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Signless laplacian spectrum of a lollipop graph

with a triangle

Student: Chih-chieh Hsu Advisor: Chih-wen Weng

Department of Applied Mathematics

National Chiao Tung University

Abstract

Let G be a simple graph with vettices 1,---,n of degrees d);--- ,d, respectively. Let
A(G) be the (0, 1)-adjacency matrix of G, and let D(G) be the diagonal matrix diag(dy, - - - ,d,).
The matrix L(G) = D(G) —A(G) is the Laplacianmatrix of G, while |L|(G) = D(G) +A(G)
is called the signless laplacian matrix of G. The eigenvalues of A(G), L(G), and |L|(G) give
many hints to the structure of G. In this thesis we study a class of graphs, called lollipop
graph with a triangle, which are obtained from paths by adding a new vertex to a path and
adding two edges from the new vertex to one end of the path and to the neighbor of this
end, forming a triangle K3. We study the signless Laplacian eigenvalues and characteristic

polynomial of lollipop graphs with K3.

Keywords: lollipop graph, signless laplacian matrix, eigenvalue.
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1 Introduction

Let G be a simple graph with vertices 1,--- ,n of degrees dy, - - - ,d, respectively. Let A(G) be the
(0, 1)-adjacency matrix of G, and let D(G) be the diagonal matrix diag(dy,- - - ,d,). The matrix
L(G) = D(G) — A(G) is the Laplacian matrix of G, while |L|(G) = D(G) +A(G) is called the
signless laplacian matrix of G. The eigenvalues of A(G), L(G), and |L|(G) give many hints to
the structure of G. The least eigenvalue of L(G) is always zero, and the second least is known
as the algebraic connectivity of G, which.isrelated to the connectivity of G in some sense[1]. It
is well-known that the numbers of distinct eigenvalues.of A, L(A), and |L|(G) respectively are

at least one plus the diameter of G[4]-

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V
such that every edge connects a vertex in Uto one in V; that is, U and V are each independent
sets[2, 3]. For the case that G is bipartite, the eigenvalue of L(G) are that of |[L|(G). We are

interested in the determination of eigenvalue of |L|(G) for amnen-bipartite graph G.

The simplest connected graphs which are not bipartite are trees with one more edge. If we
add an edge to a tree to make a graph G with an odd-length cycle, then the least eigenvalue
of |L|(G) is not zero. Besides this, to let G have the longest diameter, we study the graph G
which is obtained from a path by adding one more vertex with two neighbors: one end of the
path and the neighbor of this end. The graph G is called a lollipop graph with K3 of order n,
denote by L3 ,_3. The paper [5] tells us that signless Laplacian matrix of a lollipop graph with
K3 has the least Laplacian eigenvalue among all non-bipartite connected graphs of order n. We
are interested about the eigenvalues of |L|(L3 ,—3), and we try to find other properties about the
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eigenvalues of |L|(L3 ,—3).

Thesis is organized as following. First we give some definitions in graph theory and matrix
theory in Section 2. In Section 3, some propositions which will be used in the thesis are given.
Our main results are given in Section 4. By using a simple example, we introduce a method
to compare the least Laplacian eigenvalues of two graphs with the same number of edges.
We study the upper bound of the largest Laplacian eigenvalues of lollipop graphs with K3 by
using known results and using computer software Mathematica. We compute the characteristic
polynomial P,(A4) of |L|(L3 ,<3) andfind a three-term recurrence relation of P,(A). Then we

find 1 is a common eigenvalue of L3 ;—3-and determine its multiplicity.

2 Preliminaries

In this section, we introduce notations ‘wWhich we will'use in this thesis.

2.1 Graphs

A graph G considered in the thesis is finite, undirected, and connected, without loops or multiple
edges. We use V(G) to denote the vertex set and E(G) to denote the edge set of G, usually
V(G) = [n] ={1,2,...,n}. The cardinality |V(G)| is called the order of G. The following

special graphs with vertex set [n] and their corresponding symbols are used in the thesis.
1. The complete graph K,;: E(K,,) ={ij |1 <i< j<n}.

2. The path P: E(P,) ={ii+1|1<i<n—1}.



3. The (m,n —m)-lollipop Ly, y—m: E(Lyp-m) ={ij |1 <i<j<m}U{ii+1|m<i<

n—1}, where m < n. See Figure 1 for L3 ,,_3.

(O8]
L I
®
=N
S
|
—
N

Figure 1. The graph L3 ,_3.

2.2 Matrices

Definition 2.1. Let M'be a n x n square matrix, if there is a vector v € R” such that

Mv = Av

for some scalar A. Then A is called the eigenvalue of M corresponding to v, and the vector v is

called the eigenvector of A.

Let G be a graph of order n. The matrices considered in the thesis are all symmetric over
the real number field R whose rows and columns are indexed by V(G). Let D(G) denote the
diagonal matrix with rows and columns indexed by vertices of G such that D(G),, = d(x) which
the d(x) is degree of x in G. Then the adjacency matrix A(G), Laplace matrix L(G), signless

laplacian matrix |L|(G) are defined as follows.

1, ifxy€ E(G);
(i) A(G)xy =

0, otherwise.



(i) L(G) =D(G) —A(G),

(iii) |L|(G) = D(G) +A(G).

In the thesis, we only study the signless lpalacian matrix |L|(G) of a graph G.

Letq1(G) > ¢2(G) > - -+ > ¢, (G) be the eigenvalues of |L|(G), and we refer to this sequence
as the spectrum of |L|(G), or that of G for short. If the graph G is clear, we might delete the

symbol G in a notation ¢(G) and write it as /.

We use the symbol G \ e to denote the graph with the same vertex set as V(G) and obtained

by deleting the edge e of G.

2.3 Characteristic polynomial

The characteristic polynomial of a square matrix.M-is.the polynomial det(Al — M). It is well-

known that the eigenvalues of M are'the roots of the characteristic polynomial of M.

The following example will be uesed in Lemma 4.1 and 4.6

Example 2.2.

21100

2110
1 2100

1 210
IL|(L3 1) = JLILs2)=1 11 3 1 0

1131
001 21

0011
00O0T1°1




Then

det(Al—|L|(L31)) = A*—8A%4+19A% — 164 +4,

det(Al—|L|(L32)) = A°—10A%+342° —481% 4271 —4.

The spectrum of |L|(L3 ;) is {S_W, 1,2, 5+§m}, and the spectrum of |L|(L3 ) is

{0.2243,1,1.4108,2.7237,4.6412}, computed by Mathematica.

2.4 Interlacing of two sequences

For m < n, a sequence A; > A, > -«- > A, of real numbers:issaid to interlace another sequence

q1 > q2 > -+ > g, of real numbers if

qi>A>gnmei for 1<i<m.

3 Basic properties

In this section, we shall review a few-basic properties in matrix theory and some previous
results in the study of spectrum of a graph. For completeness, we shall provide the proofs of

some properties.

3.1 Rayleigh’s principle

It is well-known that the largest eigenvalue A; and the least eigenvalue A, of a symmetric matrix

M or order n satisfy

x' Mx . X' Mx
M = max —, Ay = min —.
0#£xeR" X' X 0#4xeR” x'Xx




The following proposition generalizes this property.

Proposition 3.1. Let M be a real symmetric matrix of order n with eigenvalues Ay > Ay > -+ >

An and respective orthonormal eigenvectors uy,uy,- -+ ,u,. Then

u' Mu

(i) > A; for any u € Span(uy,us,--- ,u;), and equality holds iff u is an eigenvector of

u'u
M corresponding to A;,

u' Mu

l/lTl/t

(ii) < Aiy1 for any u € Span(uy,uy,--- ,u;)*", and equality holds iff u is an eigenvector
of M corresponding to Aj .
Proof. (1) Write u = ciug-f -+ cyu; for some c; € R, j=152,--- ,i. Then

u' Mu — c%ll —|—c%?L2+~--+ci2l,-
Tu A+ ++c?

> A
u

If u is an eigenvector of M corresponding to A;, then by the definition of eigenvector,

Mu = “Au,
wMu = udin.
wMu = Au'tu,
uMu

T = A

utu

Hence the equality holds. If the equality holds, then A; = 4; if ¢; # 0, where j <i. Hence

u is an eigenvector of M corresponding to A;.

(i1) Similar to the above proof except here we use

Span(uy,uy, - - ,Mi)L = Span(u;1,Ui12, " ,Up).



3.2 Interlacing property for edge deleting

We shall show that deleting an edge from a graph G does not increase any value of the spectrum

of G.

Definition 3.2. An m x m matrix P is a principal submatrix of an n X n matrix M, where m < n,

if P is obtained from M by removing any n — m rows and the same n — m columns.

The following lemma describes the relation between eigenvalues of a symmetric matrix and

that of its principal submatrix.

Lemma 3.3. If an m X mamatrix P is a principal submatrix.of an n x n symmetric matrix M,

where m < n, then the eigenvalues-of P-interlace those of M.

Proof. To simplify the-notation, we may assume P is obtained from-M by removing the last
n —m rows and columns. Then we can-write P = S MS, where S is an n X m matrix of the form
I
01— 1m)xm
and I, is the m x m identity matrix. In particular § 'S = I,,.
Let uy,up,--- ,u, be orthonormal eigenvectors of M corresponding to eigenvalues A; >
Ay > -+ > A, respectively and vy, vy, -+, v, be orthonormal eigenvectors of P corresponding to

eigenvalues y > 1, > --- > n,, respectively. Note that

dim (Span(vl,vz,--- JVi) ﬁSpan(STul,STuz,m 7STui_l)l> >i+(n—i+1l)—n=1.

T uE

Hence there exists a nonzero vector s; € Span(vy,va,---,v;) N Span(S uy, S us,--- S u;_1)*.
Note that (Ssi)Tuj = siTSTuj =0for1 < j<i—1, henceSs; € Span(uy,uy, - ,u;_1)" and by
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Rayleigh’s principle,

o (Ss)TM(Ss) _ (s)"P(si)
Ai > (SS,')T(SSi) = (Si)T(Si) =z M.

By applying the above inequality to —M and —P we get A,,_,,+; < 7;. Hence

Memyi <N < A

Definition 3.4. Let M denote the (vertex-edge) incidence matrix of G, i.e. M is a matrix with

rows indexed by vertices and columns indexed by edges, such that for x € V(G) and e € E(G),

1, x€e;
Mxe:

0, ~otherwise.

The following lemma describes the relation between incidence matrix and signless Ipalacian

matrix.
Lemma 3.5. Let M be the incidence.matrix of G. Then |L|(G) = MM .

Proof. Note that for x,y € V(G),

1, if xy € E(G);

(MM ") = ZMxe(MT)ey =9 dx), ifx=y; = (ILI(G))xy,

e

0, otherwise,
\

where d(x) is the degree of x. O

The following lemma indicates the relation between two matrices which have the same

eigenvalues.



Lemma 3.6. Let N be an n X m matrix. Then there exists a one-one correspondence between

the nonzero eigenvalues of NN and N"N.

Proof. Suppose g is a nonzero eigenvalue of NN ' with corresponding eigenvector . Then
NNTu = qu # 0. In particular N"u # 0. Since N'NN"u = gN"u, NTu is an eigenvector of
NN corresponding to the eigenvalue g. Suppose g has multiplicity m as an eigenvalue of NN ' .
Letuy,up,--- ,u, be the corresponding orthogonal eigenvectors. If ¢ N Tui+-+cuN up=0
then

0=N(c /N up+-F N wy) =qleyiy + - -+ cmitn),

and hence ¢| = ¢; = ---=¢, = 0.-This proves that the multiplicity of ¢ in NN ' is no larger

than that in N " N. Similarly for the other side, so the two multiplicities are the same. [

The following proposition demonstrates the interlacing property for edge deleting.

Proposition 3.7.

qi+1(G) € gi(G\e)=gi(G) for 1 <i<n-—1.

Proof. Let M denote the vertex-edge incidence matrix of G and recall that |L|(G) = MM by
Lemma 3.5. Note that the incidence matrix M’ of G\ e is obtained from M be deleting the col-
umn associated with e. Hence M’" M’ is a principal submatrix of M " M. By interlacing property
in Lemma 3.3, the sequence of eigenvalues of (n — 1) x (n — 1) matrix M’" M’ interlaces that of
n x n matrix M M. Since M "M and MM " have same nonzero eigenvalues by Lemma 3.6, we
have

gi+1(G) < qi(G\e) <qi(G) for 1<i<n-—1.



3.3 Bounds of the largest signless laplacian eigenvalue

We shall provide some known bounds of the largest eigenvalue ¢;(G) of G. For v € V(G),

denote the neighbor of v by N(v), and define

the average of the degrees of the vertices adjacent to v. Let A(G) be the maximal degree of G

and N; be the set of the neighbor of the vertex v;. The following proposition is well-known.
Proposition 3.8. /6]
(i) q1(G) < max{d(v;)+d(v;) : viv; € E(G)},
(ii) q1(G) < max{m(vi) +d(v;) = v; € V(G)},
(iii) q1(G) < max{d(v;)+d(v;)—|N;ON;|: 1 <i<j<mn,vyv; € E(G)},

(iv) q1(G) > A(G) + 1. O

4 Main Results

Since we are mainly concerned with the graph (3,n— 3)-lollipop L3 ,,—3, we will use the symbol
|L|, to denote the signless laplacian matrix of the graph L3 ,_3. We study the spectrum of |L|,

in this section.
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4.1 The least eigenvalue of L3 >

From edge-interlacing in Proposition 3.7, we know that

g5(L31) < q5(L32) <gs5(L33) < -+,

since L3 ,,_3 and the graph obtained by removing the edge n n+ 1 from L3 ,,_» have the same
spectrum. However if two graphs have the same number of edges, it is impossible to use the

edge-interlacing in Proposition 3.7 to compare their spectra.

Consider the graph L3> in Figure 2, and the graph Gs in Figure 3. Their corresponding

signless laplician matrices |L|5and |L|(Gs) as shown below.

2. 101700 220 1.1 0
12100 01 100
Lls=1"1 1 3 105 E(G)=| 1/1.3 1 0
070 12 1 10131
0004d1 00011

L3> and G5 have the same number of edges. We present another method to compare the least

eigenvalue of L3> and Gs.

w
L N
®

Figure 2. The graph L3 ».
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Figure 3. The graph Gs.

Let

A =|L|5= |L|(Gs5) =} -0~ 00 “0 0
=1 0.0—1.0
000 0 0

Let x = (x1,x2,---,xs)  be the eigenvector of |L|(Gs). corresponding to ¢s(Gs), and x'Ax =

(x1 4+x2)% — (x1 +x4)?, and by Rayleigh’s principle,

xTAXT _x(|L]s)x

x'x x'x

—q5(Gs) >q5(L32) — q5(Gs).

If we can prove

-
xAx<0

Ty — 0

x
then gs(L32) — q5(Gs) < 0, so g5(L32) < ¢5(Gs). Thus we need to find the eigenvector of
|L|(Gs) corresponding to gs(Gs). This is not a good idea, because in this case computing by
Mathematica,

x=(0,—0.6015,0.3717,—0.3717,0.6015),

12



and

TA T L
rAx_ X (|T )X 1(Gs) = 0.6056 — 03820 = 0.2236 > 0.

x'x x'x
Now we try to change the symbols of vertices of L3 », denoted by LY ,. We switch the indices 2

and 4 as shown in Figure 4, so the new matrix is

L'ls=| 11-3 1 0

1 01 2.0
01001
1
3 2 5
) )

Figure 4. The graph L35

First we need a lemma.

Lemma 4.1. Let x = (x1,x2,--- ,X5) | be the eigenvector of |L|(Gs) corresponding to qs5(Gs).

Then |x3| = |xs| > |x3| = |xa|, and x; = 0.

Proof. Let gs be the least eigenvalue of |L|(Gs), where G5 is defined in Figure 3. Since deleting

the edge 45 in the graph Gs yields L3 1, we have

5—V17

1
5 <

g5 < q4(Ls3;) =

13



by edge-interlacing in Proposition 3.7 and Example 2.2. By the definition of eigenvalue and

eigenvector,

(2—q5)x1 +0+4+x34+x4+0
0+ (1—gs)xa+x3+0+0
0=(|L|(Gs) —gsl)x = x1+x4+(3—¢s5)x3+x4+0

x1+04+x3+ (3 —¢s)xs + x5

0+0+0+x4+ (1—gs)xs

Considering the second and fifth entries, and since gs < 1, we have

X3

x| = |
qs

X4
| >l |xs| = [——] >l xoxg = x3xs.
qs—1

Notice that any one of x7,x3,x4,x5-iS-zero will imply x = 0, a contradiction. Considering the

third and fourth entries; we have the following equations, step after step:

X1+ 3—gs)aFxa = —x,
X1 3, +(3 Flg5)xg = Exs)
a+@=g)atx _ x M
x1+x3+ (3 —gs)x4 X5 X4
X1X4 —l—xﬁ +(3—¢gs5)x3x4 = x1x3 —l—x% + (3 —gs5)x3x4,
X1X4 —X1X3 = x%—xﬁ,
xl(X4—)C3) = (X3 —X4)<X3 +X4),
—x1 = (x3+x4).

Considering the first entry, (2 — gs)x; +x3 +x4 =0, and by —x; = (x3 +x4), we have (2 —
gs)x; —x; =0, and then (1 —gs5)x; = 0. Since (1 —gs) # 0, we conclude that x; = 0. This
implies that (x3 +x4) = —x; =0, s0 X3 /x5 = x3/x4 = —1. O

14



Let

0 -1 010
~1 -1 00 0
A'=ILs—|LIG)=] o 0 00 0 |
1 0 010
0 0 000

and as before let x = (x1,x2,---,x5) ' be the eigenvector of |L|(Gs) corresponding to g5(Gs).

Then
xT(|L|s5)x (o) = xTAX T ad)’— (x4 x0)?
xTx B =T T xTx )
Hence
(x4)2 — (2)? (o Fxa)? = (6 +x2)* (L s)x
0> T x = T x = Ty =45 (GS) > qs (L/3,2) - QS(GS)

Since g5(L32) = g5(L} 5), we'have the following Lemma.
Lemma 4.2. ¢5(L32) < g5(Gs): O

If we extend the definition of (G5 to the graph G, of order n by adding more vertices
6,7,...,n and edges 56, 67, ..., n— 1 n, then generalized the above arguments, one can show
that g,(L3 »—3) < qu(Gy). Because the matrix B = |L|, — |L|(G,) is the principal submatrix of

A, x" Bx is the same of above result, so g, (L3 n—3) < qn(Ghn).

4.2 The largest eigenvalue

We shall study the largest signless laplacian eigenvalue g (L37n_3) of L3 ,—3 in this section. We
use proposition 3.8 to compute the upper bound of the graphs L3 ,,_3 for n > 4.

15



() q1(L3n—3) < max{d(vi)+d(v;):vivi € E(L3 n—3)} :

dvi)+d(v2) = 4,

d(v2)+d(vz) = 5=d(vi)+d(v3),

d(vz)+d(v4) = 5,

d(va)+d(vs) = 5=d(v)+dvip1) foréd<i<n—2,
d(vn-2) +d(n-1)="4,

d(vig—1) + d(vp)—=- 3.

So ql(L37n,3) S St

(i) q1(L3p—3) < max{m(v;) +d(vi)iv; €V(L3,-3)}:

Since m(v) = Luengy i

m(vi)+d(vi) = Zngg + Zgii +d(vi) = g +2= 2 =m(v2) +d(v2),
m(v3)+d(v3) = Zg:;; - ZEZ? + jg‘v’;‘; +d(v3)=2+3=5,
mive) bdt) = G+ 50 ) =5 42 =
m(vs)+d(vs) = jg:; T jgg (s =242 -4
m(vs) +d(vs) = m(v))+d(vi) for5<i<n—2,

)+ dn) = G g, =2 2=,
m(ve)+d(v) = do(l‘z’;)l) ()1 =241 =3



So qi1(L3p—3) <5.

(iii) q1(L3p—3) <max{d(v;)+d(v;)—|N;ON;j|:1<i<j<nyvv;€E(L3,-3)}:

dvi)+d(v) —|NINN,| = 4—-1=3,

d(va)+d(v3) — [N2NN3| = 4=d(vi)+d(v3) — N1 NN3,
d(v3)+d(vq) — |N3sANg| =5,
d(v4)+d(vs)=|NsNNs| = 5=dWwj)+dVvi 1) — |[NiNNi1| ford <i<n-—-2,
d(vp—2)+d(vp—p) = |[Ny—2 ON,—1| = 4,
d(va—1) +d(vp) — [Np—1 ON,| = 3.

So q1 (L3,n—3) < 5.
(iv) q1(G) > A(G)+ 1 : Wehave ¢1(L3 ,—3) > A(L3 4=3)4 1 = 4 in this case.

From the above discussing, we conclude that 4 < g;(L3 ,—3) < 5. By using edge-interlacing
in Proposition 3.7, a better lower bound of the least eigenvalue of |L,| will be found. Since

q1(L31) = 5++m by example 2.2, we have

54+17
5 = q1(L3n—3) <5.

To the end of this part, we use Mathematica to compute the g (L3 ,—3) for 4 <n < 10 as follows.

17



q1(L3,1)

q1(L32)

q1(L33)

q1(L3.4)

q1(L3s)

q1(L3 )

q1(L37)

4.5616

4.6412

4.6554

4.6582

4.6588

4.6589

4.6590

These numbers are close to 4.66.

4.3 Characteristic polynomial

One way to study eigenvalues of a matrix is to compute the characteristic polynomial of the

matrix and determine its roots. Let

|L|n =

be an n X n matrix for n > 3. Note that B, = |L|, + E,;,, where E,, is the binary matrix with a

0 0

0 0

1 %0
L. 0
=a | !
AR
0 O
0 O
0 O

0 1 2

0 01

1

0 0

0 0

r o0
1.0
3 1
Iy 2
0 O
0 O
0 O

0 1

0 0

unique 1 in the nn-th position. We need B, to compute the determinant of |L|,.

18




Example 4.3.

21100
2110

21 1 1 2100
1 210

By:=| 1 2 1 |.Ba= Bs=111310
1 131

1 1 3 00121
0012

00012

Let P,(A) and F, (1) be the characteristic polynomial of |L|, and B,, respectively.

Lemmad44. P,(A) = (A =1VF,_1(A)=F, 2(A) forn > 5.

Proof. Note that

A=2 <l =1l 0 0
ST A—2 =1 0 0
=1 -1 A-3 0
P,(A) = det
0 0 =10 A=2 " 0
—1
0 0 0 0 -1 A-1

nxn
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We expand about the determinant according to the nth column:

(/1—2 -1 -1 0 - o\
-1 A-2 -1 0 0
~1 -1 A-3 =1 - 0
PA(A)=(A—1) det
0 0 -1 A-2 " 0
—1
-1 A-2
)n—lxn—l
n—1xn—1

20



1 A-2 -1 0 0
1 -1 A-3 -1 0

=(A—1) det
0 0 -1 A-2 0
—1

n—1xn—1

n—2xn—2

Hence we have

Next we derive a recurrence relation for F;, ()

Lemma 4.5. F,(A) = (A —2)F,_1(A) — F,—2(A) forn > 5.
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Proof. Note that

(22 1 1 o 0 )
1 A-2 -1 0 0
1 -1 A-3 -1 - 0
Fy(A) = det
o 0 -1 A-2 0
~1

nxn

n—1xn—1
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-1 A-2 -1 o - 0
1 -1 A=3 =1 - 0
—(—=1) det
0 0 -1 A-2 0
-1

n—1xn—1

n—2xn—2

Hence we have
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Lemma 4.6.

Pu(A) = (A —2)Pi_i(A) — Bus(L) forn>6,

where initial functions are

Py(A) = A*—8A3+19A% —16A +4,

Ps(A) = A% —10A%434A° —48A% 4274 — 4.

Proof. The initial functions are computed in Example 2.2: In general for n > 6,

Py(A) =(A—1)E,_1(A) =Fi2(A) (Lemma 4.4)
:(;L - 1)[()L e Z)Fn—Z(A) = Fn—3(l)] L [(A — Z)Fn—S (}L) _Fn—4(l)] (Lemma 4'5)
=4 =2)[A =DF, 2(A)=F3(A)|= [(A=1)F,3A) = Fim4(4)]

=A—=2)P—1(A) = P—2(A) (Lemma. 4.4).

From the above recurrence relation, we obtain the following two theorems.

Theorem 4.7.
(i) 1is an eigenvalue of |L|, for n > 4.
(ii) 2 is an eigenvalue of |L|, for even n > 4.

Proof. We prove by induction.
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(i) This follows from P4(1) = Ps(1) = 0 and the recurrence of P,(x) in Lemma 4.6.
(ii) This follows from P4(2) = 0 and the recurrence of P,(x) in Lemma 4.6.
[

Lemma4.8. For4 <n=0 (mod 3), 1 is an eigenvalue of |L|, with multiplicity at least 2, and

for4d <n=#0 (mod 3), 1 is a simple eigenvalue of |L|,.
Proof. Computing the derivatives of Py(4);Ps(A) and P,(A) in Lemma 4.6,

Py(A) =4A% — 2422+ 381 — 16,
PL(X) =54%=40A° + 10247 = 96A + 27,

Py(A) =Pi1(A) + (A =2)F,_1(A) = B, 5(4).

Since P,—1(1) =0, we have

Py(1) =2,
Py(1)=—F,_ (1) =P, »(1), (1)

Pi(1) == Pi(1) = Pj(1) = —(~2) —2 =0

We prove by induction on k > 2 that

Py 1 (1) == Py_»(1) #0,
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This is true for kK = 2. Suppose k > 2. Then by (1) and induction,

Py (1) == Py_5(1) = Py_4(1) = —P3_4(1) #0,
Py (1) == Py _5(1) = Py_3(1) = —P3_,(1) #0,

Py (1) =—Py_ (1) = Py_,(1)=0.
]

Theorem 4.9. Forn =

has n — 1 distinct eigenvalues, and the eigenvalue

1 has multiplity exactly 2.

Proof. For any n > 4, since the diameterof L3 , 318 n—2, it has atleast n —2+1 = n— 1 distinct
eigenvalues[4]. In the:case n = 0 mod 3, the eigenvalue 1 of |L|, has multiplicity at least two
by the above theorem, so |L|, has exactly n —1 distinct eigenvalues, and the eigenvalue 1 has

multiplity exactly 2. [
From Theorem 4.9, the following problem is raised.

Problem 4.10. Determine the integern = 4 such that the graph Ls ,_3 has n distinct signless

laplcian eigenvalues.

Example 4.11. Compute by Mathematica, we have the spectrum of |L|, for 4 <n <7:

5- \/_ , S+V17

AN AN PR AL

IL|s : {0.2243,1,1.4108,2.7237,4.6412};
ILle : {0.1338,1,1,2,3.2108,4.6554};
ILl; : {0.0884,0.7147,1,1.5710,2.4798,3.4877,4.6582}.
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One might expect the answer of Problem 4.10is n Z0 (mod 3). We leave the proof or disproof

of this problem to successors.
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