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New Adaptive Localization Algorithms That Achieve
Better Coverage for Wireless Sensor Networks

Student: Shao-Chun Lin Advisor: Chiuyuan Chen

Department of Applied Mathematics
National Chiao Tung University

Abstract

Many applications in wireless sensor networks (such as forest fires detection, en-
vironment monitoring, military, and wildlife tracking) require position information
to detect and record. events. -How-to obtain. the position information of the sen-
sors become an important problem. and 'is usually called the localization problem.
Using Global Positioning System (GPS) is a possible solution for localization but
is impractical. The reason is that a wireless sensor network usually has thousands
of sensors and it_is too expensive to equip-every sensor a GPS. In [3], Huang et
al. studied a newoptimization problem, minimum cost localization problem, which
aims to localize all 'sensors by using the minimum-number of anchors. The pur-
pose of this thesis is to propose adaptive algorithms for the localization problem.
Our algorithms are simpler than the algorithms in [3] and cover all the cases in
the algorithms in [3]; simulation results also show that our algorithms have better
coverage.

Keywords: wireless sensor network, localization, algorithm, rigidity, globally rigid, trilat-

eration, triangulation.
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1 Introduction

Wireless sensor networks (WSNs) have many applications such as forest fires detection,
environment monitoring, military, and wildlife tracking. In many applications, the sensors
(nodes) need to know their positions in order to detect and record events. In this thesis,
we use the terms sensor and node interchangeably. The process of computing the positions
of the nodes is called localization. This thesis focus on the localization problem. Here
we require a fine-grain location awareness although some researchers considered a coarse-
grain location awareness; see [3].

It is not difficult to see thatone way to solve the localization problem is to equip
each sensor a GPS. Since a wireless sensor network usually has thousands of sensors, this
approach is too expensive and therefore impractical. Novel approaches have been proposed
to choose some sensors.and equip-them with GPS and the other sensors determine their
positions by means of the Euclidean distances to their neighbors using different distance
ranging methods (such-as radio signal strength or time differenceof arrival).

A wireless sensor network is usually modeled-asa graph G'= (V, E') and many often, a
unit disk graph is used, meaning that each node has the same transmission range. Before
going further, we introduce some terminologies:~A graph & is generic if it has no three
nodes collinear. A graph G is grounded if uv € E implies that the distance between wu, v
can be measured or estimated via wireless communication. In this thesis, we assume the
wireless sensor network forms a generic, grounded, unit disk graph; see also [§].

Two nodes are neighbors if they are adjacent. For convenience, let N(v) denote the
set of neighbors of a node v and call N(v) the neighborhood of v. Many researchers call
a node which is equipped with GPS an anchor or anchor node or beacon. In this thesis,
however, for clarity, a node which is equipped with GPS is called an initial-anchor; a node
which is not an initial-anchor and has determined its location is called an obtained-anchor.

Both initial-anchors and obtained-anchors are called anchors. For each node v, only the



distances between u, v where u € N(v) and the positions of anchors in N(v) can be used
to determine the location of v. For convenience, let S denote the set of all initial-anchors
and call S the initial-anchor set. The cardinality of S is denoted as |S|.

Trilateration is the most basic approach for localization and it has been used for
thousands of years. This approach uses the known positions of anchors and the measured
distance to the anchors. To determine the location of a node using trilateration alone,
this node needs to hear from at least three anchors. That is, a sensor v computes the
number of anchors in its neighborhood N(v) and if v has three anchors in N(v), then the
location of v can be determined. In many localization algorithms, iterative trilateration
(or multilateration) is used to localize nodes. In iterative trilateration, nodes measure
distances to their neighbors -and share their position information with their neighbors to
collaboratively compute their positions. If a;sensor whose position has been determined, it
can act as a new anchor to localize other nodes by sharing its position with its neighbors.
This iterative processeontinues until no nodescan be further localized.

How to find a good-initial-anchoer set .S for a wireless sensor network is obviously an
interesting problem. Donotice that finding an initial-anchor set for trilateration is not
equivalent to finding a 3-dominating set. A 3-dominating set can serve as an initial-
anchor set for trilateration but an initial-anchor set for trilateration needs not to be a 3-
dominating set. The following figure shows an example S with |S| = 3 and a 3-dominating
set requires four nodes.

A graph G is localizable if the position of each node can be uniquely determined. A
formulation of the localization problem is: given a graph G and an initial-anchor set S,
determine if GG is localizable by using S. We say S is feasible if the position of each node
in G can be uniquely determined with S being the initial-anchor set. Some researchers
do not ask for 100% of sensors being localized. In this situation, coverage is considered

and is defined to be the percentage of sensors that can be localized.



(a) (b)
Figure 1: (a) A initial-anchor set S for trilateration, which is not a 3-dominating set. (b)
A 3-dominating set for the graph in (a) requires at least four nodes.

Most localization algorithms focus on determining whether a wireless sensor network
is localizable and/or how to localizetas many nodes.as possible with a “static” initial-
anchor set; see [1, 5, 7, 13, 11, 12,14, 15, 17]. Reecently,in [8], Huang et al. studied
a new optimization problem; minimum cost localization problem, which aims to localize
all sensors using the minimum number-of anchors given the distance measurements. The
algorithm proposed inu(8] is called sweep and it first applies trilateration; when no nodes
can be further localized, it switches to consider pairs of sensorsw, v such that u,v are
neighbors and they can'cooperate to obtain their positions. Aftermo such u,v pairs can
be found, the algorithm switches back to trilateration again, and so on. We will describe
the algorithm sweep in detaildin Seetions 2 and 3.

This thesis considers the same problem as in (8], i.e., the minimum cost localization
problem. The main contribution of this thesis is to propose an adaptive algorithm to
choose an initial-anchor set S. For convenience, let S and S’ denote the initial-anchor
sets generated by our algorithm and by the algorithm in [8], respectively. Simulation

results show that:
1. Our algorithm always has a better coverage than the algorithm in [8].
2. For dense graphs, S always has a smaller cardinality than S’.

3. For sparse graphs, the cardinalities of S and S’ are very similar.



This thesis is organized as follows. In Section 2, we give an overview of related works.
The main result is presented in Section 3. Simulations and comparisons are given in

Section 4. Concluding remarks are given in the final section.

2 Related works

In this section, we review related works with respect to localization and this section
consists of three subsections. In Subsection 2.1, we give results of “rigidity theory”. In
Subsection 2.2, we review the results of coarse-grain localization. In Subsection 2.3, we

briefly describe previous results of fine-grain localization.
2.1 Rigidity theory

In [6], Hendrickson proved that if G has.a unique realization in. B¢, then G is (d + 1)-
connected and redundantly rigid (defined later). He also conjectured that every realization
of a (d+1)-connected and redundantly rigid graph in R? is unique. Hendrickson’s conjec-
ture is true for d = 1 but was disproved by Connelly for d > 3 in{4]. In [9], Jackson and
Jordsan resolved the remaining open. case by showing that Hendrickson’s conjecture is
true for d = 2. Jackson and Jordsan also deduced that-every realization of a 6-connected
graph as a two-dimensional generic framework is a unique realization.

A graph G is redundantly rigid in R? if deleting any edge of G results in a graph which
is rigid in R?. It is a long story to give a formal definition for “rigid”; therefore we will

adopt the following famous theorem, which was proposed by Laman.

Theorem 2.1. [2, 10] Laman’s Condition

A graph G = (V, L) with n vertices is rigid in R? if and only if L contains a subset E
consisting of 2n — 3 edges with the property that, for any nonempty subset E' C E, the
number of edges in E' cannot exceed 2n' — 3, where n’ is the number of vertices of G which

are endpoints of edges in E'.



Notice that in many literatures (for example [2, 9]), if a grounded graph has a unique
localization solution then it will is called globally rigid. In [9], Jackson and Jordsan

presented a method to determine if a graph has a unique localization solution.

Theorem 2.2. [2, 9] A grounded graph G is globally rigid in R* if and only if either G

1s a complete graph on at most three vertices or G is 3-connected and redundantly rigid.

The following theorem gives a sufficient condition for a graph to be globally rigid. Note
that in [1], Ferruccio et al. tried to characterize a series of graphs which can be easily
localized and they proved that a 6-connected graph can be localized by trilateration with

three initial-anchors.
Theorem 2.3. 9] If a graph G jis-6=connected, then G is globally rigid in R>.

Intuitively, if a graph is non-rigid, then it may have an infinite number of localization
solutions. When a graph is rigid, it has a finite number of localization solutions. When a
graph is globally rigid; it has a uniquelocalization solution. We use Figure 2 to illustrate
the definition of rigidity. The graph in Figure-2(a) is non-rigid, in Figure 2(b) is rigid
since it satisfies Laman’s Condition, in Figure 2(c) is redundantly rigid since if we deleted
any edge then the resultant graph is still rigid: Note that the graph in Figure 2(c) is also

globally rigid since it is 3-connected and redundantly rigid.

(a) (b) () (d)

Figure 2: Examples of a (a) non-rigid, (b) rigid, (¢) redundantly rigid (also globally rigid)
graph. (d) A rigid graph may have two localization solutions.



From the above, the localization problem can be transformed into the problem of de-
termining the globally rigidity of a graph, i.e., determining whether a graph is 3-connected
and redundantly rigid. It is not difficult to check if a graph is 3-connected. As for the
redundantly rigidity, in [7], Hendrickson proposed a polynomial-time algorithm (for conve-
nience, call this algorithm H-Algorithm) to determine the redundantly rigidity of a graph.
Note that when H-Algorithm was proposed, it is not known that this algorithm could be
used to solve the localization problem. Until Jackson and Jordsan proved Theorem 2.2 in
[9], Connelly [5] combined the results of [7] and [9] (i.e., H-Algorithm and Theorem 2.2)
and proposed an algorithm to determine if a graph is localizable. Connelly even re-proved
the correctness of H-Algorithm. For eonvenience, we eall. Connelly’s method C-Algorithm.
C-Algorithm is centralized and is a divide-and-conquer algorithm.

The rigidity theorem has two-major drawbacks for the localization problem: (i) It
characterizes the graphs which can be localized by exactly three anchors, but it does not
characterize graphs which can be localized by four or more anchors. (ii) It provides a
theoretical method (theranswer is.only “Yes” or “No”), not an algorithmic method, for
the localization problem. Note that a wireless sensor network may not have a certain
structure and its corresponding graph may not globally rigid. Thus it is very natural to
ask: “How to localize a graph which is not globally rigid?” In [17], Yang et al. tried to
use the wheel graph structure to solve the localization problem for a graph which is not
necessarily globally rigid. They pointed out that if a wheel structure (in the given graph)
contains three or more anchors, then this wheel structure is localizable since a wheel is
3-connected and redundantly rigid (hence is globally rigid). It is also natural to ask: “If
there exist more than three anchors, then what kind of graphs can be localized?”. Several

literatures have ever discussed the question.



2.2 Coarse-grain localization

In some applications, a wireless sensor and actor network (WSAN) is considered, which
consists of massively and randomly deployed tiny sensors and a few actors that organize
the sensors in their vicinity into a short-lived actor-centric network to support a specific
mission. After deployed, these tiny and low-cost sensors are unaware of their location
and are unattended. Actors are mobile to collect the sensed data from sensors. Each
actor is equipped with better processing capabilities, higher transmission power to send
broadcasts for a distance, and a longer battery life than the sensors.

In a WSAN, a coarse-grain location awareness is sufficient with a trade-off: that an
coarse-grain location awareness is lightweight, but the resulting positioning accuracy is
only a rough approximation of the-exact geographic location. Training is referred to the
task of allowing each sensor to acquire a coarse-grain location, Wadaa et al. [16] first
proposed a training protocol in which each actor trains sensors in its vicinity, namely,
the actor-region, to associate these sensors with coarse-grain coordinates related to the
actor. Recently, in [3], Barsi et al. proposed an energy-efficient training protocol. After
training, each sensor in the actor-region will acquire two coordinates: the corona and the
sector to which it belongs. SeeFigure.3 for an illustration. A training protocol provides
for free a clustering of the sensors and a virtual infrastructure, where a cluster consists of
all sensors having the same coordinates.

More precisely, a training protocol imposes a virtual coordinate system onto the WSAN

by establishing:

1. Coronas: The actor-region is divided into k£ coronas Cy, C', ..., Cj_; determined by
k concentric circles of radii 7 < ry < --- < 1, centered at the actor.
2. Sectors: The actor-region is divided into h equiangular sectors Sy, Si,...,Sh_1,

originated at the actor, each having a width of 2% radians.



Figure 3: (a) A wireless sensor and actor network with two actors A and B. (b) A trained
subnetwork. The source of this figure is [3].

2.3 Fine-grain localization

Different from thereoarse-grain localization, a fine-grain localization determines the
position of each sensors: This position may be related to the earthror a virtual coordinate
system on the given network. In a localization algorithm, a sensor ¢an acquire its position
by two methods: (i) using GPS and (ii) by calculation (for example, using trilateration).

We now give the details.of trilateration. In this localization algorithm, a sensor (say,
v) computes the number of anchors-in N(w)e~If this number is > 3, then v uses three
of the anchors (say, aq, ag, az) to compute its own position. First use the distances aqv
and asv to construct two possible positions for v. Then use the distance asv to determine
which of the two possible positions of v is correct. Notice that trilateration will fail if the
three anchors aq, as, az are collinear. Thus to use trilateration, the given graph has to be
a generic graph.

As mentioned in the previous section, in [8], Huang et al. considered the minimum
cost localization problem. They proposed an algorithm called sweep. This algorithm first

applies trilateration; when no nodes can be further localized, it switches to consider pairs



of sensors u, v such that u, v are neighbors and they can cooperate to obtain their positions.
After no such u, v pairs can be found, the algorithm switches back to trilateration again,
and so on. More precisely, when wu,v satisfy the following three conditions, they can
cooperate to fulfill localization: (i) u and v are neighbors (hence the distance between
them is known), (ii) N(u) contains two anchors (say, a; and as) and N(v) also contains
two anchors (say, ag and ay), and (iii) |[{a1, a2} N{as,as}| < 1 (meaning that the anchors
used by w cannot be identical to those used by v). It is not difficult to see that if u,v
satisfy (ii), then both u and v have two possible positions. If u, v do not satisfy (iii), then
there are at least two possible pairs.of positions and hence cannot be uniquely localized.
If u,v satisfy (iii), then it is possible that only one pair of ‘positions match the distance
between u and v, which canbeé obtained if u, v satisfy (i).

Some of the algorithms for the-localization problem are centralized, while the others
are distributed. In centralized algorithms, some nodes have a more powerful computa-
tion ability; hence these nodes can gather more information of the given graph such as
the maximum and the.average degree of nodes. While in distributed algorithms, all sen-
sors have a limited power and computation ability; hence sensors can only gather the
information within the vicinity.

In [11], Langendoen and Reijers compared three distributed algorithms that handle
the localization problem when there are noises. One of the algorithms uses the bounding
box approach to approximate the position of sensors. Another one uses the average
distance approach to compute the distance between pairs of sensors, and then use this
distance information to compute the position of sensors. The remaining one calculates
the distance between anchors and sensors and uses the standard least square method to
compute approximate positions; due to the the existence of noise, solutions may not exist.

We briefly describe the difference between algorithms that assume noise-free and al-

gorithms that allow the existence of noise. The first difference is that: for the latter



algorithms, the estimated distances may not be accurate due to the existence of noise.
These algorithms have to use the distance information (which may not be accurate) to
obtain positions which are closest to the actual positions. The second difference is that:
for the former algorithms, the positions of anchors are only shared with one-hop neigh-
bors, but for the latter algorithms, the positions of anchors are shared within two-hop or
three-hops or n-hop neighbors for some n. In [13], an n-hop multilateration algorithm al-
lowing the existence of noise was proposed and the positions of anchors are shared within
n-hop neighbors. Note that there are various methods for estimating the distance between
sensors and anchors within n-hop neighbors.

There are three representative algorithms that can localize a graph when there exist
noises; see [14, 15, 12]. In [11]; Langendoen and Reijers provided a comparison between
these three algorithms. .As was mentioned before, there are various methods for estimating
the distance between sensors and anchors within n-hop neighbors. Each of the algorithms
in [14, 15, 12] provides-an interesting method to estimate the distance between sensors
and anchors within n-hop neighbors. Before ending this subsection, we briefly describe
the methods used in [14;715; 12].

In [14], Savarese et al. proposedia method called DV-hop..In DV-hop, a sensor (say, v)
computes the number k of hops between an anchor (say, a) and itself. Then, the distance
between v and «a is estimated by the average distance for one hop times k.

In [15], Savvides et al. proposed a method and it was called Sum-Dist in [11]. In
Sum-Dist, anchors initiate a flood. More precisely, Sum-dist starts its process from the
anchors, which send messages including the anchor id, anchor position, and a path length
0. Each sensor that receives the message adds its measured range to the path length. To
avoid the flooding of messages, Savvides et al. limited the flooding range. At the end of
the above process, most sensors will get several anchors’ positions and several estimated

distances.
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One drawback of DV-hop is that it fails for highly irregular network topologies, where
the variance in actual hop distances is very large. In [12], Niculescu and Nath have
proposed another method, called Euclidean, which is based on the local geometry of the
nodes around an anchor. Again, anchors initiate a flood, but forwarding the distance is
more complicated than [14, 15]. In particular, when a node has received messages from
two neighbors that know their distance to the anchor, and to each other, it can calculate
the distance to the anchor. We use Figure 4 to describe the method Euclidean. This
figure shows a node (i.e., Self) that has two neighbors nl and n2 with distance estimates
(a and b) to an anchor (i.e., Anchor): Note that Self is not a neighbor of Anchor and
currently does not have a distance estimate to Anchor. Selfand Self’ are actually the two
possible positions for the samé node. The nodes nl, n2, and Self (or nl, n2, and Self’)
form a K3 and therefore the distances ¢, d; and e are‘known. In this figure, r1 and r2
denote the distance estimates of Self to Anchor and Self” to Anchor, respectively. The
method Euclidean uses meighbor vote or common neighbor to determine which of 71 and

r2 18 correct.

Anchor

Figure 4: An illustration of the Euclidian method; this figure is from [11].

After each node obtains a distance estimate, an algorithm is needed to calculate the

11



position of each node. We now introduce two algorithms to calculate positions. The two
algorithms are called Lateration and Min-maz. In Lateration, each distance estimate
contributes a constraint; using all the constraints, one can use the standard least square
method to obtain an approximate position of a node.

In Min-maz, a node (say, v) that needs to be localized will compute a region that it
belongs to; this region is actually a rectangle and is called a bounding box. Figure 5 shows
that v is localized by using (i) the positions of three anchors (called Anchorl, Anchor2,
and Anchor3 in this figure) and (ii) the three estimated distances between Anchorl and
v, Anchor2 and v, and Anchor3 and ». For convenience, denote the three estimated
distances as dy, do, ds, respectively. Liet the positions.of ‘Anchorl, Anchor2, and Anchor3
be (a1, b1), (az,by), and (as,b3), respectively. Let (&,y) denoteé the position of v. Then x

lies in the intersection of the following-three intervals:
a1 —dya; +di)], ag — do, ay s ds|, |as = ds, as + ds).
The values
min, = max{a; — diyas —ds, a3 = ds} and maz; =min{da, + dy, as + do, a3 + ds}

are calculated to bound the r-coordinate of v. Similarly, ¥ lies in the intersection of the

following three intervals:
(b1 — dy, by + di], [by — da, by + ds), [bs — dg, bs + ds).
The values
min, = max{b; — dy, by — dg, b3 — d3} and max, = min{b, + dy, by + da, b3 + d3}

are calculated to bound the y-coordinate of v. The above process also explains why this

algorithm called Min-max. After calculating min,, maz,, min,, and maz,, the algorithm

ming+mazx, Miny+maz, )

5 , as the estimated position of v; this is the node labeled “est.

chooses (

pos.” in Figure 5.
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Figure 5: A illustration of the Min-maz method; this figure is from [11].

3 The main result

This section gives the main result of this thesis. In particular, an algorithm called
Main is proposed; see.below. Throughout this section, v.ann denotes the number of
anchors in N(v).

Algorithm Main usesthe Booleanwvariable v.localized to indicate whether a node v has
been localized. Initially, all nodes v.have v.localized = false. Once v is localized, v.localized
is set to true. Algorithm Main uses the following theorem to choose its initial-anchor set

S; see lines 5-10 in Main.

Theorem 3.1. Let G = (V, E) be a graph that models a given wireless sensor network
and S be any feasible initial-anchor set of G. For all v € V with degree deg(v) < 2, we
have v € S. In other words, any feasible initial-anchor set must contain all nodes with

degree < 2.

Proof. Suppose to the contrary that S is a feasible initial-anchor set and there is a node
v ¢ S such that deg(v) < 2. Since S is feasible, v must be localized. However, if

deg(v) = 1, then v has an infinite number of possible positions, which is a contradiction;
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Algorithm 1 Main
Require: A wireless sensor network G = (V, E).
Ensure: A localization for G and the initial-anchor set S that is used in the localization.
S =
for each v € V do
v.localized = false;
end for
for each v € V do
if v.degree < 2 then
S=Su{v};
v.localized = true;
end if
end for
: run Localization-Phase;
. while there exists any u such that (u.localized == false) do
v = the result of AncherChoose-Phase;
S=5SuU{v};
run Localization-Phase;
: end while

e N e T e T T
SO AR o S vl =

if deg(v) = 2, then v has at least two possible positions, which is also a contradiction. [

Then, Algorithm Main runs the Localization-Phase;, see line.11 and Subsection 3.1.
After the Localization-Phase, if there exits any node which is not localized, then Algorithm
Main runs AnchorChoose-Phase te choose a node v as.a new initial-anchor and add v to
the initial-anchor set S; see lines 13-14in.Main. After v is added to S, Algorithm Main
runs Localization-Phase again. Notice that we have proposed an adaptive algorithm for
AnchorChoose-Phase and we will give the details in Subsection 3.2. The while-loop in
lines 12-16 repeats until all nodes have been localized. When Algorithm Main stops, the

initial-anchor set S is feasible.

3.1 Localization-Phase

Notice that the Localization-Phase can be implemented in many ways. In this thesis,
we give three localization algorithms (called Trilateration, Sweep2, and Rigid) and each

of them can be used in the Localization-Phase.
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3.1.1 Trilateration

The pseudocode of Trilateration is as follows.

Algorithm 2 Trilateration

Require: A wireless sensor network G = (V, E).

Ensure: G with those nodes of it that can be localized by trilateration.
1. for each v € V such that (v.localized == false) do

2: compute v.ann;

3: end for

4: for each v € V such that (v.localized == false) do

5: if v.ann > 3 then

6: use three anchors in N(v) to determine the position of v;
7: v.localized = true;

8: run Trilateration;

9: end if

10: end for

3.1.2 Sweep2

We have mentioned the algorithm sweep that was proposed in [8] in Subsection2.3.
In [8], algorithm sweepiis implemented by-either-Greedy-Sweep-1 or Greedy-Sweep-2; thus
there are two cases. Notice that Greedy-Sweep-2 actually contains all the statements
in Greedy-Sweep-1. We find that it is unnecessary-to-have both Greedy-Sweep-1 and
Greedy-Sweep-2. Therefore, in this‘thesis, we modify algorithm sweep and propose a new
algorithm called Sweep2. Our algorithm Sweep?2 is more general and it does not need to
distinguish between the two cases in sweep. Similar to Trilateration, algorithm Sweep2 will
compute the number of anchors in a node’s neighborhood. If there are two neighboring
nodes u, v such that both u.annandv.ann equal to 2, then it is possible to localize u, v at
once. Let the two possible positions for u be uq,us and the two possible positions for v
be v1,vy. Then algorithm Sweep2 can check if only one of the four distances ujvy, uyvs,
uov71, and usvy equals to the distance wv. If this is true, then u, v can be localized at once.

The pseudocode is now given below.

15



Algorithm 3 Sweep?2

1: for each v € V such that (v.localized == false) do

2: Compute v.ann;

3: end for

4: run Trilateration;

5: for each v € V such that (v.localized == false) do

6: if v.ann == 2 then

7 for each u € N(v) do

8: if (u.ann == 2) and (u.localized == false) then

9: compute the two possible positions for v and denote them as uy, us;
10: compute the two possible positions for v and denote them as vy, vy;
11: compute the distances uyvy, uivs, Usv1, Usvy, and uwv;

12: if 3! distance (say, w;v;) in {ugv1, ugv2, ugvy, usv2} equals to uv then
13: use the distances ujv; and uw to determine the positions of u, v;
14: u.localized = wv.localized = true;

15: run Sweep2;

16: end if

17: end if

18: end for

19: end if
20: end for

In Sweep?2, two nodes w, v each has only two anchors in their neighborhood but u, v try
to cooperate to obtain their positions. The idea of Sweep2 can be generalized to obtain
Sweep3, Sweep4, . .., Sweepk: In general, Sweepk means kmnodes try to cooperate to obtain

their positions.
3.1.3 Rigidity

In this subsubsection, we propose a localization algorithm based on the rigidity theory;
call this algorithm Rigidity. When algorithm Main runs, all nodes with degree < 2 will be
added into the initial-anchor set. Suppose Main uses Rigidity in its Localization-Phase.
Then, each initial-anchor broadcasts a “Hello” message to all of its neighbors. Each node
v (including the anchors) that receives a “Hello” message run the algorithm Trilateration
at first and then uses C-Algorithm to find a rigid sub-graph H in N[v] if there exists a

such graph. Algorithm Rigidity computes the position of a node by a method similar to
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the one used in Sweepk. This solution will be unique since the subgraph H is globally

rigid. The pseudocode of algorithm Rigidity is as follows.

Algorithm 4 Rigid
1: for each v € V do

2 if v.localized == true then

3 v broadcasts a “Hello” message to all of its neighbors;
4 end if

5: end for
6
7
8

: for each v € V' which receives the “Hello” message do
run Trilateration;
use C-Algorithm to find a globally rigid graph in N[v], containing at least non-
anchor node, say this graph as H;

9: if there exists three anchors.in H then

10: use the Sweepk to localize each € H;

11: for each v € H and w.localized == false do

12: u.localized = true;

13: broadcast.a “Hello” message to all of its neighbors;
14: end for

15: end if

16: end for

Figure 6 shows how. Rigid algorithm works. First, v finds there are three anchors
in N(u) and uses Trilateration to localize itself (sce Figure 6(a) and (b)). Then, u will
determine whether N [u] contains a globally rigid graph with at least one non-anchor node.
Rigid finds there exists a wheel graph which is-globally rigid in N[v] and computes the

position of each node. Finally, all nodes of the wheel graph are localized (see Figure 6(c)).

3.2 AnchorChoose-Phase

In [8], Huang et al. also proposed a method to choose initial-anchors; for convenience,
we call it HuangChoose. In this subsection, we will propose an adaptive algorithm for
choosing anchors. We first give our observations and motivations. After the execution of
line 11 in algorithm Main, there may exist nodes that have not been not localized yet. In
order to localize all of the nodes, more initial-anchors are needed. How to choose a node

which is not localized as an initial-anchor is obviously an important issue.
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Figure 6: Example of Rigid Algorithm.

Intuitively, among the non-localized nodes, a.node v with the maximum degree should
be chosen since v makes the largest number of nodes have one more anchor in their
neighborhoods. Howewver, simulation results show that nodes that have large degrees
usually locate in some regions of the given graph. Therefore, it'is very likely that the
chosen anchors are from the same region of the graph-and could not help with localizing
nodes in the other regions. To overcome this difficulty, we will use an adaptive algorithm
to choose initial-anchors. Let v.degrec denote the degree of a node v. More precisely,
instead of using v.degree, algorithm AdpativeChoose will use (v.degree — v.ann). For
instance, if v.degree is 8 and v.ann is 3, then algorithm Adpative Choose will treat v.degree
as 5. A node v with the maximum (v.degree — v.ann) will be chosen as an initial-anchor.
The pseudocode is as follows.

Figure 7 shows the performance of algorithm AdpativeChoose. In Figure 7(a), nodes
colored with black are anchors and the others are non-anchors and therefore non-localized.
As shown in Figure 7(b), a tradition algorithm will choose u as the next initial-anchor since

u has the maximum degree. However, as shown in Figure 7(c), algorithm Adpative Choose
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Algorithm 5 AdpativeChoose
: for each v € V such that (v.localized == false) do
compute the degree v.degree;
v.degree = v.degree — v.anmn;
end for
: find v with the maximum v.degree which is not localized;
return v;

AN T o A

will choose v as next initial-anchor since v has the maximum (v.degree — v.ann). It is not
difficult to check that v is a better choice than u; see Figure 7(d).

Algorithm AdpativeChoose is a greedy strategy. It is obvious that there are other
greedy strategies; for example, HuangChoose-is-another greedy strategy. How to choose
the most effective initial-anchor is'still an open problem and.is our future work. We will

compare AdpativeChoose with HuangChoose later; see Section 4.
(a) (b)
(c) (d)

Figure 7: (a) A subgraph of the original network. (b) A strategy without adaptivity: a
node with the maximum degree is chosen as the next initial-anchor; here u is chosen. (c)
The strategy with adaptivity: a node with the maximum (v.degree — v.ann) is chosen as
the next initial-anchor; here v is chosen. (d) The contribution of v; those nodes colored
black are localized.
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4 Simulation results

In this section, we provide our simulation results. For convenience, in the remaining
figures, LocalTri means Trilateration. According to our simulations, the performance of
Sweepd is almost the same as Sweep2. However, the computation of Sweep3 is much
more complicated than that of Sweep2. Therefore, we will not provide the results of
Sweep3, ..., Sweepk. In our simulations, we will compare the following six combinations

of Localization-Phase + AnchorChoose-Phase:

LocalTri + AdpativeChoose, Local Tri— HuangChoose, LocalTri + MaxDegree,
Sweep2 + AdpativeChoose, Sweep2 + HuangChoose, and. Sweep2 + MaxDegree.

Notice that MazDegree will choose-a node v, such that v.localized = false and deg(v)
is the maximum among all such nodes:

This section is divided into six subsections and is organized as follows. In Subsec-
tion 4.1, we introducethree parameters (IAF, COVERAGE, and € P) for evaluating the
performance of the four combinations of Localization-Phase 4 AnchorChoose-Phase; our
comparisons are based on the values of the three parameters (IAF, COVERAGE, and
CP). In Subsection 4.2, we compare the-four¢ombinations with respect to the graph
in [8]. In Subsection 4.3, we compare the six combinations with respect to very sparse
graphs. In Subsection 4.4, we compare the six combinations with respect to sparse graphs.
In Subsection 4.5, we compare the six combinations with respect to dense graphs.

Before going further, we describe the four simulation environments that we will use:
the graph in [8], very sparse graphs, sparse graphs, and dense graphs. Note that all the
graphs used in our simulations are unit disk graphs. The first simulation environment
is the graph in [8], which is a graph with 199 nodes randomly generated in a 1200m X
1000m rectangle region and the transmitting range of each node is set to 80m. The second

simulation environment contains 200 very sparse graphs: each graph is with 200 nodes
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randomly generated in a 1200m x 1000m rectangle region and the transmitting range of
each node is set to 70m. The third simulation environment contains 200 sparse graphs:
each graph is with 200 nodes randomly generated in a 800m x 600m rectangle region and
the transmitting range of each node is set to 70m. The fourth simulation environment
contains 200 dense graphs: each graph is with 200 nodes randomly generated in a 800m

x 600m rectangle region and the transmitting range of each node is set to 100m.

4.1 The three parameters considered in our simulations

In this subsection, we introduce threesparameters (IAF, COVERAGE, and CP) for
evaluating the performance. In the remaining part. of this thesis, we will use Anchor to
denote the set of nodes that know their pesitions; that is, Anchor contains initial-anchors
and those nodes that have been localized. Let G-be the given graph, n be the number of
nodes in GG, and A be'a'‘combination of Localization- Phase +.-AnchorChoose-Phase.

The first parameter IAF is the cardinality of an initial-anchor set, i.e.,
LAFR(G) =15

where S is an initial-anchorset. The second parameter COVERAGE is the percentage of

nodes that know their positions, d.e.,

_ |Anchor|
=

COVERAGE 4(G)
It is obvious that if an initial-anchor set is feasible, then COVERAGE will achieve 100%.
When a localization algorithm is running, nodes can be added into the initial-anchor set;

therefore we use S. to denote the current initial-anchor set. The third parameter CP is

used to show the contribution of the current initial-anchor set and we define

Anchor

Do notice that we provide simulation results for CP only for the graph in [8].

21



4.2 Simulation results for the graph in [8]

The graph in [8] is shown in Figure 8.

Figure 8: The graph in [8].

By [8],
[AFLocalTriJrHuangChoose(G) = 42 and [AFSweepQJrHuangChoose(G) = 33.

If our adaptive algorithm “AdpativeChoose is used to choose anchors, then

]AFLocalTri-i—AdaptiveChoose(G) = 40 and IAFSweep?—i—AdaptiveChoose(G) = 31.

To sum up,

40 = ]AFLocalTri-l—AdaptiveChoose(G) < [AFLocalTri-l—HuangChoose (G) =42

and

31 = [AFSweep2+AdaptiveChoose(G) < [AFSweep2+HuangOhoose(G) = 33.

Thus AdaptiveChoose has a better (i.e., smaller) JAF than HuangChoose.
Figure 9(a) shows COVERAGE of LocalTri + AdpativeChoose and Sweep2 + Adpative-

Choose. It can be seen that when the cardinality of an initial-anchor set is 15, the curve of
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Sweep?2 + AdpativeChoose suddenly rises up and Sweep2 + AdpativeChoose outperforms
LocalTri + AdpativeChoose.

Figure 9(b) shows the CP of LocalTri+ AdpativeChoose and Sweep?2+ AdpativeChoose.
Notice that a local maximum CP occurs when the curves in Figure 9(a) has a local
maximum. CP decreases after some initial-anchors are used, indicating that the remaining

un-localized nodes may have certain structures which are difficult to be localized.
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Figure 9: (a) COVERAGE and (b) CP of LocalTri + AdpativeChoose and Sweep?2 +
AdpativeChoose.
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4.3 Simulation results for very sparse graphs

We first compare [AF. Figure 10 shows that when IAF is considered, AdaptiveChoose
performs almost equal to HuangChoose and in only very few cases, AdaptiveChoose per-
forms worse than HuangChoose. In fact, the average IAF of LocalTri + AdpativeChoose
is 134.63, LocalTri + MaxDegree is 156 and that of LocalTri + HuangChoose is 131.12.
Moreover, the average IAF of Sweep2 4+ AdpativeChoose is 122.47, LocalTri + MaxDegree
is 147 and that of Sweep2 + HuangChoose is 119.56.

To consider COVERAGE, we restrict the cardinality of an initial-anchor set to be at
most 100 or at most 120. Figure 11 shows the COVERAGE value when the cardinal-
ity of an initial-anchor set is restricted to at most 100. If shows that when LocalTri is
used, AdaptiveChoose performs almost-equal to HuangChoose and in only very few cases,
AdaptiveChoose performs better than-HuangChoose; however, when Sweep2 is used, Adap-
tiveChoose performs almost equal to HuangChoose-and in only very few cases, Adaptive-
Choose performs worse than HuangChoose. In fact, the average COVERAGE of LocalTri
+ AdpativeChoose is 57.80%, LocalTri + MazDegree is 57.80%and that of LocalTri +
HuangChoose is 57.73%. « Moreover, the average COVERAGE of Sweep?2 + Adpative-
Choose is 68.06%, Sweep2 + MaxDegree.is 68.10% and that of Sweep2 + HuangChoose is
65.64%.

Figure 12 shows the COVERAGE value when the cardinality of an initial-anchor set is
restricted to at most 120. It shows that when LocalTri is used, AdaptiveChoose performs
almost equal to HuangChoose and in many cases, AdaptiveChoose performs better than
HuangChoose; however, when Sweep2 is used, AdaptiveChoose performs almost equal to
HuangChoose and in only very few cases, AdaptiveChoose performs worse than Huang-
Choose. In fact, the average COVERAGE of LocalTri + AdpativeChoose is 57.87%, Lo-
calTri + MaxDegree is 57.87% and that of LocalTri + HuangChoose is 57.92%. Moreover,

the average COVERAGE of Sweep2 + AdpativeChoose is 68.06%, Sweep2 + MaxDegree
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is 68.10% and that of Sweep2 + HuangChoose is 65.64%.

To sum up, for very sparse graphs, we find that AdaptiveChoose performs almost equal
to or performs better than HuangChoose when LocalTri is used in the Localization-Phase
and AdaptiveChoose performs almost equal to HuangChoose when Sweep2 is used in the

Localization-Phase.

>

LocalTri + HunagChoose « LocalTri + MaxDegree = LocalTri + AdaptiveChoose
180

170 . *
*e
P e Lt e Ye * o o ¢ o i *
160 F 3 v
¥ > o 4 . r ¥
‘»% o ,é,_}_% %\”’9&‘" & 4¢$@@%¢¢ & @#w &%ﬁeﬂ‘»v ~M:¢,
150 & & y * L P g
¥ L3 F 3 i
1 » y + * *
n
. g = A 2 - (1] = * .
140 #—k
w ‘l_'-":-lu i n [Tore—y T oA g ‘:&:
S n o A, N ll.'Al"l“ B de D 1P gal = h 5
130 i o g & & OOk ik "‘A O] Ak ANTE “lAA
Iy i
Bay - = & & A i Y i
120 i 2 = -
110
100

90

1 357 91113151719213325273931333537394143454749515555575561636567697 175757 779818358587899193959799

The result of the 1st, 2nd, 3rd, 4th, ..., 100th graph

(a)

Sweep2 + HunagChoose ¢ Sweep2 + MaxDegree = Sweep2 4+ AdaptiveChoose
170

160

150

140 -~

130 by "

1AF

.
.
120 Ta—ax

110 43 1 5

100

S0

1357 91113151719212325272931333537394143454749515355575961636567697 17375777981838587899193959799

The result of the 1st, 2nd, 3rd, 4th, ..., 100th graph

(b)

Figure 10: IAF for very sparse graphs. (a) LocalTriis used in the Localization-Phase. (b)
Sweep2 is used in the Localization-Phase.
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Figure 11: COVERAGE for very sparse graphs when the cardinality of an initial-anchor
set is at most 100. (a) LocalTriis used in the Localization-Phase. (b) Sweep?2 is used in
the Localization-Phase.
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Figure 12: COVERAGE for very sparse graphs when the cardinality of an initial-anchor
set is at most 120. (a) LocalTri is used in the Localization-Phase. (b) Sweep2 is used in
the Localization-Phase.
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4.4 Simulation results for sparse graphs

We first compare [AF. Figure 13 shows that when IAF is considered, AdaptiveChoose
performs almost equal to HuangChoose. In fact, the average IAF of LocalTri + Adpative-
Choose is 61.585, LocalTri + MazxDegree is 61.625 and that of LocalTri + HuangChoose
is 62.26. Moreover, the average IAF of Sweep2 + AdpativeChoose is 50.36, Sweep2 +
MazxDegree is 51.005 and that of Sweep2 + HuangChoose is 49.855.

To consider COVERAGE, we restrict the cardinality of an initial-anchor set to be at
most 30 or at most 50. Figure 14 shows the COVERAGE value when the cardinality of
an initial-anchor set is restricted.to at.most 30. .If shows that no matter which one of
LocalTri and Sweep?2 is useds, Adaptive Choose performs bhetter than HuangChoose in most
cases. In fact, the average:COVERAGE of LocalTri + AdpativeChoose is 48.66%, LocalTri
+ MaxDegree is 48.75% and that-of -Local Tri + HuangChoose is 24.26%. Moreover, the
average COVERAGE of Sweep2 + AdpativeChoose is 60.23%, Sweep2 + MazxDegree is
60.47% and that of Sweep2 + HuangChooseis 49.69%.

Figure 15 shows the COVERAGE value when the cardinality of an initial-anchor set
is restricted to at most 50¢ It shows that when LocalTri is used, Adaptive Choose performs
better than HuangChoose in most cases; however,.when Sweep?2 is used, AdaptiveChoose
performs almost equal to HuangChoose. In fact, the average COVERAGE of LocalTri
+ AdpativeChoose is 88.58%, LocalTri + MazDegree is 88.70% and that of LocalTri +
HuangChoose is 76.64%. Moreover, the average COVERAGE of Sweep2 + Adpative Choose
is 97.78%, Sweep2 + MaxzDegree is 97.58% and that of Sweep2 + HuangChoose is 97.08%.

To sum up, for sparse graphs and when [AF is considered, AdaptiveChoose performs
better than HuangChoose when LocalTri is used in the Localization-Phase and Adaptive-
Choose performs worse than HuangChoose when Sweep?2 is used in the Localization-Phase.
For sparse graphs and when COVERAGE is considered, no matter which one of LocalTri

and Sweep?2 is used, AdaptiveChoose performs better than HuangChoose in most cases.
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Figure 14: COVERAGE for very sparse graphs when the cardinality of an initial-anchor
set is at most 30. (a) LocalTri is used in the Localization-Phase. (b) Sweep?2 is used in
the Localization-Phase.
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Figure 15: COVERAGE for very sparse graphs when the cardinality of an initial-anchor
set is at most 50. (a) LocalTri is used in the Localization-Phase. (b) Sweep?2 is used in
the Localization-Phase.
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4.5 Simulation results for dense graphs

We first compare [AF. Figure 16 shows that when IAF is considered, AdaptiveChoose
performs better than HuangChoose. In fact, the average IAF of LocalTri + AdpativeChoose
is 6.915, LocalTri + MazDegree is 6.875 and that of LocalTri + HuangChoose is 11.72.
Moreover, the average IAF of Sweep2 + AdpativeChoose is 5.81, Sweep2 + MazxDegree is
5.795 and that of Sweep2 + HuangChoose is 6.79.

To consider COVERAGE, we restrict the cardinality of an initial-anchor set to be at
most 5 or at most 10. Figure 17 shows the COVERAGE value when the cardinality of
an initial-anchor set is restricted. to at. most=5: If shows that no matter which one of
LocalTri and Sweep?2 is useds, Adaptive Choose performs bhetter than HuangChoose in most
cases. In fact, the average: COVERAGE of LocalTri + AdpativeChoose is 80.49%, LocalTri
+ MaxDegree is 82.09% and that-of-LocalTri + HuangChoose is 12.19%. Moreover, the
average COVERAGE of Sweep2 + AdpativeChoose is 85.50%, Sweep2 + MaxDegree is
87.31% and that of Sweep2 + HuangChooseis 68.59%.

Figure 18 shows the COVFERAGE value when the cardinality of an initial-anchor set is
restricted to at most 10. It'shows that no matter which one©f LoealTri and Sweep2 is used,
AdaptiveChoose performs better than-HuangChoose in'most cases. In fact, the average
COVERAGE of LocalTri + AdpativeChoose is 99.92%, LocalTri + MaxzDegree is 99.88%
and that of LocalTri + HuangChoose is 70.36%. Moreover, the average COVERAGE of
Sweep2 + AdpativeChoose is 99.99%, Sweep2 + MaxDegree is 99.97% and that of Sweep?2
+ HuangChoose is 99.69%.

To sum up, for dense graphs and when [AF is considered, no matter which one of
LocalTri and Sweep?2 is used, AdaptiveChoose performs better than HuangChoose. For

dense graphs and when COVERAGE is considered, we also have the same result.
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Figure 16: JAF for dense graphs. (a) LocalTri is used in the Localization-Phase. (b)
Sweep2 is used in the Localization-Phase.
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A LocalTri + HuangChoose @ LocalTri + MaxDegree = LocalTri + AdaptiveChoose
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Figure 17: COVERAGE for very sparse graphs when the cardinality of an initial-anchor

set is at most 5. (a) LocalTriis used in the Localization-Phase. (b) Sweep?2 is used in the
Localization-Phase.
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A LocalTri + HuangChoose @ LocalTri + MaxDegree = LocalTri + AdaptiveChoose
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Figure 18: COVERAGE for very sparse graphs when the cardinality of an initial-anchor
set is at most 10. (a) LocalTri is used in the Localization-Phase. (b) Sweep?2 is used in
the Localization-Phase.
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5 Concluding remarks

Many applications in wireless sensor networks require position information to detect
and record events. In [8], Huang et al. studied the minimum cost localization problem,
which aims to localize all sensors by using the minimum number of anchors. The purpose
of this thesis is consider the same problem but using an adaptive algorithm. In particular,
we propose an adaptive algorithm called AdaptiveChoose to choose initial-anchors. Our
algorithms are simpler than the algorithms in [3] and cover all the cases in the algorithms
in [8]; Simulation results show that AdaptiveChoose usually outperforms HuangChoose for
dense graphs and Adaptive Choose performs almost the same as HuangChoose for sparse
or very sparse graphs. The overview of the simulation is shown in Figure 19. The first
column is the simulation environment. The first row shows the two parameters that we

consider. The algorithm with better-result will be shown in the corresponding fields.

A=LocalTri IAF ‘ COVERAGE A=Sweep2 IAF | coverace
G AdaptiveChoose No data G AdaptiveChoose No data
Vary HuangChoose The same Vary HuangChoose The same
Sparse | ~AdaptiveChoose Sparse .| ~AdaptiveChoose
Sparse The same MaxDegree Sparse HuangChoose AdaptiveChoose
~AdaptiveChoose ~AdaptiveChoose ~MaxDegree
Dense MaxDegree MaxDegree Dense MaxDegree MaxDegree
~AdaptiveChoose ~AdaptiveChoose ~AdaptiveChoose ~AdaptiveChoose

(a) (b)

Figure 19: (a) LocalTri, (b) Sweep2 is used in the Localization-Phase. In this figure, “~”
means the outcomes of the two methods differ in 2% and the better one will be shown
first.

In the coming future, we would like to consider the followings problems. How to
combine AdpativeChoose and HuangChoose to obtain better results? Given a certain
initial-anchor set, determine what kind of graphs are localizable. It is known that a
globally rigid graph can be localized by using three anchors; what will happen if more

anchors are used? Design a distributed version of AdaptiveChoose. We have tried to
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generalize algorithm Sweep2 to be Sweepk. In Sweep2, two nodes try to cooperate to
obtain their positions; in general, in Sweepk, k nodes try to cooperate to obtain their
positions. Although we found that Sweep3 does not improve Sweep2, we conjecture that
Sweepk does improve Sweep2 whenever k > 4. Finally, it is interesting to generalize the
algorithm Rigid to Rigidk, meaning that instead of using one-hop neighborhoods, k-hop

neighborhoods are used.
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