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Data envelopment analysis (DEA), a performance evaluation method, measures the relative efficiency of
a particular decision making unit (DMU) against a peer group. Most popular DEA models can be solved
using standard linear programming (LP) techniques and therefore, in theory, are considered as computa-
tionally easy. However, in practice, the computational load cannot be neglected for large-scale—in terms
of number of DMUs—problems. This study proposes an accelerating procedure that properly identifies a
few “similar” critical DMUs to compute DMU efficiency scores in a given set. Simulation results demon-
strate that the proposed procedure is suitable for solving large-scale BCC problems when the percentage
of efficient DMUs is high. The computational benefits of this procedure are significant especially when the
number of inputs and outputs is small, which are most widely reported in the literature and practices.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA), first introduced by Charnes
et al. [1], is a well-established method for relative performance eval-
uation. This method considers multiple inputs and outputs simul-
taneously without assigning a priori weights or assumptions on the
functional form. In the past three decades, DEA has demonstrated it-
self to be a highly effectivemeans of evaluating relative performance.

DEA evaluates relative performance for a decision making unit
(DMU) against its peer group S. To accomplish this, the most widely
used DEA models formulate and solve linear programming (LP)
problems. Standard approaches solve |S| LP problems, each with all
members. Although an LP problem is theoretically polynomial-time
solvable, in practice, solution time increases significantly for large
cases. Barr and Durchholz [2] summarize this effect by stating, “Not
only did the memory requirements of larger problems limit the
amount of usable parallelism, but run times grew exponentially in n”
where n is the number of DMUs. Intensive computation engenders
numerous practical application challenges. For example, to evaluate
the efficiency of 4796 Brazilian municipalities, Sampaio de Sousa and
Stosic [3] take over 17 days to detect outlying points from the 4796
records. Therefore, methods for reducing solution time for DEA prob-
lems are practically beneficial, especially for large DEA problems.

Two major issues are associated with solving LP problems. The
first issue is associated with how to solve the problem rapidly given
a particular problem size (e.g., the simplex method, interior point
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method, algebraic method and graphic method). The second issue
is related to reducing problem size using a specific technique or
software package. Relevant literatures on DEA computational issues
has focused on the second issue, and [4,5] provide comprehensive
discussions and reviews.

Inefficient DMUs cannot affect the efficiency scores of other
DMUs; identifying and removing these inefficient DMUs during
computations can reduce LP problem size. There are some works
presenting a way to flag dominated DMUs that are always inefficient
(e.g., [6,7]). A DMU is also always inefficient overall when it is inef-
ficient in comparison with a small subgroup. Barr and Durchholz [2]
utilize this observation and partition a data set into small subsets to
identify inefficient DMUs. Other studies attempt to utilize efficient
DMU characteristics. For example, Chen and Ali [8] point out that
a DMU is efficient when it has the highest value in any form of an
output-to-input ratio.

Another stream of literature links computational geometry and
DEA (e.g., Dulá and Venugopal [9]). The concept of frame, which is
a set of minimum extreme points constructing a polyhedral cone, is
the foundation of these studies. The data points in the frame corre-
sponding to DEA models are efficient. Dulá and Trall [10] propose a
two-stage approach based on this idea. During the first stage, points
in the frame are identified using specific well-established algorithms
(e.g., [11,12]). Points in the frame are used to compute efficiency
scores for those not in the frame in the second stage. The LP problem
size is therefore reduced in DEA computations, and computational
time is decreased.

Three factors related to computational performance are [4]:
(1) “Dimension” (number of inputs and outputs); (2) “Scale” (total
number of DMUs) and (3) “Density” (percentage of efficient DMUs).
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Early studies accelerate large-scale DEA computation by classifying
efficient and inefficient DMUs such that a downsized data set is used.
These techniques serve low-density cases effectively, as reported by
Dulá [4] and Barr and Durchholz [2]. However, they may not be suffi-
cient for all large cases, particularly the high-density situations. Con-
sidering theworst cases inwhich all DMUs are efficient, no inefficient
DMUs can be identified; thus, the LP's problem size cannot be re-
duced. Therefore, this work presents a novel accelerating procedure
for solving large-scale DEA BCC problems. The proposed procedure
is suitable for solving large-scale problems with high-efficiency den-
sity data. The computational benefits of the procedure are significant
especially for low-dimension cases, which is typical in practices.

The rest of this paper is organized as follows. Section 2 introduces
the fundamentals of DEA, particularly its managerial and geometric
interpretations. Section 3 then addresses the implementation of the
proposed acceleration method. Finally, Section 4 demonstrates the
effectiveness of the proposed method. Conclusions are finally drawn
in Section 5, along with recommendations for future research.

2. Data envelopment analysis

Consider an input set I and output set O. Let x ∈R|I|
+ be the input

vector, y ∈R|O|
+ be the output vector, and (xk, yk) be the input–output

bundle for any DMU k ∈ S. A popular DEA model for evaluating the
efficiency score by comparing k with S is the input-oriented BCC
model proposed by Banker et al. [13]:

E(k, S) = min
�,�r

�

s.t.
∑

r∈S
xri �r ��xki ∀i ∈ I,

∑

r∈S
yrj �r �ykj ∀j ∈ O,

∑

r∈S
�r = 1,

�r �0 ∀r ∈ S. (1)

Model (1) attempts to proportionately minimize usage of xk

by � while maintaining at least the same output level. A feasible
input–output bundle for this minimization process, (�xk, yk), should
be within the empirical production possibility set (EPPS) constructed
by set S. Ray and Mukherjee [14] describe the EPPS as “an inner
approximation to the true production possibility set” and “the free
disposal convex hull of the observed points.” In model (1), the last
two constraints and the left-hand side of the first two constraint
types (input/output constraints) are associated with the convex hull
constructed by S, i.e., {(∑r∈S xr�r ,

∑
r∈S yr�r)|

∑
r∈S �r = 1;�r �0, r ∈

S}. The inequalities represent the free disposal property, revealing
that using more or equal resources (� ) to produce fewer or equal
outputs (� ) than any known feasible bundle, i.e., the left-hand side
of inequalities (the convex hull), is always achievable. Therefore,
constraints of (1) define the feasibility relationship between EPPS
and (�xk, yk). The optimal value of model (1), E(k, S), is the input
efficiency or efficiency score for (xk, yk). This is because the optimal
solution (

∑
r∈S xr�

∗
r ,

∑
r∈S yr�

∗
r ) is feasible using only �∗times of xk

to produce no less than yk, i.e.,
∑

r∈S yr�
∗
r �yk, and is the compari-

son basis. Any DMU k with E(k, S)=1 is efficient and on the efficient
frontier.

(
∑

r∈S xr�
∗
r ,

∑
r∈S yr�

∗
r ) represents the “virtual DMU” composed

of the peers for DMU k. DMU r is a reference point, or simply the
reference, of DMU k if it contributes to the composed virtual DMU,
i.e., �∗

r >0. The optimal solution �∗
r = 0 indicates that r does not con-

tribute to the virtual DMU and thus cannot affect the efficiency score
for k. Hereafter, this study refers to DMU k in model (1) as the tar-
get DMU or target. Moreover, E(k, S) is notably a radial measure that

tries to move xk toward the origin by minimizing �;
∑

r∈S xr�
∗
r lies

on the segment between xk and the origin in most cases, and has mix
identical to xk. This feature implies that an inefficient DMU is com-
pared against DMUs with similar input–output mix on the frontier.
For example, suppose two inputs exist—capital and labor. A labor in-
tensive inefficient DMU will be compared with efficient DMUs that
are also labor intensive, not capital intensive. The following model
is equivalent to the dual of model (1), also called ratio form in the
DEA literature, and it provides a clear explanation on this argument.

E(k, S) = max
vi ,uj ,u0

∑
j∈Oujykj + u0
∑

i∈Ivixki

s.t.

∑
j∈Jujyrj + u0∑

i∈Ivixri
�1 ∀r ∈ S,

vi�0 ∀i ∈ I,

uj�0 ∀j ∈ O. (2)

In model (2), DMU k selects its favorite weights according to its
input–output vector for comparison. The reference DMUs are those
performing well given the selected weights, and thus they should
have similar input–output mix in response to the weights.

In addition to the radial efficiency measurement, classifying
DMUs as efficient or inefficient is an important topic in DEA studies.
The variance of model (1) for this purpose is as follows:

min
�,�r ,s+i ,s−j

� − �

⎛
⎝∑

i∈I
s+i +

∑

j∈O
s−j

⎞
⎠

s.t.
∑

r∈S
xri �r + s+i = �xki ∀i ∈ I,

∑

r∈S
yrj �r − s−j = ykj ∀j ∈ O,

∑

r∈S
�r = 1,

�r �0 ∀r ∈ S.

where � is the non-Archimedean infinitesimal, and s+i and s−j are

input/output slacks. The DMUs with unity scores and all slacks being
zero are called strong efficient, whereas the DMUs with unity scores
and non-zero slacks are referred to as weak efficient. Although the
main objective is to compute radial efficiency, the proposed method
can accelerate DEA classification as well. Such classification can be
done using a two-phase procedure. Phase one solves model (1) for all
DMUs. The scores obtained from phase one are parameters in phase
two that checks for slacks. The optimal solutions obtained in model
(1) can reduce the size of the LP problem for phase two problem
solving.

3. Acceleration procedure

This section presents a novel procedure for solving large DEA
problems. Particularly, the proposed method accelerates the cases
in which most DMUs are efficient but this is unknown to analysts.
The acceleration procedure presented here is for input-oriented BCC
models, and can easily be extended to other radial models, such as
CCR models [1] or different orientations with minor modifications.

3.1. Idea

Calculating BCC efficiency scores solves many different LP prob-
lems with structures identical to model (1). Model (1) has |S| + 1
variables and |I| + |O| + 1 constraints, typically with |S|?|I| + |O| + 1.
The optimal solution of the corresponding LP problem has at most
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Fig. 1. The pseudocode of the procedure FastDEA.

|I| + |O| �'s in the basis that are possibly non-zero, and the last slot
in the basis is always left for �. This observation reveals that for a
single standard DEA (SDEA) computation, regardless of problem size,
at most |I| + |O| DMUs are related to the efficiency score, and only
corresponding DMUs are needed for problem solving. Furthermore,
as addressed in Section 2, the |I| + |O| reference DMUs are similar to
the target DMU. The proposed acceleration procedure, FastDEA, con-
sequently selects as few DMUs (columns) as possible to construct
the corresponding LP problem. The primary idea in finding this re-
duced set of DMUs to compute the score for a particular DMU k is
to properly define the “similar” DMUs related to k. Hereafter these
“similar” DMUs are referred to as k's neighbors.

Fig. 1 presents the pseudocode of FastDEA. Notably, FastDEA re-
quires the peer group data S, a range parameter � and threshold �
as inputs, and returns efficiency scores for all DMUs in S. The first
part, Initialization, is the data preprocess that transforms data (x, y)
to a polar coordinate system and categorizes DMUs into several sub-
sets (H, L and D) representing different possibilities of being effi-
cient. Data in D are dominated, i.e., at least one other DMU exists
that uses relatively fewer resources but producing relatively more
outputs. Thus data in D are clearly inefficient. Two major parts ex-
ist in the loop that computes scores for each DMU. In the first part,
FindNeighbor identifies a small set of neighbors, N (N ⊆ S), for target
DMU k, and SolveSmallLP solves model (1) using only reduced set N
to obtain �k =E(k,N). The second part determines whether the score
obtained by N is identical to that using S—the full-scale problem—via
procedure CheckKKT, namely, whether E(k,N)=E(k, S) holds is deter-
mined. A “no” answer enlarges N and FindNeighbor is repeated. This
process is repeated until solutions based on N and S are identical.
The following sections describe the sub-procedures in detail.

3.2. Finding neighbors

This section introduces the idea of procedure FindNeighbor and its
implementation, which is key to downsizing LP problems. Identifying
an appropriate small set of DMUs related to the target DMU, such that
elements in this particular set are “similar” to the target, is desirable.
Via proper selection, at most |I| + |O| reference points are needed
for efficiency computations. In reality, identifying the corresponding
reference points is computationally intensive. Therefore, instead of
locating exact references, this work determines a reasonably small
set of neighbors that likely contains reference points.

Two aspects, mix and magnitude, are geometrically associated
with input and output vectors x and y. Model (1) shows the radial

downscaling of x with a fixed mix until the virtual DMU on the
efficient frontier is reached. References, which compose the virtual
DMU, depend only on mix and not on the magnitude of inputs as
regardless of the magnitude of x, it will be reduced. The most likely
references are thus the ones with an input mix similar to that of the
target.

The original DEA data (x, y)'s are represented in the rectangular
coordinate system. The polar coordinate system is another coordi-
nate system that represents a point by its direction (angle or mix)
� and magnitude � separately with a one-to-one mapping between
these two systems [15]. For instance, in a two-dimension case, a rect-
angular system, (x1, x2), can be transformed to (�, �) in a polar coor-
dinate system with the mappings x1=� cos� and x2=� sin�, where

� =
√
x21 + x22 and 0���2	. Generally, n-dimension cases contain

n−1 angles and 1 scale index (refer to [15], for high-dimension map-
pings). Transforming data to the polar coordinate system can sepa-
rate the information into magnitude and mix. Hence, mix similarity
can be easily identified using only angle information.

Denote �k
x = (�k

1, . . . ,�
k
|I|−1) as the input angle vector of DMU k

represented in the polar coordinate system. The coordinate transfor-
mation is only applied to the input vectors since only the input mix
is of interest here. Given two angle vectors, �k

x and �r
x, for DMU k

and r, respectively, one simple way, but not limited to, for determin-
ing the difference between two vectors is based on the two-norm.
Thus, the input mix dissimilarity index between DMUs k and r can
be defined as

IG(k, r) =

√√√√√
|I|−1∑

i=1

(�k
i − �r

i )
2. (3)

Greater IG(k, r) indicates a higher input mix dissimilarity between
k and r. IG(k, r) = 0 indicates that k and r are identical in the input
mix. Let � ∈ [0, 1] be the predetermined tolerance parameter repre-
senting the acceptable proportion (100 × �%) of most similar DMUs
corresponding to the target. Set Sx(k,�) ⊆ S can be determined ac-
cording to (3), where elements in Sx(k,�) are the top 100×�% DMUs
similar to k in terms of input mix, i.e., ∀r ∈ Sx(k,�) has the 100 × �%
smallest value of IG(k, r).

Rather than checking mix for defining input vector similarity,
both mix and magnitude are needed for the output because, in con-
trast to inputs, no target output scaling is required in model (1) and
magnitude does matter in this case. The dissimilarity index of any
two DMUs based on [16] combining both mix and magnitude aspects
can be used for the output:

AD(k, r) ≡ 1
|O|

⎛
⎜⎝

∑

j∈O

⎛
⎝ln

yrj

ykj

⎞
⎠
2
⎞
⎟⎠ . (4)

Higher AD(k, r) indicates greater dissimilarity between DMUs k and
r regarding outputs. In the same manner, the similar set related to
k in terms of output can be denoted as Sy(k,�) according to (4).

This work is looking for DMUs similar to k in terms of inputs
and outputs. Consequently, N(k,�) = Sx(k,�) ∩ Sy(k,�) is the set of
neighbors for the target k with respect to tolerance �. Additionally,
the proportion ofN(k,�) to the overall candidate set is notably around
�2, not �.

3.3. Categorizing DMUs

A potential problem exists regarding the effectiveness of catch-
ing true references by selected neighbors in N(k,�). Only efficient
DMUs in N(k,�) are proper true reference candidates. More efficient
candidates in N(k,�) have an increased chance of catching the right
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Fig. 2. How to find the neighbors.

references given the same size of neighbors. Therefore, density of
N(k,�) determines the possibility of including true references and,
hence, its effectiveness.

Set Sx(k,�) is determined by an angle and is a cone-shaped region.
It is more likely to include inefficient DMUs than efficient DMUs
because of a large transection located far from the origin. Fig. 2
presents a simple two input equal output example illustrating this
issue. This work evaluates the efficiency of k with underlying but
unknown references p and q. Suppose N(k,�) is the region between
rays OA and OB, with ten total points within it. Eight of the ten are
worse than k, and N(k,�) does not contain references p and q due
to the data distribution. The region between rays OA and OB widens
far from the origin; hence, it will contain more uncritical points
than true references. Therefore, noise needs to be filtered out (e.g.,
inefficient DMUs) when using certain bullets (neighbors) to shoot
targets (references).

First, dominated DMUs can be flagged as inefficient to resolve this
problem without solving any LP problems [17]. By pairwise compar-
isons, dominated DMUs can be easily identified and collected in set
D. Only DMUs in S\D are possible as a reference and require further
processing such as being transformed to a polar coordinate system.

Classifying S\D into different classes according to potential effi-
ciency and selecting neighbors from each class separately can fur-
ther increase the possibility of N(k,�) containing true references. If
DMUs are classified into three classes, one can have different angle
ranges in each class. The piece near the frontier should be wider than
without classification and thus more likely to contain true references
for k.

Fig. 3 presents the pseudocode of the Initialization procedure,
which contains a DMU data set S and threshold � as inputs and re-
turns three disjoint subsets of S (H, L and D). Via paired compar-
isons, the FindDominated procedure identifies points dominated by
any point and classifies them in D. Only DMUs in S\D are neigh-
bor candidates and require that vector (x, y) be transformed into
the polar coordinate system (�x,�y, �x, �y) via the TransformToPo-
lar procedure. This work transforms the input and output vectors
independently.

Categorization partitions S\D into H, L and others, where H and
L represent sets of DMUs being relatively more or less efficient, re-
spectively. Instead of solving model (1), the sets are roughly deter-
mined by the possible dominance relationship between DMUs. Given
(�x,�y, �x, �y) for each DMU, the DMUswith the larger �y and smaller
�x are more likely to be efficient. Comparison of DMUs p and q with
very a “similar” input–output mix indicates that p is very likely more
efficient than q if �py > �qy and �px < �qx . Thus, this work divides S\D into
regions, in which DMUs are very “similar” in the input–output mix
according to (�x,�y). Ranking �x and �y separately within region g,

Hg
x collects DMUs whose �x are the bottom 100 × �%, where � is a

prespecified threshold, and Lgx represents those with �x that are the
largest 100 × �%. Similarly, Hg

y and Lgy can be defined according to

�y, where Hg
y and Lgy are collections of DMUs with �y being the top

and bottom 100 × �%, respectively. Classes H and L are obtained as

H =
⋃
g
(Hg

x ∩ Hg
y) and L =

⋃
g
(Lgx ∩ Lgy).

Various means can define region g. Section 4 presents one example.
Applying FindNeighbor with � to H, L and S\{H ∪ L ∪ D} separately,
N(k,�) is the union of selected neighbors from three classes.

3.4. Checking optimality

Set N(k,�) determined by the FindNeighbor procedure contains
neighbors likely to be the reference. For simplicity, N(k,�) is denoted
as N in this section. The efficiency score for k using set N can be
computed by model (1) as E(k,N); E(k,N) = E(k, S) is not necessary
since N ⊆ S. Hence, this section addresses how to determine whether
E(k,N) = E(k, S) holds.

Given the optimal solution related to E(k,N), the solution is also
optimal for model (1) using S, i.e., E(k,N) = E(k, S), if it satisfies the
Karush–Kuhn–Tucker (KKT) optimality condition corresponding to
S. The dual of model (1) is as follows:

E(k, S) = max
vi ,uj ,u0

∑

j∈O
ujy

k
j + u0

s.t.
∑

i∈I
vix

k
i = 1,

∑

j∈J
ujy

r
j −

∑

i∈I
vix

r
i + u0�0 ∀r ∈ S,

vi�0 ∀i ∈ I,

uj�0 ∀j ∈ O. (5)

Suppose (�̂; �̂r , r ∈ N) is the optimal solution related to E(k,N) ob-
tained by model (1) and (û0; ûj, j ∈ O; v̂i, i ∈ I) is the optimal solution
related to E(k,N) obtained by (5). This work determines whether the
solution (û0; ûj, j ∈ O; v̂i, i ∈ I; �̂; �̂r , r ∈ N; �̂t = 0, t ∈ S\N) can yield
E(k, S) from models (1) and (5) by checking the KKT optimality con-
dition. Notably, �̂t = 0 for t ∈ S\N are artificially added, not solved;
�̂t = 0 because they are not neighbors and not in the basis with re-
spect to the optimal solution for E(k, S). The difference in model (5)
regarding S and N is the number of constraints, not variables. The
KKT optimality condition regarding S is, thus, the satisfaction of the
following constraints.

Primal feasibility:
∑

t∈S\N
xti �̂t +

∑

r∈N
xri �̂r � �̂xki ∀i ∈ I, (6.1)

∑

t∈S\N
ytj �̂t +

∑

r∈N
yrj �̂r �ykj ∀j ∈ O, (6.2)

∑

t∈S\N
�̂t +

∑

r∈N
�̂r = 1, (6.3)

�̂r �0 ∀r ∈ N. (6.4)

�̂t �0 ∀t ∈ S\N. (6.5)

Dual feasibility:
∑

i∈I
v̂ix

k
i = 1, (6.6)

∑

j∈J
ûjy

t
j −

∑

i∈I
v̂ix

t
i + û0�0 ∀t ∈ S\N, (6.7)
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Fig. 3. The pseudocode of the procedure Initialization.

∑

j∈J
ûjy

r
j −

∑

i∈I
v̂ix

r
i + û0�0 ∀r ∈ N, (6.8)

v̂i�0 ∀i ∈ I and ûj�0 ∀j ∈ O. (6.9)

Complementary slackness:

v̂i

⎛
⎝ ∑

t∈S\N
xti �̂t +

∑

r∈N
xri �̂r − �̂xki

⎞
⎠ = 0 ∀i ∈ I, (6.10)

ûj

⎛
⎝ ∑

t∈S\N
ytj �̂t +

∑

r∈N
yrj �̂r − ykj

⎞
⎠ = 0 ∀j ∈ O, (6.11)

�̂t

⎛
⎝∑

j∈J
ûjy

t
j −

∑

i∈I
v̂ix

t
i + û0

⎞
⎠ = 0 ∀t ∈ S\N, (6.12)

�̂r

⎛
⎝∑

j∈J
ûjy

r
j −

∑

i∈I
v̂ix

r
i + û0

⎞
⎠ = 0 ∀r ∈ N. (6.13)

The constraints (6.1)–(6.6) and (6.8)–(6.13) are clearly satisfied be-
cause �̂t = 0, t ∈ S\N. Only (6.7) is required for further assessment,
which is easily done by procedure CheckKKT. If constraint (6.7) holds,
the solution satisfies the KKT condition and thus is the optimal solu-
tion for model (1) using the full data set S. Therefore, E(k,N)=E(k, S)
is obtained and the loop is terminated; otherwise, a relatively larger
neighborhood is required.

4. Case study

This section demonstrates the effectiveness of the proposed
method by using simulated cases. The SDEA computational proce-
dure for solving full-scale LP problems and the method proposed
by Barr and Durchholz [2] (HDEA) are used as benchmarks for com-
parisons. The domination procedure FindDominated is also applied
in HDEA implementation, but not in SDEA. The modified procedure,
SDEAwD, which is SDEA with a domination procedure, is also im-
plemented for comparison. No additional fine-tuning processes are
implemented in all methods for fair comparisons. The SDEA proce-
dure is utilized as the benchmark for computation time and solution
accuracy; the other three methods must have solutions identical
to those provided by SDEA. Trade-offs between the number of
neighbors and number of computation iterations are also discussed.

4.1. Implementation

Simulated data are generated via a two-stage process. First, effi-
cient data, (xk, yk∗) ∀k ∈ S, specifying the ideal efficient input–output
relationship, are generated by the software package FEAR [18]. In-
efficiency components are added by the following function in the
second stage:

yk = e−Ukyk
∗ ∀k ∈ S, (7)

where Uk for k ∈ S are independent and identical random variables
distributed exponentially with mean 
. The data (xk, yk) ∀k ∈ S are
used for various analyses in this section.

The SDEA, SDEAwD, HDEA and FastDEA are coded and executed
using Matlab on the same machine. This study sets �=0.5 in FastDEA,
where N(k,�) contains roughly 25% (0.52) of points of S\D, and �
is set at 0.7, 0.9 and 1 to obtain a larger N(k,�) if necessary. In
Categorization, a base point is randomly selected from unclassified
DMUs in S\D. Using the same idea as described in Section 3.2, the
top 10% (� = 0.1) of the remaining data that are close to the base
point are identified separately according to input and output mix
aspects by Eq. (3); the intersection of the two sets defines a region.
This procedure for defining a region is repeated until the remaining
data size is less than an arbitrarily selected threshold, say, 10% of
S\D. Points not belonging to any region are grouped and flagged in
one additional region. Both H and L are defined using �=50% as the
threshold. On the implementation of HDEA, the block sizes are 250,
150 and 100 DMUs for 5000-DMU, 3000-DMU and 1000-DMU cases,
respectively. These numbers are used by Barr and Durchholz [2, p.
355]. Gauging tolerance is r = 0.7 and the incremental ratio is 1.5.

Table 1 lists 72 scenarios representing different combinations of
density, dimension and scale. Four blocks represent different dimen-
sions. Cases of 1000, 3000 and 5000 DMUs represent different prob-
lem scales. Density is the result of instance data randomly generated
by setting parameter 
 of random variable Uk in (7). Density columns
list average density of 10 instances for a particular dimension and
scale; the corresponding 
 values are also listed next to the density.
This work sets average density in certain ranges, namely, around
10%, 20%, 30%, 40%, 50% and 100%, such that comparison results will
be more meaningful. Hence, the values of 
 are properly selected,
and may vary from case to case based on different scales. For ex-
ample, average density of 31% is obtained when 
 = 5 in 1000-DMU
cases; however, 
=15 yields 34.5% and 30% DMUs that are efficient
on average for the other two problem scales. Notably, as dimension
increases, the density generated by 
 decreases. This phenomenon is
not surprising since higher input–output dimensions increase DMU
efficiency in relative comparisons.

Ten instances are generated for each scenario. The same data set
is tested for different methods under that particular scenario. Table
1 lists the average of 10 instances for average LP problem scale
and total LP problems solved with respect to HDEA and FastDEA.
Additionally, Table 1 lists the average number of dominated DMUs.
Average LP size increases as dimension, density and/or scale increase
(Table 1). FastDEA has a slightly smaller average LP size than HDEA
under most scenarios. Total number of LP problems solved grows
in response to increases in dimension and scale for both FastDEA
and HDEA. However, as density increases, FastDEA solves fewer LP
problems than HDEA.

Notably, results in Table 1 demonstrate that the total number of
LP problems solved in HDEA is around three times the number of
DMUs in high-density cases. This is because inefficient DMUs are sel-
dom found in early stages; thus, LP size cannot be reduced to offset
the additional effort associated with inefficient DMU identification.
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Table 1
Average size and total number of LP problems.

DMUs 
 Efficient density (%) Avg. no. of dominated DMUs Avg. LP size Avg. Tol. LP solved

HDEA FastDEA HDEA FastDEA

3 inputs 3 outputs
1000 0.1 6 856 54 49 1160 1544

1 15 615 131 485 1672 2118
5 31 267 234 217 2677 1971

10 41 123 276 172 2724 1796
15 48 69 306 292 2888 1673
– 100 0 414 330 3000 1257

3000 1 9.5 2087 251 179 4655 6257
5 21 1048 472 452 6673 5623

15 34.5 320 710 701 8401 4639
25 49 61 921 787 9262 4057
55 58 18 1019 796 9461 3808
– 100 0 1121 882 9000 3416

5000 1 8 3640 354 234 7183 9934
5 17 1930 659 637 10 439 8981

15 30 616 1020 1043 13 368 7339
35 43 124 1386 1208 15 031 6451
55 52 38 1581 1244 15 539 6123
– 100 0 1869 1430 15 000 5544

3 inputs 6 outputs
1000 0.1 7 803 74 56 1347 2218

0.5 17 572 146 585 1768 2278
1 25 428 194 172 2045 2261
2 35 269 248 247 2441 2247
4 48 129 303 320 2798 2130
– 100 0 414 377 3000 1541

3000 0.5 12 1967 303 237 4846 6850
1 18 1549 418 375 5723 6857
3 32 746 656 696 7467 6553
5 41 426 788 861 8329 6235
9 53 175 946 989 9018 5753
– 100 0 1121 1047 9000 4260

5000 0.5 10 3439 432 326 7653 11 050
2 20 1882 724 845 10 349 11 150
4 33 1028 1094 1213 12 717 10 489
7 43 507 1341 1470 14 189 9731

11 53 238 1541 1603 15 042 9069
– 100 0 1869 1673 15 000 6750

6 inputs 3 outputs
1000 0.01 12 573 128 113 1825 3133

0.5 25.5 386 220 921 2389 2454
1 28 301 226 228 2446 2374
2 39 206 298 277 2799 2279
4 49.5 111 341 327 3021 2106
– 100 0 414 366 3000 1420

3000 0.1 10 1953 305 236 5181 8064
1 22 1234 564 486 6949 7148
3 30.5 660 686 734 7964 6596
5 41 411 889 854 8923 6164
9 51 179 1003 963 9394 5544
– 100 0 1121 1022 9000 3979

5000 0.1 8 3570 390 289 7913 13 229
1 18 2353 788 663 10 724 11 756
3 29 1302 1137 1074 13 205 10 837
7 41.5 516 1450 1415 14 878 9419

13 53 177 1662 1559 15 701 8357
– 100 0 1869 1632 15 000 6333

6 inputs 6 outputs
1000 0.01 12 588 126 109 1827 3145

0.1 17 483 163 153 1978 2631
0.5 32 292 262 241 2562 2509
1 41 188 313 298 2782 2435
2 52.5 95 353 357 3052 2331
– 100 0 414 408 3000 1689

3000 0.01 7 2114 210 176 4785 9634
0.3 18 1414 489 433 6532 7794
1 31 786 737 714 8015 7313
2 41.5 438 891 900 8905 6912
3.5 52 223 1012 1033 9333 6495
– 100 0 1121 1126 9000 4622
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Table 1 (Continued)

DMUs 
 Efficient density (%) Avg. no. of dominated DMUs Avg. LP size Avg. Tol. LP solved

HDEA FastDEA HDEA FastDEA

5000 0.1 10 3307 463 377 8530 13 674
0.5 19 2203 828 755 11 132 12 545
1.5 32 1111 1249 1247 13 742 11 781
2.5 41 678 1456 1489 14 770 11 219
5 55 269 1712 1744 15 617 10 208
– 100 0 1869 1830 15 000 7461

Fig. 4. Normalized average computational time for cases with 3 inputs and 3 outputs.

For cases with 1000 DMUs and 100% density, 100 LP problems are
solved in the first iteration for each 10 blocks; however, no ineffi-
cient DMUs are flagged. According to the pseudocode in Barr and
Durchholz [2, p. 353], block size increases to 150 and 1000 LP prob-
lems are solved during the second iteration. Due to no significant
improvement, 1000 DMUs are pooled in one block in the terminating
iteration. The observation demonstrates the shortcomings of HDEA
when handling high-density cases.

4.2. Effectiveness

Fig. 4 displays the comparative relationship between average
computational time and case density for large-scale cases with 5000
DMUs each of which has 3 inputs and 3 outputs. The x-axis repre-
sents the average density of 10 instances, and the y-axis is the nor-
malized computational time with respect to SDEA. The normalized
average time takes SDEA time in a particular scenario (density, di-
mension and scale) as the benchmark (time = 1). Squares, triangles
and circles in Fig. 4 represent normalized average time for SDEAwD,
HDEA, and FastDEA, respectively.

As shown in Fig. 4, FastDEA generally reduce computational time
when compared with that of SDEA, and saves >60% for all densities.
FastDEA has more significant time saving in low-density cases; it
takes only 20% and 30% of SDEA time in densities 8% and 18%, respec-
tively. As density increases, the normalized time slightly increases
to around 0.4.

HDEA performs impressively for low-density cases. The HDEA has
the most saving from SDEA at >70% for low-density cases. When

Fig. 5. Normalized average computational time for cases with 3 inputs and 6 outputs.

density <50%, the edge of HDEA relative to SDEA diminishes lin-
early with the increase in density. Fig. 4 shows that HDEA is not
significantly better (or is worse) than the SDEA method when effi-
cient density is >40%. This is because HDEA uses additional steps to
identify inefficient DMUs and, thus, computational time is reduced.
However, only a few DMUs are inefficient in high-density cases; the
extra computing load does not lead to significant savings. No gain
is realized from flagging inefficient DMUs that consume additional
time in 100% efficient cases; overall performance of HDEA is worse
than that of the SDEA method.

SDEAwD reduces computational time in low-density instances,
but the edge to SDEA diminishes faster than HDEA and Fast-
DEA as density increases. Comparing FastDEA with the other
two methods shown in Fig. 4, FastDEA outperforms SDEAwD for
all densities; FastDEA has a significant edge over SDEAwD ex-
cept density being 8%. FastDEA outperforms HDEA when density
>20%, the performance edge increases when density grows. In the
cases where the FastDEA method does not perform better than
HDEA, the margin is limited and acceptable at <0.1 normalized
time.

Figs. 5–7 have identical interpretation as that in Fig. 4, but with
different case dimensions. HDEA and SDEAwD reveal similar trends
and observations shown in Fig. 4, but HDEA loses its performance
edge to SDEAwD and SDEA when density >50% as dimension in-
creases. FastDEA reduces computational time when compared with
that of SDEA for all densities. FastDEA's normalized time increases
across densities until approximately 40% to 60% and then decreases
when density is 100% (Figs. 5–7). FastDEA outperforms HDEA when
density >40% for all dimension cases and in many cases is better
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Fig. 6. Normalized average computational time for cases with 6 inputs and 3 outputs.

Fig. 7. Normalized average computational time for cases with 6 inputs and 6 outputs.

when density is 30%. FastDEA is better than SDEAwD for all densities
(Figs. 5–7).

By comparing Figs. 4–7, FastDEA performs well for low dimension,
the 3-input 3-output, cases. As dimension increases, performance of
FastDEAmayworsen, particularly around 50% density. The dimension
effect is relatively insignificant for low density such as <20%, and the
dimension has relatively serious impact for medium density around
40% to 60%. However, it outperforms the other three methods in
high-density cases (>40%).

Fig. 8, similar to Fig. 4, displays the normalized time related to
SDEA but with smaller-scale cases, namely 1000 DMUs and 3000
DMUs. Comparing Figs. 4 and 8 shows that FastDEA performs better,
i.e., it has more significant edge to SDEA, for large-scale problems. For
example, the normalized time at 100% density changes from 0.8 in
1000-DMU cases to 0.5 for 3000 DMUs and 0.4 for 5000 DMUs. HDEA
has slightly shorter normalized time for the larger scales than small

scales comparing to itself. SDEAwD's normalized time is relatively
independent on the scale in our experiments (Figs. 4 and 8). In the
1000-DMU cases, FastDEA does not performwell; it only outperforms
HDEA for 100% density cases.

Figs. 9–11 have identical interpretation as that in Fig. 8, but with
different case dimensions. Comparing them with Figs. 5–7 shows
the impact due to scale and dimension. Again, increase in dimension
limits the performance of FastDEA, especially for the medium density
around 30% to 60%. In the small scale 1000-DMU FastDEA has poor
performance for high dimension. HDEA performs well for large-scale,
not for small-scale cases. HDEA is not impacted significantly by the
dimension as FastDEA is. SDEAwD is relatively insensitive to both
dimension and scale with normalized time roughly >0.8 for density
>40%.

In summary, FastDEA significantly outperforms SDEA, SDEAwD
and HDEA when density is high. The saving of time compared to
that of SDEA is generally >50% for large problems. In large-scale
problems, FastDEA is relatively insensitive on density comparing to
other methods in the experiments, and its performance is superior
as density increases. Scale and dimension also have an impact on
FastDEA performance. The experiments show that FastDEA has more
significant benefits as scale increases. However, dimension has neg-
ative impact on FastDEA performance. For the large-scale cases such
as 3000 and 5000 DMUs, the performance advantages on SDEA and
SDEAwD diminish as dimension increases. We thus conclude that
FastDEA is suitable for solving large-scale DEA problems with high-
efficiency density data, and the benefits are significant especially for
low-dimension cases.

4.3. Robustness

Fig. 12 displays computational time for the three methods con-
sidering different dimensions. The x-axis represents problem sizes
of 1000, 3000 and 5000 DMUs, and the y-axis is computational
time. The three bars above each problem size represent SDEAwD,
HDEA and FastDEA, from the left to the right, respectively. In addi-
tion to the worst (maximum) and best (minimum) computational
time, the top and the bottom of the bars, respectively, average time
is also marked in each bar. The computational time data are ob-
tained and summarized across different densities (total 10 instances
for each of six densities), but the detailed associations between time
and density are not shown in Fig. 12. Therefore, one can interpret
the range as expressed by the height of the bar for each method
as a summary of the time required under different unknown data
distributions.

The FastDEA has the best average computational time perfor-
mance among three methods (Fig. 12). As expected, computational
time increases as problem size increases for all three methods;
however, time variation also increases. Time variation increases
significantly for SDEA-W and HDEA as problem scale increases; in
contrast, FastDEA's variation is relatively stable for different scales.
For large cases, the best case performance of SDEA-W, HDEA and
FastDEA is impressive, particularly for 5000-DMUs cases. How-
ever, the SDEA-W and HDEA methods perform poorly under some
circumstances. The empirical results reveal that although HDEA
performs very well in some circumstances, it is not robust for all
situations. Conversely, the FastDEA method has good and robust
performance.

Computational time variation increases as case dimensions in-
crease for all four methods. Although the time variation of the Fast-
DEA method increases as problem dimension increases, it remains
the best method in terms of variation. Thus, without knowing the
underlying efficiency distribution, the FastDEA method generates a
good and robust performance under all scenarios.
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Fig. 8. Normalized average computational time for cases with 3 inputs and 3 outputs.

Fig. 9. Normalized average computational time for cases with 3 inputs and 6 outputs.

4.4. Sensitivity analysis

The selection of the initial tolerance parameter (�) is a trade-off
between single LP problem solving time and number of iterations
needed, where one iteration solves one LP problem. Higher toler-
ance results in fewer iterations needed since an increased number
of neighbors identifies and increases likelihood of catching true ref-
erences. However, a larger set of neighbors means that a large LP
problem size consumes more time. Small initial tolerance, by con-
trast, leads to small problem size and possibly an increased number
of iterations, i.e., an increased number of LP problems to solve. This
section demonstrates the trade-offs using simulation cases.

This study uses 3-input 3-output and 6-input 6-output cases
with 5000 DMUs as examples since these cases are large-scale and

represent two extreme dimensions in our simulation studies. Four
initial tolerance values, � = 0.3, 0.5, 0.7 and 0.9, are tested, where
�2 of S\D are selected as neighbors for each iteration. The values of
� also represent how the new parameter values are defined for the
next iteration if necessary, e.g., � = 0.7 is used if using � = 0.5 does
not meet the termination criterion. Moreover, if � = 0.9 still cannot
terminate the loop, the LP problem with S\D is solved (� = 1).

Fig. 13 displays the relationship between initial tolerance and av-
erage time of 10 instances for solving one LP problem. The x-axis rep-
resents values of the initial �, and the y-axis represents average time
for solving one LP problem, which is measured in 10−3 s. Triangles
and circles represent 3-input 3-output (3×3, hereafter) and 6-input
6-output (6 × 6) cases, respectively. The computation results sug-
gest that higher initial tolerance results in longer single LP problem
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Fig. 10. Normalized average computational time for cases with 6 inputs and 3 outputs.

Fig. 11. Normalized average computational time for cases with 6 inputs and 6 outputs.

solving time. In addition, high-dimension (6 × 6) cases take longer
time for single problem solving than low-dimension (3 × 3) cases.
The differences between 3 × 3 and 6 × 6 cases are relatively similar
across different � values.

Fig. 14 displays the relationship between initial tolerance (x-
axis) and average number of iterations needed for solving one DMU
(y-axis). Triangles and circles represent 3 × 3 and 6 × 6 cases, re-
spectively. The computation results in the simulation show that it-
eration required reduces as initial � increases. Taking 3×3 cases as
an example, � = 0.3 requires solving two iterations on average for
one DMU; one iteration is needed on average when � = 0.9. More-
over, more iterations are needed for high-dimension cases than for
low-dimension cases given the same initial �. The difference is par-
ticularly significant for � = 0.3. The test results reveal that, on aver-
age, � = 0.7 (49% of DMUs in S\D) is needed to catch true reference

for 6 × 6 cases irrespective of whether initial � is 0.3 or 0.5. This
is because as dimension increases, it is hard to identify DMUs with
similar mix.

5. Conclusions

Notably, DEAmeasures relative efficiency of a DMU by comparing
it against a peer group. The most popular DEA models can be solved
using standard LP techniques and, thus, are theoretically considered
computationally easy. However, in practice, computation time in-
creases significantly for large cases and yields challenges for many
applications.

This work presents a novel accelerating procedure, FastDEA, for
solving large DEA BCC problems according to geometric and man-
agerial interpretations of radial DEA models. The FastDEA solves
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Fig. 13. Average time for solving one LP problem.

reduced LP problems to obtain accurate efficiencies by selecting only
a few DMUs. The FastDEA procedure is suitable for solving large-scale
DEA BCC problems with high-efficiency density data. The benefits
are significant especially for low-dimension cases, which is typical
in practice. Simulation results demonstrate that the proposed proce-
dure can reduce computational time by >50% for large cases. More-
over, the performance of FastDEA in this study can be considered as
the worst bound. Additional fine-tuning processes can reduce com-
putational time further. For example, recording all inefficient DMUs
in solved problems and moving them to inefficient set D will re-
duce the number of neighbor candidates S\D significantly, thereby

Fig. 14. Average number of iterations needed for solving one DMU.

reducing solving time. Section 4.2 also shows the potential limita-
tion for high-dimension cases. A better way to define the similarity
or dissimilarity is also worth further investigation.
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