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Abstract

This study addresses a two-tier scheduling prohiema cloud computing
environment. In this problem,@ojectrepresents a cloud user’s request consisting of
multiple jobs and each job requires sevardourcedor its processing. The goals are
to reduce theproject turn-around time and to suppopriority scheduling by
employing suitable scheduling-algorithms. Due t® ldck of efficient algorithms for
such atwo-tier scheduling problem, here-we _propose a set of ievokackfilling
algorithms which extend the well-known conservathackfilling algorithm with
project’s slack:and priority concepts. Among the proposed algorithms, Two-Tier
Strict Backfilling (2TSB) does not allow preemptionjob and project waiting queues.
On the other hand, preemption is considered by figra-lexible Backfilling (2TFB)
which has two versionTEB and 2TFB-SF (slack factor). In 2TFB, a newoming
project can preempt waitingbs but not waitingprojects while 2TFB-SF permits
preemption inboth job and ‘project waiting queues. Two-Tier PriorBackfilling
(2TPB) algorithm takes priority into account subhattonly high-priority projects can
preempt the low-priority ones. The experimentaulssindicate that, compared to
2TSB, 2TFB-SF could reduce the mean job turn-ardime by 15% and 2TPB could
reduce the mean turn-around time of high-priorityjgcts by 25%.

Keywords:. cloud scheduling, two-tier, backfilling, slack fag priority scheduling.
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Chapter 1: Introduction

Cloud computing is an Internet-based computing gigm whereby
computational resources are delivered to usersemmadd over the Internet, in the
same manner as public utilities [1]. In recent getliere have been more cloud-based
service providers. Google Drive [2] is a good exbmgf a cloud-based service in
which all the infrastructure, software, and storage hosted remotely and users only
need a Web browser to access the service. One @fdvantages in moving a service
to a cloud is that it allows resources being shamong organizations and users in
order to serve an even larger number of user'segtiguWith a proper job scheduling
and resource allocation strategies, a cloud sys@mmanage its resources to serve
user’s requests in the most efficient way. As altethe cloud can improve resource

utilization as well as reducing its service turotard time.

Two-tier Scheduling.in Cloud Environments

Scheduling strategies—-in a cloud environment vatgpending on the
deployment model of the cloud. This work focusesadwo-tier schedulingoroblem
within a cloud environment described as follows.olr studied system, aroject
represents a service request submitted by the 'slasers. Once the cloud accepts a
project, it is obligated to complete a sejaids belonging to the project. Each job has
its own estimatedervice timewhich is determined during the pre-processingestag
Then, to start its processing, a job must be alémta specific set afesourcesof
certain types such as server,-application, tookage, and network. In addition, the
resource requirement of jobs may involve more tlbae resource type. At the
moment when a project is submitted to a cloud,pfugect’s characteristics become
available to the cloud; the cloud must make scheduling dmtssmmediatelyand
then inform users of when the project will be fired.

Since projects and their jobs arrive to a cloud lbp®ne over time, the cloud
must always make scheduling decisions and resaalfoeation decisions without
knowledge of anyuture projects arrivals. This concept is callaatline schedulingn
literature [3]. In addition, our two-tier scheduiproblem differs from the traditional
one-tier scheduling problem since a project consists oftiplal jobs each requiring
several resources for its processing. Althoughctbad allocates resources directly to
jobs, the purpose is to improve system performavittferespect tgrojectsinstead of

jobs.



The motivation of this study is to provide an a#it cloud service by
employing suitable scheduling algorithms and reseuallocation strategies for
projects and their jobs. Put it in another way,wat to increase user satisfaction by
reducing the projedurn-around time— the time period from the moment a project
arrives at a cloud provider to its departure. MesFp achieving high resource
utilization, as a general expectation for cloud patmg, is also our objective.

Our Solution Set

The concept of two-tier scheduling has been adddelyg several studies [4, 5,
6, 7] in recent years. Unfortunately, the solutiafighese studies cannot be applied
here since there are some differences betweerchadsling model and those already
existing. Therefore, to deal with such a complidaseheduling problem, we have
proposed a set of algorithms based on the well-knoanservative backfilling
algorithm [8, 9] for the one-tier scheduling prabk The spirit behind the algorithm
is that a job could be moved to the head of thdaimgaqueue as long as it will not
delay the execution of anyeservedjobs. This helps increase resource utilization
while decreasing the.mean job waiting time and Behe mean project turnaround
time in our problem. Another key advantage of ashgptonservative backfilling is its
predictability since it allows every waiting job to establisha@se reservation. By
doing so, eachproject is granted a guaranteedriepdime when it is submitted to
the cloud. This feature satisfies the two-tier skcti@ég model, and is also very useful
for users to plan their work ahead of time.

We extend the conservative backfilling with the ogpt of slack factor by
which the actual departure time of reserved prejecin berelaxedup to a certain
slack, in order to make the algorithm more flexibdesupportpriority scheduling
where some projects have higher priority than ath€he idea of slack factor is not
new in the area of scheduling research, but upow, it has not been applied to the
two-tier scheduling problem like our study. So fere have developed three core
scheduling policies includingon-preemptivewvaiting queues for jobs and projects,
non-preemptivevaiting queue foprojectsandpreemptivevaiting queue fojobs and
preemptivewaiting queues for jobs and projects. Our methaddutates the slack time
of a reserved project byultiplyingits turn-around time with the system’s slack facto
Furthermore, the project’s priority is also takeroi account such that only high-

priority projects can preempt the low-priority onels order to evaluate the



performance of our solution set, we have implentraediscrete-event simulator
based on CSIM 20 [10].

The rest of this work is organized as followsClnapter 2, we first discuss the
background related to our scheduling problem, iidig on-line scheduling problem,
existing two-tier scheduling models, various bdtkfy algorithms, and data
structures for advanced resource reservation. kap@h 3, we introduce the formal
description of our scheduling problem and its mottelChapter 4, we describe the
details of the proposed algorithms and their im@etation. Simulation study and
experiment results are presented in Chapter 5 tdyvéhe performance of the
algorithms. Finally, Chapter 6 concludes this waikh a brief discussion of future
study.



Chapter 2: Background and Related Work

This chapter first gives a brief overview about lime scheduling problems
and its difficulties. Then, some existing two-t&cheduling models are surveyed.
After that, a variety of backfilling algorithms wii have been widely studied in
literature are discussed in depth. Finally, somistiegy advanced data structures for

resource reservation are introduced.

2.1. On-line Scheduling

Most classical scheduling problems are concerndati wii-line algorithms
which are givercompleteinformation about the scheduling problem at hand are
required to output a solution, i.e., schedule hi pproblem. In contrast to the off-line
algorithms, an on-line scheduling algerithm is nted to address a common realistic
scenario where the scheduler does not have thesatzéhe wholéput instance$3].

In other words, on-line scheduling decisions mllsags be made without knowledge
of any future job arrivals since-jobs arrive at the schedulee by one over time.
Additionally, some information-about jobs; I.e.ithgervice timgis unknown to the
scheduler initially and during the run-time. Thescbme known only when jobs have
actually been finished. At the moment when a jopresented to the scheduler, the
scheduling decision for the job ‘has to be made rbefihe next job arrives.
Furthermore, the decision isreversible once- it is made, even if we find other
obviously better schedules afterward.

In order to evaluate the. performance of an on-kfgorithm, Sleator and
Tarjan [11] suggested usimgmpetitive analysidn a competitive analysis, the output
of an on-line algorithm is compared to aptimal value which might be obtainatl
the entire job inputs were known in advance as dfidine version. An on-line
algorithm isp-competitiveif its objective value is no more thartimes in comparison
to the optimal off-line value for any sequencegobfinputs.

Since the assumptions of pure on-line schedulingemiaimpossible to find
optimal solutions, some concepts have been intexdiut order to handle the variants
of this class of scheduling problems. For examgaei-onlinescheduling [12], which
assumes thagpartial information about the scheduling problem are add before
constructing a schedule, has attracted researocheesent years. The authors in [13,
14] presented the conceptd#layingthe scheduling time of a job for a period of time

and then applying scheduling rulesaimcumulatecturrent jobs.
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2.2. Two-tier Scheduling

There are several variants of two-tier schedulingdeh which have been
already studied last few yeaBag-of-Tasks (BoTapplication [4, 5jmodel, which is
an application whose tasks adentical and independentis often considered as a
suitable model for heterogeneous clusters and degkid environments. In order to
minimize the maximunstretch i.e., the maximum ratio between the actual time a
BoT application has spent in the system and the ftinis application would have
spent if executed alone, the authors in [4] intaetltwo algorithms: an optimal off-
line and a heuristic on-line for the model. In [8],set of task selection polices is
proposed in order to minimize the turn-around toh8oT applications.

Gopalan and Chiueh [6] designed and implementechadsiler forperiodic
soft real-timeapplications with the goal of maximizing the numlaérapplications
admitted into the system. A periodic soft real-tiapplication consists of a sequence
of tasks whose executiaepeats itselbver the lifetime of the application, and there
is a precedence constrainkmong the tasks in .an application. Furthermore, th
execution of a sequence of tasks requires timedboampletion.

The two-tier scheduling model which.is introduced] allowspreemption in
resourcesIn other words, the processing of a job, whigbrégents the ownership of
resources, may be preempted by another job befsreompletion. An algorithm

which aims to prevermteadlockis also proposed in this work.
2.3. Backfilling Algorithm

The backfilling algorithm, a way to balance betwedba goals of utilizing
system resources and maintaining the FCFS (firstecdirst served) order of job
execution [15], was first introduced by Lifka [16].he implication behind the
algorithm is that it allows small jobs from theack of the waiting queue to be
processetbeforepreviously submitted jobs that are delayed dubeaansufficiencyof
available resources. This principle helps expidieé resources by backfilling with
suitable jobs, thereby increasing system utilizaiad throughput. Figure 1 illustrates
the difference between the traditional FCFS schedwnd backfilling scheduling. In
Figure 1, backfilling scheduling allows Job B to peocessed ahead of Job A,
therefore, the resultant job waiting time and reseuidle time are reduced
significantly in comparison with those of FCFS. Biting scheduling might lead to
“starvation”, a phenomenon where some jobs never occupy sufficesdurces and

5



hence never start processing because they areaotigsielayed by new job arrivals
that are granted the use of resources ahead c¢ tlcmsady waiting in the queue. In
order to prevent starvation from happening, a kbickf algorithm needs to make
resourcereservationfor some of the waiting jobs for future tinie advance One
should notice here that backfilling algorithms regyob service timeo be known in
advance, which in practice is often specified bypper-bound

FCFS Backfilling

—:Job:B
Resource Job-A Resource JobA
Job'B -

time time

Figure 1: lllustration of how backfilling can reduce job wag time and idle time of

resources.

Aggressive vs. Conservative

In contrast to.aggressive backfillingonservative backfillind8, 9] makes
reservation forevery queued job which cannot be executed at a given enanit
means that a job can be backfilled on the condihanhit does notlelayany previous
jobs in the queue. Clearly, this reduces the nundiejobs that can utilize idle
resources. As a.result, its performance tends tonfegior to that of aggressive
backfilling. For the performance comparison betwtese two approaches, Mu'alem
and Feitelson [8] showed that the performance gfessive backfilling algorithm is
better than that of conservative backfilling in maases. However, conservative
backfilling can remove the above-mentioned weakr@dssggressive backfilling
because of its ability tayuaranteejob starting time by establishing resource
reservation foeverywaiting job.

There are several variants of backfilling algorithithe most popular one is
aggressive backfillingl5, 16], in which only the first job in the queuaan receive a
resource reservation. To put it another way, ifaarved job is thdirst job in the
gueue andcannot be processed immediately, the algorithm calcul#ibesearliest
possiblestarting time for this job using its resource riegment and service time; then,
the scheduler makesraservationfor this job at this pre-calculated time. Othebgo
are allowed to backfilbnly if they do not violate this reservation. The corebfgm of
aggressive backfilling is its unpredictability singaiting jobs,exceptthe first one, do

6



not get reservations. Therefore, the algorithm oamive every job in the queue a
guaranteed starting time.

Some variants of backfilling algorithms between raggive and conservative
backfilling, for example making reservation for firet fewjobs in the waiting queue,
have also been introduced [17, 18]. The ideas dafigusn adaptive number of
reservations were presented by the authors of [lb7}his strategy, jobs are not
necessarily given reservationstil their expected turn-around time exceeds some
threshold whereupon they get a reservati@hiang et al. [18] suggested thaitir is a
good number of reservations for compromise betwaggressive and conservative
backfilling.

Slack-based Backfilling

In the original backfilling algorithm, a newly aring job can be backfilled as
long as it does not.delay any existing reservatidnsorder to make backfilling
scheduling more .flexible and increase resourcezatibn, slack-based backfilling
algorithms [19, 20, 21, 22] have introduced thecemt ofslack factor by which the
actual starting'time of reserved jobs canrélexedup to a certain slack. In other
words, a newly submitted job can move to the helathe waiting queue on the
condition that it will not delay already existingservations by more than a specific
slack factor. Inithose algorithms, the system'slslactor is used to control for how
long jobs will have to wait before the start of exon.

The idea of slack factor has already been introduoereal time scheduling,
parallel scheduling, and grid scheduling environteeand has been confirmed to be
effective [15]. Dynamic backfillingallows the scheduler toverrule a previous
reservation by a slight delay if doing so can inwgreystem utilization considerably
[19]. In order to enhance backfilling and supporiogity scheduling, Talby and
Feitelson [20] combined three parameters — theetajpgb’s individual priority,
tunable system slack factor, and the average jotingdime — to assign each waiting
job aslack value The authors also provided several heuristicethuce the search
space of finding the least costly schedule prdfiten all possible candidates. The
cost of a schedule is tlseimof costs of all its jobs, and the cost of a jolbatculated
based on its delay and resource requirementslln\2ard et al. suggested the use of
a relaxed backfilling strategy in which a backfilndidate is selected from the job
waiting queue by considering its waiting time, estied service time and resource

requirement together. Bo Li et al. [22] introdu@dapproach different from previous

7



algorithms such that the slack factor is calculdtased on each job’s service time and
slack-based backfilling with more than one reseoviais supported.

Other Variants of Backfilling
Lawson and Smirni [23] introducadultiple-queue backfillingvhich divides

the system resources into multijlisjoint partitions Each partition is associated with
an individual queue, and a submitted job is assigitea partition and hence the
associated queue based on its estimated serviee Tine approach aims at reducing
fragmentation of system resources reducing thdilied that a short job is queued
behind a long jobBackfilling with lookahead?24] algorithms make scheduling
decisions by considering a set of jobs at once.dlgerithms look ahead into the job
gueue and try to find a packing of jobs which mazes the scheduler’'s objective

using adynamic programmingechnique.
24. Data Structurefor Advanced Resour ce Reservation

Advanced resource reservation is ‘a process of stiqgeresources for use at
specificfuture times [25]. In the cloud environment, it is chaligng for the scheduler
to manage available resources and to allocate tbgobs dficiently because of the
large number of resources and submitted jobs. Choossgtable data structure for
advanced resource reservation could significarftgeaquality of service of a cloud.
The most common operations for such a data steictwme searching available
resources, adding new reservations and deletingtiegi ones. In general, data
structures for advanced resource-reservation camabsified into two typesliscrete
[25, 26, 27, 28] andontinuous[29]. In the discrete data structure, the resemat
time is divided into time slots each of which regaets a computation time unit. On
the other hand, each request defines its own tgalke $n the continuous case.

Many data structures for advanced reservation baee proposed and widely
studied in literature. Aree-baseddata structure is commonly used for admission
control in network bandwidth reservation [26, 2Where each tree node represents a
time interval and the amount of reserved bandwidth in its sebstr Brown et al.
proposedCalendar Queud28] as a priority queue for future event set peats in
discrete event simulation. In the Calendar Queuents are stored ibucketswhich
represent a fixed small time interval. Then, eventsch are scheduled at the same
time interval are stored in sorted linked listIn [25], Sulistio et al. proposed GarQ

(Grid Advance Reservation Queue), which combinekerCiar Queue and Segment

8



Tree, for administering advanced reservation inghe environments. Qing Xiong et
al. [29] introduced a linked-list data structure fadvanced reservation admission
control. Among afore-mentioned data structures, litieed list is the simplest and
most flexible at all since accepted reservations lma inserted into the list based on
their starting time. Operations can be easily perég on the linked-list data structure
by iterating through the list from the head nodeowidver, if there aremany
reservations fosmall time intervals, the linked-list data structure destome very
inefficient for running these operations since eeds tatraversethrough the linked

list to find the correct position for each reseiwat



Chapter 3: Problem Description

This chapter first describes the system model aheduling models of our
work. Then, the problem statement is introducedjufd 2 provides a schematic
description of our scheduling model, where the tarta for this model are shown in
Table 1.

3.1. Two-tier System and Scheduling Models

System M odél

In our system model, the cloud hAstypes of resources. Each type of
resources has a limited capacity, and capaéjtgenotes the maximum number of
typed resources that are available for use simultangoistesource in the cloud can
be allocated to only one job at anytime; i.e.eaource cannot be shared among
multiple jobs concurrently. LeR = {M; |1 <i < N} denote a set oN types of
resources of the system.

A project-with multiple jobs represents a requasinsitted by the cloud’s
users. LeP = {p, |1 <u < |P| } denote a set of projects of the cloud wh&es
the number of projects. A projegt, arrives to the cloud at tinte,,. It is also the
earliest time when the cloud can-start processiggjobs that belong to,. Let
Ju={juvs| 1 <v <]} denote a set of,| jobs that are to be processed for
projectp,,.

The processing of jofy,, requires eservice timee,, ,,. The moment when the
processing of jolj, , begins is referred to as #sarting timets,, ,,, and the moment
when the processing of jgh,, is completed is referred to as fisish timetf, ,. Let

lts, ,, denote théatest starting timef jobj,, ,,. The resource requirement of jah, is
given by E,, = {q}, |1 <i < N} whereq!, is the number of type-resources

required by, ,, 0 < g5, < M;.

It is assumed that job service time and resourgeimement are precisely
determined during the pre-processing stage. Besitlesre is non-precedence
constraint between jobs. In other words, the cload process a set of jobs in any
order. It is further assumed that the processing job isnon-preemptiveOnce it is
started, it cannot be stopped until its completidiext we define important time

notations for projects.
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Definition 1 (Project starting time): the starting tine, of a project,,, defined as
tc, = Min(J,.ts) where J.ts={tsy,| 1<v<|Ll}, (@)
is the time moment when tffiest job of p,, starts its processing.

Definition 2 (Project departure time): the departure tirdg of a projecty,,, defined

as

td, = Max(J,.tf) where J,.tf = { thw| 1SV < Ijul}, (2)

is the time moment when the&st job of p,, finishes its processing.

Definition 3 (Project waiting time): the waiting timew,, of a projectp,,, defined as
tw,, = ta, — tcy, 3)

is the time period from its arrival tinte,, to its starting timec,,.

Definition 4 (Project running.time): the running. tine, of a projecp,,, defined as
tr, = td, — tcy, (4)

is the time period from its starting tine, to its departure timed,,.

Definition 5 (Project turn-around time): the turn-around titng of a projectp,,,

defined as
tn, = td, — ta,, (5)

is the time period from its arrival tinte,, to its departure timéd,;.

Table 1. Notations used in the two-tier system and schedutindels.

Notations | Meaning
Resource

A set of N types of resources of the system whéyas the capacity of typeé-

R={M|1=isN} 1 egources

Project

A set of projects of the cloud whegs, is theu-th project andP| is the number o

= <uc<
P=(pl1<us|Pl} | 2500

e L<y< The set of jobs which are required to be procedsedheu-th project wherg
Ju=Uuw | 1< v < Il) Jjuw 1S thev-th job of theu-th project andJ,, | is the number of jobs

ta, The arrival time of thei-th project

The starting time of theu -th project;tc, = Min(J,.ts) where J,.ts =

fou {tsuw | 1<v < |4}

td,, The departure time of tha -th project;td, = Max(J,.tf) where J,.tf =
{thwl 1<v <L}

twy, The waiting time of the:-th project;tw,, = ta, — tc,

try, The running time of tha-th project;tr,, = td,, — tc,

tn, The turn-around time of the-th projectitn, = td, — ta,

PTA The mean turn-around time of projed®§A = ﬁ 25’:'1 TA,, where|P| is the
number of projects

Job

teyy The service time of the-th job of theu-th project

tSyp The starting time of the-th job of theu-th project

lts,, The latest starting time of theth job of theu-th project

tfuv The finish time of thev-th job of theu-th project

The resource requirement of the-th job of thewu -th project wherg
q.., is the number of resource type

11
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Scheduling Model
Figure 2 illustrates the scheduling model of thigrky In the system model,

projects and their jobs arrive to the cloud onebg over time. When projegt, and
its jobs]/,, arrive to the cloud, these jobs could be procegsatediately if resources
are sufficient and the processing does not delayeamsting reservations over the
maximum number of allowable times. Otherwise, tloeid scheduler must make the
scheduling decision immediately. The schedulingisi@c determines the starting

timets, , for each joly,, € J, and the departure timta, of the projecp,. Then,
the cloud scheduler calculates the slack timelferproject and the latest starting time
for the jobs. After that, these jobs are grantasduece reservations. One should notice
that here new incoming jobs can preempt a jobengireue by its latest starting time.
Similarly, the departure time of a waiting projesay be delayed by new incoming
projects several times before the project actuddiyarts from the cloud, but it cannot

exceed the slack time of the project.

Arrive at

random time Project waiting queue

Pu

Ju,2

Job waiting queue

Running jobs Iz

Resources

Figure 2: Two-tier project and job scheduling model.

A good practical example for our two-tier schedglimodel is test cloud
which provides testing services for customers actios Internet. In a test cloud, a test
project represents a test request submitted byglthal’s customers. Once the cloud
accepts a test project, it is obligated to compdeset of test jobs for system under test
specified in the test project. The processing tdsi job requires a certain amount of
test resources such as test machines, test equipatenSince the cloud’s customers

need to plan their work ahead of time, the departume of submitted test projects

12



should be informed to customers at the time momdran the projects are accepted
by the cloud.

3.2 Problem Statement

The problem statement of our work can be descraseidllows. Given a set of
resource® and a set of projecls each projecp, € P consists of a sgf, of jobs.

Each joby, ,, € J, requires a set of resourcgg,, for its processing. The formula
PTA= — Y tn,, (6)

is to calculate the mean turn-around time of ptsjethe objective of this work is
determining the starting times,, ,, of each. job, ,, of projectp,,V p, € P such that

the mean turn-around tinif¥' 4 is minimized.
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Chapter 4: Two-tier Project and Job Scheduling with Backfilling,
Slack Factor and Priority

In this chapter, we describe our proposed scheglydolicies, developed for
solving the two-tier scheduling problem definecchrapter 3. In Section 4.1, we give
an overview on two-tier backfilling with a slackctar of project turn-around time.
The details of our approach are elaborated in &edti2, Section 4.3, and Section 4.4.
Finally, Section 4.5 introduces a data structurerégource reservation which is used
to implement our proposed scheduling policies.

4.1. Approach Overview

As mentioned in the first: chapter, one of the basiguirements for our
scheduling model ipredictability. In" other words, a project should be granted a
guaranteed departure time at the project’s arrtiak. This requirement can be
satisfied by conservative backfilling algorithm fnt provides resource reservation
for every waiting job. Besides, the system mustuate a precise estimate on job
service time and resource requirement before ampplyhe scheduling algorithm,
which is satisfied by our scheduling model as welom this point of view, the
choice of conservative backfilling for our problesmsiraightforward.

In order to-make the algorithm more flexible anggsart priority scheduling,
we enhance conservative backfilling with the conedpslack factor, by which the
departure time of reserved projects can be deléyredp to a certain slack time. The
idea of slack factor has already been introducethany scheduling problems, and
has been confirmed to be effective in solving thpseblems [19, 20, 21, 22].
However, up to now, it has not been applied to twoscheduling problem like our
study does.

Our method calculates the slack of each projgcby multiplying its turn-
around timetn, with a system parameter slack fact§iF(). The actual departure time
of the project can be relaxed to a value in theetrangdtd,, td, + tn, - SF]. When
the latest departure time of the project is deteealj we can easily calculate tlagest

starting timelts,, ,, of each joly,, ,, which belongs tg, by

lts,, = td, +tn, - SF —tey,,. (7
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Newly arriving jobs cannot delay jgh, beyond its latest starting tinies,, ,, set by
the cloud scheduler.

Furthermore, another system parameldr (preemption limit) is also
introduced to control the number gfeemptedprojects not to exceeBlL. The
implication of using this parameter is that we tGamt the number of projects whose
departure time will be re-arranged. By doing se, llehavior of the cloud scheduler is
controlled as well.

Job finish time and project departure time coulddb&ermined at the project
arrival time or be relaxed later. In general, weenthree core scheduling policies as
shown in Table 2 where the last one has two vessisimgle type of projects, two
types of projects (high-priority and low-priorityes). For each scheduling policy, we
have developed a scheduling algorithm with- pardicuhttributes, i.e. objective,
priority scheduling, etc. Hence; it is responstbibf the cloud administrator to select

an appropriate scheduling policy.

Table2: Two-tier scheduling policies

. . . . Priority Job Project
Scheduling polices OO AEegt scheduling finish time departuretime
Non-preemptive waiting | Minimize A : Determined at | Determined at
: . Two-tier Strict : A . :
queues for jobs and project turn- 4 No project arrival | project arrival
. : Backfilling . .
projects around time time time
Non-preemptl_ve waiting Minimize Two-tier Flexible Determined at
gueue for projects and . L . : .
. - project turn- | Backfilling No Flexible project arrival
preemptive waiting queue : - .
for i around time | (SF =0) time
or jobs
Single tvpe Minimize Two-tier Flexible
of %o'egfs project turn- | Backfilling No Flexible Flexible
WL?IetlIJnegfor High-priority: High-priority:
%bs and Minimize Determined aif Determined a
| roiects Two types | high-priority | Two-tier Priority Yes project arrival|  project arrival
proj of projects | project turn- | Backfilling time time
around time Low-priority: Low-priority:
Flexible Flexible

4.2.  Non-preemptive Waiting Queuesfor Jobs and Projects

In this scheduling policy, job finish timg, , and project departure tintd,,
are determined when they arrive to the system. s can be backfilled only if
they do not delay any existing reservations. F@& plolicy, we have designed Two-
tier Strict Backfilling (2TSB) algorithm whose psiicode is showed in Figure 3.
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2TSB is an algorithm similar thrst-fit conservative backfilling since submitted jobs
are scheduled at thearliest possiblestarting time. When projeqgt, and its jobd,,
arrive to the system, they are scheduled as folldarseach jobj, , ofp,, if it is
feasible to allocate enough resourcesjfgy and the processing gf, , does not delay
any existing reservationsj,, will be backfilled to start immediately (line 4).

Otherwise, the earliest possible starting timej,of is determined (line 6) by the
operatiorearliestStartingTime. Since the algorithm does not allow newly arriyells
to delay existing reservations,, , andits, , are the same (line 7). Finally, the job is

granted a resource reservation (line 8).

Algorithm 1: Two_Tier_StrictBackfilling(p,)

1 Begin
2 for each j,, € J,, do
3 If (j,» can start immediately) then
4 start j, ,
5 else
# Find the earliest starting time for job j,, ,,
6 tsy, < earliestStartingTime (jy, ;)
# Set up a resource reservation for the job j,, ,
7 ltsy, « tsyy
8 addReservation(jy )
9 end-if
10 end-for
11 End

Figure 3: Pseudo code of Two-tier Strict.Backfilling algorith

4.3. Non-preemptive Waiting Queues. for Projects and Preemptive Waiting
Queuefor Jobs

The design philosophy behind this policy is thattrtyeto accommodate newly
submitted jobs by delaying theb finish time of reserved ones without changing the
departure time of the waitingrojects Put it in another way, newly arrived jobs can
delay only the starting time of any queued jobsclwhare not thdast job of the
waiting projects, i.e. the job with tHargestfinish time. Given slack fact&F = 0,
the latest starting timéts,, ,, of job j,, cannot be greater thad, — te, . Two-tier
Flexible Backfilling (2TFB) algorithmSF = 0) is introduced to deal with this policy.
Figure 4 describes the pseudo code of the algoriémah the steps of the algorithm are
summarized as follows: the steps listed on lindsa?e similar to those of 2TSB since

job j,, ,, can start imnmediately as long as there are sefftaiesources for jol, ,, and
16



no existing reservations are delayed over thegstastarting time. Otherwise, the set
of all feasible backfilling timesBT, is determined for jok,, , (line 6) based on the
current scheduling plan by the operatipeusibleBackfillingTimes . A feasible
backfilling timebt € BT is the starting time of a gap in the job waitingege at

whichql,, < a;,Vi:1 < i < M, whereg; is the number of available tygpeesources

at the time slobt. Then, we set up a resource reservation forjjgb(line 10) at a
feasible backfilling timébt € BT. After that, the operatioshiftReservations (line 11)
checks the availability of system resources and mlax some existing reservations
if necessary. One should notice that if there igartban one possible reservation
which could be delayed by the operatiarftReservations, the reservation with the
largest latest starting time is chosen. In this schedulpaicy, the number of

allowable preempted projed®d is-obviouslyzera If the operationhiftReservations

fails and jobj, ,, cannot be backfilled @it, then the current scheduling pl&g, is
restored (line 13).and theextfeasible backfilling time is considered. Note thadre
is always at least one feasible backfilling timewdtich the job can be backfilled
successfully, that is the job’s earliest possiligtsg time. After scheduling all
jobsj, , € J, and determining the turn-around timg, successfully, the algorithm

updates the latest starting tirte,, ,, for each job (line 21-22).
4.4. Preemptive Waiting Queues for Jobs and Proj ects

This scheduling policy allows both job finish tiraed project departure time
to be re-arranged after a project has been acceptgdf the resultant delay does not
exceed the maximum amount of delay defined by theksactor. Furthermore, we
extend the policy into two versions: single typepadjects, and two types of projects.
In the former, all projects have the same priontijch means that new projects can
delay any existing reservations up to the maximumlmer of allowable times. On the
other hand, the latter policy takes priority intccaunt such that only some high-

priority projects can preempt the low-priority ones

Single Type of Project
The difference between this policy and 2TFB is lsléactorSF > 0. As a
result, both waiting projects and jobs could beeprpted by the newly arrived ones.

The maximum amount of allowable delay for projg¢istn, - SF, and thestarting

time of jobj,,, can be relaxed to a value in the time raftgg,, td, + tn, - SF —
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teu,,,]. This, in comparison with 2TFB, could increase thember of successfully
backfilled jobs. Two-tier Flexible Backfilling algibhm with the slack factafF > 0
(2TFB-SF) can handle this scheduling policy. Besi@ FB-SF uses paramefdr >

0 to control the number of preempted projects.

Algorithm 2: Two_Tier_FlexibleBackfilling( p,, SF,PL)

1 Begin
2 for each j, ,, € J,, do
3 If (juv can start immediately) then
4 start jy .
5 else
# Find all the feasible backfilling times for the job jy, ,,
6 BT « feasibleBackfillingTimes (j, )
7 Let Sy;q be the current scheduling plan
8 for each bt € BT do
9 tsy, < bt
# Set up a resource reservation for job jy, ,,
10 addReservation(jy )
# Check the availability of system resource and
# delay existing reservations in order to
# accommodate job j,, ,, if necessary.
11 succeed « shiftReservations(jy ,, PL)
12 if (! succeed) then
13 restore S,4
14 else
15 break
16 end-if
17 end-for
end-if
18 end-for
19 for each j,, € J,, do
# Update the latest starting time for the resource reservation of
#Job ju
20 ltsy, < tdg + (tny, - SF) —tey,
21 updateLatestStartingTime(jy ,,)
22 end for
23 End

Figure 4: Pseudo code of Two-tier Flexible Backfilling algbm

Two Types of Projects

This scheduling policy considers a realistic scenaf a cloud environment
where some projects are more important than therstiTherefore, they need to be
severed as soon as possible. Here we just considetypes of projects in this

scheduling policy, i.e., high-priority project atav-priority project. We design this
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Two-tier Priority Backfilling (2TPB) in order to ffill the requirement of the
scheduling policy such that high-priority projeese scheduled by 2TFB-SF while
low-priority projects are scheduled by 2TSB. Moreguhe priority of a projec) <
pi, <1, is taken into account irecalculatingthe slack factor§F = (1 — pi,,) - SF,
for each project.

The steps of 2TPB are briefed in Figure 5. If tiegvly arrived projecp,, is
high-priority, it is scheduled by 2TFB-SF (line wijth slack factoiSF recomputed for
py (line 3). Otherwise, it is scheduled by 2TSB (lide After that, we update the
lateststarting timeits,, ,, for each jobj, ,, € J,, with recomputed slack fact§# (line
8-10).

Algorithm 3: Two_Tier_PriorityBackfilling( p,, SF,PL)

1 Begin

2 if (py is high_priority)

3 SF « (1 —pi,) *SF

4 Two_Tier_FlexibleBackfilling(py, SF, PL)
5 else

6 Two_Tier_StrictBackfilling(p,)

7 for each j,, € J,, do

8 SF <« (1 —piy):SF

9 ltsy, < tdy + (tny, - SF) —tey,,
10 updateLatestStartingTime(jy ,,)
11 end-for

12 end-if

13 End

Figure5: Pseudo code of Two-tier Priority Backfilling algtmin
45. Casestudy: An Example Runfor 2TSB and 2TFB-SF

An example run for 2TSB and 2TFB-SF is illustrated=igure 6. Note that
there are two types of resources. Thus, we plosthedules in two blocks. Table 3
depicts the inputs of these two algorithms, whioh @ sequence of four submitted
projects and their parameters.

In Figure 6(a), the schedule for the first 4 jobshie same for both algorithms
at time slot 2. Jol ; is backfilled successfully at time slot 2 by batgorithms. The
difference appears when jgh, is scheduled. In 2TSB, a potential time slot fuio
J32 to run is time slot 3, but doing so would delag teservation of jol, ;, which is
not allowed by 2TSB. Therefore, jgh, is scheduled at time slot 7. On the other

hand, joby; , could begin to execute at time slot 3 under 2TB&ng so would delay
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jobj, 1's execution from time slot 6 to time slot 7, whichacceptablebecause the
latest starting time of jojy, ; is 7.2 (ts,; = 7.0 +6.0- 0.2 — 1.0 = 7.2).
When jobj, ; arrives, it is scheduled by those two algorithrasshown in

Figure 6(b). Time slot 6 is a potential flexible ckéilling time for the job.

Unfortunately, this choice will delay job ; beyondits latest starting time (see Figure

6(c)).

The performance of these two algorithms is comparetable 4. As can be

seen from the table, the mean project turn-aroime RT A is reduced around 8% by

2TFB-SF in comparison with the 2TSB’s performance.

Table 3. A sequence of four submitted projects and theiampaters

Pu P1 D2 D3 Da
Juw jo | e J2a Jjar | s Jas
ta, 0 1 2 5
te,., 2 6 1 1 4 2
qi. 1 1 1 1 2 1
9z, 2 -. 3 2 1 2
N P
M, 3
M, 4
SF 0.2
PL o)
Table 4: Performance of an example run for 2TSB and 2TFB-SF
Pu b1 b2 D3 Da
Juv jur | o Jaa Jar | Jao Jas
te, 0 1 2 5
Two-tier Strict tfuw 2 | 6 7 3 | 1 9
backfilling tn, 6 6 9 4
PTA 6.25
Two-tier tfuw 2 | 6 8 3 | 7 10
Flexible tn, 6 7 5 5
backfilling PTA 5.75

20




Two-tier Strict Backfilling Two-tier Flexible Backfilling
Current time Current time

resources 1
resources 1

12 10 12

Time slot Time slot

Current time Current time

resources 2
resources 2

10 12
Time slot Time slot

(a) Schedules for the first four jobs are the saméd&th the algorithms. Jebis
moved to the head of the waiting queue by TwoHiekible Backfilling algorithm.

Two-tier Strict Backfilling Two-tier Flexible Backfilling

Current time Current time
»
@
S
>
: 2

2] 8 21 a1 ]
[
P 8 10 12
Time slot Time slot
Current time Current time

resources 2
resources 2

10 12
Time slot Time slot

(b) Schedules for four projec

Two-tier Flexible Backfilling
furrent time

»
8
5
2
3|

0 10 12

Time slot
Current time

N —
(%]
8
3 2,1
<

0 2 4 6 8 10 12

Time slot

(c) Time slot 6 is a potential backfilling time slatrfjoly 1's execution.
Unfortunately, doing so will delay jgh beyond its latest starting time.

Figure 6: An example run for 2TSB and 2TFB
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4.6.  Two-tier Backfilling Implementation

In order to implement the proposed algorithmss itmportant to organize the
information of resource availability and reservation a data structure which can
provide efficient operations for searching, addidg/eting, and updating. In this
section, we introduce a data structure for advamnesdurce reservation which is used
to implement our proposed scheduling algorithmse @hta structure is based on the
linked-list data structure [29] because of its dioiy and flexibility.

The description of our proposed data structurdustrated in Figure 7, while
Table 5 shows the implemented operations on thee staicture. The data structure is
a linked-list-based data structure. Each node ie tist is defined as
a node(timeslot, availability, reservation) , where timeslot denotes a time
moment at which changes in reservations or resawa#ability occuravailability
denotes the number of available resources fromntigde to the next node, and
reservations is a linked-list of resource reservation recordgimeslot. Each
record is a 5-tuple information consisting of pobjerdexu, job indexv, job service

timete, ,,, the latest starting time of jdbs; ;, and the resource requiremeéht,.

Resource 51 DA
requirement ’—‘ @
515 Latest g
Service time starting time O [=
5 | 1 ar
Project ID g JobiID ~
0 2 4 5 6
Fa Time slot
1186
212

N

Resource
availability ET N 00 2‘2 211 3‘4

Timeslot | O 2 4 5 6

resources 2

Time slot

Figure 7: Data structure used for resource reservation
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Table5: Data structure operations

Operations Explanation

earliestStartingTime(jy, ) Search the earliest possible starting timej for

feasibleBackfillingTimes(jy,,) Find all the feasible backfilling times fgy .

addReservation(jy,,,) Add a resource reservation figr, atts, ,

deleteReservation(jy ,) Delete the existing reservation of waiting jpk

shiftReservations(jy,, PL) Check the resource availability and delay some vesens to
accommodatg, ,, if necessary, given that the number of delayed
projects< PL.
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Chapter 5. Experimental Evaluation

This chapter presents the experimental evaluatioere the effectiveness of
proposed algorithms is verified. We first introdube simulation methodology and

then present the experimental results and the sisaly
5.1. Simulation Methodology

In order to evaluate the proposed scheduling dlgos, we have developed a
simulator for our scheduling problem. The simulagoimplemented based on CSIM
20 for Java [10] which is a simulation package véthrocess-oriented discrete-event
scheduling model. CSIM 20 has been widely usedirtmlate complex systems in

academia as well as industry.

Table6: Simulation parameters

Random function

Parameters Distribution parameters

Inter-arrival time 7 i ita i

Project . ita Exponential lt_acan be adjusted
Number of jobs [Jul | Normal Jul =5.0;0,=20

Job Service time te,, | Exponential te = 500.0
Resource requirement q%”; Exponential q1l,“; =20
Types of resources N Constant 5
Resource —
Capacity.of typa-resources M. Uniform Miny, = 20
L Maxy, = 40

Table 6 summarizes our simulation parameters waiehrandomly generated
according to some types of distributions. One sthawdtice that the values of two
parametersy,| andq.,,,, are integer parts of the floating-point value eyated by
random functions. In our experiments, the inteivatrtime ita between any two
successive project arrivals is exponentially distted with an adjustable mean value
in order to control project arrivals. By doing see can observe the performance of
the proposed algorithms under different system doall the simulation results
shown here are obtained by averaging the resulfssimulation runs with different
seeds for random number generation. Each simulationis terminated upon the
successful completion of 1000 projects.

The overall performance of the proposed schedudilgprithms could be
evaluated by two major metrics: mean project tuouad time and average resource
utilization. The former is used to measure thegremince from the customer’s point
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of view, while the latter is the most common systntric metric. However, it is
shown that the average resource utilization doéschange notably under different
scheduling policies. Thus in the result analysigise, we do not present the results

in terms of this metric.
5.2. Result Analysis

Job Scheduling vs. Project Scheduling

In this experiment, we compare the performancén@e algorithms: Two-tier
Strict Backfilling (2TSB), Two-tier Flexible Backling with SF = 0 (2TFB), and
Two-tier Flexible Backfilling with SF > 0 (2TFB-SF)}For 2TFB-SF, we use the
parametersSF = 0.5 andPL = «. 2TSB algorithm is used as the baseline for the

performance comparison purposes. In addition to ritean project turn-around

time PTA, the mean job turn-around tiffiB4 , which is defined as
—_— 1 1 @l
JTA = ﬁZlLP:'1mZL]=11 (tfu,v — tay) (8)

is another perfoarmance metric to investigate.
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Figure 8: Job scheduling vs. Project scheduling

As shown in Figure 8(a), it is not surprising thla¢ mean job turn-around
time is reduced considerably by 2TFB-SF algorithesduse the effectiveness of the
concept of slack factor has already been confirnmedseveral existing one-tier
scheduling works [20, 21, 22]. Furthermore, theuotidn in the mean job turn-around

time greatly depends on the system load. For exanfipt the case where the mean
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project inter-arrival time is set to 10, the penfiance difference between 2TSB and
2TFB-SF is about 4000 time units, which means &odrGprovement in the mean job
turn-around time. On the other hand, in the cagbeimean project inter-arrival time
being set to 160, the difference is merely 700 timis but an improvement of 15.5%.
Figure 8(a) also demonstrates that 2TSB and 2TB hbnost identical performance
for all the values of the mean project inter-arritnae used in this experiment. This
can be explained by the fact that the opportunibéscarrying out the flexible
backfilling mechanism arare in 2TFB because ofF = 0.

Figure 8(b) clearly indicates that the performaot@TSB, 2TFB, and 2TFB-
SF in terms of the mean project turn-around timeoigyhly the same. This observed
phenomenon can be explained by Figure 9 where 238 2TFB-SF can reduce
neither the mean project waiting time nor the mgsaject running time. Take 2TFB-
SF for example; on the ‘average, the mean projetingdime is decreased by 5% to
33% when the mean project inter-arrival time isnded from 10 to 160, but
meanwhile, the mean project running time is inceddsy 0.7% to 7%. These results
indicate that 2TFB-SF can decrease the waiting timie first job of a project but
lead to an increase in the waiting time of otfegnainingjobs of the project. Overall,
adopting 2TFB-SF does not lead to a significantrowpment on the mean project

turn-around time.
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Figure 9: Mean project waiting time vs. Mean project runniimge
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In order to understand more about the relationskeiveen two metricBTA
andJTA, we conduct another experiment whose resultshaners in Figure 10. In this
experiment, we measure and observe the perform@EriZ€FB-SF while varying the
SF parameter. The experiment results show that usirger slack factors improves
the mean job turn-around time significantly. Howeuhis causes a modest increase

in the mean project turn-around time. Based on ahservation, the decrease of

JTA doesnot lead to the decrease BT A.
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Figure 10: The impact of slack factor SF on 2TFB-SF

To sum up, although 2TFB and 2TFB-SF can reducenien job turn-around
time notably in comparison with 2TSB, the improvemen the mean project turn-
around time is negligible. One can suggest that2m®yht be a good choice for two-
tier cloud scheduling since it achieves the samopeance as 2TFB and 2TFB-SF
in terms of the mean project turn-around time, ibgitcomplexity is comparatively

light weight.

The lmpact of Priority Scheduling

In order to test how well Two-tier Priority Backiilg algorithm (2TPB)
schedules high-priority projects, we devise thdofeing two scenarios for the
experiments. In the first scenario, all the subsxitprojects are scheduled by 2TSB.
On the other hand, 2TPB is used to schedule pmojacthe second scenario. High-
priority projects are given the priority valge, = 1.0, while the rest low-priority
projects are givepi, = 0.0. In both of these two scenarios, the prdiglihat a
submitted project is high-priority is 1/5. Sinceetlperformance of 2TPB can be
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influenced by the slack fact®tF and the preemption limPL, we conduct the

following two experiments to observe the effectledse parameters.
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Figure 11: Improvement on the mean project turn-around tim@HyB algorithm
with differential values of slack factor SF

In the first experiment, we study the performant@BPB withPL = oo by
observing the mean project inter-arrival time and slack facta$F. Figure 11 shows
the improvement.on the mean turn-around time oftlal high-priority and low-
priority projects in comparison with the 2TSB’s fsemance. As expected, 2TPB
decreases the mean turn-around.time of the higitHyriprojects by 6% to 27% but
increases the turn-around time of others by 1968 2vhen the value oita, SF) is
increased from (10,0.2) to (160,1.0). Surprisinghe mean turn-around time of all
the projects remains almost unchanged except ®iabt case where the value of
(ita, SF) is (160, 1.0). For the last case, the mean turpsat time is increased by
16%.

Figure 12 presents the results of the second expati in which the
performance of 2TPB wit§F = 0.5 is measured at different values of the mean
project inter-arrival timéta and preemption limiPL. The results are similar to those
in the first experiment. The mean turn-around tiofieall the projects stays stable
except for the case with the lowest loading of @ebprrivals. As the value 6fta,PL)

increases from (10,1) to (166), the mean turn-around of the high-priority prigeis
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reduced remarkably from 1.5% to 20%. On the othendh this also leads to an
increase around 0.01% to 10.7% in the mean turarardime of the low-priority

projects.
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Figure 12: Improvement of project turn-around time of 2TPBhndifferential limits

on the number of allowable delayed projects PL

The above experimental results indicate that 2TRiBksv well with priority
scheduling where some projects are preferred ineeothers. Besides, 2TPB does not
lead to a general degradation in system servicen@st cases. Since two system
parametersF andPL have a strong impact on 'the mean turn-around timboth

types of projects, the system behavior can be cledr by adjusting these parameters.
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Chapter 6: Conclusions and Future Work

In this work, we study a two-tier scheduling prablevhich is present in the
cloud computing environments. This scheduling peobMdiffers from the traditional
one-tier scheduling problems since a submittedeptajonsists of multiple jobs each
requiring several resources for its processingrtter to reduce cloud service’s turn-
around time and support priority scheduling, weehdeveloped a set of scheduling
algorithms of different attributes. All the algdmihs are derived from conservative
backfilling algorithm, but enhanced with the conicep project’'s slack which is
calculated by multiplying project turn-around timgth a system parametelack
factor. Besides, another system parampteemption limits also proposed to control
the behavior of the cloud scheduler:

The algorithms developed in this study have begreementally evaluated
under different system loads by computer simulatidhe experimental results
indicate that Two-tier Flexible-Backfilling with¥ > 0 (2TFB-SF) can reduce the job
turn-around time by 7.5% to 15.5% and achieve ainies same performance in
terms of the mean project turn-around time metscTavo-tier Strict Backfilling
(2TSB) when the mean project inter-arrival timehsanged from 10.0 to 160.0. Based
on these results, we also reach an interestingwsioa that the decrease in the mean
job turn-around time does not always lead to ae&bs® in the mean project turn-
around time.

The experimental results also indicate that Two-feiority Backfilling
(2TPB) can efficiently reduce the mean turn-arotime of high-priority projects, but
does not lead to an increase in the mean turn-drotiall the projects in most cases.
Furthermore, the behavior of the algorithm can &silg controlled by tuning two
system parameterslack factor SF andpreemption limitPL, whose impact is
analyzed in this work as well. More specificallgetmean turn-around time of high-
priority projects is decreased from 6% to 27% wirenvalue of {ta,SF) is increased
from (10,0.2) to (160,1.0). As the value &fa,PL) is relaxed from (10,1) to (168),
the mean turn-around time of high-priority projeistseduced from 1.5% to 20%.

Our proposed algorithms satisfy one fundamentalireqment of the two-tier
scheduling problem that a project should be graatgdaranteed departure time at the
project’s arrival time. However, doing so might oesxse the jobs’ backfilling

opportunities since we must reserve resourceslfdnewaiting jobs that have been
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granted. Hence, the project turn-around time cabeoteduced considerably by our
proposed algorithms. For future work, we plan tosider aless conservative
backfilling approach in which only the jobs belomgito the first project in the
waiting queue can receive resource reservationsioDsly, this less conservative
approach will degrade the predictability of twortmackfilling algorithms, but it may
bring a more considerable reduction in cloud sefgiturn-around time.

Furthermore, an optimal algorithm for the off-limersion of the scheduling
problem, in which all projects’ characteristics ar@mwn beforehand, will be studied
in our future work. Other scheduling objective®. iproject success ratio, cloud

provider revenue, are considered as well.
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