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三角形棒棒糖圖的無號拉普拉斯矩陣之特徵值探討 

研究生：徐志杰                     指導老師：翁志文 教授 
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摘 要 

假設 G是一個由點 1′2′…′n所構成的簡單圖，其中每個點相對應的價數

分別為 d1′d2′…′dn¨設 A(G) 是 G的 (0,1)-鄰接矩陣，D(G) 是一個對角

矩陣，其對角線上分別是 d1′d2′…′dn¨矩陣 L(G)=D(G)-A(G) 稱為 G的

拉普拉斯矩陣，矩陣 |L|(G)=D(G)+A(G) 稱為 G 的無號拉普拉斯矩陣¨

A(G)，L(G)，|L|(G) 的特徵值給了我們很多訊息去了解 G的構造¨在這個論

文中，我們研究一種圖形叫做三角形棒棒糖圖，其由一個三個點的完全圖與

一個路徑圖共用一點而接起來¨我們探討三角形棒棒糖圖的無號拉普拉斯矩

陣的特徵值′特徵多項式及它們的相關比較問題¨ 

 

關鍵詞：棒棒糖圖′無號拉普拉斯矩陣′特徵值¨ 
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Signless laplacian spectrum of a lollipop graph

with a triangle

Student: Chih-chieh Hsu Advisor: Chih-wen Weng

Department o f Applied Mathematics

National Chiao Tung University

Abstract

Let G be a simple graph with vertices 1, · · · ,n of degrees d1, · · · ,dn respectively. Let

A(G) be the (0,1)-adjacency matrix of G, and let D(G) be the diagonal matrix diag(d1, · · · ,dn).

The matrix L(G) =D(G)−A(G) is the Laplacian matrix of G, while |L|(G) =D(G)+A(G)

is called the signless laplacian matrix of G. The eigenvalues of A(G), L(G), and |L|(G) give

many hints to the structure of G. In this thesis we study a class of graphs, called lollipop

graph with a triangle, which are obtained from paths by adding a new vertex to a path and

adding two edges from the new vertex to one end of the path and to the neighbor of this

end, forming a triangle K3. We study the signless Laplacian eigenvalues and characteristic

polynomial of lollipop graphs with K3.

Keywords: lollipop graph, signless laplacian matrix, eigenvalue.
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1 Introduction

Let G be a simple graph with vertices 1, · · · ,n of degrees d1, · · · ,dn respectively. Let A(G) be the

(0,1)-adjacency matrix of G, and let D(G) be the diagonal matrix diag(d1, · · · ,dn). The matrix

L(G) = D(G)−A(G) is the Laplacian matrix of G, while |L|(G) = D(G)+A(G) is called the

signless laplacian matrix of G. The eigenvalues of A(G), L(G), and |L|(G) give many hints to

the structure of G. The least eigenvalue of L(G) is always zero, and the second least is known

as the algebraic connectivity of G, which is related to the connectivity of G in some sense[1]. It

is well-known that the numbers of distinct eigenvalues of A, L(A), and |L|(G) respectively are

at least one plus the diameter of G[4].

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V

such that every edge connects a vertex in U to one in V; that is, U and V are each independent

sets[2, 3]. For the case that G is bipartite, the eigenvalue of L(G) are that of |L|(G). We are

interested in the determination of eigenvalue of |L|(G) for a non-bipartite graph G.

The simplest connected graphs which are not bipartite are trees with one more edge. If we

add an edge to a tree to make a graph G with an odd-length cycle, then the least eigenvalue

of |L|(G) is not zero. Besides this, to let G have the longest diameter, we study the graph G

which is obtained from a path by adding one more vertex with two neighbors: one end of the

path and the neighbor of this end. The graph G is called a lollipop graph with K3 of order n,

denote by L3,n−3. The paper [5] tells us that signless Laplacian matrix of a lollipop graph with

K3 has the least Laplacian eigenvalue among all non-bipartite connected graphs of order n. We

are interested about the eigenvalues of |L|(L3,n−3), and we try to find other properties about the

1



eigenvalues of |L|(L3,n−3).

Thesis is organized as following. First we give some definitions in graph theory and matrix

theory in Section 2. In Section 3, some propositions which will be used in the thesis are given.

Our main results are given in Section 4. By using a simple example, we introduce a method

to compare the least Laplacian eigenvalues of two graphs with the same number of edges.

We study the upper bound of the largest Laplacian eigenvalues of lollipop graphs with K3 by

using known results and using computer software Mathematica. We compute the characteristic

polynomial Pn(λ ) of |L|(L3,n−3) and find a three-term recurrence relation of Pn(λ ). Then we

find 1 is a common eigenvalue of L3,n−3 and determine its multiplicity.

2 Preliminaries

In this section, we introduce notations which we will use in this thesis.

2.1 Graphs

A graph G considered in the thesis is finite, undirected, and connected, without loops or multiple

edges. We use V (G) to denote the vertex set and E(G) to denote the edge set of G, usually

V (G) = [n] = {1,2, . . . ,n}. The cardinality |V (G)| is called the order of G. The following

special graphs with vertex set [n] and their corresponding symbols are used in the thesis.

1. The complete graph Kn: E(Kn) = {i j | 1 ≤ i < j ≤ n}.

2. The path Pn: E(Pn) = {i i+1 | 1 ≤ i ≤ n−1}.
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3. The (m,n−m)-lollipop Lm,n−m: E(Lm,n−m) = {i j | 1 ≤ i < j ≤ m}∪{i i+ 1 | m ≤ i ≤

n−1}, where m ≤ n. See Figure 1 for L3,n−3.

t1

t
2

t3 t4 t5 t6 tn−1 tn· · ·

Figure 1. The graph L3,n−3.

2.2 Matrices

Definition 2.1. Let M be a n×n square matrix, if there is a vector v ∈ Rn such that

Mv = λv

for some scalar λ . Then λ is called the eigenvalue of M corresponding to v, and the vector v is

called the eigenvector of λ .

Let G be a graph of order n. The matrices considered in the thesis are all symmetric over

the real number field R whose rows and columns are indexed by V (G). Let D(G) denote the

diagonal matrix with rows and columns indexed by vertices of G such that D(G)xx = d(x) which

the d(x) is degree of x in G. Then the adjacency matrix A(G), Laplace matrix L(G), signless

laplacian matrix |L|(G) are defined as follows.

(i) A(G)xy =


1, if xy ∈ E(G);

0, otherwise.

3



(ii) L(G) = D(G)−A(G),

(iii) |L|(G) = D(G)+A(G).

In the thesis, we only study the signless lpalacian matrix |L|(G) of a graph G.

Let q1(G)≥ q2(G)≥ ·· · ≥ qn(G) be the eigenvalues of |L|(G), and we refer to this sequence

as the spectrum of |L|(G), or that of G for short. If the graph G is clear, we might delete the

symbol G in a notation ℓ(G) and write it as ℓ.

We use the symbol G\ e to denote the graph with the same vertex set as V (G) and obtained

by deleting the edge e of G.

2.3 Characteristic polynomial

The characteristic polynomial of a square matrix M is the polynomial det(λ I−M). It is well-

known that the eigenvalues of M are the roots of the characteristic polynomial of M.

The following example will be uesed in Lemma 4.1 and 4.6

Example 2.2.

|L|(L3,1) =



2 1 1 0

1 2 1 0

1 1 3 1

0 0 1 1


, |L|(L3,2) =



2 1 1 0 0

1 2 1 0 0

1 1 3 1 0

0 0 1 2 1

0 0 0 1 1


.
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Then

det(λ I −|L|(L3,1)) = λ 4 −8λ 3 +19λ 2 −16λ +4,

det(λ I −|L|(L3,2)) = λ 5 −10λ 4 +34λ 3 −48λ 2 +27λ −4.

The spectrum of |L|(L3,1) is {5−
√

17
2 ,1,2, 5+

√
17

2 }, and the spectrum of |L|(L3,2) is

{0.2243,1,1.4108,2.7237,4.6412}, computed by Mathematica.

2.4 Interlacing of two sequences

For m < n, a sequence λ1 ≥ λ2 ≥ ·· · ≥ λm of real numbers is said to interlace another sequence

q1 ≥ q2 ≥ ·· · ≥ qn of real numbers if

qi ≥ λi ≥ qn−m+i for 1 ≤ i ≤ m.

3 Basic properties

In this section, we shall review a few basic properties in matrix theory and some previous

results in the study of spectrum of a graph. For completeness, we shall provide the proofs of

some properties.

3.1 Rayleigh’s principle

It is well-known that the largest eigenvalue λ1 and the least eigenvalue λn of a symmetric matrix

M or order n satisfy

λ1 = max
0 ̸=x∈Rn

x⊤Mx
x⊤x

, λn = min
0 ̸=x∈Rn

x⊤Mx
x⊤x

.
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The following proposition generalizes this property.

Proposition 3.1. Let M be a real symmetric matrix of order n with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥

λn and respective orthonormal eigenvectors u1,u2, · · · ,un. Then

(i)
u⊤Mu
u⊤u

≥ λi for any u ∈ Span(u1,u2, · · · ,ui), and equality holds iff u is an eigenvector of

M corresponding to λi,

(ii)
u⊤Mu
u⊤u

≤ λi+1 for any u ∈ Span(u1,u2, · · · ,ui)
⊥, and equality holds iff u is an eigenvector

of M corresponding to λi+1.

Proof. (i) Write u = c1u1 + · · ·+ ciui for some c j ∈ R, j = 1,2, · · · , i. Then

u⊤Mu
u⊤u

=
c2

1λ1 + c2
2λ2 + · · ·+ c2

i λi

c2
1 + c2

2 + · · ·+ c2
i

≥ λi.

If u is an eigenvector of M corresponding to λi, then by the definition of eigenvector,

Mu = λiu,

u⊥Mu = u⊥λiu,

u⊥Mu = λiu⊥u,

u⊥Mu
u⊥u

= λi.

Hence the equality holds. If the equality holds, then λ j = λi if c j ̸= 0, where j ≤ i. Hence

u is an eigenvector of M corresponding to λi.

(ii) Similar to the above proof except here we use

Span(u1,u2, · · · ,ui)
⊥ = Span(ui+1,ui+2, · · · ,un).

6



3.2 Interlacing property for edge deleting

We shall show that deleting an edge from a graph G does not increase any value of the spectrum

of G.

Definition 3.2. An m×m matrix P is a principal submatrix of an n×n matrix M, where m< n,

if P is obtained from M by removing any n−m rows and the same n−m columns.

The following lemma describes the relation between eigenvalues of a symmetric matrix and

that of its principal submatrix.

Lemma 3.3. If an m×m matrix P is a principal submatrix of an n× n symmetric matrix M,

where m < n, then the eigenvalues of P interlace those of M.

Proof. To simplify the notation, we may assume P is obtained from M by removing the last

n−m rows and columns. Then we can write P = S⊤MS, where S is an n×m matrix of the form Im

0(n−m)×m

 ,

and Im is the m×m identity matrix. In particular S⊤S = Im.

Let u1,u2, · · · ,un be orthonormal eigenvectors of M corresponding to eigenvalues λ1 ≥

λ2 ≥ ·· · ≥ λn respectively and v1,v2, · · · ,vm be orthonormal eigenvectors of P corresponding to

eigenvalues η1 ≥ η2 ≥ ·· · ≥ ηm respectively. Note that

dim
(

Span(v1,v2, · · · ,vi)∩Span(S⊤u1,S⊤u2, · · · ,S⊤ui−1)
⊥
)
≥ i+(n− i+1)−n = 1.

Hence there exists a nonzero vector si ∈ Span(v1,v2, · · · ,vi)∩Span(S⊤u1,S⊤u2, · · · ,S⊤ui−1)
⊥.

Note that (Ssi)
⊤u j = s⊤i S⊤u j = 0 for 1 ≤ j ≤ i−1, hence Ssi ∈ Span(u1,u2, · · · ,ui−1)

⊥ and by
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Rayleigh’s principle,

λi ≥
(Ssi)

⊤M(Ssi)

(Ssi)⊤(Ssi)
=

(si)
⊤P(si)

(si)⊤(si)
≥ ηi.

By applying the above inequality to −M and −P we get λn−m+i ≤ ηi. Hence

λn−m+i ≤ ηi ≤ λi.

Definition 3.4. Let M denote the (vertex-edge) incidence matrix of G, i.e. M is a matrix with

rows indexed by vertices and columns indexed by edges, such that for x ∈V (G) and e ∈ E(G),

Mxe =


1, x ∈ e;

0, otherwise.

The following lemma describes the relation between incidence matrix and signless lpalacian

matrix.

Lemma 3.5. Let M be the incidence matrix of G. Then |L|(G) = MM⊤.

Proof. Note that for x,y ∈V (G),

(MM⊤)xy = ∑
e

Mxe(M⊤)ey =


1, if xy ∈ E(G);

d(x), if x = y;

0, otherwise,

= (|L|(G))xy,

where d(x) is the degree of x.

The following lemma indicates the relation between two matrices which have the same

eigenvalues.
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Lemma 3.6. Let N be an n×m matrix. Then there exists a one-one correspondence between

the nonzero eigenvalues of NN⊤ and N⊤N.

Proof. Suppose q is a nonzero eigenvalue of NN⊤ with corresponding eigenvector u. Then

NN⊤u = qu ̸= 0. In particular N⊤u ̸= 0. Since N⊤NN⊤u = qN⊤u, N⊤u is an eigenvector of

N⊤N corresponding to the eigenvalue q. Suppose q has multiplicity m as an eigenvalue of NN⊤.

Let u1,u2, · · · ,um be the corresponding orthogonal eigenvectors. If c1N⊤u1+ · · ·+cmN⊤um = 0

then

0 = N(c1N⊤u1 + · · ·+ cmN⊤um) = q(c1u1 + · · ·+ cmum),

and hence c1 = c2 = · · · = cm = 0. This proves that the multiplicity of q in NN⊤ is no larger

than that in N⊤N. Similarly for the other side, so the two multiplicities are the same.

The following proposition demonstrates the interlacing property for edge deleting.

Proposition 3.7.

qi+1(G)≤ qi(G\ e)≤ qi(G) for 1 ≤ i ≤ n−1.

Proof. Let M denote the vertex-edge incidence matrix of G and recall that |L|(G) = MM⊤ by

Lemma 3.5. Note that the incidence matrix M′ of G\ e is obtained from M be deleting the col-

umn associated with e. Hence M′⊤M′ is a principal submatrix of M⊤M. By interlacing property

in Lemma 3.3, the sequence of eigenvalues of (n−1)× (n−1) matrix M′⊤M′ interlaces that of

n×n matrix M⊤M. Since M⊤M and MM⊤ have same nonzero eigenvalues by Lemma 3.6, we

have

qi+1(G)≤ qi(G\ e)≤ qi(G) for 1 ≤ i ≤ n−1.

9



3.3 Bounds of the largest signless laplacian eigenvalue

We shall provide some known bounds of the largest eigenvalue q1(G) of G. For v ∈ V (G),

denote the neighbor of v by N(v), and define

m(v) := ∑
u∈N(v)

d(u)
d(v)

,

the average of the degrees of the vertices adjacent to v. Let ∆(G) be the maximal degree of G

and Ni be the set of the neighbor of the vertex vi. The following proposition is well-known.

Proposition 3.8. [6]

(i) q1(G)≤ max{d(vi)+d(v j) : viv j ∈ E(G)},

(ii) q1(G)≤ max{m(vi)+d(vi) : vi ∈V (G)},

(iii) q1(G)≤ max{d(vi)+d(v j)−|Ni ∩N j| : 1 ≤ i < j ≤ n,viv j ∈ E(G)},

(iv) q1(G)≥ ∆(G)+1.

4 Main Results

Since we are mainly concerned with the graph (3,n−3)-lollipop L3,n−3, we will use the symbol

|L|n to denote the signless laplacian matrix of the graph L3,n−3. We study the spectrum of |L|n

in this section.

10



4.1 The least eigenvalue of L3,2

From edge-interlacing in Proposition 3.7, we know that

q5(L3,1)≤ q5(L3,2)≤ q5(L3,3)≤ ·· · ,

since L3,n−3 and the graph obtained by removing the edge n n+ 1 from L3,n−2 have the same

spectrum. However if two graphs have the same number of edges, it is impossible to use the

edge-interlacing in Proposition 3.7 to compare their spectra.

Consider the graph L3,2 in Figure 2, and the graph G5 in Figure 3. Their corresponding

signless laplician matrices |L|5 and |L|(G5) as shown below.

|L|5 =



2 1 1 0 0

1 2 1 0 0

1 1 3 1 0

0 0 1 2 1

0 0 0 1 1


, |L|(G5) =



2 0 1 1 0

0 1 1 0 0

1 1 3 1 0

1 0 1 3 1

0 0 0 1 1


.

L3,2 and G5 have the same number of edges. We present another method to compare the least

eigenvalue of L3,2 and G5.

t1

t
2

t3 t4 t5

Figure 2. The graph L3,2.
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t1

t
2

t3 t4 t5

Figure 3. The graph G5.

Let

A = |L|5 −|L|(G5) =



0 1 0 −1 0

1 1 0 0 0

0 0 0 0 0

−1 0 0 −1 0

0 0 0 0 0


.

Let x = (x1,x2, · · · ,x5)
⊤ be the eigenvector of |L|(G5) corresponding to q5(G5), and x⊤Ax =

(x1 + x2)
2 − (x1 + x4)

2, and by Rayleigh’s principle,

x⊤Ax
x⊤x

=
x⊤(|L|5)x

x⊤x
−q5(G5)≥ q5(L3,2)−q5(G5).

If we can prove

x⊤Ax
x⊤x

≤ 0,

then q5(L3,2)− q5(G5) ≤ 0, so q5(L3,2) ≤ q5(G5). Thus we need to find the eigenvector of

|L|(G5) corresponding to q5(G5). This is not a good idea, because in this case computing by

Mathematica,

x = (0,−0.6015,0.3717,−0.3717,0.6015),

12



and

x⊤Ax
x⊤x

=
x⊤(|L|5)x

x⊤x
−q5(G5) = 0.6056−0.3820 = 0.2236 > 0.

Now we try to change the symbols of vertices of L3,2, denoted by L′
3,2. We switch the indices 2

and 4 as shown in Figure 4, so the new matrix is

|L′|5 =



2 0 1 1 0

0 2 1 0 1

1 1 3 1 0

1 0 1 2 0

0 1 0 0 1


.

t1

t
4

t3 t2 t5

Figure 4. The graph L′
3,2

First we need a lemma.

Lemma 4.1. Let x = (x1,x2, · · · ,x5)
⊤ be the eigenvector of |L|(G5) corresponding to q5(G5).

Then |x2|= |x5|> |x3|= |x4|, and x1 = 0.

Proof. Let q5 be the least eigenvalue of |L|(G5), where G5 is defined in Figure 3. Since deleting

the edge 45 in the graph G5 yields L3,1, we have

q5 ≤ q4(L3,1) =
5−

√
17

2
< 1
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by edge-interlacing in Proposition 3.7 and Example 2.2. By the definition of eigenvalue and

eigenvector,

0 = (|L|(G5)−q5I)x =



(2−q5)x1 +0+ x3 + x4 +0

0+(1−q5)x2 + x3 +0+0

x1 + x2 +(3−q5)x3 + x4 +0

x1 +0+ x3 +(3−q5)x4 + x5

0+0+0+ x4 +(1−q5)x5


.

Considering the second and fifth entries, and since q5 < 1, we have

|x2|= | x3

q5 −1
|> |x3|, |x5|= | x4

q5 −1
|> |x4|, x2x4 = x3x5.

Notice that any one of x2,x3,x4,x5 is zero will imply x = 0, a contradiction. Considering the

third and fourth entries, we have the following equations, step after step:

x1 +(3−q5)x3 + x4 = −x2,

x1 + x3 +(3−q5)x4 = −x5,

x1 +(3−q5)x3 + x4

x1 + x3 +(3−q5)x4
=

x2

x5
=

x3

x4
,

x1x4 + x2
4 +(3−q5)x3x4 = x1x3 + x2

3 +(3−q5)x3x4,

x1x4 − x1x3 = x2
3 − x2

4,

x1(x4 − x3) = (x3 − x4)(x3 + x4),

−x1 = (x3 + x4).

Considering the first entry, (2−q5)x1 + x3 + x4 = 0, and by −x1 = (x3 + x4), we have (2−

q5)x1 − x1 = 0, and then (1− q5)x1 = 0. Since (1− q5) ̸= 0, we conclude that x1 = 0. This

implies that (x3 + x4) =−x1 = 0, so x2/x5 = x3/x4 =−1.

14



Let

A′ = |L′|5 −|L|(5G) =



0 −1 0 1 0

−1 −1 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0


,

and as before let x = (x1,x2, · · · ,x5)
⊤ be the eigenvector of |L|(G5) corresponding to q5(G5).

Then

x⊤(|L′|5)x
x⊤x

−q5(G5) =
x⊤A′x
x⊤x

=
(x1 + x4)

2 − (x1 + x2)
2

x⊤x
.

Hence

0 >
(x4)

2 − (x2)
2

x⊤x
=

(x1 + x4)
2 − (x1 + x2)

2

x⊤x
=

x⊤(|L′|5)x
x⊤x

−q5(G5)≥ q5(L′
3,2)−q5(G5).

Since q5(L3,2) = q5(L′
3,2), we have the following Lemma.

Lemma 4.2. q5(L3,2)< q5(G5).

If we extend the definition of G5 to the graph Gn of order n by adding more vertices

6,7, . . . ,n and edges 56, 67, . . . , n− 1 n, then generalized the above arguments, one can show

that qn(L3,n−3) < qn(Gn). Because the matrix B = |L|n −|L|(Gn) is the principal submatrix of

A, x⊤Bx is the same of above result, so qn(L3,n−3)< qn(Gn).

4.2 The largest eigenvalue

We shall study the largest signless laplacian eigenvalue q1(L3,n−3) of L3,n−3 in this section. We

use proposition 3.8 to compute the upper bound of the graphs L3,n−3 for n ≥ 4.
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(i) q1(L3,n−3)≤ max{d(vi)+d(v j) : viv j ∈ E(L3,n−3)} :

d(v1)+d(v2) = 4,

d(v2)+d(v3) = 5 = d(v1)+d(v3),

d(v3)+d(v4) = 5,

d(v4)+d(v5) = 5 = d(vi)+d(vi+1) f or 4 ≤ i ≤ n−2,

d(vn−2)+d(vn−1) = 4,

d(vn−1)+d(vn) = 3.

So q1(L3,n−3)≤ 5.

(ii) q1(L3,n−3)≤ max{m(vi)+d(vi) : vi ∈V (L3,n−3)} :

Since m(v) = ∑u∈N(v)
d(u)
d(v)

m(v1)+d(v1) =
d(v2)

d(v1)
+

d(v3)

d(v1)
+d(v1) =

5
2
+2 =

9
2
= m(v2)+d(v2),

m(v3)+d(v3) =
d(v1)

d(v3)
+

d(v2)

d(v3)
+

d(v4)

d(v3)
+d(v3) = 2+3 = 5,

m(v4)+d(v4) =
d(v3)

d(v4)
+

d(v5)

d(v4)
+d(v4) =

5
2
+2 =

9
2
,

m(v5)+d(v5) =
d(v4)

d(v5)
+

d(v6)

d(v5)
+d(v5) = 2+2 = 4,

m(v5)+d(v5) = m(vi)+d(vi) f or 5 ≤ i ≤ n−2,

m(vn−1)+d(vn−1) =
d(vn−2)

d(vn−1)
+

d(vn)

d(vn−1)
+d(vn−1) =

3
2
+2 =

7
2
,

m(vn)+d(vn) =
d(vn−1)

d(vn)
+d(vn)+1 = 2+1 = 3.
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So q1(L3,n−3)≤ 5.

(iii) q1(L3,n−3)≤ max{d(vi)+d(v j)−|Ni ∩N j| : 1 ≤ i < j ≤ n,viv j ∈ E(L3,n−3)} :

d(v1)+d(v2)−|N1 ∩N2| = 4−1 = 3,

d(v2)+d(v3)−|N2 ∩N3| = 4 = d(v1)+d(v3)−|N1 ∩N3|,

d(v3)+d(v4)−|N3 ∩N4| = 5,

d(v4)+d(v5)−|N4 ∩N5| = 5 = d(vi)+d(vi+1)−|Ni ∩Ni+1| f or 4 ≤ i ≤ n−2,

d(vn−2)+d(vn−1)−|Nn−2 ∩Nn−1| = 4,

d(vn−1)+d(vn)−|Nn−1 ∩Nn| = 3.

So q1(L3,n−3)≤ 5.

(iv) q1(G)≥ ∆(G)+1 : We have q1(L3,n−3)≥ ∆(L3,n−3)+1 = 4 in this case.

From the above discussing, we conclude that 4 ≤ q1(L3,n−3)≤ 5. By using edge-interlacing

in Proposition 3.7, a better lower bound of the least eigenvalue of |Ln| will be found. Since

q1(L3,1) =
5+

√
17

2 by example 2.2, we have

5+
√

17
2

≤ q1(L3,n−3)≤ 5.

To the end of this part, we use Mathematica to compute the q1(L3,n−3) for 4≤ n≤ 10 as follows.
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q1(L3,1) q1(L3,2) q1(L3,3) q1(L3,4) q1(L3,5) q1(L3,6) q1(L3,7)

4.5616 4.6412 4.6554 4.6582 4.6588 4.6589 4.6590

These numbers are close to 4.66.

4.3 Characteristic polynomial

One way to study eigenvalues of a matrix is to compute the characteristic polynomial of the

matrix and determine its roots. Let

|L|n =



2 1 1 0 · · · 0 0 0

1 2 1 0 . . . 0 0 0

1 1 3 1 . . . 0 0 0

0 0 1 2 . . . 0 0 0

... . . . . . . . . . . . . 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 1



,Bn =



2 1 1 0 · · · 0 0 0

1 2 1 0 . . . 0 0 0

1 1 3 1 . . . 0 0 0

0 0 1 2 . . . 0 0 0

... . . . . . . . . . . . . 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 2


be an n× n matrix for n ≥ 3. Note that Bn = |L|n +Enn, where Enn is the binary matrix with a

unique 1 in the nn-th position. We need Bn to compute the determinant of |L|n.
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Example 4.3.

B3 :=


2 1 1

1 2 1

1 1 3

 ,B4 =



2 1 1 0

1 2 1 0

1 1 3 1

0 0 1 2


,B5 =



2 1 1 0 0

1 2 1 0 0

1 1 3 1 0

0 0 1 2 1

0 0 0 1 2


.

Let Pn(λ ) and Fn(λ ) be the characteristic polynomial of |L|n and Bn, respectively.

Lemma 4.4. Pn(λ ) = (λ −1)Fn−1(λ )−Fn−2(λ ) for n ≥ 5.

Proof. Note that

Pn(λ ) = det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −1


n×n

.
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We expand about the determinant according to the nth column:

Pn(λ ) = (λ −1) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−1×n−1

−(−1) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 0 −1


n−1×n−1
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= (λ −1) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−1×n−1

− det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−2×n−2

.

Hence we have

Pn(λ ) = (λ −1)Fn−1(λ )−Fn−2(λ ).

Next we derive a recurrence relation for Fn(λ )

Lemma 4.5. Fn(λ ) = (λ −2)Fn−1(λ )−Fn−2(λ ) for n ≥ 5.
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Proof. Note that

Fn(λ ) = det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n×n

.

We expand about the determinant according to the nth column:

Fn(λ ) = (λ −2) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−1×n−1
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−(−1) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 0 −1


n−1×n−1

= (λ −2) det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−1×n−1

− det



λ −2 −1 −1 0 · · · 0

−1 λ −2 −1 0 · · · 0

−1 −1 λ −3 −1 · · · 0

0 0 −1 λ −2 . . . 0

...
...

... . . . . . . −1

0 0 0 0 −1 λ −2


n−2×n−2

.

Hence we have

Fn(λ ) = (λ −2)Fn−1(λ )−Fn−2(λ ).
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Lemma 4.6.

Pn(λ ) = (λ −2)Pn−1(λ )−Pn−2(λ ) for n ≥ 6,

where initial functions are

P4(λ ) = λ 4 −8λ 3 +19λ 2 −16λ +4,

P5(λ ) = λ 5 −10λ 4 +34λ 3 −48λ 2 +27λ −4.

Proof. The initial functions are computed in Example 2.2. In general for n ≥ 6,

Pn(λ ) =(λ −1)Fn−1(λ )−Fn−2(λ ) (Lemma 4.4)

=(λ −1)[(λ −2)Fn−2(λ )−Fn−3(λ )]− [(λ −2)Fn−3(λ )−Fn−4(λ )] (Lemma 4.5)

=(λ −2)[(λ −1)Fn−2(λ )−Fn−3(λ )]− [(λ −1)Fn−3(λ )−Fn−4(λ )]

=(λ −2)Pn−1(λ )−Pn−2(λ ) (Lemma 4.4).

From the above recurrence relation, we obtain the following two theorems.

Theorem 4.7.

(i) 1 is an eigenvalue of |L|n for n ≥ 4.

(ii) 2 is an eigenvalue of |L|n for even n ≥ 4.

Proof. We prove by induction.

24



(i) This follows from P4(1) = P5(1) = 0 and the recurrence of Pn(x) in Lemma 4.6.

(ii) This follows from P4(2) = 0 and the recurrence of Pn(x) in Lemma 4.6.

Lemma 4.8. For 4 ≤ n ≡ 0 (mod 3), 1 is an eigenvalue of |L|n with multiplicity at least 2, and

for 4 ≤ n ̸≡ 0 (mod 3), 1 is a simple eigenvalue of |L|n.

Proof. Computing the derivatives of P4(λ ), P5(λ ) and Pn(λ ) in Lemma 4.6,

P′
4(λ ) =4λ 3 −24λ 2 +38λ −16,

P′
5(λ ) =5λ 4 −40λ 3 +102λ 2 −96λ +27,

P′
n(λ ) =Pn−1(λ )+(λ −2)P′

n−1(λ )−P′
n−2(λ ).

Since Pn−1(1) = 0, we have

P′
5(1) =−2,

P′
4(1) =2,

P′
n(1) =−P′

n−1(1)−P′
n−2(1), (1)

P′
6(1) =−P′

5(1)−P′
4(1) =−(−2)−2 = 0.

We prove by induction on k ≥ 2 that

P′
3k−1(1) =−P′

3k−2(1) ̸= 0,

P′
3k(1) =0.
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This is true for k = 2. Suppose k > 2. Then by (1) and induction,

P′
3k−2(1) =−P′

3k−3(1)−P′
3k−4(1) =−P′

3k−4(1) ̸= 0,

P′
3k−1(1) =−P′

3k−2(1)−P′
3k−3(1) =−P′

3k−2(1) ̸= 0,

P′
3k(1) =−P′

3k−1(1)−P′
3k−2(1) = 0.

Theorem 4.9. For n ≡ 0 mod 3, n ≥ 4, |L|n has n−1 distinct eigenvalues, and the eigenvalue

1 has multiplity exactly 2.

Proof. For any n≥ 4, since the diameter of L3,n−3 is n−2, it has at least n−2+1= n−1 distinct

eigenvalues[4]. In the case n ≡ 0 mod 3, the eigenvalue 1 of |L|n has multiplicity at least two

by the above theorem, so |L|n has exactly n− 1 distinct eigenvalues, and the eigenvalue 1 has

multiplity exactly 2.

From Theorem 4.9, the following problem is raised.

Problem 4.10. Determine the integer n ≥ 4 such that the graph L3,n−3 has n distinct signless

laplcian eigenvalues.

Example 4.11. Compute by Mathematica, we have the spectrum of |L|n for 4 ≤ n ≤ 7:

|L|4 : {5−
√

17
2

,1,2,
5+

√
17

2
};

|L|5 : {0.2243,1,1.4108,2.7237,4.6412};

|L|6 : {0.1338,1,1,2,3.2108,4.6554};

|L|7 : {0.0884,0.7147,1,1.5710,2.4798,3.4877,4.6582}.
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One might expect the answer of Problem 4.10 is n ̸≡ 0 (mod 3). We leave the proof or disproof

of this problem to successors.
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