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Abstract

Due to the high demand of spectrum utilization, cognitive radio (CR) network has been
a promising solution to the problem of spectrum scarcity by using dynamic spectrum
access technique. The CR networks is applied to the original network (or primary
network) without modifying the original network. In this paper, we studied one of the
CR network architectures, CR network access architecture, where the CR base stations
(CRBSs) demand spectrum resources from the primary network and distribute them to
the CR users. We applied an economical Cournot Game model to the system where the
CRBSs are the players and compete for better performance in this game. In order to
optimize the game, we proposed a stochastic learning (SL) based scheme for the CRBSs
to adjust the demand amount of resources based only on the action-reward history,
which means there is no need for a centralized controller. We proved that the SL-based
algorithm leads the system to converge toward a Nash Equilibrium (NE) point.
Numerical results correspond to the proof. The results also show that the system

performs well in terms of the total utility comparing with other schemes.
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Chapter 1 Introduction

1.1 Inefficient usage of the spectrum
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Fig. 1 Spectrum hole.
The demand of spectrum resources has been rapidly rising due to the increasing number
of mobile device users. However the network has always been facing a problem of
inefficient spectrum utilization. A spectrum owner (or primary user/service) subscribes
to a band of a licensed spectrum. However the spectrum band is not always used and
thus leaves holes in the spectrum, which causes inefficient usage of the spectrum. Fig.
1 describes the spectrum holes in the spectrum band. We can find out that spectrum

holes appear in both time and frequency domain.

1.2 Cognitive radio network

In order to solve this problem, we applied cognitive radio (CR), which is defined as an

intelligent wireless communication system that is aware of its environment and uses the



methodology of understanding-by-building to learn from the environment and to adapt
to statistical variations in the input stimuli [1]. The CR network is imposed on the
existing network without modifying the original network [2]. Utilizing the technique of
dynamic spectrum access, the CR network is able to detect the unused spectrum bands
[3] and distribute them to the CR users (or secondary users/services) who do not
subscribe to the bands and have no permits to access the licensed spectrum resources.
The CR network architecture is shown in the figure below.

Spectrum band
'S

Unlicensed band

Spectrum broker

]
\
“ 1‘
:
}
O / CR user. |

Licensed band |

i
i
o

P . Other
/ Primary . n(:rzltr&ari # # A cognitive
base station . . ! radio
1
: : — .' R networks
Primary user ; , : network  {base station
I'. ' : access”
Licensed band II g ' o i !
l‘ ‘ II_- L Ir 5
\ \ CR adhoc %/ = '
// \ N VS 3ccess ' CRuser !
|

B — = I'-
Primary user E

Primary networks

Cognitive radio
network (without

Cognitive radio
network(with

infrastructure) infrastructure)

Fig. 2 Cogpnitive radio network architecture[2].
In Fig. 2, we can discover that the CR users have three access types to use the spectrum

resources, either directly or indirectly.

® CR network access: The CR users access their own CR base station, on both

licensed and unlicensed spectrum bands.



® CR ad hoc access: CR users communicate with other CR users through an ad hoc

connection on both licensed and unlicensed spectrum bands.

® Primary network access: CR users can also access the primary base station through

the licensed band directly.

In this paper, we studied the CR network access architecture. In this architecture, the
CR users access their own CR base stations (CRBSs). Here a CRBS forms a CR
network. As several CR networks share one common spectrum band, a spectrum broker
[4] will collect the operation information from all the networks and distribute the
resources properly to achieve efficient and fair spectrum sharing. The CR users can then
access their own CRBSs and utilize the spectrum resources. The advantage of this
architecture is that the CR network is independent of the original primary network and
thus can have its own policy of spectrum sharing. In addition, there is only one hop

interaction between the CRBSs and the CR users.

1.3 Cournot game

Game theory for cognitive radio networks has been studied recently since the
emergence of CR network technology [5]. In traditional spectrum sharing, the network
controller will face a lot of communication overhead when a small change of the
network occurs. CR network, as a non-cooperative network, therefore requires game

theory to model and solve its system.

Niyato and Hossain [6] have discussed the spectrum trading between the primary and
secondary networks and considered the whole system as an economical model where

the primary network is the spectrum supplier and the secondary network demands

3



spectrum resources. Gao et al. [7] have investigated an auction-based approach for
dynamic spectrum access. The spectrum resources are priced and bid for by the
secondary users. We formulated the CR network access architecture as a Cournot game

(Cournot competition) [8], which is an economical game theory model.

Cournot game model originally describes the situation which more than one firm
compete on the amount of the same product they will produce. All the firms decide
independently and have no information of other firms' decision. However the price of
the product is affected by the total amount of producing. The firms decide their own
strategy and compete to maximize the profit. Both the efficiency and incentive issue

need to be considered.

We considered the CRBSs as the players in the game. These players demand spectrum
resources from the spectrum broker. The residual spectrum resources provided by the
primary network are priced and the price is dependent on two factors, the external state
and the players' behavior. The external state is the amount of residual spectrum
resources provided by the primary network. The less the residual spectrum resources,
the higher the price becomes. The second factor is the total demand from the CRBSs.
The price increases with higher total demand. Since each CRBS acts as an individual
and has no information of how many spectrum resources other CRBSs demand, the
main issue of the game is how many spectrum resources each CRBS should demand
from the spectrum broker in order to maximize the profit of itself and also the whole

system.

1.4 Stochastic learning

We applied a stochastic learning (SL) solution for each CRBS to decide how much
4



amount of spectrum resources to demand and to adjust it according to the action-reward
history. Many works [9]-[11] have studied SL in CR networks. However, they all focus
on the architecture in which the CR users detect and utilize the residual spectrum
resources directly from the primary network, where the channel selection is the main
issue to be discussed. Our SL solution is with the following characteristics: (i) the
CRBSs do not need to know the action of each other, (ii) the CRBSs do not have to
know the availability of the residual spectrum resources. We proved that the SL-based
algorithm converges toward a Nash Equilibrium (NE) point. Numerical results also
show the convergence of the algorithm. We could also see that the algorithm performs

quite well in the total utility comparing with two other schemes.

This paper is organized as follows. In Chapter 2, the system model for CR network
access architecture is presented. We formulated the system as a Cournot game and
proved that the model is an exact potential game (EPG), where the game possesses at
least one Nash equilibrium (NE) point. Chapter 3 presents the SL procedure for each
CRBSs. The proof shows that the SL procedure can make the system converge toward
a NE point. The simulation settings are shown in Chapter 4. Finally, the numerical

results are given in Chapter 5, followed by the conclusion drawn in Section Chapter 6.



Chapter 2 System model and problem formulation

The symbols used in the modeling and problem formulation are summarized in Table

1.
Symbol Meaning
g The game of the system
C The space of external states
N The set of CRBSs
M The maximum channel number which can be demanded
u. (t) The utility of CRBS i attime t
U (t) the total utility at time t
d.(t) The channel number demanded by CRBS i attime t
D(t) The total number of demanded channel at time t
C(t) The cost to demand a channel at time 't
A The parameter in the cost function
B The parameter in the cost function
V. The value which CRBS i can earn from obtaining a channel
\Y/ The vector of values for all the CRBSs
D. The set of channel numbers which CRBS i can demand
p () Probability for CRBS i todemand j channels at time t
L]
p.(t) Probability vector for CRBS i attime t

Table 1 Symbols used in the modeling and system formultaion.
6



The CR network can be implemented for different scenarios [2]. In our work, we
considered one of the CR network architectures, CR network access architecture, where
the primary network gives out the residual channels to the spectrum broker, and the
spectrum broker distributes the residual channels to the CRBSs according to their
demands. Finally the CR users can utilize the spectrum resources from the CRBSs. The

architecture is shown in Fig. 3. In our model, there are N CRBSs which serve
different numbers of CR users. CRBS i demands d,(t) channels from the spectrum
broker at time t. Each CRBS can demand at most M channels. Upon successfully

obtaining a channel, the CRBS-connected CR users can utilize the resources and benefit

from sharing the residual channels.

;L_+@ N

/ |Ik )]
\7/)

CR user T

CR user
CR user
CRBS2
Spectrum Broker
CR user

Primary BSs

Fig. 3 The overview of CR network access architecture.
On the other hand, the primary network gives out a number of residual channels. Note
that the number of residual channels is time-varying with a fixed statistic character, and
the CR network is not able to interfere with how many channels the primary network

gives out. So when the primary network is fully occupied by the primary users, the
7



spectrum broker will detect no residual channels. The CR network then can never get
any spectrum resources from the spectrum broker. In this situation, no matter how many
channels the CRBSs demand, they are not allowed to share any resources with primary

network. We will formulate this mechanism by an economical model in the next section.

To make the system more practical, we imposed the following assumptions.

® The number of residual channels given out from the primary network is time
varying. Its statistics are fixed but unknown to the CRBSs.

® The system is decentralized which means the CRBSs have no information about
how many channels other CRBSs demand. They act individually.

Notably, the only information available for decision making is the action-reward history

of individual players.

2.1 Game-theoretic model

In this section, we present the game-theoretic formulation of the system. We considered
the system as a Cournot Game (Cournot Competition) with external state. The players

are the CRBSs. The game can be represented as a 4-tuple:
g = (C’ Nv M ’{ui}ie/\/)

where C is the space of external states (number of residual channels), A is the set

of players, M is the maximum number of channels that a CRBS can demand, and

{u,},. isthe utility function of player i that depends on his own decision as well as

the decisions of other players. The description of the utility function u, is given below.

At time t, CRBS i demand d;, channels from the spectrum broker. The cost



C(D,t) for demanding a channel depends on the total number of channels demanded
by all the CRBSs. In a typical Cournot Game model, the cost for demanding a channel
IS given by

C(D,t) = A(t)+BxD(),D(t) =Y. d(t) 1)
where D(t) represents the total number of channels demanded by all the CRBSs at
time t, B is a constant and A(t) is a parameter indicating the availability of the
residual channels at time t. In fact, A(t) increases while the number of the residual

channels decreases in a linear fashion, which causes the cost to get higher. Note that

A(t) changes with time since the number of the residual channels is time-varying with

a fixed statistic character which is not known by the CRBSs.

On the other hand, each CRBS benefits from successfully obtaining a channel from the

spectrum broker. CRBS i earnsavalue V, when achannel is obtained. The value V,

depends on how many CR users are under the CRBS's service. We could then formulate
the utility function u, for CRBS i as
u.(d.,d )=d x(V,-C),iel2,..,N. )

And the total utility U is given by

u=>"u. ©)

2.2 Problem formulation

The objective for each CRBS is to decide how many channels d. to demand in order

to maximize its utility u,. Each CRBS desires to demand more channels to obtain a

higher utility value for itself. However the cost C increases when the total demand
9



increases, which will decrease the value of V, —C and thus decrease the utility. Since

the CRBSs have no information of each other's decision, they need to compete for their

own benefit. Formally,

(9): max, .p, u;(d;,d;),Vie N (4)

2.3 Analysis of Nash equilibrium

With the utility function defined in (2), we show the existence of the NE point for the

proposed Cournot game model in the following proposition.

Proposition 1. The game G is an exact potential game (EPG) which possesses at least
one pure strategy Nash equilibrium (NE).

Proof: From the cost equation (1) and the utility function (2), we considered the function

®:D,x---xDy, >R, forthegame G:

®(d,,....dy) = ViZN:di—Aidi—BZN:df—B i dd,. ()
i=1 i=1 i=1 1<i<I<KN

Note that the function @ is a function of d,,...,d, . Any change of d,,...,d, can

affect the performance of @.

When CRBS i decides to demand another number of channels and changes its

strategy from d. to d.’, the utility function will also change from u(d,,d_) to

u;(d;’,d ).

It can be readily verified that

Ui (di,’d—i) —U (di 1 d—i) = q)(di"d—i) _q)(di 1 d—i) (6)

10



As shown in (6), if the unilateral change of the strategy d, can increase the utility u,,

the increased utility will contribute the exact amount of improvement to the function
@ . Therefore, as the players compete for better unilateral utility, they also benefit the

total system.

Note that if q* is a pure strategy NE, it must satisfy
u; (0, 0™) = u; (0, 0%), Vg, <M

= O(q,%,q.,*) > D(q,,q.*). (7)

When @ satisfies the condition in (6), @ is called the potential function of the game
G, and the game G is said to be an exact potential game (EPG) and the existence of
pure strategy NE is always guaranteed. This pure strategy NE is also a local maximum

of the potential function @ . Thus, Proposition 1 is proved. [ |

However, we should note two things about NE.
® A NE point doesn't guarantee the global maximum of the potential function @.
® There could be more than just one NE point, and the number of NE points of §

is difficult to be confirmed.

11



Chapter 3 Stochastic-learning-based algorithm design

In this section, we discuss how to find the NE via SL. Here we propose a SL-based

algorithm for each CRBS to decide how many channels d, to demand for itself. This

algorithm is decentralized so that each CRBS acts individually. The CRBSs learn

toward the equilibrium state according to their action-reward history.

To facilitate the SL-based channel number selection algorithm, we extended the channel

number  selection game into a mixed strategy ~ form. Let

P;(t) =[P,y (t),-, P (D], Vi € AV be the channel number selection probability vector

for player i, where p,;(t) is the probability that player i selects to demand j

channels at time t.

3.1 Stochastic-learning-based algorithm

The proposed SL-based channel number selection algorithm is described in Table 2. In
each time slot, each CRBS demands a number of channels according to the channel
number selection probability vector. At the end of the time slot, a player obtains

feedback from the competitive nature and updates the channel number selection

probability vector p,. The instantaneous reward serves as a reinforcement signal so

that a high reward brings a high probability in the next time slot. Notably, the proposed
learning algorithm is fully distributed: the channel number selection is solely based on

the individual action-reward history, instead of the guide from a centralized controller.

12



Self-organized channel number selection (SOCNS) algorithm

. Set t=0, and the initial channel number selection probability vector as
p,;)=1/M,VieN,jeD,.
. At the beginning of each time slot, each player selects a number of channels to

demand d,(t) according to the current channel number selection probability
vector p;(t).

In each time slot, the cost C(t) will be evaluated and so will the utility u,(t)

specified by (2).
. All CRBSs update their channel number selection probability vectors according

to the following rules:

{pi,j(t+1) = p ;O +bu;()A-p; (1), j=d;(t)
p,;(t+1) =p; ;) —bu;t) p; ; (1), J#di () (8)

where 0<b<1 isthe learning rate.

Table 2 Self-organized channel number selection.

3.2 Analysis of self-organized channel number selection algorithm

In this section, we proved that the SOCNS algorithm can make our system converge to

a pore NE point. To prove the convergence of the system, we first used the ordinary

differential equation (ODE) to characterize the long-term behavior of the sequence

{P(t)}, where P(t)=(P,(t),...,P, (t)) isthe mixed strategy channel number selection

probability matrix. Secondly, we established a sufficient condition to achieve NE points

for the SOCNS algorithm and proved that our system G satisfies this condition.

13



Proposition 2. With sufficiently small learning rate b , the sequence {P(t)}
converges to P, which is the solution of the following ODE:

dpP
& = (9)
pm F(P),P, =P(0),

where P, isthe initial mixed strategy channel number selection probability matrix and

F(P) is the conditional expected function defined as:
F(P)=E[P(t+1)|P(t)]. (10)
Note that P(t+1) follows that updating rule in (8).

Proof: Refer to Theorem 3.1 in [12]. [ |

Proposition 3. The following are tru of the SL-based algorithm:
(1) All the stable stationary points of (9) are the Nash equilibria of G.
(2) All the Nash equilibria of G are the stable stationary points of (9).

Proof: Refer to Theorem 3.2 in [12]. [ |

Proposition 4. Suppose that there is a non-negative function H(P):P — R for some
positive constant € such that:

H(d,,P,)-H(d,,P,)
= C[hidi' (P) - hidi (P)], V|, di" di ) P

(11)
where H(d,P) isthe value of H on the condition that p, is a unit vector with
the dth component unity, and h,(P) is the expected value of the utility of player
i where player i choose the strategy to demand d channels (i.e. d, =d ).
h,(P) is represented as following:

hid (P) = d%‘;i[ui(dl"“’ di-l’d’di+1""’dN)g pkdk] (12)

where the utility function u,(d;,d ;) is defined in (2).
14



Then, the SL-based algorithm converges to a pore stragy NE point of the game.

Proof: We can re-write the ODE specified in (9) as following:

dg—t‘d=qud(P),VieN,1sd£M (13)

Applying (8) and (10), (13) can be further derived into

P L (1= P B, 1P+ 2 PP | PL)D
_ Y . 14
=2 (2 Pl (P) =, (PY]) a4

It known that the variation of H(P) is given by
L(P):H(d,p_i), (15)

id
M
where we use the fact that H(P)= > p,,H(d,P.,).
d=1

With (11), (14) and (15), we can derive the derivation of H(P) as following:
dH(P) 5 oH (P) dp,,
dt id Op, dt

=SH(EP) P (E p I, () -, (P

R

m

L H(.P.) Py by, (P~ (PYD

max

__9 -

= R i%kY(l'd’k'P*‘)
qac
R

max

2 P Pylhy (P) = (P 20, (16)

where Y = p,, p, [H(d,P;)-H(k,P_)][h,(P)—-h, (P)]. From (16), (14) and (13), we

can know
dH (P :
%:0 = p, pulh, (P)—h. (P)]=0,Vi,d,k
— F,(P)=0,Vi,d

= P is the stationary point of (9) (17)

15



In other words, the sequence {P(t)} converges to a stationary point of the ODE in (9).
According to Proposition 3, Proposition 4 is proved. [ |
Proposition 4 creates a sufficient condition that can guarantee the convergence towards
NE. Next, we proved that our game G satisfies this condition, which means the game

G converges to a pure strategy NE point by applying the SOCNS algorithm.

Proposition 5. With sufficiently small learning rate b , the SoCNS algorithm
converges to a pure strategy NE for our game G, which is an EPG.

Proof: Let H(P)=E[®(P)], where ® is the potential function defined by (5). Then

we will have:

H(d,P,)= dk%i[@(dl"“’di—l’d’diﬂ""’dN)g Py, 1-
Applying (6) and (12), we can easily have:

H(d,P,)-H(d,P,)=h_ (P)-h,(P)
By proposition 4, proposition 5 is proved. [ ]
It is worth noticing that there is a trade-off for choosing the learning rate. A small
learning rate implies slower convergence speed. However a large learning rate could

lead to a serious accuracy problem. It is an important issue to choose the right learning

rate and this rate can be determined by training in practice.
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Chapter 4 Simulation

In this and next chapter, we evaluated the performance of the proposed algorithm. First

of all, we needed to set up the parameters for the system.

4.1 Simulation 1 (M=3)

We considered the system with 10 CRBSs. Each CRBS can demand up to 3 channels

in each time slot (i.,e. M = 3). The parameters are defined in Table 3. Their value V.

I
for successfully obtaining a channel is given as a vector V =[V,,V,,---,V,]. Note that

since we assume that each CRBS serves the same group of CR users in the whole
learning process, the vector V is unchanged during the whole process. The parameter
A, which indicates the number of residual channels given out from the primary network,
is a Gaussian variable and changes with time slot. We set up different cases where the
mean value of A, A equalsfrom1to10. A=1isthe best case where there are many
residual channels given out from the primary network and A= 10 is the worst case

where there are few residual channels.

Parameter | Description Assumption

|N| Number of CRBSs 10

M Maximum channel number that a CRBS can | 3
demand

V The vector of values that each CRBS can earn | [12, 14, 11, 19, 20,
when successfully obtaining a channel 17,12, 13, 18, 19]

A The parameter in the cost function which | Gaussian variable
indicates the number of residual channels with mean = 1~10,

17



deviation =1

The parameter in the cost function

0.5

Learning rate of SOCNS

0.07

Table 3 Parameters for Simulation 1.

4.2 Simulation 2 (M=9)

In the second simulation, we simply increased the maximum channel number, M,

which means that each CRBS has more choices to choose from. This can possibly

increase the time for the CRBSs to converge and finally have a decision of how many

residual channels to demand. The parameters are defined in Table 4.

Parameter | Description Assumption

|N| Number of CRBSs 10

M Maximum channel number that a CRBS can | 9
demand

\% The vector of values that each CRBS can earn | [27, 29, 26, 34, 35,
when successfully obtaining a channel 32,27, 28, 33, 34]

A The parameter in the cost function which | Gaussian variable
indicates the number of residual channels with mean = 5

deviation =1
B The parameter in the cost function 0.5
b Learning rate of SOCNS 0.05

Table 4 Parameters for Simulation 2.

18



Chapter 5 Results

The simulation results are divided in two parts. In the first part, we show the
convergence of the SOCNS algorithm. We also show that the whole system converges
to a NE point by testing unilateral deviation. In the second part, we compare the utility
performance of the SOCNS algorithm with two other scenarios. One is exhaustive
search, which considers a central controller that evaluates all the possible situations and
chooses the best one. This can be seen as an upper bound of the performance. The other
scenario is random selection where each CRBS chooses a channel number randomly.

This is obviously the lower bound of the performance.

5.1 The convergence behavior and Nash equilibrium point (M = 3)

The following series of figure shows the evolution of the channel number selection
probabilities while applying the SOCNS algorithm. In this case, we considered A asa
Gaussian variable with mean value 5, and deviation 1. The learning rate b of the

SoCNS algorithm is set 0.07.
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Fig. 4 Probability evolution of the mixed strategies of CRBS1 (M=3).
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Fig. 13 Probability evolution of the mixed strategies of CRBS10 (M=3).
Fig. 4 shows the probability evolution of CRBS 1. We could see the initial probability
for each choice is the same. After about 600 time slots, it starts to converge and the final

SL-based choice for CRBS 1 is to demand just 1 channel from the spectrum broker.

We observed another CRBS. Fig. 9 represents the probability evolution results for
CRBS 6. The probabilities converge at around 900 time slots and the final SL-based

choice for CRBS 6 is to demand 2 channels from the spectrum broker.

Fig. 5-8, 10-13 show the same convergence character as Fig. 4 and Fig. 9.
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Table 5 records important information of the evolution process for each CRBS. We
recorded the point when the probability vector converges and the final decision. To
judge the convergence point, we set the boundary 0.99, which means when the

probability of a choice is greater the 0.99, we record that time slot.

CRBS | Value V | Convergence point (time slots) | Final decision
1 12 601 1
2 14 737 2
3 11 572 1
4 19 526 3
5) 20 246 2
6 17 904 2
7 12 488 1
8 13 650 2
9 18 1599 3
10 19 397 3

Table 5 Records of the evolution process (M=3).
From Table 5, we could see that the whole system converges after 1599 time slots.

And the final decision vector d=[1,2,1,3,2,2,1,2,3,3].
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Fig. 14 Test of unilateral deviation of each of the 10 players (M=3).
In Fig. 14(a), we test the unilateral deviation from the resulting strategy profile for all
the CRBSs. The horizontal axis represents the cases of the 10 CRBSs. It can be
observed that when one CRBS changes its strategy and chooses to demand a different
channel number other than the original result, the unilateral utility would decrease. This
shows that the resulting strategy profile converges toward a NE point. Fig. 14(b) shows
the total utility deviation when one CRBS changes its strategy. We could see that there

is no significant difference if only one CRBS diverts from its own strategy.
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5.2 Utility performance (M = 3)
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Fig. 15 Utility performance of SOCNS algorithm and other two schemes (M=3).
In Fig. 15, we could see the performance of each channel number selection scheme.
The horizontal axis represents the mean value of A which refers to the channel
availability and is dependent on the number of residual channels provided by the
primary network. When A increases, the number of residual channels decreases,
which means there are less spectrum resources. We could see the total utility decreases

as the spectrum resources decrease.

The exhaustive and random selection schemes clearly draw the upper bound and lower
bound. The performance of SOCNS resides between the two bounds. Furthermore, we
could observe that SOCNS performs quite well. It is closer to the upper bound and

resides beyond around 80% from the lower bound.
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5.3 The convergence behavior and Nash equilibrium point (M = 9)

In section 5.3 we expanded the choices form 3 to 9 for each CRBS. They can now
demand up to 9 channels. In this case, we adjust the learning rate to 0.05, which is a bit
less than the case of M=3 (0.07). Otherwise, the system doesn’t converge to a NE point
(we could easily observe it by testing unilateral deviation). The following series of
figure shows the probability evolution results.
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Fig. 16 Probability evolution of the mixed strategies of CRBS1 (M=9).
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Fig. 19 Probability evolution of the mixed strategies of CRBS4 (M=9).
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Fig. 23 Probability evolution of the mixed strategies of CRBS8 (M=9).
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Fig. 25 Probability evolution of the mixed strategies of CRBS10 (M=9).
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Table 6 records important information of the evolution process for each CRBS.

CRBS | Value V | Convergence point (time slots) | Final decision
1 12 1895 1
2 14 3775 1
3 11 2576 1
4 19 1636 9
5) 20 706 6
6 17 3319 4
7 12 2054 5)
8 13 4557 5)
9 18 2754 8
10 19 2247 9

Table 6 Records of the evolution process (M=9).
From Table 6, we could see that the whole system converges after 4557 time slots.
And the final decision vector d=[1,1,1,9,6,4,5,5,8,9]. The time for the system to
converge is much longer than the case of M=3 (1599 time slots), since there are more

choices and the learning rate is decreased to 0.05.
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Fig. 26 Test of unilateral deviation of each of the 10 players (M=9).
As in the simulation of the case of M=3, the test of unilateral deviation for the case of
M=9 in Fig. 26 also shows that resulting strategy after SOCNS algorithm is a NE
strategy, since as any one of the CRBSs changes its decision, its unilateral utility

decreases.
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5.4 Utility performance (M = 9)

In this section, we considered the case when the mean value of A in (1) as 5 and the

variance as 1. Table 7 shows the resulting utility performance of each scheme.

Scheme Utility

Exhaustive search | 5.8744

SoCNS 5.5445

Random 4.9810

Table 7 Utility performance of SOCNS algorithm and other two schemes (M=9).

As we can see in Table 7, SOCNS can perform quite well on the utility. And there is one
thing worth noticing. When we were doing the exhaustive search, we needed to consider
all the possible combination of each CRBS. There are 10 CRBSs and each of them has
9 choices, so there are actually 9" strategies to evaluate, where the computation is
much heavier than SOCNS. Here if M =n, then the complexity is O(n'®), where our

algorithm is O(n), which increases linearly and relatively small.
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Chapter 6 Conclusion

We have studied the problem of self-organized channel number selection in one of the
CR network architectures, CR network access, with time-varying channel and the
absence of information of other CRBSs, by using a game-theoretic approach. The CR
network access architecture is formulated as a Cournot game model where the CRBSs
are the players in the game. The formulation is proved to be an EPG where at least one
pure strategy NE exists. We have proposed a SL-based decentralized algorithm in which
each CR user selects how many channels to demand according to its individual action-
reward history. The algorithm has been proved to lead the system to converge to a pure
NE in an EPG. The simulation results show the convergence character of the system.
Also the unilateral deviation test shows the system converges toward a NE point. We
also learn that there is no significant change if only one CRBS changes from its NE

strategy.
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