Parameters	Uncertainty
D_i, D_o, a, b	±0.5 mm
Α	±0.5 mm
A_{Burner}	±2.084%
ν	±0.09%
$ ho_{air}$	±0.201%
\overline{T}	±0.5 °C
P_0	±1 torr
V ₀	±2.2%
Q _{fuel}	±1%
U _{in}	±2.54%
V _w	±2.31%
Re	±3.04%
T_t	±0.2%
P _{sat}	±3.01%

Table 3.1 Summary of uncertainty analysis

methane to nitrogen ratio	Envelope flame transition limits velocity (1 st measured)	Envelope flame transition limits velocity (2^{nd}) measured	Envelope flame transition limits velocity (3 rd measured)	Average value of three times (m/s)	Error (%)
40 %	0.7	0.68	0.72	0.7	5.71
50 %	0.98	7	0.98	0.986	2.02
60 %	1.06	1.04	1.08	1.06	3.77
70 %	1.09	1.14	1.12	1.117	4.27
80 %	1.14	1.19	1.16	1.163	4.29
90 %	1.21	1.24	1.21	1.22	2.46
100 %	1.26	1.29	1.26	1.27	2.36

Table 3.2 Table of envelope flame transition limits experimental repeatability

methane to nitrogen ratio	wake flame transition limits velocity (1 st measured) (m/s)	wake flame transition limits velocity (2 nd measured) (m/s)	wake flame transition limits velocity (3 rd measured) (m/s)	Average value of three times (m/s)	Error (%)
70 %	1.32	1.34	1.29	1.316	3.79
80 %	1.48	1.42 E	1.46	1.453	4.12
90 %	1.51	1.53	1.48	1.506	3.31
100 %	1.56	1.58	1.53	1.556	3.21
	•	mm	111111		

Table 3.3 Table of wake flame transition limits experimental repeatability

	α						
	100%	90%	80%	70%	60%	50%	40%
	2.63	2.63	2.63	2.63	2.63	2.63	2.63
	2.35	2.35	2.35	2.35	2.35	2.35	2.35
	2.25	2.25	2.25	2.25	2.25	2.25	2.25
	2.16	2.16	2.16	2.16	2.16	2.16	2.16
	2.06	2.06	2.06	2.06	2.06	2.06	2.06
	1.96	1.96	1.96	1.96	1.96	1.96	1.96
	1.87	1.87	1.87	1.87	1.87	1.87	1.87
TT	1.77	1.77	1.77	S 1.77	1.77	1.77	1.77
U _{in}	1.72	1.72	1.72	1.72	1.72	1.72	1.72
	1.67	1.67	1.67	896 1.67	1.67	1.67	1.67
(m/sec)	1.63	1.63	1.63	1.63	1.63	1.63	1.63
	1.58	1.58	1.58	1.58	1.58	1.58	1.58
	(1.56)	>					
	1.53	1.53	1.53	1.53	1.53	1.53	1.53
		(1.51)	\rangle				
	1.48	1.48	1.48	1.48	1.48	1.48	1.48
			(1.46)	\rangle			
	1.42	1.42	1.42	1.42	1.42	1.42	1.42

Table 4.1 the three measured data and made an averaged value error bar is ± 0.02 m/sec

	α						
	100%	90%	80%	70%	60%	50%	40%
	1.38	1.38	1.38	1.38	1.38	1.38	1.38
	1.34	1.34	13.4	1.34	1.34	1.34	1.34
				1.32			
	1.29	1.29	1.29	1.29	1.29	1.29	1.29
	(1.26)						
	1.24	1.24	1.24	1.24	1.24	1.24	1.24
		1.21	\rangle				
	1.19	1.19	1.19	1.19	1.19	1.19	1.19
			1.16	- March			
U		1	1.14	1.14			
υm		210		1.12			
(m/sec)	1.09	1.09	1.09	1.09	1.09	1.09	1.09
(III/Sec)					(1.06	>	
			2000	IIIIIII	1.04		
	1	1	1	1	1	1	1
						0.98)
		0.0	0.0	0.0		0.95	0.0
	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	0.7	0.7	0.7	0.7	0.7	0.7	
	0.62	0.62	0.62	0.62	0.62	0.62	0.68
	0.51	0.51	0.51	0.51	0.51	0.51	0.51

Continued Table 4.1 the three measured data and made an averaged value

U _{in} (m/s)	100%	90%	80%	70%
	Flame	Flame	Flame	Flame
	thickness	thickness	thickness	thickness
	(mm)	(mm)	(mm)	(mm)
0.41	2.4	2.4	2	2
0.51	2.4	2.4	2	1.7
0.62	2.4	2	1.7	1.7
0.68				
0.70	2	2	1.7	1.7
0.80	2	1.7	1.3	1.3
0.90	2	1.7	1.3	1.3
0.95				
1.00	1.7	1.3	1.3	1.3
1.04	3		5	
1.09	1.7 🍠	1.3	1.3	1.3
	E	_// 1		(critical U _{in})
1.14		1856	1.3	
			(critical U _{in})	
1.19	1.3	1.3		
		(critical U _{in})		
1.24	1.3			
	(critical U _{in})			

Table 4.2 the envelope flame thickness

U _{in} (m/s)	60%	50%	40%
	Flame	Flame	Flame
	thickness	thickness	thickness
	(mm)	(mm)	(mm)
0.41	1.7	1.7	1.3
0.51	1.7	1.3	1.3
0.62	1.7	1.3	1.3
0.68			1
			(critical U _{in})
0.70	1.7	1.3	
0.80	1.3 E	S N 1.3	
0.90	1.3	1	
0.95	E	896 13	
		(critical U _{in})	
1.00	1.3	man	
1.04	1		
	(critical U _{in})		

Continued Table 4.2 the envelope flame thickness

U _{in} (m/s)	100% Stand	90% Stand	80% Stand	70% Stand
	off distance	off distance	off distance	off distance
	(mm)	(mm)	(mm)	(mm)
0.41	1.7	1.7	1.7	1.7
0.51	1.2	1.2	1.2	1.2
0.62	1.2	1.2	1.2	1.2
0.68				
0.70	1	1	1	1
0.80	1	1	1	1
0.90	1	1	1	1
0.95				
1.00	1	1	1	1
1.04		A STILLER,		
1.09	1		1	1
	4	ESAP	111	(critical U _{in})
1.14			E 1	
		1896	(critical U _{in})	
1.19	1	7 1		
		(critical U _{in})		
1.24	1			
	(critical U _{in})			

Table 4.3 the envelope flame stand off distance

U _{in} (m/s)	60% Stand off distance (mm)	50% Stand off distance (mm)	40% Stand off distance (mm)
0.41	1.7	1.7	1.7
0.51	1.2	1.2	1.2
0.62	1.2	1.2	1.2
0.68			1
			(critical U _{in})
0.70	1	1	
0.80	1	1	
0.90	1	1	
0.95		1 (critical U _{in})	
1.00	1 45	1896	
1.04	1 70000	mulli	
	(critical U _{in})		

Continued Table 4.3 the envelope flame stand off distance

U _{in} (m/s)	100% Flame attached	90% Flame attached	80% Flame attached	70% Flame attached
	angie	angle	angie	angle
1.32				149
				(critical U _{in})
1.46			149	
			(critical U _{in})	
1.48			143	145
1.51		1.48		
		(critical U _{in})		
1.56	154			
	(critical U _{in})	ESTA		
1.58	150	141	141	143
1.67	144 🛃	139	139	141
1.77	141 🏼	138	138	138
1.87	136	138	136	137
1.96	135	135	134	135
2.06	134	135	134	133
2.35	133	130	131	130
2.63	131	125	125	125

Table 4.4 the wake flame attached angle

U _{in} (m/s)	60% Flame	50% Flame	40% Flame
	attached	attached	attached
	angle	angle	angle
0.70			151
			(critical U _{in})
0.80			150
0.90			149
0.98		151	
		(critical U _{in})	
1.06	152		
	(critical U _{in})		
1.09	150	146	146
1.19	146	142	146
1.29	145	5 138	145
1.38	143	134	143
1.48	142	1896 133	142
1.58	139	133	140
1.67	136	130	138
1.77	135	128	136
1.87	134	128	134
1.96	132	127	133
2.06	130	127	131
2.35	127	125	126
2.63	123	122	122

Continued Table 4.4 the wake flame attached angle

The envelope flame thickness					
Uin (m/s)	100% Flame thickness (mm)	90% Flame thickness (mm)	80% Flame thickness (mm)	70% Flame thickness (mm)	
0.6	2.46	2.36	2.14	2.1	
0.7	2.25	2.25	2.1	2.1	
0.8	2.25	2.1	2.1	2.1	
0.9	2.25	2.1	2.04	2.04	
1.0	2.25	2.1 E S V	2.04	2.04	
1.01		1896	and a state	2.01 (blow-off limit)	
1.075			2.04 (blow-off limit)		
1.1	2.1	2.1 (blow-off limit)			
1.15	2.1 (blow-off limit)				

Table 4.5 the Chen's numerical simulation results of the envelope flame thickness

The envelope flame thickness				
Uin (m/s)	60% Flame stand-off distance (mm)	50% Flame stand-off distance (mm)	40% Flame stand-off distance (mm)	
0.6	2.1	2.1	1.71	
0.7	2.1	2.04	1.65	
0.75			1.5 (blow-off limit)	
0.8	2.04	1.93		
0.85		1.93 (blow-off limit)		
0.9	2.04	1896		
0.94	2.04 (blow-off limit)			

Continued Table 4.5 the Chen's numerical simulation results of the envelope flame thickness

The stand-off distance of envelope flame				
Uin (m/s)	100% Flame stand-off distance (mm)	90% Flame stand-off distance (mm)	80% Flame stand-off distance (mm)	70% Flame stand-off distance (mm)
0.6	4.7	4.7	4.5	4.5
0.7	4.2	4.2	4.2	4.16
0.8	3.2	3.2	3.1	2.6
0.9	2.8	2.6	2.36	2.14
1.0	2.36	2.36 E S V	2.25	2.1
1.01		1896	anna anna	2.1 (blow-off limit)
1.075			2.1 (blow-off limit)	
1.1	2.1	2.1 (blow-off limit)		
1.15	2.1 (blow-off limit)			

Table 4.6 the Chen's numerical simulation results of the stand off distance

The stand-off distance of envelope flame				
Uin (m/s)	60% Flame stand-off distance (mm)	50% Flame stand-off distance (mm)	40% Flame stand-off distance (mm)	
0.6	4.5	4.07	3.86	
0.7	4.05	3.21	2.36	
0.75			2.1 (blow-off limit)	
0.8	2.55	2.25		
0.85		2.1 (blow-off limit)		
0.9	2.36	1896		
0.94	2.1 (blow-off limit)	1111		

Continued Table 4.6 the Chen's numerical simulation results of the stand off distance

The wake flame attached angle				
Uin (m/s)	100% Flame attached angle	90% Flame attached angle	80% Flame attached angle	70% Flame attached angle
1.07				128 (flame transition limit)
1.1				132
1.2			135 (flame transition limit)	128
1.25			132.5	122
1.3		134 (flame transition limit)	130	
1.325		130 E S	MALLA R	
1.35	138 (flame transition limit)	1896	129	120
1.36	132			
1.37	130			
1.375	127	128	126	
1.4	124.5	127	125	119
1.425	121	122	120	120

Table 4.7 the Chen's numerical simulation results of the wake flame attached angle

The attached angle of stable wake flame for lower concentration			
Uin (m/s)	60% Flame stand-off distance (mm)	50% Flame stand-off distance (mm)	40% Flame stand-off distance (mm)
0.76			124 (flame transition limit)
0.8			121.5
0.85		130 (flame transition limit)	
0.9		121	125
0.95	121 (flame transition limit)	Mariles .	
1.0	119	123	123
1.1	124	1896	124
1.2	120	120	122
1.3	120	120	120
1.4	119	119	119

٦

Г

Continued Table 4.7 the Chen's numerical simulation results of the wake flame attached angle

Fig 1.1 Schematic configuration of the physical problem

Fig 1.2 Scheme diagram

Fig. 2.2 Schema of the wind tunnel

Fig. 2.3 The design of AMCA 210-85 standard

Fig. 2.4 The relation figure of blower frequency and airflow velocity

Fig. 2.5 The connecting of blower and tunnel

Fig. 2.6 The picture of cooling system

Fig. 2.7 The picture of four pitot tube and a fixed static pressure holes

Fig. 2.8 Inflow velocity at each position in the test section

Fig. 2.9 The measuring position in the front of the cylinder burner

Fig. 2.10 The measuring position in the rear of the cylinder burner

Fig. 2.11 Porous sintered stainless steel cylinder

Fig. 2.12 The picture of burner

Fig. 2.13 Cylindrical brass rod

Fig. 2.14 The picture of mass flow controller, check valve and spiral mix tube

Fig. 2.15 The picture of pressure gauge, power supply and control unit

Fig. 2.16 schematic configuration of gas mixer

(a) Stand off distance and flame thickness

(b) Flame attached angle

Fig. 3.1 The errors of experimental repeatability

Fig. 4.1 the flame transition limit velocity under different α and U_{in}

(a) $U_{in} = 0.41 \text{m/sec}$

 $(d) U_{in} = 1.53 \text{m/sec}$

 $(b) U_{in} = 1.24 \text{m/sec}$

 $(e) U_{in} = 1.56 \text{m/sec}$

(c) $U_{in} = 1.26 \text{m/sec}$

(f) $U_{in} = 2.63 \text{m/sec}$

Fig. 4.2 Series of the pure methane flame configurations as function of inflow velocity from high to low.

Fig. 4.3 the 100% methane vertical centerline envelope flame temperature in the cvlinder burner forward

Fig. 4.4 the 100% methane vertical centerline envelope flame temperature in the cvlinder burner rearward

(a) 6.33 sec

(b) 6.36 sec

(c) 6.39 sec

(f) 10.48 sec

Fig. 4.5 Series of flame transition as fixed incoming airflow velocity 1.26 m/s

(g) 12.69 sec

(h) 12.72 sec

(i) 12.75 sec

Continued Fig. 4.5 Series of flame transition as fixed incoming airflow velocity 1.26 m/s

Fig. 4.6 the 100% methane vertical centerline wake flame temperature in the cvlinder burner rearward

(a) $U_{in} = 0.41 \text{ m/sec}$

b) $U_{in} = 1.14 \text{m/sec}$

 $(c) U_{in} = 1.16 \text{ m/sec}$

 $(d) U_{in} = 1.42/sec$

(e) $U_{in} = 2.63 \text{ m/sec}$

SHER.

4000

12220

Fig. 4.8 the 80% methane vertical centerline envelope flame temperature in the cvlinder burner forward

Fig. 4.9 the 80% methane vertical centerline envelope flame temperature in the cvlinder burner rearward

(a) 6.12 sec

(c) 6.18 sec (g) 8.84 sec Fig. 4.10 Series of flame transition as fixed incoming airflow velocity 1.24 m/s under $\alpha=80\%$

(h) 9.75 sec

(j) 12.57sec

(i) 12.54 sec

Continued Fig. 4.10 Series of flame transition as fixed incoming airflow velocity 1.24 m/s under $\alpha = 80\%$

Fig. 4.11 the 80% methane vertical centerline wake flame temperature in the cylinder burner rearward

(a) $U_{in} = 0.41 \text{ m/sec}$

(c) $U_{in} = 1.06 \text{ m/sec}$

 $(b) U_{in} = 1.04 \text{ m/sec}$

 $(d) U_{in} = 2.63 \text{ m/sec}$

Fig. 4.12 Series of flame transition in the lower methane mass fraction $(\alpha = 0.6)$

Fig. 4.13 the 60% methane vertical centerline envelope flame temperature in the cvlinder burner rearward

Fig. 4.14 the 60% methane vertical centerline wake flame temperature in the cvlinder burner rearward

Fig. 4.15 Comparison with Chen's numerical simulation results of the flame transition limit