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奈米微粒與次微米微粒 
在氣膠微粒質量分析儀中的傳輸函數 

 
 

研究生: 廖伯熙                       指導教授:蔡春進 博士 
 

國立交通大學環境工程研究所 
 

摘 要 

 

 氣膠微粒質量分析儀(APM, Kanomax, Japan)是一部應用離心力與靜電力測量奈米微

粒與次微米微粒質量的儀器。過去的文獻指出，微粒在 APM 內部的擴散損失是造成模

擬計算值高估實驗數據(例如:質量分佈)的原因，然而至今仍未有研究能將其差異進行量

化(Lall et al., 2009, Tajima et al., 2011)。本研究利用二維數值模式研究奈米微粒與次微米

微粒在 APM 中的傳輸函數，當假設 APM 中篩選區域的流場為拋物線分佈時，發現本

模式的傳輸函數模擬結果與過去採用相同流場的文獻結果相符，但仍舊如過去文獻一樣

會高估實驗值。當本研究進一步考慮到因旋轉的篩選區域所引起的強制渦旋及採用更詳

細的計算域時，發現旋流出現在 APM 內部的流場，這些出現旋流的區域增強了奈米微

粒在 APM 儀器裡的對流擴散損失。本研究的研究結果顯著地提高了模式對 APM 傳輸

函數與反應譜的計算準確度。本研究亦根據的數值結果發展出了修正的 Ehara 模式，該

模式可更容易及準確地計算傳輸函數。利用本研究所發展出的模式，預期在未來可發展

出準確的即時奈米微粒與次微米微粒的質量分佈量測。 

 

關鍵字: 氣膠微粒值量分析儀、APM、傳輸函數、擴散損失、旋流、模式 
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Abstract 

 The Aerosol Particle Mass Analyzer (APM, Kanomax, Japan) is one of the popular 

instruments to measure the mass of nanoparticles and submicron particles.  In previous 

studies, particle diffusion loss in the APM was speculated to be the reason why simulated 

response functions for the APM overestimated the experimental data.  But no models were 

available to quantify the differences (Lall et al., 2009, Tajima et al., 2011).  This thesis 

studies the transfer function of the APM by using a 2-D numerical model for nanoparticles 

and submicron particles.  At first, the flow field in the annular classifying region of the APM 

is assumed to be parabolic.  It is found that the transfer functions simulated by the present 

model are in good agreement with previous studies which also considered the parabolic flow 

profile.  But transfer functions are still overestimated just like previous studies.  After 

solving detailed flow and particle concentration fields in the APM by considering the forced 

vortex due to the rotating classifying region as well as inlet and outlet regions in the 

calculation domain, recirculation flow regions are found to exist in the APM.  These 

recirculation flow regions lead to enhanced convection-diffusion loss of nanoparticles in the 

APM.  As a result, the present model improves the accuracy of the transfer functions and 

response spectra of the APM significantly.  Based on the numerical results, a modified Ehara 

model is developed to ease the calculation of the transfer function.  Using these models, it is 

expected that accurate real time mass distribution measurement of both nanoparticles and 
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submicron particles can be realized in the future. 

 
Keywords: Aerosol Particle Mass Analyzer, APM, Transfer Function, Diffusion Loss, 
Recirculation Flow, Model 
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1 Introduction 

 The Aerosol Particle Mass Analyzer (APM) classifies particles based on their mass to 

charge ratios or specific masses, denoted as S (Kg/C), by using centrifugal and electrostatic 

forces (Ehara et al., 1995, Ehara et al., 1996).  The direction of the forces is reverse to each 

other.  When the centrifugal force is greater than electrostatic force, the particle will be 

removed by the centrifugal force.  Similarly, when the electrostatic force is greater than the 

centrifugal force, the particle will be removed by the electrostatic force.   Therefore, only 

narrow range of specific mass of particles can penetrate the APM.  Fig. 1 describes the 

structure of the APM and the concept of the classification (Kanomax Inc.).  Because a 

bipolar charger installed at the APM inlet, nanoparticles are in charge equilibrium condition 

which allow one to derive the mass of particles from the S for singly charged nanoparticles.  

The applications of the APM include mass distribution and density measurements, and 

monodisperse particle generation (Kanomax Inc.). 

 

 

Fig. 1. The schematic diagram of the APM (right) and its mechanism of classification (left) 

(KANOMAX Inc.). 

 

 The following equations describe the condition when the centrifugal force and 
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electrostatic force are in balance in the APM as well as the specific mass: 

 

 m × ω2 × r = n×e×V
r×ln(r2r1

)
                  (1) 

  S = m
n×e

= m
q

= V
ω2r2×ln(r2r1

)
  (2) 

 

m: Mass of the particle (Kg) 

ω: Rotation speed of the APM (rad/s) 

r: Distance from the z axis shown in Fig. 1 to the position of particle (m) 

n: Number of electron on the particle (#) 

e: Charge of an electron (C/#) 

V: Voltage applied on the APM (volt) 

r1: Inner radius of the classifying region (m). 

r2: Outer radius of the classifying region (m) 

q: Charge on the particle (C) 

 

 The transfer function is the ratio of the particle concentration at the outlet to that at the 

inlet of the APM.  With a specific rotation speed, voltage, and flow rate, each specific mass 

of particles has a particular transfer function.  In addition, if the particle is spherical, the 

specific mass can be converted to the size of particle with a known density.  Eq. (3) describes 

the transfer function based on the diameter of the particle (denoted as ΩAPM(dp)) or the 

specific mass of the particle (denoted as ΩAPM(S)). 

 

  ΩAPM(S) = Nout(S)
Nin(S)

 or ΩAPM�dp� = Nout�dp�
Nin�dp�

                        (3) 

 

 In Eq. (3), Nout is the particle concentration at the APM outlet, and Nin is the particle 
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concentration at the APM inlet.  Fig. 2 is the example of the transfer function.  When the 

rotation speed and the voltage of the APM-3601 are 4487 rpm and 2 volt respectively, only 

particles with specific mass ranges from 0.2 Kg/C to 0.7 Kg/C can pass through the APM as 

shown in Fig. 2(a).  If the particles are spherical, the specific masses can be converted to the 

diameters that the particles with diameter ranging between 18 nm to 28 nm can pass through 

the APM.  In Fig. 2, singly charged 22 nm (or 0.37 Kg/C) particles have the maximum 

transfer function, which is about 0.64.  In other words, if there are one hundred 22 nm 

particles entering the APM with homogeneous concentration at the inlet of the APM, only 

about sixty of them can pass through the APM.  Hence, the transfer function describes the 

relationship of particle concentrations at the inlet and the outlet of the APM.  If particle 

concentration at the APM inlet is known, one could calculate the outlet particle concentration 

by using the transfer function. 

 

 

Fig. 2. A typical transfer function of the APM with respective to (a) the specific mass and (b) 

diameter of spherical particles. 

 

 Because the transfer function builds up the relationship between the particles 

concentrations at the outlet and the inlet of the APM, the calculation of transfer function is 
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important.  Several models have been developed to calculate the transfer function in the 

literature (Ehara et al., 1995, Hagwood et al., 1995, Ehara et al., 1996, Olfert and Collings 

2005).  For submicron particles, some models have been verified with experimental data 

(Ehara et al., 1996, Tajima et al., 2011).  For nanoparticles, however, no model has agreed 

well with the experimental data.  Most of the theoretical or numerical models overestimated 

the peak values of the transfer functions as compared to the experimental data (Lall et al., 

2009, Tajima et al., 2011).  Previous studies concluded that the differences between the 

theoretical results and experimental results were due to the diffusion loss caused by Brownian 

motion (Lall et al., 2009, Tajima et al., 2011).  Even when the particle diffusion loss was 

considered, the models still overestimated the transfer function as compared to experimental 

data (Olfert et al., 2006, Lall et al., 2009).  Hence, the purpose of the study is to improve the 

accuracy of the transfer function of nanoparticles in the APM. 

 

2 Literature Review 

 Several models have been developed in the past to calculate the transfer function.  Ehara 

et al., (1995) and Ehara et al., (1996) pioneered the development of the theoretical model for 

the transfer function based on the trajectories of the particles passing through the APM 

(Lagrangian approach).  Hagwood et al., (1995) presented two numerical models to simulate 

the transfer function in consideration of effects of the diffusion loss.  Based on the 

convection-diffusion equation, Olfert and Collings (2005) developed the diffusion model of 

the transfer function.  In addition, some studies compared the models with experimental data.  

Ehara et al., (1996) verified their model with experimental submicron particle data.  Lall et 

al., (2009) applied one of the numerical models developed by Hagwood et al., (1995) to 

calculate the transfer function, and Tajima et al., (2011) compared APM response spectra 

simulated by the theoretical model with experimental ones.  The methods and the results of 
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the comparison are described in the following sections. 

 

2.1 Non-Diffusion Model  

Theoretical Model 

 Based on the trajectories of particles passing through the classifying region of the APM, 

Ehara et al., (1996) developed the original theory (theoretical model) to calculate the transfer 

function of the APM without considering the Brownian motion of particle.  The uniform 

flow and parabolic flow were applied in the theoretical model respectively.  Appendix A 

contains the details of the assumptions applied in the model. 

 Ehara et al., (1996) found a dimensionless number λc for the APM, which is the 

dimensionless number of the transfer function for the center particles that achieve force 

balance of centrifugal force and electrostatic force at the central position (denoted as rc, which 

is equal to the average of the r1 and r2) between the inner and the outer of the annular 

cylinders (classifying region).  It can be described by Eq. (4) (Ehara et al., 1996).  The 

center particle has the maximum transfer function (roughly).  For example, the center 

particle in Fig. 2 is the particle which has the maximum transfer function.  The specific mass 

and the diameter of the center particle are denoted as dp,c and Sc respectively. 

 

 λc = 2τcω2L/u�                                                   (4) 

 

τc: Relaxation time of the center particle (S) 

L: Length of the classifying region of the APM (m) 

u�: Average speed of the flow passing through the classifying region of the APM (m/s). 

 

 λc describes the peak height (maximum transfer function) and the resolution (relative 

width) of the transfer function; hence, it is also called classification performance parameter 
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(Tajima et al, 2011).  The lower and narrower transfer function occurs with greater value of 

λc, while the higher and wider transfer function occurs with lower value of λc.  It should be 

noted that if the λc of the different transfer functions were similar, the height and the shape of 

those transfer functions were also similar despite differences of rotation speed, voltage or 

flow rate.  Ehara et al., (1996) defined the phenomenon as the similarity rule.  Moreover, if 

the value of λc was sufficiently small (ex: less than 0.3), the assumption of the differences 

between the model in the uniform flow field and the parabolic flow field became insignificant 

(ex: Maximum height difference can be less than about 4% in transfer function).  These 

features of the small λc indicated that the transfer function can be solved with analytical 

solution; therefore, the small λc significantly reduced the complexity of the calculation.  

Ehara et al., (1996) also verified the model with experimental data of monodisperse 309nm 

Polystyrene Latex (PSL) (Ehara et al., 1996).  In summary, Ehara et al., (1996) described the 

relationship among the centrifugal force, the electrostatic force and the transfer function 

through the theoretical model. 

 

2.2 Diffusion Model 

Diffusion Loss of Nanoparticles 

 Nanoparicles have significant Brownian motion compared with submicron particles.  

The loss of nanoparticles in APM is enhanced due to the Brownian motion.  The 

phenomenon was verified with the numerical models (Hagwood et al., 1995, Olfert and 

Collings 2005) and the experimental data (Lall et al., 2009 and Tajima et al., 2011).  For 

example, Hagwood et al., (1995) found that the peak of the transfer function of 20nm particles 

was decreased from about 86% to 20% after considering the diffusion loss of the particles.  

Tajima et al., (2011) found that results simulated by the model without considering Brownian 

motion of particles significantly overestimated penetration of 30 nm monodisperse PSL (more 

than 20% on normalized particle concentration).  In addition, the degree of overestimation 
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became insignificant for submicron particles (Fig. 3).  The different levels of overestimation 

showed the effects of the Brownian motion.  In sum, the Brownian motion of nanoparticles 

indeed has great impact on the transfer function. 

 

Numerical Model 

 The theoretical model developed by Ehara et al., (1996) was accurate for submicron 

particles, but it overestimated the transfer function for nanoparticles due to the assumption 

neglecting the Brownian motion.  Some numerical methods were developed to calculate the 

transfer function with considering the Brownian motion of particles (Hagwood et al., 1995, 

Olfert and Collings 2005). 

 Hagwood et al., (1995) developed two numerical methods, the Stochastic Differential 

Equation (SDE) and the Monte Carlo method (MC), to simulate the transfer function in 

consideration of the Brownian motion.  The former calculated the transfer function based on 

the probability of particles passing through the APM, while the latter applied the Gaussian 

random variables to describe the Brownian motion.  Appendix A contains some important 

assumptions applied to the models.  The results calculated by these models showed the 

significant effects of the Brownian motion of nanoparticles on the transfer function. 

 Another numerical model was developed by Olfert and Collings (2005), which was based 

on the convection-diffusion equation.  The study also found another dimensionless number η 

as described in Eq. (4).  The η took the diffusivity of particles in to consideration.  The 

effects of diffusion become important when |ηc| of the APM applied in the study was 

approximately less than 10 (Olfert and Collings 2005, Olfert et al., 2006). 

 

 ηc = 2δ2τcω2

Dc
                                                       (5) 
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: Half distance of the gap, which is described by (r2-r1)/2 (m) 

Dc: Diffusivity or diffusion coefficient of center particles (m2/s) 

 

2.3 Verification of the Models 

 Up to now, several models were developed.  Some of the models have been compared 

with experimental data (Ehara et al., 1996, Olfert et al., 2006, Lall et al., 2009, Tajima et al., 

2011); however, no model has accurately agreed with experimental data for nanoparticles 

even if the effects of Brownian motion were considered in the model. 

 

 Nout(V) = ∫Nin(S)ΩAPM(S, V)dS                                    (6) 

 

 Ehara et al., (1996) calculated the number concentration of monodisperse particles 

passing through the APM (Eq. (6)).  In Eq. (6), the particle concentration at the APM outlet, 

denoted as Nout(V), is the function of voltage.  The particle concentration at the APM inlet 

was considered the function of the specific mass (denoted as Nin(S)) which was assumed to be 

proportional to the  function, and the transfer function of the APM was denoted as the 

function of the specific mass and voltage (denoted as ΩAPM(S,V)).  The rotation speed of the 

APM was fixed, while the voltage of the APM was shifted to scan the specific mass 

distribution of the particles.  The theoretical relative particle concentration, which is the ratio 

of the total particle concentration at the APM outlet to that at the APM inlet, was calculated 

with different voltage and compared with the experimental one.  Good agreement of the 

comparisons between the experimental data (monodisperse 309 nm PSL) and the simulated 

results showed the validity of the theoretical model. 

 Since the theoretical model developed by Ehara et al., (1996) neglected the Brownian 

motion of particles, the model is not suitable to nanoparticles.  Tajima et al., (2011) applied 
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the model disregarding the Brownian motion of particles to simulate the APM response 

spectra which is same as the relative particle concentration calculated in Ehara et al., (1996).  

The flow field of the model was assumed to be parabolic.  Different to Ehara et al., (1996), 

Tajima et al., (2011) considered the size distribution of monodisperse PSL at the APM inlet 

more carefully as described in Eq. (7).  The size distribution of the particles at the inlet of 

Differential Mobility Analyzer (DMA) were considered the Gaussian distribution (denoted as 

N0(dp)) based on the mean and standard deviation of size of size standard PSL.  Moreover, 

the particles classified by the DMA (Nin(dp)) is considered the product of the N0(dp) and the 

transfer function of the DMA (denoted as ΩDMA).  VDMA is the voltage applied to the DMA.  

The rotation speed of the APM was fixed based on the specific λc, while the voltage was 

shifted to scan the specific mass distribution of monodisperse PSL, and the normalized 

particle concentration were calculated and compared with the experimental one. 

 

 Nin�dp� = N0�dp� × ΩDMA�dp, VDMA�                                (7) 

 

 
Fig. 3. Theoretical and experimental normalized particle concentration. (Tajima et al., 2011) 

 

 Fig. 3 showed the results of comparisons presented in Tajima et al., (2011).  The number 

on each curve was the size of the monodisperse PSL.  The thick grey lines were the 

simulated results, and the thin black lines fitted the experimental data (points) with the least 
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square fitting method.  Differences between the simulated results and experimental data 

became significant for PSL less than 100 nm.  Tajima et al., (2011) concluded that the 

differences (overestimations) were caused by diffusion loss. 

 Lall et al., (2009) applied the MC method (Hagwood et al., 1995) to calculate the APM 

transfer function with the assumption of the parabolic flow field, and they also calculated the 

particle concentration at APM outlet with the manner similar to the manner did in Tajima et 

al., (2011) as described in Eq. (6) and (7).  Different from Tajima et al., (2011), Lall et al., 

(2009) considered the N0 as the constant function and applied the triangular function to the 

transfer function of the DMA.  Comparing to experimental data, Lall et al., (2009) found the 

simulated results overestimated the penetration for nanoparticles (60 nm, 100 nm PSL) and 

submicron particles (300 nm PSL).  Lall et al., (2009) concluded that was due to diffusion 

losses and transport losses. 

 Olfert et al., (2006) verified the model presented in Olfert and Collings (2005).  Instead 

of the APM, the major objective of the study for Olfert and Collings (2005) is the Couette 

Centrifugal Particles Mass Analyzer (CPMA).  Because the only difference between two 

instruments is the rotation speeds of the inner and outer cylinders, while the cylinders of the 

APM have the same rotation speed, the CPMA is very similar to the APM.  The different 

rotation speed of cylinders of the CPMA was applied in order to achieve the stabler state of 

the classification (decrease the loss of particles during the classification).  Since the APM is 

very similar to the CPMA, the diffusion model developed by Olfert and Collings (2005) not 

only available to the CPMA but also available to the APM.  Olfert et al., (2006) compared 

the model of the CPMA with experimental data. The assumption of parabolic flow field was 

made in the model, and of assuming that particles at the APM inlet are strict monodisperse 

(particles are in same size).  For 50 nm PSL, the diffusion model significantly overestimated 

the transfer function compared to the experimental data.  Olfert et al., (2006) concluded that 

the overestimation was due to the particle diffusion.  Because the model of the CPMA is 
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very similar to the model of the APM, we consider that the result concluded for the CPMA in 

Olfert et al., (2006) would also be available to the APM. 

   In sum, for submicron particles, some models have been verified by the experimental 

data (Ehara et al., 1996, Tajima et al., 2011).  For nanoparticles, however, no model has 

agreed well with experimental data.  Table 1 summarizes the performance of previous 

transfer function models. 

 

Table 1 The summary of the performance of previous models 

 

 

3 Numerical Method 

 A 2-D numerical model developed by our laboratory is applied to simulate the transfer 

function of the APM.  The preliminary verification of the model is conducted with 

comparing the simulated transfer function with ones done by previous models with simple 

calculation domain (the classifying region of the APM) and assumption of parabolic flow 

field.  After the preliminary verification, the model is further improved by extending 

calculation domain from classifying region to whole region in the APM and by considering 

detailed flow field based on the Navier-Stokes equations.  The improved model is used to 

compare with the experimental data shown in Tajima et al., (2011) as the advanced 

verification. 
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3.1 2-D Numerical Model 

Governing Equation 

 

Fig. 4. Scheme of the APM and the flux of particles induced in the APM. 

 

 Fig. 4 shows the principle of the model applied in the model.  Charged particles were 

introduced in the classifying region of the APM (the space between the closely-spaced 

annular cylinders).  Particles passing through the region are classified by the centrifugal 

force Fc and electrostatic force Fe.  In Fig. 4, L is the length of the APM.  Three directions 

of flux in the classifying region are considered.  First one is the flux induced by the carrier 

gas.  Particles move with the direction of flow in the APM.  Second one is for the particles 

of which Fe is greater than Fc, the flux toward the inner cylinders is induced.  Third one is for 

particles of which Fe is smaller than Fc, the flux flowing toward the outer cylinders is induced.  

The flux describe the particles which are classified by the APM. 

 The governing equation applied in the model is based on the convection-diffusion 

equation.  The general equation of the convection-diffusion equation is 
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 ∂Np
∂t

= ∇ ∙ �D∇Np� − ∇ ∙ �u�⃑ Np�.       (8) 

 

Np: Number concentration of particles in the APM (#/m3). 

u�⃑ : Velocity of the aerosol flow passing through the APM (m/s). 

 

 It is considered that there is no source, sink or chemical reaction in the APM classifying 

region.  The study considers that the flow in the APM is isothermal and steady.  Since the 

Mach number of the flow is much less than 0.5 (ex: 0.0046 for the APM-3601 or 0.015 for the 

APM-3600), the carrier gas (ex: air) is considered as incompressible fluid.  In addition, the 

classification of the APM is assumed to be steady (∂Np
∂t

=0).  Because centrifugal force and 

electrostatic force do not change in θ direction, the particle motion in θ direction and the flow 

field in θ direction are neglected in the model (uθ=0).  Finally, the governing equation of 

2-D model for the transfer function is 

 

 ∂�ur+(uc−ue)Np�
∂r

+ ∂�uzNp�
∂z

= D �1
r
∂
∂r
�r ∂Np

∂r
� + ∂2Np

∂z2
�. (9) 

 

ur: Velocity of flow in r direction (m/s) 

uz: Velocity of flow in z direction (m/s) 

uc: Velocity of particle flow induced by centrifugal force (m/s). 

ue: Velocity of particle flow induced by electric force (m/s). 

r: Distance between the aerosol and the axis of the APM (m). 

 

Eq. 9 is further rewritten with the detailed description of ue and uc, as described in Eq. (10) 

and (11), to be Eq. (12). 
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 uc = τrω2 = mBrω2  (10) 

 ue = ZpEr(r) = Zp
V

r lnr2r1
                                           (11) 

 ∂��τrω2−ZpEr�Np�
∂r

+ ∂�urNp�
∂r

+ ∂�uzNp�
∂z

= D �1
r
∂
∂r
�r ∂Np

∂r
� + ∂2Np

∂z2
�           (12) 

 

τ: Relaxation time of particle (s) 

B: Mobility of particle (m/N．s) 

Er: Strength of electric field (N/C) 

Zp: Electrical mobility of aerosol (m2/Volt．s) 

 

Several dimensionless parameters are applied to obtain the dimensionless form of Eq. (12).  

These parameters are listed in Eq. (13) to Eq. (20) respectively. 

 

 Np
∗ = Np

Nin
                                                        (13) 

 uz∗ = uz
u�

 (14) 

 ur∗ = ur
u�

 (15) 

 r∗ = r
4δ

 (16) 

 z∗ = z
4δ

                                                         (17) 

 Zp∗ = Zp
Zp,c

                                                        (18) 

 τ∗ = τ
τc

                                                          (19) 

 D∗ = D
Dc

                                                          (20) 
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Nin: Particle concentration at the APM inlet (#/m3) 

Zp,c: Electric mobility of center particles (m2/Volt．s) (Eq. (21)) 

Bc: Mobility of center particle (m/N．s) 

dp,c: Diameter of center particle (m) (Eq. (22)) 

C(dp,c): Cunningham slip correction factor (Eq. (23)) 

 

 Zp,c = qBc = ne C�dp,c�
3πµdp,cκ

                                           (21) 

 dp,c = � 6Vne

πρgasrc2ω2 ln�r2r1
�
�

1
3

                                           (22) 

 C�dp� = 1 + �2λMFP
dp

� �1.142 + 0.558exp �−0.999dp
2λMFP

��                    (23) 

 

ρgas: Density of carrier gas (Kg/m3) 

λMFP: Mean free path of carrier gas (m). 

 

 The 4δ shown in the denominator of Eq. (16) and (17) is the characteristic length of the 

APM.  In the study, the hydraulic diameter of the classifying region (Dh) is considered the 

characteristic length (Eq. 24).  In Eq. (24), A is the cross section area of the classifying 

region of the APM (m2), and P is the wet perimeter, the sum of the circumferences of inner 

and outer radius of the classifying space (m). 

 

 Dh = 4A
P

= 4π�r22−r12�
2π(r2+r1)

= 2(r2 − r1) = 4δ                               (24) 

 

With Eq. (13)~(20), the dimensionless form of governing equation is obtained as 
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 ∂��τcτ∗ω2r∗4δ��N0Np∗ ��
4δ∂r∗

−
∂��Zp∗ Zp,c

K
4δr∗��N0Np

∗ ��

4δ∂r∗
+ ∂�(u�ur∗)�N0Np∗ ��

4δ∂r∗
+ ∂�(u�uz∗)�N0Np∗ ��

4δ∂z∗
 

        = DcD∗ �� 1
4δr∗

� ∂
4δ∂r∗

�4δr∗ N0 ∂Np
∗

4δ∂r∗
� + N0

(4δ)2
∂2Np∗

∂z∗2
�.  (25)                                                      

 

Eq. (25) can be further rewritten to be Eq. (26). 

 

 τcω2 ∂�τ
∗(r∗)�Np∗ ��
∂r∗

− Zp,cK
(4δ)2

∂�Zp∗
Np∗

r∗ �

∂r∗
+ u�

4δ
∂�ur∗Np∗ �
∂r∗

+ u�
4δ

∂�uz∗Np∗ �
∂z∗

 

 = Dc
(4δ)2

�D∗ �1
r∗
� ∂
∂r∗
�r∗ ∂Np

∗

∂r∗
� + D∗ ∂

2Np∗

∂z∗2
�                               (26) 

 

where K is V

ln�r2r1
�
.  After dividing Eq. (26) by u�

4δ
, we can obtain 

 

 4δτcω2

u�
∂�τ∗(r∗)�Np∗ ��

∂r∗
− Zp,cK

4δu�

∂�Zp∗
Np∗

r∗ �

∂r∗
+ ∂�ur∗Np∗ �

∂r∗
+ ∂�uz∗Np∗ �

∂z∗
 

 = Dc
4δu�

�D∗ �1
r∗
� ∂
∂r∗
�r∗ ∂Np

∗

∂r∗
� + D∗ ∂

2Np∗

∂z∗2
�.                                 (27) 

 

Three dimensionless numbers are found from Eq. (27) as described in Eq. (28)~(30). 

 

 β1 = 4δτcω2

u�
                                                     (28) 

 β2 = Zp,cV

4δu� ln�r2r1
�
                                                    (29) 

 β3 = Dc
4δu�

= 1
Pe

                                                    (30) 

 

 The β1 includes the rotation speed of the APM, the average velocity of the carrier gas, and 

the relaxation time of the center particle, which is almost same as the dimensionless number λ 

found by Ehara et al., (1996) (Eq. (4)).  The β2 considers the electric mobility of the center 
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particle, the strength of the electric field, and the average velocity of the carrier gas.  β1 and 

β2 are dependent to each other through the force balance of Fc and Fe of the center particle.  

The β3 includes the diffusivity of the center particle.  It is considered the reciprocal Peclet 

number (denoted as Pe).  Greater value of β3 represents the stronger effects of the Brownian 

motion.  Furthermore, it is found that the ratio of β1 to β3 is just equal to eight times of the 

dimensionless number η (Eq. (4)), which is described in Eq. 31.  Since the β1 and β1/β3 are 

similar to the λc and η respectively, the properties of λc and η should be also applicable to the 

β1 and β1/β3.  For example, the similarity rule found by Ehara et al., (1996) described that 

when the λc of the transfer function were similar, the height and shape of the transfer 

functions were similar too.  The rule should be available on the β1 too.  Another example is 

that Olfert et al., (2006) mentioned that the effects of the diffusion are important when the 

absolute value of ηc is less than 10 or the absolute value of β1/β3 is less than 80 for the 

simulated APM.  In sum, three dimensionless numbers are derived from governing equation, 

and the dimensionless numbers can cover ones presented in previous studies. 

 

 β1
β3

= (4δ)2τcω2

Dc
= 8 × �2δ2τcω2

Dc
� = 8 ηc                                (31) 

 

 In sum, the governing equation has been developed based on the convection-diffusion 

equation.  The governing equation will be applied to study the transfer function of 

nanoparticle and submicron particle of the APM.  Moreover, three dimensionless numbers 

(β1, β2 and β3) are found.  The β1 is related to the rotation speed, the β2 is related to the 

voltage, and the β3 is related to the diffusivity of the particles.  The obtained dimensionless 

numbers can be similar to the ones presented in previous studies (ex: λc, ηc); hence, the 

characteristics of the λc and ηc should be also available to our dimensionless numbers β1 and 

β1/β3. 
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Dimensionless Numbers for two Different APM models 

 To compare the performance between different APMs (Model 3600, Model 3601, 

Kanomax Japan Inc.), dimensionless numbers β1, β2 and β3 are applied to characterized their 

performances.  The geometry and the performance of the APMs are listed in table 2.  The 

shape of particle is considered spherical; hence, the mass of particle can be easily converted to 

size with known particle density (ex: 1.05 g/cm3). 

 

Table 2 The geometry and performance of the APMs (Kanomax Inc.) 

APM Model 

(Kanomax Inc.) 
r1 (m) r2 (m) 

Length of 

APM (m) 

Voltage 

(volt) 

Rotation 

Speed (rpm) 

Carrier gas 

Flow Rate (lpm) 

APM-3600 0.05 0.052 0.25 0.3~2000 50~9500 0.3 

APM-3601 0.024 0.025 0.1 0.3~2000 1000 ~14000 0.3 

 

 Fig. 5 shows the results of the characterization.  The black lines are the values of the 

dimensionless numbers of the APM-3600, while the red lines are the values of the 

dimensionless numbers of the APM-3601.  In Fig. 5(a) and 5(b), the dashed lines indicate the 

maximum values of the dimensionless numbers for each size of particles, and the solid lines 

indicate the minimum values of the dimensionless numbers. 

 In Fig. 5(a), the range of the β1 of the APM-3600 is wider than that of the APM-3601.  

The available maximum rotation speed of the APM-3601 (14000 rpm) is higher than that of 

the APM-3600 (9500 rpm), yet the APM3600 can perform with wider range of the β1 than the 

APM-3600 due to different size and geometry of the classifying regions.  For example, when 

the rotation speed are the same, the radius of classifying region of the APM-3600 is longer 

than that of the APM-3601, it makes the APM-3600 has stronger centrifugal force compared 
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to the APM-3601.  Moreover, when the APMs operated with same flow rate (0.3 lpm), the 

slower average velocity u� of carrier gas makes the APM-3600 has larger β1 compared to the 

APM-3600. 

 

 

 

Fig. 5. The ranges of the dimensionless numbers for APM-3600 and APM-3601 

 

 In Fig. 5(b), although the available range of voltage of both APMs is the same, the β2 of 

the APM-3600 can be higher than that of the APM-3601.  We conclude that it is due to 

slower u� of the APM-3600 compared to that of the APM-3601 when the flow rates of both 

APMs are the same.  Hence, it is concluded that the APM-3600 can perform with the higher 

β2 compared with the APM-3601.  Fig. 5(c) and 5(d) show the relationship between the size 

of the particles and the β3 and Pe respectively.  The β3 of the APM-3601 are lower than of the 
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APM-3600.  It is because that the gap between the outer and inner radius of classification 

space of the APM-3601 is narrower than that of the APM-3600.  The narrower gap makes 

the flow velocity of the APM-3601 higher than of the APM-3600; hence, the retention time 

(diffusion time) of particles passing through the APM-3601 is decreased. 

 In sum, the APM-3600 can operate with wilder range of the β1 and higher β2 compared to 

the APM-3601, while the APM-3601 is more suitable to operate with smaller nanoparticles 

(less diffusion loss) compared to the APM-3600. 

 

3.2 Model with Classifying Region Domain and Parabolic Flow Profile 

 In this section, the governing equation presented in chapter 3.1 is applied to build up the 

model.  The calculation domain of the model is the classifying region of the APM and 

parabolic flow field is applied.  The transfer functions simulated by the model are compared 

with ones simulated with previous models.  The comparison is considered as the preliminary 

verification of our model.  Based on the good agreements of the comparison, the model 

presented in the section is considered the representative of the previous models. 

 

Calculation Domain 

 In Fig. 6, the dark orange area is the classifying region, which is the space between the 

inner and outer closely-spaced annular cylinders.  Several studies considered the classifying 

region the calculation domain of their models (Hagwood et al., 1995, Ehara et al., 1996, Olfert 

and Collings 2005).  To verify our model, the calculation domain of our model is defined to 

be the classifying region as previous studies did.   
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Fig. 6. Caculation domain is the annular classifying region of the APM (dark orange area). 

The area enclosed by thick red lines is the rotating region. 

 

Flow Field 

 Because previous studies usually made the assumption of laminar parabolic flow field for 

their models (Hagwood et al., 1995, Ehara et al., 1996, Olfert and Collings 2005), we apply 

the same assumption of the flow field for the model.  Eq. (32) is applied to describe the 

parabolic flow field in the classifying region of the APM. 

 

 u = uz(r) = 3
2

u� �1 − � r−rc
r2−r1

�
2
�                                      (32) 

 

rc: The average of r2 and r1 (m), (r2+r1)/2 

 

 Eq. (33) describes the transfer function, ΩAPM, for particles with diameter dp.  In eq. (33), 

the number concentration of the particles at the APM inlet Nin(dp , r) is considered 

homogeneous, while the number concentration of the particles at the APM outlet Nout(dp , r) is 

solved numerically by the SIMPLER algorithm (Semi-Implicit Method for Pressure-Linked 

Equations) (Patankar 1980, Lin et al., 2010). 
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 ΩAPM(dp) =
2π∫ Nout�dp,r�uz(r)drr2

r1
2π∫ Nin�dp,r�uz(r)drr2

r1
                                    (33) 

 

Boundary Condition 

 Eq. (34) and (35) describe the boundary conditions of the model.  Np
∗(r, z) is the 

normalized particle concentration, the ratio of particle concentration at the outlet to the inlet 

of the APM classifying region, at the position (r,z).  Np
∗(r, 0), the normalized particle 

concentration at the inlet of classifying region, is considered as 1.  In addition, because 

particle contacting the walls in the classifying region is removed, particle concentration at the 

walls is considered zero (removed by the APM). 

 

 Np
∗(r, 0) = 1 for r1<r<r2                                         (34) 

 Np
∗(r2, z) = Np

∗(r1, z) = 0                                          (35) 

 

Compared with Previous Studies 

 The transfer functions simulated with the model presented in this section are compared 

with ones simulated with three previous models respectively, which are the theoretical model 

developed by Ehara et al., (1996), the numerical models presented in Hagwood et al., (1995) 

and the diffusion model developed by Olfert and Collings (2005).  To simplify the 

calculation, the particle is assumed spherical.  The result of the comparisons is considered as 

the preliminary verification of the model. 

 For the comparisons of our model and the theoretical model (Ehara et al., 1996) and the 

numerical models (Hagwood et al., 1995), the parameters of the models are set to be same as 

the ones set in Hagwood et al., (1995) (table 3).  For the comparison of our model and the 

diffusion model developed by Olfert and Collings (2005), the parameters of the models are set 

to be same as the ones used in Olfert and Collings (2005) (table 3).  Because pressure and 
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temperature applied in some previous studies were unknown, we assumed the atmospheric 

pressure and 25 ℃ for these parameters. 

 

Table 3 Parameters presented in compared papers. 

References 
r1 

(m) 

r2 

(m) 

L 

(m) 

Pressure 

(atm) 
Temp. (。C) 

Q 

(lpm) 

ρaerosol 

(Kg/m3) 

Hagwood et al., (1995)   0.1 0.101 0.2 (assumed 1) (assumed 25) 0.5 1000 

Olfert and Collings (2005)   0.1 0.103 0.2 (assumed 1) 22 0.5 1000 

 

 

Fig. 7. (a) The relative width and (b) the maximum height of the transfer functions for 

different flow field applied to the Ehara model (Ehara et al., 1996). 

 

 It should be noted that Ehara et al., (1996) found that if the value of the λc is small (less 

than about 0.5), there is no significant difference between the transfer functions simulated by 

the Ehara model with uniform flow field and parabolic flow field (Fig. 7).  The λc of the 

transfer function applied in the comparison of our model and Ehara model is about 0.044, 

which is much lower than the 0.5.  Moreover, applying the uniform flow field makes the 

transfer function available to be solved as exact solution.  Therefore, to simplify the 

calculation, we applied the assumption of the uniform flow field to the Ehara model. 
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Fig. 8. The transfer function of comparing our model with (a) the theoretical model developed 

by Ehara et al., (1996), (b) the SDE model developed by Hagwood et al., (1995), (c) the 

diffusion model developed by Olfert and Collings (2005). 

 

 Fig. 8 shows the result of the comparisons.  In Fig. 8(a), the dashed black line is 

obtained with our model, while the dashed red line is obtained with the theoretical model 

developed by Ehara et al., (1996).  Since Ehara model neglected the Brownian motion, we 

zero the diffusivity of our model for making the comparison (D=0).  The result showed good 

agreement between two models.  In Fig. 8(b), the transfer function obtained with our model 
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(dashed red line) agrees very well with one simulated with the SDE model (dashed black line).  

The slight difference would be due to different principles or governing equations of the 

models.  The SDE model is based on the escaped probability of particles whereas our model 

is based on the convection-diffusion equation.  Fig. 8(c) shows the comparison of our model 

and the diffusion model developed by Olfert and Collings (2005).  The transfer function 

simulated with our model is denoted as dashed red line, while the one simulated with the 

diffusion model is denoted as dashed black line. 

  In sum, the transfer functions simulated by our model agreed well with several models 

which were presented in previous studies.  The good agreement is considered as the 

preliminary verification of the model.  The verified model is considered as the representative 

of the previous models, whose calculation domain is the classifying region of the APM and 

the flow field is assumed parabolic. 

 

3.3 Model with Extended Domain and Detailed Flow Profile  

 Although the model with classifying region domain and parabolic flow profile agrees 

very well with several previous studies, none of the previous models has agreed well with 

experimental data of nanoparticles even the model considered the diffusivity of particles.  In 

other words, the model with classifying region and parabolic flow field cannot agree well with 

experimental data of nanoparicles as the troubles met in previous studies.  We concluded that 

something might be wrong in the model.  To improve the model, the model is advanced with 

two improvements.  The first improvement is extending the calculation domain from the 

classifying region to all regions in the APM, and the second one is carefully considering the 

flow field in the APM. 

 The improvements are employed with two reasons.  The first reason is that the 

calculation domain applied in previous models was the classifying region of the APM.  

However, particles classified by the APM pass through not only the classifying region but also 
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the inlet and outlet flow paths leading to the classifying region.  Particles loss in these 

regions was ignored by previous studies due to the small calculation domain.  The second 

reason is that rotation speed for nanoparticles is higher than that for submicron particles.  

The effects of the high rotation speed on the flow field would reduce the validity of the 

assumption of the parabolic flow field and lead the inaccuracy of the simulation.  Hence, the 

more detailed consideration on the calculation domain and the flow field are applied to 

improve the model. 

 

Calculation Domain 

 

Fig. 9. The extended calculation domain (dark orange area) (Kanomax Inc.) 

 

 Fig. 9 shows the detailed geometry of the APMs.  The dark orange area indicates the 

extended calculation domain.  All regions where particles would pass through are considered 

in the model. 
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Flow Field 

 Instead of applying parabolic flow field for the velocity profile, the velocity profile in the 

calculation domain is calculated with the Navier-Stokes equations (Eq. (36)~(38)) and the 

continuity equation (Eq. (39)).  We consider that the flow filed in the APM is steady.  It is 

assumed that velocity would not change in the θ direction, which makes the 2-D consideration 

for the flow field available.  Noted that uθ, described by Eq. (40), appears in the Eq. (36).  It 

reveals that the velocity in r direction (ur) is affected by the rotation speed.  Su in the Eq. (38) 

is considered as the source term as described in Eq. (41).  Since we consider the particles 

flow as the incompressible fluid, the continuity equation (Eq. (40)) is available to be applied 

to the flow field model. 

  

 ρgas �ur
∂ur
∂r

+ uz
∂ur
∂z
� = −∂P

∂r
+ µgas �

∂2ur
∂r2

+ 1
r
∂ur
∂r

+ ∂2ur
∂z2

� + ρuθ
2

r
− µur

r2
       (36) 

 ρgas �ur
∂uz
∂r

+ uz
∂uz
∂z
� = −∂P

∂z
+ µgas �

∂2uz
∂r2

+ 1
r
∂uz
∂r

+ ∂2uz
∂z2

�                (37) 

 ρgas �ur
∂uθ
∂r

+ uz
∂uθ
∂z
� = −1

r
∂P
∂θ

+ µgas �
∂2uθ
∂r2

+ 1
r
∂uθ
∂r

+ ∂2uθ
∂z2

� + Su          (38) 

 1
r
∂
∂r
�ρgasrur� + ∂

∂z
�ρgasuz� = 0                                     (39) 

 uθ = ωr                                                        (40) 

 Su = −ρuruθ
r

− µuθ
r2

                                                (41) 

  

 The equations are discretized by the finite volume method.  The SIMPLER algorithm 

(Semi-Implicit Method for Pressure-linked Equation) (Patankar 1980) is used to solve the 

equations numerically (Lin et al., 2010).  The numerical results of the flow field are applied 

to the advanced model for the calculation of the transfer function. 
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3.4 Simplified Model 

 Before applying model with detailed flow field to calculate the transfer function, the user 

has to spend lots of time on calculating the velocity profile of the field.  Moreover, because 

the velocity profile is dependent on the rotation speed, flow rate and geometry of the APM, 

we have to calculate the velocity profile for each different operating condition.  After that, 

we have to spend more time on calculating the transfer function.  To simplifying the 

calculation process, the study develops the fitting model based on the numerical results to 

calculate transfer function in more efficient manner.  Moreover, the study also applied 

numerical results to develop the modified Ehara model, which can calculate the transfer 

function as analytical solution.  The two methods are described in following sections. 

 

Fitting Model 

 The study builds up a fitting model, which is based on the numerical results simulated by 

the model with extended domain and detailed flow field.  Gaussian distribution, as described 

in Eq. (42), is applied to fit the transfer function simulated by the developed numerical swirl 

model.  Particle classified by the APM is considered to be spherical and singly charged, so 

the specific mass of particle can be easily converted to the diameter dp. 

 

 dΩAPM�dp,ωλc, V� = X
σ√2π

exp �− (V−Vc)2

2σ2
�dV                          (42) 

 

 In Eq. (42), ΩAPM�dp,ωλc, V� is the transfer function of the particle, whose diameter is 

dp, passing through the APM operated with rotation speed ωλc and voltage V.  ωλc is the 

rotation speed determined based on the size of center particle (dp,c) and the chosen λc (Eq. (4)), 

and V is the voltage applied to the APM.   is the standard deviation of the voltage range 

that enable particle with diameter dp to pass through the APM without being removed when 
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the rotation speed is fixed at ωλc.  The value of  is obtained by trail and errors until the 

maximum difference between the fitted ΩAPM�dp,ωλc, V� and numerical ΩAPM�dp,ωλc, V� is 

minimized.  Moreover, X is the correction factor, which not only normalizes the Gaussian 

distribution but also makes the maximum height of the Gaussian distribution equal to the 

maximum height of the numerical transfer function.  Vc is the center voltage, derived from 

the rotation speed ωλc through equation.  ΩAPM�dpc,ωλc, Vc�  is the maximum transfer 

function when the APM is operated with ωλc and Vc.  If the terms of σ and X are known, 

we can calculate the transfer function through Eq. (42) without additional numerical 

calculation. 

 

Table 4 The results of fitting numerical transfer function with Gaussian distribution. 

Gaussian Distribution Fits Numerical Models 
For APM-3600, 1 lpm, λc=0.22 

dp(nm) σ Vc 
Max abs. Error         

(in T.F.) 

Sum of abs. 
Errors 

(in T.F.) 
X σ/Vc Vc/σ 

20  0.399  2.10  0.032  0.290  0.284  0.190  5.263  
30.6  0.800  4.79  0.026  0.150  0.989  0.167  5.988  
51  2.150  12.70  0.050  0.525  3.407  0.169  5.907  
100 6.690  43.24  0.027  0.270  12.694  0.155  6.463  

208 20.840  143.63  0.026  0.170  42.029  0.145  6.892  

479 63.330  454.17  0.026  0.320  130.071  0.139  7.171  

791 115.910  832.75  0.028  0.380  239.431  0.139  7.184  

 

 In this section, the study chose the case of applying the APM-3600 to measure the mass 

distribution of particles with 0.22 of λc and 1 lpm of flow rate.  Gaussian distribution is 

applied to fit seven different numerical transfer functions, which are simulated for particles 

with diameter 20 nm, 30.6 nm, 51 nm, 100 nm, 208 nm, 479 nm, 791 nm respectively.  The 
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parameters, σ and X, is determined by trail and errors to minimize the maximum difference 

between the numerical transfer function and fitting Gaussian distribution.  The obtained  

and X for each transfer function are listed in table 4.  T.F. shown in table 4 is the 

abbreviation of the transfer function.  The  and X shown in table 4 are further fitted to 

predict the σ and X for size of particle which is not converted by the table.  The fitting 

equation of  and X are shown as below.  The parameters, A,B,C,D,E, shown in Eq. 

(43)~(48) are listed in table 5 respectively.  To remain the accuracy of the prediction, the 

digits of parameters after decimal point should not be rounded off. 

 

Fitted σ: 

For 208 nm > dp > 17 nm, 

 σ = A × e�B×dp� + C × e�D×dp� + E.                                  (43) 

For 791 nm > dp > 208 nm, 

 σ = A × e�B×dp� + C × e�D×dp� + E.                                  (44) 

For dp > 791 nm, 

 σ = 0.139 × Vc.                                                  (45) 

 

Fitted X: 

For 208 nm > dp > 17 nm, 

 X = A × e�B×dp� + C × e�D×dp� + E.                                  (46) 

For 791 nm > dp > 208 nm, 

 X = A × e�B×dp� + C × e�D×dp� + E.                                  (47) 

For dp > 840 nm 

 X = 239.431 + 0.3505126 × (dp − 791).                            (48) 
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Table 5 The parameters of equations which are applied to fitted the obtained  and X. 

Fitted σ Fitted X 

208 nm > dp > 17 nm 791 nm > dp > 208 nm 208 nm > dp 840 nm > dp > 208 nm 

A 17.9219737 A 83.6538647 A 77.0379673 A -6.9615277 

B 0.0039508 B 0.0017356 B 0.0024631 B 0.0037867 

C 2.9876668 C -11.6140818 C 10.0264075 C 169.7009613 

D -0.058499 D 0.0031225 D -0.0259945 D 0.0014929 

E -19.9238423 E -76.9483039 E -86.6056268 E -174.1644899 

 

 

Fig. 10. Comparison between the numerical transfer function (solid lines) and the transfer 

function predicted by the fitting model (dashed lines) 

 

 To verify the fitting model, the transfer functions determined by the fitting model are 

compared with the fitted numerical transfer function.  Fig. 10 shows the results of the 
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comparison.  Good agreements are obtained and considered the verification of the fitting 

model.  It should be keep in mind that because the fitted numerical transfer functions are 

simulated for the APM-3600 which is operated with 0.22 of the λc and 1lpm of the flow rate, 

the parameters shown in this section is only available for the APM-3600 operating with the 

same condition. 

 

Modified Ehara Model 

 The study develops a modified Ehara model to calculate the transfer function as exact 

solution with considering the effects of Brownion motion.  The model combines the model 

developed by Ehara et al., (1996) and the modified Gormley and Kennedy equation, which is 

modified based on our numerical results. 

 Ehara et al., (1996) developed a model (Ehara model) to calculate the transfer function of 

particles classified by the APM based.  With the assumption of uniform flow field in the 

classifying region of the APM, Ehara model can calculate the transfer function as exact 

solution.  Moreover, when the λc is sufficient low, the transfer function calculated with the 

uniform flow field can be very similar to the one calculated with the parabolic flow field, 

which is more close to the real flow field (Fig. 7).  Hence, Ehara model was available to 

calculate the transfer function as exact solution without considerable error for the APM 

operated with low value of λ. 

 Fig. 11 is the typical transfer function calculated with the Ehara model with the uniform 

flow field.  In Fig. 11, the shape of the transfer function can be determined by four special 

specific masses S1
+, S1

-, S2
+, S2

-.  These specific masses can be calculated with Eq. (49) and 

(50) (Ehara et al., 1996).  Sc is the specific mass of center particle (Eq. (51)), which achieves 

force balance of centrifugal force and electrostatic force at the center position (r=rc) between 

the inner and the outer of the annular cylinders (classifying region). 
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Fig. 11. Four particular specific masses 

 

 S2
± ≈ Sc �1 ± 2 δ

rc
�                                                (49) 

 S1
± ≈ Sc �1 ± 2 �δ

rc
� coth �λc

2
��                                       (50) 

 Sc = V

rc2ω2 ln�r2r1
�
                                                   (51) 

 

 Based on the specific mass S of particle, the transfer function ΩAPM(S) can be determined 

by three equations.  If S ranges between S1− and S2−, ΩAPM (S) can be calculated with Eq. 

(52).  Similarly, if S ranges between S2− and S2+, ΩAPM (S) can be determined by Eq. (53).  

If S ranges between S2+ ≤ S ≤ S1+, ΩAPM (S) can determined by Eq. (54).  If S is out of these 

ranges, particle with such S will be completely removed by the APM. 

 

For S1− ≤ S ≤ S2− (ρ0h = 1) 

 ΩAPM(S) = 1
2
�[1 − ρ(S)] + [1 + ρ(S)]e−λ�                            (52) 

For S2− ≤ S ≤ S2+ 

 ΩAPM(S) = e−λ                                                  (53) 
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For S2+ ≤ S ≤ S1+ (ρ0l = −1) 

 ΩAPM(S) = 1
2
�[1 + ρ(S)] + [1 − ρ(S)]e−λ�                            (54) 

 

 ρ(S) in Eq. (52)~(54) is the position of particles expressed in normalized coordinate as 

described by Eq. (55) and (56).  r(S), derived from Eq. (1) is the position where centrifugal 

force and electrostatic force acting on particle of specific mass S are the same. 

 

 ρ(S) = [r(S)−rc]
δ

                                                   (55) 

 ζ = z
L
                                                           (56) 

 r(S) = �
V

Sω2 ln�r2r1
�
                                                (57) 

 

 To apply the Ehara model with considering the effects of Brownian motion, the study 

applied Gormley-Kennedy equation (Eq. (58)~(60)) to consider the effects of the Brownian 

motion of particles on the transfer function.  It is assumed that the diffusion loss of particles 

is independent to the classification of the APM.  In other words, the study applies the 

product of ΩAPM (S) and PG&K to calculate the transfer function of nanoparticles.  In the study, 

Ehara model modified by the diffusion loss equation is denoted as the Modified Ehara model, 

and the transfer function calculated with the modified Ehara model is denoted as Ω’APM(S). 

 

 µ = πDL(r2+r1)
Q�(r2−r1)�

                                                   (58) 

 PG&𝐾 = 1 − 2.96µ
2
3 + 0.4µ   for μ<0.005                       (59) 

 PG&𝐾 = 0.910 exp(−7.54µ) + 0.0531exp(−85.7µ)   for μ≧0.005        (60) 
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D: The diffusivity or diffusion coefficient (m2/s) 

Q: The flow rate of the flow entering the APM (m3/s) 

PG&K: The penetration of particles passing through the APM 

 

 To verify Gormley and Kennedy equation, we applied the equation to predict the 

penetration of nanoparticles passing through the classifying region of the still APM (0 rpm, 0 

volt).  Then, the penetrations predicted are compared to the numerical ones simulated with 

our numerical model with extended domain and detailed flow field as reference.  Because 

neither centrifugal force nor electrostatic force occurs in the still APM, it is considered that 

the penetration of nanoparticles is mainly due to the diffusion loss.  The validity of the 

numerical penetrations has been checked with experimental data presented in Tajima et al., 

(2011), which will be mentioned in next chapter “4.1 Diffusion Loss Prediction”. 

 

 

Fig. 12. The calculated penetration of particles passing through the still APM. 

 

 Fig. 12 shows the results of the simulation.  The dashed red line is the penetration 
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calculated with Gromley and Kennedy equation (L=0.25 m) and the solid blue line is the 

numerical penetration simulated with our numerical model.  It is found that Gormley and 

Kennedy equation significantly overestimate the penetration of nanoparticles.  The degree of 

the overestimation increases for smaller nanoparticles (increases from 0% to 20% or more on 

penetration).  We conclude that the overestimation is due to Gormley and Kennedy equation 

consider the classifying region of the APM only, while the numerical model considers whole 

the region of the APM.  More discussions are in chapter “4.1 Diffusion Loss Prediction”. 

 Instead of extending the calculation domain of Gormley and Kennedy equation (still not 

be accurate after the try), we apply another correction factor K to modify the PG&K directly as 

described in Eq. (61).  The correction factor K is a function of particle size, which is 

described in Eq. (62) and (63).  The function is obtained by fitting the difference between the 

PG&K and the numerical penetration for several sizes of nanoparticle.  The penetrations 

calculated with the modified Gormley and Kennedy equation (solid red lines) agree very well 

with numerical penetration (Fig. 12).  Hence, the modified Gromley and Kennedy equation 

is applied to modified Ehara model as described in Eq. (64). 

 

 P′G&𝐾 = K × PG&𝐾                                                (61) 

For dp smaller than 100 nm or equal to 100 nm 

 K = −1.64 × exp�−0.14 × dp� − 0.36 × exp�−0.03 × dp� + 1.02         (62) 

For dp larger than 100 nm 

 K = 1                                                          (63) 

  Ω𝐴𝑃𝑀
′ (𝑆) = ΩAPM(S) × P′G&𝐾                                       (64) 
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Fig. 13. The transfer functions are calculated with Ehara model (dashed black line) and 

modified Ehara model (solid black line).  The modified Gormley and Kennedy equation 

applied in modified Ehara model is dented as solid red line. 

 

 After modifying Gormley and Kennedy equation, The transfer function calculated with 

the modified Ehara model is compared with the one calculated with the Ehara model.  Fig. 

13 shows the result of the comparison.  The dashed black line is the transfer function 

calculated with the Ehara model, and the solid black line is the transfer function calculated 

with the modified Ehara model.  The height difference of the transfer functions is due to the 

modified Gormley and Kennedy equation (solid red line), which represents the diffusion loss 

of particles in the APM. 

 

4 Results 

 After building up the models (the model with classifying region domain parabolic flow 

profile and the model with whole region domain and detailed flow profile), the models are 

compared to study the accuracy of the prediction.  The effects of the extended calculation 
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domain and the detailed flow field are considered by comparing the models with the 

experimental data. 

 

4.1 Diffusion Loss Prediction 

 The model with extended domain and detailed flow field is applied to predict the 

penetration of nanoparticles passing through the still APM (0 volt, 0 rpm).    Because there 

is no centrifugal force and electrostatic force in the still APM, particles lost in the APM are 

expected to be due to the diffusion loss.  The predicted penetrations are also compared with 

the ones predicted by the model with classifying region domain and parabolic flow field.  

Moreover, these theoretical results are compared with the experimental penetration presented 

in Tajima et al., (2011), who measured the penetration of monodisperse particles passing 

through the still APM (Model-3600, Kanomax Inc.). 

 

 

Fig. 14. The penetration of particles passing through the still APM-3600 

 

 Fig. 14 shows the result of comparison.  Points in the Fig. 14 are the experimental data 
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presented in Tajima et al., (2011).  The dashed blue line is the results simulated with the 

model with classifying region domain and parabolic flow field, while the solid green line is 

the results simulated with the model with whole domain and detailed velocity profile.  The 

latter model accurately predicts the penetration of nanoparticles; in contrast, the former model 

overestimates the experimental data significantly.  The overestimation is due to the 

insufficient calculation domain (classifying region) which cannot describe the diffusion loss 

of particles in the APM completely. 

 Gormley and Kennedy equation (Hinds 1999) is a well known equation that can predict 

the penetration of particles passing through the tube, tunnel or annular cylinder.  We applied 

the Gormley and Kennedy equation, as mentioned in chapter 3.4 (Eq. (58)~(60)), to calculate 

the penetration of particles passing through the still APM-3600.  L is considered the length 

of the classifying region of the APM (0.25 m).  In Fig. 14, the penetration predicted with the 

Gormley and Kennedy equation is denoted as dashed dotted purple line.  It should be noted 

that the results simulated by the Gormley and Kennedy equation are almost same as ones 

simulated by the model with classifying region and parabolic flow profile.  It is the evidence 

showing particles loss in the classifying region of the still APM is mainly due to the diffusion 

loss.  Hence, insufficient calculation domain would answer the question that why previous 

studies (Olfert et al., 2006, Lall et al., 2009) significantly overestimated the experimental data 

of nanoparticles even though their model had considered the diffusivity of particles. 

 Comparing to the model with classifying region domain and parabolic flow profile, the 

model with extended domain and detailed flow field consideration has better accuracy on 

prediction the penetration of particles passing through the still APM.  The maximum 

inaccuracy of prediction is reduced from about 20% to 10% in penetration.  In sum, the 

extended calculation domain significantly improves the accuracy of the model. 
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4.2 Recirculation Flow 

 The section studies the effects of the parabolic flow field and detailed flow field on the 

transfer functions of nanoparticles and submicron particles.  The calculation domain applied 

to the model is the classifying region of the APM-3601.  The parabolic flow field and the 

detailed flow field determined by the Navier-Stoke equations (as described in Eq. (36)~(41)) 

are applied to the model to calculate the transfer function respectively. 

 Fig. 15 shows the transfer functions of nanoparticles.  The dashed lines are the transfer 

functions simulated with the parabolic flow field, while the solid lines are the transfer 

functions simulated with the detailed flow field.  All the solid lines are lower than the dashed 

lines, which show the enhanced loss due to different types of flow field.  The enhanced loss 

for each rotation speed is 3% (11227 rpm, 40 nm), 5% (13143 rpm, 30 nm) in transfer 

function respectively.  Fig. 16 is the transfer functions of submicron particles (200 nm).  

The dashed and solid lines are the transfer functions calculated with parabolic flow field and 

detailed flow field respectively.  They are almost same, which are not affected by the 

different flow field. 

 

 

Fig. 15. The transfer functions of nanoparticles are simulated with parabolic flow field 

(dashed lines) and detailed flow filed (solid lines) respectively. 
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Fig. 16. The transfer functions of submicron particles are simulated with parabolic flow field 

(dashed lines) and detailed flow filed (solid lines) respectively. 

 

 The effects of the different flow fields on the transfer functions are summarized in table 6.  

Ωpara.max and Ωdetail.max denote the maximum height of the transfer functions calculated with 

parabolic and detailed flow field respectively.  It is found that the enhanced loss of the 

transfer functions is increased with higher rotation speed. 

 

Table 6 The heights of the transfer functions calculated with different flow field. 

λc rpm dp (nm) Ωpara, max Ωdetail, max Enhanced Loss 
0.32 4487 200nm 0.77  0.77  0.00  
0.27 11227 40nm 0.75  0.72  0.03  
0.27 13143 30nm 0.70  0.65  0.05  

Calculation Domain: Classifying region 
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Fig. 17. The front region of the classifying region (Marked by green rectangular)  

 

 

 
Fig. 18. The flow filed at the front region of the classifying region of the APM-3601 rotating 

with (a) 0 rpm, (b) 4487 rpm, (c) 11227 rpm, and (d) 13147 rpm.  V5 denotes velocity (m/s). 
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 In addition, according to the velocity profile of the detailed flow filed, we find that 

recirculation flow occurs in the classifying region (the region marked by green rectangular Fig. 

17).  Fig. 18 shows detailed velocity profile and the streamlines of the region.  For the still 

APM (0 rpm), the flow filed of the region is very similar to the parabolic flow field.  In 

contrast, for the rotating APM, the counterclockwise recirculation flow appears in the region.  

The scale of the recirculation flow increases with greater rotation speed due to the stronger 

forced vortex.  On the other hand, there is no recirculation flow in parabolic flow field 

because the flow in the region has no velocity in r direction.  Hence, we conclude that the 

enhanced losses of transfer functions as shown in Fig. 15 are due to the enhanced 

convection-diffusion deposition caused by the recirculation flow, which cannot be considered 

with the parabolic flow filed. 

 

4.3 APM Response Spectra 

 The APM response spectra or normalized particle concentration are the ratios of particle 

concentration at the APM outlet to particle concentration at the APM inlet.  The section 

applies the transfer functions calculated with our fitting model and modified Ehara model to 

calculate the APM response spectra respectively.  Furthermore, the response spectra are 

compared to the experimental ones presented in Tajima et al., (2011) as verification. 

 

Response Spectra 

 Fig. 19 shows the scheme of DMA-APM measurement system to which Tajima et al., 

(2011) used measure the experimental response spectra.  Size standard particles (Duke Inc.) 

are neutralized before enter DMA.  Then, the particles are monodispersed by the DMA and 

classified by the APM.  The experimental response spectra are calculated based on the 

particle concentration measured by the Condensed Particle Counter (CPC).  The system can 
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be expressed mathematically as described in previous studies (Ehara et al., 1996, Lall et al., 

2009, Tajima et al., 2011).  The neutralizer is not included in the calculation because it is 

assumed that size distribution of the size standard particles is so narrow (Duke Inc.) that it is 

not affected by the neutralization.  Eq. (65) and (66) describe the particles classified by the 

DMA-APM system in the specific mass form and particle size form respectively. 

 

 
Fig. 19. The scheme of DMA-APM measurement system 

 

 Nout(V) = ∫N0�dp�ΩDMA�dp, VDMA�ΩAPM(S, ωλc, V) dS                 (65) 

 Nout(V) = ∫N0�dp�ΩDMA�dp, VDMA�ΩAPM�dp,ωλc, V� ddp               (66) 

 

 In Eq. (65) or Eq. (66), N0�dp� is the size standard particle (PSL), which is considered 

Gaussian distribution with standard deviation and mean diameter provided by the 

manufacturer of the PSL (JSR Corp.).  Before entering the APM, particles are classified by 

the DMA so the size distribution becomes sharper (monodisperse).  We applied the 

theoretical transfer function of the DMA (Stolzenburg and McMurry 2008), denoted as 

ΩDMA�dp, VDMA�, to describe the classification of the DMA.  VDMA is the voltage applied to 

the DMA, and the dp is the chosen size of the monodisperse particles.  Then, monodisperse 

particles are classified by the APM.  Similarly, we describe the classification of the APM 

with the transfer function ΩAPM�dp,ωλc, V�, which are calculated with our fitting model and 

modified Ehara model respectively.  For example, if we are going to measure the mass 

distribution of 30.6nm monodisperse particles with 0.22 of λc, the ωλc can be calculated based 
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on the chosen λc (described by Eq. (4)) and the relaxation time of the 30.6 nm particle.  Then, 

the rotation speed is fixed at ωλc, while the voltage V is shifted to scan or measure the 

specific mass distribution (or mass distribution) of the particles.  Then, particles passing 

through the DMA-APM measuring system is described by Nout(V), which is the number 

concentration of particles at the outlet of the APM.  Finally, the response spectra, which are 

the function of V, can be calculated with Eq. (67).  The calculated response spectra are 

compared to experimental one presented in Tajima et al., (2011). 

 

 Response Spectra(V) = Nout(V)
∫N0�dp�ΩDMA�dp,VDMA�ddp

= Nout(V)
∫Nin�dp�ddp

           (67) 

 

 It should noted that the calculation presented in the section is only available for spherical 

particles because their specific mass S and diameter dp can be converted to each other easily.  

If particles are non-spherical (ex: carbon nanotube), the calculation presented in the study 

would be inadequate, which is not discussed in the thesis.  The thesis prefers the size of the 

particles (Eq. 66) because it is more intuitive to describe a small particle with its size.  The 

calculated response spectra are shown in Fig. 20 ~ 22, and each set of points in the figures are 

the experimental response spectra presented in Tajima et al., (2011). 

 In Fig. 20, the response spectra are calculated with the transfer function done with our 

fitting model.  The calculated response spectra agree very well with the experimental ones.  

The height difference between the calculated transfer function and experimental transfer 

functions are less than 6% in normalized particle concentration (response spectra).  The 

results show the validity of the fitting model. 
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Fig. 20. The APM response spectra calculated with fitting model. (λC=0.22) 

 

 In Fig. 21 and 22, the response spectra are calculated with both modified Ehara model 

and Ehara model for λc=0.2 and λc=0.49 respectively.  For the modified Ehara model, the 

calculated response spectra of both nanoparticles and submicron particles are very close to the 

experimental ones.  For the case of λc=0.22 and λc=0.49, the maximum height difference 

between the calculated and experimental response spectra is less than 5% and 10% in 

response spectra respectively.  For Ehara model, the calculated response spectra of 

submicron particles agree well with experimental ones, whereas the response spectra of 

nanoparticles overestimate the experimental ones significantly.  For the case of λc=0.22 and 

λc=0.49, the maximum difference between the calculated and experimental response spectra is 

about 20% and 17% in response spectra respectively.  The significant overestimations is due 

to Brownian motion of particle is neglected by Ehara model.  After the Ehara model is 

modified by the modified Gromley and Kennedy equation, the overestimation of response 

spectra of nanoparticles is improved significantly. 
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Fig. 21. The response spectra calculated with the modified Ehara model. (λC=0.22) 
 

 

Fig. 22. The response spectra calculated with the modified Ehara model. (λC=0.49) 
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 Table 7 and table 8 summarize the accuracy of the tested models.  For submicron 

particles, all the calculated response spectra agree well with the experimental ones for both 

operating conditions (λc=0.22 and λc=0.49).  In contrast, for nanoparticles, the response 

spectra calculated with Ehara model overestimate the experimental ones, while both the fitting 

model and the modified Ehara model still agree very well with the experimental data of both 

nanoparticles and submicron particles.  The differences the height of the response spectra 

between the calculated results and the experimental data are less than about 10%, which 

shows the validity of the fitting model and the modified Ehara model. 

 

Table 7 The difference between the heights of the calculated response spectra and 

experimental response spectra (λc=0.22). 

λc=0.22 
PSL APM-3600 Difference in Height of the Reponse Spectra 

dp (nm) rpm Ehara Model Fitting Model Modified Ehara Model 
30.6 6764  0.20  -0.06  -0.02  
51 5117  0.14  0.02  0.03  
100 3439  0.08  0.07  0.05  
208 2089  -0.02  -0.01  -0.04  
479 1063  0.00  0.01  -0.01  
791 678  0.02  0.05  0.01  

 
Table 8 The difference between the heights of the calculated response spectra and 
experimental response spectra (λc=0.49). 

λc=0.49 
PSL APM-3600 Difference in Height of the Reponse Spectra 

dp (nm) rpm Ehara Model Modified Ehara Model 
30.6 10095  0.17  0.02  
51 7636  0.14  0.07  
100 5132  0.12  0.10  
208 3118  0.02  0.01  
479 1587  0.02  0.02  
791 1012  0.03  0.03  
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Notice and Restrictions of the Models 

 This paragraph describes the notice to ensure the validity of the simplified models as well 

as the restriction of the models.  As mentioned in chapter 3.4, the parameters applied to the 

fitting model are dependent on the model of the APM applied in the experiment, the value of 

λc, and the flow rate in the APM.  The parameters of the fitting model presented in the thesis 

are only available to the APM-3600 which is operated with 0.22 of λc and 1lpm of flow rate in 

the APM.  If λc or the flow rate is changed, user has to produce another set of numerical 

transfer functions based on the whole domain of the APM and detailed flow field to update 

the parameters of the fitting model.  Fortunately, the flow rate of the APM-3600 and 

APM-3601 are usually set at 1 lpm and 0.3 lpm respectively, so the parameters would be 

mainly based on the value of λc.  When applying the modified Ehara model, the calibrating 

factor K presented in the thesis, which depends on the geometry of the APM, is only available 

for the APM-3600 operated with 1 lpm of flow rate.  If one applied different model of the 

APM or different flow rate, the factor K should be newly modified with corresponding 

numerical results which are calculated by our detailed numerical model, as we did in Fig. 12.  

Compared to the fitting model, we don’t have to change K factor of the modified Ehara model 

when we operate the APM with various λc.  The response spectra presented in the thesis is 

calculated with ideal size distribution of monodisperse particles.  The ideal assumption may 

lead the discrepancy between the calculated results and experimental ones.  For example, it 

is found that the calculated response spectra are narrower than the experimental one, which is 

probability due to the size distributions of particles applied in the calculation (ideal sharp 

distribution) are different to the ones actually presented in the experiments (actual 

distribution).  Another example is that the calculation is based on the assumption that all the 

particles passing through the APM are singly charged.  In experiments, some of particles 

would be multiply charged, which will lead more particles loss in the APM and results in the 
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lower experimental response spectra compared to the experimental ones.  Despite of the fact 

that the calculated response spectra may be different to the experimental one, some of the 

problem could be solved or eased with more detailed consideration (ex: applied experimental 

size distribution of particles for response spectra), the calculated response spectra still can be 

the references for the researchers. 

 

5 Conclusion 

 A 2-D numerical APM transfer function model is successfully constructed based on the 

governing equation of convection-diffusion equations and continuity equation.  Three 

dimensionless numbers, which can cover ones presented in previous studies, are obtained 

from the governing equation of the model.  These dimensionless numbers could be applied 

to characterize the performance of the APM. 

 Different calculation domains and flow fields applied to the model are discussed in the 

thesis.  When the transfer function model is coupled with extended calculation domain 

(whole region in the APM) and detailed flow field, the accuracy of predicting the penetration 

of nanoparticles passing through the still APM is significantly increased compared to that 

coupled with classifying region and parabolic flow field.  The maximum overestimations of 

the predictions are significantly reduced from 20% to 10%.  The significant improvement 

shows that diffusion loss of particles occurs not only in the classifying region but also in the 

inlet and outlet paths leading to the classifying region.  We concluded that the calculation 

domain of the transfer function model should be extended from classifying region to the 

whole region of the APM. 

 In addition, enhanced loss of particles is found when applying detailed flow field to the 

transfer function model.  Under the similar λc, smaller nanoparticles have greater enhanced 

loss, while submicron particles have no enhanced loss.  The study concludes that the 
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enhanced is due to the recirculation flow found in the velocity profile of the detailed flow 

field, and the scale of recirculation flow is increased with higher rotation speed. 

 Two transfer function models, the fitting model and the modified Ehara model, are 

developed to calculate the transfer function in a more convient manner compared to the 

numerical model.  The former is developed by fitting the numerical results of transfer 

functions considering the whole calculation domain and detailed flow field, while the latter is 

developed by modifying Ehara model using the modified Gormley and Kennedy equation 

which is based on numerical convection-diffusion particle loss.  These models are applied to 

calculate the APM response spectra of the DMA-APM mass measurement system.  

Compared to the experimental response spectra, the maximum inaccuracies of calculated 

response spectra are less than 10% in normalized particle concentration.  The results show 

the validity of the transfer function models. 

 According to the results of the thesis, we expect that accurate real time mass distribution 

measurement of both nanoparticles and submicron particles can be realized in the future. 
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Appendix A Some Properties of Previous Models 

Transfer Function Model (Ehara et al., 1996) 

Based on 5 assumptions 

a) The particles introduced in the classifying region of the APM rotated at the same 

angular velocity as the classifying region (annular cylinders). 

b) The particle inertia, Brownian motion, the interaction between aerosol particles, and 

the image potential were neglected. The drag force is balanced by the electrostatic 

and centrifugal force 

c) It is assumed that there was no flow in r and θ direction.  The flow is in z direction 

only.  Flow field in the classifying region was steady. 

d) The Coriolis force was neglected due to the primary motion of the particles was 

parallel to the axis of rotation. 

e) The distance between the inner and outer electrodes was assumed to be much 

smaller than their radii. (r2, r1>>r2-r1) 

 

Transfer Function Model (Hagwood et al. 1995) 

Laminar flow, spherical particles, uniform density 

a) Stochastic Differential Equations(SDE)  

 Deriving PDE from the concept of escape probability of particle. 

 The Brownian motion in z direction was neglected (along the flow direction). 

 Solving PDE with a finite difference discretization along the r direction. (The 

complete discussions can be refer to Kahaner et al. (1989), solved by FORTRAN) 

b) Monte Carlo Approach (MC) 

 The SDE which govern the aerosol trajectory was a Langevin equation.  A 

Monte Carlo method like that described in Risken (1984) was applied to solve the 
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Langevin equation. 

 Considering the Brownian motion both in z and r direction; hence, it can consider 

the diffusion broadening effect and diffusion loss simultaneously. 

 MC Model needs more computation time compared to SDE Model. 
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Appendix B The Geometry of Classifying Region of the APM Applied in Previous Studies 

The geometry of classifying region of the APM applied in previous studies. 

Geometry of Classifying Region of the APM Applied in Previous Studies 
  Geometry of APM Operating Condition DMA Aerosol 

APM Model 
rinner 

(m) 

router 

(m) 

Length of 

APM (m) 

Air Flow 

Rate (lpm) 

Retention 

Time (s) 

Rotation 

(rpm) 
Pressure (atm) Temp. (。C) DMA Model 

Qsheath 

(LPM) 

Qaerosol 

(LPM) 
Material 

ρaerosol 

(Kg/m3) 

Ehara et al., (1996)        

Prototype APM 
0.1 0.103 0.2 0.5 45.918   

atmospheric. 

(assumed 1) 

room     

(assumed 25) 
      PSL 1000 

Hagwood et al., (1995) 

Virtual APM 
0.1 0.101 0.2 0.5 15.155 3000 

atmospheric. 

(assumed 1) 

room     

(assumed 25) 
        1000 

Olfert and Collings (2005) 

Virtual APM 
0.1 0.103 0.2 0.5 45.918   

atmospheric. 

(assumed 1) 
22         1000 

Lall et al., (2009) 

APM-10 Kanomax 
0.05 0.052 0.25 0.3 (N2) 32.044   

atmospheric. 

(assumed 1) 

room     

(assumed 25) 

TSI Model 3081 

(Long) 
3~5 0.3 PSL 1050 

Tajima et al., (2011) 

APM-3600 Kanomax 
0.05 0.052 0.25 1 9.613   

atmospheric. 

(assumed 1) 

room     

(assumed 25) 

TSI Model 3071 or 

3081 (Long) 
10 1 

PSL, 

NaCl 
1000 

NCTU, Nanoparticle and Air 

Quality Laboratory, 2012~          

APM-3601 Kanomax 

0.024 0.025 0.1 0.3 3.079   1 25 
TSI Model 3081 

(Long) 
9 1.1 

PSL, 

Silver 
1050 
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