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摘要 

 

    在此篇文章中，我們主要在探討理想的單擺運動。首先，藉由多項式去逼近，並探

討相對應之方程式，在這之中我們發現黎曼空間的理論是必要的，因此接著介紹如何造

出相對應的黎曼空間，並利用 Mathematica 幫助我們去計算相對應的黎曼空間上的路徑

積分及方程式上相關之性質。 

    再來，介紹橢圓函數的基本性質，我們利用橢圓函數解出原微分方程的實際解、週

期及相關性質。 
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Abstract 

 

    In this paper, we study the ideal pendulum equation. First, we study the nonlinear 

approximation of the exact theory, and the Riemann surface theory is needed. So we study the 

Riemann surface of genus N in various algebraic cut-structures. We then apply Mathematica 

to evaluate path integrals on those Riemann surfaces.     

Secondly, we study the classical Elliptic functions. From which, we are able to solve the exact 

solution and certain properties of the pendulum motions. 
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Chapter 1

Introduction

The simple pendulum is an idealized mathematical model of a pendulum.

This is a bob on the end of a massless cord suspended from a pivot, with

no friction in a closed system. As we give an initial push, it will swing at a

constant amplitude back and forth.

In this paper, we consider a simple pendulum motion

u′′ + sinu = 0 . (1.0.1)

Multiply the equation (1.0.1) by u′, then we have

u′u′′ + u′ sinu = 0 . (1.0.2)

Integrate the equation (1.0.2) and compute it, we can get

1

2
(u′)2 − cosu = E , where E is the integration constant.

⇒ (u′)2 = 2(E + cosu)

⇒ u′ = ±
√

2(E + cosu)

⇒ du

dt
= ±

√
2(E + cosu) (1.0.3)

The equation (1.0.3) can then be expressed as∫
1√

2(E + cosu)
du = ±

∫
dt . (1.0.4)
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Indeed the equation (1.0.4) is not easy to solve.

At first, we can analyze the properties of the solution of the equation. We

know that sinu can be expanded by Taylor series

sinu =
∞∑
k=0

(−1)k

(2k + 1)!
u2k+1 , for all values of u.

Use the nonlinear approximation we can get

sinu ≈
N∑
k=0

(−1)k

(2k + 1)!
u2k+1 , for all positive integer values of N .

Let

P2N+1(u) =
N∑
k=0

(−1)k

(2k + 1)!
u2k+1

So the equation(1.0.1) becomes to

u′′ + P2N+1(u) = 0 .

As above, after computing we obtain the following integral equation∫
1√

2(E − P2N+2(u))
du = ±

∫
dt , where E is the integration constant.

Since 2(E − P2N+2(u)) is a polynomial of u, it can be written as

2(E − P2N+2(u)) = (u− u1)(u− u2) · · · (u− u2N+2)

=
2N+2∏
k=1

(u− uk) ,

where uk’s are the roots of the equation 2(E − P2N+2(u)) = 0 .

Thus, the function theory of solutions u of the equation involves

√√√√2N+2∏
k=1

(u− uk).

Where the space u reside is worth investigating.
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Consider a function f(z) =

√√√√ n∏
k=1

(z − zk) and it is not single-valued on the

complex plane C that we will have more to say about later. We use algebra

and analysis to develop a new surface such that f becomes a single-valued

function on it. This surface is called a Riemann Surface.

But later, in order to get the exact solution of the original equation, we

use the elliptic functions, which Chapter 4 and Chapter 5 will discuss it in

detail.[4]
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Chapter 2

Riemann Surface

2.1 Structures of the Riemann surfaces

In this section, we use the function f(z) =
√
z to show how to construct the

corresponding Riemann surface for f(z) . Using polar form, let

z = rei(θ+2kπ) , r ̸= 0 , k ∈ Z . Then we have

f(z) =
√
re

1
2
i(θ+2kπ)

=
√
re

1
2
iθekπi

=

{ √
re

1
2
iθ if k is even

−
√
re

1
2
iθ if k is odd

which is a two-valued function since it has different values as θ increases by

2π. Here we want to make f(z) single-valued, so we modify its domain C to

build the corresponding Riemann surface such that f becomes single-valued

on it.

Beginning with z = reiθ , r ̸= 0 , we have f(z) =
√
z =

√
re

1
2
iθ . Holding

r constant, and going along any closed path once around the origin so that

θ increases by 2π, f(z) changes to
√
re

1
2
i(θ+2π) = −

√
re

1
2
iθ which is just the

4



negative of its original value. (Show in Figure 2.1.1.)

Continuing above way then θ increases by 2π and f(z) returns to the original

value.

Figure 2.1.1. The idea of two sheets

We cut the plane along the negative real axis and restrict ourselves so as

never to continue f(z) over this cuts, then we get two single-valued branches

of f(z) when defined by the equations

f(z) =
√
re

1
2
iθ , θ ∈ [−π, π) (in sheet-I)

and

f(z) =
√
re

1
2
iθ , θ ∈ [π, 3π) . (in sheet-II)

The cut on each sheet has two edges. We label the starting edge with “+” and

the terminal edge with “−”. (Show in Figure 2.1.2.) Imagine that the surface

as two sheets lying over the complex plane, each cut along the negative real

axis.

Moreover, we extend the complex plane with the “point” at infinity to consti-

tute the extended complex plane. Use stereographic projection, we can think

of the two sheets as spheres.

5



Figure 2.1.2. Two sheets and their corresponding spheres

Now image that the spheres are made of rubber. By spreading the edges of

the cuts, we can deform each sheet into a hemisphere.

Paste the hemispheres each other together (+)edge of sheet-I with (−)edge of

sheet-II and (−)edge of sheet-I with (+)edge of sheet-II. Then we can derive

a sphere, which is called the Riemann surface of genus 0 , denoted by R0.

(Show in Figure 2.1.3.)

Hence, (+)edge of sheet-I is equivalent to (−)edge of sheet-II and (−)edge

of sheet-I is equivalent to (+)edge of sheet-II in the Riemann surface. As we

cross the cut, we move around the other sheet.

6



(a) Place the cuts open and deform each sheet into a hemisphere

(b) Deform the sheets

Figure 2.1.3. Construct R0
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The following are two examples, we will construct whose corresponding Rie-

mann surface in a similar way.

Example 2.1.

Construct the Riemann surface for f(z) =

√√√√ 3∏
k=1

(z − zk) =
3∏

k=1

√
z − zk , zk ∈

R and z1 > z2 > z3.

Solution.

First, we cut the plane starts from zk to −∞ , k = 1, 2, 3. (Show in Fig-

ure 2.1.4.)

Figure 2.1.4. The cut from zk to −∞

Crossing one cut, we move around the other sheet, the argument of z in-

creases by 2π then the argument of f(z) increases by π which is just the

negative of its original value. As we cross one cut, we need to change the

sign by “−1”. We find that crossing odd times will change the sign and even

times will keep its same value. So there are branch cuts along [−∞, z3] and

[z2, z1] as illustrated in the in Figure 2.1.5.

8



Figure 2.1.5. The cut structure

Second, placing the cuts open, pasting two sheets together (+)edge with

(−)edge, and using the same idea as above. Then we obtain the corre-

sponding Riemann surface of genus 1 for f(z), denoted by R1. (Show in

Figure 2.1.6.)

9



(a) Cuts on the two spheres

(b) Deform the two sheets

(c) Construct R1

Figure 2.1.6. Geometric structure for f(z)
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Example 2.2.

Construct the Riemann surface for f(z) =

√√√√ 4∏
k=1

(z − zk) =
4∏

k=1

√
z − zk ,

zk ∈ R and z1 > z2 > z3 > z4.

Solution.

As in Example 2.1, we cut the plane start from zk to −∞ , k = 1, . . . , 4.

(Show in Figure 2.1.7.)

Figure 2.1.7. The cut from zk to −∞

Then there are branch cuts along [z4, z3] and [z2, z1]. (Show in Figure 2.1.8.)

Figure 2.1.8. The cut structure
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Figure 2.1.9. Construct cuts on two spheres

Figure 2.1.10. The deformation from the Figure 2.1.9.

Paste two sheets together (+)edge with (−)edge, then we obtain the corre-

sponding Riemann surface of genus 1 for f(z), denoted by R1.

Figure 2.1.11. Construct R1
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We found f(z) of 3 or 4 roots have different algebraic structures but same

geometric graph with 1 holes. That is no matter 3 or 4 points, we can

construct corresponding Riemann surface of genus 1.

Now we generalize the results from Example 2.1 and Example 2.2 by the

following general example. Let f(z) =

√√√√ n∏
k=1

(z − zk) , where zk ∈ R and

z1 > z2 > · · · > zn. Using the same idea to construct the Riemann surface

for f(z). First, we cut the plane start from zk to −∞ , k = 1, . . . , n. (Show

in Figure 2.1.12.)

Figure 2.1.12. The cut from zk to −∞

Then we discuss the cuts structure in two cases according to n is odd or even.

Case i. If n ∈ odd, denoted by 2N − 1.

There are cuts along [−∞, z2N−1], [z2N−2, z2N−3], · · · , [z2j, z2j−1], · · · , [z4, z3], [z2, z1] .

Figure 2.1.13. The cut structure as n = 2N − 1

13



Figure 2.1.14. Together two sheets

Then we obtain the corresponding Riemann surface of genus N − 1 for

f(z), denoted by RN−1. (Show in Figure 2.1.15.)

Figure 2.1.15. Geometric graph of RN−1

Case ii. If n ∈ even, denoted by 2N .

There are cuts along [z2N , z2N−1], [z2N−2, z2N−3], · · · , [z2j, z2j−1], · · · , [z4, z3], [z2, z1]

Figure 2.1.16. The cut structure as n = 2N

14



Figure 2.1.17. Together two sheets

Similarly, we obtain the corresponding Riemann surface of genus N−1

for f(z) as the same as Case i. (Show in Figure 2.1.18.)

Figure 2.1.18. Geometric graph of RN−1

Thus, no matter f(z) =

√√√√2N−1∏
k=1

(z − zk) or f(z) =

√√√√ 2N∏
k=1

(z − zk) ,

there are N cuts and N−1 holes on the corresponding geometric struc-

ture RN−1 .

15



2.2 The contour in algebraic and geometric

structure

We already comprehend the relation of algebraic and geometric structure

for f(z) =

√√√√ n∏
k=1

(z − zk) and how to construct the corresponding Riemann

surface. In this section, we will show that the contour on the algebraic

structure and its corresponding geometric structure.

Note that

1. In the algebraic structure, solid line means the contour in sheet-I and

dash line means the contour in sheet-II.

2. In the geometric structure, solid line means the contour in overhead

Riemann surface and dash line means the contour in ventral Riemann

surface.

2.2.1 a- and b-cycles

Every closed curve on Riemann surface can be deformed into an integral

combination of the loop-cut ai and bi, i = 1, 2, ..., N . So in this section, we

will introduce a-,b-cycles, which can help us simplifying the computation.

• a-cycle is a simple closed curve enclosing a finite cut (the endpoint of

cut is a finite number).

• b-cycle is a simple closed curve starting from (+)edge of a cut (it maybe

finite cut or infinite cut) without enclosed by any a-cycle, to (+)edge

of another cut enclosed by a a-cycle. Then the curve crosses through

(−)edge of this cut and goes into sheet-II, and finally arrives to the

(−)edge of the starting cut.

16



Each a-cycles are non-overlapping and each b-cycles are non-overlapping.

Note that a- and b-cycles have the same amount.

Here we take f(z) =
√
z(z − 1)(z − 2) for example to illustrate a- ,b-cycles

on the cut plane and on the Riemann surface.

The a- and b-cycle are shown in Figure 2.2.1 and Figure 2.2.2.

Figure 2.2.1. a- and b-cycle on the algebraic structure

In this case, f(z) has three roots and then make two cuts and one a- ,b-cycle.

Also, the number of a- and b-cycle are the same.

Then we get the corresponding Riemann surface of genus 1 with a- and b-

cycle for f(z).

17



(a) a- ,b-cycle on two sheets

(b) R1 for f(z) with a- ,b-cycle

Figure 2.2.2. a- and b-cycle on the corresponding geometric structure

Here we review some famous theorems.

Theorem 2.1. (Cauchy-Goursat Theorem)

If a function f is analytic at all points interior to and on a simple closed

contour C, then ∫
C

f(z)dz = 0 .

18



Theorem 2.2. (Cauchy Theorem)

Let C and C1, C2, . . . , Cn denote counterclockwise simple closed contours.

Let all the contours Ci’s be outside each other but inside C. If a function f

is analytic in the closed and “holey” region consisting of those contours and

all points between them, then∫
C

f(z)dz =
n∑

i=1

∫
Ci

f(z)dz .

Corollary 2.1.

Let C1 and C2 denote counterclockwise simple closed contours, where C2 is

interior to C1. If a function f is analytic in the closed and “holey” region

consisting of those contours and all points between them, then∫
C1

f(z)dz =

∫
C2

f(z)dz .

19



Take another example, let f(z) =

√√√√ 8∏
k=1

(z − zk) , and make ai and bi cycles,

i = 1, 2, 3. Consider a closed contour γ as shown in Figure 2.2.3.

(a) a- and b-cycles for f(z)

(b) A closed contour γ (c) The equivalent path for γ

Figure 2.2.3. Deform γ into a combination of a-cycles

Using Cauchy Theorem, then γ can be deformed into a combination of ai

cycles, i = 1, 2, 3.

20



Any closed curve on the Riemann surface can be deformed into a combination

of a- and b-cycles. Thus, in this paper, we will consider the integrals of f(z)

over a- and b-cycles that help us to evaluate the integrals easier.

2.2.2 The equivalent path

Sometimes the curves are difficult to write out their parametric representa-

tion, but straight lines are easy to write out their parametric representation.

Thus, we can use the homotopic of curves to find the equivalent paths of

curves. It helps us quicker and easier to evaluate the integrals over the

curves.

From C1 is homotopic to C2, denotes C1 ≈ C2. We have∫
C1

1

f(z)
dz =

∫
C2

1

f(z)
dz .

Take an example to explain, in Figure 2.2.4, C1 ≈ C2 ≈ C3 , and finally

we compression the curve C1 until we find the equivalent paths of curves

C1 ≈ r1 ∪ r2.

Figure 2.2.4. Equivalent path

21



Therefore we obtain ∫
C1

1

f(z)
dz

=

∫
C2

1

f(z)
dz

=

∫
C3

1

f(z)
dz

=

∫
r1∪r2

1

f(z)
dz

=

∫
r1

1

f(z)
dz +

∫
r2

1

f(z)
dz .

Hence we can replace the complicated path C1 for simple path r1
∪

r2 .

We take f(z) =
√

z(z − 1)(z − 2) for example to show the equivalent path.

(a) a, b-cycle

(b) The equivalent path for a, b-cycle

In this paper, we will take the equivalent path by this way.

22



2.2.3 The integrals of
1

f(z)
over a-, b-cycles

As in Section2.1, we consider the function f(z) =
√
z . Let θ2 = θ1+2π and

z1 = reiθ1 and z2 = reiθ2 , r ̸= 0 , where θ1 denotes the argument in sheet-I

and θ2 denotes the argument in sheet-II. Then on the complex plane z1 = z2,

but

f(z2) =
√
z2 =

√
re

1
2
iθ2 =

√
re

1
2
i(θ1+2π)

=
√
re

1
2
iθ1eiπ = −

√
re

1
2
iθ1 = −

√
z1 = −f(z1).

Figure 2.2.5. f(z1) ̸= f(z2)

That is because the difference of argument between z in sheet-I and sheet-II

is 2π, that is the difference between f(z)|(I) and f(z)|(II) is π. Hence, we

have

f(z)|(I) = −f(z)|(II)

where f(z)|(I) denotes the computation of f(z) in sheet-I and f(z)|(II) de-

notes the computation of f(z) in sheet-II.

23



2.2.4 For horizontal cuts

• The problem as using Mathematica

We want to calculate

∫
1

f(z)
dz , where f(z) =

√√√√ n∏
k=1

(z − zk) , by using

Mathematica we can obtain the value. But when we compute the integrals

by Mathematica, we found something uncommon.

We observe that the computation of f(z) in sheet-I is not equivalent to the

computation of f(z) in Mathematica as the argument is −π. Take
√
−1 for

example, in sheet-I the argument of −1 is −π and the argument of
√
−1 is

−π

2
, then we have

√
−1 = e−

π
2
i = −i . But using Mathematica we obtain

√
−1

Math.
= i , which we must multiply by −1 to get the correct value. The

reason is in Mathematica the argument belongs to (−π, π] which is different

from in sheet-I the argument belongs to [−π, π).

Figure 2.2.6. The value of
√
−1 in Mathematica and in theory

• Modification

For convenience, we denote f(z)
Math.
= −f(z) , which signifies that the polyno-

mial f(z) in front of “
Math.
= ” is the value of f(z) in theory and the polynomial

f(z) behind the “
Math.
= ” is the value of f(z) in Mathematica.
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Compare the value of f(z) with z in sheet-I and in Mathematica. We then

observed that sometimes the computation of Mathematica needed to modify,

collating as following.

Lemma 2.1. If
n∏

k=1

(z − zk) = reiθ in sheet-I with horizontal cut,

then

f(z)|(I) =
{

f(z)|Math. θ ∈ (−π, π)
−f(z)|Math. θ = −π

where f(z)|Math. denotes the computation of f(z) in Mathematica.

Proof.

Since −π does not in (−π, π], Mathematica will transform re−iπ into reiπ,

but f(re−iπ) and f(reiπ) are different.

In theory: − 1 = e−iπ ⇒
√
−1 = e−

iπ
2 = −i

In Mathematica: − 1 = e−iπ
Math.
= eiπ ⇒

√
−1 = e

iπ
2 = i

So f(z)
Math.
= −f(z) if θ = −π in Mathematica.

2.2.5 For vertical cuts

• The problem as using Mathematica

We cut the plane along the positive imaginary axis and define tha

z − zk = reiθ , θ ∈ [−3

2
π,

1

2
π) (in sheet-I)

and

z − zk = reiθ , θ ∈ [
1

2
π,

5

2
π) . (in sheet-II)
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The cut on each sheet has two edges. We label the starting edge with “+”

and the terminal edge with “−” .

Suppose that f(z) =
√
z , z = ri .

In sheet-I, z = |z|eiθ , θ ∈ [−3

2
π,

1

2
π) then

√
z = |z|

1
2 ei

θ
2 ,

θ

2
∈ [−3

4
π,

1

4
π)

In sheet-II, z = |z|eiθ , θ ∈ [
1

2
π,

5

2
π) then

√
z = |z|

1
2 ei

θ
2 ,

θ

2
∈ [

1

4
π,

5

4
π)

Figure 2.2.7. The domain and image on two sheets for vertical cut

• Modification

Compare the difference between the computation in theory and in Mathe-

matica as illustrated in the in Figure 2.2.8.
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Figure 2.2.8. The difference between in theory and in Mathematica for vertical cut

So we need to modify the computation in Mathematica, collating as following.

Lemma 2.2. If z in sheet-I for vertical cut, then

√
z − zk

Math.
=


−
√
z − zk arg(z − zk) ∈ [−3

2
π,−π]

√
z − zk arg(z − zk) ∈ (−π,

1

2
π)

where arg(z − zk) denotes the argument of f(z).

Proof.

Let z in sheet-I and using polar form z − zk = reiθ. When θ ∈ (−π,
π

2
),

the argument in theory or Mathematica is the same. When θ ∈ [−3π

2
,−π],

Mathematica will conversion θ into θ + 2π where θ + 2π ∈ [
π

2
, π] and reiθ =

re(θ+2π)i, but

In theory:
√
z − zk =

√
re

θ
2
i

In Mathematica:
√
z − zk =

√
re

θ+2π
2

i = −
√
re

θ
2
i

Thus, if θ ∈ [−3π

2
,−π] ,

√
z − zk

Math.
= −

√
z − zk.
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2.2.6 For slant cuts

• The problem as using Mathematica

We cut the plane along a straight line which slope is m = tanα , 0 < α ≤ π

. Notice that the cut with α means the slope of the straight line where the

cut on is m = tanα , 0 < α ≤ π . We define that

z = reiθ , θ ∈ [α− 2π, α) (in sheet-I)

and

z = reiθ , θ ∈ [α, α + 2π) . (in sheet-II)

The cut on each sheet has two edges. We label the starting edge with “+”

and the terminal edge with “−” .

Suppose that f(z) =
√
z , z ∈ C .

In sheet-I, z = |z|eiθ , θ ∈ [α−2π, α) then
√
z = |z|

1
2 ei

θ
2 ,

θ

2
∈ [

α− 2π

2
,
α

2
)

In sheet-II, z = |z|eiθ , θ ∈ [α, α+2π) then
√
z = |z|

1
2 ei

θ
2 ,

θ

2
∈ [

α

2
,
α + 2π

2
)

• Modification

Compare the difference between the computation in theory and in Mathe-

matica as illustrated in the Figure 2.2.10.

So we need to modify the computation in Mathematica, collating as Lemma2.3.
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Figure 2.2.9. The domain and image on two sheets for the cut with α

Figure 2.2.10. The difference between in theory and in Mathematica for the cut with α
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Lemma 2.3. If the cut with zk on the line where the slope of line is
m = tanα , 0 < α ≤ π . and z in sheet-I, then

√
z − zk

Math.
=

{
−
√
z − zk arg(z − zk) ∈ [α− 2π,−π]√

z − zk arg(z − zk) ∈ (−π, α)

Proof.

Let z in sheet-I and using polar form z − zk = reiθ where arg(z − zk) = θ .

When θ ∈ (−π, α), the argument in theory and in Mathematica is the same.

When θ ∈ [α − 2π,−π], Mathematica will transform θ into θ + 2π where

θ + 2π ∈ [α, π] and reiθ = re(θ+2π)i, but

In theory:
√
z − zk =

√
re

θ
2
i

In Mathematica:
√
z − zk =

√
re

θ+2π
2

i = −
√
re

θ
2
i

So if θ ∈ [α− 2π,−π],

√
z − zk

Math.
= −

√
z − zk.

2.2.7 Summary

Because sometimes the form of integration is complex, if we could simplify

the way about modify the sign of f(z), it will help us to get right value easier.

We divided domain C into many blocks to discuss way to modify on slant

cuts. It can help us reduce the steps of modifying f(z).

Definition 2.1. Any slant cut whose slope of line is m = tanα , 0 < α ≤ π

and the end points of cut are zk = xk + iyk and zk+1 = xk+1 + iyk+1. Define

the domain L as

L = (x, y) : y − yk > tanα (x− xk) when tanα > 0

L = (x, y) : y − yk < tanα (x− xk) when tanα < 0
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Lemma 2.4. If f(z) =
√
z − zk

√
z − zk+1 for the cut with α. We

divided domain C into 6 areas as illustrated in the Figure 2.2.11.

(B1) = { (x, y) | (x, y) ∈ L and y ≥ yk+1 }
(B2) = { (x, y) | (x, y) ∈ L and yk ≤ y < yk+1 }
(B3) = { (x, y) | (x, y) ∈ L and y < yk }

(M) = (B4)
∪

(B5)
∪

(B6) = { (x, y) | (x, y) ∈ C \ L }
∪{

(x, y) | y − yk
x− xk

= tanα

}

then we have

f(z)
Math.
=

{
−f(z) if z ∈ (B2)

∪
{ the cut with (+)edge of sheet-I }

f(z) otherwise.

Proof.

Figure 2.2.11. Divided domain C into 6 blocks

(1) z ∈ (B1) : arg(z − zk), arg(z − zk+1) ∈ [α− 2π,−π]
√
z − zk

Math.
= −

√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1

f(z)
Math.
= f(z)

(2) z ∈ (B2) : arg(z − zk) ∈ [α− 2π,−π] then
√
z − zk

Math.
= −

√
z − zk
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√
z − zk+1 ∈ [−π, π] then

√
z − zk+1

Math.
=

√
z − zk+1

f(z)
Math.
= −f(z)

(3) z ∈ (B3)
∪

(M) : arg(z − zk), arg(z − zk+1) ∈ [−π, π]
√
z − zk

Math.
=

√
z − zk and

√
z − zk+1

Math.
=

√
z − zk+1

f(z)
Math.
= f(z)

(4) z ∈the cut with (+)edge of sheet-I:

arg(z − zk) = α− 2π then
√
z − zk

Math.
= −

√
z − zk

arg(z − zk+1) = α− π then
√
z − zk+1

Math.
=

√
z − zk+1

f(z)
Math.
= −f(z)

(5) z ∈the cut with (−)edge of sheet-I:

arg(z − zk) = α then
√
z − zk

Math.
=

√
z − zk

arg(z − zk+1) = α− π then
√
z − zk+1

Math.
=

√
z − zk+1

f(z)
Math.
= f(z)

There are two examples we calculate the integrals in theory and in Mathemat-

ica respectively, and also draw the path on the the corresponding Riemann

surface.

Example 2.3. Evaluate

∫
1

f(z)
dz over a3, b1 and b2 cycles, where

f(z) =
√

(z + 2 + i)(z + 2− i)(z + 1 + i)(z + 1− i)(z − 0)(z − 1)(z − 1− i)(z − 1− 2i) .

Let z1 = −2− i, z2 = −2 + i, z3 = −1− i, z4 = −1 + i, z5 = 0, z6 = 1, z7 =

1 + i, z8 = 1 + 2i.
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(a) The cut plane

(b) The a-,b-cycles
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(c) The regions need changing sign of cuts

(d) (M): region of modify
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Using region of modify to get result by Mathematica:

The region needs changing sign of
√
z − z1

√
z − z3 is { (+)edge of the cut

z1z3 }. The region needs changing sign of
√
z − z2

√
z − z4 is { (+)edge

of the cut z2z4 }. The region needs changing sign of
√
z − z5

√
z − z6 is {

z = x+ iy |x < 0 , 0 ≤ y < 1 }
∪

{ (+) edge of the cut z2z4 }. The region

needs changing sign of
√
z − z7

√
z − z8 is { z = x+ iy |x < 1 , 1 ≤ y < 2 }.

We let region of modify (M) = { z = x + iy | x < 0 , 0 ≤ y < 1 }
∪

{
z = x + iy |x < 1 , 1 ≤ y < 2 }

∪
{ (+)edge of the cut z1z3 } \ { (+)edge

of the cut z2z4 }.

1. Evaluate

∫
a3

1

f(z)
dz

Figure 2.2.12. The contour a3 in the cut plane

a3 : Consider the equivalent path a∗3 = a∗31
∪

a∗32, where

a∗31 = the path on the horizontal cut from −2− i to −1− i on (+)edge

of sheet-I and

a∗32 = the path on the horizontal cut from −1− i to −2− i on (−)edge

of sheet-I.
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Figure 2.2.13. The equivalent path for a3

(1) a∗31 : Let z = r − i , r : −2 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

a∗31

1

f(z)
dz

Math.
= −

∫ −1
−2

1

f(r − i)
dr

(2) a∗32 : Let z = r − i , r : −1 → −2 , dz = dr and z /∈ (M) then

f(z)
Math.
= f(z) ∫

a∗32

1

f(z)
dz

Math.
=

∫ −2
−1

1

f(r − i)
dr

By (1),(2) and Cauchy Theorem we can obtain

∫
a3

1

f(z)
dz , which

value is shown in the Appendix A.0.1.

2. Evaluate

∫
b1

1

f(z)
dz

b1 : Consider the equivalent path

b∗1 = b∗11
∪

b∗12
∪

a∗31
∪

b∗13
∪

b∗14
∪

b∗15
∪

b∗16
∪

b∗17
∪

b∗18
∪

b∗19
∪

b∗201∪
b∗202 , where
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(a) The contour b3 in the cut plane

(b) The equivalent path for b3

37



b∗11 = the path on the vertical line from −2 + i to −2 on sheet-I,

b∗12 = the path on the vertical line from −2 to −2− i on sheet-I,

b∗13 = the path on the vertical line from −1− i to −1 on sheet-I,

b∗14 = the path on the horizontal line from −1 to 0 on sheet-I,

b∗15 = the path on the vertical cut from 0 to i on (−)edge of sheet-I,

b∗16 = the path on the horizontal line from i to 1 + i on sheet-I,

b∗17 = the path on the vertical cut from 1 + i to 1 + 2i on (−)edge of

sheet-II,

b∗18 = the path on the vertical cut from 1 + 2i to 1 + i on (+)edge of

sheet-II,

b∗19 = the path on the horizontal line from 1 + i to i on sheet-II,

b∗201 = the path on the horizontal line from i to −1+ i on sheet-II, and

b∗202 = the path on the horizontal line from −1+ i to −2+ i on (−)edge

of sheet-II.

(1) b∗11 : Let z = −2 + ri , r : 1 → 0 , dz = idr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗11

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr

(2) b∗12 : Let z = −2 + ri , r : 0 → −1 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z)∫

b∗12

1

f(z)
dz

Math.
=

∫ −1
0

i

f(−2 + ri)
dr

(3) b∗13 : Let z = −1 + ri , r : −1 → 0 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z) ∫

b∗13

1

f(z)
dz

Math.
=

∫ 0

−1

i

f(−1 + ri)
dr

(4) b∗14 : Let z = r , r : −1 → 0 , dz = dr and z ∈ (M) then f(z)
Math.
=

−f(z) ∫
b∗14

1

f(z)
dz

Math.
= −

∫ 0

−1

1

f(r)
dr
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(5) b∗15 : Let z = ri , r : 0 → 1 , dz = idr and z /∈ (M) then f(z)
Math.
=

f(z) ∫
b∗15

1

f(z)
dz

Math.
=

∫ 1

0

i

f(ri)
dr

(6) b∗16 : Let z = r + i , r : 0 → 1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗16

1

f(z)
dz

Math.
= −

∫ 1

0

1

f(r + i)
dr

(7) b∗17 ≡ the path on the vertical cut from 1+ i to 1 + 2i on (+)edge

of sheet-I,

so z ∈ (M). Let z = 1 + ri , r : 1 → 2 and dz = idr then

f(z)
Math.
= −f(z)∫

b∗17

1

f(z)
dz =

∫
1+i

−99K1+2i

1

f(z)
dz =

∫
1+i

+→1+2i

1

f(z)
dz

Math.
= −

∫ 2

1

i

f(1 + ri)
dr

(8) b∗18 ≡ the path on the vertical cut from 1+ 2i to 1 + i on (−)edge

of sheet-I,

so z /∈ (M). Let z = 1 + ri , r : 2 → 1 and dz = idr then

f(z)
Math.
= f(z)∫

b∗18

1

f(z)
dz =

∫
1+2i

+99K1+i

1

f(z)
dz =

∫
1+2i

−→1+i

1

f(z)
dz

Math.
=

∫ 1

2

i

f(1 + ri)
dr

(9) b∗19 : Let z = r + i , r : 1 → 0 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗39

1

f(z)
dz =

∫
iL991+i

1

f(z)
dz = −

∫
i←1+i

1

f(z)
dz

Math.
=

∫ 0

1

1

f(r + i)
dr

(10) b∗201 : Let z = r + i , r : 0 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗201

1

f(z)
dz =

∫
−1+iL99i

1

f(z)
dz = −

∫
−1+i←i

1

f(z)
dz

Math.
=

∫ −1
0

1

f(r + i)
dr
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(11) b∗202 ≡ the path on the horizontal cut from −1 + i to −2 + i on

(+)edge of sheet-I.

Let z = r+i , r : −1 → −2 , dz = dr and z /∈ (M) then f(z)
Math.
=

f(z)∫
b∗202

1

f(z)
dz =

∫
−2+i

−L99−1+i

1

f(z)
dz =

∫
−2+i

+←−1+i

1

f(z)
dz

Math.
=

∫ −2
−1

1

f(r + i)
dr

By (1)∼(11) and Cauchy Theorem we can obtain

∫
b1

1

f(z)
dz , which

value is shown in the Appendix A.0.2.

3. Evaluate

∫
b2

1

f(z)
dz

Figure 2.2.14. The contour b2 in the cut plane

b2 : Consider the equivalent path

b∗2 = b∗11
∪

b∗12
∪

a∗31
∪

b∗13
∪

b∗14
∪

b∗21
∪

b∗22
∪

b∗202 , where
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b∗21 = the path on the vertical line from 0 to i on sheet-II,

b∗22 = the path on the horizontal line from i to −1 + i on sheet-II.

Figure 2.2.15. The equivalent path for b2

(1) b∗21 ≡ the path on the vertical cut from 0 to i on (+)edge of sheet-

I,

so z ∈ (M). Let z = ri , r : 0 → 1 and dz = idr then f(z)
Math.
=

−f(z)∫
b∗21

1

f(z)
dz =

∫
0

−99Ki

1

f(z)
dz =

∫
0
+→i

1

f(z)
dz

Math.
= −

∫ 1

0

i

f(ri)
dr

(2) b∗22 : Let z = r + i , r : 0 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗32

1

f(z)
dz =

∫
1+iL99i

1

f(z)
dz = −

∫
1+i←i

1

f(z)
dz

Math.
=

∫ −1
0

1

f(r + i)
dr

By (1),(2) and Cauchy Theorem we can obtain

∫
b2

1

f(z)
dz , which value

is shown in the Appendix A.0.3.
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Example 2.4. Evaluate

∫
1

f(z)
dz over a3, b1 and b2 cycles, where

f(z) =
√

(z + 2 + i)(z + 2− i)(z + 1 + i)(z + 1− i)(z − 0)(z − 1)(z − 1− i)(z − 1− 2i)

.

Figure 2.2.16. The cut plane

Let z1 = −2− i, z2 = −2 + i, z3 = −1− i, z4 = −1 + i, z5 = 0, z6 = 1, z7 =

1 + i, z8 = 1 + 2i.

Using region of modify to get result by Mathematica:

Let

(A)={ { z = x+ iy | x− y < 0 , 1 ≤ y < 2 }
∪

{ (+) edge of the cut z6z8 } }
(B)={ { z = x + iy |x < −2 , 0 ≤ y < 1 }

∪
{ (+) edge of the cut from z2

to −2i } }
(C)={ { z = x + iy | x < −2 , −1 ≤ y < 0 }

∪
{ (+) edge of the cut from

−2i to z1 } }
(D)={ { z = x+ iy |x < −1 , 0 ≤ y < 1 }

∪
{ (+) edge of the cut from z4

to −i } }
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(a) The a-cycles

(b) The b-cycles
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(E)={ { z = x + iy |x < −1 , −1 ≤ y < 0 }
∪

{ (+) edge of the cut from

−i to z3 } }
(F )={ { z = x+ iy |x− y < 0 , 0 ≤ y < 1 }

∪
{ (+) edge of the cut z5z7 }

}

Figure 2.2.17. The regions need changing sign of cuts

The region needs changing sign of
√
z − z1

√
z − z2 is

(B)
∪

(C) ={ { z = x+ iy |x < −2 , −1 ≤ y < 1 }
∪

{ (+)edge of the cut

z1z2 } }.
The region needs changing sign of

√
z − z3

√
z − z4 is

(B)
∪

(C)
∪

(D)
∪

(E) ={ { z = x + iy | x < −1 , −1 ≤ y < 1 }
∪

{
(+)edge of the cut z3z4 } }.
The region needs changing sign of

√
z − z5

√
z − z7 is

(B)
∪

(D)
∪

(F ) ={ { z = x+ iy |x− y < 0 , 0 ≤ y < 1 }
∪

{ (+) edge of

the cut z5z7 } }.
The region needs changing sign of

√
z − z6

√
z − z8 is (A).
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The region (B) changes the sign three times, so need to change here. The

region (C) and (D) change the sign two times, so no change here. We let

region of modify (M) = (A)
∪

(B)
∪

(E)
∪

(F ).

Figure 2.2.18. (M): region of modify

1. Evaluate

∫
a3

1

f(z)
dz

a3 : Consider the equivalent path a∗3 = a∗31
∪

a∗32
∪

a∗33
∪

a∗34, where

a∗31 = the path on the vertical cut from −1 + i to −1 on (+)edge of

sheet-I,

a∗32 = the path on the vertical cut from −1 to −1 − i on (+)edge of

sheet-I,

a∗33 = the path on the vertical cut from −1 − i to −1 on (−)edge of

sheet-I,

a∗34 = the path on the vertical cut from −1 to −1 + i on (−)edge of

sheet-I.
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(a) The contour a3 in the cut plane

(b) The equivalent path for a3
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(1) a∗31 : Let z = −1 + ri , r : 1 → 0 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z) ∫

a∗31

1

f(z)
dz

Math.
=

∫ 0

1

i

f(−1 + ri)
dr

(2) a∗32 : Let z = −1 + ri , r : 0 → −1 , dz = idr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

a∗32

1

f(z)
dz

Math.
= −

∫ −1
0

i

f(−1 + ri)
dr

(3) a∗33 : Let z = −1 + ri , r : −1 → 0 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z) ∫

a∗33

1

f(z)
dz

Math.
=

∫ 0

−1

i

f(−1 + ri)
dr

(4) a∗34 : Let z = −1 + ri , r : 0 → 1 , dz = idr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

a∗34

1

f(z)
dz

Math.
= −

∫ 1

0

i

f(−1 + ri)
dr

By (1)∼(4) and Cauchy Theorem we can obtain

∫
a3

1

f(z)
dz , which

value is shown in the Appendix A.0.4.

2. Evaluate

∫
b2

1

f(z)
dz

b2 : Consider the equivalent path

b∗2 = b∗21
∪

b∗22
∪

b∗23
∪

a∗33
∪

b∗24
∪

b∗25
∪

b∗26
∪

b∗27
∪

b∗28
∪

b∗29 , where

b∗21 = the path on the vertical cut from −2 + i to −2 on (+)edge of

sheet-I,

b∗22 = the path on the vertical cut from −2 to −2 − i on (+)edge of

sheet-I,

b∗23 = the path on the horizontal line from −2− i to −1− i on sheet-I,
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(c) The contour b2 in the cut plane

(d) The equivalent path for b2
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b∗24 = the path on the horizontal line from −1 to 0 on sheet-I,

b∗25 = the path on the cut with
π

4
from 0 to 1+ i on (−)edge of sheet-II,

b∗26 = the path on the vertical line from 1 + i to 1 + 2i on sheet-II,

b∗27 = the path on the cut with
π

4
from 1+2i to i on (+)edge of sheet-II,

b∗28 = the path on the horizontal line from i to −1 + i on sheet-II,

b∗29 = the path on the horizontal line from −1+ i to −2+ i on sheet-II.

(1) b∗21 : Let z = −2 + ri , r : 1 → 0 , dz = idr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗21

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr

(2) b∗22 : Let z = −2 + ri , r : 0 → −1 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z)∫

b∗22

1

f(z)
dz

Math.
=

∫ −1
0

i

f(−2 + ri)
dr

(3) b∗23 : Let z = r − i , r : −2 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗23

1

f(z)
dz

Math.
= −

∫ −1
−2

1

f(r − i)
dr

(4) b∗24 : Let z = r , r : −1 → 0 , dz = dr and z ∈ (M) then f(z)
Math.
=

−f(z) ∫
b∗24

1

f(z)
dz

Math.
= −

∫ 0

−1

1

f(r)
dr

(5) b∗25 ≡ the path on the cut with
π

4
from 0 to 1 + i on (+)edge of

sheet-I.

Let z = r(1 + i) , r : 0 → 1 , dz = (1 + i)dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗25

1

f(z)
dz =

∫
0

−99K1+i

1

f(z)
dz =

∫
0
+→1+i

1

f(z)
dz

Math.
= −

∫ 1

0

1 + i

f(r(1 + i))
dr
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(6) b∗26 : Let z = 1 + ri , r : 1 → 2 , dz = idr and z /∈ (M) then

f(z)
Math.
= f(z) ∫

b∗26

1

f(z)
dz =

∫
1+i99K1+2i

1

f(z)
dz

= −
∫
1+i→1+2i

1

f(z)
dz

Math.
= −

∫ 2

1

i

f(1 + ri)
dr

(7) b∗27 ≡ the path on the cut with
π

4
from 1 + 2i to i on (−)edge of

sheet-I.

Let z = i+ r(1 + i) , r : 1 → 0 , dz = (1+ i)dr and z /∈ (M) then

f(z)
Math.
= f(z)∫

b∗27

1

f(z)
dz =

∫
1+2i

+99Ki

1

f(z)
dz =

∫
1+2i

−→i

1

f(z)
dz

Math.
=

∫ 0

1

1 + i

f(i+ r(1 + i))
dr

(8) b∗28 : Let z = i + r , r : 0 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗28

1

f(z)
dz =

∫
−1+iL99i

1

f(z)
dz = −

∫
−1+i←i

1

f(z)
dz

Math.
=

∫ −1
0

1

f(i+ r)
dr

(9) b∗29 : Let z = −1 + i+ r , r : 0 → −1 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗29

1

f(z)
dz =

∫
−2+iL99−1+i

1

f(z)
dz

= −
∫
−2+i←−1+i

1

f(z)
dz

Math.
=

∫ −1
0

1

f(−1 + i+ r)
dr

By (1)∼(9) and Cauchy Theorem we can obtain

∫
b2

1

f(z)
dz , which

value is shown in the Appendix A.0.5.
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(e) The contour b1 in the cut plane

(f) The equivalent path for b1
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3. Evaluate

∫
b1

1

f(z)
dz

b1 : Consider the equivalent path

b∗1 = b∗21
∪

b∗22
∪

b∗23
∪

a∗33
∪

b∗34
∪

b∗11
∪

b∗12
∪

b∗27
∪

b∗28
∪

b∗29 , where

b∗11 = the path on the horizontal line from −1 + i to i on sheet-I,

b∗12 = the path on the cut with
π

4
from i to 1+2i on (−)edge of sheet-II.

(1) b∗11 : Let z = r + i , r : −1 → 0 , dz = dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗11

1

f(z)
dz

Math.
= −

∫ 0

−1

1

f(r + i)
dr

(2) b∗12 ≡ the path on the cut with
π

4
from i to 1 + 2i on (+)edge of

sheet-I.

Let z = i+ r(1 + i) , r : 0 → 1 , dz = (1+ i)dr and z ∈ (M) then

f(z)
Math.
= −f(z)∫

b∗12

1

f(z)
dz =

∫
i

−99K1+2i

1

f(z)
dz

=

∫
i
+→1+2i

1

f(z)
dz

Math.
= −

∫ 1

0

1 + i

f(i+ r(1 + i))
dr

By (1),(2) and Cauchy Theorem we can obtain

∫
b1

1

f(z)
dz , which value

is shown in the Appendix A.0.6.

Note that these are not the only choices of branch cuts. We could have

branch cuts from the two branch points go off to infinity in any direction,

and they don’t even need to be straight lines. What above gave are just

convenient choices.
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Chapter 3

Nonlinear Approximations on
Riemann Surfaces of the
Pendulum Equation

As in Chapter1, the pendulum equation can be written as

u′′ + sinu = 0 . (3.0.1)

We know that sinu can be expanded by Taylor series

sinu =
∞∑
k=0

(−1)k

(2k + 1)!
u2k+1 , for all values of u.

Take the first eight terms to approximate sinu as

sinu ≈ u− u3

3!
+

u5

5!
− u7

7!
+

u9

9!
− u11

11!
+

u13

13!
− u15

15!
.

Let

P15(u) = u− u3

3!
+

u5

5!
− u7

7!
+

u9

9!
− u11

11!
+

u13

13!
− u15

15!
.

So the equation 3.0.1 becomes to

u′′ + P15(u) = 0 .
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As in section ??, we derived that

1

2
(u′)2 + P16(u) = E ,

where E is the integration constant and

P16(u) =
u2

2
− u4

4!
+

u6

6!
− u8

8!
+

u10

10!
− u12

12!
+

u14

14!
− u16

16!
.

Then, we obtain the following integral equation∫
1√

2(E − P16(u))
du = ±

∫
dt .

Since 2(E − P16(u)) is a polynomial of u, it can be written as

2(E − P16(u)) = (u− u1)(u− u2) · · · (u− u16)

=
16∏
k=1

(u− uk) , where uk’s are the roots of the equation 2(E − P16(u)) = 0 .

Thus, the function theory of solutions u of the equation involves

√√√√ 16∏
k=1

(u− uk)

.

Let f(u) =
√
2(E − P16(u)) , and compute

∫
1

f(u)
du over a,b cycles.

Given E = 7 , we have u1 = −8.27 − 1.34i , u2 = −8.27 + 1.34i , u3 =

−8.19 − 3.86i , u4 = −8.19 + 3.86i , u5 = −8.04 − 8.19i , u6 = −8.04 +

8.19i , u7 = −3.14 − 2.48i , u8 = −3.14 + 2.48i , u9 = 3.14 − 2.48i , u10 =

3.14+2.48i , u11 = 8.04−8.19i , u12 = 8.04+8.19i , u13 = 8.19−3.86i , u14 =

8.19 + 3.86i , u15 = 8.27− 1.34i , u16 = 8.27 + 1.34i .

We let region of modify for f(u) is (M) as illustrated in the in Figure ??.
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(g) The cut plane

(h) (M): region of modify
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Figure 3.0.1. a-cycles

Figure 3.0.2. The equivalent path for a-cycles

1. Evaluate

∫
a1

1

f(u)
du , a1 : Consider the equivalent path a∗1 = a∗11

∪
a∗12,

where

a∗11 = the path on the vertical cut from 8.27 + 1.34i to 8.27− 1.34i on
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(+)edge of sheet-I, a∗12 = the path on the vertical cut from 8.27− 1.34i

to 8.27 + 1.34i on (−)edge of sheet-I.

(1) a∗11 : Let u = 8.27+ ri , r : 1.34 → −1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗11

1

f(u)
du

Math.
= −

∫ −1.34
1.34

i

f(8.27 + ri)
dr

(2) a∗12 : Let u = 8.27+ ri , r : −1.34 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗12

1

f(u)
du

Math.
=

∫ 1.34

−1.34

i

f(8.27 + ri)
dr

By (1),(2) and Cauchy Theorem we can obtain

∫
a1

1

f(u)
du , which

value is shown in the Appendix A.0.7.

2. Evaluate

∫
a2

1

f(u)
du

a2 : Consider the equivalent path a∗2 = a∗21
∪

a∗22
∪

a∗23
∪

a∗24
∪

a∗25
∪

a∗26,

where

a∗21 = the path on the vertical cut from 8.19 + 3.86i to 8.19 + 1.34i on

(+)edge of sheet-I, a∗22 = the path on the vertical cut from 8.19+1.34i

to 8.19−1.34i on (+)edge of sheet-I, a∗23 = the path on the vertical cut

from 8.19−1.34i to 8.19−3.86i on (+)edge of sheet-I, a∗24 = the path on

the vertical cut from 8.19− 3.86i to 8.19− 1.34i on (−)edge of sheet-I,

a∗25 = the path on the vertical cut from 8.19− 1.34i to 8.19 + 1.34i on

(−)edge of sheet-I, a∗26 = the path on the vertical cut from 8.19+1.34i

to 8.19 + 3.86i on (−)edge of sheet-I.

(1) a∗21 : Let u = 8.19 + ri , r : 3.86 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗21

1

f(u)
du

Math.
= −

∫ 1.34

3.86

i

f(8.19 + ri)
dr
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(2) a∗22 : Let u = 8.19+ ri , r : 1.34 → −1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗22

1

f(u)
du

Math.
=

∫ −1.34
1.34

i

f(8.19 + ri)
dr

(3) a∗23 : Let u = 8.19 + ri , r : −1.34 → −3.86 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗23

1

f(u)
du

Math.
= −

∫ −3.86
−1.34

i

f(8.19 + ri)
dr

(4) a∗24 : Let u = 8.19 + ri , r : −3.86 → −1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗24

1

f(u)
du

Math.
=

∫ −1.34
−3.86

i

f(8.19 + ri)
dr

(5) a∗25 : Let u = 8.19+ ri , r : −1.34 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗25

1

f(u)
du

Math.
= −

∫ 1.34

−1.34

i

f(8.19 + ri)
dr

(6) a∗26 : Let u = 8.19 + ri , r : 1.34 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗26

1

f(u)
du

Math.
=

∫ 3.86

1.34

i

f(8.19 + ri)
dr

By (1)∼(6) and Cauchy Theorem we can obtain

∫
a2

1

f(u)
du , which

value is shown in the Appendix A.0.8.

3. Evaluate

∫
a3

1

f(u)
du

a3 : Consider the equivalent path a∗3 = a∗31
∪

a∗32
∪

a∗33
∪

a∗34
∪

a∗35
∪

a∗36
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∪
a∗37

∪
a∗38

∪
a∗39

∪
a∗40, where a

∗
31 = the path on the vertical cut from

8.04 + 8.19i to 8.04 + 3.86i on (+)edge of sheet-I, a∗32 = the path on

the vertical cut from 8.04+ 3.86i to 8.04+ 1.34i on (+)edge of sheet-I,

a∗33 = the path on the vertical cut from 8.04 + 1.34i to 8.04− 1.34i on

(+)edge of sheet-I, a∗34 = the path on the vertical cut from 8.04− 1.34i

to 8.04−3.86i on (+)edge of sheet-I, a∗35 = the path on the vertical cut

from 8.04−3.86i to 8.04−8.19i on (+)edge of sheet-I, a∗36 = the path on

the vertical cut from 8.04− 8.19i to 8.04− 3.86i on (−)edge of sheet-I,

a∗37 = the path on the vertical cut from 8.04− 3.86i to 8.04− 1.34i on

(−)edge of sheet-I, a∗38 = the path on the vertical cut from 8.04− 1.34i

to 8.04 + 1.34i on (−)edge of sheet-I, a∗39 = the path on the vertical

cut from 8.04 + 1.34i to 8.04 + 3.86i on (−)edge of sheet-I, a∗40 = the

path on the vertical cut from 8.04+3.86i to 8.04+8.19i on (−)edge of

sheet-I.

(1) a∗31 : Let u = 8.04 + ri , r : 8.19 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗31

1

f(u)
du

Math.
= −

∫ 3.86

8.19

i

f(8.04 + ri)
dr

(2) a∗32 : Let u = 8.04 + ri , r : 3.86 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗32

1

f(u)
du

Math.
=

∫ 1.34

3.86

i

f(8.04 + ri)
dr

(3) a∗33 : Let u = 8.04+ ri , r : 1.34 → −1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗33

1

f(u)
du

Math.
= −

∫ −1.34
1.34

i

f(8.04 + ri)
dr

(4) a∗34 : Let u = 8.04 + ri , r : −1.34 → −3.86 , du = idr and

u /∈ (M)
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then f(u)
Math.
= f(u)∫

a∗34

1

f(u)
du

Math.
=

∫ −3.86
−1.34

i

f(8.04 + ri)
dr

(5) a∗35 : Let u = 8.04 + ri , r : −3.86 → −8.19 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗35

1

f(u)
du

Math.
= −

∫ −8.19
−3.86

i

f(8.04 + ri)
dr

(6) a∗36 : Let u = 8.04 + ri , r : −8.19 → −3.86 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗36

1

f(u)
du

Math.
=

∫ −3.86
−8.19

i

f(8.04 + ri)
dr

(7) a∗37 : Let u = 8.04 + ri , r : −3.86 → −1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗37

1

f(u)
du

Math.
= −

∫ −1.34
−3.86

i

f(8.04 + ri)
dr

(8) a∗38 : Let u = 8.04+ ri , r : −1.34 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗38

1

f(u)
du

Math.
=

∫ 1.34

−1.34

i

f(8.04 + ri)
dr

(9) a∗39 : Let u = 8.04 + ri , r : 1.34 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗39

1

f(u)
du

Math.
= −

∫ 3.86

1.34

i

f(8.04 + ri)
dr
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(10) a∗40 : Let u = 8.04 + ri , r : 3.86 → 8.19 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗40

1

f(u)
du

Math.
=

∫ 8.19

3.86

i

f(8.04 + ri)
dr

By (1)∼(10) and Cauchy Theorem we can obtain

∫
a3

1

f(u)
du , which

value is shown in the Appendix A.0.9.

4. Evaluate

∫
a4

1

f(u)
du

a4 : Consider the equivalent path a∗4 = a∗41
∪

a∗42
∪

a∗43
∪

a∗44
∪

a∗45
∪

a∗46,

where

a∗41 = the path on the vertical cut from 3.14 + 2.48i to 3.14 + 1.34i on

(+)edge of sheet-I, a∗42 = the path on the vertical cut from 3.14+1.34i

to 3.14−1.34i on (+)edge of sheet-I, a∗43 = the path on the vertical cut

from 3.14−1.34i to 3.14−2.48i on (+)edge of sheet-I, a∗44 = the path on

the vertical cut from 3.14− 2.48i to 3.14− 1.34i on (−)edge of sheet-I,

a∗45 = the path on the vertical cut from 3.14− 1.34i to 3.14 + 1.34i on

(−)edge of sheet-I, a∗46 = the path on the vertical cut from 3.14+1.34i

to 3.14 + 2.48i on (−)edge of sheet-I.

(1) a∗41 : Let u = 3.14 + ri , r : 2.48 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗41

1

f(u)
du

Math.
= −

∫ 1.34

2.48

i

f(3.14 + ri)
dr

(2) a∗42 : Let u = 3.14+ ri , r : 1.34 → −1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗42

1

f(u)
du

Math.
=

∫ −1.34
1.34

i

f(3.14 + ri)
dr
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(3) a∗43 : Let u = 3.14 + ri , r : −1.34 → −2.48 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗43

1

f(u)
du

Math.
= −

∫ −2.48
−1.34

i

f(3.14 + ri)
dr

(4) a∗44 : Let u = 3.14 + ri , r : −2.48 → −1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗44

1

f(u)
du

Math.
=

∫ −1.34
−2.48

i

f(3.14 + ri)
dr

(5) a∗45 : Let u = 3.14+ ri , r : −1.34 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗45

1

f(u)
du

Math.
= −

∫ 1.34

−1.34

i

f(3.14 + ri)
dr

(6) a∗46 : Let u = 3.14 + ri , r : 1.34 → 2.48 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗46

1

f(u)
du

Math.
=

∫ 2.48

1.34

i

f(3.14 + ri)
dr

By (1)∼(6) and Cauchy Theorem we can obtain

∫
a4

1

f(u)
du , which

value is shown in the Appendix A.0.10.

5. Evaluate

∫
a5

1

f(u)
du

a5 : Consider the equivalent path a∗5 = a∗51
∪

a∗52
∪

a∗53
∪

a∗54
∪

a∗55
∪

a∗56,

where

a∗51 = the path on the vertical cut from −3.14+2.48i to −3.14+1.34i on

(+)edge of sheet-I, a∗52 = the path on the vertical cut from −3.14+1.34i

to −3.14− 1.34i on (+)edge of sheet-I, a∗53 = the path on the vertical
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cut from −3.14 − 1.34i to −3.14 − 2.48i on (+)edge of sheet-I, a∗54 =

the path on the vertical cut from −3.14 − 2.48i to −3.14 − 1.34i on

(−)edge of sheet-I, a∗55 = the path on the vertical cut from −3.14−1.34i

to −3.14 + 1.34i on (−)edge of sheet-I, a∗56 = the path on the vertical

cut from −3.14 + 1.34i to −3.14 + 2.48i on (−)edge of sheet-I.

(1) a∗51 : Let u = −3.14+ ri , r : 2.48 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗51

1

f(u)
du

Math.
=

∫ 1.34

2.48

i

f(−3.14 + ri)
dr

(2) a∗52 : Let u = −3.14 + ri , r : 1.34 → −1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗52

1

f(u)
du

Math.
= −

∫ −1.34
1.34

i

f(−3.14 + ri)
dr

(3) a∗53 : Let u = −3.14 + ri , r : −1.34 → −2.48 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗53

1

f(u)
du

Math.
=

∫ −2.48
−1.34

i

f(−3.14 + ri)
dr

(4) a∗54 : Let u = −3.14 + ri , r : −2.48 → −1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗54

1

f(u)
du

Math.
= −

∫ −1.34
−2.48

i

f(−3.14 + ri)
dr

(5) a∗55 : Let u = −3.14 + ri , r : −1.34 → 1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗55

1

f(u)
du

Math.
=

∫ 1.34

−1.34

i

f(−3.14 + ri)
dr
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(6) a∗56 : Let u = −3.14+ ri , r : 1.34 → 2.48 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗56

1

f(u)
du

Math.
= −

∫ 2.48

1.34

i

f(−3.14 + ri)
dr

By (1)∼(6) and Cauchy Theorem we can obtain

∫
a5

1

f(u)
du , which

value is shown in the Appendix A.0.11.

6. Evaluate

∫
a6

1

f(u)
du

a6 : Consider the equivalent path a∗6 = a∗61
∪

a∗62
∪

a∗63
∪

a∗64
∪

a∗65
∪

a∗66∪
a∗67

∪
a∗68

∪
a∗69

∪
a∗70, where a

∗
61 = the path on the vertical cut from

−8.04 + 8.19i to −8.04 + 3.86i on (+)edge of sheet-I, a∗62 = the path

on the vertical cut from −8.04 + 3.86i to −8.04 + 1.34i on (+)edge

of sheet-I, a∗63 = the path on the vertical cut from −8.04 + 1.34i to

−8.04 − 1.34i on (+)edge of sheet-I, a∗64 = the path on the vertical

cut from −8.04 − 1.34i to −8.04 − 3.86i on (+)edge of sheet-I, a∗65 =

the path on the vertical cut from −8.04 − 3.86i to −8.04 − 8.19i on

(+)edge of sheet-I, a∗66 = the path on the vertical cut from −8.04−8.19i

to −8.04 − 3.86i on (−)edge of sheet-I, a∗67 = the path on the verti-

cal cut from −8.04− 3.86i to −8.04− 1.34i on (−)edge of sheet-I, a∗68

= the path on the vertical cut from −8.04− 1.34i to −8.04 + 1.34i on

(−)edge of sheet-I, a∗69 = the path on the vertical cut from −8.04+1.34i

to −8.04 + 3.86i on (−)edge of sheet-I, a∗70 = the path on the vertical

cut from −8.04 + 3.86i to −8.04 + 8.19i on (−)edge of sheet-I.

(1) a∗61 : Let u = −8.04+ ri , r : 8.19 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗61

1

f(u)
du

Math.
=

∫ 3.86

8.19

i

f(−8.04 + ri)
dr
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(2) a∗62 : Let u = −8.04+ ri , r : 3.86 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗62

1

f(u)
du

Math.
= −

∫ 1.34

3.86

i

f(−8.04 + ri)
dr

(3) a∗63 : Let u = −8.04 + ri , r : 1.34 → −1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗63

1

f(u)
du

Math.
=

∫ −1.34
1.34

i

f(−8.04 + ri)
dr

(4) a∗64 : Let u = −8.04 + ri , r : −1.34 → −3.86 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗64

1

f(u)
du

Math.
= −

∫ −3.86
−1.34

i

f(−8.04 + ri)
dr

(5) a∗65 : Let u = −8.04 + ri , r : −3.86 → −8.19 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗65

1

f(u)
du

Math.
=

∫ −8.19
−3.86

i

f(−8.04 + ri)
dr

(6) a∗66 : Let u = −8.04 + ri , r : −8.19 → −3.86 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗66

1

f(u)
du

Math.
= −

∫ −3.86
−8.19

i

f(−8.04 + ri)
dr

(7) a∗67 : Let u = −8.04 + ri , r : −3.86 → −1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗67

1

f(u)
du

Math.
=

∫ −1.34
−3.86

i

f(−8.04 + ri)
dr
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(8) a∗68 : Let u = −8.04 + ri , r : −1.34 → 1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗68

1

f(u)
du

Math.
= −

∫ 1.34

−1.34

i

f(−8.04 + ri)
dr

(9) a∗69 : Let u = −8.04+ ri , r : 1.34 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗69

1

f(u)
du

Math.
=

∫ 3.86

1.34

i

f(−8.04 + ri)
dr

(10) a∗70 : Let u = −8.04+ ri , r : 3.86 → 8.19 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗70

1

f(u)
du

Math.
= −

∫ 8.19

3.86

i

f(−8.04 + ri)
dr

By (1)∼(10) and Cauchy Theorem we can obtain

∫
a6

1

f(u)
du , which

value is shown in the Appendix A.0.12.

7. Evaluate

∫
a7

1

f(u)
du

a7 : Consider the equivalent path a∗7 = a∗71
∪

a∗72
∪

a∗73
∪

a∗74
∪

a∗75
∪

a∗76,

where

a∗71 = the path on the vertical cut from −8.19+3.86i to −8.19+1.34i on

(+)edge of sheet-I, a∗72 = the path on the vertical cut from −8.19+1.34i

to −8.19− 1.34i on (+)edge of sheet-I, a∗73 = the path on the vertical

cut from −8.19 − 1.34i to −8.19 − 3.86i on (+)edge of sheet-I, a∗74 =

the path on the vertical cut from −8.19 − 3.86i to −8.19 − 1.34i on

(−)edge of sheet-I, a∗75 = the path on the vertical cut from −8.19−1.34i

to −8.19 + 1.34i on (−)edge of sheet-I, a∗76 = the path on the vertical

cut from −8.19 + 1.34i to −8.19 + 3.86i on (−)edge of sheet-I.
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(1) a∗71 : Let u = −8.19+ ri , r : 3.86 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗71

1

f(u)
du

Math.
=

∫ 1.34

3.86

i

f(−8.19 + ri)
dr

(2) a∗72 : Let u = −8.19 + ri , r : 1.34 → −1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗72

1

f(u)
du

Math.
= −

∫ −1.34
1.34

i

f(−8.19 + ri)
dr

(3) a∗73 : Let u = −8.19 + ri , r : −1.34 → −3.86 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗73

1

f(u)
du

Math.
=

∫ −3.86
−1.34

i

f(−8.19 + ri)
dr

(4) a∗74 : Let u = −8.19 + ri , r : −3.86 → −1.34 , du = idr and

u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗74

1

f(u)
du

Math.
= −

∫ −1.34
−3.86

i

f(−8.19 + ri)
dr

(5) a∗75 : Let u = −8.19 + ri , r : −1.34 → 1.34 , du = idr and

u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗75

1

f(u)
du

Math.
=

∫ 1.34

−1.34

i

f(−8.19 + ri)
dr

(6) a∗76 : Let u = −8.19+ ri , r : 1.34 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗76

1

f(u)
du

Math.
= −

∫ 3.86

1.34

i

f(−8.19 + ri)
dr
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By (1)∼(6) and Cauchy Theorem we can obtain

∫
a7

1

f(u)
du , which

value is shown in the Appendix A.0.13.

1. Evaluate

∫
b7

1

f(u)
du

Figure 3.0.3. The contour b7 in the cut plane

b7 : Consider the equivalent path

b∗7 = b∗71
∪

b∗72
∪

b∗73
∪

b∗74
∪

b∗75
∪

a∗76
∪

b∗77
∪

b∗78 , where

b∗71 = the path on the vertical cut from −8.27 to −8.27 − 1.34i on

(+)edge of sheet-I,

b∗72 = the path on the vertical cut from −8.27 − 1.34i to −8.27 on

(−)edge of sheet-I,

b∗73 = the path on the horizontal line from −8.27 to −8.19 on sheet-I,

b∗74 = the path on the vertical cut from −8.19 to −8.19 + 1.34i on

(−)edge of sheet-II,

b∗75 = the path on the vertical cut from −8.19 + 1.34i to −8.19 + 3.86i

on (−)edge of sheet-II,
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b∗76 = the path on the vertical cut from −8.19 + 3.86i to −8.19 + 1.34i

on (+)edge of sheet-II,

b∗77 = the path on the vertical cut from −8.19 + 1.34i to −8.19 on

(+)edge of sheet-II,

b∗78 = the path on the horizontal line from −8.19 to −8.27 on sheet-II.

Figure 3.0.4. The equivalent path for b7

(1) b∗71 : Let u = −8.27− ri , r : 0 → 1.34 , du = −idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗71

1

f(u)
du

Math.
= −

∫ 1.34

0

i

f(−8.27− ri)
dr

(2) b∗72 : Let u = −8.27− ri , r : 1.34 → 0 , du = −idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗72

1

f(u)
dz

Math.
=

∫ 0

1.34

i

f(−8.27− ri)
dr

(3) b∗73 : Let u = r , r : −8.27 → −8.19 , du = dr and u ∈ (M)
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then f(u)
Math.
= −f(u)∫

b∗73

1

f(u)
dz

Math.
= −

∫ −8.19
−8.27

1

f(r)
dr

(4) b∗74 ≡ the path on the vertical cut from −8.19 to −8.19+ 1.34i on

(+)edge of sheet-I.

Let u = −8.19 + ri , r : 0 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗74

1

f(u)
du =

∫
−8.19 −99K−8.19+1.34i

1

f(u)
du =

∫
−8.19+→−8.19+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

0

i

f(−8.19 + ri)
dr

(5) b∗75 ≡ the path on the vertical cut from −8.19 + 1.34i to −8.19 +

3.86i on (+)edge of sheet-I.

Let u = −8.19 + ri , r : 1.34 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗75

1

f(u)
du =

∫
−8.19+1.34i

−99K−8.19+3.86i

1

f(u)
du

=

∫
−8.19+1.34i

+→−8.19+3.86i

1

f(u)
du

Math.
=

∫ 3.86

1.34

i

f(−8.19 + ri)
dr

(6) b∗76 ≡ the path on the vertical cut from −8.19 + 3.86i to −8.19 +

1.34i on (−)edge of sheet-I.

Let u = −8.19 + ri , r : 3.86 → 1.34 , du = idr and u ∈ (M)
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then f(u)
Math.
= −f(u)∫
b∗76

1

f(u)
du =

∫
−8.19+3.86i

+99K−8.19+1.34i

1

f(u)
du

=

∫
−8.19+3.86i

−→−8.19+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

3.86

i

f(−8.19 + ri)
dr

(7) b∗77 ≡ the path on the vertical cut from −8.19+ 1.34i to −8.19 on

(−)edge of sheet-I.

Let u = −8.19 + ri , r : 1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗77

1

f(u)
du =

∫
−8.19+1.34i

+99K−8.19

1

f(u)
du

=

∫
−8.19+1.34i

−→−8.19

1

f(u)
du

Math.
=

∫ 0

1.34

i

f(−8.19 + ri)
dr

(8) b∗78 : Let u = r , r : −8.19 → −8.27 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗78

1

f(u)
du =

∫
−8.1999K−8.27

1

f(u)
du

= −
∫
−8.19→−8.27

1

f(u)
du

Math.
=

∫ −8.27
−8.19

1

f(r)
dr

By (1)∼(8) and Cauchy Theorem we can obtain

∫
b7

1

f(u)
du , which

value is shown in the Appendix A.0.14.

2. Evaluate

∫
b6

1

f(u)
du
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Figure 3.0.5. The contour b6 in the cut plane

b6 : Consider the equivalent path

b∗6 = b∗7
∪

a∗72′
∪

a∗73
∪

a∗74
∪

a∗75′
∪

b∗61
∪

b∗62
∪

b∗63
∪

b∗64∪
b∗65

∪
b∗66

∪
b∗67

∪
b∗68 , where

a∗72′ = the path on the vertical cut from −8.19 to −8.19 − 1.34i on

(+)edge of sheet-I, a∗75′ = the path on the vertical cut from −8.19−1.34i

to −8.19 on (−)edge of sheet-I, b∗61 = the path on the horizontal line

from −8.19 to −8.04 on sheet-I,

b∗62 = the path on the vertical cut from −8.04 to −8.04 + 1.34i on

(−)edge of sheet-II,

b∗63 = the path on the vertical cut from −8.04 + 1.34i to −8.04 + 3.86i

on (−)edge of sheet-II,

b∗64 = the path on the vertical cut from −8.04 + 3.86i to −8.04 + 8.19i

on (−)edge of sheet-II,

b∗65 = the path on the vertical cut from −8.04 + 8.19i to −8.04 + 3.86i

on (+)edge of sheet-II,

b∗66 = the path on the vertical cut from −8.04 + 3.86i to −8.04 + 1.34i

on (+)edge of sheet-II,
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b∗67 = the path on the vertical cut from −8.04 + 1.34i to −8.04 on

(+)edge of sheet-II,

b∗68 = the path on the horizontal line from −8.04 to −8.19 on sheet-II.

Figure 3.0.6. The equivalent path for b6

(1) a∗72′ : Let u = −8.19 + ri , r : 0 → −1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗
72′

1

f(u)
du

Math.
= −

∫ −1.34
0

i

f(−8.19 + ri)
dr

(2) a∗75′ : Let u = −8.19 + ri , r : −1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗
75′

1

f(u)
du

Math.
=

∫ 0

−1.34

i

f(−8.19 + ri)
dr

(3) b∗61 : Let u = r , r : −8.19 → −8.04 , du = dr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗61

1

f(u)
du

Math.
=

∫ −8.04
−8.19

1

f(r)
dr
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(4) b∗62 ≡ the path on the vertical cut from −8.04 to −8.04+ 1.34i on

(+)edge of sheet-I.

Let u = −8.04 + ri , r : 0 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗62

1

f(u)
dz =

∫
−8.04 −99K−8.04+1.34i

1

f(u)
du

=

∫
−8.04+→−8.04+1.34i

1

f(u)
du

Math.
=

∫ 1.34

0

i

f(−8.04 + ri)
dr

(5) b∗63 ≡ the path on the vertical cut from −8.04 + 1.34i to −8.04 +

3.86i on (+)edge of sheet-I.

Let u = −8.04 + ri , r : 1.34 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗63

1

f(u)
du =

∫
−8.04+1.34i

−99K−8.04+3.86i

1

f(u)
du

=

∫
−8.04+1.34i

+→−8.04+3.86i

1

f(u)
du

Math.
= −

∫ 3.86

1.34

i

f(−8.04 + ri)
dr

(6) b∗64 ≡ the path on the vertical cut from −8.04 + 3.86i to −8.04 +

8.19i on (+)edge of sheet-I.

Let u = −8.04 + ri , r : 3.86 → 8.19 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗64

1

f(u)
du =

∫
−8.04+3.86i

−99K−8.04+8.19i

1

f(u)
du

=

∫
−8.04+3.86i

+→−8.04+8.19i

1

f(u)
du

Math.
=

∫ 8.19

3.86

i

f(−8.04 + ri)
dr

(7) b∗65 ≡ the path on the vertical cut from −8.04 + 8.19i to −8.04 +

3.86i on (−)edge of sheet-I.
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Let u = −8.04 + ri , r : 8.19 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗65

1

f(u)
du =

∫
−8.04+8.19i

+99K−8.04+3.86i

1

f(u)
du

=

∫
−8.04+8.19i

−→−8.04+3.86i

1

f(u)
du

Math.
= −

∫ 3.86

8.19

i

f(−8.04 + ri)
dr

(8) b∗66 ≡ the path on the vertical cut from −8.04 + 3.86i to −8.04 +

1.34i on (−)edge of sheet-I.

Let u = −8.04 + ri , r : 3.86 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗66

1

f(u)
du =

∫
−8.04+3.86i

+99K−8.04+1.34i

1

f(u)
du

=

∫
−8.04+3.86i

−→−8.04+1.34i

1

f(u)
du

Math.
=

∫ 1.34

3.86

i

f(−8.04 + ri)
dr

(9) b∗67 ≡ the path on the vertical cut from −8.04+ 1.34i to −8.04 on

(−)edge of sheet-I.

Let u = −8.04 + ri , r : 1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗67

1

f(u)
du =

∫
−8.04+1.34i

+99K−8.04

1

f(u)
du

=

∫
−8.04+1.34i

−→−8.04

1

f(u)
du

Math.
= −

∫ 0

1.34

i

f(−8.04 + ri)
dr

(10) b∗68 : Let u = r , r : −8.04 → −8.19 , du = dr and u /∈ (M) then
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f(u)
Math.
= f(u)∫

b∗68

1

f(u)
dz =

∫
−8.0499K−8.19

1

f(u)
du

= −
∫
−8.04→−8.19

1

f(u)
du

Math.
= −

∫ −8.19
−8.04

1

f(r)
dr

By (1)∼(10) and Cauchy Theorem we can obtain

∫
b6

1

f(u)
du , which

value is shown in the Appendix A.0.15.

3. Evaluate

∫
b5

1

f(u)
du

b5 : Consider the equivalent path

b∗5 = b∗6
∪

a∗63′
∪

a∗64
∪

a∗65
∪

a∗66
∪

a∗67
∪

a∗68′
∪

b∗51
∪

b∗52
∪

b∗53
∪

b∗54∪
b∗55

∪
b∗56 , where

a∗63′ = the path on the vertical cut from −8.04 to −8.04 − 1.34i on

(+)edge of sheet-I,

a∗68′ = the path on the vertical cut from −8.04 − 1.34i to −8.04 on

(−)edge of sheet-I,

b∗51 = the path on the horizontal line from −8.04 to −3.14 on sheet-I,

b∗52 = the path on the vertical cut from −3.14 to −3.14 + 1.34i on

(−)edge of sheet-II,

b∗53 = the path on the vertical cut from −3.14 + 1.34i to −3.14 + 2.48i

on (−)edge of sheet-II,

b∗54 = the path on the vertical cut from −3.14 + 2.48i to −3.14 + 1.34i

on (+)edge of sheet-II,

b∗55 = the path on the vertical cut from −3.14 + 1.34i to −3.14 on

(+)edge of sheet-II,

b∗56 = the path on the horizontal line from −3.14 to −8.04 on sheet-II.
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(a) The contour b5 in the cut plane

(b) The equivalent path for b5
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(1) a∗63′ : Let u = −8.04 + ri , r : 0 → −1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
a∗
63′

1

f(u)
du

Math.
=

∫ −1.34
0

i

f(−8.04 + ri)
dr

(2) a∗68′ : Let u = −8.04 + ri , r : −1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗
68′

1

f(u)
du

Math.
= −

∫ 0

−1.34

i

f(−8.04 + ri)
dr

(3) b∗51 : Let u = r , r : −8.04 → −3.14 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗51

1

f(u)
du

Math.
= −

∫ −3.14
−8.04

1

f(r)
dr

(4) b∗52 ≡ the path on the vertical cut from −3.14 to −3.14+ 1.34i on

(+)edge of sheet-I.

Let u = −3.14 + ri , r : 0 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗52

1

f(u)
dz =

∫
−3.14 −99K−3.14+1.34i

1

f(u)
du

=

∫
−3.14+→−3.14+1.34i

7
1

f(u)
du

Math.
= −

∫ 1.34

0

i

f(−3.14 + ri)
dr

(5) b∗53 ≡ the path on the vertical cut from −3.14 + 1.34i to −3.14 +

2.48i on (+)edge of sheet-I.

Let u = −3.14 + ri , r : 1.34 → 2.48 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗53

1

f(u)
dz =

∫
−3.14+1.34i

−99K−3.14+2.48i

1

f(u)
du

=

∫
−3.14+1.34i

+→−3.14+2.48i

1

f(u)
du

Math.
=

∫ 2.48

1.34

i

f(−3.14 + ri)
dr
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(6) b∗54 ≡ the path on the vertical cut from −3.14 + 2.48i to −3.14 +

1.34i on (−)edge of sheet-I.

Let u = −3.14 + ri , r : 2.48 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗54

1

f(u)
dz =

∫
−3.14+2.48i

+99K−3.14+1.34i

1

f(u)
du

=

∫
−3.14+2.48i

−→−3.14+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

2.48

i

f(−3.14 + ri)
dr

(7) b∗55 ≡ the path on the vertical cut from −3.14+ 1.34i to −3.14 on

(−)edge of sheet-I.

Let u = −3.14 + ri , r : 1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗55

1

f(u)
dz =

∫
−3.14+1.34i

+99K−3.14

1

f(u)
du

=

∫
−3.14+1.34i

−→−3.14

1

f(u)
du

Math.
=

∫ 0

1.34

i

f(−3.14 + ri)
dr

(8) b∗56 : Let u = r , r : −3.14 → −8.04 , du = dr and u ∈ (M) then

f(u)
Math.
= −f(u)∫

b∗56

1

f(u)
dz =

∫
−3.1499K−8.04

1

f(u)
du

= −
∫
−3.14→−8.04

1

f(u)
du

Math.
=

∫ −8.04
−3.14

1

f(r)
dr

By (1)∼(8)and Cauchy Theorem we can obtain

∫
b5

1

f(u)
du , which

value is shown in the Appendix A.0.16.
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4. Evaluate

∫
b4

1

f(u)
du

b4 : Consider the equivalent path

b∗4 = b∗5
∪

a∗52′
∪

a∗53
∪

a∗54
∪

a∗55′
∪

b∗41
∪

b∗42
∪

b∗43
∪

b∗44
∪

b∗45
∪

b∗46 ,

where

a∗52′ = the path on the vertical cut from −3.14 to −3.14 − 1.34i on

(+)edge of sheet-I,

a∗55′ = the path on the vertical cut from −3.14 − 1.34i to −3.14 on

(−)edge of sheet-I,

b∗41 = the path on the horizontal line from −3.14 to 3.14 on sheet-I,

b∗42 = the path on the vertical cut from 3.14 to 3.14+ 1.34i on (−)edge

of sheet-II,

b∗43 = the path on the vertical cut from 3.14 + 1.34i to 3.14 + 2.48i on

(−)edge of sheet-II,

b∗44 = the path on the vertical cut from 3.14 + 2.48i to 3.14 + 1.34i on

(+)edge of sheet-II,

b∗45 = the path on the vertical cut from 3.14+ 1.34i to 3.14 on (+)edge

of sheet-II,

b∗46 = the path on the horizontal line from 3.14 to −3.14 on sheet-II.

(1) a∗52′ : Let u = −3.14 + ri , r : 0 → −1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗
52′

1

f(u)
du

Math.
= −

∫ −1.34
0

i

f(−3.14 + ri)
dr

(2) a∗55′ : Let u = −3.14 + ri , r : −1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗
55′

1

f(u)
du

Math.
=

∫ 0

−1.34

i

f(−3.14 + ri)
dr

(3) b∗41 : Let u = r , r : −3.14 → 3.14 , du = dr and u /∈ (M)
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(c) The contour b4 in the cut plane

(d) The equivalent path for b4

81



then f(u)
Math.
= f(u)∫

b∗41

1

f(u)
du

Math.
=

∫ 3.14

−3.14

1

f(r)
dr

(4) b∗42 ≡ the path on the vertical cut from 3.14 to 3.14 + 1.34i on

(+)edge of sheet-I.

Let u = 3.14 + ri , r : 0 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗42

1

f(u)
du =

∫
3.14

−99K3.14+1.34i

1

f(u)
du

=

∫
3.14

+→3.14+1.34i

1

f(u)
du

Math.
=

∫ 1.34

0

i

f(3.14 + ri)
dr

(5) b∗43 ≡ the path on the vertical cut from 3.14+1.34i to 3.14+2.48i

on (+)edge of sheet-I.

Let u = 3.14 + ri , r : 1.34 → 2.48 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗43

1

f(u)
du =

∫
3.14+1.34i

−99K3.14+2.48i

1

f(u)
du

=

∫
3.14+1.34i

+→3.14+2.48i

1

f(u)
du

Math.
= −

∫ 2.48

1.34

i

f(3.14 + ri)
dr

(6) b∗44 ≡ the path on the vertical cut from 3.14+1.34i to 3.14+2.48i

on (+)edge of sheet-I.

Let u = 3.14 + ri , r : 1.34 → 2.48 , du = idr and u /∈ (M)
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then f(u)
Math.
= f(u)∫
b∗44

1

f(u)
du =

∫
3.14+2.48i

+99K3.14+1.34i

1

f(u)
du

=

∫
3.14+2.48i

−→3.14+1.34i

1

f(u)
du

Math.
=

∫ 1.34

2.48

i

f(3.14 + ri)
dr

(7) b∗45 ≡ the path on the vertical cut from 3.14 + 1.34i to 3.14 on

(+)edge of sheet-I.

Let u = 3.14 + ri , r : 1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗45

1

f(u)
du =

∫
3.14+1.34i

+99K3.14

1

f(u)
du

=

∫
3.14+1.34i

−→3.14

1

f(u)
du

Math.
= −

∫ 0

1.34

i

f(3.14 + ri)
dr

(8) b∗46 : Let u = r , r : 3.14 → −3.14 , du = dr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗46

1

f(u)
dz =

∫
3.1499K−3.14

1

f(u)
du

= −
∫
3.14→−3.14

1

f(u)
du

Math.
= −

∫ −3.14
3.14

1

f(r)
dr

By (1)∼(8) and Cauchy Theorem we can obtain

∫
b4

1

f(u)
du , which

value is shown in the Appendix A.0.17.

5. Evaluate

∫
b3

1

f(u)
du
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(e) The contour b3 in the cut plane

(f) The equivalent path for b3
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b3 : Consider the equivalent path

b∗3 = b∗4
∪

a∗42′
∪

a∗43
∪

a∗44
∪

a∗45′
∪

b∗31
∪

b∗32
∪

b∗33
∪

b∗34
∪

b∗35
∪

b∗36∪
b∗37

∪
b∗38 , where

a∗42′ = the path on the vertical cut from 3.14 to 3.14−1.34i on (+)edge

of sheet-I,

a∗45′ = the path on the vertical cut from 3.14−1.34i to 3.14 on (−)edge

of sheet-I,

b∗31 = the path on the horizontal line from 3.14 to 8.04 on sheet-I,

b∗32 = the path on the vertical cut from 8.04 to 8.04+ 1.34i on (−)edge

of sheet-II,

b∗33 = the path on the vertical cut from 8.04 + 1.34i to 8.04 + 3.86i on

(−)edge of sheet-II,

b∗34 = the path on the vertical cut from 8.04 + 3.86i to 8.04 + 8.19i on

(−)edge of sheet-II,

b∗35 = the path on the vertical cut from 8.04 + 8.19i to 8.04 + 3.86i on

(+)edge of sheet-II,

b∗36 = the path on the vertical cut from 8.04 + 3.86i to 8.04 + 1.34i on

(+)edge of sheet-II,

b∗37 = the path on the vertical cut from 8.04+ 1.34i to 8.04 on (+)edge

of sheet-II,

b∗38 = the path on the horizontal line from 8.04 to 3.14 on sheet-II.

(1) a∗42′ : Let u = 3.14 + ri , r : 0 → −1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗
42′

1

f(u)
du

Math.
=

∫ −1.34
0

i

f(3.14 + ri)
dr

(2) a∗45′ : Let u = 3.14 + ri , r : −1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗
45′

1

f(u)
du

Math.
= −

∫ 0

−1.34

i

f(3.14 + ri)
dr
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(3) b∗31 : Let u = r , r : 3.14 → 8.04 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗31

1

f(u)
du

Math.
= −

∫ 8.04

3.14

1

f(r)
dr

(4) b∗32 ≡ the path on the vertical cut from 8.04 to 8.04 + 1.34i on

(+)edge of sheet-I.

Let u = 8.04 + ri , r : 0 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗32

1

f(u)
du =

∫
8.04

−99K8.04+1.34i

1

f(u)
du

=

∫
8.04

+→8.04+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

0

i

f(8.04 + ri)
dr

(5) b∗33 ≡ the path on the vertical cut from 8.04+1.34i to 8.04+3.86i

on (+)edge of sheet-I.

Let u = 8.04 + ri , r : 1.34 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗33

1

f(u)
du =

∫
8.04+1.34i

−99K8.04+3.86i

1

f(u)
du

=

∫
8.04+1.34i

+→8.04+3.86i

1

f(u)
du

Math.
=

∫ 3.86

1.34

i

f(8.04 + ri)
dr

(6) b∗34 ≡ the path on the vertical cut from 8.04+3.86i to 8.04+8.19i

on (+)edge of sheet-I.

Let u = 8.04 + ri , r : 3.86 → 8.19 , du = idr and u ∈ (M)
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then f(u)
Math.
= −f(u)∫
b∗34

1

f(u)
du =

∫
8.04+3.86i

−99K8.04+8.19i

1

f(u)
du

=

∫
8.04+3.86i

+→8.04+8.19i

1

f(u)
du

Math.
= −

∫ 8.19

3.86

i

f(8.04 + ri)
dr

(7) b∗35 ≡ the path on the vertical cut from 8.04+8.19i to 8.04+3.86i

on (+)edge of sheet-I.

Let u = 8.04 + ri , r : 8.19 → 3.86 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗35

1

f(u)
du =

∫
8.04+8.19i

+99K8.04+3.86i

1

f(u)
du

=

∫
8.04+8.19i

−→8.04+3.86i

1

f(u)
du

Math.
=

∫ 3.86

8.19

i

f(8.04 + ri)
dr

(8) b∗36 ≡ the path on the vertical cut from 8.04+3.86i to 8.04+1.34i

on (+)edge of sheet-I.

Let u = 8.04 + ri , r : 3.86 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗36

1

f(u)
du =

∫
8.04+3.86i

+99K8.04+1.34i

1

f(u)
du

=

∫
8.04+3.86i

−→8.04+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

3.86

i

f(8.04 + ri)
dr

(9) b∗37 ≡ the path on the vertical cut from 8.04 + 1.34i to 8.04 on

(−)edge of sheet-I.

Let u = 8.04 + ri , r : 1.34 → 0 , du = idr and u /∈ (M)
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then f(u)
Math.
= f(u)∫

b∗37

1

f(u)
du =

∫
8.04+1.34i

+99K8.04

1

f(u)
du

=

∫
8.04+1.34i

−→8.04

1

f(u)
du

Math.
=

∫ 0

1.34

i

f(8.04 + ri)
dr

(10) b∗38 : Let u = r , r : 8.04 → 3.14 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗38

1

f(u)
dz =

∫
8.0499K3.14

1

f(u)
du

= −
∫
8.04→3.14

1

f(u)
du

Math.
=

∫ 3.14

8.04

1

f(r)
dr

By (1)∼(10) and Cauchy Theorem we can obtain

∫
b3

1

f(u)
du , which

value is shown in the Appendix A.0.18.

6. Evaluate

∫
b2

1

f(u)
du

b2 : Consider the equivalent path

b∗2 = b∗3
∪

a∗33′
∪

a∗34
∪

a∗35
∪

a∗36
∪

a∗37
∪

a∗38′
∪

b∗21
∪

b∗22
∪

b∗23
∪

b∗24
∪

b∗25
∪

b∗26 ,

where

a∗33′ = the path on the vertical cut from 8.04 to 8.04−1.34i on (+)edge

of sheet-I, a∗38′ = the path on the vertical cut from 8.04− 1.34i to 8.04

on (−)edge of sheet-I, b∗21 = the path on the horizontal line from 8.04

to 8.19 on sheet-I,

b∗22 = the path on the vertical cut from 8.19 to 8.19+ 1.34i on (−)edge

of sheet-II,

b∗23 = the path on the vertical cut from 8.19 + 1.34i to 8.19 + 3.86i on

88



(g) The contour b2 in the cut plane

(h) The equivalent path for b2
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(−)edge of sheet-II,

b∗24 = the path on the vertical cut from 8.19 + 3.86i to 8.19 + 1.34i on

(+)edge of sheet-II,

b∗25 = the path on the vertical cut from 8.19+ 1.34i to 8.19 on (+)edge

of sheet-II,

b∗26 = the path on the horizontal line from 8.19 to 8.04 on sheet-II.

(1) a∗33′ : Let u = 8.04 + ri , r : 0 → −1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
a∗
33′

1

f(u)
du

Math.
= −

∫ −1.34
0

i

f(8.04 + ri)
dr

(2) a∗38′ : Let u = 8.04 + ri , r : −1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗
38′

1

f(u)
du

Math.
=

∫ 0

−1.34

i

f(8.04 + ri)
dr

(3) b∗21 : Let u = r , r : 8.04 → 8.19 , du = dr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗21

1

f(u)
du

Math.
=

∫ 8.19

8.04

1

f(r)
dr

(4) b∗22 ≡ the path on the vertical cut from 8.19 to 8.19 + 1.34i on

(+)edge of sheet-I.

Let u = 8.19 + ri , r : 0 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗22

1

f(u)
dz =

∫
8.19

−99K8.19+1.34i

1

f(u)
du

=

∫
8.19

+→8.19+1.34i

1

f(u)
du

Math.
=

∫ 1.34

0

i

f(8.19 + ri)
dr

90



(5) b∗23 ≡ the path on the vertical cut from 8.19+1.34i to 8.19+3.86i

on (+)edge of sheet-I.

Let u = 8.19 + ri , r : 1.34 → 3.86 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫
b∗23

1

f(u)
du =

∫
8.19+1.34i

−99K8.19+3.86i

1

f(u)
du

=

∫
8.19+1.34i

+→8.19+3.86i

1

f(u)
du

Math.
= −

∫ 3.86

1.34

i

f(8.19 + ri)
dr

(6) b∗24 ≡ the path on the vertical cut from 8.19+3.86i to 8.19+1.34i

on (−)edge of sheet-I.

Let u = 8.19 + ri , r : 3.86 → 1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫
b∗24

1

f(u)
du =

∫
8.19+3.86i

+99K8.19+1.34i

1

f(u)
du

=

∫
8.19+3.86i

−→8.19+1.34i

1

f(u)
du

Math.
=

∫ 1.34

3.86

i

f(8.19 + ri)
dr

(7) b∗25 ≡ the path on the vertical cut from 8.19 + 1.34i to 8.19 on

(−)edge of sheet-I.

Let u = 8.19 + ri , r : 1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗67

1

f(u)
du =

∫
8.19+1.34i

+99K8.19

1

f(u)
du

=

∫
8.19+1.34i

−→8.19

1

f(u)
du

Math.
= −

∫ 0

1.34

i

f(8.19 + ri)
dr
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(8) b∗26 : Let u = r , r : 8.19 → 8.04 , du = dr and u /∈ (M) then

f(u)
Math.
= f(u) ∫

b∗26

1

f(u)
dz =

∫
8.1999K8.04

1

f(u)
du

= −
∫
8.19→8.04

1

f(u)
du

Math.
= −

∫ 8.04

8.19

1

f(r)
dr

By (1)∼(8) and Cauchy Theorem we can obtain

∫
b2

1

f(u)
du , which

value is shown in the Appendix A.0.19.

7. Evaluate

∫
b1

1

f(u)
du

b1 : Consider the equivalent path

b∗1 = b∗2
∪

a∗22′
∪

a∗23
∪

a∗24
∪

a∗25′
∪

b∗11
∪

b∗12
∪

b∗13
∪

b∗14 , where

a∗22′ = the path on the vertical cut from 8.19 to 8.19−1.34i on (+)edge

of sheet-I, a∗25′ = the path on the vertical cut from 8.19− 1.34i to 8.19

on (−)edge of sheet-I, b∗11 = the path on the horizontal line from 8.19

to 8.27 on sheet-I,

b∗12 = the path on the vertical cut from 8.27 to 8.27+ 1.34i on (−)edge

of sheet-II,

b∗13 = the path on the vertical cut from 8.27+ 1.34i to 8.27 on (+)edge

of sheet-II,

b∗14 = the path on the horizontal line from 8.27 to 8.19 on sheet-II.

(1) a∗22′ : Let u = 8.19 + ri , r : 0 → −1.34 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

a∗
22′

1

f(u)
du

Math.
=

∫ −1.34
0

i

f(8.19 + ri)
dr
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(i) The contour b1 in the cut plane

(j) The equivalent path for b1
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(2) a∗25′ : Let u = 8.19 + ri , r : −1.34 → 0 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

a∗
25′

1

f(u)
du

Math.
= −

∫ 0

−1.34

i

f(8.19 + ri)
dr

(3) b∗11 : Let u = r , r : 8.19 → 8.27 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗11

1

f(u)
dz

Math.
= −

∫ 8.27

8.19

1

f(r)
dr

(4) b∗12 ≡ the path on the vertical cut from 8.27 to 8.27 + 1.34i on

(+)edge of sheet-I.

Let u = 8.27 + ri , r : 0 → 1.34 , du = idr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗12

1

f(u)
du =

∫
8.27

−99K8.27+1.34i

1

f(u)
du

=

∫
8.27

+→8.27+1.34i

1

f(u)
du

Math.
= −

∫ 1.34

0

i

f(8.27 + ri)
dr

(5) b∗13 ≡ the path on the vertical cut from 8.27 + 1.34i to 8.27 on

(−)edge of sheet-I.

Let u = 8.27 + ri , r : 1.34 → 0 , du = idr and u /∈ (M)

then f(u)
Math.
= f(u)∫

b∗13

1

f(u)
du =

∫
8.27+1.34i

+99K8.27

1

f(u)
du

=

∫
8.27+1.34i

−→8.27

1

f(u)
du

Math.
=

∫ 0

1.34

i

f(8.27 + ri)
dr
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(6) b∗14 : Let u = r , r : 8.27 → 8.19 , du = dr and u ∈ (M)

then f(u)
Math.
= −f(u)∫

b∗14

1

f(u)
du =

∫
8.2799K8.19

1

f(u)
du

= −
∫
8.27→8.19

1

f(u)
du

Math.
=

∫ 8.19

8.27

1

f(r)
dr

By (1)∼(6) and Cauchy Theorem we can obtain

∫
b1

1

f(u)
du , which

value is shown in the Appendix A.0.20.
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Chapter 4

Elliptic Functions

In this chapter, we will introduce some definitions, theorems and properties

taken from book [4].

4.1 Basic concepts about the elliptic function

It is necessary for us to study some basic concepts about the elliptic function.

Definition 4.1.

A function f is called periodic function if there is a number ω, such that

f(z + ω) = f(z) for all values of z for which f(z) exists.

Remark 4.1.

If f is a periodic function with period ω, then f(z+kω) = f(z) for all values

of z and any integer k.

Definition 4.2.

The smallest period of a periodic function f is called the fundamental period

of f .
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4.1.1 Doubly-periodic function

Lemma 4.1.

Let ω and ω′ be a pair of fundamental period of the function f . Then

f(z) = f(z +mω + nω′) for all values of z and for all integer values of m,n.

That implies mω + nω′ represents the all periods of f .

Definition 4.3.

Let 2ω1 and 2ω2 be any two numbers (real or complex) whose ratio is not

purely real. If a function f satisfies the equations

f(z + 2ω1) = f(z) , f(z + 2ω2) = f(z) ,

for all values of z for which f(z) exists, then it is called a doubly-periodic

function of z with a pair of fundamental periods 2ω1 and 2ω2.

Definition 4.4.

If a doubly-periodic function f is analytic (except at poles) and has no sin-

gularities other than poles in the finite part of the complex plane, then f is

called an elliptic function.
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4.1.2 Period-parallelograms

Remark 4.2.

If there is no point ω inside or on the boundary of the parallelogram (ex-

cept the vertices) such that f(z + ω) = f(z) , for all values of z, then the

parallelogram constructed by z , z + 2ω1 , z + 2ω1 + 2ω2 , z + 2ω2 is called a

fundamental period-parallelogram for an elliptic function with periods

2ω1, 2ω2.

Figure 4.1.1. Take z = a , for some a ∈ C

It is clear that the complex plane can be covered with a network of parallelo-

grams equal to the fundamental period-parallelogram and similarly situated,

each of the points z+2mω1+2nω2 , ∀m,n ∈ Z, z ∈ C being a vertex of four

parallelograms. (Show in Figure 4.1.1.)

The points z , z+2ω1 , z+2ω2 , . . . z+2mω1+2nω2 , . . . will have the same

value after transferring by f since 2ω1 and 2ω2 are periods. In other words,

all periods of f can be represented of the form 2mω1 + 2nω2 , ∀m,n ∈ Z
. Thus, any pair of such points are said to be congruent to one another.
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Generally if the difference between two points z1, z2 is 2mω1 + 2nω2, then

z1, z2 are said to be congruent. The congruence of two points z1, z2 is denoted

by z1 ≡ z2(mod. 2ω1, 2ω2).

We know it is inconvenient to deal with the parallelograms if they have

singularities of the integrand on their boundaries. So in order to avoid there

are poles on the integral path, we can take z = a , for some a ∈ C by

translating the parallelograms such that none of the poles of the integrand

considered are on the sides of the parallelogram. Such a parallelogram is

called a cell.

The set of poles of an elliptic function in any given cell is called an irreducible

set.

4.1.3 Simple properties of the elliptic function

We already know the definitions of the elliptic function, and then we can

derive some simple properties of the elliptic function as following.

1. The rational functions of an elliptic function are also elliptic functions

of the same kind.

2. Liouville’s theorem

There are four theorems about elliptic functions known as Liouville1’s

theorems.

• Liouville’s first theorem

An elliptic function ,f(z), with no poles in a cell is merely a con-

stant.

1Joseph Liouville (1809-1882)
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• Liouville’s second theorem

The sum of the residue of an elliptic function, f(z), at its poles in

any cell is zero.

• Liouville’s third theorem

The number of poles is the same as the number of zeros of an

elliptic function in any cell.

• Liouville’s fourth theorem

The difference between the sum of poles and the sum of zeros is a

period.

4.1.4 The order of an elliptic function

Definition 4.5.

Let c be a constant and f(z) be an elliptic function. The order of the elliptic

function is the number of the roots of the equation f(z) = c which lies in

any cell depends only on f(z).

Remark 4.3.

a. The order of f(z) is the number of poles in the cell.

b. The order of an elliptic function is ≥ 2.

c. The simplest elliptic function could be divided into two classes.

One is the elliptic functions which have a single irreducible double pole with

residue = 0. The other is the elliptic functions which have two single poles

and the sum of their residues is 0.
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4.2 Weierstrass elliptic function

The Weierstrass elliptic function ℘(z) is defined as

℘(z) =
1

z2
+

∑
m,n̸=0

{
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}
=

1

z2
+

∑
Ωm,n ̸=0

{
1

(z − Ωm,n)2
− 1

Ω2
m,n

}
, (4.2.1)

where Ωm,n = 2mω1 + 2nω2 , ∀m,n ∈ Z (except m = n = 0)

Remark 4.4.

1. Whenm,n such that |Ωm,n| is large, the general terms of the series defining

℘(z) is O(|Ωm,n|−3). So ℘(z) converges absolutely and uniformly.

2. ℘(z) is analytic except the poles, namely the points Ωm,n and the points

Ωm,n are all double poles.

We proceed to introduce some properties and theorems about ℘(z) and ℘′(z)

as following.

4.2.1 Periodicity and other properties of ℘(z)

Since ℘(z) is uniformly convergent series of analytic function, we could dif-

ferentiate it term-by-term. And we obtain

℘′(z) =
d

dz
℘(z) = −2

∑
m,n

1

(z − Ωm,n)3
(4.2.2)

and

℘′(−z) = −2
∑
m,n

1

(−z − Ωm,n)3
= 2

∑
m,n

1

(z + Ωm,n)3
. (4.2.3)

According to equation(4.2.2) and (4.2.3), we can get

℘′(−z) = −℘′(z) . (4.2.4)
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This means that ℘′(z) is an odd function.

We know that ℘′(z) is analytic except at poles and which has no singularity

other than poles. Moreover, it is clear that 2ω1, 2ω2 are periods of ℘′(z).

Thus ℘′(z) is also an elliptic function, but it is different to ℘(z). Compare

℘(z) with ℘′(z) as following table:

Definition Poles Periods Parity
℘(z) equation(4.2.1) Ωm,n 2ω1, 2ω2 even
℘′(z) equation(4.2.2) Ωm,n 2ω1, 2ω2 odd

Table 4.1. The difference between ℘(z) and℘′(z)

Corollary 4.1.

If f(z) is an elliptic function, then its derivative f ′(z) is also an elliptic

function. And f (n)(z) ,∀n ∈ N is an elliptic function of the same kind.

Moreover, if f(z) and g(z) are elliptic function with the same periods, then

f(z)± g(z) , f(z)g(z) ,
f(z)

g(z)

are also elliptic functions of the same kind.

4.2.2 The differential equation satisfied by ℘(z)

From equation(4.2.2), we can let S(z) = ℘(z) − 1

z2
. Then S(z) could be

represented as

S(z) =
∑

m,n̸=0

{
(

1

(z − Ωm,n)2
− 1

Ω2
m,n

)

}
. (4.2.5)

then S(z) is analytic at z = 0, and it is an even function.
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Do Taylor expansion of S(z) for |z| → 0. The equation(4.2.5) can be derived

as

℘(z)− 1

z2
=

z2

20
g2 +

z4

28
g3 +O(z6) , (4.2.6)

where g2 =
∑

m,n̸=0

60Ω−4m,n and g3 =
∑

m,n̸=0

140Ω−6m,n .

By equation(4.2.6), ℘(z) can be written as

℘(z) =
1

z2
+

z2

20
g2 +

z4

28
g3 +O(z6) . (4.2.7)

Differentiating the equation, we get

℘′(z) =
−2

z3
+

z

10
g2 +

z3

7
g3 +O(z5) . (4.2.8)

From the equation(4.2.7) and (4.2.8), we can derive

℘3(z) =
1

z6
+

3

20z2
g2 +

3

28
g3 +O(z2) , (4.2.9)

[℘′(z)]2 =
4

z6
− 2

5z2
g2 +

4

7
g3 +O(z2) . (4.2.10)

Hence, we obtain

[℘′(z)]2 − 4℘3(z) + ℘(z)g2 + g3 = O(z2) . (4.2.11)

For convenient, we define H(z) = [℘′(z)]2 − 4℘3(z) + ℘(z)g2 + g3 = O(z2) .

Since H(z) is an elliptic function and it is analytic at the origin, the all

congruent points of 0 are also analytic. This means that H(z) is an elliptic

function with no singularities.

This implies that H(z) = c where c is a constant by Liouville’s Theorem.

Let z → 0, we derive that the constant c is zero. So the function ℘(z) sat-

isfies [℘′(z)]2 = 4℘3(z)− ℘(z)g2 − g3 = O(z2) , where g2 =
∑

m,n ̸=0

60Ω−4m,n and
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g3 =
∑

m,n̸=0

140Ω−6m,n .

Furthermore, given the equation (
dy

dz
)2 = 4y3 − g2y − g3 . If ω1, ω2 can be

determined such that g2 =
∑

m,n̸=0

60Ω−4m,n and g3 =
∑

m,n̸=0

140Ω−6m,n
′ then the

general solution of the differential equation is y(z) = ℘(±z + α), where α is

the constant of integration. Since ℘(z) is an even function, the solution can

be written as y(z) = ℘(z + α).

4.2.3 The integral formula for ℘(z)

Here we consider the integral equation

z =

∫ ∞
ξ

(4t3 − g2t− g3)
− 1

2dt (4.2.12)

where the path of integration may be any curve which does not pass through

a zero of 4t3 − g2t− g3.

By the equation (4.2.12), we differentiate z with respect to ξ, and get

(
dξ

dz
)2 = 4ξ3 − g2ξ − g3 . (4.2.13)

And by the previous result, we know that ξ = ℘(z+α), where α is a constant.

Let ξ → ∞, then z → 0. This implies that α is a pole of ℘(z). In other

words, α ∈ Ωm,n and

ξ = ℘(z + Ωm,n) = ℘(z) . (4.2.14)

So the equation (4.2.12) is called the integral formula for ℘(z) and we some-

times write the equation in the form

z =

∫ ∞
℘(z)

(4t3 − g2t− g3)
− 1

2dt . (4.2.15)
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4.3 The theta function

The theta-function ϑ(z, q) is defined as

ϑ(z, q) =
∞∑

n=−∞

(−1)nqn
2

e2niz (4.3.16)

= 1 + 2
∞∑
n=1

(−1)nqn
2

cos(2nz) , (4.3.17)

where q = eπiτ with |q| < 1, and τ ∈ C is constant whose imaginary part is

positive.

By the equation (4.3.16), it is obvious that

ϑ(z + π, q) = ϑ(z, q) ,

and

ϑ(z + πτ, q) =
∞∑

n=−∞

(−1)nqn
2

e2nize2niπτ

=
∞∑

n=−∞

(−1)nqn
2

e2nizq2n

=
∞∑

n=−∞

(−1)nq(n+1)2−1e2(n+1)iz−2iz

= −q−1e−2iz
∞∑

n=−∞

(−1)n+1q(n+1)2e2(n+1)iz

= −q−1e−2izϑ(z, q)

Hence we called ϑ(z, q) is a quasi-doubly periodic function of z whose

multipliers or periodicity factors associated with periods π and πτ are 1 and

−q−1e−2iz respectively.

And if ϑ(z0) = 0 , then ϑ(z0 +mπ + nπτ) = 0 , for all integral values of m

and n.
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4.3.1 The four types of theta-function

The four types of theta-function are defined as

ϑ1(z, q) = −ieiz+
1
4
πiτϑ4(z +

1

2
πτ, q)

ϑ2(z, q) = ϑ1(z +
1

2
π, q)

ϑ3(z, q) = ϑ4(z +
1

2
π, q)

ϑ4(z, q) = ϑ(z, q) =
∞∑

n=−∞

(−1)nqn
2

e2niz

(4.3.18)

Equations (4.3.18) can be written in another form:

ϑ1(z, q) = 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin(2n+ 1)z

ϑ2(z, q) = 2
∞∑
n=0

q(n+
1
2
)2 cos(2n+ 1)z

ϑ3(z, q) = 1 + 2
∞∑
n=0

qn
2

cos(2nz)

ϑ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos(2nz)

(4.3.19)

We are just interested in the parameter z, so ϑi(z, q) is denoted as ϑi(z).

Moreover, the notation ϑi is represented by ϑi(0), for i = 1, 2, 3, 4.

And then we introduce some properties of theta-function.

1. By (4.3.19) and parity of trigonometric functions, we have

function ϑ1(z) ϑ2(z) ϑ3(z) ϑ4(z)
parity odd even even even
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2. We get relations between four types of theta-function by equations

(4.3.19) and simple computation.

ϑ1(z) = −ϑ2(z +
1

2
π) = −iKϑ3(z +

1

2
π +

1

2
πτ) = −iKϑ4(z +

1

2
πτ)

ϑ2(z) = Kϑ3(z +
1

2
πτ) = Kϑ4(z +

1

2
π +

1

2
πτ) = ϑ1(z +

1

2
π)

ϑ3(z) = ϑ4(z +
1

2
π) = Kϑ1(z +

1

2
π +

1

2
πτ) = Kϑ2(z +

1

2
πτ)

ϑ4(z) = −iKϑ1(z +
1

2
πτ) = iKϑ2(z +

1

2
π +

1

2
πτ) = ϑ3(z +

1

2
π)

where K = q
1
4 eiz .

3. We can get the periodicity factors of the four theta-functions associated

with periods π and πτ , which are shown in the following table:

ϑ1(z) ϑ2(z) ϑ3(z) ϑ4(z)
π −1 −1 1 1
πτ −L L L −L

where L = q−1e−2iz .

4. The theta-function ϑi(z) and ϑ′i(z) satisfy the following equations

ϑ′i(z + π)

ϑi(z + π)
=

ϑ′i(z)

ϑi(z)

ϑ′i(z + πτ)

ϑi(z + πτ)
= −2i+

ϑ′i(z)

ϑi(z)
.

where i = 1, 2, 3, 4 and ϑ′i(z) is the derivative of ϑi(z) with respect to z .

Theorem 4.1.

Let C be a cell with corners t , t+ π , t+ πτ , t+ τ .

ϑi(z) has only one zero inside C, for i = 1, 2, 3, 4.

From equations (4.3.18), it is manifest that 0 is the zero of ϑ1(z) . And

use relation between the theta-functions, we can find out that the zero of
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ϑ2(z), ϑ3(z), ϑ4(z) are 0,
1

2
π,

1

2
π+

1

2
πτ,

1

2
τ, respectively. The result can be

summarized as:

zeros relation

ϑ1(z) z = 0 mod(π, πτ) 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin(2n+ 1)z

ϑ2(z) z =
1

2
π mod(π, πτ) ϑ1(z) = −ϑ2(z +

1

2
π)

ϑ3(z) z =
1

2
π +

1

2
πτ mod(π, πτ) ϑ1(z) = −iq

1
4 eizϑ3(z +

1

2
π +

1

2
πτ)

ϑ4(z) z =
1

2
πτ mod(π, πτ) ϑ1(z) = −iq

1
4 eizϑ4(z +

1

2
πτ)

Next, we can obtain the relation between these theta-functions. Since ϑi(z) ,

for i = 1, 2, 3, 4, are analytic and have periodicity factors 1, −q−1e−2πτ as-

sociated with periods π , πτ . It is obvious that ϑ2
i (z) , fori = 1, 2, 3, 4, are

analytic and have periodicity factors 1, −q−2e−4πτ with periods π , πτ .

Choosing suitable constants a, b, a, b , then

aϑ2
1(z) + bϑ2

4(z)

ϑ2
2(z)

(4.3.20)

and
a′ϑ2

1(z) + b′ϑ2
4(z)

ϑ2
3(z)

(4.3.21)

will become doubly-periodic function with periods π and πτ .

Since each of theta-functions ϑi(z) , fori = 1, 2, 3, 4, has a double zero (and

no other zeros) in any cell. So (4.3.20) and (4.3.21) just have a simple pole

in any cell where the constants a, b, a, b are suitably chosen. But the order of

an elliptic function is never less than 2, otherwise such a function is merely

a constant. And we choose the constant is 1.
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Hence the equations (4.3.20) and (4.3.21) will become{
ϑ2
2(z) = aϑ2

1(z) + bϑ2
4(z)

ϑ2
3(z) = a′ϑ2

1(z) + b′ϑ2
4(z)

(4.3.22)

Given z the special values 0 and
1

2
πτ , then we get

ϑ2
2 = bϑ2

4 , ϑ
2
3 = b′ϑ2

4 , ϑ
2
3 = −aϑ2

4 , ϑ
2
2 = −a′ϑ2

4 . (4.3.23)

Thus we have the following relation:{
ϑ2
4ϑ

2
1(z) = ϑ2

2ϑ
2
3(z)− ϑ2

3ϑ
2
2(z)

ϑ2
4ϑ

2
2(z) = ϑ2

2ϑ
2
4(z)− ϑ2

3ϑ
2
1(z) .

(4.3.24)

Additionally, if we replace z by z +
1

2
π , we have{

ϑ2
4ϑ

2
1(z) = ϑ2

2ϑ
2
3(z)− ϑ2

3ϑ
2
2(z)

ϑ2
4ϑ

2
4(z) = ϑ2

3ϑ
2
3(z)− ϑ2

2ϑ
2
2(z) .

(4.3.25)

Remark 4.5.

If z = 0 , the last relation in (4.3.25) will become ϑ4
3 − ϑ4

2 = ϑ4
4 .

In order to get some relation between the theta-functions easily, we can

represent the theta-functions as infinite products. The result is derived by

Jacobi2. Let

f(z) =
∞∏
n=1

(1− q2n−1e2iz)
∞∏
n=1

(1− q2n−1e−2iz) .

We know
ϑ4(z)

f(z)
has neither poles nor zeros since f(z) has the same zeros as

ϑ4(z) . And it is obvious that

f(z + π) = f(z) , f(z + πτ) = −q−1e−2izf(z) .

2Carl Gustav Jakob Jacobi (1804-1851)
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Thus f(z) has the same periodicity factors as ϑ4(z) . This means that
ϑ4(z)

f(z)

is a doubly-periodic function with no poles. By Liouville’s theorem,
ϑ4(z)

f(z)
is

a constant. Hence, ϑ4(z) can be represented by

ϑ4(z) = νf(z)

= ν
∞∏
n=1

(1− q2n−1e2iz)
∞∏
n=1

(1− q2n−1e−2iz)

= ν
∞∏
n=1

(1− 2q2n−1 cos 2z + q4n−2) .

Moreover, we get other relations as

ϑ1(z) = 2νq
1
4 sin z

∞∏
n=1

(1− 2q2n cos 2z + q4n)

ϑ2(z) = 2νq
1
4 cos z

∞∏
n=1

(1 + 2q2n cos 2z + q4n)

ϑ3(z) = ν

∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n−2)

(4.3.26)

Remark 4.6. (A relation between theta-functions for z = 0)

By the expression of infinite product form and given z = 0 . We can derive

the relation

ϑ′1 = ϑ2ϑ3ϑ4 . (4.3.27)

Remark 4.7. (The value of the constant ν)

Using the relation (4.3.27), the constant ν can be determined as

ν =
∞∏
n=1

(1− q2n) . (4.3.28)
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Remark 4.8. (The differential equation satisfied by the quotient of theta-

functions)

By the table of periodicity factors, we know that
ϑ1(z)

ϑ4(z)
and

ϑ2(z)ϑ3(z)

ϑ2
4(z)

have

the same periodicity factors −1 and 1 with respect to π , πτ respectively.

And

(
ϑ1(z)

ϑ4(z)
)′ =

ϑ′1(z)ϑ4(z)− ϑ′4(z)ϑ1(z)

ϑ2
4(z)

also has the same periodicity factors −1 and 1 with respect to π , πτ respec-

tively. Define

φ(z) =

(
ϑ1(z)

ϑ4(z)
)′

ϑ2(z)ϑ3(z)

ϑ2
4(z)

=
ϑ′1(z)ϑ4(z)− ϑ′4(z)ϑ1(z)

ϑ2(z)ϑ3(z)
. (4.3.29)

By Liouville’s theorem, it shows that φ(z) = c where c is a constant since

there is no poles of φ(z) = 0 in any cell. Let z → 0 , we can determine

c = ϑ2
4 . Then we get

(
ϑ1(z)

ϑ4(z)
)′ = ϑ2

4

ϑ2(z)ϑ3(z)

ϑ2
4(z)

. (4.3.30)

Let ξ =
ϑ1(z)

ϑ4(z)
, and using the relations (4.3.24). Then (4.3.30) will become

(
dξ

dz
)2 = (ϑ2

2 − ϑ2
3ξ

2)(ϑ2
3 − ϑ2

2ξ
2) . (4.3.31)

The function
ϑ1(z)

ϑ4(z)
is a solution of the equation (4.3.31).

Remark 4.9.

By the same discussion, we could also find that:

(
ϑ2(z)

ϑ4(z)
)′ = −ϑ2

3

ϑ1(z)ϑ3(z)

ϑ2
4(z)

, (4.3.32)

(
ϑ3(z)

ϑ4(z)
)′ = −ϑ2

2

ϑ1(z)ϑ2(z)

ϑ2
4(z)

. (4.3.33)
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4.4 The Jacobian elliptic function

In this section, we introduce the Jacobian elliptic function. Starting from

the equation (4.3.31):

(
dξ

dz
)2 = (ϑ2

2 − ϑ2
3ξ

2)(ϑ2
3 − ϑ2

2ξ
2) .

Let y =
ϑ3

ϑ2

ξ and u = ϑ2
3z . Then the equation (4.3.31) can be written as

(
dy

du
)2 = (1− y2)(1− κ2y2) , (4.4.34)

where κ is defined by κ = (
ϑ2

ϑ3

)2 and it is called the modulus.

And one solution of equation (4.4.34) is

y =
ϑ3

ϑ2

ξ =
ϑ3

ϑ2

ϑ1(ϑ
−2
3 u)

ϑ4(ϑ
−2
3 u)

. (4.4.35)

Furthermore, (4.4.34) can be written as the integral form

u =

∫ y

0

(1− t2)−
1
2 (1− κ2t2)−

1
2dt , (4.4.36)

Since it is customary to consider y the function of u , and y is defined by

the quotient of theta-functions. We denote y as y = sn(u, κ) or simply

y = sn(u) .

Thus (4.4.34) can be represented as

(
dsn(u)

du
)2 = (1− sn2(u))(1− κ2sn2(u)) , (4.4.37)

where κ = (
ϑ2

ϑ3

)2 .
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Remark 4.10.

It is easy to see that sn(u) is a quasi-doubly periodic function which has

periodicity factors −1 , 1 with periods ϑ2
3π and ϑ2

3πτ respectively. This also

implies that sn(u) is a quasi-doubly periodic function with periods 2ϑ2
3π and

ϑ2
3πτ . We usually write the periods ϑ2

3π and ϑ2
3πτ as 2K and 2iK ′ , so that

sn(u) has periods 4K and 2iK ′ .

Definition 4.6. (Jacobian elliptic functions)

The Jacobian elliptic functions sn(u) , cn(u) , dn(u) are defined as following

sn(u) =
ϑ3

ϑ2

ϑ1(ϑ
−2
3 u)

ϑ4(ϑ
−2
3 u)

cn(u) =
ϑ4

ϑ2

ϑ2(ϑ
−2
3 u)

ϑ4(ϑ
−2
3 u)

dn(u) =
ϑ4

ϑ3

ϑ3(ϑ
−2
3 u)

ϑ4(ϑ
−2
3 u)

And there are some properties and relation between the three Jacobian el-

liptic functions as following:

1. From (4.4.38), we can get some results:

sn2(u) + cn2(u) = 1

κ2sn2(u) + dn2(u) = 1

cn(0) = dn(0) = 1

2. The derivatives of sn(u), cn(u), and dn(u) are as following:

d

du
sn(u) = cn(u)dn(u)

d

du
cn(u) = −sn(u)dn(u)

d

du
dn(u) = −κ2sn(u)cn(u)
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3. The parity of sn(u), cn(u), and dn(u) are as following:

sn(−u) = −sn(u)

cn(−u) = cn(u)
dn(−u) = dn(u)

4. By the properties of theta-functions, we could find their periods, parity,

poles, and zeros respectively, which can be summarized as:

sn(u) cn(u) dn(u)

Periods 4K , 2iK ′ 4K , 2K + 2iK ′ 2K , 4iK ′

Parity odd even even

Poles iK ′ , 2K + iK ′ iK ′ , 2K + iK ′ iK ′ , 3K ′

mod(4K , 2iK ′) mod(4K , 2K + 2iK ′) mod(2K , 4iK ′)
Zeros 0 K K + iK ′

mod(2K , 2iK ′) mod(2K , 2iK ′) mod(2K , 2iK ′)
Derivative cn(u)dn(u) −sn(u)dn(u) −κ2cn(u)cn(u)

In the end of the chapter, we gives graphs of these Jacobian elliptic functions

with different κ:

(a) sn(u, κ) with κ =
1

2
(b) sn(u, κ) with κ = 1

Figure 4.4.1. sn(u, κ)
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(a) cn(u, κ) with κ =
1

2
(b) cn(u, κ) with κ = 1

Figure 4.4.2. cn(u, κ)

(a) dn(u, κ) with κ =
1

2
(b) dn(u, κ) with κ = 1

Figure 4.4.3. dn(u, κ)
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Chapter 5

The Exact Theory of the
Pendulum Motion

5.1 Introduction of the simple pendulum mo-

tion

Here we use two ways, by Newton’s second law and conservation of energy,

to derive the differential equation

u′′ + sinu = 0 . (5.1.1)

(1) According to Newton’s second law:

Consider Newton’s second law,

F = ma

where F is the sum of forces on the object, m is mass, and a is the acceler-

ation.
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Figure 5.1.1. Using Newton’s second law

Because the bob is forced to stay in a circular path, we apply equation,5.1

to the tangential axis only,

F = −mg sin θ = ma

a = −g sin θ

where g is the acceleration due to gravity near the surface of the earth.

The negative sign on the right hand side implies that θ and a always point

in opposite directions. This makes sense because when a pendulum swings

further to the left, we would expect it to accelerate back toward the right.

This linear acceleration a can be related to the change in angle θ by the arc

length formulas; l is the length of the pendulum and s is the arc length:

s = lθ (5.1.2)

v =
ds

dt
= l

dθ

dt
(5.1.3)

a =
d2s

dt2
= l

d2θ

dt2
(5.1.4)

Thus
d2θ

dt2
+

g

l
sin θ = 0. (5.1.5)
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(2) According to conservation of energy:

Any object falling a vertical distance h would acquire kinetic energy equal to

that which it lost to the fall. That is to say, gravitational potential energy

is converted into kinetic energy.

Figure 5.1.2. Using conservation of energy

Change in potential energy is given by

∆U = mgh,

and change in kinetic energy is given by

∆K =
1

2
mv2.

As a result of the conservation of energy, no energy is lost, those two must

be equal:

1

2
mv2 = mgh

⇒ v =
√
2gh.
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Using the equation (5.1.3), this equation can be rewritten as

v = l
dθ

dt
=

√
2gh

⇒ dθ

dt
=

1

l

√
2gh

where h is the vertical distance the pendulum fell.

See the Figure 5.1.2, which presents the trigonometry of a simple pendulum.

If the pendulum starts its swing from some initial angle θ0, then y0, the

vertical distance from the screw, is given by

y0 = l cos θ0 .

Similarly, for y1, we have

y1 = l cos θ,

then h is the difference of the two

h = l(cos θ − cos θ0).

In terms of
dθ

dt
gives

dθ

dt
=

√
2g

l
(cos θ − cos θ0).

We can differentiate with respect to time, then obtain

d2θ

dt2
=

d

dt

dθ

dt

=
d

dt

√
2g

l
(cos θ − cos θ0)

=
1

2

2g
l
(− sin θ)√

2g
l
(cos θ − cos θ0)

dθ

dt

=
1

2

2g
l
(− sin θ)√

2g
l
(cos θ − cos θ0)

√
2g

l
(cos θ − cos θ0)

= −g

l
sin θ.
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Thus
d2θ

dt2
+

g

l
sin θ = 0. (5.1.6)

No matter which idea for derivation, there are the same results as (5.1.5) and

(5.1.6). For convenience, we let
g

l
= 1 , and there is (5.1.1).

After the above pre-work, the following contents will recall the conclusion in

Chapter 4 and get the exact theory of the simple pendulum motion.

5.2 The exact theory

The ordinary differential equation

utt + sinu = 0 . (5.2.7)

Multiplying ut to (5.5.29) and integrating it with respect to t, then we obtain

1

2
u2
t − cosu = E , where E is a constant. (5.2.8)

Adding 1 to both sides yields

1

2
u2
t + (1− cosu) = E + 1.

In the idea of energy, we can regard
1

2
u2
t as kinetic energy, (1 − cosu) as

potential energy, and E + 1 as the total energy of this system.

Since (1 − cosu) is regarded as the potential energy, 0 ≤ (1 − cosu) ≤ 2 ,

and the kinetic energy
1

2
u2
t ≥ 0 , the total energy E+1 must be greater than
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or equal to 0. Additionally, when the potential energy reaches the maximum

2, it also means that the pendulum is right at the highest position in the

circular path. Thus, the total energy E + 1 = 2 will be the key factor of

different types of the pendulum motion.

0 < E + 1 < 2 ⇒ −1 < E < 1

E + 1 = 2 ⇒ E = 1

E + 1 > 2 ⇒ E > 1

Consider the equation 5.2.8, then the square roots of ut are ±
√

2(E + cosu) ,

here “±” denotes the bob’s trajectory. We only focus on the positive sign,

ut =
√
2(E + cosu) . (5.2.9)

Using the relation of trigonometric function that cos(2θ) = 1−2 sin2 θ . Then

we have

ut =

√
2(E + 1− 2 sin2 u

2
) =

√
2(E + 1)− 4 sin2 u

2
. (5.2.10)

Therefore, we can obtain

t =

∫ U(t)

0

1√
2(E + 1)− 4 sin2 u

2

du . (5.2.11)

We have transferred the initial problem into solving the equation (5.2.11).

Now, our purpose is to solve (5.2.11). That is, we have to find the represen-

tation of U(t) in terms of t . We discuss it in three different cases according

to different E .
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Case I. −1 < E < 1

If the constant E ∈ (−1, 1) , the equation (5.2.11) becomes

t =

∫ U(t)

0

1√
2(E + 1)− 4 sin2(u

2
)
du (5.2.12)

=

√
2

E + 1

∫ U(t)
2

0

1√
1− 2

E+1
sin2(u

2
)
d(
u

2
) . (5.2.13)

Let x =

√
2

E + 1
sin(

u

2
) , then d(

u

2
) =

1√
2

E+1
− x2

dx .

And (5.2.12) can be represented as

t =

∫ √
2

E+1
sin(

U(t)
2

)

0

1√
1− x2

1√
1− (E+1

2
)x2

dx . (5.2.14)

Let κ =

√
E + 1

2
, then the equation (5.2.14) becomes

t =

∫ κ−1 sin(
U(t)
2

)

0

1√
1− x2

1√
1− κ2x2

dx . (5.2.15)

By Jacobian elliptic function sn(u, κ) , the equation (5.2.15) signifies

that

sn(t, κ) = κ−1 sin(
U(t)

2
) .

This means

U(t) = 2 sin−1(κ sn(t, κ)) , where κ =

√
E + 1

2
. (5.2.16)

Remark 5.1. In this case, E ∈ (−1, 1) , so

√
E + 1

2
∈ (0, 1) . That is,

0 < κ < 1 . Besides, κ ∝ E .
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Case II. E = 1

As the constant E = 1 , the equation (5.2.11) can be written as

t =

∫ U(t)

0

1√
4− 4 sin2(u

2
)
du (5.2.17)

=

∫ U(t)
2

0

1√
1− sin2(u

2
)
d(
u

2
) . (5.2.18)

Let x = sin(
u

2
) , then d(

u

2
) =

1√
1− x2

dx .

And (5.2.17) can be represented as

t =

∫ sin(
U(t)
2

)

0

1√
1− x2

1√
1− x2

dx . (5.2.19)

By Jacobian elliptic function sn(u, κ) , the equation (5.2.19) implies

that

sn(t, 1) = sin(
U(t)

2
) .

This means

U(t) = 2 sin−1(sn(t, 1)) . (5.2.20)

Remark 5.2. In this case, if we do not use Jacobian elliptic function,

we can also get the solution by Calculus. The solution is

U(t) = 2 sin−1(tanh(t)) .

Case III. E > 1

The discussion of this case is similar to the first case. The different is

on the modulus κ . From the equation (5.2.11), we have
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t =

∫ U(t)

0

1√
2(E + 1)− 4 sin2(u

2
)
du (5.2.21)

=

√
2

E + 1

∫ U(t)
2

0

1√
1− 2

E+1
sin2(u

2
)
d(
u

2
) . (5.2.22)

Let κ =

√
2

E + 1
, then the equation (5.2.21) becomes

t = κ

∫ U(t)
2

0

1√
1− κ2 sin2(u

2
)2

d(
u

2
) . (5.2.23)

And let x = sin(
u

2
) , then d(

u

2
) =

1√
1− x2

dx .

Then (5.2.23) can be represented as

t = κ

∫ U(t)
2

0

1√
1− x2

1√
1− κ2x2

dx . (5.2.24)

By Jacobian elliptic function sn(u, κ) , the equation (5.2.24) implies

that

sn(κ−1t, κ) = sin(
U(t)

2
) .

This means

U(t) = 2 sin−1(sn(κ−1t, κ)) , where κ =

√
2

E + 1
. (5.2.25)

Remark 5.3. In this case, E > 1 , so

√
2

E + 1
is smaller than 1. That

is, 0 < κ < 1 . Besides, κ ∝ E−1 .
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5.3 The periods

We had found the solutions for the ordinary differential equation in the form

of Jacobian elliptic function with different constant E. Now we want to find

out the period of solution if it is a periodic solution. The idea is to find the

rest position U(t0) and t∗ denotes the time of the particle moves from U(0)

to U(t0) . Then the period is the four times t∗ .

Case I. −1 < E < 1

The solution of this case is (5.2.16) as

U(t) = 2 sin−1(κ sn(t, κ)) , where κ =

√
E + 1

2
.

By (5.2.9), we could get the velocity of the particle is

Ut =

√
2(E + 1)− 4 sin2(

U

2
) . (5.3.26)

If the equation (5.3.26) equal to 0, then

U(t)

2
= ± sin−1(κ) , where κ =

√
E + 1

2
.

As a result, by (5.2.15), we know that the period is

T = 4 t∗

= 4

∫ κ−1 sin(sin−1(κ))

0

1√
1− x2

1√
1− κ2x2

dx

= 4

∫ 1

0

1√
1− x2

1√
1− κ2x2

dx

= 4K .

Then we find the period for this case.
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Remark 5.4.

(1) The constant K here is defined as

K =

∫ 1

0

1√
1− x2

1√
1− κ2x2

dx ,

which is the same value to the Remark 4.10.

(2) The constant K ∝ κ, which signifies that the period T ∝ κ . And

it is easy to calculate that T = 2π if κ = 0. This means that the

period T > 2π , for all κ ∈ (0, 1) . Additionally, this also takes on

that if U(t) = 2 sin−1(κ) < 2 sin−1(1) = π , it is a periodic solution

with period 4K.

Case II. E = 1

The solution of this case is (5.2.20) as

U(t) = 2 sin−1(sn(t, 1)) .

By (5.3.26), and given E = 1 we could get

Ut =

√
4− 4 sin2(

U

2
) . (5.3.27)

If the equation (5.3.27) equal to 0, then

U(t)

2
= ±π

2
.

Then using (5.2.19), the period can be calculated

T = 4 t∗

= 4

∫ sin(π
2
)

0

1√
1− x2

1√
1− x2

dx

= 4

∫ 1

0

1

1− x2
dx

= ∞ .
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The period of this case could be regarded as ∞ although it is not a

periodic solution. This means that if we release the particle at the

position −π, it needs infinity time to approach the position π.

Case III. E > 1

By the equation (5.3.26), we know that the velocity is always positive

for this case E > 1. This means that at each position U(t) , the pendu-

lum always has velocity, so the pendulum will never stop. This implies

that it has no periodicity.

5.4 The phase portraits

The ordinary differential equation we had discussed is the mathematical

model of ideal pendulum. Now we try to plot the relation between U(t)

and Ut and the graph is called phase portrait. Before drawing the phase

portrait, we see back to the equation (5.2.8) as

1

2
u2
t − cosu = E , where E is a constant.

It shows that
1

2
u2
t − cosu is a constant. It can be regarded as a conservation

law in the viewpoint of mathematics since − cosu is not always larger than

0.

This constant and the former part
1

2
u2
t can be regarded as kinetic energy and

the latter part − cosu can be regarded as potential energy.

We will discuss the potential energy and phase portrait with different cases.

Case I. −1 < E < 1

We set E = 0 to analyze this case. By the equation (5.2.8), we have

the equation ut = ±
√
2 cosu .

127



The following graphs are potential energy and phase portrait respec-

tively. This means that they are the relation between u and cosu and

the relation between u and ut .

Figure 5.4.1. The potential energy and phase portrait for E = 0

Remark 5.5.

(1) From the graph of the phase portrait, the red curve means that the

velocity at those position are positive and the blue curve means

that the velocity at those position are negative. The positive

velocity is defined by rotating counterclockwise and the negative

velocity is defined by rotating clockwise.

(2) By the graph of potential energy, we can find out that the maxi-

mum of amplitude, u(t) , for the pendulum is
π

2
and it oscillates

forth and back.

Case II. E = 1

Now we focus on the case with E = 1 . By the equation (5.2.8), we have

ut = ±
√
2(1 + cos u) . We see the potential energy and phase portrait

as following.
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Figure 5.4.2. The potential energy and phase portrait for E = 1

By the graph of potential energy, we can find out that the maximum of

amplitude, u(t) , for the pendulum is π. If we release the pendulum at

position π , the particle will approach to the position −π after infinite

time.

Case III. E > 1

Last, we see the case E > 1 with E =
3

2
. By the equation (5.2.8),

we have ut = ±
√
2(
3

2
+ cosu) . We see the potential energy and phase

portrait as following.

Figure 5.4.3. The potential energy and phase portrait for E =
3

2
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Remark 5.6.

(1) From the graph of the phase portrait, we know that the pendu-

lum of this case will never stop since the phase portrait has no

intersection with the u-axis.

(2) By the graph of potential energy, we observe that the kinetic en-

ergy is never equal 0. This implies that the case has no periodic

solution and the result is corresponded to the property which we

had discussed.

By our discussion, there are three kinds of the phase portraits. Before fin-

ishing the section, we combine the three phase portraits and the vector field

together.

Figure 5.4.4. Global phase portrait
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5.5 Related knowledge

We can connect with a partial differential equation

utt − uxx + sinu = 0 , (5.5.28)

which is called sine-Gordon equation.

Firstly, we can simplify the equation (5.5.28). Assume that θ = kx−ωt with

ω2 − k2 = 1 .

And by chain rule, we have

ut =
∂u

∂θ

∂θ

∂t
= (−ω)uθ

ux =
∂u

∂θ

∂θ

∂x
= k uθ

Using the same way, we get

utt = ω2uθθ

uxx = k2uθθ

Then (5.5.28) can be transferred to be an ordinary differential equation

uθθ + sin(u) = 0 . (5.5.29)

That is the pendulum motion we discussed.
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Chapter 6

Conclusion

In this paper, we study the ideal pendulum equation u′′ + sin u = 0 , which

can be translated into integral form∫
1√

2(E + cosu)
du = ±

∫
dt

where E is the integration constant. The integrator involve
√

2(E + cosu)

where E+cosu is a transcendental function and it has infinitely many zeros,

so u resides on Riemann surface of genus ∞.

Hence, we study its nonlinear approximation, namely

u′′ + P2N+1(u) = 0 ,

where P2N+1(u) is the {2N+1}-th Taylor expansion of sinu .

Then this O.D.E. has the integral form∫
1√

2(E − P2N+2(u))
du ,

where u now resides on Riemann surface of genus N , then we can analyze

and compute it.
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We then study the classical elliptic function and apply to analyze the exact

theory of pendulum motions with a table given as follows:

Energy E −1 < E < 1 E = 1 E > 1

Solution U(t) 2 sin−1(κsn(t, κ)) 2 sin−1(sn(t, 1)) 2 sin−1(sn(κ−1t, κ))

Modulus κ

√
E + 1

2
1

√
2

E + 1
Periods T 4K ∞ No periodicity

For further study, we may consider the more complicated sine-Gorden equa-

tion

utt − uxx + sinu = 0 ,

where u′′ + sinu = 0 is just a special case.
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Appendix A

The process of computation

A.0.1

∫
a3

1

f(z)
dz

∫
a3

1

f(z)
dz =

∫
a∗3

1

f(z)
dz

Math.
= −2

∫ −1
−2

1

f(r − i)
dr = −0.084919 + 0.36914 i

A.0.2

∫
b1

1

f(z)
dz

∫
b1

1

f(z)
dz =

∫
b∗1

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr +

∫ −1
0

i

f(−2 + ri)
dr −

∫ −1
−2

1

f(r − i)
dr

+

∫ 0

−1

i

f(−1 + ri)
dr −

∫ 0

−1

1

f(r)
dr +

∫ 1

0

i

f(ri)
dr −

∫ 1

0

1

f(r + i)
dr

−
∫ 2

1

i

f(1 + ri)
dr +

∫ 1

2

i

f(1 + ri)
dr +

∫ 0

1

1

f(r + i)
dr +

∫ −1
0

1

f(r + i)
dr

+

∫ −2
−1

1

f(r + i)
dr = −0.804295 + 0.615335 i
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A.0.3

∫
b2

1

f(z)
dz

∫
b2

1

f(z)
dz =

∫
b∗2

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr +

∫ −1
0

i

f(−2 + ri)
dr −

∫ −1
−2

1

f(r − i)
dr

+

∫ 0

−1

i

f(−1 + ri)
dr −

∫ 0

−1

1

f(r)
dr −

∫ 1

0

i

f(ri)
dr

+

∫ −1
0

1

f(r + i)
dr +

∫ −2
−1

1

f(r + i)
dr

= −0.768165 + 0.242221 i

A.0.4

∫
a3

1

f(z)
dz

∫
a3

1

f(z)
dz =

∫
a∗3

1

f(z)
dz

Math.
= −2

∫ 1

0

i

f(−1 + ri)
dr + 2

∫ 0

−1

i

f(−1 + ri)
dr

= 0.170019− 0.268168 i
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A.0.5

∫
b2

1

f(z)
dz

∫
b2

1

f(z)
dz =

∫
b∗2

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr +

∫ −1
0

i

f(−2 + ri)
dr −

∫ −1
−2

1

f(r − i)
dr

+

∫ 0

−1

i

f(−1 + ri)
dr −

∫ 0

−1

1

f(r)
dr −

∫ 1

0

1 + i

f(r(1 + i))
dr

+

∫ 0

1

1 + i

f(i+ r(1 + i))
dr −

∫ 2

1

i

f(1 + ri)
dr +

∫ −1
0

1

f(i+ r)
dr

+

∫ −1
0

1

f(−1 + i+ r)
dr

= −0.963521 + 0.24317 i

A.0.6

∫
b1

1

f(z)
dz

∫
b1

1

f(z)
dz =

∫
b∗1

1

f(z)
dz

Math.
= −

∫ 0

1

i

f(−2 + ri)
dr +

∫ −1
0

i

f(−2 + ri)
dr −

∫ −1
−2

1

f(r − i)
dr

+

∫ 0

−1

i

f(−1 + ri)
dr −

∫ 1

0

i

f(−1 + ri)
dr −

∫ 0

−1

1

f(r + i)
dr

− 2

∫ 1

0

1 + i

f(i+ r(1 + i))
dr +

∫ −1
0

1

f(i+ r)
dr +

∫ −1
0

1

f(−1 + i+ r)
dr

= −0.604473 + 0.635889 i
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A.0.7

∫
a1

1

f(u)
du

∫
a1

1

f(u)
du =

∫
a∗1

1

f(u)
du

Math.
= 2

∫ 1.34

−1.34

i

f(8.27 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.8

∫
a2

1

f(u)
du

∫
a2

1

f(u)
du =

∫
a∗2

1

f(u)
du

Math.
= 2

∫ 3.86

1.34

i

f(8.19 + ri)
dr − 2

∫ 1.34

−1.34

i

f(8.19 + ri)
dr

+ 2

∫ −1.34
−3.86

i

f(8.19 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.9

∫
a3

1

f(u)
du

∫
a3

1

f(u)
du =

∫
a∗3

1

f(u)
du

Math.
= 2

∫ 8.19

3.86

i

f(8.04 + ri)
dr − 2

∫ 3.86

1.34

i

f(8.04 + ri)
dr

+ 2

∫ 1.34

−1.34

i

f(8.04 + ri)
dr − 2

∫ −1.34
−3.86

i

f(8.04 + ri)
dr

+ 2

∫ −3.86
−8.19

i

f(8.04 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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A.0.10

∫
a4

1

f(u)
du

∫
a4

1

f(u)
du =

∫
a∗4

1

f(u)
du

Math.
= 2

∫ 2.48

1.34

i

f(3.14 + ri)
dr − 2

∫ 1.34

−1.34

i

f(3.14 + ri)
dr

+ 2

∫ −1.34
−2.48

i

f(3.14 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.11

∫
a5

1

f(u)
du

∫
a5

1

f(u)
du =

∫
a∗5

1

f(u)
du

Math.
= −2

∫ 2.48

1.34

i

f(−3.14 + ri)
dr + 2

∫ 1.34

−1.34

i

f(−3.14 + ri)
dr

− 2

∫ −1.34
−2.48

i

f(−3.14 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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A.0.12

∫
a6

1

f(u)
du

∫
a6

1

f(u)
du =

∫
a∗6

1

f(u)
du

Math.
= −2

∫ 8.19

3.86

i

f(−8.04 + ri)
dr + 2

∫ 3.86

1.34

i

f(−8.04 + ri)
dr

− 2

∫ 1.34

−1.34

i

f(−8.04 + ri)
dr + 2

∫ −1.34
−3.86

i

f(−8.04 + ri)
dr

− 2

∫ −3.86
−8.19

i

f(−8.04 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.13

∫
a7

1

f(u)
du

∫
a7

1

f(u)
du =

∫
a∗7

1

f(u)
du

Math.
= −2

∫ 3.86

1.34

i

f(−8.19 + ri)
dr + 2

∫ 1.34

−1.34

i

f(−8.19 + ri)
dr

− 2

∫ −1.34
−3.86

i

f(−8.19 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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A.0.14

∫
b7

1

f(u)
du

∫
b7

1

f(u)
du =

∫
b∗7

1

f(u)
du

Math.
= −2

∫ 1.34

0

i

f(−8.27− ri)
dr − 2

∫ −8.19
−8.27

1

f(r)
dr

− 2

∫ 1.34

0

i

f(−8.19 + ri)
dr + 2

∫ 3.86

1.34

i

f(−8.19 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.15

∫
b6

1

f(u)
du

∫
b6

1

f(u)
du =

∫
b∗6

1

f(u)
du

Math.
=

∫
b∗7

1

f(u)
du− 2

∫ −1.34
−3.86

i

f(−8.19 + ri)
dr2

∫ 0

−1.34

i

f(−8.19 + ri)
dr

+ 2

∫ −8.04
−8.19

1

f(r)
dr + 2

∫ 1.34

0

i

f(−8.04 + ri)
dr − 2

∫ 3.86

1.34

i

f(−8.04 + ri)
dr

+ 2

∫ 8.19

3.86

i

f(−8.04 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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A.0.16

∫
b5

1

f(u)
du

∫
b5

1

f(u)
du =

∫
b∗5

1

f(u)
du

Math.
=

∫
b∗6

1

f(u)
du+ 2

∫ −1.34
−3.86

i

f(−8.04 + ri)
dr − 2

∫ −3.86
−8.19

i

f(−8.04 + ri)
dr

− 2

∫ 0

−1.34

i

f(−8.04 + ri)
dr − 2

∫ 0

−1.34

i

f(−8.04 + ri)
dr

− 2

∫ −3.14
−8.04

1

f(r)
dr − 2

∫ 1.34

0

i

f(−3.14 + ri)
dr

+ 2

∫ 2.48

1.34

i

f(−3.14 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.17

∫
b4

1

f(u)
du

∫
b4

1

f(u)
du =

∫
b∗4

1

f(u)
du

Math.
=

∫
b∗5

1

f(u)
du− 2

∫ −1.34
−2.48

i

f(−3.14 + ri)
dr + 2

∫ 0

−1.34

i

f(−3.14 + ri)
dr

+ 2

∫ 3.14

−3.14

1

f(r)
dr + 2

∫ 1.34

0

i

f(3.14 + ri)
dr − 2

∫ 2.48

1.34

i

f(3.14 + ri)
dr

Here the computation by Mathematica is too huge to appear.

141



A.0.18

∫
b3

1

f(u)
du

∫
b3

1

f(u)
du =

∫
b∗3

1

f(u)
du

Math.
=

∫
b∗4

1

f(u)
du− 2

∫ 0

−1.34

i

f(3.14 + ri)
dr + 2

∫ −1.34
−2.48

i

f(3.14 + ri)
dr

− 2

∫ 8.04

3.14

1

f(r)
dr − 2

∫ 1.34

0

i

f(8.04 + ri)
dr

+ 2

∫ 3.86

1.34

i

f(8.04 + ri)
dr + 2

∫ 8.19

3.86

i

f(8.04 + ri)
dr

Here the computation by Mathematica is too huge to appear.

A.0.19

∫
b2

1

f(u)
du

∫
b2

1

f(u)
du =

∫
b∗2

1

f(u)
du

Math.
=

∫
b∗3

1

f(u)
du− 2

∫ −1.34
−3.86

i

f(8.04 + ri)
dr + 2

∫ −3.86
−8.19

i

f(8.04 + ri)
dr

− 2

∫ 0

−1.34

i

f(8.04 + ri)
dr + 2

∫ 8.19

8.04

1

f(r)
dr

+ 2

∫ 1.34

0

i

f(8.19 + ri)
dr − 2

∫ 3.86

1.34

i

f(8.19 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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A.0.20

∫
b1

1

f(u)
du

∫
b1

1

f(u)
du =

∫
b∗1

1

f(u)
du

Math.
=

∫
b∗2

1

f(u)
du− 2

∫ 0

−1.34

i

f(8.19 + ri)
dr

+ 2

∫ −1.34
−3.86

i

f(8.19 + ri)
dr − 2

∫ 8.27

8.19

1

f(r)
dr − 2

∫ 1.34

0

i

f(8.27 + ri)
dr

Here the computation by Mathematica is too huge to appear.
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