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The Minimum Rank of a Mountain

Student : Pingchun Wang Advisor : Dr. Chihwen Weng

Department of Applied Mathematics

National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

Abstract

Let G be a simple graph with vertex set V(G) = [n] = {1,2,...,n} and edge set
E(G). The minimum rank m(G) of G is the minimum possible rank of an n by n
symmetric matrix A whose ij-th entry is not zero if and only if ij € E(G), where i, j
are distinct. For m < n, a graph G with vertex set [n] is called a mountain based on

[m] if G satisfies

(i) the subgraph of G induced on {1,2,...,m} is a path which is partitioned into a

few closed segments;

(ii) each segment is assigned a unique vertex in [n]\[m] which has at least two

neighbors in the closed segment; and
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(iii) all edges of G are either described in (i) or in (ii).

In the thesis we show that a mountain based on [m] has minimum rank m — 1.

Keywords: graph, minimum rank, mountain.
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1 Introduction

The study of matrices associated with a graph G gives a connection between Linear
Algebra and Graph Theory, in which many mathematical theories have their
combinatorial realizations and vice versa. The thesis studies ranks of matrices associated

with graphs and their combinatorial interpretations.

All the graphs considered in this thesis are simple of order n. For a graph G, we use
E(G) as its edge set and V (G) as its vertex set, usually V(G) = [n] = {1,2,---n}. For an
n x n real symmetric matrix A, T'(A) represents the graph such that ij € E(T'(A)) if and
only if the ij-th entry of A is not zero, where i # j. A real symmetric matrix A is then
said to be associated with the graph T'(A). The minimum rank of G, denoted by m(G),

is defined to be the integer

m(G) = min{rank(A) : I'(A) = G},

where the minimum is taking for all n X n symmetric matrices A.

The minimum rank of G is related to the maximum nullity of G, denoted by

M(G) = max{nullity(A) : I'(A) = G}.

It’s clear that the following equation holds for any graph G:

m(G) +M(G) = n. 1)

Since I'(A) =T'(A+ AlI) = G, M(G) is also the maximum multiplicity of eigenvalues of

a matrix associated with G.



The number m(G) also has combinatorial meanings. In [1], Ping-Hong Wei, Chih-wen
Weng showed that if G is a tree, which is a connected graph satisfies

V(G)| —1=|E(G)|, then |E(G)| —m(G) is equal to the minimum size of edge subset S
whose deletion will yield a graph with each vertex of degree 1 or 2. In [8], the AIM
Minimum Rank - Special Graphs Work Group defined color-change rule, derived

coloring and zero-forcing set of a graph:

(i) color-change rule: let G be a graph with each vertex colored either white or black.
If u is a black vertex of G, and it has exactly one neighbor v which is white, then

change the color of v to black.

(i1) derived coloring: for a coloring of G, derived coloring is the result of applying the
color-change rule until that no more vertex w is a black vertex of G with exactly

one neighbor white.

(iii) zero-forcing set: a zero-forcing set Z for a graph G is a subset of V(G) such that if
initially the vertices in Z are colored black and the remaining vertices are colored

white, then the derived coloring is all black.

The minimum size of a zero-forcing set of G is denoted by Z(G). Also in [8], they

showed that M (G) < Z(G).

We will compute the minimum rank of a special class of graphs which have order n and
there exists an integer 2 < m < n, such that the induced subgraph on vertex set [m],

[n]\[m] has edge set {i(i+1) | 1 <i<m— 1}, 0, respectively. Moreover, there exists a



sequence of integers 1 =1y <t} <t) <...<t;_1 <t =m and a function

f i [k] — [n]\[m] such that for 1 < j <i<k, f(j)# f(j+1),

[ti-1,t;]NG(f(i))| > 2 and
Y ltio1,6]NG(f(Q))| = |E(G)| —m+ 1, where G(f(i)) be the set of neighbors of £(i).
See Definitions 4.4, 4.7 for a detailed description. In the end of this thesis, we show that

a mountain G based on [m] has minimum rank m(G) = m — 1 and minimum size

Z(G) =n—m+1 of a zero-forcing set of G.

The thesis is organized as follows. In the second section, Preliminaries, we define the
notations, operations for graphs, matrices'which-we will use in the thesis. The third
section, Known Results introduces the known theorems and the provide their proof. The
difference of minimum rank between a graph G and a graph obtained from G by deleting
a vertex 1is investigated. At the end of this section, we prove an inequality about the
maximum rank and zero-forcing set of a graph. In the last section Our Results, we
introduce a class of graphs, called mountains. We also compute the minimum rank and
the minimum size of a zero-forcing set of a mountain based on [m] in this section, where
m is a positive integer. At the end of the thesis, we give examples about the construction
of a matrix associated with a fixed mountain, which has rank equal to the minimum rank

of the mountain.



2 Preliminaries

In this section, we introduce notations we will use in this thesis.

2.1 Graphs

The three graphs K,,, P, and C,, with vertex set [n] = {1,2,...,n} and edge set defined in

the following table will be used implicitly throughout the thesis.

Graphs Notation Edge set

Complete Graph K, {ij| I<i<j<n}
Path P, {G+ 1)1 <i<n—1)
Cycle Cy {i(i+1)]1<i<n-1}U{ln}

Let G, G’ be two vertex-disjoint graphs and x,z € V(G),y € V(G'). We adopt the

following graph operations.

1. x ~ z means x is a neighbor of z.
2. G(x) denotes the set of the neighbors of the vertex x in V(G).
3. G —x denotes the induced subgraph of G with vertex set V(G)\{x}.

4. G+, G’ denotes the coalescence of G and G’ through the vertices x,y
respectively, which by definition is a simple graph obtained from the disjoint union

of G and G’ by identifying the vertex x from G and the vertex y from G'.



2.2 Matrices

The matrices considered in the thesis are all symmetric over the real number field R. We
use the following notations with a square matrix of size n x n A, a column vector x € R",

and subsets X,Y of N.

1. {egk),eék), ... ,e,((k)} is the standard basis of R¥, where k € N. If k = n, then we just

write as {e],e2...,e,}.
2. supp(x) := {i € N | the i-th entry of x is not zero}.
3. rank(A) is the rank of A.
4. cs(A) := {Au | u € R"} is the column space of A.
5. 1s(A) := {u" A | u € R"} is the row space of A.
6. ns(A) := {x | x € R", Ax = 0} is the nullspace of A.

7. A(X|Y) denotes the submatrix of A obtained by deleting the p-th row and the g-th

column of A, for all p € X, g €Y. If X = Y, then we just write A(X).

8. A[X|Y], A(X|Y] and A[X|Y) denote the submatrices A([n]\X|[n]\Y), A(X|[n]\Y)
and A([n]\X|Y) respectively and replacing X,Y by ” —” means that we don’t

delete any row or column respectively, i.e. A|—|Y] = A(0|Y].

For simple illustration, A has the form

A[l]  A[l1)
A=

A(LT] A1)



It is easy to see that

rank(A) —2 <rank(A(1)) < rank(A).

2.3 Matrices associated with graph G

For an n x n symmetric matrix A = (a;;), I'(A) is the graph with vertex set [n] such that
for distinct i and j, ij € E(I'(A)) if and only if a;; # 0. We said that A is associated with

T(A).

Example 2.1. The 4 x 4 matrix A in Figure 1 is associated with I'(A).

1 gl f5__— 18-6 2
I'(A): i
1/5 0 10 (A)
A= 1 3 4
-1 1 —-4.2
0 0 2.0
L i

Figure 1. A symmetric matrix and its associated graph.

Note that the diagonal entries of A do not need to be 0.

3 Known Results

We shall introduce known properties of symmetric matrices in this section for later use.



3.1 Minimum ranks of the paths

Lemma 3.1. Let A be an n x n symmetric matrix. If T'(A) = P,, then rank(A) = n or

n— 1. Moreover the following are equivalent.
(i) rank(A) =n—1;
(ii) el Zr1s(A);
(iii) rank(A) = rank(A(1)).

Proof. Let A be an n by n.symmetric tridiagonal matrix such that I'(A) = P, as the

following § )
ai— by 0
by a
A=
an1 by
0 bp—1  an

Thus b;’s are non-zero real numbers.Then rank(A)> n— 1, since the first n — 1 columns
are linearly independent.

For (i) implying (ii), suppose el € rs(A). Since the first row of A is aje] +bjel with

b1 # 0, we have e} € rs(A). As we prove e] el ,....el €rs(A), we have !, | € rs(A) for

2 <i<n—1,since the i-th row of A is b;_1e]_| +ase! +bie]. | and b; # 0, This proves

Span(el el ... el) Crs(A). Hence rank(A) = n.

For (ii) implying (iii), if el ¢ rs(A), then rank(A) # n. Thus rank(A) = n — 1. Since b;’s



and so rank(A(1|—)) = rank(A(1)).

— — T o1 1)
are non-zero real numbers, rank(A(1|—)) = rank(A) = n — 1. This implies e,

€cs(A)

For (iii) implying (i), rank(A) =n— 1, since n — 1 <rank(A) =rank(A(1)) <n—1. O
Example 3.2. The following two matrices A,,A!, satisfy ['(A4,)) =T'(A") =P, :
1 0 2
1 1
Ay = A, = (2)
2 1 2
0 < - 0 1
L 4 nXxn = nxn

Letv=[l,—1,1,-..,(~1)" 7. Then A,v = 0, A,y = ¢;. This implies

rank(A,) = n— 1, and rank(A],) = n by Lemma 3.1.

Lemma 3.3. If H is an induced subgraph of G, then m(H) < m(G).
Proof. Since for any matrix A 'such that I'(A) = G, the submatrix A[V (H)] is associated

with H and rank(A[V (H)]) < rank(A). This implies m(H) < m(G). O

The following Theorem shows that P, is the unique graph with minimum rank n — 1

among graphs of order n.

Theorem 3.4. (/3, Theorem 2.8.]) Let A be a symmetric matrix of order n. Then the

following (i)-(ii) are equivalent.



(i) rank(A+ D) > n— 1 for any diagonal matrix D;

(ii) T(A) = P,. O

Now we can determine the minimum rank of a graph which has an induced subgraph

P

Proposition 3.5. If G is not a path and G contains an induced subgraph P,_, then

m(G) =n—2.

Proof. Since P,_; is an‘induced subgraph of G, m(G) > m(B;—1) =n—2. By

theorem 3.4, m(G) <n—2. Thusm(G) =n —2. O

3.2 Compute the minimum rank by deleting a cut vertex

For a graph, if the edge set of the graph is as small as possible, then the matrices
associated with the graph have more zero entries, and. it may be easier to determine the
minimum rank of the graph. Now we consider a connected graph G with a cut vertex,
which by definition is a vertex whose deletion will make two or more components. Then

the matrix associated with the graph is of the following form:

A a O
al ¢ b, (3)
0 b B



where A, B are real symmetric matrices, a, b are column vectors with proper sizes, and

¢ € R. Then we may discuss the rank of the matrix by discussing the ranks of the

A a c b7
submatrices and

a ¢ b B
Proposition 3.6. Let G, H be two graphs, and x € V(G),y € V(H). Then the following

are equivalent.

(i) m(G+xyH) = m(G_x> +m(H_y);

(ii)) m(H) =m(H —y)and m(G) = m(G —x).

Proof. It m(H) =m(H —y) and m(G) = m(G =x), then there exists a matrix Ag with
rank m(G) = rank(Ag) = rank(Ag(x)), also for graph H, vertex y and matrix Ay. Then
we have m(G +H) < m(G —x)+m(H=y). Now let B be a matrix with rank less than
m(G —x)+m(H —y)and I'(B) = G +., H. Then

rank(B) < m(G+y H) < m(G)+m(H), implies rank(B[V(G)]) < m(G) or

rank(B[V (H)]) < m(H), two contradictions. Thus m(G+,, H) = m(G —x) +m(H —y).
For (i) implying (ii), let C be the matrix with rank m(G +., H), which is associated with

G+, H. Then C is of the form in (3), where '(A) = G—xand I'(B) = H —y.

10



Note that

m(G —x) +m(H - y)
=m(G +y H) = rank(C)
>rank(A) + rank(B)

>m(G—x)+m(H —y)

Hence m(H) = m(H —y) and m(G) = m(G — x) by Lemma 3.3. O

Example 3.7. Consider the graph C,, where n > 3. Proposition 3.5 showed that for any
v € V(C,), the minimum rank of C,-is equal to C, — v, which is also-a path P,_;. By

Proposition 3.6, the following graph G = C,; -+, C;; has minimum rank
m(P,oq)+m(Py_1) =n+m—4,

where u € V(C,,) andm > 3.

e

Figure 2. A graph G = C,, 4+, Cp,.

Proposition 3.8. ([4, Proposition 4.1.]) Let G be a graph, and y € P, be a vertex of

degree 2, where t > 3. For any vertex x € G,

m(G+yh)=m(G—x)+1t—1

11



Proof. Without loss of generality, let x = [V(G)|, y be a vertex in V(G), V(F,),
respectively, where y is of degree 2 and the induced subgraph of the vertex set V(F;)\y is

equal to P;U P;. Then the following matrix D, which is associated with G +, F, is of the

form: _ _
B b 0 O
bl a cl-T cr
D= ,
0 Ci Cl' 0
0 ¢; 0 C

where ¢; € R/, ¢ i€ R/ and B,C;,C ;18 the matrix associated with G —x, P, P;,
respectively. Now suppose rank(D) < m(G —x) +t—1=m(G—x) +i+ j. Then we

consider three cases as the following:

(i) rank(C;)+rank(C;) =i+ J.

Then

B b"
rank(D) = rank +i+j<mG—x)+i+].

b d
(i) rank(C;)+rank(C;) =i+j—= 1.
Without loss of generality, suppose rank(C;) =i — 1, rank(C;) = j. Then

B b 0

rank(D) =rank | o I|+j=rank(B)+i—14+2+4j<m(G—x)+i+j.

OC,' C,'

(iii) rank(C;) +rank(C;) =i+ j—2.

12



Then

rank(D) =rank(B)+i—1+j—14+2<m(G—x)+i+ .

All the three cases imply that rank(B) < m(G — x), a contradiction. Thus we have
rank(D) > m(G —x)+1t— 1.

Now we choose B as a matrix associated with G — x with rank m(G —x) and C;, C; is of
rank i — 1, j — 1, respectively. Then D has rank m(G —x) +1¢ — 1, since

c; ¢ cs(Ci),c; ¢ cs(C;) by lemma 3.1. This implies m(G +, ) <m(G —x)+t—1.

Thus we conclude that m(G+y B) =m(G=x) =+t — 1. O
The propositions 3.6 and 3.8 are-special cases of the following theorem.

Theorem 3.9. ([4, theorem 2.3]) Let G be a coalescence at vertex v of graphs

Gy, -+ ,G;. Then

m(G) —m(G—v) = min { Xt:m(Gi) —m(Gj— v),Z}

i=1

A graph G is 2-connected if G — v connected for any v € V(G). From Theorem 3.9, we
may assume that G is 2-connected in determining the minimum rank m(G) of G in the
algorithmic aspect. However it is interesting to compute m(G) or find its combinatorial

meaning in general.

13



3.3 An inequality for the zero-forcing set and maximum nullity of
the graphs

We are going to prove the inequality M (G) < Z(G) for any graph G.

Lemma 3.10. Let A be any n X n matrix such that rank(A) < n — k, for some integer

| <k < n. Then for any k-subset S of [n], there exists x € ns(A) such that
supp(x) = [n]\S. s

Proof. Applying Gaussian elimination to.a (k+ 1) x n matrix whose rows are k + 1
linearly independent vectors in the nullspace of A will yield the last row with zeros in

any k designated position. [

The following lemma describes why we call Z(G) a zero-forcing set for a graph G.

Lemma 3.11. Let G be a graph with zero-forcing set Z. If x € ns(A).and

Z C [n]\supp(x), then x is a zero vector.

Proof. Let Z be a zero-forcing set of a graph.G and A = (a;;) be a matrix associated with
G, where rank(A) = m(G). Suppose x = (x1,x2,--- ,x,)7 €ns(A) and Z C [n]\supp(x)
with [n]\supp(x) maximum. Since Z is a zero-forcing set, [n]\supp(x) is also too. By
interpreting 1 as white and 0 as black, there exists v with x,, = 0 and v has a unique
neighbor u € supp(x) with x, = 0.

Then

0= (Ax), = Z ayiXi = Xy + Z AyiXi = QyuXy

i€[n] i~

14



The third equality holds since a,; # 0 only when i ~ v. The last equality holds since v
has only one neighbor u # Z such that x,, may not be zero. Since u is a neighbor of v,

ayy # 0. Thus x,, = 0, a contradiction to u € supp(x). O

Now we can prove the inequality.

Theorem 3.12. Let G be any graph. Then M(G) < Z(G).

Proof. Let G be a graph and Z be a zero-forcing set of G. If M(G) > |Z|, then there
exists a matrix A associated with G such that nullity(4) =M (G) > |Z|.
By Lemma 3.10, there exists a non-zero vector x € ns(A) such that Z C supp(x). This

implies x is a zerovector by Lemma 3.11,:a contradiction. Thus M(G) < Z(G). O

4 QOur Results

In this section, we will introduce a class of the graphs and compute the minimum rank,

minimum size of zero-forcing set of the graphs.

4.1 A matrix associated with a path

Lemma 4.1. For alln € N, let A, = (a;;) be the n by n symmetric matrix defined in (1),
ie.

2, ifi=jandi,j¢{1,n};

aij=9N 1, if li—jl=1or i=je{l,n};

0, if li—jl>2.

15



Then for any subset S C [n] with |S| > 1, there exists a vector u such that

supp(u) C [max S — 1] and supp(Au) = S.

Proof. For integers 1 <i < j < n, define b;, ¢; ; as the following:

b; = (—1)Oei+(—1)lei_1+---+(—1)i_lel, 4

Cij = (_l)obi+ (—l)lbi+1 +-+ (—1)j_i_1bj_1. 5
Then
and

+ej)
Now suppose S = {t1,f,..., vhere k> 2 and ¢ .-+ < tx. Choose
U= Cripy T Crpy T Cryg

This implies

Au= ke, 4+ (—1)2" e 4 (= 1)1 g o (1)1 g,

Then we have that supp(Au) = S and supp(u) C [t — 1] = [max S —1].

16



We provide matrices A satisfy rank(A) = n — 2 and that I'(A) is the graph described in

Proposition 3.5.

Example 4.2. Let G =P,_| +;1 P» and A;,A,_1_; are defined as the matrix A, at

Lemma 4.1, where 1 < i < n, the following matrix satisfies ['(A) = G and

rank(A) =n—2.
Ay Y 0 0
i—1 —1—i
()T o o el
A pu—
Pt O
0 1 0 0
L 4 nxn

Note that we haverank(A; ;) =i—2,rank(A,_1_;) = n —2— i. Since the both of n-th
column and row are linearly independent, rank(4) =n— 2. Then m(P,_ |+, P») =n—2,

by Lemma 3.3.

Example 4.3. Let G be-a graph of order n such that the induced subgraph of G on [n — 1]
is P,—; and the vertex n has neighbors'S = {zy,#,:..1; }, Where k > 2. Let A, be the
matrix defined as the amtrix A, at Lemma 4.1. Then there exists a vector u € R" such

that supp(A,—ju) = S. The following matrix A satisfies rank(A) =n—2 and I'(A) = G:

An—1 Ap—1u
A=

ulA,_y ulA,_ju
nxn

17



4.2 Mountains

In Example 4.3, we proved that joining a vertex to some internal node of a path doesn’t

increase the minimum rank. We are going to add 2 or more vertices to a path.

Definition 4.4. A sequence T1,75,...,T; of subsets of [m] is said to be separated on [m]
with respect to the sequence of integers 1 =1y <t} <t < ... <ty <ty = m if there
exists a function f : [k] — [¢] such that for 1 < j <i <k, f(j) # f(j+1),

|[ti—1,5) N Ty(py| > 2 and X, [[re2y st O Tpopl = Lo (1T4l-

Example 4.5. The following subsets T}, 7, are separated on [m] with respect to the

specified sequence (fy,15«««st)-and function f = (f(1), f(2),..., f(k)).
() T = {1,2,5,6} and T» = {3,4} with (1,3,4,6) and f = (1,2,1);
(i) Ty = {1,3,5,6} and T> = {3,5} with (1,3,5,6) and f =(1,2,1);
(i) Ty ={1,4,5,7,9} and T» ={5,6,7} with (1,5,7,9)and f = (1,2,1);
(iv) T = {1,2,5,6,7} and T» = {3,4,8,10} with (1,3,5,8,10) and f = (1,2,1,2).

v) Ty ={1,2,3,4,5,6} and T» = {2,3,4,5} with (1,2,3,4,5,6) and f = (1,2,1,2,1).

Example 4.6. The following subsets 77, T», T3 are separated on [m] with respect to the

specified sequence (o, 11, ...,).

18



(1) Iy = {172;3757677}7 I, = {3;479710}7
T3 = {7,8,9} with (1,3,4,7,9,10) and f = (1,2,1,3,2);
Gi) Ty = {3,4,5,10,11,12}, T> = {5,6,9,10},

T; = {1,3,6,8,13,14} with (1,3,5,6,8,10,12,14) and f = (3,1,2,3,2,1,3).

Definition 4.7. For integers m < n, let M, , be the class of graphs G with vertex set

V(G) = [n] satisfying the followingaxioms.

(i) The subgraph of G induced on [m] has edge set {i(i41) |1 <i<m—1}, and the

subgraph of G induced on {m+1,m+2,...,n} has no edges.
(ii) The sequence G(m+1), G(m+2),---, G(n) separated on [m.

The graph G € My, 18 called a Mountain based on [m].

Theorem 4.8. If G € My, ,,, thenm(G) =m — 1.

Proof. Choose a sequence o =1 <t <ltp < ... < t;_1 <t =m and a function

£+ [k] = [n]\[m] with respect to which the sets G(m+1),...,G(n) are separated on [m)].
For 1 <i <k, choose a column vector u; € R such that

supp(u;) € [(max G(f (7)) N[ti-1,4]) — 1] and supp(Anu;) = G(f(i)) N [ti-1, 4], where
Ap = (d} j) is defined in Lemma 4.1. Notice that from the construction, uJT.Amu,- =01if

J < i, and indeed for j # i since A,;, is symmetric. Form+1 </ <n, let
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S¢={i€[k] : f(i) =}, and define the column vector v, := };cs, u;- Note that for
m+1<{¢<n,{=f(i) forany i € Sy, so

supp(Amve) = supp(An, Z u;) = G(0). (6)

i€Sy
Also for p € [n]\[m] with p # ¢, we have S;NS, =0, so
T _ T _
ViAmvp =Y Y, uf Apuj=0. @)
€Sy jES)

We now define the n by n symmetric matrix A = (a;;) by

;

a, if1<i<j<m

(™ Ay jodf b<i <m-£1< j<n.

\

From the above construction in (8) and (6), (7), one can easily check that I'(A) = G. For

all m+1 < /¢ <n, Al[m]|¢] = Ay,v,. Hence
rank(A[[m]|—]) = rank(A[—|[m]]) = rank(Ay,) =m — 1.

Form+1<i,j<n,Ali|{] = viTAmv - Hence the column of A is a linear combination of
the first m columns. Thus the rank of A is equal to m — 1. This proves m(G) <m— 1.

Since G contains induce subgraph P, we have that m(G) = m — 1 by Lemma 3.3. [l

Example 4.9. Let G be a mountain of order 12 based on [10] such that G(11) and G(12)
are separated with respect to the sequence (1,3,5,8,10) and f = (11,12,11,12) as

showing in the figure 3. We will give a matrix A associated with G and the rank of A is 9.

20



11 12

12... 10

Figure 3. A mountain mased on [10] of order 12.

Since the sequence G(11), G(12) is separated on [10] with (1,3,5,8,10) and

f=1(1,2,1,2), let Ao be the matrix defined at Lemma 4.1 and we choose
u; = [1,0,0,0,0,0,0,0,0,0]”, up =[1,—1,1,0,0,0,0,0,0,0]7;
uz =[—3,3,-3,3,-3,2,0,0,0,0]", ug =[2,=2,2,-2,2,-2,2,-2,1,0]"
such that
supp(Ajou;) ={1,2} = G(11)N[1,3], supp(Ajouz) ={3:4} = G(12) N [3,5];

supp(Ajous) =4{5,6,7} = G(11)N[5,8], supp(Ajous) = {8,10} = G(12) N8, 10].

Choose vy = uj + u3y vi3 = up + uy such that supp(vyi) = G(11) and
supp(vi2) = G(12). Then the following matrix A is associated with G and rank(A) = 9.

: i

Ao Ajovir Aviz

A= V1T1A10 6 0
vhbAl 0 3

This implies m(G) <9, and it’s clear that m(G) > m(Pjp) = 9. Thus m(G) = 9.

Example 4.10. There exists a matrix A associated with the following graph G with rank
9.
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11 12 o 13

1 2 - 10

Figure 3. A mountain based on [10] of order 13.

The sequence G(11) = {1,2,3,5,6,7}, G(12) ={3,4,9,10} and G(13) = {7,8,9}, is

separated on [10] with (1,3,5,7,9,10)and f = (11,12,11,13,12). We choose
up =[-3,2,0,0,0,0,0,0,0,0]", u, =[1,—1,1,0,0,0,0,0,0,0]";
us = [—3,3,-3,3,23,2,0,0,0,0]", us = [-3,3,-3,3,-3,3,-3,2,0,0]";
us =[0,0,0,0,0,0,0,0,0,1]".
Then we have
supp(A1ou1) =41,2,3} = [1,3]NG(11), supp(Aiou2) = {3,4} = [3,5]N G(12);
supp(Aouz) = {5,6,7} =[5, 7] G(11), supp(Ajous) ={7,8,9} = [7,9]N G(13)

and supp(Aous) = {9,10} =[9,10] N G(12).

Choose vi| = uy +u3, vip = up +us and vi3 = uy. The following matrix A is associated

with G and rank(A) =9.

Ao Arvir Aoviz Aovis
Ay 100 0
A —
vhbAg 0 3 0
vIiA 0 0 5
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Corollary 4.11. If G € My, , then M(G) =Z(G) =n—m+ 1.

Proof. We have known M(G) < Z(G) by Theorem 3.12, and
M(G) =n—m(G) =n—m+ 1 by Theorem 4.8 and equation (1). Initially by coloring

the set S = [n]\[m — 1] in black, one can check that applying color changing rules along

the sequence of verticesm — 1, m—2, ..., 1, eventually every vertex is black. Hence
Z(G) <n—m+1,and indeed M(G) =Z(G) =n—m+1. O
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