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Abstract 

Due to the high demand of spectrum utilization, cognitive radio (CR) network has been 

a promising solution to the problem of spectrum scarcity by using dynamic spectrum 

access technique. The CR networks is applied to the original network (or primary 

network) without modifying the original network. In this paper, we studied one of the 

CR network architectures, CR network access architecture, where the CR base stations 

(CRBSs) demand spectrum resources from the primary network and distribute them to 

the CR users. We applied an economical Cournot Game model to the system where the 

CRBSs are the players and compete for better performance in this game. In order to 

optimize the game, we proposed a stochastic learning (SL) based scheme for the CRBSs 

to adjust the demand amount of resources based only on the action-reward history, 

which means there is no need for a centralized controller. We proved that the SL-based 

algorithm leads the system to converge toward a Nash Equilibrium (NE) point. 

Numerical results correspond to the proof. The results also show that the system 

performs well in terms of the total utility comparing with other schemes.  
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認知無線網路：賽局模型與統計學習法之自我組織演算法 

研究生：林震豪 指導教授: 黃經堯 博士 

國立交通大學 

電子工程研究所 

摘要 

為因應頻寬上的需求及使用效率，認知無線 (cognitive radio)技術已被視為

一可行且有效的解決方法，該技術能解決目前頻寬使用上的一大問題，也就是

頻寬使用的分散性，統計發現一般用戶並不會持續地使用該頻寬，造成頻寬上

的頻寬洞 (spectrum hole)，頻寬使用率大幅降低，認知無線技術將認知無線

網路建構在已經存在的主網路上，偵測並且使用主網路的頻寬洞，本論文主要

研究認知無線網路的其中一個架構─認知無線網路通路 (CR network access 

architecture)，該架構主要由一頻寬經濟人 (spectrum broker)蒐集認知無線

網路的資訊，進而分配頻寬資源給各個認知無線網路的認知無線基地台 (CR 

base station)，認知無線基地台的用戶能從這些基地台使用主網路多餘的頻

寬，我們將該架構以一經濟學模型─古諾模型 (Cournot game model)來描述，

認知無線基地台對頻寬經濟人提出頻寬資源需求，但同時也必須考慮競爭者，

也就是其他的認知無線基地台，去評估需求大小，我們使用統計學習 

(stochastic learning)演算法，調整每個認知無線基地台對頻寬經濟人所提出

的頻寬資源需求，此演算法的好處是認知無線基地台只需要自我回饋的資訊即

可調整頻寬需求大小，不需其他認知無線基地台或是通道環境等資訊，本論文

證明該演算法能夠使系統收斂至納許均衡點 (Nash equilibrium)，實驗的結果

除了反映證明外，也顯示了該演算法在整體效用的表現上具有顯著的成效。  
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Chapter 1 Introduction 

1.1 Inefficient usage of the spectrum 

The demand of spectrum resources has been rapidly rising due to the increasing number 

of mobile device users. However the network has always been facing a problem of 

inefficient spectrum utilization. A spectrum owner (or primary user/service) subscribes 

to a band of a licensed spectrum. However the spectrum band is not always used and 

thus leaves holes in the spectrum, which causes inefficient usage of the spectrum. Fig. 

1 describes the spectrum holes in the spectrum band. We can find out that spectrum 

holes appear in both time and frequency domain. 

1.2 Cognitive radio network 

In order to solve this problem, we applied cognitive radio (CR), which is defined as an 

intelligent wireless communication system that is aware of its environment and uses the 

Fig. 1 Spectrum hole. 
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methodology of understanding-by-building to learn from the environment and to adapt 

to statistical variations in the input stimuli [1]. The CR network is imposed on the 

existing network without modifying the original network [2]. Utilizing the technique of 

dynamic spectrum access, the CR network is able to detect the unused spectrum bands 

[3] and distribute them to the CR users (or secondary users/services) who do not 

subscribe to the bands and have no permits to access the licensed spectrum resources. 

The CR network architecture is shown in the figure below. 

In Fig. 2, we can discover that the CR users have three access types to use the spectrum 

resources, either directly or indirectly. 

 CR network access: The CR users access their own CR base station, on both 

licensed and unlicensed spectrum bands. 

Fig. 2 Cognitive radio network architecture[2]. 
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 CR ad hoc access: CR users communicate with other CR users through an ad hoc 

connection on both licensed and unlicensed spectrum bands. 

 Primary network access: CR users can also access the primary base station through 

the licensed band directly. 

In this paper, we studied the CR network access architecture. In this architecture, the 

CR users access their own CR base stations (CRBSs). Here a CRBS forms a CR 

network. As several CR networks share one common spectrum band, a spectrum broker 

[4] will collect the operation information from all the networks and distribute the 

resources properly to achieve efficient and fair spectrum sharing. The CR users can then 

access their own CRBSs and utilize the spectrum resources. The advantage of this 

architecture is that the CR network is independent of the original primary network and 

thus can have its own policy of spectrum sharing. In addition, there is only one hop 

interaction between the CRBSs and the CR users. 

1.3 Cournot game 

Game theory for cognitive radio networks has been studied recently since the 

emergence of CR network technology [5]. In traditional spectrum sharing, the network 

controller will face a lot of communication overhead when a small change of the 

network occurs. CR network, as a non-cooperative network, therefore requires game 

theory to model and solve its system. 

Niyato and Hossain [6] have discussed the spectrum trading between the primary and 

secondary networks and considered the whole system as an economical model where 

the primary network is the spectrum supplier and the secondary network demands 
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spectrum resources. Gao et al. [7] have investigated an auction-based approach for 

dynamic spectrum access. The spectrum resources are priced and bid for by the 

secondary users. We formulated the CR network access architecture as a Cournot game 

(Cournot competition) [8], which is an economical game theory model. 

Cournot game model originally describes the situation which more than one firm 

compete on the amount of the same product they will produce. All the firms decide 

independently and have no information of other firms' decision. However the price of 

the product is affected by the total amount of producing. The firms decide their own 

strategy and compete to maximize the profit. Both the efficiency and incentive issue 

need to be considered. 

We considered the CRBSs as the players in the game. These players demand spectrum 

resources from the spectrum broker. The residual spectrum resources provided by the 

primary network are priced and the price is dependent on two factors, the external state 

and the players' behavior. The external state is the amount of residual spectrum 

resources provided by the primary network. The less the residual spectrum resources, 

the higher the price becomes. The second factor is the total demand from the CRBSs. 

The price increases with higher total demand. Since each CRBS acts as an individual 

and has no information of how many spectrum resources other CRBSs demand, the 

main issue of the game is how many spectrum resources each CRBS should demand 

from the spectrum broker in order to maximize the profit of itself and also the whole 

system. 

1.4 Stochastic learning 

We applied a stochastic learning (SL) solution for each CRBS to decide how much 
4 

 



amount of spectrum resources to demand and to adjust it according to the action-reward 

history. Many works [9]-[11] have studied SL in CR networks. However, they all focus 

on the architecture in which the CR users detect and utilize the residual spectrum 

resources directly from the primary network, where the channel selection is the main 

issue to be discussed. Our SL solution is with the following characteristics: (i) the 

CRBSs do not need to know the action of each other, (ii) the CRBSs do not have to 

know the availability of the residual spectrum resources. We proved that the SL-based 

algorithm converges toward a Nash Equilibrium (NE) point. Numerical results also 

show the convergence of the algorithm. We could also see that the algorithm performs 

quite well in the total utility comparing with two other schemes. 

This paper is organized as follows. In Chapter 2, the system model for CR network 

access architecture is presented. We formulated the system as a Cournot game and 

proved that the model is an exact potential game (EPG), where the game possesses at 

least one Nash equilibrium (NE) point. Chapter 3 presents the SL procedure for each 

CRBSs. The proof shows that the SL procedure can make the system converge toward 

a NE point. The simulation settings are shown in Chapter 4. Finally, the numerical 

results are given in Chapter 5, followed by the conclusion drawn in Section Chapter 6.  
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Chapter 2 System model and problem formulation 

The symbols used in the modeling and problem formulation are summarized in Table 

1. 

Symbol Meaning 

  The game of the system 

  The space of external states 

  The set of CRBSs 

M  The maximum channel number which can be demanded 

( )iu t  The utility of CRBS i  at time t  

( )U t  the total utility at time t  

( )id t  The channel number demanded by CRBS i  at time t  

( )D t  The total number of demanded channel at time t  

( )C t  The cost to demand a channel at time t  

A  The parameter in the cost function 

B  The parameter in the cost function 

iV  The value which CRBS i  can earn from obtaining a channel 

V  The vector of values for all the CRBSs 

iD  The set of channel numbers which CRBS i  can demand 

, ( )i jp t  Probability for CRBS i  to demand j  channels at time t  

( )i tp  Probability vector for CRBS i  at time t  

Table 1 Symbols used in the modeling and system formultaion. 
6 

 



The CR network can be implemented for different scenarios [2]. In our work, we 

considered one of the CR network architectures, CR network access architecture, where 

the primary network gives out the residual channels to the spectrum broker, and the 

spectrum broker distributes the residual channels to the CRBSs according to their 

demands. Finally the CR users can utilize the spectrum resources from the CRBSs. The 

architecture is shown in Fig. 3. In our model, there are N  CRBSs which serve 

different numbers of CR users. CRBS i  demands ( )id t  channels from the spectrum 

broker at time t . Each CRBS can demand at most M  channels. Upon successfully 

obtaining a channel, the CRBS-connected CR users can utilize the resources and benefit 

from sharing the residual channels. 

On the other hand, the primary network gives out a number of residual channels. Note 

that the number of residual channels is time-varying with a fixed statistic character, and 

the CR network is not able to interfere with how many channels the primary network 

gives out. So when the primary network is fully occupied by the primary users, the 

Fig. 3 The overview of CR network access architecture. 
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spectrum broker will detect no residual channels. The CR network then can never get 

any spectrum resources from the spectrum broker. In this situation, no matter how many 

channels the CRBSs demand, they are not allowed to share any resources with primary 

network. We will formulate this mechanism by an economical model in the next section. 

To make the system more practical, we imposed the following assumptions.  

 The number of residual channels given out from the primary network is time 

varying. Its statistics are fixed but unknown to the CRBSs. 

 The system is decentralized which means the CRBSs have no information about 

how many channels other CRBSs demand. They act individually. 

Notably, the only information available for decision making is the action-reward history 

of individual players. 

2.1 Game-theoretic model 

In this section, we present the game-theoretic formulation of the system. We considered 

the system as a Cournot Game (Cournot Competition) with external state. The players 

are the CRBSs. The game can be represented as a 4-tuple: 

( , , ,{ } )i iM u ∈=     

where   is the space of external states (number of residual channels),   is the set 

of players, M  is the maximum number of channels that a CRBS can demand, and 

{ }i iu ∈  is the utility function of player i  that depends on his own decision as well as 

the decisions of other players. The description of the utility function iu  is given below. 

At time t , CRBS i  demand id  channels from the spectrum broker. The cost 
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( , )C D t  for demanding a channel depends on the total number of channels demanded 

by all the CRBSs. In a typical Cournot Game model, the cost for demanding a channel 

is given by 

1
( , ) ( ) ( ), ( ) ( )N

ii
C D t A t B D t D t d t

=
= + × =∑  (1) 

where ( )D t  represents the total number of channels demanded by all the CRBSs at 

time t , B  is a constant and ( )A t  is a parameter indicating the availability of the 

residual channels at time t . In fact, ( )A t  increases while the number of the residual 

channels decreases in a linear fashion, which causes the cost to get higher. Note that 

( )A t  changes with time since the number of the residual channels is time-varying with 

a fixed statistic character which is not known by the CRBSs. 

On the other hand, each CRBS benefits from successfully obtaining a channel from the 

spectrum broker. CRBS i  earns a value iV  when a channel is obtained. The value iV  

depends on how many CR users are under the CRBS's service. We could then formulate 

the utility function iu  for CRBS i  as 

( , ) ( ), 1, 2,...,i i i i iu d d d V C i N− = × − ∈ . (2) 

And the total utility U  is given by 

1

N
ii

U u
=

=∑ . (3) 

2.2 Problem formulation 

The objective for each CRBS is to decide how many channels id  to demand in order 

to maximize its utility iu . Each CRBS desires to demand more channels to obtain a 

higher utility value for itself. However the cost C  increases when the total demand 
9 

 



increases, which will decrease the value of iV C−  and thus decrease the utility. Since 

the CRBSs have no information of each other's decision, they need to compete for their 

own benefit. Formally, 

( ) : max ( , ),
i id i i iu d d i∈ − ∀ ∈   (4) 

2.3 Analysis of Nash equilibrium 

With the utility function defined in (2), we show the existence of the NE point for the 

proposed Cournot game model in the following proposition. 

Proposition 1. The game   is an exact potential game (EPG) which possesses at least 

one pure strategy Nash equilibrium (NE). 

Proof: From the cost equation (1) and the utility function (2), we considered the function 

1: N +Φ × × →    for the game  : 

2
1

1 1 1 1
( ,... ) ,  

N N N N

N i i i i i l
i i i i l N

d d V d A d B d B d d
= = = <

Φ = − − −∑ ∑ ∑ ∑
 

. (5) 

Note that the function Φ  is a function of 1,..., Nd d . Any change of 1,..., Nd d  can 

affect the performance of Φ . 

When CRBS i  decides to demand another number of channels and changes its 

strategy from id  to id ′ , the utility function will also change from ( , )i i iu d d−  to 

( , )i i iu d d′
− . 

It can be readily verified that 

( , ) ( , ) ( , ) ( , )i i i i i i i i i iu d d u d d d d d d′ ′
− − − −− = Φ −Φ  (6) 
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As shown in (6), if the unilateral change of the strategy id  can increase the utility iu , 

the increased utility will contribute the exact amount of improvement to the function 

Φ . Therefore, as the players compete for better unilateral utility, they also benefit the 

total system. 

Note that if *q  is a pure strategy NE, it must satisfy 

( *, *) ( , *),i i i i i i iu q q u q q q M− −≥ ∀ ≤   

( *, *) ( , *)i i i iq q q q− −⇒ Φ ≥ Φ . (7) 

When Φ  satisfies the condition in (6), Φ  is called the potential function of the game 

 , and the game   is said to be an exact potential game (EPG) and the existence of 

pure strategy NE is always guaranteed. This pure strategy NE is also a local maximum 

of the potential function Φ . Thus, Proposition 1 is proved.                    ■ 

However, we should note two things about NE. 

 A NE point doesn't guarantee the global maximum of the potential function Φ . 

 There could be more than just one NE point, and the number of NE points of    

is difficult to be confirmed.  
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Chapter 3 Stochastic-learning-based algorithm design 

In this section, we discuss how to find the NE via SL. Here we propose a SL-based 

algorithm for each CRBS to decide how many channels id  to demand for itself. This 

algorithm is decentralized so that each CRBS acts individually. The CRBSs learn 

toward the equilibrium state according to their action-reward history. 

To facilitate the SL-based channel number selection algorithm, we extended the channel 

number selection game into a mixed strategy form. Let

,1 ,( ) [ ( ), , ( )] ,T
i i i Mt p t p t i= ∀ ∈p   be the channel number selection probability vector 

for player i , where , ( )i jp t  is the probability that player i  selects to demand j  

channels at time t . 

3.1 Stochastic-learning-based algorithm 

The proposed SL-based channel number selection algorithm is described in Table 2. In 

each time slot, each CRBS demands a number of channels according to the channel 

number selection probability vector. At the end of the time slot, a player obtains 

feedback from the competitive nature and updates the channel number selection 

probability vector ip . The instantaneous reward serves as a reinforcement signal so 

that a high reward brings a high probability in the next time slot. Notably, the proposed 

learning algorithm is fully distributed: the channel number selection is solely based on 

the individual action-reward history, instead of the guide from a centralized controller. 
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Self-organized channel number selection (SoCNS) algorithm 

1. Set 0t = , and the initial channel number selection probability vector as 

, ( ) 1/ , ,i j ip t M i j= ∀ ∈ ∈  . 

2. At the beginning of each time slot, each player selects a number of channels to 

demand ( )id t  according to the current channel number selection probability 

vector ( )i tp . 

3. In each time slot, the cost ( )C t  will be evaluated and so will the utility ( )iu t  

specified by (2). 

4. All CRBSs update their channel number selection probability vectors according 

to the following rules: 

, , ,

, , ,

( 1) ( ) ( )(1 ( )), ( )
( 1) ( ) ( ) ( ), ( )

i j i j i i j i

i j i j i i j i

p t p t bu t p t j d t
p t p t bu t p t j d t

+ = + − =
 + = − ≠

 
(8) 

where 0 1b< <  is the learning rate. 

3.2 Analysis of self-organized channel number selection algorithm 

In this section, we proved that the SoCNS algorithm can make our system converge to 

a pore NE point. To prove the convergence of the system, we first used the ordinary 

differential equation (ODE) to characterize the long-term behavior of the sequence 

{ }( )tP , where 1( ) ( ( ),..., ( ))Nt t t=P P P  is the mixed strategy channel number selection 

probability matrix. Secondly, we established a sufficient condition to achieve NE points 

for the SoCNS algorithm and proved that our system   satisfies this condition. 

Table 2 Self-organized channel number selection. 
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Proposition 2. With sufficiently small learning rate b , the sequence { }( )tP  

converges to *P , which is the solution of the following ODE: 

0( ), (0)d F
dt

= =
P P P P , (9) 

where 0P  is the initial mixed strategy channel number selection probability matrix and 

( )F P  is the conditional expected function defined as: 

( ) [ ( 1) | ( )]F t t= +P E P P . (10) 

Note that ( 1)t +P  follows that updating rule in (8). 

Proof: Refer to Theorem 3.1 in [12].                                      ■ 

Proposition 3. The following are tru of the SL-based algorithm: 

(1) All the stable stationary points of (9) are the Nash equilibria of  . 

(2) All the Nash equilibria of   are the stable stationary points of (9). 

Proof: Refer to Theorem 3.2 in [12].                                      ■ 

Proposition 4. Suppose that there is a non-negative function ( ) :H R→P P  for some 

positive constant c  such that: 

'

'

'

( , ) ( , )

[ ( ) ( )], , , ,
ii

i i i i

id i iid

H d H d
c h h i d d

− −−

= − ∀

P P
P P P

 
 (11) 

where ( , )iH d −P  is the value of H  on the condition that ip  is a unit vector with 

the d th component unity, and ( )idh P  is the expected value of the utility of player 

i  where player i  choose the strategy to demand d  channels (i.e. id d= ). 

( )idh P  is represented as following: 

1 1 1
,

( ) [ ( ,..., , , ,..., ) ]
k

k
id i i i N kd

d k i k i
h u d d d d d p− +

≠ ≠
= ∑ ∏P  (12) 

where the utility function ( , )i i iu d d−  is defined in (2). 
14 

 



Then, the SL-based algorithm converges to a pore stragy NE point of the game. 

Proof: We can re-write the ODE specified in (9) as following: 

( ) ,, 1id
id

dp qF i d M
dt

≤= ∈ ≤∀P   (13) 

Applying (8) and (10), (13) can be further derived into 

1,max

( (1 ) [ | ( , )] ( ) [ | ( , )])
M

id
id id i i ik id i i

k k i

dp q p p u d p p u k
dt R − −

= ≠
= − + ∑ −E P E P   

1max

( [ ( ) ( )])
M

id
ik id ik

k

qp p h h
R =

= ∑ −P P . (14) 

It known that the variation of ( )H P  is given by 

( ) ( , )i
id

H H d
p −

∂
=

∂
P P , (15) 

where we use the fact that 
1

( ) ( , )
M

id i
d

H p H d −
=

= ∑P P . 

With (11), (14) and (15), we can derive the derivation of ( )H P  as following: 

,

( ) ( ) id

i d id

dpdH H
dt p dt

∂
= ∑

∂
P P   

, 1max

( , ) ( [ ( ) ( )])
M

id
i id id ik

i d k

qpH d p h h
R−

=
= ∑ ∑ −P P P   

, ,max

( , ) [ ( ) ( )])i id ik id ik
i d k

q H d p p h h
R −= ∑ −P P P   

, ,max

( , , , )
2 i

i d k

q Y i d k
R −= ∑ P   

2

, ,max

[ ( ) ( )] 0id ik id ik
i d k d

qc p p h h
R >

= ∑ − ≥P P , (16) 

where [ ( , ) ( , )][ ( ) ( )]id ik i i id ikY p p H d H k h h− −= − −P P P P . From (16), (14) and (13), we 

can know 

( ) 0dH
dt

=
P  [ ( ) ( )] 0, , ,id ik id ikp p h h i d k⇒ − = ∀P P   

 ( ) 0, ,idF i d⇒ = ∀P   

 ⇒ P  is the stationary point of (9) (17) 
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In other words, the sequence { }( )tP  converges to a stationary point of the ODE in (9). 

According to Proposition 3, Proposition 4 is proved.                          ■ 

Proposition 4 creates a sufficient condition that can guarantee the convergence towards 

NE. Next, we proved that our game   satisfies this condition, which means the game  

  converges to a pure strategy NE point by applying the SoCNS algorithm. 

Proposition 5. With sufficiently small learning rate b , the SoCNS algorithm 

converges to a pure strategy NE for our game  , which is an EPG. 

Proof: Let ( ) [ ( )]H = ΦP E P , where Φ  is the potential function defined by (5). Then 

we will have: 

1 1 1
,

( , ) [ ( ,..., , , ,..., ) ]
k

k
i i i N kd

d k i k i
H d d d d d d p− − +

≠ ≠
= ∑ Φ ∏P .  

Applying (6) and (12), we can easily have: 

'
'( , ) ( , ) ( ) ( )i i idid

H d H d h h− −− = −P P P P   

By proposition 4, proposition 5 is proved.                                  ■ 

It is worth noticing that there is a trade-off for choosing the learning rate. A small 

learning rate implies slower convergence speed. However a large learning rate could 

lead to a serious accuracy problem. It is an important issue to choose the right learning 

rate and this rate can be determined by training in practice.  
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Chapter 4 Simulation 

In this and next chapter, we evaluated the performance of the proposed algorithm. First 

of all, we needed to set up the parameters for the system. 

4.1 Simulation 1 (M=3) 

We considered the system with 10 CRBSs. Each CRBS can demand up to 3 channels 

in each time slot (i.e. M  = 3). The parameters are defined in Table 3. Their value iV  

for successfully obtaining a channel is given as a vector 1 2[ , , , ]NV V V=V  . Note that 

since we assume that each CRBS serves the same group of CR users in the whole 

learning process, the vector V  is unchanged during the whole process. The parameter 

A , which indicates the number of residual channels given out from the primary network, 

is a Gaussian variable and changes with time slot. We set up different cases where the 

mean value of A , A  equals from 1 to 10. A = 1 is the best case where there are many 

residual channels given out from the primary network and A = 10 is the worst case 

where there are few residual channels. 

Parameter Description Assumption 

| | Number of CRBSs 10 

M  Maximum channel number that a CRBS can 

demand 

3 

V  The vector of values that each CRBS can earn 

when successfully obtaining a channel 

[12, 14, 11, 19, 20, 

17, 12, 13, 18, 19] 

A  The parameter in the cost function which 

indicates the number of residual channels 

Gaussian variable 

with mean = 1~10, 
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deviation = 1 

B  The parameter in the cost function 0.5 

b  Learning rate of SoCNS 0.07 

4.2 Simulation 2 (M=9) 

In the second simulation, we simply increased the maximum channel number, M , 

which means that each CRBS has more choices to choose from. This can possibly 

increase the time for the CRBSs to converge and finally have a decision of how many 

residual channels to demand. The parameters are defined in Table 4. 

Parameter Description Assumption 

| | Number of CRBSs 10 

M  Maximum channel number that a CRBS can 

demand 

9 

V  The vector of values that each CRBS can earn 

when successfully obtaining a channel 

[27, 29, 26, 34, 35, 

32, 27, 28, 33, 34] 

A  The parameter in the cost function which 

indicates the number of residual channels 

Gaussian variable 

with mean = 5 

deviation = 1 

B  The parameter in the cost function 0.5 

b  Learning rate of SoCNS 0.05 

 

  

Table 3 Parameters for Simulation 1. 

Table 4 Parameters for Simulation 2. 
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Chapter 5 Results 

The simulation results are divided in two parts. In the first part, we show the 

convergence of the SoCNS algorithm. We also show that the whole system converges 

to a NE point by testing unilateral deviation. In the second part, we compare the utility 

performance of the SoCNS algorithm with two other scenarios. One is exhaustive 

search, which considers a central controller that evaluates all the possible situations and 

chooses the best one. This can be seen as an upper bound of the performance. The other 

scenario is random selection where each CRBS chooses a channel number randomly. 

This is obviously the lower bound of the performance. 

5.1 The convergence behavior and Nash equilibrium point (M = 3) 

The following series of figure shows the evolution of the channel number selection 

probabilities while applying the SoCNS algorithm. In this case, we considered A  as a 

Gaussian variable with mean value 5, and deviation 1. The learning rate b  of the 

SoCNS algorithm is set 0.07. 

Fig. 4 Probability evolution of the mixed strategies of CRBS1 (M=3). 
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Fig. 6 Probability evolution of the mixed strategies of CRBS3 (M=3). 

Fig. 5 Probability evolution of the mixed strategies of CRBS2 (M=3). 
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Fig. 8 Probability evolution of the mixed strategies of CRBS5 (M=3). 

Fig. 7 Probability evolution of the mixed strategies of CRBS4 (M=3). 
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Fig. 10 Probability evolution of the mixed strategies of CRBS7 (M=3). 

Fig. 9 Probability evolution of the mixed strategies of CRBS6 (M=3). 
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Fig. 12 Probability evolution of the mixed strategies of CRBS9 (M=3). 

Fig. 11 Probability evolution of the mixed strategies of CRBS8 (M=3). 
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Fig. 4 shows the probability evolution of CRBS 1. We could see the initial probability 

for each choice is the same. After about 600 time slots, it starts to converge and the final 

SL-based choice for CRBS 1 is to demand just 1 channel from the spectrum broker. 

We observed another CRBS. Fig. 9 represents the probability evolution results for 

CRBS 6. The probabilities converge at around 900 time slots and the final SL-based 

choice for CRBS 6 is to demand 2 channels from the spectrum broker. 

Fig. 5-8, 10-13 show the same convergence character as Fig. 4 and Fig. 9. 

 

 

 

 

Fig. 13 Probability evolution of the mixed strategies of CRBS10 (M=3). 
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Table 5 records important information of the evolution process for each CRBS. We 

recorded the point when the probability vector converges and the final decision. To 

judge the convergence point, we set the boundary 0.99, which means when the 

probability of a choice is greater the 0.99, we record that time slot. 

CRBS Value V  Convergence point (time slots) Final decision 

1 12 601 1 

2 14 737 2 

3 11 572 1 

4 19 526 3 

5 20 246 2 

6 17 904 2 

7 12 488 1 

8 13 650 2 

9 18 1599 3 

10 19 397 3 

From Table 5, we could see that the whole system converges after 1599 time slots. 

And the final decision vector [1, 2,1,3, 2,2,1,2,3,3]=d . 

 

 

 

 

 

 

Table 5 Records of the evolution process (M=3). 
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In Fig. 14(a), we test the unilateral deviation from the resulting strategy profile for all 

the CRBSs. The horizontal axis represents the cases of the 10 CRBSs. It can be 

observed that when one CRBS changes its strategy and chooses to demand a different 

channel number other than the original result, the unilateral utility would decrease. This 

shows that the resulting strategy profile converges toward a NE point. Fig. 14(b) shows 

the total utility deviation when one CRBS changes its strategy. We could see that there 

is no significant difference if only one CRBS diverts from its own strategy. 

 

 

 

Fig. 14 Test of unilateral deviation of each of the 10 players (M=3). 
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5.2 Utility performance (M = 3)  

In Fig. 15, we could see the performance of each channel number selection scheme. 

The horizontal axis represents the mean value of A  which refers to the channel 

availability and is dependent on the number of residual channels provided by the 

primary network. When A  increases, the number of residual channels decreases, 

which means there are less spectrum resources. We could see the total utility decreases 

as the spectrum resources decrease. 

The exhaustive and random selection schemes clearly draw the upper bound and lower 

bound. The performance of SoCNS resides between the two bounds. Furthermore, we 

could observe that SoCNS performs quite well. It is closer to the upper bound and 

resides beyond around 80% from the lower bound. 

 

 

Fig. 15 Utility performance of SoCNS algorithm and other two schemes (M=3). 
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5.3 The convergence behavior and Nash equilibrium point (M = 9) 

In section 5.3 we expanded the choices form 3 to 9 for each CRBS. They can now 

demand up to 9 channels. In this case, we adjust the learning rate to 0.05, which is a bit 

less than the case of M=3 (0.07). Otherwise, the system doesn’t converge to a NE point 

(we could easily observe it by testing unilateral deviation). The following series of 

figure shows the probability evolution results.  

Fig. 17 Probability evolution of the mixed strategies of CRBS2 (M=9). 

Fig. 16 Probability evolution of the mixed strategies of CRBS1 (M=9). 
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Fig. 18 Probability evolution of the mixed strategies of CRBS3 (M=9). 

Fig. 19 Probability evolution of the mixed strategies of CRBS4 (M=9). 
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Fig. 20 Probability evolution of the mixed strategies of CRBS5 (M=9). 

Fig. 21 Probability evolution of the mixed strategies of CRBS6 (M=9). 
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Fig. 22 Probability evolution of the mixed strategies of CRBS7 (M=9). 

Fig. 23 Probability evolution of the mixed strategies of CRBS8 (M=9). 
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Fig. 24 Probability evolution of the mixed strategies of CRBS9 (M=9). 

Fig. 25 Probability evolution of the mixed strategies of CRBS10 (M=9). 
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Table 6 records important information of the evolution process for each CRBS. 

CRBS Value V  Convergence point (time slots) Final decision 

1 12 1895 1 

2 14 3775 1 

3 11 2576 1 

4 19 1636 9 

5 20 706 6 

6 17 3319 4 

7 12 2054 5 

8 13 4557 5 

9 18 2754 8 

10 19 2247 9 

From Table 6, we could see that the whole system converges after 4557 time slots. 

And the final decision vector [1,1,1,9,6,4,5,5,8,9]=d . The time for the system to 

converge is much longer than the case of M=3 (1599 time slots), since there are more 

choices and the learning rate is decreased to 0.05.  

 

 

 

 

 

 

 

Table 6 Records of the evolution process (M=9). 
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As in the simulation of the case of M=3, the test of unilateral deviation for the case of 

M=9 in Fig. 26 also shows that resulting strategy after SoCNS algorithm is a NE 

strategy, since as any one of the CRBSs changes its decision, its unilateral utility 

decreases. 

 

 

 

 

 

 

Fig. 26 Test of unilateral deviation of each of the 10 players (M=9). 
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5.4 Utility performance (M = 9) 

In this section, we considered the case when the mean value of A  in (1) as 5 and the 

variance as 1. Table 7 shows the resulting utility performance of each scheme. 

Scheme Utility 

Exhaustive search 5.8744 

SoCNS 5.5445 

Random 4.9810 

As we can see in Table 7, SoCNS can perform quite well on the utility. And there is one 

thing worth noticing. When we were doing the exhaustive search, we needed to consider 

all the possible combination of each CRBS. There are 10 CRBSs and each of them has 

9 choices, so there are actually 109  strategies to evaluate, where the computation is 

much heavier than SoCNS. Here if M n= , then the complexity is 10( )O n , where our 

algorithm is ( )O n , which increases linearly and relatively small.  

Table 7 Utility performance of SoCNS algorithm and other two schemes (M=9). 

35 
 



Chapter 6 Conclusion 

We have studied the problem of self-organized channel number selection in one of the 

CR network architectures, CR network access, with time-varying channel and the 

absence of information of other CRBSs, by using a game-theoretic approach. The CR 

network access architecture is formulated as a Cournot game model where the CRBSs 

are the players in the game. The formulation is proved to be an EPG where at least one 

pure strategy NE exists. We have proposed a SL-based decentralized algorithm in which 

each CR user selects how many channels to demand according to its individual action-

reward history. The algorithm has been proved to lead the system to converge to a pure 

NE in an EPG. The simulation results show the convergence character of the system. 

Also the unilateral deviation test shows the system converges toward a NE point. We 

also learn that there is no significant change if only one CRBS changes from its NE 

strategy.  
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