettime system call. For guest architec-

ture, the memory size of the structure is 8 bytes while for host architecture

like x64, it is 16 bytes. We need to treat those parameters using long or

pointer type as 32 bits.
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Chapter 5

Optimization

In mc2llvm [13], it already has optimization of block chaining and switch

table reconstruction. We describe new optimizaton in this section. The

performance enhancing mechanism focuses on enlarging the translation unit

and having better code quality for the emulating instructions. To utilize

the multi-core architecture, the system has extra threads called optimizing

threads. They cooperate with emulating threads to do trace compilation.

Emulating threads do trace selection and push the collected traces into a

queue called trace queue. Optimizing threads pop a trace from the queue

and emit instructions for the trace.

5.1 LLVM IR optimizations

LLVM provides a fleet of LLVM IR optimizations. The system uses four

LLVM IR optimizations to remove redundant instructions on the LLVM IR.
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Figure 5.1: The chosen LLVM IR optimizations

Figure 5.2: Chaining with unconditional direct branches

The chosen optimizations are presented in figure 5.1.

5.2 Active Chaining with Unconditional Di-

rect Branches

The emulating thread keeps translation when it meets an unconditional di-

rect branch [8] by eliding the unconditional direct branch instruction and

translating at the destination of the unconditional branch instruction. The

effect of this optimization is presented in figure 5.2. Instead of translating the

guest direct branch instruction to LLVM IR return instruction, the translate

skips the instruction, and continues to do translation at the target of the un-
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conditional direct branch instruction [8]. This technique increases the scope

of the translation block. As a result, more optimization opportunity is made.

This method elimiates all guest unconditional direct branch instructions with

an side effect on increasing a little memory usage.

5.3 Trace Compilation

Trace compilation is a dynamic optimization technique that selects the hot

path and emits the codes for it at run time. We think there are 2 main issues.

One is trace selection and the other is trace generation.

5.3.1 Trace Selection

Trace selection has been discussed by many papers [9], [20], [23], [24]. Our

trace selection is mainly based on them. For trace selection, we insert the

profiling codes at the beginning of each translation block. Figure 5.3 shows

the profiling codes which are LLVM call instructions to helper function (

trace helper1 and trace helper2 ).

The functions trace helper1 and trace helper2 cooperate to do trace se-

lection. How trace is selected is shown in figure 5.4.

5.3.2 Trace Generation

In the system, trace generation is done by optimizing threads and the sys-

tem has 3 optimizing threads by default. The trace selected by emulating
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1 de f i n e i32 @L 000097a4 ({ i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx ) a lway s i n l i n e {

2 L 00000000 :

3 %0 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx , i 32 0 , i 32 3

4 store i 64 1910052688 , i 64 ∗ %0

5 %1 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx , i 32 0 , i 32 4

6 store i 64 −1, i 64 ∗ %1

7 %2 = load i 64 ∗ i n t t op t r ( i 64 1910052696 to i64 ∗)

8 %3 = icmp eq i64 %2, 1

9 br i 1 %3, label %L 00000000 1 , label %L 00000000 2

10

11 L 00000000 1 : ; p reds = %L 00000000

12 ca l l void @trace he lper2 ( )

13 %4 = load i 32 ({ i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗)∗∗ @traceGV6

14 %5 = ca l l i 32 %4({ i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx )

15 r e t i 32 %5

16

17 L 00000000 2 : ; p reds = %L 00000000

18 ca l l void @trace he lper1 ( )

19 %6 = gete l ementptr inbounds { i32 , [ 32 x i32 ] , i64 , i64 , i 64 }∗ %ThreadCtx , i 32 0 , i 32 1

20 %7 = gete l ementptr inbounds [32 x i32 ]∗ %6, i32 0 , i 32 16

21 store i 32 38820 , i 32 ∗ %7

22 . . .

23 }

Figure 5.3: Insert profiling codes for selecting traces

Figure 5.4: The procedure of trace selection
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Figure 5.5: Generate each translation block at the guest address

threads would be pushed into a concurrent queue [26]. Each optimizing

thread periodically tries to pull the trace from the queue. The trace in the

queue is actually a vector of integer which stores the guest addresses of the

collected translation blocks, we can see that in figure 5.5. Once the optimiz-

ing thread successfully pulls a trace from the queue, the optimizing thread

does instruction translation based on each guest address in the vector one

after another. Finishing translation, the optimizing thread links neighboring

translation blocks together by adding guard instructions. This is shown in

figure 5.6. This includes testing if the next block is exactly the block of the

next executing block. If the test fails, the program would execute the exit

stub which returns the address of the next guest instruction.

Before JIT the trace, we modifies those LLVM ret instructions which

have return value that equals the guest address of the current trace head

to branch instructions that branch to the trace head. This is shown in fig-
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Figure 5.6: Link translation block together

Figure 5.7: Optimize the trace

ure 5.7. Because the system has optimizing threads to do trace generation,

the emulating thread can keep on emulation while the optimizing threads

are generating the trace. Thus, our runtime overhead of trace compilation is

only executing the trace profiling code and inserting the selected trace into

the queue.

When the optimizing thread emits the host codes for the trace. it modifies

a variable in the translation block from false to true. This variable indicates
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Figure 5.8: The communication between emulating and optimizing threads

whether the current translation block is a trace head. That variable is set

to false in the beginning and each translation block keeps its own variable.

In figure 5.3, testing the variable is shown in line 8 and 9. Line 13 loads the

starting address of the instructions of the trace. Line 14 executes the trace.

Line 15 returns the address of the next guest instruction.

The overall trace compilation is shown in figure 5.8. In our design, all

generated traces are also shared among emulating threads.

5.4 Filling empty thread-private table

This optimization comes with the design of two-level address mapping tables

(one is global-shared and the other is thread-private address mapping table).

When an emulating thread is created, its thread-private table is empty. The
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emulating thread that creates the new thread copies its own thread-private

table to the thread-private table of the new thread. This method benefits

when emulating threads are performing similar tasks. The thread-private

table is not large so copying the table just takes a little time.
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Chapter 6

Synchronization

In this section, we point out the portions in our binary translator that require

synchronization and discuss how we handle them.

6.1 Instruction Translator

The instruction translator is responsible for translating guest binary code

to LLVM IR and turning LLVM IR to host binary code. There is only

one instruction translator in our system and it is shared among emulat-

ing threads. In terms of implementation, the translator is protected by

pthread mutex lock. This part is not a performance bottleneck due to each

block only being translated once.
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6.2 Access to Global Mapping Table

One thread may write to address mapping table while some threads may

read from the global mapping table. To deal with the simultaneous read and

write operations, the mapping table is crafted to be concurrent [4].

6.3 Trace Queue

Emulating threads and optimizing threads cooperate with trace compilation,

the trace selected by emulating threads is pushed into the trace queue and

poped by the optimizing threads to do code generation. The optimizing

threads periodically try to pop values from the trace. In our observation, the

queue is frequently accessed. To build a high performance queue that can be

accessed by many threads at the same time, we adopt the algorithm in [26].

6.4 Repeated Trace Detection

In the system, all emulating threads are able to do trace selection. Chances

are that they may select the same trace but emulating threads would not

detect that because they just pass the collected trace to the trace queue.

The detection of the repeated trace is done by the optimizing thread. Once

the optimizing thread obtains a trace from the queue, it searches a C++ set

data structure protected by lock to find if the trace has been generated. If

it does, the optimizing thread discards the trace. Otherwise, it does trace
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generation.

6.5 Translation of kuser cmpxchg

This is a function fixed at specific address by Linux kernel. Its main task

is to do atomic compare and swap. We emulate this function with a global

lock.

6.6 LLVM Library

LLVM has its own mechanism to protect access to its own data structure

from multiple threads but that mechanism should be turned on by calling

llvm start multithreaded().
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Chapter 7

Experiment Result

7.1 Experimental Setup

ARM static linked binaries are fed as the input data for the translator. In

figure 7.1, the information on experiemental setup is presented. We run the

translator on the 48-core x86 64 host machine. Each core is 2.1 GHz and the

memory is 48GB. The benchmark we use is SPEC omp 2001 [25] and we use

the provided test data set as the input for the benchmark. All the bench-

mark is compiled by GNU gcc or gfortran 4.3.2 with flag -O2 -static -fopenmp.

Among 11 benchmark in the SPEC omp, we fail to compile galgel, and fail

to emulate ammp. Others are successfully cross compiled and emulated cor-

rectly. We exclude fma3d in the experiment because it has short emulation

time (< 10s). To build mc2llvm, we have to install LLVM 3.2 library before-

hand. Before emulating any program, we set vm.mmap map addr=”4096”
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Figure 7.1: Information on Experimental Setup

on the command line.

7.2 Parallel Emulation

In this part, we set each benchmark to use different number of threads by

specifying an environment variable OMP NUM THREADS and run it on the

translator. The result is shown in two ways. One is in figure 7.2 which shows

the exact emulation time and the other is in figure 7.3 which shows the ratio.

In the emulation, all the benchmarks seem to have decreasing running time

when more threads are used. Two benchmarks gafort and apsi do not meet

the expectation, but this condition is almost the same when the programs

are run in the native machine.
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Figure 7.2: Emulation with different number of guest threads

Figure 7.3: The emulation time in ratio when the benchmarks are using

different number of threads

45



Figure 7.4: Time analysis

7.3 Time Usage

Figure 7.4 shows the time usage when we emulate programs with 16 guest

threads. Translation time represents time spent to decode guest instructions

and translate them into LLVM IR and the JIT time represents time spent

in optimization of LLVM IR and turning LLVM IR into host instructions.

Total time is the time to emulate the benchmark from program startup to

program termination. Translation and JIT time account for only a little

proportion of the total time when the total time is large. This is because

all the guest basic blocks are translated once. The total time is measured

by Linux time command and the translation and JIT time are measured by

inserting the function clock gettime in our system. All the measurement is

done separately. In average, JIT time accounts for 5.7% and translation time

accounts for 10.3%. The rest of the time is mostly occupied by executing

codes in the code cache.
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Figure 7.5: Various statistics

7.4 Various Statistics

Rigure 7.5 shows various statisics. We will explain each piece of statistics in

the following:

1. number of block: It means the number of translated guest basic

block.

2. number of trace: It means the number of generated trace. A trace

usually takes less than 0.1s to generate and we have 3 threads to do

trace generation. That means the trace queue is usually empty.

3. hit rate of thread table lookup: In our design, the thread-private

table has 214 entries. Since the number of the block is smaller than

the table entries, the emulating thread almost hit in the thread-private

table all the time.

4. size of block code cache: To our surprise, the size of the shared code

cache is quite small. If our code cache is private then the size of the

47



cache would almost N times larger than the shared code cache where

N is the number of the emulating threads.

5. number of unconditional direct branch: This includes uncondi-

tional direct branch and call instructions. The number implies how

much the emulation speed can benefit from the optimization of active

chaining with unconditinal direct branch. It accounts for 7% in average

among the total translated instructions.

6. number of conditional branch: It means the number of translated

conditional branch instruction. The number implies how much the

emulation speed can benefit from the optimization of block chaining.

It accounts for 7% in average among the total translated instructions.

7. total translated instruction: It means the number of translated

guest instruction.

7.5 The Impact of Trace Compilation

Trace compilation is not essential in binary translation but it is a technique

that may have a chance to speed up emulation. In figure 7.6, we can see

that some benchmarks benefit from trace compilation while some do not.

Only the case when the speedup gained from executing traces outweight the

slowdown of profiling traces can the emulation become faster. In our work,

profiling traces can be the burden to the emulation. Profiling codes for traces

48



Figure 7.6: Emulation time in ratio with/without trace compilation when

programs are using 16 guest threads
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are inserted into each translation block but not the trace. Thus, emulating

threads have to execute profiling codes when they are executing the codes in

the translation block but they do not have to execute profiling codes when

they are executing the codes in the trace. If a benchmark has shorter emu-

lation time when we use trace compilation. This may indicate that most of

the time emulating threads are executing the traces. But if trace compilation

does not favor the benchmark, with high probability that the formed traces

have problems like early exit and trace separation so emulating threads spend

their time executing host instructions in translation blocks but not traces.

With trace compilation, in the best case we gain 17% performance speedup

from the benchmark art and in the worst case we increase 31% overhead from

the benchmark swim. The execution time we collect is measured by Linux

time command.

7.6 Comparison with QEMU

QEMU is a well-known dynamic binary translator. In figure 7.7, we compare

mc2llvm with QEMU. QEMU fails to run applu, gafort. QEMU seems to

encounter the deadlock when it emulates applu and it encounters segmen-

tation fault immediately when it emulates gafort. mc2llvm is faster than

QEMU when emulating programs with 8 guest threads. We profile by perf

that QEMU performs a lot of locks when emulating the benchmarks. In

average, mc2llvm is 8.8X faster than QEMU.
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Figure 7.7: Comparison with QEMU

7.7 Comparison with Native Machine

We compare our result with an ARM machine named origen [27]. Its basic

description is in figure 7.1. origen is shipped with Linaro Android OS and is

a 4-core ARM machine. Thus, we run each benchmark with 4 threads. The

result is shown in figure 7.8. origen encounters segmentation fault when it

runs wupwise and gafort. The experiment aims at realizing the performance

gap between programs run in native machine and emulated by the dynamic

binary translator. In average, mc2llvm is 5.45X slower than origen.
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Figure 7.8: Comparison with ARM machine

7.8 Future Work

1. Currently, LLVM JIT is not able to map LLVM global variable to spe-

cific host registers. Thus, we cannot do a better register mapping by

mapping guest registers to host registers. This could hurt the perfor-

mance a lot due to extra load and store instructions.

2. Our trace profiling incurs a lot of overhead so that the performance

would go down when the emulating threads are not executing the traces.

A better trace profiling technique is required.
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Chapter 8

Conclusion

We turn a binary translator mc2llvm[13] which is only able to emulate se-

quential programs into the one able to emulate multi-threaded programs. We

reduce the memory usage by using the shared code cache. The synchroniza-

tion overhead is reduced as much as possible by shortening the lock section as

we can and using the concurrent data structure. Trace compilation chooses

hot paths which are selected at runtime by emulating threads and gener-

ated by optimizing thread. In the work, we extend mc2llvm to run on the

x64 host machine and fully utilize the underlying multicore architecture to

speed up emulation. In average, mc2llvm is 8.8X faster than QEMU when

emulating programs with 8 guest threads, mc2llvm is 5.45X slower than ori-

gen [27] when emulating programs with 4 guest threads and mc2llvm gains

17% performance with trace compilation in the best case.
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