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Abstract

In this paper, we study the ideal-pendulum equation. First, we study the nonlinear
approximation of the exact theory, and the Riemann surface theory is needed. So we study the
Riemann surface of genus N in various algebraic cut-structures. We then apply Mathematica

to evaluate path integrals on those Riemann surfaces.

Secondly, we study the classical Elliptic functions. From which; we are able to solve the exact

solution and certain properties of the pendulum.motions.
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Chapter 1

Introduction

The simple pendulum is an idealized mathematical model of a pendulum.
This is a bob on:the end of-a-massless cord suspended from a pivot, with
no friction in a closed system. As we give an initial push, it will swing at a

constant amplitude back and forth.

In this paper, we'consider ‘a simple-pendulum-meotion
"+ sinu=10. (1.0.1)
Multiply the equation (1.0.1) by.«/, then we have
u'u" + u sinu = 0. (1.0.2)

Integrate the equation (1.0.2) and compute it, we can get

1
E(u')2 —cosu = E, where E is the integration constant.

= (u')? = 2(E + cosu)
= u' = ++/2(F + cosu)
du

= = ++v/2(E + cosu) (1.0.3)

The equation (1.0.3) can then be expressed as

(1.0.4)

/mdu:i/dt.

1



Indeed the equation (1.0.4) is not easy to solve.

At first, we can analyze the properties of the solution of the equation. We

know that sinu can be expanded by Taylor series

) 1 k
sinu = Z ﬁu%ﬂ , for all values of wu.
k=0

Use the nonlinear approximation we can get

N
—1)*
sinu =~ kz_o (Z(k——i-)l)!U%H , for all positive integer values of V.

Let

_yondalie ot
P2N+1(U) = kZ:O mu

So the equation(1.0.1) becomes-to

" + Pyyi(u) =0.

As above, after computing we obtain the following integral equation

1
/ du, = + / dt , where F isthe integration constant.
V2(E — Panyo(u))

Since 2(E — Pynyo(u)) is a polynomial of w, it can be written as

2(E — Ponya(u) = (u—wr)(u —uz) -+ (u — uan+2)
2N+2

- H(U_uk)7

k=1

where u’s are the roots of the equation 2(E — Panya(u)) =0.

Thus, the function theory of solutions u of the equation involves

Where the space u reside is worth investigating.



Consider a function f(z) = H(z — zx) and it is not single-valued on the
k=1
complex plane C that we will have more to say about later. We use algebra

and analysis to develop a new surface such that f becomes a single-valued

function on it. This surface is called a Riemann Surface.

But later, in order to get the exact solution of the original equation, we
use the elliptic functions, which Chapter4 and Chapter5 will discuss it in
detail.[4]




Chapter 2

Riemann Surface

2.1 Structures of the Riemann surfaces

In this section, we use the function f(z) = y/z to show how t6 construct the

corresponding Riemann surface for f(z). Using polar form;let

z = re 027 L9 ke Z . Then we hdve

f(Z) N\ \/Fe%i(9+2k7r)
y \/;e%ieekm'
{ Vrez® if k is even

—Vrez? if k is odd

which is a two-valued function since it has different values as 6 increases by
27. Here we want to make f(z) single-valued, so we modify its domain C to
build the corresponding Riemann surface such that f becomes single-valued

on it.

Beginning with z = re® | r # 0, we have f(z) = /z = \/?e%ie. Holding
r constant, and going along any closed path once around the origin so that

6 increases by 27, f(z) changes to Jrezi@tam — —\/;e%ie which is just the



negative of its original value. (Show in Figure 2.1.1.)
Continuing above way then 6 increases by 27 and f(z) returns to the original

value.

0 _ 7,.e(9+21t)i

Z =re
¢
1
/! Take - ’\/_ 10
' . 2
I 9 7 ~.-" re
N Vo P
»
/’.’
R |

Figure 2.1.1. The idea of two sheets

We cut the plane along the negative real axis and restrict ourselves so as
never to continue. f(z) over this cuts, then we get two single-valued branches

of f(z) when defined by the equations
2 \/;e%w , 0€l-am (in sheet-I)

and

f(z) = Ve 07, 3m) (in sheet-IT)

The cut on each sheet has two edges. We label the starting edge with “4” and
the terminal edge with “—”. (Show in Figure 2.1.2.) Imagine that the surface
as two sheets lying over the complex plane, each cut along the negative real

axis.

Moreover, we extend the complex plane with the “point” at infinity to consti-
tute the extended complex plane. Use stereographic projection, we can think

of the two sheets as spheres.



sheet- 1 sheet- 1

NI
v

sheet-1I sheet-1I

Figure 2.1.2. Two sheets-and their corresponding spheres

Now image that the spheres are made of rubber. By spreading the edges of

the cuts, we can deform each sheet-into.a-hemisphere.

Paste the hemispheres each other together (4)edge of sheet-I with (—)edge of
sheet-1T and (—)edge of sheet-1 with (+)edge of sheet-1I1. Then we can derive
a sphere, which is called the Riemann surface of genus 0 , denoted by R,.

(Show in Figure 2.1.3.)

Hence, (4)edge of sheet-I is equivalent to (—)edge of sheet-II and (—)edge
of sheet-I is equivalent to (4)edge of sheet-II in the Riemann surface. As we

cross the cut, we move around the other sheet.



sheet- I sheet- I

sheet-1I

(b) Deform the sheets

Figure 2.1.3. Construct Ry



The following are two examples, we will construct whose corresponding Rie-

mann surface in a similar way:.
Example 2.1.

Construct the Riemann surface for f(z) =

R and z; > 29 > 23.

Solution.
First, we cut the plane starts fromiz; to =oc , &k = 1,2,3. (Show in Fig-

ure 2.1.4.)

<N

Y Y
ED3e -D* —d

1\
-~ - -

Figure 2.1.4. The cut from z;, to —oo

Crossing one cut, we move around the other sheet, the argument of z in-
creases by 27 then the argument of f(z) increases by 7 which is just the
negative of its original value. As we cross one cut, we need to change the
sign by “—17. We find that crossing odd times will change the sign and even
times will keep its same value. So there are branch cuts along [—oo, 23] and

[22, z1] as illustrated in the in Figure 2.1.5.



Figure 2.1.5. The cut structure

Second, placing the cuts open, pasting two sheets together (+)edge with
(—)edge, and using the same idea as above. Then we obtain the corre-

sponding Riemann surface of genus 1 for f(z), denoted by R;. (Show in

Figure 2.1.6.)

\{ 856




sheet- T sheet-1I

(a) Cuts on the two spheres

(¢) Construct Ry

Figure 2.1.6. Geometric structure for f(z)
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Example 2.2.

Construct the Riemann surface for f(z) =

VZ—Z,

2z € R and z1 > 29 > 23 > 24.

Solution.

As in Example2.1, we cut the plane start from z; to —oco , k = 1,...,4.
(Show in Figure 2.1.7.)

Then there are branch g [z , how in Figure 2.1.8.)

Figure 2.1.8. The cut structure

11



sheet- I sheet-1I

Figure 2.1.9. Construct cuts on two spheres

sponding Riemann surface of genus 1 for f(z), denoted by R;.

Figure 2.1.11. Construct R,

12



We found f(z) of 3 or 4 roots have different algebraic structures but same
geometric graph with 1 holes. That is no matter 3 or 4 points, we can

construct corresponding Riemann surface of genus 1.

Now we generalize the results from Example2.1 and Example2.2 by the

n

following general example. Let f(z) = H(z —2x) , where z;, € R and
k=1

z1 > 29 > -+ > z,. Using the same idea to construct the Riemann surface

for f(z). First, we cut the plane start from z; to —oo , k=1,...,n. (Show

in Figure 2.1.12.)

i
¥ vy
D" =Dt -D® p* =

Figure 2.1.12:.The cut frem 24 to —oo

Then we discuss the cuts structure in two cases according to n is odd or even.

Case i. If n € odd, denoted by 2N — 1.

There are cuts along [—OO, ZQN_l], [ZQN_Q, ZQN_3]7 et [Zgj, Zgj_l], e, [247 23], [2,'2, 21] .
_ L1 Zon-z_Zon-s Zyj Zoja 2y 23 Z, 4
+ + + + +

Figure 2.1.13. The cut structure as n = 2N — 1

13



sheet-1I

Figure 2.1.14. Together two sheets

Then we obtain the corresponding Riemann surface of genus N — 1 for

f(z), denoted by Ry_1. (Show.in Figure2.1.15:)

sheet- [

Figure 2.1.15. Geometric graphof Ry_;

Case ii. If n € even, denoted by 2N.

There are cuts along [zon, 2an—-1), [22n—2, Zan—3], " -, [2’23', 223'71], e [z, 28], [22, 21

Zon_Zon-1 Zon-2_Zon-3 Zj _Zoja Zy 23 Z; 4y
T T T T T

Figure 2.1.16. The cut structure as n = 2N

14



Thus, no matter f(z) =

there are N cuts and N —1 holes on the corresponding geometric struc-

ture Ry_1 .

15



2.2 The contour in algebraic and geometric
structure

We already comprehend the relation of algebraic and geometric structure

for f(z) = H(z — 2;,) and how to construct the corresponding Riemann
k=1
surface. In this section, we will show that the contour on the algebraic

structure and its corresponding geometric structure.

Note that

1. In the algebraic_ structure, solid line means the contour in sheet-I and

dash line means the contour in sheet-11.

2. In the geometric structure, solid line means the contour in overhead
Riemann surface and dash line means the contour in ventral Riemann

surface.

2.2.1 a- and_b-cycles

Every closed curve on Riemann-surface can be deformed into an integral
combination of the loop-cut a;'and b;, = =1,2,..., N. So in this section, we

will introduce a-,b-cycles, which can help us simplifying the computation.

e a-cycle is a simple closed curve enclosing a finite cut (the endpoint of

cut is a finite number).

e b-cycle is a simple closed curve starting from (4 )edge of a cut (it maybe
finite cut or infinite cut) without enclosed by any a-cycle, to (+)edge
of another cut enclosed by a a-cycle. Then the curve crosses through
(—)edge of this cut and goes into sheet-11, and finally arrives to the
(—)edge of the starting cut.

16



Each a-cycles are non-overlapping and each b-cycles are non-overlapping.

Note that a- and b-cycles have the same amount.

Here we take f(z) = \/z(z — 1)(z — 2) for example to illustrate a- ,b-cycles

on the cut plane and on the Riemann surface.

The a- and b-cycle are shown in Figure 2.2.1 and Figure 2.2.2.

A

Figure 2.2.1. a- and b-cycle on the algebraic structure

In this case, f(z)has three roots and thenmaketwo cuts and one a- ,b-cycle.

Also, the number of@- and b-cycle are the same.

Then we get the corresponding Riemann surface of genus 1 with a- and b-

cycle for f(z).

17



sheet- [

sheet-1I

Here we review some famous theorems.

Theorem 2.1. (Cauchy-Goursat Theorem)

If a function f is analytic at all points interior to and on a simple closed

/Cf(z)dz =0.

18

contour C', then



Theorem 2.2. (Cauchy Theorem)

Let C and Cy,Cs,...,C, denote counterclockwise simple closed contours.
Let all the contours C;’s be outside each other but inside C'. If a function f
is analytic in the closed and “holey” region consisting of those contours and

all points between them, then

/Cf(z)dz _ iil/cif(z)dz.

Corollary 2.1.
Let C and C5 denote counterclockwise simple-closed contours, where Cs is

Y

interior to C;. If a function f-is analytic in the closed and “holey” region

consisting of those contours.and all points between them, then

f(z)dz = f(z)dz.
C1 2

19



8
Take another example, let f(z) = H(z — 2) , and make a; and b; cycles,
k=1

i =1,2,3. Consider a closed contour v as shown in Figure 2.2.3.

(a) a- and b-cycles for f(z)

(b) A closed contour ~ (¢) The equivalent path for ~

Figure 2.2.3. Deform 7 into a combination of a-cycles

Using Cauchy Theorem, then v can be deformed into a combination of a;

cycles, 1 = 1,2, 3.

20



Any closed curve on the Riemann surface can be deformed into a combination
of a- and b-cycles. Thus, in this paper, we will consider the integrals of f(z)

over a- and b-cycles that help us to evaluate the integrals easier.

2.2.2 The equivalent path

Sometimes the curves are difficult to write out their parametric representa-
tion, but straight lines are easy to write out their parametric representation.
Thus, we can use the homotopic-of curves to find the equivalent paths of
curves. It helps us quicker and easier to evaluate the integrals over the

curves.

From C} is homotepic to Cs,-denotes C7 ~ C5. We have

1
——dz = —dz.

Ci f(2) Cs f(2)

Take an exampleto explain,«in Figure 2.2.4, C) ~ Cj ~:(C3, and finally
we compression the curve C7 until we find the equivalent paths of curves

Cl ~ryUrs.

o
N

Figure 2.2.4. Equivalent path

21



Therefore we obtain

(b) The equivalent path for a, b-cycle

In this paper, we will take the equivalent path by this way.

22



2.2.3 The integrals of over a-, b-cycles

1
f(2)

As in Section2.1, we consider the function f(z) =+/z. Let 0y = 6, + 27 and

21 = re® and 2z, = €2, r # 0 , where 6; denotes the argument in sheet-I
and Ay denotes the argument in sheet-II. Then on the complex plane z; = 25,

but

J(22) = o = Vrex® = \frexi20
_ \/Fe%igleiﬂ _ _\/;e%iel = —Vz = —f(z).

Zl =z, Take
. 0 o -
\:$ /-\'

Figure 2.2.5. f(z1) # f(22)

That is because the difference of argument between z in sheet-1 and sheet-I1
is 27, that is the difference between f(2)|) and f(2)|ur is 7. Hence, we

have
f&)o = —=f)|an

where f(2)|) denotes the computation of f(z) in sheet-I and f(2)|r) de-

notes the computation of f(z) in sheet-II.

23



2.2.4 For horizontal cuts

e The problem as using Mathematica

f(lz) H(z — z1) , by using
=1

Mathematica we can obtain the value. But when we compute the integrals

We want to calculate / dz , where f(z) =

bl

by Mathematica, we found something uncommon.

We observe that the computation of f(z) in sheet-I is not equivalent to the
computation of f(z) in Mathematica as the argument is —m. Take /—1 for
example, in sheet-I the argument of —1 is=x and‘the argument of v/—1 is

™ .
—5 then we have /=1 = e 2' = —; . But using Mathematica we obtain

V-1 Math- , which we must-multiply by —1 to get the correct value. The
reason is in Mathematica the argument belongs to (=, 7| which is different

from in sheet-1 the argument belongs to [<7 ).

Take
N V—1 IMath. =i

V=1l =—i

Figure 2.2.6. The value of v/—1 in Mathematica and in theory

e Modification

Math.

For convenience, we denote f(z) "= — f(z), which signifies that the polyno-
mial f(z) in front of «Malhn 5o the value of f(2) in theory and the polynomial

LLMgh‘M

f(2) behind the is the value of f(z) in Mathematica.

24



Compare the value of f(z) with z in sheet-I and in Mathematica. We then
observed that sometimes the computation of Mathematica needed to modify,

collating as following.

Lemma 2.1. If H(z — ) = re’ in sheet-I with horizontal cut,

k=1
then

)y = { Jj;g%jzth z i (__;mr)

where f(2)|patn. denotes the computation of f(z) in Mathematica.

Proof.
Since —7 does nothin (—myw)-Mathematica will transform re™"" into re'™,
but f(re”™) anduf(re'™) are different:
In theory: —l=e =V d=c% =—i
In Mathematica: — — 1= 7@ @ gim (/T _ 0% —
Math. A . .
So f(z) "="—f(z)if @ = —x in Mathematica. u

2.2.5 For vertical cuts

e The problem as using Mathematica

We cut the plane along the positive imaginary axis and define tha

; 1
z—z=re’ ¢ [—§7r, 57?) (in sheet-I)

and
i0 L 5 :
z—z,=re" , 0¢€ [§7r, §7r) . (in sheet-1I)

25



The cut on each sheet has two edges. We label the starting edge with “4-”

and the terminal edge with “—" .

Suppose that f(2) =2,z =ri .

, 3 1 o 0 3 1
In sheet-1, z = |2]e” ,0 € [~ =7, =) then /z = |z|%ezg ,= € [—-m, =)
2 2 2 4
‘ 1 5 e 0 1 5
In sheet-1I, z = |z|e? 0 € [571', §7r) then /z = |z|%e’g 5 € [477, Zw)

Sheet- I

Figure 2.2.7. The domain and image on two sheets for vertical cut

e Modification

Compare the difference between the computation in theory and in Mathe-

matica as illustrated in the in Figure 2.2.8.

26



sheet- |

4

A

Y I Take 4
2 2 T Mathematica
7

74 A
—TT \J J

theory

Figure 2.2.8. The difference between in theory and in Mathematica for vertical cut

So we need to modify the computation in Mathematica, collating as following.

Lemma 2.2. If z in sheet-I for vertical cut, then

3
— — — 6 — =T, —
Ve Math. Vzi—zi arg(z — z) €] 27r1 7]
Vz — zi arg(z —z,) € (-, §7T)

where arg(z — z;) denotes the argument of f(z).

Proof.

Let z in sheet-I and using polar form 2z — z, = 7e”. When 0 € (-, g),

T
the argument in theory or Mathematica is the same. When 0 € [—7, —],

Mathematica will conversion 6 into 6 + 27 where 0 4 27 € [g, 7] and re’ =

T6(9+27r)i, but

In theory: Vz—z, = \/Fe%i
In Mathematica: ViZi—z = \/Fegfﬂi = —\/Fe%i

3 a
Thus, if 0 € [—g, -7, Vz— z Math- n

27



2.2.6 For slant cuts

e The problem as using Mathematica

We cut the plane along a straight line which slope is m = tana,0 < a < 7
. Notice that the cut with o means the slope of the straight line where the

cut onis m =tana,0 < a <7 . We define that
z=re"? | §€la—2ma) (in sheet-I)

and

z=re” | 0 € o, a+2q). (in sheet-1I)

The cut on each sheet has two-edges. We label the starting edge with “+”

7

and the terminal edge with “—

Suppose that f(2) = 2,2€C .

- D0 a—2
In sheet-T, 2 <{ale 16 € fomm a)stientv/z = it~ e 2, %)
i0 1,0 0 o a+2m
In sheet-11, z = |z]e" , 0 Jana+27) theny/z = |2|2e'2 5 e [5, 5 )

e Modification

Compare the difference between the computation in theory and in Mathe-

matica as illustrated in the Figure 2.2.10.

So we need to modify the computation in Mathematica, collating as Lemma2.3.

28



a

T Mathematica - >

(/] v S

theory ./

a=2m

Figure 2.2.10. The difference between in theory and in Mathematica for the cut with «
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Lemma 2.3. If the cut with z; on the line where the slope of line is
m=tana,0 < a <7 . and z in sheet-I, then

- Vz— 2z arg(z — zx) € (—m, )

T Math { —Vz—z arg(z —z) € [a — 2w, —7]
— 2k

Proof.

Let z in sheet-I and using polar form z — 2z, = re® where arg(z — 2z,) = 6.
When 0 € (—7, «), the argument in theory and in Mathematica is the same.
When 6 € [o — 27, —7], Mathematica will transform 6 into 6 + 27 where

0 +2m € [a, 7] and e = re @ hut
In theory: VZz — o= afrés
In Mathematica: VZz— 2= \/Feﬂ%i P —\/Fegi

So if 0 € [a — 2myp—n],

Math.
Z— R = —\2— Z.

2.2.7 Summary

Because sometimes the form of integration is complex, if we could simplify
the way about modify the sign of f(z), it will help us to get right value easier.
We divided domain C into many blocks to discuss way to modify on slant

cuts. It can help us reduce the steps of modifying f(z).

Definition 2.1. Any slant cut whose slope of line is m = tana,0 < a < 7
and the end points of cut are z; = zp + 1y and zxy1 = g1 + Wgr1. Define

the domain L as

L= (z,y):y—yr>tana(x — xy) when tana > 0
L

x
(x,y) 1y —yp < tana (x — xy) whentana < 0

30



Lemma 2.4. If f(z) = vz — zv/z — 2zk+1 for the cut with . We
divided domain C into 6 areas as illustrated in the Figure 2.2.11.

(B) = {(@.9)| @v) € L and y > s}

(B) = {(@.9) | (@) € L and i <y < s )

(B) = { (w.) | (e.9) € Land y < )

1) = B UJE UBo = (e e € A LU ) 222 = tana |

then we have

£(2) Math, { —f(z) if z € (Bg) U{ the cut with (+)edge of sheet-I }
f(z) . otherwise.

Proof.

(B)) / (Bo)
................................. y =Im(zy41)

Zk+1

y =1Im(z)
(B3)
(B4)

Figure 2.2.11. Divided domain C into 6 blocks

(1) z € (By) s arg(z — z), arg(z — zg41) € [a — 2w, —7]
Vz— 2 Math. —Vz— 2z and /2 — 211 Math. —zZ — 211
f(z) M f2)

(2) z € (By) :arg(z — z;) € [o — 2w, —| then /z — 2 R ——
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z — zpy1 € |[—m, 7] then /z — zp 1 Math. NI
Math.
flz) "E —f(2)

(3) z € (Bs) U(M) carg(z — zi), arg(z — zp41) € [—m, 7]
Ve ez and Ve a M Ve a
f(2) "E 1(2)

(4) z ethe cut with (+)edge of sheet-I:
arg(z — z) = a — 27 then vz — 2, Math- e~
arg(z — zpy1) = a — 7 then vz — 21 Math
f2) " —f(2)

(5) z €the cut with (=)edge of sheet-1L:
arg(z — z) = @ then \/zZ =z, Man =2
arg(z — z141) = a — wothen /2 — zpa1 MR V% — %t

Math.

flz) "="T1E)

There are two examples we calculate the integralsin theory and in Mathemat-
ica respectively, and also draw the path on the the corresponding Riemann

surface.

1
Example 2.3. Evaluate / mdz over ag, by and by cycles, where
z

f(z):\/(z+2+i)(z+2—i)(2—|—1+i)(z—|—1—i)(z—(])(z—1)(2—1—2’)(2—1—22’).

Let z1:—2—i, 22:—2+i, 23:—1—i, Z4:—1+i, 2520, ZGZ]., Zr =

].+Z, 28:1+2Z
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(b) The a-,b-cycles
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7, — 7,
+

(d) (M): region of modify
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Using region of modify to get result by Mathematica:

The region needs changing sign of \/z — z11/z — 23 is { (+)edge of the cut

Z1z3 . The region needs changing sign of vz — 20v/2 — 24 is { (+)edge

of the cut Z3z; }.  The region needs changing sign of /z — z5v/2 — 26 is {

z:x+iy|x<0,0§y<1}U{(+) edge of the cut zZ3z; }.  The region

needs changing sign of /z — 27z —zg is {z=z+iy|lz <1,1<y<2}.
We let region of modify (M) ={ z=z+iylz <0,0<y <1} U{
z:x+@'y|x<1,1§y<2}U{(+)edgeofthecutT23}\{(+)edge

of the cut Z3z; }.

1
1. Evaluate dz
(%)
Zg
+0_
Zy - | 24 Zg
A W]
G Z7
+
>
Z5

Figure 2.2.12. The contour ag in the cut plane

a3 : Consider the equivalent path a; = a3, U a3y, Where

a3, = the path on the horizontal cut from —2 —i to —1 —i on (+)edge
of sheet-I and

a3, = the path on the horizontal cut from —1 —i to —2 —i on (—)edge

of sheet-I.
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nd. z € (M) then

(2) a3y : ' and z ¢ (M) then
f(2)
@32
1
By (1),(2) and Cauchy Theorem we can obtain / mdz , which
as

value is shown in the Appendix A.0.1.

. Evaluate . ﬁdz
b, : Consider the equivalent path
by = by, U biy U az U bis U biy U bis U big U by, U bis U big U b301

*
U b5ge , Where
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(b) The equivalent path for b3
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b]; = the path on the vertical line from —2 + i to —2 on sheet-I,

b, = the path on the vertical line from —2 to —2 — i on sheet-I,

b3 = the path on the vertical line from —1 — ¢ to —1 on sheet-I,

b, = the path on the horizontal line from —1 to 0 on sheet-I,

bjs = the path on the vertical cut from 0 to ¢ on (—)edge of sheet-I,
bis = the path on the horizontal line from ¢ to 1 + 4 on sheet-I,

b, = the path on the vertical cut from 1+ to 1 + 2i on (—)edge of
sheet-11,

bis = the path on the vertical cut from 1+ 2i to 1+ ¢ on (+)edge of
sheet-11,

bly = the path on the horizontal line from+l 44 to 7 on sheet-II,

b3y, = the path on'the horizontal line from ¢ to.—1 +¢ on sheet-II, and
b3y, = the path on the-horizontal line from —1+7 0 =2+ on (—)edge
of sheet-II.

(1) b3, : Let 2z = =2+ vri,r« 1= 0,dz =idr and 2z € (M) then
1(2) -1 (2)
L . /0 i
dz = wtwliws— A= dr
or, F(2) 1 f(724m)
(2) biy: Let 2= =24wi, r: 0 — —lydz=idr and z ¢ (M) then
HORS A O

1 Math. /1 i
dz = ——dr
v, 1(2) o f(=2+ri)
(3) bi3: Let 2= —14ri,r:—1— 0,dz =idr and z ¢ (M) then
f2) " £ ()

1 Man. i
. T /_1—f(—1+m')dT

(4) b3, Let z=r,r: =1 —=0,dz=drand z € (M) then f(z) Mat

~f(2) 1 -
e T

*
14

h.
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Math.

(5) bjs: Let z=ri, r:0—1,dz=1idr and z ¢ (M) then f(z)

f(2)
b, f_ 2 / f(ri

(6) bjg : Let z=r+i,r: 0 — 1,dz2 = dr and z € (M) then

Flz) M= —f(z)
Math
b, f_ / fr

(7) b}, = the path on the vertical.cut from 1+ to 1+ 2i on (+)edge
of sheet-I,

so z € (M). Let z=1+ri,r : 1"— 2vand dz = idr then
Mah
f(z) A (2)

1 1 Math 2 [
——dz = ——dz = — —d
/ f /1+i-?+1+2i f(2) p /1+ii>1+2i 7(2) § /1 S+ i) '

(8) bis ='the path on the vertical cut from 1+2¢ to T+ on (—)edge
of sheet-1,
so z € M). Let z = 1+ri,r:2 — 1 and dz = idr then

F(z) M f ()

1 1 1 wan [P
—dz = / ST / —dz = / ———dr
b, J(2) 14+2i-F1ks S(2) 12514 f(2) 2 f(1+7i)

(9) blg : Let z =r+i,r: 1 — 0,d2 = dr and z € (M) then
Math.
f(z) " £ (2)

1 1 1 Math, [0 1
—dz = ——dz = — —dy E™ -
/ =" / & /e DM / S

(10) b5, : Let 2z =r+i,r: 0 — —1,dz = dr and z € (M) then
Math.
fz) =" =f(2)

/ fz) /—1+z’e——i ﬁdz T /—1+i<—i ﬁdz = /01 f<T1+ { ar

201
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(11) b3y, = the path on the horizontal cut from —1 + i to —2 4 i on
(+)edge of sheet-1.
Let z=r+i,r:—-1— —2,dz=drand z ¢ (M) then f(2) Math.

f(2)
J

202

1 1 1 Math. [ 1
— dr = — dz = —dz = d
f(Z) ‘ /2+ie_1+i f(z) : /2+z¢1+i f(z) : 1 f(T + Z) g

1
By (1)~(11) and Cauchy Theorem we can obtain / mdz , which
b J\Z

value is shown in the Appendix A.0.2.

3. Evaluate / Ldz
ba f(z)

Figure 2.2.14. The contour b, in the cut plane

by : Consider the equivalent path

by = by U bYy U ag, U b1 U b1y U by U b3 U b3z » where
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b3, = the path on the vertical line from 0 to i on sheet-1I,

b3, = the path on the horizontal line from i to —1 + ¢ on sheet-II.

Figure 2.2.15. Theequivalent path for b,

(1) b5, = the path on the vertical cut from 0 to4 on (+)edge of sheet-
I
so z € (M). Let z=wiy,r:0—1 and dz = idr then f(2) Math.
—f(2)
1 1 1 Math. /1 i
——dz = ——dz = ——dz =" — | ——=dr
by, f(2) 0-i J(2) 0% f(2) o [f(ri)
(2) b3 : Let z=r+i,r:0 — —1,dz2 = dr and z € (M) then
1) " =1 (2)

1 1 1 Math, [T 1
— dz = ——dz = — ——dz = d
/ ()" / )" /& )" / T

1
By (1),(2) and Cauchy Theorem we can obtain / mdz , which value
by J\Z

is shown in the Appendix A.0.3.
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1
Example 2.4. Evaluate / ——dz over ag, b; and by cycles, where

f(2)
fR=vVE+2+)+2-)z+1+D)(z+1—-i)(z—=0)(z —1)(z — 1 —d)(z — 1 — 2i)

Let z1 = —2—1, 20 = %3 . 2 i, 25 =0, 26 = 1, 27 =

1+Z, 23:1+2’L

Using region of modify to get result by Mathematica:

Let

(A)={{z=a+iylz—y<0,1<y<2}|J{(+) edge of the cut %z } }
B)={{z=z4+wylz<-2,0<y<1} U { (+) edge of the cut from z,
to —2i } }

O)={{z=z+iylz<-2,-1<y<0} U { (+) edge of the cut from
—2itoz }}

D)={{z=2+iylr<-1,0<y<1} U { (+) edge of the cut from z4
to—i } }
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(b) The b-cycles
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(E):{{Z:x+iy|-’f<—1,—1§y<0}U{(+) edge of the cut from
—Zt023}}
(F)={{z=a+iylz—y<0,0<y<1}|J{(+) edge of the cut %z }

Figure 2.2.17. The regions need changing sign of cuts

The region needs changing sign of \/z —2Vz — 25 Is

(B)U(C) ={{z=r+iylz<-2,-1<y<1} U { (+)edge of the cut
Ziz )}

The region needs changing sign of \/z — 23v/2 — 24 Is
BUoOUDIUE) = {z=2s+iyle < -1,-1 <y <1} [JA{
(+)edge of the cut z3z4 } }.

The region needs changing sign of /z — z51/2 — 27 is

(B)U(D)U(F) :{{z:x+iy|w—y<0,0§y<1}U{(+) edge of

the cut z5z7 } }.

The region needs changing sign of /z — zv/z — 23 is (A).
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The region (B) changes the sign three times, so need to change here. The

region (C') and (D) change the sign two times, so no change here. We let

region of modify (M) = (A) | J(B) &) | JF).

Figure 2.2.18. (M ): region of modify

1. Evaluate dz

1
as J(2)
as : Consider the equivalent path a3 = a3, U 39 U A3s U as,, where
ay, = the path on the vertical cut from —1 44 to —1 on (+)edge of
sheet-I,
a3, = the path on the vertical cut from —1 to —1 — i on (+4)edge of
sheet-I,
a3, = the path on the vertical cut from —1 — 4 to —1 on (—)edge of
sheet-1I,
a3, = the path on the vertical cut from —1 to —1 + ¢ on (—)edge of
sheet-1.
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(b) The equivalent path for ag
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(1) a3y : Let 2z = —1+4+7ri,r:1— 0,dz =idr and z ¢ (M) then
ath.
1) " 1)

1  Math.
. f2) / £ 1+m)dr

(2) a3y : Let 2= —14ri,r:0— —1,dz =1idr and z € (M) then
Mah
f2) "= = f(2)

1 dz Mt /_1 ot dr
as, f(2) o J(=1+ri)
(3) a3y : Let 2z = —1%ri, ro—=1—=0,/dz=idr and z ¢ (M) then
ORSINO

1 Math, [° 0
d =

a;?)m i (= 1"‘”)dr

(4) a3y : Let 2= —1+7ri,r: 0 —1,dz =idr and.z € (M) then
f(2) MEY 1 (2)

/A dz M /1 /- dr
w3y 4 (2) o S(=1417)

1
By (1)~(4) and Cauchy Theorem we can<obtain T )dz , which
as <

value is shown in the Appendix A.0.4.

1
. Evaluate L ) z
by : Consider the equivalent path
by = by U b3 U b U (g3 U b2 U by U b3 U by7 U bs U b3y , where
b3, = the path on the vertical cut from —2 + ¢ to —2 on (+)edge of
sheet-I,
b3, = the path on the vertical cut from —2 to —2 — i on (+)edge of
sheet-1,

b, = the path on the horizontal line from —2 —i to —1 — ¢ on sheet-I,
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(d) The equivalent path for bo
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b;, = the path on the horizontal line from —1 to 0 on sheet-I,

bss = the path on the cut with % from 0 to 14 on (—)edge of sheet-II,

b3 = the path on the vertical line from 1 + 4 to 1 4 27 on sheet-II,

by- = the path on the cut with % from 1+2: to ¢ on (+)edge of sheet-II,

bys = the path on the horizontal line from 7 to —1 4 % on sheet-II,

b3y = the path on the horizontal line from —1+ ¢ to —2 + 4 on sheet-II.

(1)

by, Let 2= —2+ri,r:1— 0,dz =idr and z € (M) then
Math
f(z) —f(2)

0 .
/ £ Math. _/ i dr

byy + Let 2= 2471, r: 0 — —1,dz=dr and z ¢ (M) then
HORS (11O

1 Math / -
b3, f(2) f( 2 o+ 1)

bys » Let z =n—idiyr -2 — —1,dz=dr/ and z € (M) then
/(=) "ERN()

1 Math. -1 1
—dz = — d
/b;3 Fla)e S Te—n"

by, Let z=1r,r: —1—=0,dz=drand z € (M) then f(2)

() 1 -
Math. [~ 1
/b;4 % T L™

bss = the path on the cut with % from 0 to 1+ 4 on (+)edge of

sheet-1.

Let z=r(144),r:0—1,dz2 = (1+4)dr and z € (M) then
1) "2 =1 (2)

/f A—-nﬂﬁdz:/oinﬂ_ = /f 11++ZZ

49
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(6) bys : Let z=1+ri,r: 1 — 2,dz =idr and z ¢ (M) then

() " £ ()
1
b _d /1+i--+1+21 (Z)
_ / 1
B 1+i—1427 (Z)

e [

(7) b3, = the path on the cut with % from 1+ 2i to i on (—)edge of
sheet-1.
Let z=i+#(1l42),r:1—0,dz=(1+d)dr and z ¢ (M) then
1(2) "N (3)

/ f(z dz_/—i—%——-)z f(z )dz—/”Hl— 4 / f( 2+17”+1Z‘H) '

(8) bss : Let z =v+r,r 0 —=1,dz = dr and 2 € (M) then
Math
f(2) —f(2)

1 1 1 Man, [0 1
—<da= e ——dz =
/b;8 f(2) p /~1+iei f(z) : /1+z‘H' [(%) : /0 fli+ r)dr

(9) b3y : Let z ==l +4u+ ryre0= =1 ,dz = dr and z € (M) then
Mah
f(z) " £ (2)

1
—dz:/
bl —oie-——14i (Z)

_ / 1
2+z<— 142 (Z>

Mgh'/ —dr
o f(=1+i+r)

By (1)~(9) and Cauchy Theorem we can obtain

1
dz , which
b f(2)
value is shown in the Appendix A.0.5.
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(f) The equivalent path for b;
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1
3. Evaluate z
by / (Z)

b, : Consider the equivalent path

by = by, U b3 U b U a3 U by U b1y U b1 U by7 U bas U byg , Where
bj; = the path on the horizontal line from —1 + ¢ to ¢ on sheet-I,

b], = the path on the cut with % from i to 1+2i on (—)edge of sheet-II.

(1) b7, : Let z=r+i,r: =1 = 0,dz = dr and z € (M) then
Math.
f2) "= = f(2)

1 d M ath. 0 1 d
SOARRENNN .~ i
by 1(2) o fhr +1)

(2) b], = the path on the cut with % from 7 to 1 + 2i on (4)edge of
sheet-I.
Let 2v=i+a(l+i),r 0 —=>1,dz=(1+2)dr and z € (M) then
f2) =" — ()

/b’{2 ﬁdz - /i-31+2i %dz
1
) / 10 1)

Math. 1+ dr
o Sli+r(l+1))

1
By (1),(2) and Cauchy Theorem we can obtain / _f ( )dz , which value
b J\Z
is shown in the Appendix A.0.6.

Note that these are not the only choices of branch cuts. We could have
branch cuts from the two branch points go off to infinity in any direction,
and they don’t even need to be straight lines. What above gave are just

convenient choices.
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Chapter 3

Nonlinear Approximations
Riemann Surfaces of the
Pendulum Equation

As in Chapterl, the pendulum equation can be written as
u +sinu=0.
We know that sinwu can be expanded by Taylor series

sinu = Z ﬁu%ﬂ ~for all values of u.
k=0

Take the first eight terms to approximate sinwu as

. R SN S R0 O £ A £

smuzu—§+a—ﬁ+a_ﬁ+l_3!_l_5!,
Let

Pa(u) —u— o 0wl b

3t 50 79 11l 13! 15!

So the equation 3.0.1 becomes to

UII+P15(U) =0.

53
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As in section 77, we derived that
1 N2
§(U) +P16(U) :E,

where E is the integration constant and

u6 u8 ulO 'LL12 u14 u16

w?  out
Po(u)= —— —+ — — — + — — — f — — —
16 2 4 "6 8 100 12! 14 16!

Then, we obtain the following integral equation

dt .

1
/ du = £ /
\/ 2(E w Plﬁ(u))
Since 2(F — Pyg(u)) is.a polynomial of u, it can be written as

2(E — Pig(u)) = (—ur) (u—wugz) - -+ (u = uye)
16
=3 H(u — ), where ug's are the roots of thesequation 2(F — Pyg(u)) = 0.
k=1

16

H(u — uy,)

k=1

Thus, the function theory of solutions u of the equation inyolves

Let f(u) = \/2(E — Pig(u)) . and compute /Ldu over a,b cycles.
Given F = 7 , we have u;/= =827 — 1.34i,fu1; = =827+ 1341, uz =
~8.19 — 3.86i, uy = —8.19 + 3.860, us — —8.04 — 8.19i, ug = —8.04 +
819, uy = —3.14 — 2481, ug = —3.14 + 2481, ug = 3.14 — 2.48:, uyy =
3141248, uyy = 8.04—8.19i, upy = 8.04+8.19i , w3 = 8.19—3.86i , uyy =
8.19 + 3.867, w5 = 8.27 — 1.347, wig = 8.27 + 1.34¢.

We let region of modify for f(u) is (M) as illustrated in the in Figure ?7?.
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-804 +819i 804 +819i
—819 +386i 819 + 386i
—314 4 248i| 3.14 + 248i
—827+134i 827 + 134i
+I— -+ +1- +— —+I—)
—827—134i 827 — 134i
—819 — 386i 819 —386i

/ ~ )

Us

(h) (M): region of modify
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ag as

u W
a;
Qasg ay
ug
Ug
U
Uy
Uy
u
u U

Figure 3.0:1. a-cycles

Figure 3.0.2. The equivalent path for a-cycles

1. Evaluate , a1 : Consider the equivalent path aj = a; U ajs,

1
——du
o flu)
where

aj; = the path on the vertical cut from 8.27 + 1.347 to 8.27 — 1.34¢ on

o6



(+)edge of sheet-1, aj, = the path on the vertical cut from 8.27 — 1.34i
to 8.27 + 1.34i on (—)edge of sheet-I.

(1) aj, : Let u=827+ri, r:1.34 - —1.34,du = idr and u € (M)
then f(u) "= —f(u)

/ 1 Juy Math /_1'34 i J
——du =" — - dr
az, (W) 131 f(8.27+r)

(2) ajy: Let u=827+ri,r:—134 — 1.34,du =idr and u ¢ (M)
then f(u) "=" f(u)

1 Math: / . i J
= —du = ————dr
o fu) “134 f(8:27 + r1)
1
By (1),(2) and. Cauchy Theorem we- can. obtain / mdu , which
a f(u
value is shown in the Appendix-A.0.7. .

2. Evaluate / Ldu
ay | (1)

ay : Consider the equivalent path a5 = a3, U %o U K U ay, U ays U A%,
where

a3, = the path on the vertical cut from 8.19 43:86é to 8.19 + 1.347 on
(+)edge of sheet-I, a55 =-the path on thewvertical cut from 8.19 + 1.344

to 8.19 — 1.347 on (+)edge of sheet-I, a5, = the path on the vertical cut
from 8.19—1.34i to 8.19—3.86i on (+)edge of sheet-1, a3, = the path on
the vertical cut from 8.19 — 3.86i to 8.19 — 1.347 on (—)edge of sheet-1,
ay; = the path on the vertical cut from 8.19 — 1.34¢ to 8.19 + 1.347 on
(—)edge of sheet-1, a5q = the path on the vertical cut from 8.19 + 1.344

to 8.19 + 3.86i on (—)edge of sheet-1.

(1) a5 : Let w=8194ri, r:3.86 — 1.34,du =idr and u € (M)
then f(u) =" —f(u)

1 Math. /1'34 i
——du =" — ——dr
a3, [ (1) ss6 (819 +7i)
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(2) a5y : Let u=819+ri,r:1.34 - —1.34 ,du = idr and u ¢ (M)
then f(u) "" f(u)

1 d Math./ . l d
——du = ————dr
aly f(u) 131 f(819+ri)
(3) as; : Let w = 819+ ri,r : —1.34 — —3.86,du = idr and
u € (M)
then f(u)

Math.

—f(u)

/ L Math /—3-86 i J
——du =" — - dr
. f(u) 134 S(8.19 4 71)

23
(4) a3, : Let uo=819+ ri,r : =386 — —1.34,du = idr and
u g (M)
then f(u) 75" flu]

—1.34
Math. ?
Al e,
a3, f ) 386 J(8:19 + i)
(5) a5 : Let w=819+riyr:~134 — 134, ,du =idr and u € (M)
then flu) ¥=" S

1 Joy Math: /1 o ? J
——du =" — =L _dr
ass fu) 134 [(8:19+ 1)
(6) asg : Let uw =819+ r¢, r:1.34 — 3.86,du =idr and u ¢ (M)
then f(u) =" f(u)

1 Math. /3 86 ?
——du = - dr
ag, f () 134 f(8.19 + 1)

By (1)~(6) and Cauchy Theorem we can obtain —du , which

a J(u
value is shown in the Appendix A.0.8. ’

1
3. Evaluate ——du
i
a3 : Consider the equivalent path a3 = a3, U 39 U a3q U asy U Qs U a5
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U as; U A3g U a5y U ayy, where a3, = the path on the vertical cut from
8.04 + 8.19i to 8.04 + 3.86: on (+)edge of sheet-I, a3, = the path on
the vertical cut from 8.04 + 3.86i¢ to 8.04 + 1.347 on (+)edge of sheet-1,
a3, = the path on the vertical cut from 8.04 4 1.347 to 8.04 — 1.347 on
(+)edge of sheet-1, a3, = the path on the vertical cut from 8.04 — 1.34¢
to 8.04 — 3.867 on (+)edge of sheet-1, a3, = the path on the vertical cut
from 8.04 —3.86i to 8.04—8.19i on (+)edge of sheet-1, a3y = the path on
the vertical cut from 8.04 — 8.197 to 8.04 — 3.86¢ on (—)edge of sheet-I,
a3, = the path on the vertical cut from 8.04 — 3.86¢ to 8.04 — 1.347 on
(—)edge of sheet-1, ajg = the path on the vertical cut from 8.04 — 1.344
to 8.04 + 1.34¢ on (—)edge of sheet-1, a3y = the.path on the vertical
cut from 8.04 +1.347 to 8.04 4 3.86i on (—)edge of sheet-1, a}, = the
path on the vertical cut-from 8.04 4'3.867 to 8.04 4+ 8:19i on (—)edge of
sheet-1I.

(1) a3, : et w=8.04+ri, r:819 — 3.86,dw=/idrrand u € (M)
then Flu) =" &1 (w)
1 Math. 550 U
———du =" — ———dr
aipf (1) s10 f(804+ i)

(2) a3y : Let uw =804+ i, :3.86= 134, du =idr and u ¢ (M)
then f(u) "= f(u)

/ 1 oy Math. /1'34 ? J
——du = - dr
az, J(W) ss6 Jf(8.0441i)

(3) a33: Let u=8.04+ri,r:1.34 - —1.34,du =idr and u € (M)

Math.

then f(u) 2" — f(u)

/ 1 d Math, /—1.34 i d
— du TE™ S /4
az, [ (W) 131 f(8.044 1)

(4) a3, : Let w = 804 +ri,r : —1.34 — —3.86,du = idr and
u ¢ (M)
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then f(u) =" f(u)

[, 7

34

—3.86 -
Math. 7
= / PO e —— d’]"
_1.34 f(804 + ’I"’L)

(5) a3 : Let w = 8.04 +ri,r : —3.86 — —8.19,du = idr and
ue (M)
then f(u) "=" —f(u)

/ 1 o, Math. / —819 1 d
——du =" — - dr
a f(uw) _386 J(8.04 4 77)

= 4idr and

= 4idr and

(8) aig: Let u=8.04+ri,r:—1.34 — 1.34,du = idr and u ¢ (M)
then f(u) "= f(u)

1 Math. /1 o i
——du = —————dr
alg fw) 134 J(8.04 + i)
(9) a3y : Let uw=28.04+ri, r:1.34 — 3.86,du =idr and u € (M)
then f(u) "=" —f(u)

3.86
Math. 7
s [y
alo f 131 f(8.04+77)
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(10) a3y : Let u=28.04+ri, r:3.86 = 819,du =idr and u ¢ (M)
then f(u) "" f(u)

1 oy Math. /8 e i J
——du = ——dr
az, J (W) ss6 J(8.0441i)

By (1)~(10) and Cauchy Theorem we can obtain / —du , which
value is shown in the Appendix A.0.9.

. Evaluate Ldu

as [ (1)

a4 : Consider the equivalent path aj = ay; U a3 U ays U @y, U ays U a6,
where

ay; = the path on the vertical cut from 3.14 4- 2.48. to 3.14 + 1.347 on
(+)edge of sheet-1, aj;=-the path on thewvertical cut from 3.14 + 1.34¢
to 3.14 — 1.347 on (+)edge of sheet-I; a5 = the path on the vertical cut
from 3.14 =1.34i to 3.14—2.48i on(+)edge of sheet-I, aj, = the path on
the verticaleut from 3:14 — 2.48: to.3.14 — 1.34i on (=)edge of sheet-I,
ay; = the path on the vertical cut from 3.14 — 1i344to 3.14 + 1.34¢ on
(—)edge of sheet-I; aj; = the path on the vertical eut from 3.14 + 1.34¢

to 3.14 + 2.48i on (—)edge of sheet=I:

(1) ay, : Let w=3.14+ri, r:2.48 — 1.34,du = idr and u € (M)
Math

then f(u) “=" —f(u)

Man, [ i
ath.
—du =

= — ———dr
al flu 2as f(3.14 4 ri)

(2) ajy: Let u=314+ri, r:1.34 - —1.34,du = idr and u ¢ (M)
then f(u) "= f(u)

1 g Math /_1 i i d
——du = ———dr
aly f(u) 131 (3144 ri)
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(3) aj3 : Let w = 314 +ri,r : —1.34 — —2.48 du = idr and
ue (M)
then f(u) "= —f(u)

/ 1 Joy Math: /_2'48 i J
——du =" — - dr
az, f () “1aa [(3.144 1)

(4) ayy : Let w = 314 +ri,r : =248 — —1.34,du = idr and

u g (M)
then f(u) "=" f(u)

1 Math. /*1'34 i
4§ J) 8 > dr
ay, S () “ous f(3:14 + 1)
(5) ays : Let'w=3.14+ri, r: —134 1.34 ,du = idr and u € (M)

Math.

then fw) =" =fu)

1 Math. /1'34 (
——du =" — = = Emir
als f(u) Ciaa F(3. 14+ ra)
(6) ays : Let w = 3.144r0, r: 1.34 — 248, du = idriand u ¢ (M)
then f@) =" f(u)

1 oy Math /2'48 { J
——du = == _dr
@iy Jw) 130 S (314 + i)

1
By (1)~(6) and Cauchy Theorem we can obtain / ——du , which

fw)
value is shown in the Appendix A.0.10.

1

. Evaluate / —du

as J (1)
as : Consider the equivalent path a; = af, U az, U azs U az, U azs U azg,
where
az, = the path on the vertical cut from —3.14+2.48i to —3.14+41.34¢ on
(+)edge of sheet-1, aZ, = the path on the vertical cut from —3.14+1.344
to —3.14 — 1.347 on (+)edge of sheet-1I, ai; = the path on the vertical
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cut from —3.14 — 1.34i to —3.14 — 2.48i on (+)edge of sheet-1, af, =
the path on the vertical cut from —3.14 — 2.48; to —3.14 — 1.347 on
(—)edge of sheet-1, aZ; = the path on the vertical cut from —3.14—1.34¢

to —3.14 4 1.347 on (—)edge of sheet-1, ai; = the path on the vertical
cut from —3.14 + 1.347 to —3.14 + 2.48i on (—)edge of sheet-1.

(1) azy : Let u=—314+ri, r:248 — 1.34,du =idr and u ¢ (M)

then f(u) =" f(u)

1 Math. /1'34 i
——du "= ——dr
az, (W) oug, [(—3.14 + i)

(2) azy : Let w.= =34+ ri,r L34 = —1.34,du = udr

u € (M)
then f(u) =" “f(u)

/ L du ML /1.34 ! dr
az, f(1) {aa (=314 +ori)

3) azy whet u = =314 + 70,0 : —1.34 — "—2.A48ydu = idr
( 53
u ¢ (M)
then f{u) " f ()
1 Math. /—2.48 i
——du = _—dr
/agg fla) i (=314 4 1)
4) az, : Let w = =314 4+ri,r : =248 — —1.34,du = idr
( 54 )
u € (M)
then f(u) =" —f(u)
1 Math, /—1.34 ;
——du =" — ——dr
oz, f(1) —oug f(=3.144ri)
ase @ Let v = =314 +r,r : =134 — 1.34,du = ar
(5) a5 : L 3.14 + ri 1.34 — 1.34,du = id

u g (M)
then f(u) "=" f(u)

1 Math. /1.34 1
——du = ————dr
ats (u) “1aa f(=3.14 4+ 1)
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(6) azg: Let u=—=314+ri,r:1.34 — 248 du =idr and u € (M)
then f(u) Math. _ (u)

1 2.48

—du M _ dr
atg f(u) 131 J(=3.14 + i)
1
By (1)~(6) and Cauchy Theorem we can obtain / mdu , which
as Uu

value is shown in the Appendix A.0.11.

. Evaluate Ldu

a /(1)
ag : Consider the equivalent path ag = ag; U g U ags U agy U ags U agg
U agr U Qg U Qg U ar,, whére ag = the path onthe vertical cut from
—8.04 + 8.19s. to —8.04:4-3.86z+0n (4)edge of sheet-I; ag, = the path
on the vertical cut from-—8.04 4 3:86ito —8.04 4 1347 on (+)edge
of sheet-I, ag; = the path on the vertical cut from —8.04 + 1.34¢ to
—8.04 — 1:347 on (+)edge of sheet-1, ag, = the path on the vertical
cut from —8:04 — 1.344i to —8.04.— 3.86¢.0n.(+)edge of sheet-I, a5, =
the path on the vertical cut from —8.04 — 3.867 to.—8.04 — 8.197 on
(+)edge of sheet<l, agg = the path on the vertical cut from —8.04—8.19;
to —8.04 — 3.86: on (—)edge-of sheet-I,-ag, = the path on the verti-
cal cut from —8.04 — 3.867 to —8.04 = 1.34i on (—)edge of sheet-I, agq
= the path on the vertical cut from —8.04 — 1.347 to —8.04 4 1.34% on
(—)edge of sheet-1, a5y = the path on the vertical cut from —8.04+1.34¢
to —8.04 + 3.86¢ on (—)edge of sheet-I, a3, = the path on the vertical
cut from —8.04 4 3.86¢ to —8.04 + 8.19i on (—)edge of sheet-I.

(1) agy : Let u=—8.04+ri, r:819 — 3.86,du =idr and u ¢ (M)
then f(u) =" f(u)

1 Math. /3'86 i
——du "= ——dr
az, (W) s19 f(—8.04 +1i)
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(2) agy: Let u=—8.04+ri, r:3.86 — 1.34,du =idr and u € (M)
then f(u) Math. _ (u)

/ 1 oy Math /1'34 i d
——du =" — ——dr
az, J(W) ss6 J(—8.04 +7i)

(3) ags : Let uw = =804 +ri,r : 1.34 — —1.34,du = idr and

u ¢ (M)
then f(u) "= f(u)
1 Math, —1.34 i
ats Wdu N /1.34 f(—8.04 +ri) o

(4) agy : Let u = =8.04 +riyr.—1.34 - —3.86,du = idr and
u € (M)
then f (@) V2" =f(u)

1 —3.86
M —/ o0 L gy
ag, f(u) 340 f (=804 + 1)
(5) agy - Let u = —8.04 + ri, rt —3.86 — ~8.19,du = idr and
u ¢ (M)
then f@)E" (@)

I Math. /_8'19 i
sy M /o N
ot 1 (W) 3,867 (8.0 4 r1)
(6) agg : Let u = —8.044re, r : =819 — —3.86,du = idr and
ue (M)
then f(u) "= —f(u)

1 oy Math /_3’86 i J
ags () —s19 J(=8.04+7i)

(7) ag; : Let uw = —8.04 +ri,r : —3.86 — —1.34,du = idr and

u g (M)
then f(u) "=" f(u)

1 ath, /1.34 ;
——du = - dr
(u) 386 J(—8.04+ri)

.
Ag7
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(8) agg : Let w = =804+ ri,r : —1.34 — 1.34,du = idr and
ue (M)
then f(u) "= —f(u)

1 Math. /1'34 ¢ d
—du =" — ————dr
ags (u) 134 f(=8.04 + 1)
(9) agy : Let u=—8.04+ri, r:1.34 — 3.86,du =idr and u ¢ (M)
then f(u) "=" f(u)
1 3.86

—du ML o dr
ato f{u) 134 4 (—8.04 4 ri)

(10) a%y: Let w= =804 +ri, r:3.86 — 819, du=idr and u € (M)
Math.

then f(u) Y45 _feu)
1 Math 51 i
——du =" — - r
ato (w) g6 (=804 + 1)
1
By (1)~(10) and Cauchy Theorém we can obtain / mdu , which
ag Uu

value is shown in the Appéndix A.0.12.

. Evaluate Ldu

ar J(1)
a7 : Consider the equivalent patha; = az, U a7y U arg U ary U azs U azg,
where
a;, = the path on the vertical cut from —8.19+3.867 to —8.19+1.347 on
(+)edge of sheet-1, az, = the path on the vertical cut from —8.19+1.344
to —8.19 — 1.34¢ on (+)edge of sheet-1, az; = the path on the vertical
cut from —8.19 — 1.34¢ to —8.19 — 3.86¢ on (+)edge of sheet-1, a7, =
the path on the vertical cut from —8.19 — 3.867 to —8.19 — 1.347 on
(—)edge of sheet-1, az; = the path on the vertical cut from —8.19—1.344
to —8.19 + 1.34¢ on (—)edge of sheet-I, asy = the path on the vertical

cut from —8.19 + 1.347 to —8.19 + 3.86¢ on (—)edge of sheet-1.
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(1) a3 : Let u=—819+ri, r:3.86 — 1.34,du = idr and u ¢ (M)

then f(u) =" f(u)

1 Math. /134 i
——du = ——————dr
at, f(u) g6 J(—8.19 + 1)
ar, : Let w = =819+ ri,r : 1.34 — —1.34,du = idr
u € (M)
Math

then () 2" — f(u)

/ 1 oy Math /_1’34 i J
- au = = - ar
az, (W) p3a  J(=8.19+7i)

azs : Let we= =819+ ri, r : =134 —.—3.86,du = idr
u ¢ (M)
then f(u) =" )

/ L Math /—3~8‘°’ i J
——du = et =
az, f (1) Srad (=819 + )

ar, - Let u = =819 4 ri;r : —3.86 — —1.34d,du = idr
u € (M)
then /(i) T = ()

/ 1 g, Math /1‘34 U J
PN, Math. Ay
oz, f(1) <386 S(—8.19 4 ri)

azps © Let w = =819 +7i,r : =134 — 1.34,du = idr

u g (M)
then f(u) "=" f(u)

1 Math, [ l
——du = - dr
(u) _134 J(—8.19 + 7i)

"
ars

and

and

and

and

azs s Let w=—819+ri, r:1.34 — 3.86,du = idr and u € (M)

Math.

then f(u) 2" — f(u)
1 Math. 3.86 i
akg m ‘T /1.34 f(=8.19+ ”)dr
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1
By (1)~(6) and Cauchy Theorem we can obtain / ——du , which
ar

f(u)

value is shown in the Appendix A.0.13.

1. Evaluate / Lalu
by f(u)

Us U1
U3
uz Ug
+ —
Uis
- + = + = +1 - 4-|—a
U6
Ug Uqo
U14
Ug U1z

Figure 3.0.3. The contour b7 in thecut plane

b7 : Consider the equivalent path

b7 = b U b7 U bz U b7y U b7 U g U b7 U bzg , where

b7, = the path on the vertical cut from —8.27 to —8.27 — 1.347 on
(4)edge of sheet-I,

b7, = the path on the vertical cut from —8.27 — 1.347 to —8.27 on
(—)edge of sheet-I,

b7, = the path on the horizontal line from —8.27 to —8.19 on sheet-I,

b7, = the path on the vertical cut from —8.19 to —8.19 + 1.34¢ on
(—)edge of sheet-II,

bz = the path on the vertical cut from —8.19 + 1.34¢ to —8.19 + 3.861
on (—)edge of sheet-II,
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bss = the path on the vertical cut from —8.19 + 3.86¢ to —8.19 + 1.34¢
on (+)edge of sheet-II,

b7, = the path on the vertical cut from —8.19 4+ 1.347 to —8.19 on
(+)edge of sheet-II,

bzg = the path on the horizontal line from —8.19 to —8.27 on sheet-II.

Us U1

du = —idr and u ¢ (M)

1 1.34

Math. l
[ u P —

T D s =)

(2) b3y : Let u=—-827—ri,r:1.34 - 0,du = —idr and u € (M)
then f(u) " —f(u)

1 Math. / {
—dz = —————dr
bt (u) 1.34 (=827 — i)

(3) b3y : Let wu=r,r:—827— —8.19,du =dr and u € (M)
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then f(u) 2" —f(u)

1 Math. 89
——dz = — —d
/b;g f(u) : /—8.27 f(r) '

(4) bz, = the path on the vertical cut from —8.19 to —8.19 + 1.347 on
(+)edge of sheet-1.
Let w=—8194ri,r:0— 1.34,du =idr and u € (M)
then f(u) "=" —f(u)

1
oduy |
bty f(u) —8.19-+-819+1.34¢

1 J /
—du =
flu) _ 81915 -819+1.344

1.34 <
|- Math. 7

== 1FIS f(—8.19+m')‘”

(5) b3; =sthe path on the vertical cut from —8.19 4 1.:34¢ to —8.19 +
3.867_on (+)edge of sheet-I.
Let = =819 ¢ 7i 7 : 134 = 3.86 ,du = idr and u ¢ (M)
then fifi) =" f(uw)

/ 1 p / 1 p
——du = —du
bts Sw) 819+ 1347 <819+ 3.861 J ()

1
¥ / N
~8.19+1.34i 15 —8.194-3.86 f(u)

3.86 ,
Math. 2
= - dr
/1,34 J(=8.19 + ri)

(6) bzs = the path on the vertical cut from —8.19 + 3.86¢ to —8.19 +
1.347 on (—)edge of sheet-1.
Let w=—8194ri, r:3.86 — 1.34,du =idr and u € (M)

70



then f(u) """ —f(u)

1 1
| = [ L
b, S () —8.19+3.86i >—8.10+1.34: f (1)
1

*
76

- ——du
/—8.19+3.86i:>—8.19+1.34z’ f(u)

1.34 :
Math. ¢

_ S
xe F(—819 1)

(7) b3, = the path on the vertical cut from —8.19 + 1.34¢ to —8.19 on
(—)edge of sheet-1.
Let v = —8.19 34 =0 ydu= idr and u ¢ (M)

1
o /—8.19—)—8.27 Wdu

-827 4
Math. / dr
—s19 f(7)

1
By (1)~(8) and Cauchy Theorem we can obtain / mdu , which
b7

value is shown in the Appendix A.0.14.

2. Evaluate Lalu
be f(u)
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U1
Uy3
Uy Ug
Ugs
+j - +j - + - +}- +I—
>
Uie
Ug U10
U14
U1z

Figure 3.0.5. The contour bsin the cut plane

bg : Consider the equivalent path

b = b7 U 7y U 7y U a7y U a7 U bgi U b U b3 U Ds4

v v 057 | bss - whete

aszy = thegpath on the wertical cut from.—8.19 to =8.19 — 1.347 on
(++)edge of sheet-1I, a%s = the path on thevertical'cutifrom —8.19—1.34:
to —8.19 on (—)edge.of sheet-1, b5, = the path on the horizontal line
from —8.19 to —8.04 on sheet-I;

bg, = the path on the vertical cut from —8.04 to —8.04 + 1.347 on
(—)edge of sheet-II,

bgs = the path on the vertical cut from —8.04 + 1.347 to —8.04 + 3.86¢
on (—)edge of sheet-II,

bg, = the path on the vertical cut from —8.04 4- 3.86¢ to —8.04 4- 8.19:
on (—)edge of sheet-II,

bgs = the path on the vertical cut from —8.04 4-8.19: to —8.04 4 3.86¢
on (+)edge of sheet-II,

bgs = the path on the vertical cut from —8.04 4 3.86¢ to —8.04 4 1.34¢
on (+)edge of sheet-II,

72



bg; = the path on the vertical cut from —8.04 4+ 1.347 to —8.04 on
(+)edge of sheet-II,
bgs = the path on the horizontal line from —8.04 to —8.19 on sheet-II.

A

Fo810 )

(2) azy @ Let u=—-819+7ri,r: —1.34 = 0,du=idr and u ¢ (M)
then f(u) "= f(u)

1 g Math / .
a,, f(u) _1.34 f(=8.19 +71i)

(3) bgy : Let w=r,r:—819 — —8.04,du =dr and u ¢ (M)
then f(u) "= f(u)

L an [0
——du =" / ——dr
bg, (uw) 19 f(7)
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(4)

bg, = the path on the vertical cut from —8.04 to —8.04 4 1.347 on
(+)edge of sheet-1.

Let w=—804+ri,r:0— 1.34,du =idr and u ¢ (M)

then f(u) "= f(u)

1 1
dz :/ ——du
bEs f(u) _8.04-—8.04+1.34 (1)
1
_ / L
8,045 -804+ 134 f (1)
1.34 .
Math. ?

S —
o =804+ )"

bgs = the path.on the vertical-cut from =8.04 + 1.34¢ to —8.04 +
3.867 on (+)edge of sheet-I.

Let u ==—8:04 #7riyr1.34 — 386 ,du =udrsand u € (M)
then fu) =" =)

/ ! du / : d
PR — —du
by S (u) 104441345 —8.04{ 3865 | ()

1
- / SN
810451134705 81041-3.864 flu)

3.86 :
Math. i

b, = the path on thewertical cutfrom —8.04 + 3.86¢ to —8.04 +
8.197 on (+)edge of sheet-I.

Let u=—8.04+7i,r:3.86 — 8.19,du = idr and u ¢ (M)
then f(u) =" f(u)

1 1
——du = / ——du
b (u) —8.04+3.86i->—8.04+8.19; J (1)
1
-/ 1,
—8.04+3.86i5—8.04+8.19; S ()
8.19 .
Math. 1

———dr
ss6 J(—8.04 4 i)
bg; = the path on the vertical cut from —8.04 4+ 8.19¢ to —8.04 +
3.867 on (—)edge of sheet-I.
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Let u=—8.04+7i,r:819 — 3.86,du = idr and u € (M)
then f(u) =" —f(u)

1 1
——du = / ——du
/ng f(u) —8.04+8.19i-T>—8.04+3.86: J (1)
1
_ / L
8.0448.10i5-8.0443.86i J (1)
3.86 :
Math. ¢

_ g
10 F(—8.04+ i)

(8) bgg = the path on the vertical cut from —8.04 + 3.86¢ to —8.04 +
1.34i on (—)edge of sheet-1.
Let uw = —804 4 re;7r:3.86 — 1.34,du =vidr and u ¢ (M)
then f(u) 2= £ (u)

o =l 2
——du = ——du
) 28,0493 s6ift 48,04+ 1.34 S {u)

1

= —du
/—8.04+3.86i—>—8.04+1.34i f(“)

1.34 ,
Math. ]
= — _dr
/3.86 J(=8.04 +ri)

(9) b, = the pathon the vertical cut from —=8:04 + 1.347 to —8.04 on
(—)edge of sheet-I.
Let wu=—804+ri,r:134 = 0,du=idr and u € (M)
then f(u) "=" —f(u)

1 1
/bg7 f(u) —8.04+1.34i-F—g.00 J (1)

/ 1
= ——du
—8.04+1.34i 5 —8.04 f(u)

0 .
Math. 1

Y [ —;

(10) bgg : Let wu=1r,r:—8.04 - —8.19,du = dr and u ¢ (M) then
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Flu) M= f(u)

68
1
= — ——du
/—8.04—>—8.19 f(u)

Math -819
ath. _ _
/—8.04 f(T)
1

By (1)~(10) and Cauchy Theorem we can obtain mdu , which
b u
value is shown in the Appendix A.0.15. ’

. Evaluate / Ldu

b (1)
bs : Consider the equivalent path
b3 = b U Uy U gy U ags U agg U U7 U agg: U b3 U b2 U b3 U b3
U bss U big, where
agy = the.path on the vertical cut from —8.04 to =8.04 — 1.347 on
(+)edge of sheet-1,
agy = the path on the wvertical cut from —8.04— 1.34i to —8.04 on
(—)edge of sheet-I,
bz, = the path on the horizontal line from —8.04 to —3.14 on sheet-I,
bz, = the path on the vertical ‘cut from —3.14 to —3.14 + 1.34¢ on
(—)edge of sheet-1II,
bz, = the path on the vertical cut from —3.14 + 1.34¢ to —3.14 + 2.48i
on (—)edge of sheet-II,
bz, = the path on the vertical cut from —3.14 + 2.48; to —3.14 + 1.344
on (+)edge of sheet-II,
b:. = the path on the vertical cut from —3.14 4 1.34i to —3.14 on
(+)edge of sheet-II,
bz, = the path on the horizontal line from —3.14 to —8.04 on sheet-II.
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Ug Ug2

(b) The equivalent path for bs

7



(1) agy : Let u=—-8.04+7ri,r:0— —1.34,du=idr and u ¢ (M)
then f(u) """ f(u)
1 Math, [~ [
——du = _—d
/* Fla)™ /0 F(=8.04+7i)"

Gg3r

(2) agy : Let u=—-8.04+7ri,r:—1.34 = 0,du=1idr and u € (M)
then f(u) Math. _ (u)

J, "

Ldu Math. —/ ————dr
aly f(u) _134 f(—8.04 + 7i)

(3) bz : Let u=r,r: -804 - —3.14 ,du=dr and u € (M)

then f(u) "= —f(@)

U man 2001

/bg1 Wdu — /—8.04 f(T)dT
(4) b:, = the path on-the-vertical cut from —3.14 to—3.14 4 1.347 on

(+)edge of sheet-I.

Let v = =314+ ri, r:0— 134 du = idr.and u € (M)
Math.

then of(u) “=" —f(u)
1 1
bZ, fu) /3.14_+3.14+1.34i J(w)

1
= / T——du
3145314t 180 S (1)

1.34 .
Math. [/
s - 4
/0 F(=3.14+ ri)

(5) biy = the path on the vertical cut from —3.14 + 1.34¢ to —3.14 +
2.48i on (+)edge of sheet-1.
Let w=—3144ri, r:1.34 — 248 du =idr and u ¢ (M)
then f(u) =" f(u)
1 1
——dz = —du

bZ, fu) /—3.14+1.34i—-+—3.14+2.48i fw)
1

——du

/—3.14+1.34ii>—3.14+2.48i f(u)
2.48 .
Math. / - dr

78



(6) b, = the path on the vertical cut from —3.14 + 2.48i to —3.14 +
1.34i on (—)edge of sheet-1.
Let u=—314+7ri,r:248 — 1.34 ,du = idr and u € (M)
then f(u) "=" —f(u)
1 1

dz = / —du
bz, (1) 31442480 3144132 ()

1
——du

/—3.14+2.48i—>—3.14+1.34i f(u)

1.34 :
Math. (4
=" — ————dr
/2.48 f(=3.14 +ri)

(7) bi; = the pathion thevertical cut-from =3.14 + 1.34i to —3.14 on
(—)edge of sheet-1.
Let u==314 +ri;r: 134 = 0,du=idrand u ¢ (M)
then Fa) " =" i)
Ldz :/ Ldu
bz, S (W) _gat154 -3 (W)
1

= ——du
/_3.14+1.34i—>—3.14 f (u)

Math. /O (2
= ——dr
134 f(3.04 % 7i)
(8) big: Let uw=r4ir =314 =804, du=dr and u € (M) then
fu) "= —f()

1 1
—dz :/ ——du
bZe fw) “3.14--s.04 J (U
1
=— —du
/—3.14—>—8.04 f(u)

Math. /8'04 1 d

= ——dr
—3.14 f(r)

1
By (1)~(8)and Cauchy Theorem we can obtain / mdu , which
b f(u

value is shown in the Appendix A.0.16.
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4. Evaluate / —du

by : Consider the equivalent path
by = b;Ua;w Ua§3Ua§4Ua§5, UbLUbZzUszUbLUb Ub467
where
as, = the path on the vertical cut from —3.14 to —3.14 — 1.34¢ on
(+)edge of sheet-1,
asy = the path on the vertical cut from —3.14 — 1.34¢ to —3.14 on
(—)edge of sheet-I,
by; = the path on the horizontal line from —3.14 to 3.14 on sheet-I,
by, = the path on the vertical cut from-3.14 t0'3.14 4+ 1.344 on (—)edge
of sheet-1I,

by, = the path on the vertical cut from 3.14 4 1.347 to 3.14 + 2.48¢ on
(—)edge of sheet-11,

by, = the path on the vertical cut from 3:14 + 2.487 to:3.14 + 1.347 on
(+)edge of sheet-I1,

bys = the path on the'vertical-cut from 3.14 + 1.34i to 3.14 on (+)edge
of sheet-1I,

by; = the path on the horizontal line from 3.14 to ~3.14 on sheet-II.

(1) azy : Let u= =314 +ri 70 —1.34 du =idr and u € (M)
Math

then f(u) " — f(u)

/ —du Math._ /1‘34 —i dr
ar 0 f<_314 + T’l)

(2) azy : Let u=—-3.14+ri,r: =134 = 0,du=idr and u ¢ (M)
then f(u) =" f(u)

y, Math: 0 i
/ f B /—1‘34 f(=3.14 + Ti)dr

SRR

(3) by, : Let wu=r,r:—-314 - 3.14 ,du = dr and u ¢ (M)

30



U1

(d) The equivalent path for by
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then f(u) =" f(u)

Ldu Math. /3'14 Ldr
bi, f(u) —314 f(7)
(4) b}, = the path on the vertical cut from 3.14 to 3.14 4+ 1.347 on
(+)edge of sheet-1.
Let u=314+ri,r:0— 1.34,du =idr and u ¢ (M)
then f(u) "= f(u)

3.1441.34i53.14+2.48i J (u)
2.48 .
Math. t

I
130 f(3.14 +10) '

(6) by, = the path on the vertical cut from 3.14 + 1.347 to 3.14 4 2.48:
on (+)edge of sheet-I.
Let w=314+7i,r:1.34 — 248 du =idr and u ¢ (M)
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then f(u) =" f(u)

1 1
——du = / ——du
A 3.14+2.48i-3.1441.34 S ()
1
_ / L
3.1442.48i 531441345 | ()
1.34 .
Math. 1

948 Jf(3.14 4 1) '

(7) by = the path on the vertical cut from 3.14 + 1.347 to 3.14 on
(+)edge of sheet-1.
Let w=3.14+ 13 ‘ d idr and u € (M)

| 1
o /3.14—>—3.14 Wdu

-314 4
Math. / LS
314 J(1)

1
By (1)~(8) and Cauchy Theorem we can obtain | ——du , which

by f(u)

value is shown in the Appendix A.0.17.

5. Evaluate / Lalu
bs / (U)
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U14

(f) The equivalent path for bs
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bs : Consider the equivalent path

b3 = b} U gy U (g3 U ayy U s U b3, U b3 U b3 U b3y U b U b3
U b3, U big , where

a3, = the path on the vertical cut from 3.14 to 3.14 — 1.347 on (+)edge
of sheet-I,

ays = the path on the vertical cut from 3.14 —1.347 to 3.14 on (—)edge
of sheet-I,

b, = the path on the horizontal line from 3.14 to 8.04 on sheet-I,

b3, = the path on the vertical cut from 8.04 to 8.04 4 1.347 on (—)edge
of sheet-1I,

by = the path on the vertical cut from 8.04 4+-1.347 to 8.04 + 3.86¢ on
(—)edge of sheet-II,

b3, = the path on the vertical cut from 8.04 4 3.86i to 8.04 + 8.19¢ on
(—)edge ofisheet-11;

bss = the path on the vertical cutfrom 8.04 4 8:19: t0.8.04 + 3.86¢ on
(+)edge of sheet-II,

bss = the path on the vertical cut from8:04 4 3.86i to 8.04 + 1.34¢ on
(+)edge of sheet-11,

b3, = the path on thewertical cut from 8.044-1.347 to 8.04 on (+)edge
of sheet-1I,

bss = the path on the horizontal line from 8.04 to 3.14 on sheet-II.

(1) ajy : Let u=314+7ri,r:0— —1.34,du = idr and u ¢ (M)
then f(u) =" f(u)

1 Math, ~1.34 ;
/* mdu - /0 f(3.14+m')dr

Gy
(2) ays : Let u=314+7ri,r: —1.34 - 0,du = idr and u € (M)
then f(u) "= —f(u)

/.

Ays

1 Math. i
Wdu a /—1.34 f(3.14 +ri) o
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(3) b5, : Let wu=r,r:3.14 —8.04,du=dr and u € (M)
then f(u) =" —f(u)

8.04 1

1 Math.
— du "E — —d
/ Fla)™ s f0)

(4) b3, = the path on the vertical cut from 8.04 to 8.04 4 1.347 on
(+)edge of sheet-1.
Let wu=804+ri,r:0— 1.34,du =1idr and u € (M)
then f(u) =" —f(u)

1

1
———du = / —du
b%s fu) 8.04- 8044 1.0 4 (1)

/ 1
= —du
8.0458.044+1/34i J (20)

1.34 :
Math. 4

———d
o FEO0L L)
(5) b33 = the path on the vertical cut from 8.04 + 1.347 to 8.04 + 3.86:
on (+)edge of sheet-I:

Let u=8.04 +ri, r: 1.34 — 3.86, du-= idr and u ¢ (M)
then f(u) " 7 ()
1

1
——du = / —du
b, S (w) 8044134 58.0443.861 S (1)

1
——du

/8.04+1.34ii>8.04+3.86i f(u)

3.86 -
Math. ]
& —dr
/1.34 F(8.04 + i)

(6) b3, = the path on the vertical cut from 8.04 + 3.86: to 8.04 4 8.19:
on (+)edge of sheet-I.
Let u=8.04+ri,r:3.86— 8.19,du=idr and u € (M)
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1
——du
b%, 8.04-+3.86i--+8.04+8.19i (U)

1
/8.04+3.86ii>8.04+8.191 f(u)

8.19 .
Math. ?
ah [0 g,
/3'.86 f(804 + TZ)

(7) b3s = the path on the vertical cut from 8.04 4 8.19: to 8.04 4 3.86¢
n (+)edge of sheet-I.
Let w=8.04+riyr:8.19— 3.86,du =idr and u ¢ (M)

then f(u) "E" f(w)

du

1

—du E / ——du
b, 8.0498.10i- 58 04.+3.86i J (1)
1

/8.04+8.19i:>8.04+3.86i f (U)

3.86 .
Math. ]
= - dr
/8.19 F(8.04+ 1)

(8) b4 = the path on the vertical cut from 8.044-3.86: to 8.04 4 1.344
n (+)edge of sheet-1.
Let u = 8.04 4 iy r+3.86 — 1.347du=idr and u € (M)
then f(u) =" —f(u)
! ——du = / ! —du
b, S (W) 8.04+3.86i-"8.0441.341 J ()

1
/ LY
8.04+3.86i—8.04+1.34i f(u)

1.34 -

Math. ]

[,
386 f(8.04+ i)

(9) b3, = the path on the vertical cut from 8.04 4+ 1.34¢ to 8.04 on
(—)edge of sheet-1.
Let u=804+ri,r:134 —0,du=1idr and u ¢ (M)

du
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then f(u) """ f(u)

/ Ldu = / Ldu
b, () 8.04+1.34i 804 f ()
1
= ——du
/8.04+1.34i—>8.04 f(u)

Math. / ? dr
1.34 f(804 -+ TZ)

(10) b3 : Let w=r,7:8.04 — 3.14,du =dr and u € (M)
then f(u) =" —f(u)

1 1
—dz = .-
/bg8 fw) . /8.04»3.14 J{u) !
1 8.04—3.14 (U)

A (3 Y
=" dr
/8.04 f(r)

By (1)~(10) and Cauchy Theorem we can obtain / ﬂdu , which
by J (U

value is shown in the Appendix A.0:18:

6. Evaluate / Ldu
bo f (U)

by : Consider the equivalent path

by = b U a3z U 3y U a3 U 3 U Q37 U O3 U by U b3 U b3 U b3 U bys U b6 »
where

a3s = the path on the vertical cut from 8.04 to 8.04 — 1.347 on (+)edge

of sheet-I, a3y = the path on the vertical cut from 8.04 — 1.347 to 8.04

on (—)edge of sheet-I, b3, = the path on the horizontal line from 8.04

to 8.19 on sheet-I,

by, = the path on the vertical cut from 8.19 to 8.19 4 1.347 on (—)edge

of sheet-1II,

bys = the path on the vertical cut from 8.19 4 1.347 to 8.19 + 3.86¢ on
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(h) The equivalent path for by
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(—)edge of sheet-1II,

b, = the path on the vertical cut from 8.19 + 3.867 to 8.19 + 1.347 on
(+)edge of sheet-II,

bys = the path on the vertical cut from 8.19 + 1.347 to 8.19 on (+)edge
of sheet-I1,

bys = the path on the horizontal line from 8.19 to 8.04 on sheet-II.

(1) a3y : Let u=8.04+7ri,7:0— —1.34,du =idr and u € (M)
then f(u) "= —f(u)

/.

(33

1 i, Mth / 'y, i d
Sy — = — dr
¥ (w) 0 £(8:04 + 1)

(2) a3y : Letu = 804=ri, r: -1.34 = 0,du=idr and u ¢ (M)
then fu) =" ffu)

/.

G3gr

Ly Mt / s 1R,

f(u) 134 f(8.04+74)

(3) b5, : et w=r| re8.04—>8:A95du=dr and u'¢ (M)
then /(@) "€" [ (1)

1 “ 8:19 1
S ——dr

b5 () o1 (1)

(4) b5, = the path on the vertical cut from 8.19 to 8.19 + 1.347 on
(+)edge of sheet-I.
Let u=81947ri,r:0— 1.34,du =idr and u ¢ (M)
then f(u) =" f(u)

1 1
——dz = / —du
b3, f(u) 8.10-8.194+1.34i J ()

/ 1
= ——du
8.1958.1941.34 f(u)

1.34 -
Math. (4
= —dr
/0 F(8.19 + ri)
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(5) b33 = the path on the vertical cut from 8.19 + 1.34: to 8.19 + 3.86¢

on (+)edge of sheet-I.
Let u=2819+7ri,r:1.34 — 3.86,du = idr and u € (M)

then f(u) =" —f(u)

1 1
——du = ——du

b3y f(u) /8.194—1.34@‘——»8.19—}—3.861' f(u)

1
——du

/8.19+1.34z‘i>8.19+3.86i f(u)

3.86 -
Math. 1
=" — ———dr
/1v.34 f(819 + TZ)

(6) b3, = the path on the vertical cut from 8.19+ 3.86: to 8.19+ 1.34¢

on (—)edge of sheet-I.
Let u =819 + re5r+3.86.— 134, du = idr. and u ¢ (M)

then f(u) "=" flw)

/ ! du / - d
. — —du
bs, f (1) 810+3.86i-"8.19+1.34i | ()

1
= / I~
8.194-3.86i8.19+1.34i f(“)

1.34 .
Math. ]
= — < dr
/3.86 [(8.19 4 71)

(7) b5; = the path on the vertical cut from 8.19 + 1.34¢ to 8.19 on

(—)edge of sheet-I.

Let u=81947ri,r:1.34 = 0,du =1idr and u € (M)
Math.

then f(u) " — f(u)

1 1
——du = / ——du
b, J (W) 8.10+1.34- 58,10 S (1)

/ 1
= ——du
8.19+1.34i38.19 f(u)

Math. /0 l
ah [T L gy
1.34 f(819 + TZ)
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(8) by : Let u=r,r:819 — 8.04,du = dr and u ¢ (M) then

£ (u) "= f(u)
/b ﬁdz B /8.19——98.04 %du

6
1
= — ——du
/8.19—>8.04 f(“)

8.04

Math. 1
=" — dr
s10 Sf(T)
1
By (1)~(8) and Cauchy Theorem we can obtain mdu , which
by J\U

value is shown in thecAppendix A.0.19.

. Evaluate / Ldu

o ()
by : Consider the equivalent path
by = b, U (5% U 3 U Gy U (5% U b1 U b1, U b3 U byy , where
ay, = thepath on the vertical cut from 8.19 to 8.19 —1.347 on (+)edge
of sheet-1, a3;, = the'path onsthewertical .cut from 8.19 — 1.347 to 8.19
on (—)edge of sheet-I; bjy = the path on the horizontal line from 8.19
to 8.27 on sheet-I,
bi, = the path on the vertical eut-from 8:27 to 8.27 4 1.347 on (—)edge
of sheet-1II,
b5 = the path on the vertical cut from 8.27 4 1.347 to 8.27 on (+)edge
of sheet-II,
b, = the path on the horizontal line from 8.27 to 8.19 on sheet-II.

(1) a5y : Let u=819+7ri,r:0— —1.34,du = idr and u ¢ (M)
then f(u) =" f(u)

/.

oY

1 o Math /1.34 ; ]
—du = - dr
f(u) 0 f(8.19 + ri)
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(2) a5 : Let u=819+7ri,r:—1.34 - 0,du =idr and u € (M)
then f(u) "=" —f(u)

1 Math. /0 1
——du = — —dr
/a;5, f(u) _134 f(8.19 4 11)

(3) bj, : Let wu=r,7r:819 = 827,du=dr and u € (M)
then f(u) =" —f(u)

1 J Math. /8.27 1 y
——dz = — —dr
bt f(w) s10 f(r)

(4) bj, = the path on the vertical cut from 8.27 to 8.27 + 1.347i on
(+)edge ofisheet-1.

Let u =827+ riyr=—0— 1.34, du = idr and-u € (M)
Math.

then () """ —ffu)

1 1
——du = / ——du
bt Ju) 827 s8.27+1.341 J ()

1
——du

- /8.27i>8.27+1.34i f(u)

1.34 4
Math. 7
Dbt JAY i

(5) bj; = the path on the vertical cut from 8.27 4 1.34¢ to 8.27 on
(—)edge of sheet-1.
Let u=827+ri,r:134 —0,du =1idr and u ¢ (M)
then f(u) "= f(u)

1 1
——du :/ ——du
/b;s f(u) 827413427 J(U)
1

_ / Lo
8.27+1.34i8.27 (U)

Math. 0 ?
= ——dr
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(6) bj, : Let wu=r,r:827—8.19,du=dr and u e (M)
then f(u) " —f(u)

1 1
/b md—/ Fay™

_ / Lo
827819 f (1)

8.19 1

Math.
= ——dr
sar [(7)

By (1)~(6) and Cauchy The e can obtain / du , which

L
b f (W)
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Chapter 4

Elliptic Functions

In this chapter, we will introduce some definitions, theorems and properties

taken from bookd4].

4.1 Basic concepts about the elliptic function

It is necessary for us to study some basic concepts about the elliptic function.

Definition 4.1.
A function f is called periodi¢ function if there is a number w, such that

f(z+w) = f(z) for all values of z for which f(z) exists.

Remark 4.1.
If f is a periodic function with period w, then f(z+kw) = f(z) for all values

of z and any integer k.

Definition 4.2.

The smallest period of a periodic function f is called the fundamental period

of f.
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4.1.1 Doubly-periodic function

Lemma 4.1.
Let w and w’ be a pair of fundamental period of the function f. Then
f(2) = f(z +mw + nw') for all values of z and for all integer values of m,n.

That implies mw + nw’ represents the all periods of f.

Definition 4.3.
Let 2w; and 2w, be any two numbers (real or complex) whose ratio is not

purely real. If a function f satisfies the equations

[(at2w,) = f(2), f(z+2w) =%(2),

for all values of z for which f(z)-exists, then it is c¢alled a doubly-periodic

function of z with a pair of fundamental periods 2w; and 2w,.

Definition 4.4.
If a doubly-periodie function f is analytic (except at/poles) and has no sin-
gularities other than Ppoles in the finite part of the complex plane, then f is

called an elliptic function.
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4.1.2 Period-parallelograms

Remark 4.2.

If there is no point w inside or on the boundary of the parallelogram (ex-
cept the vertices) such that f(z 4+ w) = f(2), for all values of z, then the
parallelogram constructed by z, z 4+ 2wy , 2 + 2wy + 2ws , 2 4 2ws is called a
fundamental period-parallelogram for an elliptic function with periods

2(4)1, 2&)2.

Figure 4.1.1. Take z = a, for some a € C

It is clear that the complex plane can be covered with a network of parallelo-
grams equal to the fundamental period-parallelogram and similarly situated,
each of the points z + 2mw; + 2nws , Vm,n € Z, z € C being a vertex of four
parallelograms. (Show in Figure 4.1.1.)

The points z, z+ 2w, 2+ 2ws , ... 2+ 2mwi + 2nwsy , ... will have the same
value after transferring by f since 2w; and 2w, are periods. In other words,
all periods of f can be represented of the form 2mw; + 2nws, Vm,n € Z

. Thus, any pair of such points are said to be congruent to one another.
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Generally if the difference between two points z1, zo is 2mw; + 2nws, then
21, zo are said to be congruent. The congruence of two points 21, z5 is denoted

by z1 = z2(mod. 2wy, 2ws).

We know it is inconvenient to deal with the parallelograms if they have
singularities of the integrand on their boundaries. So in order to avoid there
are poles on the integral path, we can take z = a, for some a € C by
translating the parallelograms such that none of the poles of the integrand
considered are on the sides of the parallelogram. Such a parallelogram is

called a cell.

The set of poles of an elliptic function in any given.cell is.called an irreducible

set.

4.1.3 Simple properties of the elliptic function

We already know the definitions of the elliptic function, and then we can

derive some simple properties of the elliptic function as following.

1. The rational functions of an.elliptic function are also elliptic functions

of the same kind.

2. Liouville’s theorem
There are four theorems about elliptic functions known as Liouville!’s

theorems.

e Liouville’s first theorem
An elliptic function ,f(z), with no poles in a cell is merely a con-

stant.

! Joseph Liouville (1809-1882)
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e Liouville’s second theorem
The sum of the residue of an elliptic function, f(z), at its poles in

any cell is zero.

o Liouville’s third theorem
The number of poles is the same as the number of zeros of an

elliptic function in any cell.

e Liouville’s fourth theorem
The difference between the sum of poles and the sum of zeros is a

period.

4.1.4 The order of an elliptic function

Definition 4.5.
Let ¢ be a constant and f(2) be an ellipti¢ function. The order of the elliptic
function is the mumber of the roots of the equation f(z) ="c which lies in

any cell dependsyonly on f(2):

Remark 4.3.

a. The order of f(z) is the number of poles in the cell.

b. The order of an elliptic function is > 2.

c. The simplest elliptic function could be divided into two classes.

One is the elliptic functions which have a single irreducible double pole with
residue = 0. The other is the elliptic functions which have two single poles

and the sum of their residues is 0.
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4.2 Weierstrass elliptic function

The Weierstrass elliptic function p(z) is defined as

1 1 1
plz) = 22 + Xn: {(z — 2muw; — 2nwy)? B (2mwy + 2nw2)2}

1 1 1
= — - 4.2.1
2 * Z { (2 — Qm,n>2 an,n} ’ ( )

where (2, ,, = 2mw; + 2nwy, Ym,n € Z (except m =n = 0)

Remark 4.4.

1. When m, n such that [€2,, .| is large; the general terms of the series defining
0(2) is O(|Qmnl2). 80 p(2)-converges absolutely and umiformly.

2. p(z) is analytic except the-poles, namely the points 2, ,, and the points

Q. are all double poles.

We proceed to introduce some properties and theorems about p(z) and ¢'(z2)

as following.

4.2.1 Periodicity and other-properties of o(z)

Since @(z) is uniformly convergent series of analytic function, we could dif-

ferentiate it term-by-term. And we obtain
d 1
'(2) = — = -2 —_— 4.2.2
¢'(2) = —p(2) ; G (4.2.2)

and

, B 1 B 1
p'(—2) =—2 ; (—2 — Qun)?® 22 (24 Qmn)? (4.2.3)

m,n

According to equation(4.2.2) and (4.2.3), we can get

o'(=2) = —p'(2). (4.2.4)



This means that ¢'(z) is an odd function.

We know that ¢(z) is analytic except at poles and which has no singularity

other than poles. Moreover, it is clear that 2wy, 2w, are periods of ©'(z).

Thus ¢'(z) is also an elliptic function, but it is different to p(z). Compare

o(z) with ©'(2) as following table:

Definition Poles | Periods | Parity
o(2) | equation(4.2.1) | Q. | 2w1,2we | even
©'(2) | equation(4.2.2) { Qo | 201, 2wy | odd

Table 4.1. Thedifference between p(2) andgp'(2)

Corollary 4.1.
If f(z) is an elliptic function, then its derivative f'(%) is-also an elliptic
function. And_f®)(2),¥n & N is an elliptic function of the same kind.

Moreover, if f(2) and g(z)are elliptic function with the same periods, then

Vi z z M
A=9C) T FEa

are also elliptic functions of the same kind.

4.2.2 The differential equation satisfied by p(z)

1
From equation(4.2.2), we can let S(z) = p(z) — ot Then S(z) could be
represented as

Siz)=Y_ {<<2_ém,n)2 - Q;m)} . (4.2.5)

m,n#0

then S(z) is analytic at z = 0, and it is an even function.
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Do Taylor expansion of S(z) for |z| — 0. The equation(4.2.5) can be derived

as
1 22 24
e Z 4.2.
p(z) 2 5% + 7393 +0(2%), (4.2.6)
where gy = Z 609;‘}” and g3 = Z 1409;1%.
m,n#0 m,n#0

By equation(4.2.6), p(z) can be written as

22 2

1
p(2) = 3 + 559+ 5g9s + Oz 6. (4.2.7)

Differentiating the equation, we get

2 3
i) + %gg + =g F Q) (4.2.8)

From the equation(4:2.7) and (4.2.8), we can derive

1 3 3
0'() =5+ gt gt O (4.2.9)
402 4
/ 20 2
W ()" =F%a R s O(). (4.2.10)
Hence, we obtain
[0/ ()] = 497(=) F ()92 + g5 = O(2) . (4.2.11)

For convenient, we define H(z) = [¢/(2)]* — 4¢°(2) + p(2)g2 + g3 = O(2?).
Since H(z) is an elliptic function and it is analytic at the origin, the all
congruent points of 0 are also analytic. This means that H(z) is an elliptic

function with no singularities.

This implies that H(z) = ¢ where ¢ is a constant by Liouville’s Theorem.

Let z — 0, we derive that the constant ¢ is zero. So the function p(z) sat-
isfies [0/ (2)]* = 49°(2) — 9(2)g2 — g3 = O(2?) , where g, = Z 60€2,.", and

m,n#0
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gs= > 14005, .

m,n#0

d
Furthermore, given the equation (d—Z)2 = 4y — goy — g3. If w1, ws can be

determined such that g, = Z 609;} and g3 = Z 1409;&’ then the

m,n#0 m,n#0
general solution of the differential equation is y(z) = p(£2z + «), where « is

the constant of integration. Since p(z) is an even function, the solution can

be written as y(z) = p(z + a).

4.2.3 The integral formula for p(z)

Here we consider the integral equation
z= / (413 — gat= gs) "2t (4.2.12)
§

where the path of integration may be any curve which does not pass through

a zero of 4t3 — got — gs.

By the equation (4.2.12), we differentiate-z with respect to ¢, and get

(%)2 = 4% — go€ — g3 (4.2.13)

And by the previous result, we know that & = p(z+«), where « is a constant.
Let £ — oo, then z — 0. This implies that « is a pole of p(z). In other

words, o € §2,,, and
§=p(z+ Q) = p(2) . (4.2.14)

So the equation (4.2.12) is called the integral formula for p(z) and we some-

times write the equation in the form

z = / (483 — got — g5) " 2dt . (4.2.15)
p(z)
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4.3 The theta function

The theta-function ¥(z, q) is defined as

¥ z,q) = Z (—1)"q”262m2 (4.3.16)
=142 z:(—l)"q"2 cos(2nz), (4.3.17)
n=1

where ¢ = ¢™" with |¢| < 1, and 7 € C is constant whose imaginary part is

positive.

By the equation (4.3.16), it is-obvious that
Wz +m,q) =9z,q),
and

19(,2—|—7r7'7 q) _ Z (_1)nqn262nize2m‘m-
Y

= Z (_1)nq(”+1)2*162(n+1)iz72iz

n=—oo
[e.e]

-1 _—2iz n n 2 2(n+1)iz
= —q 1,-2 Z (-1) +1q( +1)? 2(n+1)

n=—oo

= —q e (2, q)

Hence we called ¥(z,q) is a quasi-doubly periodic function of z whose
multipliers or periodicity factors associated with periods = and 77 are 1 and
—q te™ % respectively.

And if 9(z)) = 0, then ¥(zo + mm + nw7) = 0, for all integral values of m

and n.
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4.3.1 The four types of theta-function

The four types of theta-function are defined as

[ 01(.0) = i %m, q)
9a(z,0) = (= + 5m,0)
U3z, q) = Va(z + %w, q)
V4(2,q) = V(2. q) = f: (—1)"g™ e2ni

Equations (4.3.18)scan be written-in another form:

;

(z,q).= 22 2 % (9 + 1) 2

Ualz,q) =2 Z ¢ Gos(2n +.1)2
n=0

U3(2,q) = 142 Z ¢ cos(2nz)

n=0

Uy zq—l—i-QZ ) q" cosan)

We are just interested in the parameter z, so ¥;(z,q) is denoted as ¥;(z).

Moreover, the notation ¥; is represented by 9;(0), for i = 1,2, 3, 4.

And then we introduce some properties of theta-function.

1. By (4.3.19) and parity of trigonometric functions, we have

function | ¥1(z) | ¥2(2) | ¥3(2) | Ya(2)

parity | odd | even | even | even
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2. We get relations between four types of theta-function by equations

(4.3.19) and simple computation.

1 1 1 1
191(Z> = —192(2 + 57‘(‘) = —iICﬂg(Z + -7+ 571'7') = —Z'ICI%L(Z + 571'7’)

2
1 1 1
192(2) = ’C793(Z + §7T7') = IC194(Z + §7T —+ §7r7') = 191(2 + %W)
1 1 1 1
Us(2) = da(z + éﬂ) = Kd1(z + 57 + §7TT> = Kdo(z + 571’7’)
94(2) = —iK01 (2 + %m) = iKYy (2 + %71' + %M) = 5(z + %W)

1
where I = g1e*”*

3. We can get the periodicity factors of the fourtheta-functions associated

with periods 7w and 77, which are shown in the following table:

191(2) 192(2) 193(2) ’194(2)
T =1 —1 1 1
nr | —L L L —L

where £ =¢ ‘e %7,

4. The theta-function 9;(z) and 9%(z) satisfy-the following equations

Vi(z+7) _ Ui(2)
Vilzeb ) 0i(2)
iexar) |1 Y vi(z)
9i(z + 1) 2 +19Z~(z)'
3

where i = 1,2, 3,4 and ¢(2) is the derivative of J;(z) with respect to z .

Theorem 4.1.
Let C be a cell with corners ¢, t+n,t+77,t+ 7.
¥;(2) has only one zero inside C, for i = 1,2, 3, 4.

From equations (4.3.18), it is manifest that 0 is the zero of ¥J;(z). And

use relation between the theta-functions, we can find out that the zero of
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1 1 1 1
Va(2), ¥3(2), J4(z) are 0, 3™ 57 — ST 5T respectively. The result can be
summarized as:

’ ‘ Zeros ‘ relation ‘
V1(2) | 2 = 0mod(m,7T) 2 Z g2 gin(2n + 1)z
o(2) | 2 = %w mod(, 77 91(2) = — (= + %w)

U3(2) | 2= %71’ + %7?7' mod(m, ) | ¥1(2) = —iqieizﬁg(z + %7? + %7?7')
Wy(2) | z= %7?’7’ mod (7, 7T) h(2)= —iqieizm(z + 5%7)

Next, we can obtain the relation -between these theta-funetions. Since 9;(z),
for i = 1,2,3,4,sare analytic-and have periodicity factors-1, —g 'e ™ as-
sociated with periods @, w7 . It is obvious that 19?(2), fore. = 1,2,3,4, are

analytic and have periodicity factors 1, —¢ %e """ with periods 7, 77 .

Choosing suitable constants a; b, a; b then

a?(z) + b93(z)
U3(2)

(4.3.20)

and
a9%(z) + b'93(2)
V3(2)

will become doubly-periodic function with periods m and 77.

(4.3.21)

Since each of theta-functions ¥;(z), fori = 1,2,3,4, has a double zero (and
no other zeros) in any cell. So (4.3.20) and (4.3.21) just have a simple pole
in any cell where the constants a, b, a, b are suitably chosen. But the order of
an elliptic function is never less than 2, otherwise such a function is merely

a constant. And we choose the constant is 1.
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Hence the equations (4.3.20) and (4.3.21) will become

V2(2) = a¥?(z) + b3 (2
2(2) 1(2) + b04(2) (43.22)
93(2) = a3 (2) + b'95(2)
. . 1
Given z the special values 0 and 5T then we get
02— b2 02— b2 02— —ai? | 02— —a'? . (4.3.23)
Thus we have the following relation:
9204 2) = 9202(2) L9292 (=
191(2) = 0505(2) 9505 (=) (43.24)
Bi3(2) = 0393(2) —9503()-
L . 1
Additionally, if wereplace z-by 2z + RS have
92092 (2) = 92092(2) — 92093(2
101(2) = 9395(2) — U305(2) (43.25)
Vi0i(2) = 0305(2) — ¥39; (=)

Remark 4.5.
If 2 =0, the lastwelation in (4.3.25) will become ¥; —495 =] .

In order to get some relation between the theta-functions easily, we can

represent the theta-functions as infinite products. The result is derived by
Jacobi?. Let

o oo

f(Z) _ H(l _ q2n—162iz) H(l _ q2n—1e—2iz) _

n=1 n=1

v
We know f4((2)) has neither poles nor zeros since f(z) has the same zeros as
z
Y4(2). And it is obvious that
flz+7)=f(2), flz+77) = —q e f(2).

2Carl Gustav Jakob Jacobi (1804-1851)
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V4(2)
f(2)
Valz) .

Thus f(z) has the same periodicity factors as ¥4(z). This means that

is a doubly-periodic function with no poles. By Liouville’s theorem,

fz) ©
a constant. Hence, ¥4(z) can be represented by
Va(2) = vf(2)
-y H( 2n 1 21,2 H 2n 1 —Zzz)
n=1 n=1
=v H(l —2¢°" ' cos 22 + ¢*" ) .
n=1
Moreover, we get other relations as
( ) o0
V(%) =2vqtsinz H(l — 2q°" cos 22+ ¢'")
n=1
Va(2) = 2wqi cos 2 H(l +2¢*" cos 2z + ¢*") (4.3.26)
o n=1
=v H(l 42> cos 22 + ¢t ?)
\ n=1

Remark 4.6. (A relation between theta-functions for z = 0)
By the expression of infinite product form and given z = 0. We can derive

the relation

Remark 4.7. (The value of the constant v)
Using the relation (4.3.27), the constant v can be determined as

oo

v=[Ja-¢"). (4.3.28)

n=1
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Remark 4.8. (The differential equation satisfied by the quotient of theta-

functions)

V1(2) and Vo (2)03(2)
U4(2) 93(2)

the same periodicity factors —1 and 1 with respect to 7, m7 respectively.
And

have

By the table of periodicity factors, we know that

(191(2) , _ V1(2)04(2) = 94(2)0h(2)
a(2) 9i(2)

also has the same periodicity factors —1 and 1 with respect to 7, 77 respec-

tively. Define

G 95D ()9, (2)
o a(2) e L i ()a(R) = T (2) 01 (2
o(z) = ENETAE ) 5 (2)052) . (4.3.29)
.

By Liouville’s theorem, it shows that ¢(z) = ¢ where ¢ is_a constant since
there is no poles of p(z) =-0-in any cell. Let 2 — 0, we can determine
c =197, Then werget

U9(2)03(2)

=] 4.3.30
&R 330
Let £ = zl—EZ; , and.using the relations (4.3.24). Then(4:3.30) will become
4\ 2
dg
(R e ) (4331)
The function 19152 is a solution of the equation (4.3.31).
4
Remark 4.9.
By the same discussion, we could also find that:
Pa(2) 2 U1(2)05(2)
_ 4.3.32
G = ww (4:3:32)
U3(2) 2 U1(2)02(2)
—Vy . 4.3.33
G.@) TR 339
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4.4 The Jacobian elliptic function

In this section, we introduce the Jacobian elliptic function. Starting from

the equation (4.3.31):

€

(2 = (0 — W33 — v3e?)

v
Let y = 19—35 and u = ¥3z. Then the equation (4.3.31) can be written as
2

(@alatoeu by, (4.4.34)

()
where £ is defined by.s = (19—2)2 and it is called the modulus.
3

And one solution of equation-(4.4.34) is

193 193 191(’(93:2U)
— =g o 4.4.35
T T ) (44.35)
Furthermore, (4.4:34) can be written as the integral form
Y 1 1
u=/ (1 —3)72(1 — k**)72dt, (4.4.36)
0

Since it is customary to consider y the function of u, and y is defined by

the quotient of theta-functions. We denote y as y = sn(u,k) or simply

y = sn(u).

Thus (4.4.34) can be represented as

dsn(u)

( T )2 = (1 —sn*(u))(1 — k*sn*(u)), (4.4.37)
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Remark 4.10.

It is easy to see that sn(u) is a quasi-doubly periodic function which has
periodicity factors —1,1 with periods 937 and Y377 respectively. This also
implies that sn(u) is a quasi-doubly periodic function with periods 2937 and
Y3mT . We usually write the periods 937 and 9377 as 2K and 2iK’, so that
sn(u) has periods 4K and 2iK".

Definition 4.6. (Jacobian elliptic functions)

The Jacobian elliptic functions sn(u), cn(u), dn(u) are defined as following

193 191 (193:211)
nlu) =, Jal0320)
0, 05(05 %)
enlv) e 9a(9320)
194 193 (’193_2’&)

d ] B W
nfv) 93 Da(93%0)

And there are some properties. and relation between the three Jacobian el-

liptic functions as following;:

1. From (4.4.38), we can get some results:
sn?(u) + cen?(u) = 1
K2sn®(u) + dn*(u) = 1
en(0) =dn(0) =1
2. The derivatives of sn(u), cn(u), and dn(u) are as following:

d

asn(u) = cn(u)dn(u)

d

@cn(u) = —sn(u)dn(u)
@dn(u) = —r%sn(u)en(u)
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3. The parity of sn(u), cn(u), and dn(u) are as following:

sn(—

= —sn(u)

en(—u) = en(u)
dn(—u) = dn(u)

4. By the properties of theta-functions, we could find their periods, parity,

poles, and zeros respectively, which can be summarized as:

sn(u) en(u) dn(u)
Periods 4K 21K 4K ;2K + 21K’ 2K, 41K’
Parity odd even even
Poles |WMB 2K + iK' K. ORGP K, 3K
mod(4K . 2¢.K") | mod(4K , 2K + 2iK') | mod(2K , 4iK")
Zeros 0 K K +iK'
mod(2K - 21K") mod(2K , 2iK") mod(2K , 2i1K")
Derivative en(u)dn(u) —sn(u)dn(u) —rZen(u)en(u)

In the end of the chapter, we gives graphs of these Jacobian elliptic functions

with different k:

05 /

/
V. -/-1.0 ]

(a) sn(u,k) with kK =

(b) sn(u, k) with k =1

Figure 4.4.1. sn(u, k)
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Figure 4.4.3.
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Chapter 5

The Exact Theory of the
Pendulum Motion

5.1 Introduction of the simple pendulum mo-
tion

Here we use two ways, by Newton's second law.and conservation of energy,

to derive the differential equation

u" +sinu=0. (5.1.1)

(1) According to Newton’s second law:
Consider Newton’s second law,
F =ma

where F' is the sum of forces on the object, m is mass, and a is the acceler-

ation.
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Figure 5.1.1.-Using Newton’s second law

Because the bob is forced to-stay in a circular path, we apply equation,5.1

to the tangential axis only,

F = —mgsinf = ma

a= —gsinf

where ¢ is the acceleration due to gravity near the surface of the earth.
The negative sign on the right hand side implies that ¢ and a always point
in opposite directions. Thisnakes sense beecause when a pendulum swings

further to the left, we would expect it to accelerate back toward the right.

This linear acceleration a can be related to the change in angle 6 by the arc

length formulas; [ is the length of the pendulum and s is the arc length:

s =10 (5.1.2)

Yy % _ fl_f (5.1.3)

a:%:l% (5.1.4)
Thus

%+%Sin0:0. (5.1.5)
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(2) According to conservation of energy:

Any object falling a vertical distance h would acquire kinetic energy equal to

that which it lost to the fall. That is to say, gravitational potential energy

is converted into kinetic energy.

As a result of the conservation of energy, no energy is lost, those two must

be equal:

1
Emv2 = mgh

= v = +/2gh.
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Using the equation (5.1.3), this equation can be rewritten as

v:l%:\/Zgh

a9 1
W _ 2 S
a1V

where h is the vertical distance the pendulum fell.

See the Figure 5.1.2, which presents the trigonometry of a simple pendulum.
If the pendulum starts its swing from some initial angle 6y, then yq, the

vertical distance from the screw, is given by
Yo = [ cos By

Similarly, for y;, we have

1 = lcosb,

then h is the difference of the two
h/= l(cos .= cos by).

In terms of — gives
dt ©

do 29
NG \/T(cose — cos bp):

We can differentiate with respect/to time, then obtain

#0_ i
de?  dt dt
d |2

= Tg(cosﬁ—coseo)

1 29(—sin 0) do
2 \/279(0080 — cos ) dt

1 29 (_sin#h) 2g

= l —(cosf — cos b))

2 \/279(0080 — cos ) ¢

= —% sin 8.
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Thus )
d“0
7 + % sinf = 0. (5.1.6)

No matter which idea for derivation, there are the same results as (5.1.5) and
(5.1.6). For convenience, we let % =1, and there is (5.1.1).
After the above pre-work, the following contents will recall the conclusion in

Chapter 4 and get the exact theory of the simple pendulum motion.

5.2 The exact theory

The ordinary differential equation

Uy +sinu = 0. (5.2.7)

Multiplying u; to (5:5.29). and integrating it with respect to ¢, then we obtain

1
§uf — cosu =L »whereF is-a constant. (5.2.8)
Adding 1 to both sides yields
L,
Ju + (1 —cosu)=E+1.
. L, N
In the idea of energy, we can regard Ut as kinetic energy, (1 — cosu) as
potential energy, and E + 1 as the total energy of this system.
Since (1 — cosu) is regarded as the potential energy, 0 < (1 — cosu) < 2,

and the kinetic energy Euf > 0, the total energy E + 1 must be greater than
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or equal to 0. Additionally, when the potential energy reaches the maximum
2, it also means that the pendulum is right at the highest position in the
circular path. Thus, the total energy E + 1 = 2 will be the key factor of

different types of the pendulum motion.

O<F+1<2 = —-1<FE<1
F+1=2 = E=1
F+1>2 = E>1

Consider the equation 5.2.8; then the square rootsof u, are £1/2(F + cosu),

here “4+” denotes the.bob’s trajectory. We only focus on the positive sign,

=/ 2(E + cosu) . (5.2.9)

Using the relation of trigonometric function that cos(26) = 1—2sin®#. Then

we have

vy = \/2(E+1—28in25): \/2(E+1)—4sin2g. (5.2.10)

Therefore, we can obtain

t =

U(t) 1
/ du . (5.2.11)
0 \/2(E+1)—4sin2%

We have transferred the initial problem into solving the equation (5.2.11).
Now, our purpose is to solve (5.2.11). That is, we have to find the represen-
tation of U(t) in terms of ¢. We discuss it in three different cases according

to different E .
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Casel. —-1<FE<1
If the constant E € (—1,1), the equation (5.2.11) becomes

1
du (5.2.12)

Ut)
- /
0 \/2 (E+1)— 4sin2(g)
\/T =N u
2y (5.2.13)
E + 1 0 \/1 E_H Sln 151,) 2

Let o = o sm(2) then d(2) L—_x?da:.
B+1
And (5.2.12) can be represented as
Ve 1 1
t= / = da . (5.2.14)
0 SRR
41
Let k =4/ T+ , then the equation(5.2.14) becomes
U@)
Z 1
i dt (5.2.15)

K~ sin(
t =
/0 V1 — 221 — K222
By Jacobian elliptic function sn(u, ), the equation (5.2.15) signifies
that
Ul(t)

sn(t,k) = K~ sm(T)

This means

E+1
U(t) = 2sin"'(k sn(t, k), where k = T+ : (5.2.16)

E+1
Remark 5.1. In this case, & € (—1,1), s0 4/ ;_ € (0,1). That is,

0 <k <1.Besides, Kk x E.
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CaseIl. £=1
As the constant £ = 1, the equation (5.2.11) can be written as

u(t) 1
t:/ du (5.2.17)
0 ,/4—4sin*(%)
=R 1 u
- . d(5). (5.2.18)
0 1 —sin®*(%) 2
Let 2 = sin() , then d() = —— 4
= sin(= nd(z)=——=dx.
et & =sin(3), then d(3 W m— x
And (5.2.17) can be represented as
sin(Z12) 1 1
P— dr . 5.2.19
/0 V1I=22+/1- 22 ( )

By Jacobian elliptic' function sn(u,#), the equation(5.2.19) implies
that

U(t)

sn(tsl) = sin(T) :

This means
U(t) = 2sin” ' (sn(t, 1))- (5.2.20)

Remark 5.2. In this case, if we do not use Jacobian elliptic function,

we can also get the solution by Calculus. The solution is

U(t) = 2sin~ ! (tanh(t)).

Case III. F>1
The discussion of this case is similar to the first case. The different is

on the modulus . From the equation (5.2.11), we have
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/U(t) 1
0 \/Q(E +1) — dsin?(¥)

t =

du (5.2.21)

\/T =R 1 u
) / 2y (5.2.22)
Bt 1= gasy) 2
Lot & = y/——— . then the equation (5.2.21) b
et K = E i 1 s e1n € equation L. ecomes
(5.2.23)
And let z
Then (5.2.23
(5.2.24)

By Jacobia
that

(5.2.24) implies

This means

U(t) = 2sin"(sn(k~'t, k), where k = (5.2.25)

2
E+1°

Remark 5.3. In this case, £ > 1, so is smaller than 1. That

EF+1
is, 0 < k < 1. Besides, k o E71.
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5.3 The periods

We had found the solutions for the ordinary differential equation in the form
of Jacobian elliptic function with different constant £. Now we want to find
out the period of solution if it is a periodic solution. The idea is to find the
rest position U(ty) and t* denotes the time of the particle moves from U(0)

to U(tp) . Then the period is the four times ¢*.

Casel. —-1<FE<1
The solution of this case is(5:2.16) as

E+1
Uft) =2 sin="(msn(t, k), where r = T+ :

By (5.2.9), we could get the velocity of the particle is

Uy = \/2(E+ 1) — 4sin2(%). (5.3.26)

If the equation (5.3.26) equal to 0, then

L+ 1
@:isin_l(ﬂ),wherem: TJF

As a result, by (5.2.15), we know that the period is

T=4t"

k™ Lsin(sin™1(k)) 1 1

= 4/ dx
0 V1— 221 — K222
1
1 1
=4 dx
/0 V1— 221 — K222

=4K .

Then we find the period for this case.
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Remark 5.4.

(1) The constant K here is defined as

1

1
1
K= dx
/o V1—22v1— k222

which is the same value to the Remark 4.10.

(2) The constant K o x, which signifies that the period T oc k. And

it is easy to calculate that T' = 27 if Kk = 0. This means that the

period T > 2w, for all k € (0,1). Additionally, this also takes on

that if U(t) = 2sin'(k) < 2s8in" (1) =, it is a periodic solution

with period 4K

CaseIl. =1
The solution of this case s (5.2:20).as

U(t) = 2sin” (sn(t, 1)) .

By (5.3.26); and given £ =lrwe could get

U= \/4—4Sin2(%).

If the equation (5.3.27)"equal to 0, then
Ut) L7

2 2"
Then using (5.2.19), the period can be calculated

T=4t"
sin(5) 1 1
=4 dx
/0 V1—a22y1—22

1
1
—4/ dx
o 1—a?

= 0.
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The period of this case could be regarded as oo although it is not a
periodic solution. This means that if we release the particle at the

position —7r, it needs infinity time to approach the position 7.

Case IIl. £ >1
By the equation (5.3.26), we know that the velocity is always positive
for this case £ > 1. This means that at each position U(t), the pendu-
lum always has velocity, so the pendulum will never stop. This implies

that it has no periodicity.

5.4 The phase portraits

The ordinary differential equation we had discussed is the mathematical
model of ideal pendulum. Now we try to plot the relation between U(t)
and U; and the'graph is called phase portrait. Before drawing the phase

portrait, we see back to the equation(5.2.8) as

1 ;
Euf —cosu = I, where-F-is aconstant.

1
It shows that —u? — cos i is a constant..t-can be regarded as a conservation
law in the viewpoint of mathematics since — cosu is not always larger than

0.

1
This constant and the former part §uf can be regarded as kinetic energy and

the latter part — cosu can be regarded as potential energy.

We will discuss the potential energy and phase portrait with different cases.

Casel. -1<E<1
We set E = 0 to analyze this case. By the equation (5.2.8), we have
the equation u; = £v2cosu.
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The following graphs are potential energy and phase portrait respec-

tively. This means that they are the relation between v and cosu and

the relation between u and wu; .

fa) Potential Energy
] -

(b} Phase Portrait

/’fr’ ] \\
// ™,

cosfu) 0.5 0.5 )
E=0
T T T T T T .
-3 1 3 s -1 05 O o5 1 18

. ;

| -0.5] /

\ 2 /
X -

Figure 5.4:1. The potential energy and phase portrait-for £ = 0

Remark 5.5.

(1) From thegraph of the phase portrait, the red curve means that the

velocity at.those position are positive and the blue curve means

that the velocity at those position are negative.

The positive

velocity is defined by rotating counterclockwise and the negative

velocity is defined by rotating clockwise.

(2) By the graph of potential energy, we can find out that the maxi-

mum of amplitude, u(t), for the pendulum is g and it oscillates

forth and back.

Casell. F =1

Now we focus on the case with £ = 1. By the equation (5.2.8), we have

uy = £4/2(1 + cosu) . We see the potential energy and phase portrait

as following.
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(a) Potential Energy (b) Phase Portrait
1 2

N\ E=I /

\\ / -

\ cosw) 057

Figure 5.4.2. The potential energy and phase portrait for £ =1

By the graph of potential energy; we canfind out that the maximum of
amplitude, u(t)4 for the pendulum is 7. If we release the pendulum at

position 7, the particle will approach to the position —7 after infinite

time.

Case III. £ >1
3
Last, we see the case £ > 1 'with £ = 3 By the equation (5.2.8),

[ 3
we have u; ==% 2(5 + cosu) . We see.the potential energy and phase

portrait as following.

{a) Potential Energy
5 .
Phase Portrait
E=32 &) e
1 . —
™, Ve 2 -
\l\-. _.-"IJ -~ .
cosf) 0.5 / - 14 e
3 2.1 o 1/2 3 -3 -2 -1 o 1 2 3
fu u
os , — -1 o
\ \x /
\‘T“" s “‘*m:g o~

3
Figure 5.4.3. The potential energy and phase portrait for £ = 3
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Remark 5.6.

(1) From the graph of the phase portrait, we know that the pendu-
lum of this case will never stop since the phase portrait has no

intersection with the wu-axis.

(2) By the graph of potential energy, we observe that the kinetic en-
ergy is never equal 0. This implies that the case has no periodic

solution and the result is corresponded to the property which we
had discussed.

By our discussion, there are three kinds of the phase portraits. Before fin-
ishing the section, we combine-the-three phase portraits and the vector field

together.

With vector field

Figure 5.4.4. Global phase portrait
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5.5 Related knowledge

We can connect with a partial differential equation
Upp — Ugy +sinu =0, (5.5.28)
which is called sine-Gordon equation.

Firstly, we can simplify the equation (5.5.28). Assume that 6 = kz — wt with

Wk =1.

And by chain rule, we ha

Using the same

Then (5.5.28) can be tra e differential equation

ugg + sin(u) = 0. (5.5.29)

That is the pendulum motion we discussed.
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Chapter 6

Conclusion

In this paper, we study the-ideal pendulum equation u” 4 sinu = 0, which

can be translated.into integral-form

/\/mdu::t/dt

where E is the integration constant. The integrator involve \/2(E + cosu)
where F + cosu is atranscendental function and it has infinitely many zeros,
so u resides on Riemann surface of genus oo.

Hence, we study its nonlinear approximation, namely
u" 4 Pyyyi(u) =0,

where Poyyq(u) is the {2N+1}-th Taylor expansion of sinw .
Then this O.D.E. has the integral form

du,

1
/ V2(E — Pania(u))

where u now resides on Riemann surface of genus NV, then we can analyze

and compute it.
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We then study the classical elliptic function and apply to analyze the exact

theory of pendulum motions with a table given as follows:

Energy £ -1<FbE<1 E=1 E>1
Solution U(t) | 2sin ' (ksn(t, k)) | 2sin ' (sn(t, 1)) | 2sin~ ' (sn(x~'t, k))
E+1 2
Modul —_— 1 —_
odulus K \/ 5 ol
Periods T 4K 00 No periodicity

For further study, wemaj

tion

where u” + sin

133

d sine-Gorden equa-




Appendix A

The process of computation

1
A.O.
01 | &7

1 1 Math. /_1 1 .
——dz = / ——dz =" =2 —dr = <0.084919 4 0.36914 ¢
/a3 f(2) asf (2) oy f(r—i)

B

1
A.0.
0-2 blf(z)z

7=

—1

Math. 1
—d — d
/1 2—|—m T o f(=2+710) 2+m dr /2 r—i)T

O1f( 1+ri dr_/1%dr+ f / f7“+2 ar

~1
[ s [ e /fwz =
/_2f d?’——o 804295 4+ 0.615335 ¢
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1
A.0.3 /62 mdz

/b2ﬁdz:/b§ ﬁdz

Math. 0 i -t i Lo

- ‘/1 f<—2+m'>‘”+/o ™), Fe— o™
0 ’L 0 1 1 Z

L e L Wdr‘/o i)™
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A.0.5 —dz
b2

|7 76
1 -1
= / f( 2+ 1) dr+/0 f( 2—|—m)dr_ 9 f(rl—z')dr

0 7 1 141
L L /f 1+z

|t L7
Math. / f 2+m

1
_1f 1—|—m /f 1—|—m dr = fr+z)

/ fz+1r+lz+z / fz+r / f(=1+i+r) 1+z+r

= —0.604473 + 0.635889 1%

-1

; f<—2+m'>d’”‘ L T

0
-1

~
—

dr
dr
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A.0.7 /—du

,, Math 134 l
—du = =" 9 - d
/al du = / /—1.34 f(8.27 + 1) g

Here the computation by Mathematica is too huge to appear.

A.0.8 /—du

| 7
f(u
Y 3.86 ; 1:34 ;
Pwle==R Lo A | TS
134 [(8.19 +7i) g /_1434 (819 + 71) "

1.34 i
+ 2 ——d
/—3.86 f(819+TZ) !

Here the computation by Mathematica is-too huge to appear.

A.0.9 /—du

/%ﬁdu:/agﬁdu

Mt 8.19 ; 3.86 ;
Z" 9 — —dr — 2 —_dr
386 J(8.04 4 1ri) /1.34 f(8.04 +ri)
1.34 ; 1.34 ;
+ 2 ——dr — 2/ —dr
/_1.34 f(8.04 + i) _386 f(8.04+1ri)

—3.86 i
+2 —d
/—‘8.19 f(804+7”2) "

Here the computation by Mathematica is too huge to appear.
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1 1
——du = / ——du
/M f(u) ar f(u)
Math 2.48 ; 1.34 i .
ath- 9 S — S
/1.34 f(3.14 + i) : /_1.34 f(3.14 + ri) "

~1.34 i
+2 - d
/_2.48 f(3.14 4 i) g

Here the computation by

Here the computation by Mathematica is too huge to appear.
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Math 8.19 ; 3.86 ;
R S S A
386 Jf(—8.04+ri) " 134 f(—8.04 + i) "

1.34 ; 134 ;
-2 o dr +2 —d
/—1.34 f(—8.04 + i) ' /—3.86 f(=8.04 +ri) :

/—3.86 f(—8.19 + ri) "

Here the computation by Mathematica is too huge to appear.
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A.0.14 —du
b7

7= 7
flu b f
Math. 1.34 i ~8.19
=" _9 _ —dr — 2/ ——dr
0 f(=8.27 —ri) _ga7 f(r)
7

1.34
—9 Y gryo 4
ATy /1_34 F819+ )

3.86

——du =
/b6 f(u)
Math. Z
z —d
—1.34 f(—819 + 7"’6) "
3.86 i
2 _—
T /1.34 F80d+ )"
) !

——d
3.86 f(_8.04+7’7/) "

Here the computation by Mathematica is too huge to appear.
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/bg)ﬁdu:/bg ﬁdu

Math 1.34 i —3.86 ;
é. du+2/ —,dT‘—Q/ _— dr
v f(u) 586 f(—8.04+79) s10 f(—8.04+ 1)

6

0 i 0 i
—_——dr — 2/ —dr
/_ . . ) —1.34 f(_8~04 + i)

J. 7

\"\
—

f

- 0
Math. 1 1
= —du -2 _— —dr+2 / _dr
/ £(u) aas S(—3.14+ 1i) Caa J(=314+ i)

314 4 B 1.34 ; ) 2.48 ; ]
42 / A% A M B R S—
314 (1) o f(3.14+ i) 130 f(3.14 +1ri)

Here the computation by Mathematica is too huge to appear.
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A.0.18 —du

b3
1 1
/,,3 ™ / ™
Math 0 - —1.34 ’L
/ /_1 34 f(3 14 +r )dr 2 /—2.48 f(3-14 + Ti) ar
8.0 1 1.34 -
— —d — - -
2 Jowe T /
386 Z

~3.86 i
lr + 2 - d
/—8.19 f(8.04 4 77) g

7

-2 ——dr + 2
/134 f(8.04 4 71)

1.34 . 3.86

of ' g2 1y
R A R T R Rl N T R T

Here the computation by Mathematica is too huge to appear.
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1
A.0.20 /bl mdu

/blﬁdu:/btﬁdu

Math. 1 0 [
= ——du — 2/ ——dr
/b; f(u) _1.34 f(8.19 + 1)

~1.34 ; 827 | 1.34 ;
—|—2/ _—dr —2 ——dr — 2 —dr
_386 J(8.19 4 71) s19 f(7) o f(8.274 i)

Here the computation by
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