

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學

資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法

Two-tier Project and Job Scheduling for Cloud

Computing Environments

研 究 生 ：Thái Minh Tuấn

指導教授 ：林盈達 教授

中中中中 華華華華 民民民民 國國國國 一一一一 百零二年百零二年百零二年百零二年 六月六月六月六月

雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法

Two-tier Project and Job Scheduling for Cloud Computing

Environments

研 究 生：蔡明俊 Student：：：：Thai Minh Tuan

指導教授：林盈達 Advisor：：：：Dr. Ying-Dar Lin

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

June 2013

Hsinchu, Taiwan

中 華 民 國 一 百零二年 六月

i

雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法雲端計算環境中雙階層計畫與工作排程演算法

學生: 蔡明俊 指導教授: 林盈達

國立交通大學資訊科學與工程研究所

摘要摘要摘要摘要

本研究旨在解決當今雲端計算環境下的雙層排班(two-tier scheduling)問題。

在此問題之中，一個計畫(project)就代表著一位雲端使用者的請求，是由多項工

作(job)所組合而成，而每項工作的處理需要數種資源。研究目標是使用適合的

排程演算法來縮短計畫的回復時間(turn-around time) 以及支援優先等級排程

(priority scheduling) 。由於這種雙層排班問題一直以來缺少有效率之演算法，我

們在此提出一組雙層回填(Two-tier Backfilling)演算法，而這組演算法乃根據著

名的保守回填(Conservative Backfilling)演算法並結合計畫的寬鬆係數與優先權

等概念所擴展而來。雙層嚴格回填(Two-tier Strict Backfilling, 2TSB) 演算法不允

許在工作或計劃等待佇列內搶佔 (preemption) 。另一方面，可允許搶佔的雙層

彈性回填(Two-tier Flexible Backfilling)演算法則有兩種版本：2TFB 和 2TFB-SF。

在 2TFB 演算法中，新抵達的工作可以搶佔正在等待的工作，可是新抵達的計

畫不能搶占正在等待的計畫；相比之下，2TFB-SF 演算法允許在工作和計畫佇

列內搶佔。雙層優先等級回填(Two-tier Priority Backfilling, 2TPB)演算法把優先

權納入考量，因此只有某些高優先權計劃能夠搶佔低優先權計畫。實驗結果指

出 2TFB-SF演算法可以縮短工作平均回復時間約 15%，而和 2TSB 相比，2TPB

演算法可以縮短高優先權計畫的平均回復時間約 25%。

關鍵字關鍵字關鍵字關鍵字: 雲端排程、雙層、回填法、寬鬆係數、優先等級排程法

ii

Two-tier Project and Job Scheduling for Cloud Computing

Environments

Student: Thai Minh Tuan Advisor: Dr. Ying-Dar Lin

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

This study addresses a two-tier scheduling problem in a cloud computing

environment. In this problem, a project represents a cloud user’s request consisting of

multiple jobs, and each job requires several resources for its processing. The goals are

to reduce the project turn-around time and to support priority scheduling by

employing suitable scheduling algorithms. Due to the lack of efficient algorithms for

such a two-tier scheduling problem, here we propose a set of two-tier backfilling

algorithms which extend the well-known conservative backfilling algorithm with

project’s slack and priority concepts. Among the proposed algorithms, Two-Tier

Strict Backfilling (2TSB) does not allow preemption in job and project waiting queues.

On the other hand, preemption is considered by Two-tier Flexible Backfilling (2TFB)

which has two versions:	2TFB and 2TFB-SF (slack factor). In 2TFB, a new incoming

project can preempt waiting jobs but not waiting projects; while 2TFB-SF permits

preemption in both job and project waiting queues. Two-Tier Priority Backfilling

(2TPB) algorithm takes priority into account such that only high-priority projects can

preempt the low-priority ones. The experimental results indicate that, compared to

2TSB, 2TFB-SF could reduce the mean job turn-around time by 15% and 2TPB could

reduce the mean turn-around time of high-priority projects by 25%.

Keywords: cloud scheduling, two-tier, backfilling, slack factor, priority scheduling.

iii

Acknowledgments

I would like to express my deep thanks to my advisor, Professor Ying-Dar Lin,

for his continued support throughout my study for master’s degree. Sharing his life

experience and research knowledge with me, Prof. Lin has enriched my graduate

experience immensely. I also want to thank Professor Chih-Chang Wang. He helped

me to explore interesting problems and guided me to conduct meaningful research.

I would like to thank all my graduate colleagues at High Speed Network Lab

at National Chiao Tung University, Taiwan. I really appreciate the opportunity of

meeting and working with each of you.

I am deeply grateful to my family. My mother has always been supporting me

throughout my whole study. My father in heaven has been watching over me all the

time. Last but not least, I would like to express my special thanks to my wife Bảo

Thụy. She has given me love and courage during my successful study for master’s

degree.

 Thái Minh Tuấn

iv

Table of Contents

摘要... i

Abstract .. ii

Acknowledgments.. iii

Table of Contents .. iv

List of Figures ... vi

List of Tables ... vii

Chapter 1: Introduction .. 1

Two-tier Scheduling in Cloud Environments ... 1

Our Solution Set ... 2

Chapter 2: Background and Related Work .. 4

2.1. On-line Scheduling .. 4

2.2. Two-tier Scheduling .. 5

2.3. Backfilling Algorithm ... 5

Aggressive vs. Conservative ... 6

Slack-based Backfilling .. 7

Other Variants of Backfilling ... 8

2.4. Data Structure for Advanced Resource Reservation 8

Chapter 3: Problem Description... 10

3.1. Two-tier System and Scheduling Models ... 10

System Model ... 10

Scheduling Model .. 12

3.2. Problem Statement .. 13

Chapter 4: Two-tier Project and Job Scheduling with Backfilling, Slack Factor and
Priority ... 14

4.1. Approach Overview .. 14

4.2. Non-preemptive Waiting Queues for Jobs and Projects 15

4.3. Non-preemptive Waiting Queues for Projects and Preemptive Waiting
Queue for Jobs .. 16

4.4. Preemptive Waiting Queues for Jobs and Projects 17

Single Type of Project .. 17

Two Types of Projects .. 18

v

4.5. Case study: An Example Run for 2TSB and 2TFB-SF 19

4.6. Two-tier Backfilling Implementation.. 22

Chapter 5: Experimental Evaluation .. 24

5.1. Simulation Methodology ... 24

5.2. Result Analysis .. 25

Job Scheduling vs. Project Scheduling ... 25

The Impact of Priority Scheduling ... 27

Chapter 6: Conclusions and Future Work .. 30

References .. 32

vi

List of Figures

Figure 1: Illustration of how backfilling can reduce job waiting time and idle time of

resources. ... 6

Figure 2: Two-tier project and job scheduling model. .. 12

Figure 3: Pseudo code of Two-tier Strict Backfilling algorithm 16

Figure 4: Pseudo code of Two-tier Flexible Backfilling algorithm 18

Figure 5: Pseudo code of Two-tier Priority Backfilling algorithm 19

Figure 6: An example run for 2TSB and 2TFB .. 21

Figure 7: Data structure used for resource reservation ... 22

Figure 8: Job scheduling vs. Project scheduling ... 25

Figure 9: Mean project waiting time vs. Mean project running time 26

Figure 10: The impact of slack factor SF on 2TFB-SF .. 27

Figure 11: Improvement on the mean project turn-around time by 2TPB algorithm

with differential values of slack factor SF ... 28

Figure 12: Improvement of project turn-around time of 2TPB with differential limits

on the number of allowable delayed projects PL ... 29

vii

List of Tables

Table 1: Notations used in the two-tier system and scheduling models. 11

Table 2: Two-tier scheduling policies ... 15

Table 3: A sequence of four submitted projects and their parameters 20

Table 4: Performance of an example run for 2TSB and 2TFB-SF 20

Table 5: Data structure operations .. 23

Table 6: Simulation parameters .. 24

1

Chapter 1: Introduction

Cloud computing is an Internet-based computing paradigm whereby

computational resources are delivered to users on demand over the Internet, in the

same manner as public utilities [1]. In recent years, there have been more cloud-based

service providers. Google Drive [2] is a good example of a cloud-based service in

which all the infrastructure, software, and storage are hosted remotely and users only

need a Web browser to access the service. One of the advantages in moving a service

to a cloud is that it allows resources being shared among organizations and users in

order to serve an even larger number of user’s requests. With a proper job scheduling

and resource allocation strategies, a cloud system can manage its resources to serve

user’s requests in the most efficient way. As a result, the cloud can improve resource

utilization as well as reducing its service turn-around time.

Two-tier Scheduling in Cloud Environments

Scheduling strategies in a cloud environment vary, depending on the

deployment model of the cloud. This work focuses on a two-tier scheduling problem

within a cloud environment described as follows. In our studied system, a project

represents a service request submitted by the cloud’s users. Once the cloud accepts a

project, it is obligated to complete a set of jobs belonging to the project. Each job has

its own estimated service time which is determined during the pre-processing stage.

Then, to start its processing, a job must be allocated a specific set of resources of

certain types such as server, application, tool, storage, and network. In addition, the

resource requirement of jobs may involve more than one resource type. At the

moment when a project is submitted to a cloud, the project’s characteristics become

available to the cloud; the cloud must make scheduling decisions immediately and

then inform users of when the project will be finished.

Since projects and their jobs arrive to a cloud one by one over time, the cloud

must always make scheduling decisions and resource allocation decisions without

knowledge of any future projects arrivals. This concept is called on-line scheduling in

literature [3]. In addition, our two-tier scheduling problem differs from the traditional

one-tier scheduling problem since a project consists of multiple jobs each requiring

several resources for its processing. Although the cloud allocates resources directly to

jobs, the purpose is to improve system performance with respect to projects instead of

jobs.

2

The motivation of this study is to provide an efficient cloud service by

employing suitable scheduling algorithms and resource allocation strategies for

projects and their jobs. Put it in another way, we want to increase user satisfaction by

reducing the project turn-around time – the time period from the moment a project

arrives at a cloud provider to its departure. Moreover, achieving high resource

utilization, as a general expectation for cloud computing, is also our objective.

Our Solution Set

The concept of two-tier scheduling has been addressed by several studies [4, 5,

6, 7] in recent years. Unfortunately, the solutions of these studies cannot be applied

here since there are some differences between our scheduling model and those already

existing. Therefore, to deal with such a complicated scheduling problem, we have

proposed a set of algorithms based on the well-known conservative backfilling

algorithm [8, 9] for the one-tier scheduling problems. The spirit behind the algorithm

is that a job could be moved to the head of the waiting queue as long as it will not

delay the execution of any reserved jobs. This helps increase resource utilization

while decreasing the mean job waiting time and hence the mean project turnaround

time in our problem. Another key advantage of adopting conservative backfilling is its

predictability since it allows every waiting job to establish resource reservation. By

doing so, each project is granted a guaranteed departure time when it is submitted to

the cloud. This feature satisfies the two-tier scheduling model, and is also very useful

for users to plan their work ahead of time.

We extend the conservative backfilling with the concept of slack factor, by

which the actual departure time of reserved projects can be relaxed up to a certain

slack, in order to make the algorithm more flexible to support priority scheduling

where some projects have higher priority than others. The idea of slack factor is not

new in the area of scheduling research, but up to now, it has not been applied to the

two-tier scheduling problem like our study. So far, we have developed three core

scheduling policies including non-preemptive waiting queues for jobs and projects,

non-preemptive waiting queue for projects and preemptive waiting queue for jobs, and

preemptive waiting queues for jobs and projects. Our method calculates the slack time

of a reserved project by multiplying its turn-around time with the system’s slack factor.

Furthermore, the project’s priority is also taken into account such that only high-

priority projects can preempt the low-priority ones. In order to evaluate the

3

performance of our solution set, we have implemented a discrete-event simulator

based on CSIM 20 [10].

 The rest of this work is organized as follows. In Chapter 2, we first discuss the

background related to our scheduling problem, including on-line scheduling problem,

existing two-tier scheduling models, various backfilling algorithms, and data

structures for advanced resource reservation. In Chapter 3, we introduce the formal

description of our scheduling problem and its model. In Chapter 4, we describe the

details of the proposed algorithms and their implementation. Simulation study and

experiment results are presented in Chapter 5 to verify the performance of the

algorithms. Finally, Chapter 6 concludes this work with a brief discussion of future

study.

4

Chapter 2: Background and Related Work

This chapter first gives a brief overview about on-line scheduling problems

and its difficulties. Then, some existing two-tier scheduling models are surveyed.

After that, a variety of backfilling algorithms which have been widely studied in

literature are discussed in depth. Finally, some existing advanced data structures for

resource reservation are introduced.

2.1. On-line Scheduling

Most classical scheduling problems are concerned with off-line algorithms

which are given complete information about the scheduling problem at hand and are

required to output a solution, i.e., schedule, to the problem. In contrast to the off-line

algorithms, an on-line scheduling algorithm is intended to address a common realistic

scenario where the scheduler does not have the access to the whole input instances [3].

In other words, on-line scheduling decisions must always be made without knowledge

of any future job arrivals since jobs arrive at the scheduler one by one over time.

Additionally, some information about jobs, i.e. their service time, is unknown to the

scheduler initially and during the run-time. They become known only when jobs have

actually been finished. At the moment when a job is presented to the scheduler, the

scheduling decision for the job has to be made before the next job arrives.

Furthermore, the decision is irreversible once it is made, even if we find other

obviously better schedules afterward.

In order to evaluate the performance of an on-line algorithm, Sleator and

Tarjan [11] suggested using competitive analysis. In a competitive analysis, the output

of an on-line algorithm is compared to an optimal value which might be obtained if

the entire job inputs were known in advance as the off-line version. An on-line

algorithm is ρ-competitive if its objective value is no more than � times in comparison

to the optimal off-line value for any sequences of job inputs.

Since the assumptions of pure on-line scheduling make it impossible to find

optimal solutions, some concepts have been introduced in order to handle the variants

of this class of scheduling problems. For example, semi-online scheduling [12], which

assumes that partial information about the scheduling problem are available before

constructing a schedule, has attracted researchers in recent years. The authors in [13,

14] presented the concept of delaying the scheduling time of a job for a period of time

and then applying scheduling rules to accumulated current jobs.

5

2.2. Two-tier Scheduling

There are several variants of two-tier scheduling model which have been

already studied last few years. Bag-of-Tasks (BoT) application [4, 5] model, which is

an application whose tasks are identical and independent, is often considered as a

suitable model for heterogeneous clusters and desktop grid environments. In order to

minimize the maximum stretch, i.e., the maximum ratio between the actual time a

BoT application has spent in the system and the time this application would have

spent if executed alone, the authors in [4] introduced two algorithms: an optimal off-

line and a heuristic on-line for the model. In [5], a set of task selection polices is

proposed in order to minimize the turn-around time of BoT applications.

Gopalan and Chiueh [6] designed and implemented a scheduler for periodic

soft real-time applications with the goal of maximizing the number of applications

admitted into the system. A periodic soft real-time application consists of a sequence

of tasks whose execution repeats itself over the lifetime of the application, and there

is a precedence constraint among the tasks in an application. Furthermore, the

execution of a sequence of tasks requires time-bound completion.

The two-tier scheduling model which is introduced in [7] allows preemption in

resources. In other words, the processing of a job, which represents the ownership of

resources, may be preempted by another job before its completion. An algorithm

which aims to prevent deadlock is also proposed in this work.

2.3. Backfilling Algorithm

The backfilling algorithm, a way to balance between the goals of utilizing

system resources and maintaining the FCFS (first come, first served) order of job

execution [15], was first introduced by Lifka [16]. The implication behind the

algorithm is that it allows small jobs from the back of the waiting queue to be

processed before previously submitted jobs that are delayed due to the insufficiency of

available resources. This principle helps exploit idle resources by backfilling with

suitable jobs, thereby increasing system utilization and throughput. Figure 1 illustrates

the difference between the traditional FCFS scheduling and backfilling scheduling. In

Figure 1, backfilling scheduling allows Job B to be processed ahead of Job A;

therefore, the resultant job waiting time and resource idle time are reduced

significantly in comparison with those of FCFS. Backfilling scheduling might lead to

“starvation” , a phenomenon where some jobs never occupy sufficient resources and

6

hence never start processing because they are constantly delayed by new job arrivals

that are granted the use of resources ahead of those already waiting in the queue. In

order to prevent starvation from happening, a backfilling algorithm needs to make

resource reservation for some of the waiting jobs for future time in advance. One

should notice here that backfilling algorithms require job service time to be known in

advance, which in practice is often specified by an upper-bound.

Figure 1: Illustration of how backfilling can reduce job waiting time and idle time of

resources.

Aggressive vs. Conservative

In contrast to aggressive backfilling, conservative backfilling [8, 9] makes

reservation for every queued job which cannot be executed at a given moment. It

means that a job can be backfilled on the condition that it does not delay any previous

jobs in the queue. Clearly, this reduces the number of jobs that can utilize idle

resources. As a result, its performance tends to be inferior to that of aggressive

backfilling. For the performance comparison between these two approaches, Mu’alem

and Feitelson [8] showed that the performance of aggressive backfilling algorithm is

better than that of conservative backfilling in most cases. However, conservative

backfilling can remove the above-mentioned weakness of aggressive backfilling

because of its ability to guarantee job starting time by establishing resource

reservation for every waiting job.

There are several variants of backfilling algorithms. The most popular one is

aggressive backfilling [15, 16], in which only the first job in the queue can receive a

resource reservation. To put it another way, if an arrived job is the first job in the

queue and cannot be processed immediately, the algorithm calculates the earliest

possible starting time for this job using its resource requirement and service time; then,

the scheduler makes a reservation for this job at this pre-calculated time. Other jobs

are allowed to backfill only if they do not violate this reservation. The core problem of

aggressive backfilling is its unpredictability since waiting jobs, except the first one, do

7

not get reservations. Therefore, the algorithm cannot give every job in the queue a

guaranteed starting time.

Some variants of backfilling algorithms between aggressive and conservative

backfilling, for example making reservation for the first few jobs in the waiting queue,

have also been introduced [17, 18]. The ideas of using an adaptive number of

reservations were presented by the authors of [17]. In this strategy, jobs are not

necessarily given reservations until their expected turn-around time exceeds some

threshold, whereupon they get a reservation. Chiang et al. [18] suggested that four is a

good number of reservations for compromise between aggressive and conservative

backfilling.

Slack-based Backfilling

In the original backfilling algorithm, a newly arriving job can be backfilled as

long as it does not delay any existing reservations. In order to make backfilling

scheduling more flexible and increase resource utilization, slack-based backfilling

algorithms [19, 20, 21, 22] have introduced the concept of slack factor, by which the

actual starting time of reserved jobs can be relaxed up to a certain slack. In other

words, a newly submitted job can move to the head of the waiting queue on the

condition that it will not delay already existing reservations by more than a specific

slack factor. In those algorithms, the system’s slack factor is used to control for how

long jobs will have to wait before the start of execution.

The idea of slack factor has already been introduced to real time scheduling,

parallel scheduling, and grid scheduling environments, and has been confirmed to be

effective [15]. Dynamic backfilling allows the scheduler to overrule a previous

reservation by a slight delay if doing so can improve system utilization considerably

[19]. In order to enhance backfilling and support priority scheduling, Talby and

Feitelson [20] combined three parameters – the target job’s individual priority,

tunable system slack factor, and the average job waiting time – to assign each waiting

job a slack value. The authors also provided several heuristics to reduce the search

space of finding the least costly schedule profile from all possible candidates. The

cost of a schedule is the sum of costs of all its jobs, and the cost of a job is calculated

based on its delay and resource requirements. In [21], Ward et al. suggested the use of

a relaxed backfilling strategy in which a backfill candidate is selected from the job

waiting queue by considering its waiting time, estimated service time and resource

requirement together. Bo Li et al. [22] introduced an approach different from previous

8

algorithms such that the slack factor is calculated based on each job’s service time and

slack-based backfilling with more than one reservation is supported.

Other Variants of Backfilling

Lawson and Smirni [23] introduced multiple-queue backfilling which divides

the system resources into multiple disjoint partitions. Each partition is associated with

an individual queue, and a submitted job is assigned to a partition and hence the

associated queue based on its estimated service time. The approach aims at reducing

fragmentation of system resources reducing the likelihood that a short job is queued

behind a long job. Backfilling with lookahead [24] algorithms make scheduling

decisions by considering a set of jobs at once. The algorithms look ahead into the job

queue and try to find a packing of jobs which maximizes the scheduler’s objective

using a dynamic programming technique.

2.4. Data Structure for Advanced Resource Reservation

Advanced resource reservation is a process of requesting resources for use at

specific future times [25]. In the cloud environment, it is challenging for the scheduler

to manage available resources and to allocate them to jobs efficiently because of the

large number of resources and submitted jobs. Choosing a suitable data structure for

advanced resource reservation could significantly affect quality of service of a cloud.

The most common operations for such a data structure are searching available

resources, adding new reservations and deleting existing ones. In general, data

structures for advanced resource reservation can be classified into two types: discrete

[25, 26, 27, 28] and continuous [29]. In the discrete data structure, the reservation

time is divided into time slots each of which represents a computation time unit. On

the other hand, each request defines its own time scale in the continuous case.

Many data structures for advanced reservation have been proposed and widely

studied in literature. A tree-based data structure is commonly used for admission

control in network bandwidth reservation [26, 27], where each tree node represents a

time interval and the amount of reserved bandwidth in its sub-trees. Brown et al.

proposed Calendar Queue [28] as a priority queue for future event set problems in

discrete event simulation. In the Calendar Queue, events are stored in buckets which

represent a fixed small time interval. Then, events which are scheduled at the same

time interval are stored in a sorted linked list. In [25], Sulistio et al. proposed GarQ

(Grid Advance Reservation Queue), which combines Calendar Queue and Segment

9

Tree, for administering advanced reservation in the grid environments. Qing Xiong et

al. [29] introduced a linked-list data structure for advanced reservation admission

control. Among afore-mentioned data structures, the linked list is the simplest and

most flexible at all since accepted reservations can be inserted into the list based on

their starting time. Operations can be easily performed on the linked-list data structure

by iterating through the list from the head node. However, if there are many

reservations for small time intervals, the linked-list data structure can become very

inefficient for running these operations since it needs to traverse through the linked

list to find the correct position for each reservation.

10

Chapter 3: Problem Description

This chapter first describes the system model and scheduling models of our

work. Then, the problem statement is introduced. Figure 2 provides a schematic

description of our scheduling model, where the notations for this model are shown in

Table 1.

3.1. Two-tier System and Scheduling Models

System Model

In our system model, the cloud has � types of resources. Each type of

resources has a limited capacity, and capacity �� 	denotes the maximum number of

type-i resources that are available for use simultaneously. A resource in the cloud can

be allocated to only one job at any time; i.e., a resource cannot be shared among

multiple jobs concurrently. Let 	 = {�� 	|	1 ≤ � ≤ �	} denote a set of � types of

resources of the system.

A project with multiple jobs represents a request submitted by the cloud’s

users. Let � = {	��	|	1 ≤ � ≤ |�|	} denote a set of projects of the cloud where |�| is

the number of projects. A project 	�� arrives to the cloud at time	���. It is also the

earliest time when the cloud can start processing the jobs that belong to	�� . Let

	�� = �	��,�	|		1 ≤ � ≤ |��|� denote a set of |��| jobs that are to be processed for

project	��.

The processing of job ��,�	requires a service time	���,�. The moment when the

processing of job ��,� begins is referred to as its starting time		���,�, and the moment

when the processing of job ��,�	is completed is referred to as its finish time	� �,�. Let

!���,� denote the latest starting time of job	��,�. The resource requirement of job ��,� is

given by		"�,� = {#�,�� 		|1 ≤ � ≤ �}	where	#�,�� is the number of type-i resources

required by	��,�,	0 ≤ #�,�� ≤	��.

It is assumed that job service time and resource requirement are precisely

determined during the pre-processing stage. Besides, there is non-precedence

constraint between jobs. In other words, the cloud can process a set of jobs in any

order. It is further assumed that the processing of a job is non-preemptive. Once it is

started, it cannot be stopped until its completion. Next we define important time

notations for projects.

11

Definition 1 (Project starting time): the starting time �%� of a project ��, defined as

 �%� = ��&(��. ��) where ��. �� = � ���,� | 1 ≤ � ≤ |��|�, (1)

is the time moment when the first job of �� starts its processing.

Definition 2 (Project departure time): the departure time �.� of a project ��, defined

as

�.� = ��/(��. �) where ��. � = � � �,� | 1 ≤ � ≤ |��|�, (2)

is the time moment when the last job of �� finishes its processing.

Definition 3 (Project waiting time): the waiting time �0� of a project ��, defined as

 �0� = ��� − �%�, (3)

is the time period from its arrival time ��� to its starting time �%�.

Definition 4 (Project running time): the running time �2� of a project ��, defined as

 �2� = �.� − �%�, (4)

is the time period from its starting time �%� to its departure time �.�.

Definition 5 (Project turn-around time): the turn-around time �&� of a project �� ,

defined as

�&� = �.� − ���, (5)

is the time period from its arrival time ��� to its departure time �.�.

Table 1: Notations used in the two-tier system and scheduling models.

Notations Meaning
Resource

	 = {�� | 1 ≤ � ≤ � }
A set of � types of resources of the system where �� is the capacity of type-�
resources

Project

� = { �� | 1 ≤ � ≤ |�| } A set of projects of the cloud where �� is the �-th project and |�| is the number of
projects

�� = � ��,� | 1 ≤ � ≤ |��|�
The set of jobs which are required to be processed for the �-th project where
 ��,� is the �-th job of the �-th project and |��| is the number of jobs

��� The arrival time of the �-th project

�%�
The starting time of the � -th project; �%� = ��&(��. ��) where ��. �� =
� ���,� | 1 ≤ � ≤ |��|�

�.� The departure time of the � -th project;�.� = ��/(��. �) where ��. � =
� � �,� | 1 ≤ � ≤ |��|�

�0� The waiting time of the �-th project; �0� = ��� − �%�
�2� The running time of the �-th project; �2� = �.� − �%�
�&� The turn-around time of the �-th project; �&� = �.� − ���

�34
The mean turn-around time of projects; �34 = 5

|6|
 ∑ 34�

|6|
�85 , where |P| is the

number of projects
Job

���,� The service time of the �-th job of the �-th project
���,� The starting time of the �-th job of the �-th project

 !���,� The latest starting time of the �-th job of the �-th project
� �,� The finish time of the �-th job of the �-th project

"�,� = {#�,�
� |1 ≤ � ≤ �}

The resource requirement of the � -th job of the � -th project where
#�,�

� is the number of resource type �

12

Scheduling Model

Figure 2 illustrates the scheduling model of this work. In the system model,

projects and their jobs arrive to the cloud one by one over time. When project �� and

its jobs �� arrive to the cloud, these jobs could be processed immediately if resources

are sufficient and the processing does not delay any existing reservations over the

maximum number of allowable times. Otherwise, the cloud scheduler must make the

scheduling decision immediately. The scheduling decision determines the starting

time ���,� for each job ��,� ∈ �� and the departure time �&� of the project ��. Then,

the cloud scheduler calculates the slack time for the project and the latest starting time

for the jobs. After that, these jobs are granted resource reservations. One should notice

that here new incoming jobs can preempt a job in the queue by its latest starting time.

Similarly, the departure time of a waiting project may be delayed by new incoming

projects several times before the project actually departs from the cloud, but it cannot

exceed the slack time of the project.

3,1j2,2j2,1j

1,2j

1,uj2,uj

1,1j

Figure 2: Two-tier project and job scheduling model.

A good practical example for our two-tier scheduling model is test cloud

which provides testing services for customers across the Internet. In a test cloud, a test

project represents a test request submitted by the cloud’s customers. Once the cloud

accepts a test project, it is obligated to complete a set of test jobs for system under test

specified in the test project. The processing of a test job requires a certain amount of

test resources such as test machines, test equipment, etc. Since the cloud’s customers

need to plan their work ahead of time, the departure time of submitted test projects

13

should be informed to customers at the time moment when the projects are accepted

by the cloud.

3.2. Problem Statement

The problem statement of our work can be described as follows. Given a set of

resources R and a set of projects	P, each project �� ∈ P consists of a set �� of jobs.

Each job ��,� ∈ ��	requires a set of resources	"�,� for its processing. The formula

�34 = 	 5

|6|
	 ∑ 	�&�

|6|
�85 , (6)

is to calculate the mean turn-around time of projects. The objective of this work is

determining the starting time 	���,� of each job	��,�, of project ��, ∀	�� ∈ P	such that

the mean turn-around time �34 is minimized.

14

Chapter 4: Two-tier Project and Job Scheduling with Backfilling,

Slack Factor and Priority

In this chapter, we describe our proposed scheduling policies, developed for

solving the two-tier scheduling problem defined in chapter 3. In Section 4.1, we give

an overview on two-tier backfilling with a slack factor of project turn-around time.

The details of our approach are elaborated in Section 4.2, Section 4.3, and Section 4.4.

Finally, Section 4.5 introduces a data structure for resource reservation which is used

to implement our proposed scheduling policies.

4.1. Approach Overview

As mentioned in the first chapter, one of the basic requirements for our

scheduling model is predictability. In other words, a project should be granted a

guaranteed departure time at the project’s arrival time. This requirement can be

satisfied by conservative backfilling algorithm since it provides resource reservation

for every waiting job. Besides, the system must calculate a precise estimate on job

service time and resource requirement before applying the scheduling algorithm,

which is satisfied by our scheduling model as well. From this point of view, the

choice of conservative backfilling for our problem is straightforward.

In order to make the algorithm more flexible and support priority scheduling,

we enhance conservative backfilling with the concept of slack factor, by which the

departure time of reserved projects can be delayed for up to a certain slack time. The

idea of slack factor has already been introduced to many scheduling problems, and

has been confirmed to be effective in solving these problems [19, 20, 21, 22].

However, up to now, it has not been applied to two-tier scheduling problem like our

study does.

Our method calculates the slack of each project �� by multiplying its turn-

around time �&�with a system parameter slack factor (=>). The actual departure time

of the project can be relaxed to a value in the time range [�.�, �.� + �&� ∙ =>]. When

the latest departure time of the project is determined, we can easily calculate the latest

starting time !���,� of each job ��,� which belongs to �� by

!���,� = �.� + �&� ∙ => − ���,�. (7)

15

Newly arriving jobs cannot delay job ��,�	beyond its latest starting time	!���,� set by

the cloud scheduler.

Furthermore, another system parameter �C (preemption limit) is also

introduced to control the number of preempted projects not to exceed	�C . The

implication of using this parameter is that we can limit the number of projects whose

departure time will be re-arranged. By doing so, the behavior of the cloud scheduler is

controlled as well.

Job finish time and project departure time could be determined at the project

arrival time or be relaxed later. In general, we have three core scheduling policies as

shown in Table 2 where the last one has two versions: single type of projects, two

types of projects (high-priority and low-priority ones). For each scheduling policy, we

have developed a scheduling algorithm with particular attributes, i.e. objective,

priority scheduling, etc. Hence, it is responsibility of the cloud administrator to select

an appropriate scheduling policy.

Table 2: Two-tier scheduling policies

Scheduling policies Objective Algorithm Priority
scheduling

Job
finish time

Project
departure time

Non-preemptive waiting
queues for jobs and
projects

Minimize
project turn-
around time

Two-tier Strict
Backfilling

No
Determined at
project arrival
time

Determined at
project arrival
time

Non-preemptive waiting
queue for projects and
preemptive waiting queue
for jobs

Minimize
project turn-
around time

Two-tier Flexible
Backfilling
(SF = 0)

No Flexible
Determined at
project arrival
time

Preemptive
waiting
queue for
jobs and
projects

Single type
of projects

Minimize
project turn-
around time

Two-tier Flexible
Backfilling
(SF > 0.0)

No Flexible Flexible

Two types
of projects

Minimize
high-priority
project turn-
around time

Two-tier Priority
Backfilling

Yes

High-priority:
Determined at
project arrival
time

Low-priority:
Flexible

High-priority:
Determined at
project arrival
time

Low-priority:
Flexible

4.2. Non-preemptive Waiting Queues for Jobs and Projects

In this scheduling policy, job finish time � �,�	and project departure time �.�

are determined when they arrive to the system. New jobs can be backfilled only if

they do not delay any existing reservations. For this policy, we have designed Two-

tier Strict Backfilling (2TSB) algorithm whose pseudo-code is showed in Figure 3.

16

2TSB is an algorithm similar to first-fit conservative backfilling since submitted jobs

are scheduled at the earliest possible starting time. When project �� and its jobs ��

arrive to the system, they are scheduled as follows: for each job ��,� of ��, if it is

feasible to allocate enough resources for ��,� and the processing of ��,� does not delay

any existing reservations, ��,� will be backfilled to start immediately (line 4).

Otherwise, the earliest possible starting time of ��,� is determined (line 6) by the

operation ��2!����=��2��&D3�E�. Since the algorithm does not allow newly arrived jobs

to delay existing reservations, ���,� and !���,� are the same (line 7). Finally, the job is

granted a resource reservation (line 8).

Figure 3: Pseudo code of Two-tier Strict Backfilling algorithm

4.3. Non-preemptive Waiting Queues for Projects and Preemptive Waiting

Queue for Jobs

The design philosophy behind this policy is that we try to accommodate newly

submitted jobs by delaying the job finish time of reserved ones without changing the

departure time of the waiting projects. Put it in another way, newly arrived jobs can

delay only the starting time of any queued jobs which are not the last job of the

waiting projects, i.e. the job with the largest finish time. Given slack factor => = 0,

the latest starting time !���,� of job ��,� cannot be greater than �.� − ���,�. Two-tier

Flexible Backfilling (2TFB) algorithm (=> = 0) is introduced to deal with this policy.

Figure 4 describes the pseudo code of the algorithm, and the steps of the algorithm are

summarized as follows: the steps listed on lines 2-4 are similar to those of 2TSB since

job ��,� can start immediately as long as there are sufficient resources for job ��,� and

Algorithm 1: FGH_FJKL_MNLJONPQORSJTTJUV(��)
1 Begin

2 for each ��,� ∈ �� do

3 If (��,� %�& ���2� �EE�.����!W) then

4 start ��,�

5 else

 # Find the earliest starting time for job ��,�

6 ���,� ← ��2!����=��2��&D3�E� (��,�)

 # Set up a resource reservation for the job ��,�

7 !���,� ← ���,�

8 �..	���2����Y&(��,�)

9 end-if

10 end-for

11 End

17

no existing reservations are delayed over their latest starting time. Otherwise, the set

of all feasible backfilling times, Z3, is determined for job ��,� (line 6) based on the

current scheduling plan by the operation ����[!�Z�%\ �!!�&D3�E�� . A feasible

backfilling time [� ∈ Z3 is the starting time of a gap in the job waiting queue at

which #�,�
� ≤ ��, ∀�: 1 ≤ � ≤ �, where �� is the number of available type-� resources

at the time slot [�. Then, we set up a resource reservation for job ��,� (line 10) at a

feasible backfilling time [� ∈ Z3. After that, the operation �ℎ� �	���2����Y&� (line 11)

checks the availability of system resources and may relax some existing reservations

if necessary. One should notice that if there is more than one possible reservation

which could be delayed by the operation �ℎ� �	���2����Y&�, the reservation with the

largest latest starting time is chosen. In this scheduling policy, the number of

allowable preempted projects �C is obviously zero. If the operation �ℎ� �	���2����Y&�

fails and job ��,� cannot be backfilled at [�, then the current scheduling plan =^_` is

restored (line 13) and the next feasible backfilling time is considered. Note that there

is always at least one feasible backfilling time at which the job can be backfilled

successfully, that is the job’s earliest possible starting time. After scheduling all

jobs ��,� ∈ �� and determining the turn-around time �&� successfully, the algorithm

updates the latest starting time !���,� for each job (line 21-22).

4.4. Preemptive Waiting Queues for Jobs and Projects

 This scheduling policy allows both job finish time and project departure time

to be re-arranged after a project has been accepted only if the resultant delay does not

exceed the maximum amount of delay defined by the slack factor. Furthermore, we

extend the policy into two versions: single type of projects, and two types of projects.

In the former, all projects have the same priority, which means that new projects can

delay any existing reservations up to the maximum number of allowable times. On the

other hand, the latter policy takes priority into account such that only some high-

priority projects can preempt the low-priority ones.

Single Type of Project

The difference between this policy and 2TFB is slack factor => > 0. As a

result, both waiting projects and jobs could be preempted by the newly arrived ones.

The maximum amount of allowable delay for project �� is �&� ∙ =>, and the starting

time of job ��,� can be relaxed to a value in the time range b���,�, �.� + �&� ∙ => −

18

���,�c. This, in comparison with 2TFB, could increase the number of successfully

backfilled jobs. Two-tier Flexible Backfilling algorithm with the slack factor	=> > 0

(2TFB-SF) can handle this scheduling policy. Besides, 2TFB-SF uses parameter	�C >

0 to control the number of preempted projects.

Figure 4: Pseudo code of Two-tier Flexible Backfilling algorithm

Two Types of Projects

This scheduling policy considers a realistic scenario of a cloud environment

where some projects are more important than the others. Therefore, they need to be

severed as soon as possible. Here we just consider two types of projects in this

scheduling policy, i.e., high-priority project and low-priority project. We design this

Algorithm 2: FGH_FJKL_dTKeJfTKPQORSJTTJUV(��, =>, �C)

1 Begin

2 for each ��,� ∈ 	 ��	do

3 If (��,� 	%�&	���2�	�EE�.����!W) then

4 start 	��,�

5 else

 # Find all the feasible backfilling times for the job ��,�

6 Z3 ← 	 ����[!�Z�%\ �!!�&D3�E��	(��,�)
7 Let =^_` be the current scheduling plan

8 for each [� ∈ Z3 do

9 ���,� ← [�
 # Set up a resource reservation for job ��,�

10 �..	���2����Y&(��,�)

Check the availability of system resource and

delay existing reservations in order to

accommodate job ��,� if necessary.

11 ��%%��. ← �ℎ� �	���2����Y&�(��,� , �C)
12 if (! ��%%��.) then

13 restore =^_`

14 else

15 break

16 end-if

17 end-for

 end-if

18 end-for

19 for each ��,� ∈ 	 �� do

Update the latest starting time for the resource reservation of

job ��,�

20 !���,� ← �.` 	 + (�&�,� ∙ =>) − ���,�

21 ��.���C�����=��2��&D3�E�(��,�)

22 end for

23 End

19

Two-tier Priority Backfilling (2TPB) in order to fulfill the requirement of the

scheduling policy such that high-priority projects are scheduled by 2TFB-SF while

low-priority projects are scheduled by 2TSB. Moreover, the priority of a project, 0 ≤

��� ≤ 1, is taken into account in recalculating the slack factor, => = (1 − ���) ∙ =>,

for each project.

 The steps of 2TPB are briefed in Figure 5. If the newly arrived project �� is

high-priority, it is scheduled by 2TFB-SF (line 4) with slack factor => recomputed for

�� (line 3). Otherwise, it is scheduled by 2TSB (line 6). After that, we update the

latest starting time !���,� for each job ��,� ∈ �� with recomputed slack factor => (line

8-10).

=> (line 8-10).

Figure 5: Pseudo code of Two-tier Priority Backfilling algorithm

4.5. Case study: An Example Run for 2TSB and 2TFB-SF

An example run for 2TSB and 2TFB-SF is illustrated in Figure 6. Note that

there are two types of resources. Thus, we plot the schedules in two blocks. Table 3

depicts the inputs of these two algorithms, which are a sequence of four submitted

projects and their parameters.

In Figure 6(a), the schedule for the first 4 jobs is the same for both algorithms

at time slot 2. Job �h,5 is backfilled successfully at time slot 2 by both algorithms. The

difference appears when job �h,i is scheduled. In 2TSB, a potential time slot for job

�h,i to run is time slot 3, but doing so would delay the reservation of job �i,5, which is

not allowed by 2TSB. Therefore, job �h,i is scheduled at time slot 7. On the other

hand, job �h,i could begin to execute at time slot 3 under 2TFB. Doing so would delay

Algorithm 3: FGH_FJKL_jLJHLJNkPQORSJTTJUV(��, =>, �C)

1 Begin

2 if (�� �� ℎ�Dℎ_�2�Y2��W)

3 => ← (1 − ���) ∗ =>
4 30Y_3��2_>!�/�[!�Z�%\ �!!�&D(��, =>, �C)
5 else

6 30Y_3��2_=�2�%�Z�%\ �!!�&D(��)

7 for each ��,� ∈ �� do

8 => ← (1 − ���) ∙ =>

9 !���,� ← �.� + (�&�,� ∙ =>) − ���,�

10 ��.���C�����=��2��&D3�E�(��,�)

11 end-for

12 end-if

13 End

20

job�i,5’s execution from time slot 6 to time slot 7, which is acceptable because the

latest starting time of job �i,5 is 7.2 (!��i,5 = 7.0 + 6.0 ∙ 0.2 − 1.0 = 7.2).

When job �p,5 arrives, it is scheduled by those two algorithms as shown in

Figure 6(b). Time slot 6 is a potential flexible backfilling time for the job.

Unfortunately, this choice will delay job �i,5 beyond its latest starting time (see Figure

6(c)).

The performance of these two algorithms is compared in Table 4. As can be

seen from the table, the mean project turn-around time �34 is reduced around 8% by

2TFB-SF in comparison with the 2TSB’s performance.

Table 3: A sequence of four submitted projects and their parameters

qr �5 �i �h �p

sr,t �5,5 �5,i �i,5 �h,5 �h,i �p,5
NQr 0 1 2 5

NKr,t 2 6 1 1 4 2
ur,t

v 1 1 1 1 2 1
ur,t

w 2 2 3 2 1 2
x 2

yv 3
yw 4
Md 0.2
jz ∞

Table 4: Performance of an example run for 2TSB and 2TFB-SF

 qr �5 �i �h �p

 sr,t �5,5 �5,i �i,5 �h,5 �h,i �p,5
 NKr 0 1 2 5

Two-tier Strict
backfilling

NSr,t 2 6 7 3 11 9
NUr 6 6 9 4

jF| 6.25
Two-tier
Flexible

backfilling

NSr,t 2 6 8 3 7 10
NUr 6 7 5 5

jF| 5.75

21

Figure 6: An example run for 2TSB and 2TFB

(a) Schedules for the first four jobs are the same for both the algorithms. Job3,2 is
moved to the head of the waiting queue by Two-tier Flexible Backfilling algorithm.

(b) Schedules for four projects

(c) Time slot 6 is a potential backfilling time slot for job4,1’s execution.
Unfortunately, doing so will delay job2,1 beyond its latest starting time.

22

4.6. Two-tier Backfilling Implementation

In order to implement the proposed algorithms, it is important to organize the

information of resource availability and reservations in a data structure which can

provide efficient operations for searching, adding, deleting, and updating. In this

section, we introduce a data structure for advanced resource reservation which is used

to implement our proposed scheduling algorithms. The data structure is based on the

linked-list data structure [29] because of its simplicity and flexibility.

The description of our proposed data structure is illustrated in Figure 7, while

Table 5 shows the implemented operations on the data structure. The data structure is

a linked-list-based data structure. Each node in the list is defined as

a &Y.�(��E��!Y�, ����!�[�!��W, 2���2����Y&) , where ��E��!Y� denotes a time

moment at which changes in reservations or resource availability occur, ����!�[�!��W

denotes the number of available resources from the node to the next node, and

2���2����Y&� is a linked-list of resource reservation records at ��E��!Y� . Each

record is a 5-tuple information consisting of project index	�, job index	�, job service

time	���,�, the latest starting time of job !���,� and the resource requirement	"�,�.

Figure 7: Data structure used for resource reservation

23

Table 5: Data structure operations

Operations Explanation

��2!����=��2��&D3�E�}��,�~ Search the earliest possible starting time for ��,�

 ����[!�Z�%\ �!!�&D3�E��}��,�~ Find all the feasible backfilling times for	��,�.

�..	���2����Y&(��,�) Add a resource reservation for ��,� at ���,�

.�!���	���2����Y&(��,�) Delete the existing reservation of waiting job ��,�

�ℎ� �	���2����Y&�(��,�, 	�C) Check the resource availability and delay some reservations to

accommodate	��,� if necessary, given that the number of delayed

projects	≤ 	�C.

24

Chapter 5: Experimental Evaluation

 This chapter presents the experimental evaluation where the effectiveness of

proposed algorithms is verified. We first introduce the simulation methodology and

then present the experimental results and the analysis.

5.1. Simulation Methodology

 In order to evaluate the proposed scheduling algorithms, we have developed a

simulator for our scheduling problem. The simulator is implemented based on CSIM

20 for Java [10] which is a simulation package with a process-oriented discrete-event

scheduling model. CSIM 20 has been widely used to simulate complex systems in

academia as well as industry.

Table 6: Simulation parameters

 Parameters Distribution Random function
parameters

Project
Inter-arrival time ��� Exponential ��� can be adjusted

Number of jobs |��| Normal |��| = 5.0	; �	��= 2.0

Job
Service time ���,� Exponential �� = 500.0

Resource requirement #�,�
� Exponential #�,�

� = 2.0

Resource
Types of resources � Constant 5

Capacity of type-�	resources �� Uniform
��&��

= 	20	
��/��

= 40

 Table 6 summarizes our simulation parameters which are randomly generated

according to some types of distributions. One should notice that the values of two

parameters, |��|	and	#�,�
� , are integer parts of the floating-point value generated by

random functions. In our experiments, the inter-arrival time ��� between any two

successive project arrivals is exponentially distributed with an adjustable mean value

in order to control project arrivals. By doing so, we can observe the performance of

the proposed algorithms under different system loads. All the simulation results

shown here are obtained by averaging the results of 5 simulation runs with different

seeds for random number generation. Each simulation run is terminated upon the

successful completion of 1000 projects.

The overall performance of the proposed scheduling algorithms could be

evaluated by two major metrics: mean project turn-around time and average resource

utilization. The former is used to measure the performance from the customer’s point

25

of view, while the latter is the most common system-centric metric. However, it is

shown that the average resource utilization does not change notably under different

scheduling policies. Thus in the result analysis section, we do not present the results

in terms of this metric.

5.2. Result Analysis

Job Scheduling vs. Project Scheduling

In this experiment, we compare the performance of three algorithms: Two-tier

Strict Backfilling (2TSB), Two-tier Flexible Backfilling with SF = 0 (2TFB), and

Two-tier Flexible Backfilling with SF > 0 (2TFB-SF). For 2TFB-SF, we use the

parameters 	=> = 0.5 and	�C = ∞. 2TSB algorithm is used as the baseline for the

performance comparison purposes. In addition to the mean project turn-around

time	�34, the mean job turn-around time	�34	, which is defined as

 �34 = 	
5

|6|
∑ 5

|��|
∑ 	(� �,� −	���

|��|
�85)	|6|

�85 (8)

is another performance metric to investigate.

(a) (b)

Figure 8: Job scheduling vs. Project scheduling

As shown in Figure 8(a), it is not surprising that the mean job turn-around

time is reduced considerably by 2TFB-SF algorithm because the effectiveness of the

concept of slack factor has already been confirmed in several existing one-tier

scheduling works [20, 21, 22]. Furthermore, the reduction in the mean job turn-around

time greatly depends on the system load. For example, for the case where the mean

0

10000

20000

30000

40000

50000

60000

10 20 40 80 160

Jo
b

 t
u

rn
-a

ro
u

n
d

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

2TSB 2TFB 2TFB-SF

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 40 80 160

P
ro

je
ct

 t
u

rn
-a

ro
u

n
d

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

2TSB 2TFB 2TFB-SF

26

project inter-arrival time is set to 10, the performance difference between 2TSB and

2TFB-SF is about 4000 time units, which means a 7.5% improvement in the mean job

turn-around time. On the other hand, in the case of the mean project inter-arrival time

being set to 160, the difference is merely 700 time units but an improvement of 15.5%.

Figure 8(a) also demonstrates that 2TSB and 2TFB have almost identical performance

for all the values of the mean project inter-arrival time used in this experiment. This

can be explained by the fact that the opportunities of carrying out the flexible

backfilling mechanism are rare in 2TFB because of		=> = 0.

Figure 8(b) clearly indicates that the performance of 2TSB, 2TFB, and 2TFB-

SF in terms of the mean project turn-around time is roughly the same. This observed

phenomenon can be explained by Figure 9 where 2TFB and 2TFB-SF can reduce

neither the mean project waiting time nor the mean project running time. Take 2TFB-

SF for example; on the average, the mean project waiting time is decreased by 5% to

33% when the mean project inter-arrival time is changed from 10 to 160, but

meanwhile, the mean project running time is increased by 0.7% to 7%. These results

indicate that 2TFB-SF can decrease the waiting time of the first job of a project but

lead to an increase in the waiting time of other remaining jobs of the project. Overall,

adopting 2TFB-SF does not lead to a significant improvement on the mean project

turn-around time.

(a) (b)

Figure 9: Mean project waiting time vs. Mean project running time

0

5000

10000

15000

20000

25000

30000

10 20 40 80 160

P
ro

je
ct

 w
a

it
in

g
 t

im
e

 [
ti

m
e

 u
n

it
]

Project inter-arrival time

2TSB 2TFB 2TFB-SF

0

10000

20000

30000

40000

50000

60000

10 20 40 80 160

P
ro

je
ct

 r
u

n
n

in
g

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

2TSB 2TFB 2TFB-SF

27

In order to understand more about the relationship between two metrics �34

and	�34, we conduct another experiment whose results are shown in Figure 10. In this

experiment, we measure and observe the performance of 2TFB-SF while varying the

=> parameter. The experiment results show that using larger slack factors improves

the mean job turn-around time significantly. However, this causes a modest increase

in the mean project turn-around time. Based on our observation, the decrease of

�34	does not lead to the decrease of	�34.

(a)

(b)

Figure 10: The impact of slack factor SF on 2TFB-SF

To sum up, although 2TFB and 2TFB-SF can reduce the mean job turn-around

time notably in comparison with 2TSB, the improvement on the mean project turn-

around time is negligible. One can suggest that 2TSB might be a good choice for two-

tier cloud scheduling since it achieves the same performance as 2TFB and 2TFB-SF

in terms of the mean project turn-around time, but its complexity is comparatively

light weight.

The Impact of Priority Scheduling

 In order to test how well Two-tier Priority Backfilling algorithm (2TPB)

schedules high-priority projects, we devise the following two scenarios for the

experiments. In the first scenario, all the submitted projects are scheduled by 2TSB.

On the other hand, 2TPB is used to schedule projects in the second scenario. High-

priority projects are given the priority value ���	= 1.0, while the rest low-priority

projects are given ���	= 0.0. In both of these two scenarios, the probability that a

submitted project is high-priority is 1/5. Since the performance of 2TPB can be

0

10000

20000

30000

40000

50000

60000

10 20 40 80 160

Jo
b

 t
u

rn
-a

ro
u

n
d

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

SF = 0.2 SF = 0.4 SF = 0.6

SF = 0.8 SF = 1.0

0

20000

40000

60000

80000

100000

10 20 40 80 160

Jo
b

 t
u

rn
-a

ro
u

n
d

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

SF = 0.2 SF = 0.4 SF = 0.6

SF = 0.8 SF = 1.0

28

influenced by the slack factor =>	and the preemption limit	�C , we conduct the

following two experiments to observe the effect of these parameters.

Figure 11: Improvement on the mean project turn-around time by 2TPB algorithm

with differential values of slack factor SF

In the first experiment, we study the performance of 2TPB with �C = ∞	by

observing the mean project inter-arrival time ��� and slack factor	=>. Figure 11 shows

the improvement on the mean turn-around time of all the high-priority and low-

priority projects in comparison with the 2TSB’s performance. As expected, 2TPB

decreases the mean turn-around time of the high-priority projects by 6% to 27% but

increases the turn-around time of others by 1% to 26% when the value of (���,	=>) is

increased from (10,0.2) to (160,1.0). Surprisingly, the mean turn-around time of all

the projects remains almost unchanged except for the last case where the value of

(���,	=>) is (160, 1.0). For the last case, the mean turn-around time is increased by

16%.

Figure 12 presents the results of the second experiment in which the

performance of 2TPB with =>	 = 0.5	is measured at different values of the mean

project inter-arrival time ��� and preemption limit	�C. The results are similar to those

in the first experiment. The mean turn-around time of all the projects stays stable

except for the case with the lowest loading of project arrivals. As the value of	(���,�C)

increases from (10,1) to (160,∞), the mean turn-around of the high-priority projects is

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

10,0.2 20,0.4 40,0.6 80,0.8 160,1.0

Im
p

ro
v
e
m

e
n

t
o

f
p

ro
je

c
t

tu
rn

-a
ro

u
n

d
 t

im
e
 [

%
]

Project inter-arrival time, Slack factor

Improvement of entire project turn-around time

Improvement of High-priority project turn-around time

Improvement of Low-priority project turn-around time

29

reduced remarkably from 1.5% to 20%. On the other hand, this also leads to an

increase around 0.01% to 10.7% in the mean turn-around time of the low-priority

projects.

Figure 12: Improvement of project turn-around time of 2TPB with differential limits

on the number of allowable delayed projects PL

The above experimental results indicate that 2TPB works well with priority

scheduling where some projects are preferred over the others. Besides, 2TPB does not

lead to a general degradation in system service in most cases. Since two system

parameters => and �C have a strong impact on the mean turn-around time of both

types of projects, the system behavior can be controlled by adjusting these parameters.

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

10,1 20,5 40,10 80,20 160,infinte

Im
p

ro
v
e
m

e
n

t
o

f
p

ro
je

c
t

tu
rn

-a
ro

u
n

d
 t

im
e
 [

%
]

Project inter-arrival time, Preemption limit

Improvement of entire project turn-around time

Improvement of High-priority project turn-around time

Improvement of Low-priority project turn-around time

30

Chapter 6: Conclusions and Future Work

In this work, we study a two-tier scheduling problem which is present in the

cloud computing environments. This scheduling problem differs from the traditional

one-tier scheduling problems since a submitted project consists of multiple jobs each

requiring several resources for its processing. In order to reduce cloud service’s turn-

around time and support priority scheduling, we have developed a set of scheduling

algorithms of different attributes. All the algorithms are derived from conservative

backfilling algorithm, but enhanced with the concept of project’s slack which is

calculated by multiplying project turn-around time with a system parameter slack

factor. Besides, another system parameter preemption limit is also proposed to control

the behavior of the cloud scheduler.

The algorithms developed in this study have been experimentally evaluated

under different system loads by computer simulation. The experimental results

indicate that Two-tier Flexible Backfilling with => > 0 (2TFB-SF) can reduce the job

turn-around time by 7.5% to 15.5% and achieve almost the same performance in

terms of the mean project turn-around time metric as Two-tier Strict Backfilling

(2TSB) when the mean project inter-arrival time is changed from 10.0 to 160.0. Based

on these results, we also reach an interesting conclusion that the decrease in the mean

job turn-around time does not always lead to a decrease in the mean project turn-

around time.

The experimental results also indicate that Two-tier Priority Backfilling

(2TPB) can efficiently reduce the mean turn-around time of high-priority projects, but

does not lead to an increase in the mean turn-around of all the projects in most cases.

Furthermore, the behavior of the algorithm can be easily controlled by tuning two

system parameters: slack factor SF and preemption limit PL, whose impact is

analyzed in this work as well. More specifically, the mean turn-around time of high-

priority projects is decreased from 6% to 27% when the value of (���,=>) is increased

from (10,0.2) to (160,1.0). As the value of (���,�C) is relaxed from (10,1) to (160,∞),

the mean turn-around time of high-priority projects is reduced from 1.5% to 20%.

Our proposed algorithms satisfy one fundamental requirement of the two-tier

scheduling problem that a project should be granted a guaranteed departure time at the

project’s arrival time. However, doing so might decrease the jobs’ backfilling

opportunities since we must reserve resources for all the waiting jobs that have been

31

granted. Hence, the project turn-around time cannot be reduced considerably by our

proposed algorithms. For future work, we plan to consider a less conservative

backfilling approach in which only the jobs belonging to the first project in the

waiting queue can receive resource reservations. Obviously, this less conservative

approach will degrade the predictability of two-tier backfilling algorithms, but it may

bring a more considerable reduction in cloud service’s turn-around time.

Furthermore, an optimal algorithm for the off-line version of the scheduling

problem, in which all projects’ characteristics are known beforehand, will be studied

in our future work. Other scheduling objectives, i.e. project success ratio, cloud

provider revenue, are considered as well.

32

References

[1] L. Ai, M. Tang, C. Fidge, “Resource allocation and scheduling of multiple

composite web services in cloud computing using Cooperative Coevolution,” in

International Conference on Neural Information Processing (ICONIP 2011),

Shanghai, China, pp.13-17, Sep. 2011.

[2] “Google Drive”, available at: https://drive.google.com

[3] A.P.A. Vestjens, “On-line Machine Scheduling,” Ph.D. Thesis, Department of

Mathematics and Computing Science, Technische Universiteit Eindhoven,

Eindhoven, The Netherlands, 1997.

[4] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, F. Vivien, "Scheduling

Concurrent Bag-of-Tasks Applications on Heterogeneous Platforms," in IEEE

Transactions on Computers, vol.59, no.2, pp.202–217, Feb. 2010.

[5] C. Anglano, M. Canonico, "Scheduling algorithms for multiple Bag-of-Task

applications on Desktop Grids: A knowledge-free approach," in IEEE

International Symposium on Parallel and Distributed Processing (IPDPS 2008),

pp.14–18, April 2008.

[6] K. Gopalan, T. Chiueh, “Multi-resource allocation and scheduling for periodic

soft real-time applications,” in Proceedings of Multimedia Computing and

Networking, pp.34–45, Jan. 2002.

[7] M. Holenderski, R.J. Bril, J. Lukkien, “Parallel-Task Scheduling on Multiple

Resources,” in Proceedings of the 24th Euromicro Conference on Real-Time

Systems (ECRTS '12), pp.233–244. 2012.

[8] A.W. Mu'alem, D.G. Feitelson, "Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling," in Parallel and

Distributed Systems, IEEE Transactions on Parallel and Distributed Systems,

vol.12, no.6, pp.529–543, Jun 2001.

[9] D.G. Feitelson, "Experimental analysis of the root causes of performance

evaluation results: a backfilling case study," in IEEE Transactions on Parallel

and Distributed Systems, vol.16, no.2, pp.175–182, Feb 2005.

[10] “CSIM 20”, available at: http://www.mesquite.com/products/csim20.htm

[11] D.D. Sleator, R.E. Tarjan, “Amortized efficiency of list update and paging rules,”

in Communications of the ACM 28, pp.202–208, 1985.

33

[12] J. Tan, "Semi-online scheduling problems on m parallel identical machines,"

in Information Technology and Artificial Intelligence Conference (ITAIC), 2011

6th IEEE Joint International , vol.1, pp.289–291, 20–22 Aug 2011.

[13] J.A. Hoogeveen, A.P.A. Vestjens, “Optimal on-line algorithms for single-

machine scheduling,” in Proceedings Fifth International Conference on Integer

Programming and Combinatorial Optimization, Vancouver, British Columbia,

Canada, June 3–5, 1996, vol.1084 of LNCS, pp. 404–414, Springer- Berlin, 1996.

[14] X. Lu, R.A. Sitters, L. Stougie, “A class of on-line scheduling algorithms to

minimize total completion time,” in Operations Research Letters, vol.31, no.3,

pp 232–236, May 2003.

[15] D.G. Feitelson, L. Randolph, U. Schwiegelshohn, “Parallel job scheduling – a

status report,” in Proceedings Tenth Workshop on Job Scheduling Strategies for

Parallel Processing, vol.3277 in LNCS, pp.1–16, 2004.

[16] D. Lifka, “The ANL/IBM SP scheduling system,” in Job Scheduling Strategies

for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), vol. 949 of

LNCS, pp. 295–303, Springer-Verlag, 1995.

[17] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan, “Selective

reservation strategies for backfill job scheduling,” in Job Scheduling Strategies

for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), vol. 2537 of

LNCS, pp 55–71. Springer Verlag, 2002.

[18] S-H. Chiang, A. Arpaci-Dusseau, M. K. Vernon, “The impact of more accurate

requested runtimes on production job scheduling performance,” in Job

Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and

U. Schwiegelshohn (eds.), vol.2537 of LNCS, pp. 103–127, Springer-Verlag,

2002.

[19] J. P. Jones, B. Nitzberg, “Scheduling for Parallel Supercomputing: A Historical

Perspective of Achievable Utilization,” in Job Scheduling Strategies for Parallel

Processing, vol.1659 of LNCS, pp. 1–16, Springer-Verlag, 1999.

[20] D. Talby, D.G. Feitelson, "Supporting priorities and improving utilization of the

IBM SP scheduler using slack-based backfilling," in 13th International and 10th

Symposium on Parallel and Distributed Processing, pp.513-517, 12-16 Apr 1999.

[21] Jr. W. A. Ward, C. L. Mahood, J. E. West, “Scheduling Jobs on Parallel Systems

Using a Relaxed Backfill Strategy,” in Job Scheduling Strategies for Parallel

Processing, vol. 2537 of LNCS, pp. 88-102, Springer-Verlag, 2002.

34

[22] B. Li, Y. Li, M. He, H. Wu, J. Yang, "Scheduling of a Relaxed Backfill Strategy

with Multiple Reservations," in International Conference on Parallel and

Distributed Computing, Applications and Technologies (PDCAT 2010), pp.311-

316, 8-11 Dec 2010.

[23] B. G. Lawson, E. Smirni, “Multiple-Queue Backfilling Scheduling with Priorities

and Reservations for Parallel Systems,” in Job Scheduling Strategies for Parallel

Processing, vol. 2537 of LNCS, pp. 72–87, Springer-Verlag, 2002.

[24] E. Shmueli, D.G. Feitelson, “Backfilling with lookahead to optimize the

performance of parallel job scheduling,” in Job Scheduling Strategies for

Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.),

vol. 2862 of LNCS, pp. 228 – 251, Springer-Verlag, 2003.

[25] A. Sulistio, U. Cibej, S. Prasad, R. Buyya, “GarQ: An Efficient Scheduling Data

Structure for Advance Reservations of Grid Resources,” in International Journal

of Parallel, Emergent and Distributed Systems (IJPEDS), Taylor & Francis

Publication, UK, 4 April 2008.

[26] A. Brodnik, A. Nilsson, “A static data structure for discrete advance bandwidth

reservations on the internet,” in Proceedings of Swedish National Computer

Networking Workshop (SNCNW), Stockholm, Sweden, September 2003.

[27] T. Wang, J. Chen, “Bandwidth tree – a data structure for routing in networks

with advanced reservations,” in Proceedings of the 21st Intl. Performance,

Computing, and Communications Conference (IPCCC), pp. 37–44, Phoenix,

USA, 2002.

[28] R. Brown, “Calendar queues: A fast O(1) priority queue implementation for the

simulation event set problem,” in Communications of the ACM 31(10), pp.1220–

1227,1988.

[29] Q. Xiong, C. Wu, J. Xing, L. Wu, H. Zhang, “A Linked-List Data Structure for

Advance Reservation Admission Control,” in ICCNMC 2005, LNCS 3619, pp.

901 – 910, Springer-Verlag Berlin Heidelberg, 2005.

