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A distance-two coloring with application to wireless
sensor and actor networks

Student: Yen-Cheng Chao Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

Wireless sensor metworks (WSNs) have a wide array of applications in envi-
ronment and infrastructure monitoring. An efficient solution to allow sensors to
communicate with the outside-world is"making use of one or several actors as the
receiver of the data harvested by the WSNs. A wireless sensor and actor network
(WSAN) consists of many randomly deployed sensors and a few actors that orga-
nize the sensors in their vicinity into an actor-centric network. Localization, routing,
and collision avoidance are three fundamental problems in WSANs. The main con-
tribution of this thesis is to solve the collision avoidance problem by proposing a
new virtual infrastructure for the localization, and give optimal (in some cases,
near-optimal) distance-two colorings for the adjacency graph of our virtual infras-
tructure.

Keywords: Wireless sensor and actor metwork;Coarse-grain localization, Distance-two

coloring, Collision avoidance
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1 Introduction

A wireless sensor and actor network (WSAN) [1] consists of massively and randomly
deployed tiny sensors and a few actors that organize the sensors in their vicinity into
a short-lived actor-centric network to support a specific mission. These tiny and low-
cost sensors have small (nonrenewable) energy supply and limited communication range,
and, after deployed, are unaware of their location and are unattended. Actors are mobile
along the area of deployed sensors to collect the sensed data from sensors within its
transmission range and to aggregate and transmit to the outside world. Each actor is
equipped with better processing capabilities, higher transmission power to send broadcasts
for a distance, and a longer battery life than the sensors. Actor-centric sensor networks
have many application in environment and infrastructure monitoring, and can detect
emergent, unexpected and coherent behaviors and trends, and find immediate applications
in environmental monitoring and homeland security:.

In the study of WSANSs, there are three fundamental problems: (i) localization, (ii)

routing, and (iii) collision avoidance.

1.1 Localization

Due to the sensors constraints on the cost, size, energy consumption, and implemen-
tation environment, most sensor nodes do not know their locations. The localization
problem is to determine, for individual sensor nodes, as closely as possible their geo-
graphic coordinates in the area of deployment. The sensed data could be meaningless if it
is not related to the exact position or at least a sufficiently small region of the monitored
area, and position information guiding sensors to transmit data has been studied on many
geographic routing protocols. An immediate approach to provide the exact position of
each sensor is based on localization systems (e.g., globally positioning system (GPS)), but

this approach takes expensive cost and is not suitable for plenty of randomly deployed,



tiny and low-cost sensors in many applications. Hence, a coarse-grain location aware-
ness is sufficient for WSANs with a trade-off: that an coarse-grain location awareness is
lightweight, but the resulting positioning accuracy is only a rough approximation of the
exact geographic location.

Training is referred to the task of allowing each sensor to acquire a coarse-grain lo-
cation. Wadaa et al. [19] first proposed a training protocol in which each actor trains
sensors in its vicinity, namely, the actor-region, to associate these sensors with coarse-
grain coordinates related to the actor. More precisely, after training, each sensor in the
actor-region will acquire two coordinates: the corona and the sector to which it belongs. A
training protocol provides for free a clustering of the sensors and a virtual infrastructure,
where a cluster consists of all sensers-having the same coordinates.

The resulted virtual infrastructure of training protocols proposed in [2, 3, 4, 14, 17, 18]
are identical (see Figure 1(a)); one consequence of these training protocols is that: the
number of sectors im-each corona are the same. By contrast, Navarra and Pinotti [12]
presented a new virtual infrastructure in which the number of sectors is doubled at each
corona i, for i is a power of 2; see Figure 1(b). The papers [7, 13] also used the same
virtual infrastructure as {12].. One interesting result.of [12] is that the ratio given by
the area spanned by two clusters is at most 2. Notice that in [4, 12, 13, 17, 18, 19] the
terminology sink-centric network was used instead of actor-centric network.

In [2], Bertossi et al. proposed two scalable energy-efficient training protocols for
sensor networks. Navarra, et al. [13] proposed the protocol, called Cooperative. This
protocol is the fastest training algorithm for asynchronous sensors, and it matches the
running time of the fastest known training algorithm for synchronous sensors. Other

training protocols for WSNs have been proposed in the literature [3, 4, 19].



Figure 1: (a) The virtual infrastructure with 7 coronas and 8 sectors proposed in [2, 3,
4,14, 17, 18, 19]; the number of sectors in each corona will be the same. (b) The virtual
infrastructure with 7 coronas and 4 sectors.in corona l proposed.in [7, 12, 13]; the number
of sectors is doubled at coronas 2 and 4.

1.2 Routing

In a trained actor-centric network, the routing can be easily performed as followed:
the message can be'trivially routed inward within a single sector to the actor or routed
following several paths consisting of subpaths within a sector or within a corona (clockwise
or counterclockwise, depending on which is the shortest path) and a subpath toward the
actor within a sector. In addition, to help-the-actor to locate an event that has occurred
in the network, each sensor can add on'its coordinates to the sensed data before delivering

the messages to the actor.

1.3 Collision avoidance

A wireless sensor network can be modeled as a graph with sensor nodes as vertices
and the communication link, if it exists, between any two nodes as an edge. An ordinary
coloring assigns each vertex a color such that two adjacent vertices receive distinct colors.
Our graph-theoretic terminologies are standard; see [5, 21]. During data transmission,

packet collisions (i.e., radio interference) may occur and lead to packet losses and retrans-



missions, which result in an overhead on energy consumption and transmission latency,
and therefore shorten the network lifetime. There are two major types of collisions: the
direct and the hidden collisions [6, 20]. The former occurs when a node simultaneously
delivers and receives packets, and the latter occurs when a node simultaneously receives
packets from more than one node. An ordinary coloring could solve the direct collision
by scheduling two sensor nodes with a link to transmit in distinct time-slots (or chan-
nels or frequencies). However, an ordinary coloring could not solve the hidden collision.
Therefore, instead of using an original coloring, a distance-two coloring is needed, which
assigns each vertex a color in such a way that two vertices receive distinct colors if they

are of distance at most 2.

1.4 Our contribution

Throughout this thesis, we will follow the convention (see [12]) that ¢ is an integer
and ¢ > 3. In [12], Navarra and Pinotti defined the adjacency graph G, for their virtual
infrastructure, which is: each vertex corresponds to a cluster and two vertices are adjacent
if their corresponding clusters share the boundary-of a corona or a sector, where /¢ is the
number of sectors imposed in corona 1. They gave an optimal distance-two coloring for
(G5 and a quasioptimal one for G4. - Then;Das et al. [7] gave a distance-two coloring of
Gy with 2¢ colors, and Navarra et al. [13] improved the distance-two coloring algorithms

of Gy. We now list the best previous known results in Table 1.

Gy # of colors | lower bound | optimal coloring
0=3-2,i>0 6 6 Yes [13]
(=4 7 7 Yes [13]
(=5 7 7 Yes [13]
(=47 i>2 8 6 No [13]
>7 9 6 No [13]

Table 1: The best previous distance-two colorings for Gy.

Let |i|;, where i is an integer and j is a positive integer, denote the non-negative
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remainder of the integer division of ¢ by j.
In this article, we propose a new virtual infrastructure and distance-two colorings for

the adjacency graph H, of our virtual infrastructure. We now list our results in Table 2.

H, # of colors | lower bound | optimal coloring
(=3-1,1>1 6 6 Yes
(=4 7 7 Yes
=5 7 7 Yes
(=8-4,1>1 6 6 Yes
=10 or ¢ =20 7 6 No
e {m,2m,4m}, odd m > 7 and 3{m 8 6 No [9]

Table 2: The performance of our distance-two colorings for H,.

The remaining part of this thesis is organized as follows. Section 2 gives our virtual
infrastructure, basic definitions, and lower bounds for distance-two coloring. Section 3
proposes our distance-two colorings.—Section 4 discusses the leader election problem for

our virtual infrastructure. Concluding remarks are given in the final section.

2 Our virtual infrastructure, basic definitions, and
lower bounds

We first describe the WSAN model. In a WSAN, all sensors possess three basic
capabilities: sensory, computation, and wireless communication; and operate subject to

the following constraints:

1. Each sensor is asynchronous — it wakes up for the first time according to its internal
clock and it is not engaged in an explicit synchronization protocol, neither with the

actor nor with the other sensors;

2. Individual sensors are unattended — once deployed, it is neither feasible nor practical

to devote attention to individual sensors;



3. No sensor has global information about the network topology, but each sensor can

receive transmissions from the sink;
4. The sensors are anonymous — they are not associated with unique IDs;

5. Each sensor has a modest non-renewable energy budget and a limited transmission

range;

6. Sensors can transmit and receive on multiple frequency channels. Moreover, the

number of channels and frequencies are the same for all the sensors.

A training protocol imposes a virtual coordinate system onto the sensor networks by

establishing:

1. Coronas : The actor-region is divided into k coronas Cy,Cy; . .., Cy_q1 determined

by k concentric circles of radii r; < ry < - -+ < 1, centered at the actor.

2. Sectors : The actor-region is divided into h equiangular sectors Sy, Si,..., S 1,

originated at the actor, each having a width of 27“ radians.

For convenience, the coronas and sectors are referred by specifying their numbers;
thus, corona C. and sector Sy will. be referred to as corona c and sector s, respectively.
In a built virtual coordinate system, a cluster is the intersection between a corona ¢ and
a sector s. All sensors in a cluster acquire the same coordinates, denoted by (¢, s). For

convenience, the radii r;’s are considered as r; =i for7=1,2,...,k.

2.1 Our virtual infrastructure

We now propose a new virtual infrastructure with ¢ sectors imposed in corona 1 and
the number of sectors is doubled at each corona ¢, where ¢ = 2p, for p = 1,2, ..., [%j
Set

he = (- 205



for easy writing, which is the number of sectors in corona c. The formulated definition of

the adjacency graph of our virtual infrastructure is given in the following definition.

Definition 1. The adjacency graph Hy, has one vertez (c,s), where 1 < ¢ < k — 1 and
0 < s < he, for each cluster in the virtual infrastructure. Two vertices (¢, s) and (¢, '),
with ¢ > ¢, are adjacent if

1.c=cd and|s—§| =1 (mod h,.), or

2.c=cd+1isodd and s = &, or

8. c=c +1is even and s' = |5|. (See Figure 2 for an illustration.)

Figure 2: (a) The virtual infrastructure that starts with ¢ = 4 sectors. (b) Its correspond-
ing adjacency graph H,; the six black, the five green, and the five red vertices denote
S,1), T4y, and T{413), respectively.

2.2 Basic definitions and lower bounds for distance-two coloring

It is easy to see that in adjacency graphs G, and Hy, a vertex corresponds to a cluster
and two vertices are adjacent if their corresponding clusters share the boundary of a corona
or a sector. For the rest of our discussion, we will not consider corona 0 since the sensors in

it can retrieve the information with the actor by itself, so the scheduling of communication



in it is not necessary. Equivalently, it could be assumed that the transmission reaches
the actor when it reaches corona 0 (see also [7, 12, 13]). We now give the definition of

distance-two coloring.

Definition 2. A distance-two coloring of a graph G is an assignment of a color to each
of the vertices of G in such a way that two vertices are assigned different colors whenever
they are at distance one or two (i.e., they are adjacent or have a common neighbor). If
the colors are chosen from a set of d colors, then the coloring is called a distance-two

d-coloring.

Before going further, we introduce two notations that will be used in later discussion.

For odd ¢ > 3, define S, 5) be a 6-clement subset of the vertex set of H, such that
Sesy ={(c—1,5), (¢,]8 = 1|n.)s (&5), (epfs ), (eF 1,125[n 1)y (c+1, (25 + 1)}
For even ¢ > 2, define T}, ;) be a 5-element subset of the vertex set of H, such that

Tiewy = {(c = 1, 1155 e, ), (€= A0S

hc—1)> (Ca |S . 1|hc)’ (Cv S)v (Cv |S + 1|hc)}'

For S(cs) or T{c,s), the vertex (c,s) will be called its center. See Figure 3 for an illustration.
Also, the six black, the five green, and the-five red vertices shown in Figure 2(b) denote
5(371), T(274), and T(4713), respectively.

Immediately, we observe the following fact.

Lemma 2.1. All the vertices in Si.s) have a pairwise distance of at most two. This is

also true for Ti..).

This lemma is obvious and its proof is omitted. Do notice that it is impractical to
consider a virtual infrastructure with three (or fewer) coronas. Therefore, all the adjacency
graphs G,’s and H,’s are assumed to have at least 4 coronas. This assumption is crucial to

the lower bound of the number of colors required by a distance-two coloring. In particular,



(¢, s) (=115 Ihe) (e = L5 )
(¢ |s = 1fn,) (¢ |s +1ln.)

(c+17|28’hc+1) (C+17‘28+1‘hc+1) (C>|S_1|hc) (C’S) (C7|S+1|hc)
(b)

(a)

(C - 15 |L%J ‘hc—l) (C - 17 |L%J ’hc—l)

(e ls — Una) (€,8) A& lsat 1n.)

(©)

Figure 3: (&) S(es); (b) Tic,s) for even s; (¢) Ties) for odd s.

Navarra et al. [13] proved that any distance-two coloring of G, requires at least 6 colors;

and we prove the following lemma
Lemma 2.2. Any distance-two coloring of Hy requires at least 6 colors.

Proof. By definition,«S(g1y = {(2,1),(3,0), (3,1),(3.2),(4,2),(4,3)}. Since S(31) has 6
vertices, it follows from Lemma 2.1 that any distance-two coloring of H, requires at least

6 colors. ]

The above lower bound can be sharpened for H; and Hj; see the following theorem.

Theorem 2.3. [9] Any distance-two coloring of Hy or Hs requires at least 7 colors.

In [13], Navarra et al. also proved that any distance-two coloring of G4 or G5 requires
at least 7 colors. Theorem 2.3 provides a much simpler proof for such a result since
the subgraph of H, induced by vertices in coronas 1 to 4 is isomorphic to the subgraph
of GGy induced by vertices in the same coronas. Before ending this section, we give two

interesting results. The first one uses the well-known Brooks’ Theorem, which says that if



(G is a connected graph other than a complete graph or an odd cycle, then the chromatic

number of GG is at most the maximum degree of G.

Lemma 2.4. The minimum number of colors required by a distance-two coloring of H,

1s between 6 and 16.

Proof. A distance-two coloring of a graph G can be obtained from a coloring of the square
of G (i.e., G?). Since the maximum degree of H? is at most 16, by Lemma 2.2 and Brooks’

Theorem, we have this lemma. [

Lemma 2.5. If H, has a distance-two d-coloring, then so does Hoy.

Proof. This lemma follows from the fact that Hs is an induced subgraph of Hy (Ha, can

be obtained form H, by removing vertices in coronas 1 and 2). [

3 Our distance-two coloring algorithms

In this section, we propose algorithms OPT13, OPTS8, OP14, OPT5, and COL to
color Hy for ¢ =3 -4, { =84, = 4, ¢ =5, and ¢ > 3 (the general case), respectively.
We will prove that the first four algorithms (i.e., OPT3, OPT8, OPT4, and OPTY5) give

optimal distance-two colorings, and the last algorithm C'OL gives a near-optimal one.

3.1 Optimal coloring for H, with { =3 -1

Let M (c, s) denote the value of the (¢, s) entry in a matrix M. The idea of our coloring
algorithm is to design a 4-by-3 matrix with the following three properties (¥, Wy, and

U3) and to use this matrix to perform coloring.
Uy: For ¢, s, and ¢, we always have M(|c|4, |5']3) # M(|cls, |s|3) if |]5 # |s]3-

U,: For ¢, s, and ', we always have M(|c+ 1|4, ]|s|3) # M(|c|4,|5|3).

10



U3: For ¢ and s, we always have M(|c + 2|4, |s|3) = M(|c|a, |25 + 2]3).

We now design a 4-by-3 matrix

0 1 2
0(6 5 4
A:1123
214 5 6
3\3 2 1

Then A(0,0) = 6, A(0,1) = 5, A(0,2) = 4, etc. It is easy to verify that matrix A is
designed with properties Wy, Wy, and W3.. We-now give a coloring algorithm for H, with

¢ =3-1,1>1; see Figure 4 for an illustration of this algerithm.

Algorithm 1 OPT3(As Executed-At Every Vertex)
1. vertex (c, s) gets'the color A(|cls,|$|3);

Figure 4: The optimal distance-two 6-coloring for Hs produced by OPT'3.

Theorem 3.1. Algorithm OPT3 is distributed, takes constant time, and produces an

optimal distance-two 6-coloring for Hy with £ =3 -4, 1 > 1.

Proof. 1t is obvious that OPT3 is distributed (a vertex could look up matrix A and

obtain its own color independently) and takes constant time. Since £ = 3-i and i > 1 and

11



he = £-215) we have 3 | h.. Let f be the coloring produced by OPT3. We now verify
that f is a distance-two coloring. Suppose (¢, s) and (¢, s’) are two distinct vertices that

are of distance at most 2 and ¢ < . Then ¢ — ¢ < 2 and there are three cases.

Case 1: ¢ = c¢. Then since 3 | h., we have 1 < |s’ — s|;, < 2 and hence 1 < |s' — 5|3 < 2,

which implies |s|s 7 [s[s. By W1, f(¢,s") = f(c, s) = A(lcla, [s']3) — A([cls, [s]s) # 0.
Case 2: ¢ =c+ 1. By Uy, f(d,s) — f(c,s) = A(|c + 1|4, |s]3) — A(|cls, |$'[3) # 0.

Case 3: ¢ = ¢+ 2. Then either ' = 2s or 2s + 1 occurs. In the former case, by ¥3 and
then Wy, f(c,s") — f(c,5)'= Alle+20a512sl3) = Allcla, [s]3) = Alcla, [2(25) +2]5) —
A(lela, I8]3) = A(lclas|s +2|3) — A(|c]s, |s]3) # 0. Inthelatter case, again by W3 and
then Wy, f(c,s')=f(e,s) =A(e+2|s, 25+ 1|3) —A(|cla,|8]3) = A(|c|4,]2(2s+1) +
2|s) — A(lcla, [s]3) = A(lcla, s +1]3) = Allel, |s|s) 7# 0.

Therefore, f is a distance-two coloring. It is-obvious that f uses 6 colors. Thus by

Lemma 2.2, OPT3 is optimal and we have this theorem. [

3.2 Optimal coloring for H, with / =8 -1

First we define seven permutations.on colors'1,2,...,6: py = (3,5), ;1 = (1,3),
pa = (2,6), ps = (2,5), ps = (3,4), ps = (3,6), and pg = (1,2), where a permutation (x,y)
exchanges colors z and y in a coloring (i.e., replaces z with y, and y with z), and for a
color ¢ we denote the operator o by

y ifc=u;
co(zy)=q = ife=y; and co(z,y)(@,y) = (co(z,y))o(@,y).
¢ otherwise,

We now give a coloring algorithm for H, with ¢ = 8 -4, « > 1. Imagine that we
partition the vertices of H, into eight subsets (we also call them blocks) By, By, ..., Bz,

where B, = {(c, s) : {KQS—LS%JJ = b}. See Figure 5(a). The idea of our algorithm is to color

12



Hy by using OPT3; when 3 | ¢, we are done, and when 3 t ¢, we change the colors of
vertices in By, by using the permutation [[;_,p; = pop:i...ps—1. See Figure 5(b) for an

illustration of this algorithm.

Algorithm 2 OPTS (As Executed At Every Vertex)
1. if |[¢|3 =0 then //3]/.
vertex (c, s) gets the color A(|cly, |$|3);
else
let b= |55 ;
if [¢|; = 1 then
vertex (c, s) gets the color A([c + 2[4, [s]3) o [, ps;
else // |{]3 =2.
vertex (c, s) gets theteolor A(lclassla) o [, pj;
9: end if
10: end if

S
T
)
.
£}
!

Figure 5: (a) The 8 blocks of Hg. (b) The distance-two 6-coloring for Hg produced by
OPTS.

Theorem 3.2. Algorithm OPTS is distributed, takes constant time, and produces an

optimal distance-two 6-coloring for Hy with ¢ =8 -4, 1 > 1.
Proof. 1t is obvious that OPTS is distributed and takes constant time. If |[¢|3 = 0, then

13



OPTS8 performs in the same way as OPT'3; by Theorem 3.1, OPT8 produces an optimal
distance-two 6-coloring. In the remaining proof, we consider |¢|3 # 0.

For convenience, let p; = (2,4), Ag = A, and A, Ay, ..., A7 be matrices such that
Ap(c,s) = Ale, s) o[ [, pj- Then:

0 1 2 0 1 2 0 1 2 0 1 2

0(6 5 4 0(6 3 4 06 1 4 02 1 4

Ay = 111 2 3 A = {1 2 5 Ay — 113 2 5 Ay — 13 6 5
214 5 6 214 3 6 214 1 6 214 1 2

3\3 2 1 3\D 2 1 SA\2 2 3 3\5 6 3

0 1 2 0 1 2 W 0 1 2

0(5 1 4 Of5-1 3 05 1 6 0[5 2 6

Ay = 113 6 2 . A" 1146 2 —2 114 3 2 A= 114 3 1
214 1 5 213 1 5 216 1 5 216 2 5

3\2 6 3 3\2 6 4 3\2 3 4 3\1 3 4

Since Ag is exactly A, it clearly has the properties Wi, Wy, and V3. For b = 1,2,...,7,
Ay is obtained by renaming the colors in A. Thus A;, As, ..., Az also have the properties
Wy, Uy, and Vs.

Let f be the coloring produced by OPTg. Then

_J Au(le+ 2[4, [s]s) i 4]z =1
fle,s) = { As(lcla, 15]s) if |05 = 2. for(c,s) € By.

We now verify that f is a distance-two coloring. Suppose (¢, s) € B, and (¢, s') € By
are two distinct vertices that are of distance at most 2. Then |V — b|g < 2 and there are

three cases.

Case 1: i/ =b. Then (c¢,s) and (¢, s’) belong to the same block and therefore get their

colors from the same matrix A,, which has properties Wy, Uy, and ¥3. Thus, using

14




an argument similar to the one used in Theorem 3.1, we have

Ap(|¢" + 2[4, [8']3) = Ap(le +2la, |s]s) # 0 if [€]s = 15
VAN _ ) ) )
f(C,S) f(C, S) { Ab(|c’|4,\s’|3)—Ab(|c|4,|s|3) 750 if |£‘3:2_
Case 2: I/ = |b+ 2|s. This case occurs only when { =8 and ¢ =c =1 and |s' — s|g = 2.

By checking the coloring in corona 1 of Figure 5(b), f(c,s") — f(c,s) # 0 holds.

Case 3: I/ = |b+ 1|s. Then (¢, s) and (¢, s’) belong to two adjacent blocks and there are

two subcases.

Subcase 3-1: ¢ = c¢. In this subcase, 1 < |§' = s}, < 2. When b =0,1,...,6, we
have |s'|3 # |s|3; and we observe that if the color Ay (|c|4, |$']3) is not indicated
in pp, then Apig(|caslsz)="As(|cls, |$']3) # Ap(|e|a,|sls) by ¥1; otherwise, for
some s, Apgr(|c|s, |s)s)-="Ap(|c+ 1|4, |8"|3) #-Ap(|cla, |s|s) by Yoo When b =7,
we have [s"+ h.|s # |s|3, and we observe that if the color Ag(|c|4, |'|3) is not
indicatediin p7, then Ag(|els, [s']3) = Az(|cls, |s" + hels) % Az(|cls, |s]3) by ¥i;
otherwiseyfor some §”, Ag(|clay|s|s) = Az(lc+ 1|4, |8"]3) 5~ A7(|cls, |s]3) by Y.

Thus, we have

Apper)s (I + 2], [8']3)= Ap(le+ 2la, |s|s) # 0 if []s = 15
C,,S/ —f(c,8) = [b+1]s ) ’ i )
R O R s A e if 6]y — 2.
Subcase 3-2: ¢ # c. Since (¢, s) and (¢, ') belong to two adjacent blocks, in this
subcase, (¢, s') and (¢, s) are of distance exactly two and | —c| = |§'—s|,, = 1.
So we only need to check the colors used on the boundary of two adjacent blocks
(i.e., the boundary of By and By, the boundary of By and Bs, ..., the boundary

of B; and By). Here we list the colors used on these boundaries for |¢|3 = 1
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and (|3 = 2:

[{ls=1] By B,y By B3 By Bs Bg By By
c=1 |3---2/1---5/2---3]/5---6[3---216---4]2---3[4---1[3--
c= 6---6/3---3/4---4/2---2/1---1/3---3!/5---5/2...2(6--
c= 1---112---215---5/3---316---612---24---4/3--.3|1--
c=2 |4..-.5/6---4/1---6|4---1/5---4|1---5|6---1/5---64--
c= 3...211.---5/2---3!/5--.6/3---216---412---3/4---13--
|€|3:2 BO B1 B2 B3 B4 B5 B6 B7 BO
c = 1---112---2/5--.5[3---316---6|2---24---4[3---3[1--
c=2 |4.---516---4/1---6l4---1/5---4/1---5|6---1/5---64--
c= 3...211.---5/2:-.315-.613--2/6---4|2---314---13--
c=4 |6---6|8: 23 4oy to"a 1. . 43..-3|5---5|2.---2|6--
c=5 |1--412-+42!5...5(3..-3/6-%-612+--24-..4(3---3|1--

From the above lists, two vertices get different colors if they are on the bound-

ary of two adjacent blocks and of distance exactly two.

From the above, f is a distance-two coloring. It is obvious that f uses 6 colors. Thus by

Lemma 2.2, OPTS is optimal and we have this theorem: [

3.3 Optimal coloring for H,

We define a matrix

0123 4 5 6 7

M4:16415____

2\1 3 7 2 6 3 7 2

“_»

where means the corresponding item is not used. By Lemma 2.5, Hg is a subgraph
of Hy. Thus one way to color Hy is to extend a coloring of Hg and this leads to Algorithm

OPT4. See Figure 6 for an illustration of this algorithm.
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Algorithm 3 OPT4 (As Executed At Every Vertex)
1: if ¢ < 2 then

2: vertices (¢, s) get the color My(c, s);

3: else // ¢>3.

4: if (¢,s) =(3,0) || (¢,s) = (3,4) then

5: vertex (c, s) gets the color 7;

6: else

7 let b = {j—gd,

8: vertex (c, s) gets the color A([c + 2|y, |s[3) o [[;.,pj; // use the [¢|3 =1 case
in OPTS.

9: end if

10: end if

Figure 6: The distance-two 7-coloring for H, produced by OPT4; all the vertices are
colored by using A (along with permutations pg, 1.+ . ,ps) except that those highlighted
are colored by using Mj.

Theorem 3.3. Algorithm OPT4 is distributed, takes constant number of steps, and pro-

duces an optimal distance-two 7-coloring for Hy.

Proof. Tt is obvious that OPTS is distributed and takes constant time. Let f be the
coloring produced by OPT4. We now verify that f is a distance-two coloring. Suppose
(c,8) and (¢, §') are two distinct vertices that are of distance at most 2. If at least one of
(¢,s) and (¢, ') is highlighted (see Figure 6), then f(c,s) # f(c/,s’) can be verified by a

brute-force checking. If both of (¢, s) and (¢/, ") are not highlighted, then O PT4 performs
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in the same way as the |[{|3 = 1 case of OPTS; hence f(c,s) # f(¢,s") by Theorem 3.2.
From the above, f is a distance-two coloring. It is obvious that f uses 7 colors. Thus by

Theorem 2.3, OPT4 is optimal and we have this theorem. [

3.4 Optimal coloring for H;

We first define a matrix M; =

01234 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19

1{1 2 5 43 - —- — aQARBEREENe - - - — — — —
4

6
313 2 7 5 6 39247 4 1B=EEge, N - - — — —
416 5 4 6 3.4 2 142 1 .4 5+1 3 o5 2 6 5 2

5\1 2 71 2 5 3 7 5 3 6 2 7 6 2 4 3 7 4 3

“_»

where means the corresponding item is not used. By Lemma 2.5, H,, is a subgraph
of Hs. Thus one way to color Hy is to extend a coloring of H,y and this leads to Algorithm

OPT5. See Figure 7 for an illustration of this algorithm.

Algorithm 4 OPT5 (As Executed At Every Vertex)
if ¢ <5 then
vertices (¢, s) get the color Ms(e;s);
else // ¢>6.
let b = LS—Q ;
vertex (c, s) gets the color A([e[4, [s|3)o]],.,pj; // use the |[¢|3 = 2 case in OPTS.
end if

Theorem 3.4. Algorithm OPT5 is distributed, takes constant number of steps, and pro-

duces an optimal distance-two 7-coloring for Hs.

Proof. 1t is obvious that OPTS is distributed and takes constant time. Let f be the

coloring produced by OPT5. We now verify that f is a distance-two coloring. Suppose
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Figure 7: The distance-two 7-coloring for Hs produced by OPT5; all the vertices are
colored by using A (alongwith permutations pg, p1, . . . ;Ps) exeept that those highlighted
are colored by using Ms5.

(c,s) and (¢, ") are two distinct vertices that are of distance at most 2. If at least one of
(¢,s) and (¢, ') is highlighted (see Figure 7), then f(c, s) # f(¢/,s") can be verified by a
brute-force checking. If both of (¢, s) and (¢, s") are not highlighted, then O PT'5 performs
in the same way as the [¢|; = 2 case of OP18; hence f(c, s) # f(¢,s’) by Theorem 3.2.
From the above, f is a distance-two coloring. It is obvious that f uses 7 colors. Thus by

Theorem 2.3, OPT5 is optimal and we have this theorem. [

4 The leader election problem

The leader election problem is to select a leader (from the sensors in a cluster) to
perform certain tasks on each cluster. Because sensor networks contain many sensed data
of the local environment, leader election can be used to combine or aggregate the data into
meaningful information. More precisely, leader election has applications to coordination
and data fusion, the latter is also called data aggregation and can be used to reduce the

number of data to be communicated between the sensor node and the actor so that to
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avoid information overload. Leaders paly the most important role of each cluster. Thus an
efficient process for the election of a cluster leader (or data aggregator node) is essential.

In [13], the authors mentioned that they use the uniform leader election for radio
networks protocol in [15] (abbreviated as ULERNP) to select a leader for each cluster.
Unfortunately, we find that this is incorrect. In ULERNP, the network has to be a single-
hop network (i.e., every two nodes can communicate directly). Therefore to use ULERNP
to select a leader for each cluster in the virtual infrastructure G4, the nodes in each cluster
have to form a complete graph; however, it is usually impossible that every two nodes in a
cluster can communicate directly. Furthermore, when the nodes are very dense, ULERNP
usually produces dramatic. communication overhead.

In [8], a hybrid approach that-combines the energy conservation with the simplicity
was introduced. This.approach is based on four selection parameters: (1) the available
energy, (2) the number of neighbouring sensor nodes, (3) the distance from the current
group leader, and (4) the level of trust; for details, please refer to [8]. This approach
can be used in leader election for G, and H,. However, nodes may produce a lot of
communication overhead since G, and H, are usually multi-hop networks. For other
leader election protocols, please see [10, 16].

Before closing this section, ‘we propese. an-idea of how to perform leader election in
a multi-hop network like G, and H,. We will only consider the parameter (1) and the
distance from the candidate node to the other nodes in the cluster (the leader should be
easy accessed from the other nodes). If more than one node can be selected, we randomly

select one of them as the leader.

5 The concluding remarks

In this thesis, we propose a virtual infrastructure called H, and an distance-two col-

oring algorithm for H,. Our virtual infrastructure H, provides a coarse-grained location
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to the sensors in a network and allows geographic routing. Our distance-two coloring

algorithm can be used to assign the frequency channels (or colors) in a fully distributed

manner and our algorithm uses fewer channels than the previous work [13]. In the fu-

ture, we intend to determine an appropriate way for the leader election problem, because

choosing the right leader can help enhancing the network lifetime and can make routing

more easier. In real world applications, the environment may have obstruction in it. Thus

it is also challenging to find a virtual infrastructure for such an environment.
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