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Abstract

Although the insertion of product terms.into analytical to test for presence of
interaction effect is very common in economic, social and health sciences, it has long
been criticized for that.existence of interaction-is model dependent (Greenland (2009)
and Mauderly and Samet (2009)). The efforts for resolving this criticism leads to
multiple but ambiguous definitions of statistical interaction resulting in assessing
various but unknown versions of effect (Greenland (2009)). \We report that a
systematic introduction-of definitions, methods and theorems to fit the intercorrelation
(association) parameter into.a generalized Neyman-Rubin’s causal model brings
interesting advantages: (a) This approach allows us to define and measure a clean
effect of intercorrelation for statistical inferences of unknown statistical interaction. (b)
Statistical inferences for statistical interaction all can be constructed from the
estimation theory of the distributional parameters. (c) This causal model measures an
unambiguous but also model independent effect of intercorrelation that avoids the
controversy of insertion. (d) The theory of the generalized Neyman-Rubin’s causality

is extended to statistical interaction assessment for probit regression.

Key words: Causal inference; intercorrelation; regression analysis; statistical
interaction.
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Generalized Neyman-Rubin’s causal model

for Regression Interaction Assessment

Abstract

Although the insertion of product terms into analytical model to test for
presence of interaction effect is very common in economic, social and health
sciences, it has long been criticized for that existence of interaction is model
dependent (Greenland (2009) and Mauderly and Samet (2009)). The efforts
for resolving this criticism leads to multiple but ambiguous definitions of
statistical interaction resulting in assessing various but unknown versions
of effect (Greenland (2009)). We report that a systematic introduction of
definitions, methods and theorems to fit the intercorrelation (association)
parameter into a generalized Neyman-Rubin’s ‘causal model brings inter-
esting advantages: (a) This approach allows us.to define and measure a
clean effect of intercorrelation for statistical inferences of unknown statisti-
cal interaction. (b)Statisticalinferences for.statistical interaction all can be
constructed from the estimation theory of the distributional parameters. (c)
This causal model measures an unambiguous but also model independent
effect of intercorrelation that avoids the controversy of insertion. (d) The
theory of the generalized Neyman-Rubin’s causality analysis.is extended to

statistical interaction assessment for probit regression.

Key words: Causal inferencej intercorrelation; regression analysis; statistical

interaction.

1. Introduction
The notions of ”interaction” is common in researches of business, econom-
ics, education, sociology, health science and many others but it has long been
in literature with controversies surrounding concept of interaction (Green-
land (1993), Rothman, Greenland and Walker (1980) and Suhnel (1992)).
The classical regression interaction assessment often inserts product terms

in causal (regression) model as

y = g(Bo, B121, Paxa, P12T172) + € (1.1)

Typeset by ApS-TEX



to test hypothesis Hy : 312 = 0 for the presence of interaction. It has
made the controversy that the presence or absence of interaction is entirely
dependent on the form of the regression model been choosed; for the same
data, interaction may appear to be present when using one regression model
but absent when another regression model is applied (Mauderly and Samet
(2009) and Rothman, Greenland and Walker (1980)). Some efforts for re-
solving this controversy are done, for examples, by Mullahy (1999) and Ai
and Norton (2003) for cross-derivative method measuring so-called the sec-
ond order interaction and VanderWeele (2009) and VanderWeele and Robin
(2008) for sufficient cause interaction in biologic approach. Although the
these approaches can measure effect other than product terms but they and
some others measure different versions of interaction that can not avoid the
concern of Greenland (1993) and Greenland (2009) that makes the users

confused for how much and in what direction we can learn from a data set.

A correct resolution of this controversy requires a mechanism that can
accurately measuresthe causal-effect of consensus intercorrelation (associa-
tion) cause in random world (Rothman, Greenland and Walker (1980) and
Ai and Norton (2003)). The approach of Chen et al. (2013) extends the
concept of biologieisobole (Loewe (1928, 1953)) to define an unknown statis-
tical isobole for inferences of statistical interaction. While this is interesting
that allows us to detect if the statistical interaction is present or not, it can
not measures the size of statistical interaction and, isobole is not popularly
applied in social and economic sciences. Fitting the statistical interaction

into a causal model can completely solve this controversy.

The Neyman-Rubin framework (Neyman (1990) and Rubin (1974)) of
causality analysis discovering causal relationships between outcome vari-
able and causal variables has become increasingly popular in applied re-
search (Holland (1986), Rubin (2006) and Sekhon (2008)). This interesting
approach, also called the difference in difference method, is a popular tool
for evaluating the effects of policy interventions in economics and biology
(Abadie (2005) for a review). This article attempts to formulate its gen-

eralization so that regression interaction analysis can be done with this



common framework with expectation of making this advance of interaction
assessment more accessible to the general research community. We derive
a Neyman-Rubin’s causal model from the joint distribution of outcome and
cause variables forcing the regression function to have distributional param-
eters involved that leads to several important advantages: (a) The novel
parametrization of imposing distributional parameters in regression model
builds a bridge between the Neyman-Rubin’s causal model and the param-
eter of intercorrelation between causes (explanatory variables) allowing us
to measure clean causal effect of intercorrelation. (b) This approach is not
model dependent that avoids the controversy of insertion of product terms in
model. (c¢) This success in assessment of statistical interaction by Neyman-
Rubin’s causality analysis may be applied to statistical interaction for other

models where we interpret this-for probit regression model.

2. Parametrized Regression for Effect Assessment

2.1. A Normal Regression -Model

We first clarify.two concepts-of our interest when we have random vari-
ables y, 1 and x5 and our interest is the effect of some causes on variable
y. Statistically causal study consider-a comparison between the effect (out-
come) of variable y-on taking atreatment z; = zy; relativeto the effect of
taking another treatment 1 = 1, holding-all-other factors unchanged. On
the other hand, statistically interaction assessment consider a comparison
between the effect of variable .y when there is'no intercorrelation between
variables x1 and x2 and the effect of variable y when the intercorrelation is
present. Two closely concepts have not been unified in analysis. We propose
to assess statistical interaction via a generalized causal model.

A proper perspective in a theoretical analysis of causality requires method
to assess effect of the cause to understand why the values of a quantity to
be explained is affected with causes (Holland (1986)) while looking for the
cause of an effect such as approach of sufficient cause approach of Rothman
(1976) and Vanderweele and Robins (2008) is not of this kind. For references

of general causal analysis and modeling, see Vanderweele and Rubin (2008)



4

and Sekhon (2008) and for review, see Holland (1986), Heckman (2008) and
Rothman and Greenland (1998).

Suppose that variables y, x1 and x5 have a joint distribution. We propose
to study causal effect from a regression model that is parametrized from this

joint distribution. Here we consider joint normal distribution as

2
Yy My Uy Oyl  Oy2
2
zy | ~Na(| p1 |, | o1y oF o012 ]) (2.1)
2
T2 2 02y 021 035

for interpretation. The conditional expectation of y given (x1,x3) under

normality assumption is

2 -1
o 012 1 — M1
'u/norm(xl,lQ) = py + (O'yl,O'yz) <0—211 0'% ) <ZE2 — Zz) ’

Setting a fixed vector of distributional parameetrsas @' = (1, f11, pi2, 05, 0%,05,0y1,0y2,012),

a parametrized regression model is stated in the following theorem.

Theorem 2.1. The regression-model under the normal distribution of (2.1)
is

y(ml,xz,G) = ,80(9) +,81(9).’171 +,82(9).’L'2 + € (2.2)
where 3(6) = (80(6),51(0), B2(0))" with

0) — (‘Tle% —oy012)p1 | (01012 — Uy20%)//f2
Bo(0) = py = 2 9 2 T 27 2 2
0105 — 072 01055019

2
Oy105 — 10,5015
ﬁl(g) — Y 2 Y

2 2 2
0103 — 013

2
04207 — 041012
ﬁ2(9) — 2y 1 Y

2 3 2
0103 — O07q

where error variable € has the normal distribution N(0, o2 (0)) with
ylry,m:
o2 o\ (o
2 0) = o2 — i 012 y1
Uy|m1,x2( ) Oy (Uyla 0-212) <0.21 O'% ) <0y2 ) :

2.2. Can Classical Interaction Detection Methods Deal with Nor-

mal Data?



Parametrized normal regression model provides important messages for
verification of existent interaction detection methods. Three methods are
considered here. Applied econometrics researchers commonly infer about
the presence or absence of statistical interaction via testing a hypothesis for
existence of something about interaction. The most popular one is assuming

the following regression model

y = Po + Piz1 + PBoxa + Brar172 + €

to test hypothesis Hy : 12 = 0 for existence of product term interaction.
It is argued that power of developed statistical tests for the presence of
interaction is remarkably low (Geenland (2009) and Mauderly and Samet
(2009)) which is not surprised from our derivation (2.2) that the true re-
gression model does not include ‘any product term even the trivariate data
is drawn from a normal distribution. An effortin econemetrics for avoiding

this model dependence disadvantageyis-verifying the presence or absence of

9 B(yl@1,43)
627131‘2 :

for normal data since its true-regression model virtually does not have this

second-order interaction This approach is not. applicable too

interaction. Hencey these two popularly methods can measure the product
term interaction and second order interaction that can not measure a pure
effect of intercorrelation.

Besides the above, departure from additivity:is another popularly used
test for biologic synergism effect. Following Greenland (1993), the effects of
two explanatory variables are defined as mean differences in the absence of

the other variable as

E:vl = Tcm(l'lv 0, 9) - Tcm(ov 0, 9) = ﬁl(g)‘TI
E$2 = Tcm(oy T2, 9) - Tcm(ov 0, 9) = ﬁ2(9)$2

and the combined (total) effect as the sum of separate effects is
ECE1,$2 = Tcm(xla Z2, 9) - Tcm(ov 0, 9) - ﬁl(g)l'l + ﬁ2(9)$2

The test by Prentice and Kalbfleisch (1988) defining synergistic effect if the

combined effect F, ,, is greater than the sum of separate effects F,, + F,,



shows no synergism since E,, 5, = E;, + F,,. This criterion of interaction
as departure from additivity limits its application since it can not detect the
effect of intercorrelation even the data is observed from a normal distribu-

tion.

2.3. Quantities to be Explained

To forestall confusion that the reader of the literature on causality en-
counters unclearly terminologies, we provide step by step the definitions.
Benifited from parametrization, a framework of causal model can assess ef-
fects on the internal variable y of various causes of interest not restricted
to external variables 1 and x5. That is, the potential causes in this causal

model includes elements in the following set:
Potential causes: i, x2,0. (2.3)

where the unobservable external (error) variablewis not. considered in this
paper. We need to specify outcomes of interest.

The classical Neyman-Rubin’s-causality analysis defines the comparison
of effects at treatments &y = @1y and x4y = @1, as the difference of two

potential outcomes. as

Y(71h, T250) < y(*1a, T2, 0). (2.4)

This causal inference is a missing data problem because we cannot observe
two outcome variables'in (2.4) at the same time (Holland (1986)). Out-
come quantities to be explained other than the response variable exist in
literature, for examples, a utility function R(y) as subjective evaluation
of outcome in economic approach (Heckman (2008)) and biology approach
(Greenland (1993)), conditional mean by Holland (1986) and variation effect
azmm (1, x2,0) in social science (Russo (2011)). A framework broadens
the range of quantity to be explained is available.

Definition 2.2. Any quantity 7(z1, z2,0) that characterizes the regression

model (2.2) is called an outcome quantity.

Example 1. Some interests of outcome quantity are:
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(1) Outcome variable: y(z1,x2, ) measuring the outcome of possible exper-
iment,
(2) Conditional mean: 7., (21, x2,0) = Bo(0)+61(0)x1+62(0)xs = (1,21, 22)5(0)

measuring the central tendency of the regression model (Holland (1986))

5 —1
(3) Conditional variance: 7.,(0) = o7 — (oy1,0y2) ( o1 0122> (03’1)

J19 05 Oy2
measuring the conditional variation of the regression model (applied in social

science (Russo (2011)))

(4) Regression parameters: (3(0)

(5) Regression quantile: B(v,0) = (80(0) + 2,\/Teo(0), B1(8), B2(0))" sat-
isfying v = P(Y < (1,71, 72)8(7,0)|z1,22) for (z1,72)" € R? defined by
Koenker and Bassett (1978)

(6) Conditional quantile: 7.4(z1,z2,7,0) = (1,21, 22)3(7,0)

(7) Reference charts: 7,.. = {(I,x1,23)B(7,0): 7 €(0,1), (x1,72) € R?}

(8) Conditional signal-to-noise ratio at (z1, z2):

Tcm(xlax%g)

Tew(0)

One can measure the effect of causes on the cenfral tendency of outcome’s

Tsn ()=

distribution by conditional mean, but it does not provide a complete picture
of this distribution. When one is interested in the distributional extreme

behavior, the conditional quantile of (6) above is-desired for investigation.

2.4. Motivation ofCausality Analysis for Statistical Interaction
Causal comparisons for interaction assessment entail contrasts between
outcomes in states of presence or absence of the intercorrelation between
variables 1 and z, that can be answered from an extension of the classi-
cal causality model of Rubin (1974) and Holland and Rubin (1980). The
generalized Neyman-Rubin’s causal model for interaction assessment then

considers the difference
T(21, %2, 0|012) — T(21, T2, 0|012 = 0)

holding all other factors including variables x; and x5 and parameters 6 —

{012} unchanged. To see if intercorrelation parameter o1, causes effect on
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the defined outcome quantities, we let ' = (1,1,1,2,2,2,0.7,0.7,012) and
compute some true values of outcome quantities under o = 0.5 and o150 =0

for verification. The results are displayed in Table 1.

Table 1. Effects of intercorrelation on some outcome quantities

Effect quantity 012 =0 012 =0.5
Ton () 151 1.61
5(0) (0.3,0.35,0.35) (0.44,0.28, 0.28)
B(7,0),7 = 0.1 —1.27 —1.18
v =02 —0.73 —0.62
v =023 —0.34 —0.22
v=104 —0.01 0.11
v =05 0.30 0.44

* The second and third elements for (v, 8) and §(0) are identical in either
case of 019 = 0 and o152 = 0.5.
The fact that 7.,(0|o12 = 0.5)'=1.61 that isnot equal to 7.,(0|o12 = 0) =
1.51 reveals that effect of intercorrelation does exist on the mean of outcome
variable. This statistical interaction theoretically can not be detected by the
test for synergism of Prentice-and-Kalbfleisch (1988). Its effect on regression
parameters and regression quantiles give the same conclusion:

The comparison results shown in Table 1 also indicate that the approach
of Neyman-Rubin causal model is appropriate for assessment of regression

interaction.

3. The Neyman-Rubin’s Causal Model for Interaction Analysis
The classical versions giving regression-interactions falling short of formal-

ism necessary for rigorous logical analysis. "The usage of Neyman-Rubin’s

causal model of two treatment levels matches to measure clean effect of

intercorrelation for defining statistical interaction.

Definition 3.1. (a) We define the following difference
7 (21, 22,0) = T(21, 2, 0|012) — T(21, T2, Olo12 = 0), (1, 72)" € R?,

as the Neyman-Rubin’s causal effect of intercorrelation for outcome quantity

7(z1, z2,0) where 0 is vector true parameters.



(b) We say that Rubin’s statistical interaction for outcome quantity 7(z1, z2, )
exists if there are (z1,x2) such that its causal effect of intercorrelation

7+ (x1, 22,0) is not zero (vector).

Here 7(x1, 22, 0|012 = 0) represents the no-interaction response surface for
outcome quantity 7(z1,x2,0). Unlike many causal models in statistics are
incomplete guides to interpreting data or for suggesting answers to particular
policy questions (Heckman (2008)), this causal model clearly specify the
mechanism determing how hypothetical interventions are implemented. We
explore the interaction assessment in detail while the others can be done
analogously.

— ;2.2 2
We denote g = o{05 — 015,

o12(—0y1012 + 04207 G12(0y105 — 02012
i () = 72 e — Ly g 22 — 1,
0100 0500

o12(—0y1012 + 0 202) o12(0 105 — 0 2012)
BT(Q):_ y2 . 1’ﬁ;—(9):_ y 22 ! .

This help in formulating the excess effects ‘of several interaction quantities.

Theorem 3.2. The Neyman-Rubin’s causal effect of intercorrelation for

some outcome quantities are:

(1) Conditional mean at (z1,za): 75 (@1, %9,0) = (1,21, 22)3" (0).
(2) Regression parameters: BH(0) = (B3(0), B (), 35 (7))
(3) Outcome variable: y*(xy; z9,0) = 74, (%1, %2, 0)
2 2 2 -1
(4) Conditional variance: 71 (0).= [;—'“’%l—kt;—’“g—(ayl, ay2) (:112 ((771%2> <Zz; )
(5) Regression quantile: 8+ (v,8)/= (85 (0)F 2, (\/Tcv (0) —/Te (0]o12 = 0)), BT (0), B (0))’
(6) Conditional quantile: 7% (z1,%2,0) = (1,21, 22)5% (v,0)
(7) Reference charts: 7.5(0) = {(1,z1,22)87(7,0) : v € (0,1),(x1,22) €
R?}.

Proof. It is seen that y™(z1,72,0) = y(x1,72,0|012) — y(x1, T2, 0|012 = 0).
Then regression model (2.2) indicates that y ™ (z1,z2,0) = (1,71, 22)(8(0]o12)—
B(0|o1e = 0)) = 71 (x1,22,0). The others are straight forward. O

The parametrization for a Neyman-Rubin’s causal model is novel that gen-

erates several advantages:
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(a) It makes no controversy of model dependence occurred in classical sta-
tistical interaction assessment (Mantel et al. (1977)).
(b) The approach of causality analysis for interaction assessment resolves
the concern by Greenland (1993) to measure clear effect of intercorrelation
that makes the users unconfused for how much and in what direction we
can learn from a data set.
(c) Tt creates a framework for effect of the cause to be shown with proper
perspective in theoretical analysis of causality (Holland (1986)).
(d) The Neyman-Rubin’s causal effect of intercorrelation model then is
yT (21, 29,0) = y(x18, T2, 0|012) — Y(T14, T2, 0012 = 0) (3.1)

where, like the classical Neyman-Rubin model, we can only measure one ob-
servation, here is y(z1p, ©9, Olo12) = y(x1p, T2, 0)Interestingly the parametriza-
tion leads the causality analysis requiring only estimators of distributional
parameters #. Thisanakes this-causality analysis much moreeasier than the
classical Neyman-Rubin’s causality analysis:

For statistical inferences of unknown Neyman-Rubin’s causal effect, we

assume that we have a random sample (y;s %14, £2;)’, i =1..., mfrom distribu-

y Yi
tional model (2.1), we denote sample means | 7y | = <+ Y7 x1; |,sam-
) p 1 — n i=1 I )
T2 T24
2 _ _ /
Sy WSyl Sy2 Yi — Y Yi — Y
. . n _ _
ple covariance matrix | 81, 8% 510 | = g0y | T — T Ty — T1
2 — —_
Soy S21 85 To; — T2 Toj — T2

The mle of 6 is O, = (7, 1, To, 55 51, 55, 5y1, 5y2, 512)". We define statistic
7 (x1,22,0) = 7T (21, 29, émle) as the mle of Neyman-Rubin’s causal effect
of intercorrelation 77 (21, x2, 0). The asymptitic theory of this mle is a direct

result of the asymptotic theory of the mle of 6.

Theorem 3.3. The random quantity n'/2(#+(xy, z2,0) — 71 (21, 22, 0)) con-
8T+ (Ctl ,Ig,e) V 8T+ (Il , L ,9)
a9’ 4 a0

verges to N (0,3, ) with ¥, (21,12) = where

8T+(9) . . . . + . .
55— is the partial derivative of 77 () with respect to # and Vp is the

Cramer-Rao lower bound of the regression parameters 6.
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We further denote

A S12(—Sy1512 + S4252) . S12(Sy182 — Sy2S12) _
B 12(—Sy1512 + Sy2 1)3} n 12(Sy155 — Sy2 12)3}32

= 1
8%80 8380
2 2
B+ _ _812(—8y1812 + 8y281) B+ _ _812(8y182 - 8y2812)
1 2 » M2 2 :
150 5250

We then have mles of the Neyman-Rubin’s causal effects for some outcome
quantities (parameters):
1) Conditional mean at (z1,z2): 7 (21, 22) = (1,21, 22) 57 (6).

= (B3 (0). 57 (8). 55 ().

2) Regression parameters: 31(0)
3) Outcome variable: §7(0) = 7 (x1, 22,0)

(

(2)

(3)

... ) e sty shy 3% S12 - Sy1

(4) Conditional variance: 7.5 (0) = ?4—?—(%1, Sy2) <312 52 ) <sy2 )
(5)

(6)

(7)

5) Regression quantile: 37 (v, 0) =35 (0)#+2+(\/Ter (0]012) —/Tew (@lo12 = 0)), 51 (0), B (9))".
6) Conditional quantile aty (y, Zo): o (F1522) = (121, 22) 57 (v, 0)
7) Reference charts: 75 = {(1, 21, 22) 87 (v,0) 27 € (041), (21, x2) € R?}.
Here the Neyman-Rubin’s causal effects for outcome variable and condi-
tional mean are identical and their estimators also have the same asymptotic

distribution. Advanced statistical inferences for Neyman-Rubin’s causal ef-

art (z1,22,0) -
88 1S

derived. The partial derivatives of causal effect for regression parameters

fect 7% (x1, 22, 0)"¢an be developed when partial derivative

and it for conditional variance help the formulation of asymptotic distribu-
tion of mle’s of some causal effect estimators.
For designing tests and evaluations of them, we'list the derived matrices

of partial derivatives in Appendix:
B; (6)
o0

(a) Partial derivative of 87 (0, 012) w.r.t. ' 8%;9) = ‘956139) ,a3x9
a4 (9)
a0’

matrix (see (al) of Appendix A).

(b) Partial derivative of 7.} (0) w.r.t. 0" % (see (bl) of Appendix B).
(c) Partial derivative of Conditional quantile w.r.t. 6’ W (see (cl) of
Appendix C)

For partial derivative of conditional mean w.r.t. ', it is

+
(17 Ty, 2172) 81889$9)

87';’;” (z1,22,0)
00’ -
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4. Statistical Inferences for Neyman-Rubin’s Causal Effect of In-
tercorrelation

Assessment of statistical interaction on any outcome quantity 7(x1, z2, 6)
can be done by statistical inferences for its Neyman-Rubin’s causal effect
7t (z1,19,0). We consider a simulation with significance level a = 0.05 to
verify the power of the mle based test. Suppose that we have test statistic
T for testing hypothesis Hy : 77 (21, x2,0) =0 vs Hy : 77 (21, 22,0) # 0 and
TJ represents its value at jth replication. We then define the power function

as
m

== I(T7 > t,
p m;( > ta)

where £, is the simulated constant so that the probabilities at various designs
to be close to a.. In our studies, we let-m = 10, 000 and choose a = 0.05.

First we consider conditional'mean by testing hypothesis Hy : 7.5 (21, 22,0) =

0 vs Hy : 7} (z119,0) 5% 0. We let Omipltinza 00, | | V= Vs bemle’s of

00
7'+ N . o
W and Vp.o A test for this hypothesis is defined below:

nl/22} (21, 32)) St

O (@1,25,0)) Y7 7w (21,22,0))
\/ o0’ ‘/9 o6

Test 1: rejecting Hy if

The simulated powers when (z1,%2) = (2, 2) are displayed in Table 2.

Table 2. Power performance for interaction detection by Test 1

n n =30 n = 50 n =100

o129 =0 0.048 0.05 0.052
o192 = —0.2 0.081 0.101 0.165
o192 = —0.5 0.299 0.46 0.733
012 = —0.8 0.701 0.882 0.988
o12 = 0.2 0.078 0.101 0.161
o12 = 0.5 0.196 0.361 0.683
o12 = 0.8 0.391 0.669 0.967

This test involves asymptotic variance estimate of interaction that is influ-
ence by all parameters. We may consider the partial influence of it influenced

by only covariance o1s.
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We consider the test constructing the test statistic based on the sacle of

variance change due to parameter o5 that defines the following test:

n'2|3t (z1, 2)| -

\/5ij (r1,72,0) VQ AT (21,22,6)

9o, 0012

Test 2: rejecting Hy if

rt 531 (8|o . (6o . . .
Oy (21,22,0) cméii;“’g) = (1,21, 9) 2 01712) 8?1'2 12) wigh 28°(Ploiz) 82912 12) displaying in Ap-

pendix (a2). Hopefully this tset is more sensitive in detection a change in

where

covariane.

Table 3. Power performance for interaction detection by Test 2

n n =30 n = 50 n = 100

012 =0 0.049 0.052 0.050
o192 = —0.2 0.080 0.110 0.169
012 = —0.5 0.233 0.429 0.719
012 = —0.8 0.428 0.815 0.988
o1z = 0.2 0.077 0.108 0.167
o12 = 0.5 0.234 0.420 0.710
012 = 0.8 0.434 0.817 0.987

It shows that the test considering partial derivative with respect to o125 only
does improve the power a bit.
We may also interest in assessment of statistical.interaction for the aver-

age conditional mean‘on a region A for variables (z, z5) as

Tc—i_m(AW):/ Tc—i_m(xl’x%9)f12(x17x2)9)d331d332-
A

One interesting unknown quantity to be verified is the averaging Neyman-
Rubin’s causal effect 7, .. = 78, (R?#) which can be shown to be the
Neyman-Rubin’s causal effect for conditional mean at mean vector (pu1, p12)
S Toy ave = Tam (M1, H2,0). We would not go further to investigate it in
simulation but we will study it in data analysis.

We now consider a test for hypothesis of Neyman-Rubin’s causal effect
for conditional variance. For testing hypothesis Hy : 7.5(0) = 0 vs Hy :

71 (0) # 0 for existence of statistical interaction for conditional variance, we
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define 7.} (0) = 7.1

Ccv

rejecting Hy if

(émle) and the test is defined as

Vnlis,(0)]

\/aﬁq,(e)

>t
O

Table 4. Power performance for statistical interction for conditional vari-

ance
n n =30 n = 50 n = 100

o129 =0 0.051 0.056 0.049

012 = —0.2 0.116 0.165 0.247

012 = —0.5 0.378 0.592 0.844

o192 = —0.8 0.749 0.932 0.997

We next consider the test for detection of statistical interaction on the

regression quantile 8(v,6). We test hypothesis Hy : 87 (v,0) = 0 vs Hy :

BT (v,0) # 0 by setting the following test:

rejecting H if n3+ (7, 60)'(

8B+ (’77 0) ‘79 8B+ (’Ya 0)

00

)18 (7,0) > ta

Table 5. Power performance for statistical interction for regression quantile

n n =30 n = 50 n = 100

v=0.7

012 =0 0:055 0.048 0.048
012 = —0.2 0.070 0.093 0.160
012 = —0.5 0.267 0.440 0.718
012 = —0.8 0.655 0:855 0.989

v=0.8

012 =0 0.053 0.049 0.054
012 = —0.2 0.069 0.088 0.145
012 = —0.5 0.253 0.417 0.724
012 = —0.8 0.662 0.861 0.992

v=0.9
012 = —0.2 0.056 0.073 0.143
012 = —0.5 0.207 0.396 0.704
012 = —0.8 0.615 0.853 0.988

The power performance of assessing statistical interactions for conditional

variance and regression quantile by testing for hypotheses for their corre-

sponding Neyman-Rubin’s causal effects shows these tests are satisfactory.
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We consider a real data analysis for further interpretation. The sales data
of size 25 from 25 territories for 1994 is available in Dielman (1996) that
includes the sales (response variable) y (in US$1000), the amount the com-
pany spent on advertising (explanatory variables x1) and the total amount of
bonuses paid (z2). The estimated regression model by least squares method

computed in Dielman (1996) is
= —516.4+4 2.47x1 + 1.86x4

with R? = 85.5%.

concerned if the cause of bonuses (z2) paid in 1994 to salesmen is re-

Management department of the Meddicop Company

lated to the response of sales. We further evaluate if correlation plays a
role of affecting the sale outcomes (y) by computing the estimated sales
Fom (21, T2,0) = (1,21, 22) B0melors) for (#1,%3) in territories 1, 2, 3 and
4 (Ty,Ts, T3 and Ty) based on-mle’s of 0 except. that covariance o5 is re-
placed by some specified values includingits s{5. The estimated mean sales
(Tem (1, T2, 0)) aredisted in Table 6.

Table 6. Predicted mean-sales for first four territories

o1a (_(fé’g‘j’z_)lgg) (—1.43,<1.40) |(—1.35, =0.17) [(—0.892, 0.522)
012 =0 673.935 792.929 969.53 1153.362
o1p = —0.2 529.926 674.309 913.38 1146.779
o12 = —0.5 94.089 318:129 729.952 1109.164
o1y = —0.8 <1655.61 ~1107.133 £98.724 928.929
12 = 0.2 768,354 871.874 1000.722 1150.307
o12 = 0.5 857058 950.334 1009.448 1120.455
o12 = 0.8 887.623 1000.22 902.930 966.567
s12 = 0.419 837.937 932.435 1012.292 1133.086

The predicted mean sales with 015 = 0 present the outcome results of no-
intercorrelation. Then the predicted mean sales for 15 # 0, in terms of
(1, x2), are different from it for 012 = 0 and regression parameters [3(6) for
012 # 0 are also different vectors from it of 015 = 0. These results show that
intercorrelation does making influence on conditional mean and regression
parameters. We then are appropriate to consider them as potential outcome

quantities.
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Table 7. p-values of observation points

Obs # Z-test t-test Obs # Z-test t-test
1 0.019* 0.028* 14 0.028* 0.038*
2 0.021* 0.030* 15 0.028* 0.038*
3 0.109 0.122 16 0.818 0.820
4 0.402 0.410 17 0.895 0.896
5 0.381 0.390 18 0.215 0.227
6 0.020* 0.028* 19 0.024* 0.034*
7 0.032* 0.043* 20 0.080 0.093
8 0.108 0.121 21 0.430 0.438
9 0.030* 0.040* 22 0.053 0.065
10 0.359 0.368 23 0.075 0.088
11 0.036* 0.046* 24 0.055 0.067
12 0.750 0.753 25 0.429 0.436
13 0.024* 0.034*

5. The Neyman-Rubin’s Causal effect of Intercorrelation for Bi-
nary Variable

Ai and Norton (2003) considered the second-order interaction verification
for probit and logic regression-models. It is‘interesting to see if we can assess
effect of intercorrelation for binary response variable.

It is very common that the categorical dependent variable is observed
from categorization-of a continuous explanatory variable while Prock et al.
(2004) reported that-84% of epidemiological papers from leading journals
made categorization of continuous variables. This categorization is wide-
spread from epidemiology to other areas suchas psychology (MacCallum,
et al. (2002)) and marketing (Irwin and McClelland (2003)). With cat-
egorization, we are allowed to apply parametrization to assess statistical
interaction for categorical dependent variables.

Again, we let Y, X; and X5 be continuous random variables with a joint
distribution. One categorization is to set a binary variable I(Y < \) with
outcome quantity as the regression function of the conditional mean defined
as p(x1,22) = E(I(Y < A\)| Xy = 21, X2 = x2), a probability as a function
of (x1,z2). For assessment of statistical interaction, most applied scientists

consider the model-dependent outcome quantity in the framework of logistic



17

regression as

1

plog(xly .1'2) - 1+ e—(ﬁ0+,31$1+,32062+ﬁ12$1$2) (51)
or of probit regression as
Pprob(T1,T2) = ®(Bo + B171 + P22 + B127172) (5.2)

where ®(.) is the distribution function of the standard normal distribution
and consider a test for hypothesis Hy : f12 = 0.
Now, we also consider that these random variables follow the normal

distribution of (2.1). We then easily obtain the following theorem.

Theorem 5.1. The outcome quantity of conditional mean for binary vari-

able I(Y < X) under normality assumption (2.1)s

)\ — (1, I, 1'2),3(9)
Tew(0)

)s (5.3)

pcat(xla Z‘z) — (b(

called the probit otiteome quantity, where regression coefficients (3, (6), 51(0)

2

are denoted in Theorem
ylTy,x2

and (2(f) and error conditional variance o
2.1.

The true outcome quantity under noermality assumption in (5.3) indicates
that either probit one with product term of (5.2) and logistic one are all

inappropriate. Following Theorem 3.3, we have the following theorem.

Theorem 5.2. The Neyman-Rubin’s causal effect of intercorrelation for

probit outcome quantity peqt(T1,22) is

)\ — (1,$1,$2),8(9|0’12)) . @()\ - (1,$1,$2),8(9|0’12 = 0)

ch(9|0-12) \/ch(9|0-12 = 0) )

Pt (w1, 72) = O

The mle of the Neyman-Rubin’s causal effect of intercorrelation is

A= (1,21, 32)B(0]o12) A= (1,21,22)3(0|o12 = 0)
- ) — ®( ~ —
ch(9|0-12) \/ch(9|012 = 0)

).

P (w1, 22) = B(

that leads to the following theorem.
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Theorem 5.3. The random quantity n'/2(p} ,(z1,22) — pl, (21, 22)) con-

+ +
verges to N (0, apc”a(gxll’m)vé ap”ta(zl’m)) with

Optu(z, ) A= (1,21,22)B(0]o12)

89/ B _QS( ch(9|012) )
Teo(B]012) (1, 21, ) 22E12) 4 (N (1,21, 29)5(B]012)) § 2rexlblorz)
ch(9|012)

)\ — (1,$1,$2)ﬂ(9|0’12 = 0))
\/ch(9|0'12 = 0)
Voo Olora = 0)(1, 2, 22) 22E2=0 o (X — (1,21, 25) (8012 = 0)) 3 2TeeOl712=0)

+ ¢(

ch(9|0'12 = 0)

where aTC“(i_gZ',””) and aT”(%'g,”:O) are displayed in Appendix (b2) and (b3)

9B(0loi2) 9B(0|o12=0)
agr — and 007

and

are displayed in Appendix (a3) and (a4).

Different underlying distribution or binary variable results different outcome
quantity and their corresponding Neyman-Rubin’s causal effect of intercor-

relation. We would not/ go further on it.

6. Concluding Remarks

Whether or not effects of explanatory variables are intercorrelated are
frequently assessed-with ambiguous and controversial concept of statistical
interaction give the practitioners limited and- confused view of the nature
of interaction in statistical.world. We attempt here to elucidate some of
the controversial issues surrounding the coneepti of statistical interaction
with systematic introduction of definitions, methods and theorems to build
the Neyman-Rubin’s causality analysis for assessment of interaction effect
of intercorrelation. The parametrization of constructing regression model
formulated from a multivariate distribution brings a theoretical foundation
in connecting a causal model with the interaction cause of intercorrelation
parameter that allows us to measure the effect of intercorrelation. Hopefully
this would be recognized to have made permanent contribution in assessment
of statistical interaction. We have several further conclusions:

(a) Suppose that the conditional mean of the response variable y given
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X1 =21 and Xy = x5 is an exponential function as

(e, w2) = exp{f5(0) + B (0)x1 + B3 (0)x2 + Biy(0)z1ra}

where regression parameters (3;(0),7 = 0,1,2 and (3{5(0) are function of
distributional parameters 6. Let us evaluate the approach of Ai and Norton

(2003) considering the cross derivative as

82“(-7717'772)

Or1079 p(xy, 22)[B12(0) + (B (0) + Bi2(0)x2)(B5(0) + Bia(0)z1)]

for assessing statistical interaction. This interaction parameter involves
complicated function of distributional parameters 6 that is entirely depen-
dent on intercorrelation parameter-only if all.regression parameters depend
on covariance between ‘X; and X, are zeros. This is generally not true.

(b) Any utility function g(¥")-that its explicit form of conditional mean
pg(x1,22,0) = E(g(Y)| X1 =1, X3 = 2) available serves an interaction
parameter for assessing its statistical interaction. Simpler form of other
categorization such as I(Y > A), I(AL. <Y < Ag) and I(Y < A\ or > )p)
are candidates.

(¢) (Prediction interval) Again, we are interesting in the prediction of re-
sponse yo when X1 =1y and X9 = x9y are specifieds The interest of inter-
action parameter is the socalled. naive coverage-nterval (fi,orm (10, T20) —

Z’yo'y|w1,w27 :U/nm’m('rloa '7;20) + Z‘Yo-y|m1,xz)'

7. Appendix
Appendix A
(al) The partial derivatives for elements of 51 (6) w.r.t. 6:

B (0) _
00’
(0 —0'0_1(0'y10'%—0'3120'12)4-C;—ylg1 0'0_1(0'3110'12+0'y20'%)+[;—y§2 0 d15 d16 d17 dlg dlg)
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where
dis = —0y 'oyapz + 05 2 [(04105 — 0y2012)05 11 + (=0y1012 + 0207) 05 Ha] — O-?gfl
1
dig = —ao_lamm + 00_2[(074105 - 0y2012)U%M1 + (o012 + UyQU%)J%M] B Ul:iu
2
dir = 0y '[—05 1 + o12p2) + %’ dis = 07 '[o1201 = ot piz] + %
2 2

dio = 0§ (o2 + oy1pe) — 204 (04105 — 0y2012)012011 + (—0y1012 + 04207 )0 12/12]

—2 2 2 Oyl
-0y, (0y102_0y20—12)0—2+_0y411 doe da7 dag dag)

0o’
where
-1 —2 2 2 -1 _2 -2
dog = 04 0y1 — 0 (04105 = G,8012)07, dor = 0y 05 — 0]
-1 —1 —2 2
dzg = —0y 012, dzg = =0y 0y2 + 20’0 (0'y10'2 — O'y20'12)0'12
95 ()
2 _ -1 -1 92 -2
By —(0 00 O d35 d36 —0p 012 09 01 — 0y d39)
where

—1 —2 2y 2 —2 2y 2 —2
d3s = 0q 0y2 + 09 (Ty1012 — 04207)035 dae = 0 (01012 =.0y2071)07 + 04205

d3g = —0'0_10'y1 — 20'0_2(0—3110'12 - O'yQO'%)O'lz
. 7\ +
(a2) The partial derivatives of elements of 57 (0) w.rit. o1a: %ﬁ';’”) =
0/ 85;(9)
8 3112
o8y (6)
0/8 3:712
A
8 o1z
Gy
(a3) The partial derivatives of elements of 5(6) w.r.t. 0: % =1 Gs
Gs
where
Gi=(1 —oumi—gwon _owoi-gnoi ( g go g gy go)
2
G2=(0 0 0 0 hs he 22 —%2 hy)
2
Gz=(0 0 0 0 ks ke —2Z2 & ko)

0o g0
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with
2 2 2 2
g5 — _ Oy2/t2 n (0y105 — 0y2012) 105 | (0207 — 041012) 1205
o 0% 0%
2 2 2 2
_ Ty1n (0y108 — 0y2012) 107 | (0207 — 041012) 1207
g6 = — + 2 + 2
2 2
O1202 — O3 1 _ O12M1 — 012
gr = y gg = )
0o 0o
o +o (04103 — 0y2012) 1012 + (0207 — 01012) 120
_ y2 M1 ylH2 9 y103 y2012)41012 y201 y1012) 2012
g0 0'3
2) -2 2
(042012 — 04105)03 _ Oy (042012 — 0y105)07
h/5 - 2 ’ h/G - 2
2
Oy2 Oy109 — 042012)012
]7/9 —_ Y + 2( Y 2 2?; )
2\ 2 2\ 2
fe = v2 (0y1012 — 0y207)05 . 7L (0y1012 — 0y207)07
5 — + P} 9 6 — 2
2
Oy1 (0y201 & 0y1012)012
kg = ———= +2 5
. A . 9B(0|o12=0
(a4) The partial derivatives of elements.of () w.r.t. 0" if 519= 0: % =
H,
Hy | where
Hs
. Oy1 Oy2 Oyl 1 Oy2 2 2y
H1 _( 1 O'f Ug 0 0';1 oy Uf a% 0)
_ _ Oy 1
_ _Oy2 e

Appendix B

(bl) The partial derivative of the causal effect for conditional variance

+ 2
’ + .ot (8) 2041 20y105+20y2012 2042
w.r.t. 0, 75(0), is =55~ = (0,0,0,0,t5, s, =l - o
20@10’12—20@20’%
U—O,tg) where
2 2 2 2 2 2 22
b o N Oyo 04105 + 204104201205 — 020103
=L 4 Y2
of o) ol
2 2 2 22 2 2 4
b Oy2  Oy1 0510105 + 204104201207 — 0,507
6= — 22 ¥
o 0o ol
2 2 2 2 2
e 2010y2  20,105012 + 40102075 — 20,507012
9= _
go 0'%
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(b2) The partial derivative of 7., (6) w.r.t. 6" W =(0 0 0 1 wus wug wur wug
with
052 05103 — 2010201203 + 0520%03
051 0510%05 — 2ay10y20120% + 052(7‘11
ug = ——= + 5
wy = 20y2012 - 0y105, g = 20y1012 0y2071
oo 00
Ty10y2 05103012 — 2ay10y20%2 + 0520%012
Ug = 2 -2 5
ey (Alo12=0 2 2
(b3) GEe=t = (0 0 0 1 ¢ 22 27w 272 )
Appendix C
96 (v,0) _ 987 (6) >
(C]') 397, = " 50 =+ Zoy 02) where
0%
1 1 1
E=(0 0 0 s Glown? — Gu@oa=0)iz) € €67 s o)
with
es = 1((%10’3 Soygo12)? 01 )
2" (1el@@12))?  0f(1e(0]01250)) /2
on — 1 ( (oy1012 = ‘Ty2‘7%)2 012/2 )
6= — -
2% (rew(Olo2))M2 | s (Ten(Blor2 = 0))1/2
er = O'y20'12_0'y10'% Oyl
00(Tev(0]012))2  0F(Teu(0]o12 = 0))/2
ox — a—y10—12_0—y20—% Oy2
g =
00(7eu(0]012))2 03 (7eu(0]o12 = 0))/2
0g — (Tp2012 0y105) (041012 — 0y207)
(Tew (9|0'12))1/2
(c2) Cramer-Rao lower bound of the regression parameters 6: Vy = ( OA9 OEXG >
6x3 0

Ug)
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(o Oy1 Oy2

with 3 x 3 matrix Ag = | 0y1 0% o012 | and 6 x 6 matrix

2
Oy2 012 Oy

By =
4 2 2 2 2
20y 20y1 20y2 20ycry1 2cryay2 2041042
2051 20t 202, 20%0y1 2041012 20201
2 2 4 2 2
2ay2 207 205 2042012 20502 205012
2 2 2 2 2 2 2
20ycry1 207041 2042012 0,01+ 01 O 012 + 0y10y2  T{0y2 + 0y1012
2 2 2 2 2 2 2
20ycry2 2041012 20502 0,012 + 0y10y2 0,05+ 0y 05041 + 0y2012
2 2 2 2 2 2 2
20010y2 207012 205012 0702+ 0y1012 05041 + 042012 0105 + 079
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