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摘要摘要摘要摘要 

本研究旨在解決當今雲端計算環境下的雙層排班(two-tier scheduling)問題。

在此問題之中，一個計畫(project)就代表著一位雲端使用者的請求，是由多項工

作(job)所組合而成，而每項工作的處理需要數種資源。研究目標是使用適合的

排程演算法來縮短計畫的回復時間(turn-around time) 以及支援優先等級排程 

(priority scheduling) 。由於這種雙層排班問題一直以來缺少有效率之演算法，我

們在此提出一組雙層回填(Two-tier Backfilling)演算法，而這組演算法乃根據著

名的保守回填(Conservative Backfilling)演算法並結合計畫的寬鬆係數與優先權

等概念所擴展而來。雙層嚴格回填(Two-tier Strict Backfilling, 2TSB) 演算法不允

許在工作或計劃等待佇列內搶佔 (preemption) 。另一方面，可允許搶佔的雙層

彈性回填(Two-tier Flexible Backfilling)演算法則有兩種版本：2TFB 和 2TFB-SF。

在 2TFB 演算法中，新抵達的工作可以搶佔正在等待的工作，可是新抵達的計

畫不能搶占正在等待的計畫；相比之下，2TFB-SF 演算法允許在工作和計畫佇

列內搶佔。雙層優先等級回填(Two-tier Priority Backfilling, 2TPB)演算法把優先

權納入考量，因此只有某些高優先權計劃能夠搶佔低優先權計畫。實驗結果指

出 2TFB-SF演算法可以縮短工作平均回復時間約 15%，而和 2TSB 相比，2TPB

演算法可以縮短高優先權計畫的平均回復時間約 25%。 

關鍵字關鍵字關鍵字關鍵字:  雲端排程、雙層、回填法、寬鬆係數、優先等級排程法 
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Student: Thai Minh Tuan    Advisor: Dr. Ying-Dar Lin 

Institute of Computer Science and Engineering  

National Chiao Tung University 

 

Abstract 

This study addresses a two-tier scheduling problem in a cloud computing 

environment. In this problem, a project represents a cloud user’s request consisting of 

multiple jobs, and each job requires several resources for its processing. The goals are 

to reduce the project turn-around time and to support priority scheduling by 

employing suitable scheduling algorithms. Due to the lack of efficient algorithms for 

such a two-tier scheduling problem, here we propose a set of two-tier backfilling 

algorithms which extend the well-known conservative backfilling algorithm with 

project’s slack and priority concepts. Among the proposed algorithms, Two-Tier 

Strict Backfilling (2TSB) does not allow preemption in job and project waiting queues. 

On the other hand, preemption is considered by Two-tier Flexible Backfilling (2TFB) 

which has two versions:	2TFB and 2TFB-SF (slack factor). In 2TFB, a new incoming 

project can preempt waiting jobs but not waiting projects; while 2TFB-SF permits 

preemption in both job and project waiting queues. Two-Tier Priority Backfilling 

(2TPB) algorithm takes priority into account such that only high-priority projects can 

preempt the low-priority ones. The experimental results indicate that, compared to 

2TSB, 2TFB-SF could reduce the mean job turn-around time by 15% and 2TPB could 

reduce the mean turn-around time of high-priority projects by 25%. 

Keywords: cloud scheduling, two-tier, backfilling, slack factor, priority scheduling. 
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Chapter 1: Introduction 

Cloud computing is an Internet-based computing paradigm whereby 

computational resources are delivered to users on demand over the Internet, in the 

same manner as public utilities [1]. In recent years, there have been more cloud-based 

service providers. Google Drive [2] is a good example of a cloud-based service in 

which all the infrastructure, software, and storage are hosted remotely and users only 

need a Web browser to access the service. One of the advantages in moving a service 

to a cloud is that it allows resources being shared among organizations and users in 

order to serve an even larger number of user’s requests. With a proper job scheduling 

and resource allocation strategies, a cloud system can manage its resources to serve 

user’s requests in the most efficient way. As a result, the cloud can improve resource 

utilization as well as reducing its service turn-around time. 

Two-tier Scheduling in Cloud Environments 

Scheduling strategies in a cloud environment vary, depending on the 

deployment model of the cloud. This work focuses on a two-tier scheduling problem 

within a cloud environment described as follows. In our studied system, a project 

represents a service request submitted by the cloud’s users. Once the cloud accepts a 

project, it is obligated to complete a set of jobs belonging to the project. Each job has 

its own estimated service time which is determined during the pre-processing stage. 

Then, to start its processing, a job must be allocated a specific set of resources of 

certain types such as server, application, tool, storage, and network. In addition, the 

resource requirement of jobs may involve more than one resource type. At the 

moment when a project is submitted to a cloud, the project’s characteristics become 

available to the cloud; the cloud must make scheduling decisions immediately and 

then inform users of when the project will be finished. 

Since projects and their jobs arrive to a cloud one by one over time, the cloud 

must always make scheduling decisions and resource allocation decisions without 

knowledge of any future projects arrivals. This concept is called on-line scheduling in 

literature [3]. In addition, our two-tier scheduling problem differs from the traditional 

one-tier scheduling problem since a project consists of multiple jobs each requiring 

several resources for its processing. Although the cloud allocates resources directly to 

jobs, the purpose is to improve system performance with respect to projects instead of 

jobs. 
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The motivation of this study is to provide an efficient cloud service by 

employing suitable scheduling algorithms and resource allocation strategies for 

projects and their jobs. Put it in another way, we want to increase user satisfaction by 

reducing the project turn-around time – the time period from the moment a project 

arrives at a cloud provider to its departure. Moreover, achieving high resource 

utilization, as a general expectation for cloud computing, is also our objective. 

Our Solution Set 

The concept of two-tier scheduling has been addressed by several studies [4, 5, 

6, 7] in recent years. Unfortunately, the solutions of these studies cannot be applied 

here since there are some differences between our scheduling model and those already 

existing. Therefore, to deal with such a complicated scheduling problem, we have 

proposed a set of algorithms based on the well-known conservative backfilling 

algorithm [8, 9] for the one-tier scheduling problems. The spirit behind the algorithm 

is that a job could be moved to the head of the waiting queue as long as it will not 

delay the execution of any reserved jobs. This helps increase resource utilization 

while decreasing the mean job waiting time and hence the mean project turnaround 

time in our problem. Another key advantage of adopting conservative backfilling is its 

predictability since it allows every waiting job to establish resource reservation. By 

doing so, each project is granted a guaranteed departure time when it is submitted to 

the cloud. This feature satisfies the two-tier scheduling model, and is also very useful 

for users to plan their work ahead of time. 

We extend the conservative backfilling with the concept of slack factor, by 

which the actual departure time of reserved projects can be relaxed up to a certain 

slack, in order to make the algorithm more flexible to support priority scheduling 

where some projects have higher priority than others. The idea of slack factor is not 

new in the area of scheduling research, but up to now, it has not been applied to the 

two-tier scheduling problem like our study. So far, we have developed three core 

scheduling policies including non-preemptive waiting queues for jobs and projects, 

non-preemptive waiting queue for projects and preemptive waiting queue for jobs, and 

preemptive waiting queues for jobs and projects. Our method calculates the slack time 

of a reserved project by multiplying its turn-around time with the system’s slack factor. 

Furthermore, the project’s priority is also taken into account such that only high-

priority projects can preempt the low-priority ones. In order to evaluate the 
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performance of our solution set, we have implemented a discrete-event simulator 

based on CSIM 20 [10]. 

 The rest of this work is organized as follows. In Chapter 2, we first discuss the 

background related to our scheduling problem, including on-line scheduling problem, 

existing two-tier scheduling models, various backfilling algorithms, and data 

structures for advanced resource reservation. In Chapter 3, we introduce the formal 

description of our scheduling problem and its model. In Chapter 4, we describe the 

details of the proposed algorithms and their implementation. Simulation study and 

experiment results are presented in Chapter 5 to verify the performance of the 

algorithms. Finally, Chapter 6 concludes this work with a brief discussion of future 

study. 
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Chapter 2: Background and Related Work 

This chapter first gives a brief overview about on-line scheduling problems 

and its difficulties. Then, some existing two-tier scheduling models are surveyed. 

After that, a variety of backfilling algorithms which have been widely studied in 

literature are discussed in depth. Finally, some existing advanced data structures for 

resource reservation are introduced. 

2.1. On-line Scheduling 

Most classical scheduling problems are concerned with off-line algorithms 

which are given complete information about the scheduling problem at hand and are 

required to output a solution, i.e., schedule, to the problem. In contrast to the off-line 

algorithms, an on-line scheduling algorithm is intended to address a common realistic 

scenario where the scheduler does not have the access to the whole input instances [3]. 

In other words, on-line scheduling decisions must always be made without knowledge 

of any future job arrivals since jobs arrive at the scheduler one by one over time. 

Additionally, some information about jobs, i.e. their service time, is unknown to the 

scheduler initially and during the run-time. They become known only when jobs have 

actually been finished. At the moment when a job is presented to the scheduler, the 

scheduling decision for the job has to be made before the next job arrives. 

Furthermore, the decision is irreversible once it is made, even if we find other 

obviously better schedules afterward.  

In order to evaluate the performance of an on-line algorithm, Sleator and 

Tarjan [11] suggested using competitive analysis. In a competitive analysis, the output 

of an on-line algorithm is compared to an optimal value which might be obtained if 

the entire job inputs were known in advance as the off-line version. An on-line 

algorithm is ρ-competitive if its objective value is no more than � times in comparison 

to the optimal off-line value for any sequences of job inputs. 

Since the assumptions of pure on-line scheduling make it impossible to find 

optimal solutions, some concepts have been introduced in order to handle the variants 

of this class of scheduling problems. For example, semi-online scheduling [12], which 

assumes that partial information about the scheduling problem are available before 

constructing a schedule, has attracted researchers in recent years. The authors in [13, 

14] presented the concept of delaying the scheduling time of a job for a period of time 

and then applying scheduling rules to accumulated current jobs. 
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2.2. Two-tier Scheduling 

There are several variants of two-tier scheduling model which have been 

already studied last few years. Bag-of-Tasks (BoT) application [4, 5] model, which is 

an application whose tasks are identical and independent, is often considered as a 

suitable model for heterogeneous clusters and desktop grid environments. In order to 

minimize the maximum stretch, i.e., the maximum ratio between the actual time a 

BoT application has spent in the system and the time this application would have 

spent if executed alone, the authors in [4] introduced two algorithms: an optimal off-

line and a heuristic on-line for the model. In [5], a set of task selection polices is 

proposed in order to minimize the turn-around time of BoT applications. 

Gopalan and Chiueh [6] designed and implemented a scheduler for periodic 

soft real-time applications with the goal of maximizing the number of applications 

admitted into the system. A periodic soft real-time application consists of a sequence 

of tasks whose execution repeats itself over the lifetime of the application, and there 

is a precedence constraint among the tasks in an application. Furthermore, the 

execution of a sequence of tasks requires time-bound completion.  

The two-tier scheduling model which is introduced in [7] allows preemption in 

resources. In other words, the processing of a job, which represents the ownership of 

resources, may be preempted by another job before its completion. An algorithm 

which aims to prevent deadlock is also proposed in this work. 

2.3. Backfilling Algorithm 

The backfilling algorithm, a way to balance between the goals of utilizing 

system resources and maintaining the FCFS (first come, first served) order of job 

execution [15], was first introduced by Lifka [16]. The implication behind the 

algorithm is that it allows small jobs from the back of the waiting queue to be 

processed before previously submitted jobs that are delayed due to the insufficiency of 

available resources. This principle helps exploit idle resources by backfilling with 

suitable jobs, thereby increasing system utilization and throughput. Figure 1 illustrates 

the difference between the traditional FCFS scheduling and backfilling scheduling. In 

Figure 1, backfilling scheduling allows Job B to be processed ahead of Job A; 

therefore, the resultant job waiting time and resource idle time are reduced 

significantly in comparison with those of FCFS. Backfilling scheduling might lead to 

“starvation” , a phenomenon where some jobs never occupy sufficient resources and 
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hence never start processing because they are constantly delayed by new job arrivals 

that are granted the use of resources ahead of those already waiting in the queue. In 

order to prevent starvation from happening, a backfilling algorithm needs to make 

resource reservation for some of the waiting jobs for future time in advance. One 

should notice here that backfilling algorithms require job service time to be known in 

advance, which in practice is often specified by an upper-bound. 

 

Figure 1: Illustration of how backfilling can reduce job waiting time and idle time of 

resources. 

Aggressive vs. Conservative 

In contrast to aggressive backfilling, conservative backfilling [8, 9] makes 

reservation for every queued job which cannot be executed at a given moment. It 

means that a job can be backfilled on the condition that it does not delay any previous 

jobs in the queue. Clearly, this reduces the number of jobs that can utilize idle 

resources. As a result, its performance tends to be inferior to that of aggressive 

backfilling. For the performance comparison between these two approaches, Mu’alem 

and Feitelson [8] showed that the performance of aggressive backfilling algorithm is 

better than that of conservative backfilling in most cases. However, conservative 

backfilling can remove the above-mentioned weakness of aggressive backfilling 

because of its ability to guarantee job starting time by establishing resource 

reservation for every waiting job.  

There are several variants of backfilling algorithms. The most popular one is 

aggressive backfilling [15, 16], in which only the first job in the queue can receive a 

resource reservation. To put it another way, if an arrived job is the first job in the 

queue and cannot be processed immediately, the algorithm calculates the earliest 

possible starting time for this job using its resource requirement and service time; then, 

the scheduler makes a reservation for this job at this pre-calculated time. Other jobs 

are allowed to backfill only if they do not violate this reservation. The core problem of 

aggressive backfilling is its unpredictability since waiting jobs, except the first one, do 
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not get reservations. Therefore, the algorithm cannot give every job in the queue a 

guaranteed starting time. 

Some variants of backfilling algorithms between aggressive and conservative 

backfilling, for example making reservation for the first few jobs in the waiting queue, 

have also been introduced [17, 18]. The ideas of using an adaptive number of 

reservations were presented by the authors of [17]. In this strategy, jobs are not 

necessarily given reservations until their expected turn-around time exceeds some 

threshold, whereupon they get a reservation. Chiang et al. [18] suggested that four is a 

good number of reservations for compromise between aggressive and conservative 

backfilling.  

Slack-based Backfilling 

In the original backfilling algorithm, a newly arriving job can be backfilled as 

long as it does not delay any existing reservations. In order to make backfilling 

scheduling more flexible and increase resource utilization, slack-based backfilling 

algorithms [19, 20, 21, 22] have introduced the concept of slack factor, by which the 

actual starting time of reserved jobs can be relaxed up to a certain slack. In other 

words, a newly submitted job can move to the head of the waiting queue on the 

condition that it will not delay already existing reservations by more than a specific 

slack factor. In those algorithms, the system’s slack factor is used to control for how 

long jobs will have to wait before the start of execution. 

The idea of slack factor has already been introduced to real time scheduling, 

parallel scheduling, and grid scheduling environments, and has been confirmed to be 

effective [15]. Dynamic backfilling allows the scheduler to overrule a previous 

reservation by a slight delay if doing so can improve system utilization considerably 

[19]. In order to enhance backfilling and support priority scheduling, Talby and 

Feitelson [20] combined three parameters – the target job’s individual priority, 

tunable system slack factor, and the average job waiting time – to assign each waiting 

job a slack value. The authors also provided several heuristics to reduce the search 

space of finding the least costly schedule profile from all possible candidates. The 

cost of a schedule is the sum of costs of all its jobs, and the cost of a job is calculated 

based on its delay and resource requirements. In [21], Ward et al. suggested the use of 

a relaxed backfilling strategy in which a backfill candidate is selected from the job 

waiting queue by considering its waiting time, estimated service time and resource 

requirement together. Bo Li et al. [22] introduced an approach different from previous 
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algorithms such that the slack factor is calculated based on each job’s service time and 

slack-based backfilling with more than one reservation is supported. 

Other Variants of Backfilling 

Lawson and Smirni [23] introduced multiple-queue backfilling which divides 

the system resources into multiple disjoint partitions. Each partition is associated with 

an individual queue, and a submitted job is assigned to a partition and hence the 

associated queue based on its estimated service time. The approach aims at reducing 

fragmentation of system resources reducing the likelihood that a short job is queued 

behind a long job. Backfilling with lookahead [24] algorithms make scheduling 

decisions by considering a set of jobs at once. The algorithms look ahead into the job 

queue and try to find a packing of jobs which maximizes the scheduler’s objective 

using a dynamic programming technique. 

2.4. Data Structure for Advanced Resource Reservation 

Advanced resource reservation is a process of requesting resources for use at 

specific future times [25]. In the cloud environment, it is challenging for the scheduler 

to manage available resources and to allocate them to jobs efficiently because of the 

large number of resources and submitted jobs. Choosing a suitable data structure for 

advanced resource reservation could significantly affect quality of service of a cloud. 

The most common operations for such a data structure are searching available 

resources, adding new reservations and deleting existing ones. In general, data 

structures for advanced resource reservation can be classified into two types: discrete 

[25, 26, 27, 28] and continuous [29]. In the discrete data structure, the reservation 

time is divided into time slots each of which represents a computation time unit. On 

the other hand, each request defines its own time scale in the continuous case. 

Many data structures for advanced reservation have been proposed and widely 

studied in literature. A tree-based data structure is commonly used for admission 

control in network bandwidth reservation [26, 27], where each tree node represents a 

time interval and the amount of reserved bandwidth in its sub-trees. Brown et al. 

proposed Calendar Queue [28] as a priority queue for future event set problems in 

discrete event simulation. In the Calendar Queue, events are stored in buckets which 

represent a fixed small time interval. Then, events which are scheduled at the same 

time interval are stored in a sorted linked list. In [25], Sulistio et al. proposed GarQ 

(Grid Advance Reservation Queue), which combines Calendar Queue and Segment 
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Tree, for administering advanced reservation in the grid environments. Qing Xiong et 

al. [29] introduced a linked-list data structure for advanced reservation admission 

control. Among afore-mentioned data structures, the linked list is the simplest and 

most flexible at all since accepted reservations can be inserted into the list based on 

their starting time. Operations can be easily performed on the linked-list data structure 

by iterating through the list from the head node. However, if there are many 

reservations for small time intervals, the linked-list data structure can become very 

inefficient for running these operations since it needs to traverse through the linked 

list to find the correct position for each reservation. 
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Chapter 3: Problem Description 

This chapter first describes the system model and scheduling models of our 

work. Then, the problem statement is introduced. Figure 2 provides a schematic 

description of our scheduling model, where the notations for this model are shown in 

Table 1. 

3.1. Two-tier System and Scheduling Models 

System Model 

In our system model, the cloud has �  types of resources. Each type of 

resources has a limited capacity, and capacity �� 	denotes the maximum number of 

type-i resources that are available for use simultaneously. A resource in the cloud can 

be allocated to only one job at any time; i.e., a resource cannot be shared among 

multiple jobs concurrently. Let 	 = {�� 	|	1 ≤ � ≤ �	}  denote a set of � types of 

resources of the system. 

A project with multiple jobs represents a request submitted by the cloud’s 

users. Let � = {	��	|	1 ≤ � ≤ |�|	} denote a set of projects of the cloud where |�| is 

the number of projects. A project 	�� arrives to the cloud at time	���. It is also the 

earliest time when the cloud can start processing the jobs that belong to	�� . Let 

	�� = �	��,�	|		1 ≤ � ≤ |��|�  denote a set of |��|  jobs that are to be processed for 

project	��. 

The processing of job ��,�	requires a service time	���,�. The moment when the 

processing of job ��,� begins is referred to as its starting time		���,�, and the moment 

when the processing of job ��,�	is completed is referred to as its finish time	� �,�. Let  

!���,� denote the latest starting time of job	��,�. The resource requirement of job ��,� is 

given by		"�,� = {#�,�� 		|1 ≤ � ≤ �}	where	#�,��  is the number of type-i resources 

required by	��,�,	0 ≤ #�,�� ≤	��.  

It is assumed that job service time and resource requirement are precisely 

determined during the pre-processing stage. Besides, there is non-precedence 

constraint between jobs. In other words, the cloud can process a set of jobs in any 

order. It is further assumed that the processing of a job is non-preemptive. Once it is 

started, it cannot be stopped until its completion. Next we define important time 

notations for projects. 
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Definition 1 (Project starting time): the starting time �%� of a project ��, defined as

 �%� =  ��&(��. ��) where    ��. �� = � ���,� |  1 ≤ � ≤ |��|�, (1) 

is the time moment when the first job of  �� starts its processing.  

Definition 2 (Project departure time): the departure time �.� of a project ��, defined 

as 

�.� =  ��/(��. � ) where    ��. � = � � �,� |  1 ≤ � ≤ |��|�, (2) 

is the time moment when the last job of  �� finishes its processing. 

Definition 3 (Project waiting time): the waiting time  �0� of a project  ��, defined as

 �0� = ��� − �%�,  (3) 

is the time period from its arrival time ��� to its starting time �%�.  

Definition 4 (Project running time): the running time �2� of a project ��, defined as

 �2� = �.� − �%�,  (4) 

is the time period from its starting time �%� to its departure time �.�. 

Definition 5 (Project turn-around time): the turn-around time �&�  of a project  �� , 

defined as  

�&� = �.� − ���,  (5) 

is the time period from its arrival time ��� to its departure time �.�.  

Table 1: Notations used in the two-tier system and scheduling models. 

Notations Meaning 
Resource 

	 = {��  | 1 ≤ � ≤ � } 
A set of � types of resources of the system where �� is the capacity of type-� 
resources 

Project 

� = { �� | 1 ≤ � ≤ |�| } A set of projects of the cloud where  �� is the �-th project and |�| is the number of 
projects 

�� = � ��,� |  1 ≤ � ≤ |��|� 
The set of jobs which are required to be processed for the �-th project where 
 ��,� is the �-th job of the �-th project and |��| is the number of jobs 

��� The arrival time of the �-th project  

�%� 
The starting time of the � -th project; �%� =  ��&(��. ��) where   ��. �� =
� ���,� |  1 ≤ � ≤ |��|� 

�.� The departure time of the � -th project;�.� =  ��/(��. � ) where  ��. � =
� � �,� |  1 ≤ � ≤ |��|� 

�0� The waiting time of the �-th project; �0� = ��� − �%� 
�2� The running time of the �-th project; �2� = �.� − �%� 
�&� The turn-around time of the �-th project; �&� = �.� − ��� 

�34 
The mean turn-around time of projects; �34 =  5

|6|
 ∑  34�

|6|
�85 , where |P| is the  

number of projects  
Job 

���,� The service time of the �-th job of the �-th project 
���,� The starting time of the �-th job of the �-th project 

 !���,� The latest starting time of the �-th job of the �-th project 
� �,� The finish time of the �-th job of the �-th project 

"�,� = {#�,�
�   |1 ≤ � ≤ �}  

The resource requirement of the � -th job of the � -th project where  
#�,�

�  is the number of resource type � 
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Scheduling Model 

Figure 2 illustrates the scheduling model of this work. In the system model, 

projects and their jobs arrive to the cloud one by one over time. When project  �� and 

its jobs �� arrive to the cloud, these jobs could be processed immediately if resources 

are sufficient and the processing does not delay any existing reservations over the 

maximum number of allowable times. Otherwise, the cloud scheduler must make the 

scheduling decision immediately. The scheduling decision determines the starting 

time ���,� for each job ��,� ∈ �� and the departure time �&� of the project ��. Then, 

the cloud scheduler calculates the slack time for the project and the latest starting time 

for the jobs. After that, these jobs are granted resource reservations. One should notice 

that here new incoming jobs can preempt a job in the queue by its latest starting time. 

Similarly, the departure time of a waiting project may be delayed by new incoming 

projects several times before the project actually departs from the cloud, but it cannot 

exceed the slack time of the project. 

3,1j2,2j2,1j

1,2j

1,uj2,uj

1,1j

 

Figure 2: Two-tier project and job scheduling model. 

A good practical example for our two-tier scheduling model is test cloud 

which provides testing services for customers across the Internet. In a test cloud, a test 

project represents a test request submitted by the cloud’s customers. Once the cloud 

accepts a test project, it is obligated to complete a set of test jobs for system under test 

specified in the test project. The processing of a test job requires a certain amount of 

test resources such as test machines, test equipment, etc. Since the cloud’s customers 

need to plan their work ahead of time, the departure time of submitted test projects 
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should be informed to customers at the time moment when the projects are accepted 

by the cloud. 

3.2. Problem Statement 

The problem statement of our work can be described as follows. Given a set of 

resources R and a set of projects	P, each project �� ∈ P consists of a set �� of jobs. 

Each job ��,� ∈ ��	requires a set of resources	"�,� for its processing. The formula 

�34 = 	 5

|6|
	 ∑ 	�&�

|6|
�85 ,    (6) 

is to calculate the mean turn-around time of projects. The objective of this work is 

determining the starting time 	���,� of each job	��,�, of project ��, ∀	�� ∈ P	such that 

the mean turn-around time �34 is minimized. 
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Chapter 4: Two-tier Project and Job Scheduling with Backfilling, 

Slack Factor and Priority 

In this chapter, we describe our proposed scheduling policies, developed for 

solving the two-tier scheduling problem defined in chapter 3. In Section 4.1, we give 

an overview on two-tier backfilling with a slack factor of project turn-around time. 

The details of our approach are elaborated in Section 4.2, Section 4.3, and Section 4.4. 

Finally, Section 4.5 introduces a data structure for resource reservation which is used 

to implement our proposed scheduling policies. 

4.1. Approach Overview 

As mentioned in the first chapter, one of the basic requirements for our 

scheduling model is predictability. In other words, a project should be granted a 

guaranteed departure time at the project’s arrival time. This requirement can be 

satisfied by conservative backfilling algorithm since it provides resource reservation 

for every waiting job. Besides, the system must calculate a precise estimate on job 

service time and resource requirement before applying the scheduling algorithm, 

which is satisfied by our scheduling model as well. From this point of view, the 

choice of conservative backfilling for our problem is straightforward. 

In order to make the algorithm more flexible and support priority scheduling, 

we enhance conservative backfilling with the concept of slack factor, by which the 

departure time of reserved projects can be delayed for up to a certain slack time. The 

idea of slack factor has already been introduced to many scheduling problems, and 

has been confirmed to be effective in solving these problems [19, 20, 21, 22]. 

However, up to now, it has not been applied to two-tier scheduling problem like our 

study does.  

Our method calculates the slack of each project  �� by multiplying its turn-

around time �&�with a system parameter slack factor ( =>). The actual departure time 

of the project can be relaxed to a value in the time range [�.�, �.� + �&� ∙ =>]. When 

the latest departure time of the project is determined, we can easily calculate the latest 

starting time !���,� of each job ��,� which belongs to �� by 

!���,� = �.� + �&� ∙ => − ���,�.  (7) 
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Newly arriving jobs cannot delay job ��,�	beyond its latest starting time	!���,� set by 

the cloud scheduler. 

Furthermore, another system parameter �C  (preemption limit) is also 

introduced to control the number of preempted projects not to exceed	�C . The 

implication of using this parameter is that we can limit the number of projects whose 

departure time will be re-arranged. By doing so, the behavior of the cloud scheduler is 

controlled as well.  

Job finish time and project departure time could be determined at the project 

arrival time or be relaxed later. In general, we have three core scheduling policies as 

shown in Table 2 where the last one has two versions: single type of projects, two 

types of projects (high-priority and low-priority ones). For each scheduling policy, we 

have developed a scheduling algorithm with particular attributes, i.e. objective, 

priority scheduling, etc. Hence, it is responsibility of the cloud administrator to select 

an appropriate scheduling policy. 

Table 2: Two-tier scheduling policies 

Scheduling policies Objective Algorithm Priority 
scheduling 

Job  
finish time 

Project  
departure time 

Non-preemptive waiting 
queues for jobs and 
projects 

Minimize 
project turn-
around time 

Two-tier Strict 
Backfilling 

No 
Determined at 
project arrival 
time 

Determined at 
project arrival 
time 

Non-preemptive waiting 
queue for projects and 
preemptive waiting queue 
for jobs 

Minimize 
project turn-
around time 

Two-tier Flexible 
Backfilling 
(SF = 0) 

No Flexible 
Determined at 
project arrival 
time 

Preemptive 
waiting 
queue for 
jobs and 
projects 

Single type 
of projects 

Minimize 
project turn-
around time 

Two-tier Flexible 
Backfilling 
(SF > 0.0) 

No Flexible Flexible 

Two types 
of projects 

Minimize 
high-priority 
project turn-
around time 

Two-tier Priority 
Backfilling 

Yes 

High-priority: 
Determined at 
project arrival 
time  

Low-priority: 
Flexible 

High-priority: 
Determined at 
project arrival 
time  

Low-priority: 
Flexible 

 

4.2. Non-preemptive Waiting Queues for Jobs and Projects  

In this scheduling policy, job finish time � �,�	and project departure time �.� 

are determined when they arrive to the system. New jobs can be backfilled only if 

they do not delay any existing reservations. For this policy, we have designed Two-

tier Strict Backfilling (2TSB) algorithm whose pseudo-code is showed in Figure 3. 
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2TSB is an algorithm similar to first-fit conservative backfilling since submitted jobs 

are scheduled at the earliest possible starting time. When project  �� and its jobs �� 

arrive to the system, they are scheduled as follows: for each job  ��,� of ��, if it is 

feasible to allocate enough resources for  ��,� and the processing of  ��,� does not delay 

any existing reservations,  ��,�  will be backfilled to start immediately (line 4). 

Otherwise, the earliest possible starting time of  ��,� is determined (line 6) by the 

operation ��2!����=��2��&D3�E�. Since the algorithm does not allow newly arrived jobs 

to delay existing reservations, ���,� and !���,� are the same (line 7). Finally, the job is 

granted a resource reservation (line 8). 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo code of Two-tier Strict Backfilling algorithm 

4.3. Non-preemptive Waiting Queues for Projects and Preemptive Waiting 

Queue for Jobs 

The design philosophy behind this policy is that we try to accommodate newly 

submitted jobs by delaying the job finish time of reserved ones without changing the 

departure time of the waiting projects. Put it in another way, newly arrived jobs can 

delay only the starting time of any queued jobs which are not the last job of the 

waiting projects, i.e. the job with the largest finish time. Given slack factor => = 0, 

the latest starting time !���,� of job  ��,� cannot be greater than �.� − ���,�. Two-tier 

Flexible Backfilling (2TFB) algorithm (=> = 0) is introduced to deal with this policy. 

Figure 4 describes the pseudo code of the algorithm, and the steps of the algorithm are 

summarized as follows: the steps listed on lines 2-4 are similar to those of 2TSB since 

job ��,� can start immediately as long as there are sufficient resources for job  ��,� and 

Algorithm 1: FGH_FJKL_MNLJONPQORSJTTJUV( ��) 
1 Begin 

2  for each ��,� ∈  �� do 

3   If ( ��,�  %�& ���2� �EE�.����!W) then 

4    start  ��,� 

5   else 

    # Find the earliest starting time for job ��,� 

6     ���,� ← ��2!����=��2��&D3�E� (��,�) 

 # Set up a resource reservation for the job ��,� 

7    !���,� ←  ���,� 

8    �..	���2����Y&(��,�)  

9   end-if 

10  end-for 

11 End 
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no existing reservations are delayed over their latest starting time. Otherwise, the set 

of all feasible backfilling times, Z3, is determined for job  ��,� (line 6) based on the 

current scheduling plan by the operation  ����[!�Z�%\ �!!�&D3�E�� . A feasible 

backfilling time [� ∈ Z3 is the starting time of a gap in the job waiting queue at 

which #�,�
� ≤  ��, ∀�: 1 ≤ � ≤ �, where �� is the number of available type-� resources 

at the time slot [�. Then, we set up a resource reservation for job  ��,� (line 10) at a 

feasible backfilling time [� ∈ Z3. After that, the operation �ℎ� �	���2����Y&� (line 11) 

checks the availability of system resources and may relax some existing reservations 

if necessary. One should notice that if there is more than one possible reservation 

which could be delayed by the operation �ℎ� �	���2����Y&�, the reservation with the 

largest latest starting time is chosen. In this scheduling policy, the number of 

allowable preempted projects �C is obviously zero. If the operation �ℎ� �	���2����Y&� 

fails and job  ��,� cannot be backfilled at [�, then the current scheduling plan =^_` is 

restored (line 13) and the next feasible backfilling time is considered. Note that there 

is always at least one feasible backfilling time at which the job can be backfilled 

successfully, that is the job’s earliest possible starting time. After scheduling all 

jobs ��,� ∈  �� and determining the turn-around time �&�  successfully, the algorithm 

updates the latest starting time !���,� for each job (line 21-22). 

4.4. Preemptive Waiting Queues for Jobs and Projects 

 This scheduling policy allows both job finish time and project departure time 

to be re-arranged after a project has been accepted only if the resultant delay does not 

exceed the maximum amount of delay defined by the slack factor. Furthermore, we 

extend the policy into two versions: single type of projects, and two types of projects. 

In the former, all projects have the same priority, which means that new projects can 

delay any existing reservations up to the maximum number of allowable times. On the 

other hand, the latter policy takes priority into account such that only some high-

priority projects can preempt the low-priority ones. 

Single Type of Project 

The difference between this policy and 2TFB is slack factor => > 0. As a 

result, both waiting projects and jobs could be preempted by the newly arrived ones. 

The maximum amount of allowable delay for project �� is �&� ∙ =>, and the starting 

time of job ��,� can be relaxed to a value in the time range b���,�, �.� + �&� ∙ => −
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���,�c. This, in comparison with 2TFB, could increase the number of successfully 

backfilled jobs. Two-tier Flexible Backfilling algorithm with the slack factor	=> > 0 

(2TFB-SF) can handle this scheduling policy. Besides, 2TFB-SF uses parameter	�C >

0 to control the number of preempted projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Pseudo code of Two-tier Flexible Backfilling algorithm 

Two Types of Projects 

This scheduling policy considers a realistic scenario of a cloud environment 

where some projects are more important than the others. Therefore, they need to be 

severed as soon as possible. Here we just consider two types of projects in this 

scheduling policy, i.e., high-priority project and low-priority project. We design this 

Algorithm 2: FGH_FJKL_dTKeJfTKPQORSJTTJUV(	��, =>, �C) 

1 Begin 

2  for each ��,� ∈ 	 ��	do 

3   If (	��,� 	%�&	���2�	�EE�.����!W) then 

4    start 	��,� 

5   else 

    # Find all the feasible backfilling times for the job ��,� 

6    Z3 ← 	 ����[!�Z�%\ �!!�&D3�E��	(��,�) 
7    Let  =^_`  be the current scheduling plan  

8    for each [� ∈ Z3 do 

9     ���,� ← [� 
     # Set up a resource reservation for job ��,� 

10     �..	���2����Y&(��,�)  

# Check the availability of system resource and  

# delay existing reservations in order to  

# accommodate job ��,� if necessary.  

11     ��%%��. ← �ℎ� �	���2����Y&�(��,� , �C) 
12     if (! ��%%��.) then 

13      restore =^_` 

14     else 

15      break 

16     end-if 

17    end-for 

   end-if 

18  end-for 

19  for each ��,� ∈ 	 �� do 

# Update the latest starting time for the resource reservation of 

# job ��,� 

20   !���,� ← �.` 	 + (�&�,� ∙ =>) − ���,�   

21   ��.���C�����=��2��&D3�E�(��,�)  

22  end for 

23 End 
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Two-tier Priority Backfilling (2TPB) in order to fulfill the requirement of the 

scheduling policy such that high-priority projects are scheduled by 2TFB-SF while 

low-priority projects are scheduled by 2TSB. Moreover, the priority of a project, 0 ≤

��� ≤ 1, is taken into account in recalculating the slack factor, => = (1 − ���) ∙ =>, 

for each project. 

 The steps of 2TPB are briefed in Figure 5. If the newly arrived project �� is 

high-priority, it is scheduled by 2TFB-SF (line 4) with slack factor => recomputed for 

�� (line 3). Otherwise, it is scheduled by 2TSB (line 6). After that, we update the 

latest starting time !���,� for each job  ��,� ∈  �� with recomputed slack factor => (line 

8-10).  

 

=> (line 8-10). 

 

 

 

 

 

 

Figure 5: Pseudo code of Two-tier Priority Backfilling algorithm 

4.5. Case study: An Example Run for 2TSB and 2TFB-SF  

An example run for 2TSB and 2TFB-SF is illustrated in Figure 6. Note that 

there are two types of resources. Thus, we plot the schedules in two blocks. Table 3 

depicts the inputs of these two algorithms, which are a sequence of four submitted 

projects and their parameters.  

In Figure 6(a), the schedule for the first 4 jobs is the same for both algorithms 

at time slot 2. Job �h,5 is backfilled successfully at time slot 2 by both algorithms. The 

difference appears when job �h,i is scheduled. In 2TSB, a potential time slot for job 

�h,i to run is time slot 3, but doing so would delay the reservation of job �i,5, which is 

not allowed by 2TSB. Therefore, job �h,i is scheduled at time slot 7. On the other 

hand, job �h,i could begin to execute at time slot 3 under 2TFB. Doing so would delay 

Algorithm 3: FGH_FJKL_jLJHLJNkPQORSJTTJUV( ��, =>, �C) 

1 Begin 

2  if (�� �� ℎ�Dℎ_�2�Y2��W) 

3   => ←  (1 − ���) ∗ => 
4   30Y_3��2_>!�/�[!�Z�%\ �!!�&D(��, =>, �C) 
5  else 

6   30Y_3��2_=�2�%�Z�%\ �!!�&D(��)  

7   for each ��,� ∈  �� do 

8    => ←  (1 − ���) ∙ => 

9    !���,� ← �.� + (�&�,� ∙ =>) − ���,�   

10    ��.���C�����=��2��&D3�E�(��,�)    

11   end-for 

12  end-if 

13 End 
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job�i,5’s execution from time slot 6 to time slot 7, which is acceptable because the 

latest starting time of job �i,5 is 7.2 (!��i,5 = 7.0 + 6.0 ∙ 0.2 − 1.0 = 7.2).  

When job �p,5 arrives, it is scheduled by those two algorithms as shown in 

Figure 6(b). Time slot 6 is a potential flexible backfilling time for the job. 

Unfortunately, this choice will delay job �i,5 beyond its latest starting time (see Figure 

6(c)).  

The performance of these two algorithms is compared in Table 4. As can be 

seen from the table, the mean project turn-around time �34 is reduced around 8% by 

2TFB-SF in comparison with the 2TSB’s performance. 

 

Table 3: A sequence of four submitted projects and their parameters 

qr �5 �i �h �p 

sr,t �5,5 �5,i �i,5 �h,5 �h,i �p,5 
NQr 0 1 2 5 

NKr,t 2 6 1 1 4 2 
ur,t

v  1 1 1 1 2 1 
ur,t

w  2 2 3 2 1 2 
x 2 

yv 3 
yw 4 
Md 0.2 
jz ∞ 

 

Table 4: Performance of an example run for 2TSB and 2TFB-SF 

 qr �5 �i �h �p 

 sr,t �5,5 �5,i �i,5 �h,5 �h,i �p,5 
 NKr 0 1 2 5 

Two-tier Strict 
backfilling 

NSr,t 2 6 7 3 11 9 
NUr 6 6 9 4 

jF| 6.25 
Two-tier 
Flexible 

backfilling 

NSr,t 2 6 8 3 7 10 
NUr 6 7 5 5 

jF| 5.75 
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Figure 6: An example run for 2TSB and 2TFB 

(a) Schedules for the first four jobs are the same for both the algorithms. Job3,2 is 
moved to the head of the waiting queue by Two-tier Flexible Backfilling algorithm. 

(b) Schedules for four projects 

(c) Time slot 6 is a potential backfilling time slot for job4,1’s execution. 
Unfortunately, doing so will delay job2,1 beyond its latest starting time. 
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4.6. Two-tier Backfilling Implementation  

In order to implement the proposed algorithms, it is important to organize the 

information of resource availability and reservations in a data structure which can 

provide efficient operations for searching, adding, deleting, and updating. In this 

section, we introduce a data structure for advanced resource reservation which is used 

to implement our proposed scheduling algorithms. The data structure is based on the 

linked-list data structure [29] because of its simplicity and flexibility. 

The description of our proposed data structure is illustrated in Figure 7, while 

Table 5 shows the implemented operations on the data structure. The data structure is 

a linked-list-based data structure. Each node in the list is defined as 

a &Y.�(��E��!Y�, ����!�[�!��W, 2���2����Y&) , where ��E��!Y�  denotes a time 

moment at which changes in reservations or resource availability occur, ����!�[�!��W 

denotes the number of available resources from the node to the next node, and 

2���2����Y&�  is a linked-list of resource reservation records at ��E��!Y� . Each 

record is a 5-tuple information consisting of project index	�, job index	�, job service 

time	���,�, the latest starting time of job !���,� and the resource requirement	"�,�.  

 

 

Figure 7: Data structure used for resource reservation 
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Table 5: Data structure operations 

Operations Explanation 

��2!����=��2��&D3�E�}��,�~ Search the earliest possible starting time for ��,� 

 ����[!�Z�%\ �!!�&D3�E��}��,�~ Find all the feasible backfilling times for	��,�. 

�..	���2����Y&(��,�) Add a resource reservation for ��,� at ���,� 

.�!���	���2����Y&(��,�) Delete the existing reservation of waiting job ��,� 

�ℎ� �	���2����Y&�(��,�, 	�C) Check the resource availability and delay some reservations to 

accommodate	��,�  if necessary, given that the number of delayed 

projects	≤ 	�C.  

 

  



 

24 

 

Chapter 5: Experimental Evaluation 

 This chapter presents the experimental evaluation where the effectiveness of 

proposed algorithms is verified. We first introduce the simulation methodology and 

then present the experimental results and the analysis. 

5.1. Simulation Methodology 

 In order to evaluate the proposed scheduling algorithms, we have developed a 

simulator for our scheduling problem. The simulator is implemented based on CSIM 

20 for Java [10] which is a simulation package with a process-oriented discrete-event 

scheduling model. CSIM 20 has been widely used to simulate complex systems in 

academia as well as industry. 

Table 6: Simulation parameters 

 Parameters Distribution Random function 
parameters 

Project 
Inter-arrival time ��� Exponential  ��� can be adjusted 

Number of jobs |��| Normal  |��| = 5.0	; �	��= 2.0 

Job 
Service time ���,� Exponential  �� = 500.0 

Resource requirement #�,�
�  Exponential  #�,�

� = 2.0 

Resource 
Types of resources � Constant 5 

Capacity of type-�	resources �� Uniform 
��&��

= 	20	 
��/��

= 40 

 

 Table 6 summarizes our simulation parameters which are randomly generated 

according to some types of distributions. One should notice that the values of two 

parameters, |��|	and	#�,�
� , are integer parts of the floating-point value generated by 

random functions. In our experiments, the inter-arrival time ���  between any two 

successive project arrivals is exponentially distributed with an adjustable mean value 

in order to control project arrivals. By doing so, we can observe the performance of 

the proposed algorithms under different system loads. All the simulation results 

shown here are obtained by averaging the results of 5 simulation runs with different 

seeds for random number generation. Each simulation run is terminated upon the 

successful completion of 1000 projects. 

The overall performance of the proposed scheduling algorithms could be 

evaluated by two major metrics: mean project turn-around time and average resource 

utilization. The former is used to measure the performance from the customer’s point 



 

25 

 

of view, while the latter is the most common system-centric metric. However, it is 

shown that the average resource utilization does not change notably under different 

scheduling policies. Thus in the result analysis section, we do not present the results 

in terms of this metric.  

5.2. Result Analysis 

Job Scheduling vs. Project Scheduling 

In this experiment, we compare the performance of three algorithms: Two-tier 

Strict Backfilling (2TSB), Two-tier Flexible Backfilling with SF = 0 (2TFB), and 

Two-tier Flexible Backfilling with SF > 0 (2TFB-SF). For 2TFB-SF, we use the 

parameters 	=> = 0.5 and	�C = ∞. 2TSB algorithm is used as the baseline for the 

performance comparison purposes. In addition to the mean project turn-around 

time	�34, the mean job turn-around time	�34	, which is defined as  

  �34 = 	
5

|6|
∑ 5

|��|
∑ 	(	� �,� −	���

|��|
�85 )	|6|

�85      (8) 

is another performance metric to investigate. 

  

(a) (b) 

Figure 8: Job scheduling vs. Project scheduling 

As shown in Figure 8(a), it is not surprising that the mean job turn-around 

time is reduced considerably by 2TFB-SF algorithm because the effectiveness of the 

concept of slack factor has already been confirmed in several existing one-tier 

scheduling works [20, 21, 22]. Furthermore, the reduction in the mean job turn-around 

time greatly depends on the system load. For example, for the case where the mean 
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project inter-arrival time is set to 10, the performance difference between 2TSB and 

2TFB-SF is about 4000 time units, which means a 7.5% improvement in the mean job 

turn-around time. On the other hand, in the case of the mean project inter-arrival time 

being set to 160, the difference is merely 700 time units but an improvement of 15.5%. 

Figure 8(a) also demonstrates that 2TSB and 2TFB have almost identical performance 

for all the values of the mean project inter-arrival time used in this experiment. This 

can be explained by the fact that the opportunities of carrying out the flexible 

backfilling mechanism are rare in 2TFB because of		=> = 0. 

Figure 8(b) clearly indicates that the performance of 2TSB, 2TFB, and 2TFB-

SF in terms of the mean project turn-around time is roughly the same. This observed 

phenomenon can be explained by Figure 9 where 2TFB and 2TFB-SF can reduce 

neither the mean project waiting time nor the mean project running time. Take 2TFB-

SF for example; on the average, the mean project waiting time is decreased by 5% to 

33% when the mean project inter-arrival time is changed from 10 to 160, but 

meanwhile, the mean project running time is increased by 0.7% to 7%. These results 

indicate that 2TFB-SF can decrease the waiting time of the first job of a project but 

lead to an increase in the waiting time of other remaining jobs of the project. Overall, 

adopting 2TFB-SF does not lead to a significant improvement on the mean project 

turn-around time. 

 

  

(a) (b) 

Figure 9: Mean project waiting time vs. Mean project running time 

0

5000

10000

15000

20000

25000

30000

10 20 40 80 160

P
ro

je
ct

 w
a

it
in

g
 t

im
e

 [
ti

m
e

 u
n

it
]

Project inter-arrival time

2TSB 2TFB 2TFB-SF

0

10000

20000

30000

40000

50000

60000

10 20 40 80 160

P
ro

je
ct

 r
u

n
n

in
g

 t
im

e
 [

ti
m

e
 u

n
it

]

Project inter-arrival time

2TSB 2TFB 2TFB-SF



 

27 

 

In order to understand more about the relationship between two metrics �34 

and	�34, we conduct another experiment whose results are shown in Figure 10. In this 

experiment, we measure and observe the performance of 2TFB-SF while varying the 

=> parameter. The experiment results show that using larger slack factors improves 

the mean job turn-around time significantly. However, this causes a modest increase 

in the mean project turn-around time. Based on our observation, the decrease of 

�34	does not lead to the decrease of	�34. 

 

(a) 

 

(b) 

Figure 10: The impact of slack factor SF on 2TFB-SF 

To sum up, although 2TFB and 2TFB-SF can reduce the mean job turn-around 

time notably in comparison with 2TSB, the improvement on the mean project turn-

around time is negligible. One can suggest that 2TSB might be a good choice for two-

tier cloud scheduling since it achieves the same performance as 2TFB and 2TFB-SF 

in terms of the mean project turn-around time, but its complexity is comparatively 

light weight. 

The Impact of Priority Scheduling 

 In order to test how well Two-tier Priority Backfilling algorithm (2TPB) 

schedules high-priority projects, we devise the following two scenarios for the 

experiments. In the first scenario, all the submitted projects are scheduled by 2TSB. 

On the other hand, 2TPB is used to schedule projects in the second scenario. High-

priority projects are given the priority value ���	= 1.0, while the rest low-priority 

projects are given ���	= 0.0.  In both of these two scenarios, the probability that a 

submitted project is high-priority is 1/5. Since the performance of 2TPB can be 
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influenced by the slack factor =>	and the preemption limit	�C , we conduct the 

following two experiments to observe the effect of these parameters. 

 

Figure 11: Improvement on the mean project turn-around time by 2TPB algorithm 

with differential values of slack factor SF 

In the first experiment, we study the performance of 2TPB with �C = ∞	by 

observing the mean project inter-arrival time ��� and slack factor	=>. Figure 11 shows 

the improvement on the mean turn-around time of all the high-priority and low-

priority projects in comparison with the 2TSB’s performance. As expected, 2TPB 

decreases the mean turn-around time of the high-priority projects by 6% to 27% but 

increases the turn-around time of others by 1% to 26% when the value of (���,	=>) is 

increased from (10,0.2) to (160,1.0). Surprisingly, the mean turn-around time of all 

the projects remains almost unchanged except for the last case where the value of 

(���,	=>) is (160, 1.0). For the last case, the mean turn-around time is increased by 

16%.  

Figure 12 presents the results of the second experiment in which the 

performance of 2TPB with =>	 = 0.5	is measured at different values of the mean 

project inter-arrival time ��� and preemption limit	�C. The results are similar to those 

in the first experiment. The mean turn-around time of all the projects stays stable 

except for the case with the lowest loading of project arrivals. As the value of	(���,�C) 

increases from (10,1) to (160,∞), the mean turn-around of the high-priority projects is 
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reduced remarkably from 1.5% to 20%. On the other hand, this also leads to an 

increase around 0.01% to 10.7% in the mean turn-around time of the low-priority 

projects. 

 

Figure 12: Improvement of project turn-around time of 2TPB with differential limits 

on the number of allowable delayed projects PL 

The above experimental results indicate that 2TPB works well with priority 

scheduling where some projects are preferred over the others. Besides, 2TPB does not 

lead to a general degradation in system service in most cases. Since two system 

parameters => and �C have a strong impact on the mean turn-around time of both 

types of projects, the system behavior can be controlled by adjusting these parameters. 
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Chapter 6: Conclusions and Future Work 

In this work, we study a two-tier scheduling problem which is present in the 

cloud computing environments. This scheduling problem differs from the traditional 

one-tier scheduling problems since a submitted project consists of multiple jobs each 

requiring several resources for its processing. In order to reduce cloud service’s turn-

around time and support priority scheduling, we have developed a set of scheduling 

algorithms of different attributes. All the algorithms are derived from conservative 

backfilling algorithm, but enhanced with the concept of project’s slack which is 

calculated by multiplying project turn-around time with a system parameter slack 

factor. Besides, another system parameter preemption limit is also proposed to control 

the behavior of the cloud scheduler. 

The algorithms developed in this study have been experimentally evaluated 

under different system loads by computer simulation. The experimental results 

indicate that Two-tier Flexible Backfilling with => > 0 (2TFB-SF) can reduce the job 

turn-around time by 7.5% to 15.5% and achieve almost the same performance in 

terms of the mean project turn-around time metric as Two-tier Strict Backfilling 

(2TSB) when the mean project inter-arrival time is changed from 10.0 to 160.0. Based 

on these results, we also reach an interesting conclusion that the decrease in the mean 

job turn-around time does not always lead to a decrease in the mean project turn-

around time. 

The experimental results also indicate that Two-tier Priority Backfilling 

(2TPB) can efficiently reduce the mean turn-around time of high-priority projects, but 

does not lead to an increase in the mean turn-around of all the projects in most cases. 

Furthermore, the behavior of the algorithm can be easily controlled by tuning two 

system parameters: slack factor SF and preemption limit PL, whose impact is 

analyzed in this work as well. More specifically, the mean turn-around time of high-

priority projects is decreased from 6% to 27% when the value of (���,=>) is increased 

from (10,0.2) to (160,1.0). As the value of (���,�C) is relaxed from (10,1) to (160,∞), 

the mean turn-around time of high-priority projects is reduced from 1.5% to 20%. 

Our proposed algorithms satisfy one fundamental requirement of the two-tier 

scheduling problem that a project should be granted a guaranteed departure time at the 

project’s arrival time. However, doing so might decrease the jobs’ backfilling 

opportunities since we must reserve resources for all the waiting jobs that have been 
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granted. Hence, the project turn-around time cannot be reduced considerably by our 

proposed algorithms. For future work, we plan to consider a less conservative 

backfilling approach in which only the jobs belonging to the first project in the 

waiting queue can receive resource reservations. Obviously, this less conservative 

approach will degrade the predictability of two-tier backfilling algorithms, but it may 

bring a more considerable reduction in cloud service’s turn-around time.  

Furthermore, an optimal algorithm for the off-line version of the scheduling 

problem, in which all projects’ characteristics are known beforehand, will be studied 

in our future work. Other scheduling objectives, i.e. project success ratio, cloud 

provider revenue, are considered as well.  
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