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Abstract

In this thesis a very Tecent and new channel model is investigated that describes
communication based on the exchange of chemical. molécules in a liquid medium
with constant drift. "The molecules travel from the transmitter to the receiver at
two ends of a one-dimensional-axis. A typical application of such communication
are nano-devices inside a blood-vessel communicating with each other. In this case,
we no longer transmit our signal via electromagnetic waves, but we encode our
information into the emission time of the molecules. Once a molecule is emitted in
the fluid medium, it will be affected by Brownian motion, which causes uncertainty
of the molecule’s arrival time at the receiver. We characterize this noise with an
inverse Gaussian distribution. Here we focus solely on an additive noise channel to
describe the fundamental channel capacity behavior with average and peak delay
constraints.

This new model is investigated and new amalytical upper and lower bounds
on the capacity are presented. .'The bounds- are asymptotically tight, i.e., if the
average-delay and peak-delay constraints are loosened to infinity, the corresponding
asymptotic capacities are derived precisely.
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Chapter 1

Introduction

1.1 General Molecular Communication Channel Model

Usually, information carrying signalsrare transmitted as electromagnetic waves in
the air or in wires. Recently, people are more and more interested in communication
within nanoscale networks. But when we want to transmit our signal via these tiny
devices, we face new problems, for example; the antenna size are restricted or the
energy that could be stored is very little. We solve these problems by providing
a different type of communication instead. This thesis focuses on a channel which
operates in a fluid medium with a constant drift velocity: One application example
is blood vessel, which has a blood drift: The nanoscale device could be any medical
inspection device that isiinserted in our body. The transmitter is a point source
with many molecules‘to be emitted. The receiver‘waits on the other side for the
molecules’ arrival. The information-is encoded in the emission time of the molecules,
X, which takes value in a finite set.

Wiener Process

Transmitter
Receiver

| |

Figure 1.1: Wiener process of molecular communication channel.
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Once the nanoscale molecules are emitted into the fluid medium, beside the
constant drift, they are affected by Brownian motion, which causes uncertainty of
the arrival time at the receiver. We describe this type of channel noise with an
inverse Gaussian distribution. The typical situation is shown in Figure 1.1, where w
is the position parameter, d is the receiver’s position on w axis, and v > 0 is the drift
velocity. The transmitter is placed at the origin of the w axis. It emits a molecule
into a fluid with positive drift velocity v. The information is put on the releasing
time. In order to know this information, the receiver ideally subtracts the average
traveling time, %, from the arrival time. Note that once a molecule arrives at the
receiver, it is absorbed and never returns to the fluid. Moreover, every molecule is
independent of each other.

This molecular communication channel model*was proposed by Srinivas, Adve
and Eckford [1].

1.2 Mathematical Model

Let W (z) be the position of a molecule at time z that travels via a Brownian
motion medium. Let 0 21 < 19 < - -+ < @ be a sequence of time indices ordered
from small to large. Then, W(z) is a Wiener process if the position increment
R; = W(x;—1) — W(x;) are independent random variables with

Ri af N(U(Jh U xi_l),a2(1‘i - l‘iﬁl)) (1.1)

where 02 = g with D being the diffusion coefficient, which depends on the temper-
ature and the stickiness of the fluid and the size of the particles. Assuming that the
molecule is released at time z = 0 at position 1/ (0)="0, the position at time  is

W (z) ~ N (v, o). The probability density function (PDF) of W is given by:

- 1 w — vE)?
fw(w; &) = \/ﬁexp (_(202@)> ) (1.2)

In our communication system, instead of looking at the position of the molecule
at a certain time, we turn our focus on its arriving time at the receiver of a fixed
distance d.

We release the molecule at time z from the origin, W (z) = 0 and = > 0. After
traveling for a random time NV, the molecule then arrives at the receiver for the first
time at time Y,

Y=+ N. (1.3)

Hence, our channel model is characterized by an additive noise in the form of the
random propagation time N. This is the only uncertainty we have in the system.
When we assume a positive drift velocity v > 0, the distribution of the traveling
time N is well known to be an inverse Gaussian (IG) distribution. As a result, we
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released arrived

position

0 d
| |
{ {
T Y time

Figure 1.2: The relation between the molecule’s time and position.

call this channel the additive inverse Gaussian noise (AIGN) channel. Since the
PDF of N is

A 10)2
| e N o
N N

0 n <0,

(1.4)

we get the conditional probability density of output ¥ given theichannel input X = x

/D) _ AMy—z—p)?
(y’x) — 2 (y=—x)3 exXp ( 202 (y—x) ) Yy >, (15)
0

y< T,

as

Jyx

There are two important parameters for the inverse Gaussian distribution: the av-
erage traveling time

_ d¢ _distance between transmitter and receiver (1.6)
B=30 drift velocity ’ ’
and a parameter
d2

that describes the impact of the noise. Usually we write N ~ IG(u, \). By calcula-
tion, we get

EN)=p =2 (18)
M3 do?
Var(N) = £ = (1.9)

If the drift velocity v increases, the variance decreases, in other words, the distri-
bution is more centered. If the drift velocity is slowed down, we will have a more
spread-out noise distribution. Without loss of generality, we normalize the propa-
gation distance to d = 1.

For practical reasons, we constrain the transmitter to have a peak delay con-
straint T and a average delay constraint m at the transmitter, i.e., the input X are
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subject to the two constraints:

Pr[X > T =0, (1.10)
E[X] < m. (1.11)

We denote the ratio between the allowed average delay and the allowed peak
delay by «
am

T (1.12)

(01

where 0 < o < 1. Note that for a = 1 the average-delay constraint is inactive in the
sense that it has no influence on the capacity and is automatically satisfied whenever
the peak delay constraint is satisfied. Thus;’ev = 1 corresponds to the case with only
a peak-delay constraint. Similarly, @< 1 corresponds to a dominant average-delay
constraint and only a very weak peak-delay constraint.

1.3 Capacity

Since we introduced a new type of channel, the AIGN channel, ‘we are interested
in how much information it can carry. In{2], Shannon showed that for memoryless
channels with continuous_input and output alphabets and an corresponding condi-
tional PDF describing the ¢hannel, and under input constraints Pr[X > T] = 0 and
E[X] < aT, the channel capacity is.given by

C(T,aT) £ sup 1(X;Y) (1.13)
fx (x): Pr{X>T]=0, E[X]<aT

where the supremum is taken over all input probability distributions f(-) on X that
satisfy (1.10) and (1.11). By I(X;Y) we denote the mutual information between X
and Y. For the AIGN channel, we have

sup I(X;Y)

fx(z): Pr[X>T]=0, E[X]<aT

- sup {h(Y) - h(YlX)} (1.14)
fx(z): Pr[X>T]=0, E[X]<aT

= sup {h(Y) —h(X + N!X)} (1.15)
fx(z): Pr[X>T]=0, E[X]<aT

= sup {h(Y) - h(N’X)} (1.16)
fx(z): Pr[X>T]=0, E[X]|<aT

= sup h(Y) = h(N) (1.17)
fx(x): Pr[X>T]=0, E[X]<aT

= sup h(Y) = hig(un)s (1.18)

B fx(z): Pr[X>T]=0, E[X]<aT

4
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where (1.17) holds because N and X are independent. The mean constraint (1.11)
of the input signal translates to an average constraint for Y:

E[Y] =E[X + N] (1.19)
= E[X] + E[N] (1.20)
=E[X]+pu (1.21)
< al+ p. (1.22)
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Chapter 2

Mathematical Preliminaries

In this chapter, we will introduce some mathematical properties of the inverse Gaus-
sian random variable and other useful-lemmas for future use in this thesis.

2.1 Properties of the Inverse Gaussian Distribution

In [1], the differential entropy of an inverse Gaussian random variable was given in
a complicated form that is unyielding for-analytical analysis. So we try to modify
the original expression and derive a cleaner form for mathematical derivation.

Proposition 2.1 (Differential Entropy of-the Inverse Gaussian Distribution).

1 2mus 3 22\ 4 [ 2\ 1
hIG(;L,)\) = § log )\H + 5 exp <Iu) Ei (—7> + 5 (21)

where Ei(+) is the exponential integral function defined as

—t

' A © o —x et

—0o0
In MATLAB, the exponential integral function is implement as ezpint (z)= — Ei(—x).

Proof: see [3]. O

Next, when we want to make an IG random variable add with another IG random

variable and end up also in IG distributed, there is a specific way to reach it. Only
certain type of IGs will add up to be IG distributed.

Proposition 2.2 (Additivity of the IG distribution). Let M be a linear combination

of random variables M;:
!

M= ¢M;, ¢ >0, (2.3)
i=0
where
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Here we assume that M; are not necessarily independent, but summed up under the
constraint that

Ag =k, foralli. (2.5)
Cift;
Then
2
M ~1G Z Cilliy K (Z Ciﬂz‘) (2.6)
Proof: The proof can be found in [4, Sec. 2.4, p. 13]. O

Remark 2.3. If we simply add two inverse Gaussian random variables, as long as
they are in the same fluid, which means they have the sanie v and o, the result is
still inverse Gaussian.

Consider a Wiener process X (t) beginning with X (0) = zq¢ with positive drift v

and variance o

. Choose a.and b so_that xg < a < b and consider the first passage
time Ty from xg to a andds from a to-b:-~Then 1} and T5 are independent inverse

Gaussian variables with parameters

a — xg (a — x9)?
11 — A < (2.7)
and .
b—a (b—a)
. N = 2.8
2 AN 2 02 (2.8)
Now consider T3 = Ty + 15, therefore, ¢y = co = 1 and
Ai &
= % = constant, (2.9)
203 o
T3 is also an inverse Gaussian variable. That is
2 2
+
Ty ~ 1G <u1 + o, ”(“102“2)> . (2.10)
Since 1 + pg = b_v”“’,
b— b—x0)?
Ty ~ 1(;( zo | fO) > (2.11)
v o

The last observation also follows directly from the realization that Ts is the first
passage time from xo to b [4].

Proposition 2.4 (Scaling). If N ~ 1G(u, A), then for any k >0
EN ~ IG(kp, kEX). (2.12)

Proof: The proof can be found in [4, Sec. 2.4, p. 13]. O
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Proposition 2.5. If N is a random variable distributed as 1G (u, X). Then

E[N] = (2.13)
1 1 1
= R 2.14
{N L3 (2.14)
13
E[N?] = p® + 7 (2.15)
1 1 3 3
El=—| = -+ = 4+ —. 21
[N2:| 12 Te T N (2.16)
13
Var (N) = % (2.17)
1 1 2
— | QWK 2.1
Var (N) M}\+)\2, (2.18)
ENVAZ Rtk <5> . veR. (2.19)
7r 2\ p
where K (-) is the order-y modified Bessel function of the second kind.
Remark 2.6." From'formula [5; (8.486.16)], we get
K_jz)=K,(2) (2.20)
we can also write (2.19) as
N B2 S S & A
BNV ] = —erp 2KV+% (;) (2.21)

Proof: The proofs are based on [4, (2.6)], [6, Proposition 2.15], [4, (8.36)] and
[5, 3.471 9.]. O

Proposition 2.7. If N ~1G(u, \), then

22 2)
EllogN]=en* Ei(—> + log p; (2.22)
©
N p p
El—+=| =2+~ 2.23
[u i N} T (223)
Proof: A proof is shown in [7]. O

Proposition 2.8. If N; are IID ~ IG(u, \), then the sample mean from that dis-
tribution will be

1 « .
— 3 Ni=N ~IG(u,n)), fori=1,...,n. (2.24)
n =1

Proof: A proof can be found in [4, Sec. 5.1, p. 56]. O
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Lemma 2.9. Under the three constraints

E[log X]| = o, (2.25)
E[X] = as, (2.26)
E[X7'] = as, (2.27)

where a1, ag and ag are some fixed values, the maximum entropy distribution is the
inverse Gaussian distribution.

Proof: From [8, Chap. 12] we know that if we have the three constraints
above, the optimal distribution to maximize the entropy will have the form

f(."L‘) — 6)\0+/\1 log:c—l—)\z:v—f—);c—?’ (2.28)
A
e g tothont T (2.29)
which is exactly the form of the inverse Gaussian. O

2.2 Related Lemmas and Propositions

In this section, we will show some lemmas and properties that will be used in our
proof of bounds.

Proposition 2.10. Consider a memoryless channel with input alphabet X = ]Rg
and output alphabet Y = R, where, conditional on the input x & X, the distribution
on the output Y is denoted by the probability measure fyx({|lv). Then, for any
distribution fy(-) on ), the channal capacity under a_peak-delay constraint T and
an average-delay constraint oT is upper bound by

C(T,aT) < Eq- [D(fyix (1X)IIfy ()], (2.30)

where Q* is the capacity-achieving distribution satisfying Q*(X > T) = 0 and
Eqg+[X] < aT. Here, D(:||-) denotes relative entropy [8, ch. 2].

Proof: For more details see [9] O
There are two challenges in using (2.30). The first is in finding a clever choice of
the law R that will lead to a good upper bound. The second is in upper-bounding
the supremum on the right-hand side of (2.30). To handle this challenge we shall
resort to some further bounding.
Next, we will list some propositions related to the O-function.

Definition 2.11. The Q-function is defined by
Q@) & L /oo /2 gt (2.31)
= /. : :

10
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Note that Q(x) is the probability that a standard Gaussian random variable

will exceed the value z and is therefore monotonically decreasing with an increasing
argument.

Proposition 2.12 (Properties for the Q-function). Bounds for Q-function

1 22 1 22
\/%336_? (1 —fa:2> <Q(z) < mxe_T, x> 0; (2.32)
Q(x) < %efé, x> 0. (2.33)
and
Q(z)+09(—x)= 1 (2.34)
Proof: see [10] O

Remark 2.13..Let ®(-) denote-the cumulative distribution function (CDF) of the
standard normal:distribution.:

B(z) = % /_ L Pl (2.35)

Then
Q(z) =d(—z), (2.36)
5 1
asf | () i
| - HNEnan Lower bound of (2.32)
Y T Upper bound of (2.32) |
S S - Upper bound of (2.33)
35 “ ]
|
3F | ]
25 ‘1

.
25 3

11
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Proposition 2.14 (Upper and Lower Bound for Exponential Integral Function).
We have

le_m In (1 + z) < —Ei(—z) <e *In (1 + l) , x>0, (2.37)
2 T T

or
1 1 2
—e *ln <1 + 5) < Ei(—z) < —56_’6 In (1 + ;) , x>0. (2.38)

12
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Known Bounds to the Capacity
of the AIGN Channel with Only
an Average Delay Constraint

We can always bound the capacity with peak and delay constraints by the capacity
with only an average delay constraint since-adding more constraints will make the
capacity smaller. For the case with only an average delay‘constraint, an upper bound
of capacity has been derived in[1]. The entropy maximizing distribution f*(y) with
a mean constraint E[Y] < 'm + u s the exponential distribution with parameter —1—

m—+u
8, (12.21)):

1 y
(y).= e mtug > 0. 3.1
SO —— A (3.1)
The entropy of such a distribution is
R*(Y) =1+ 1In(m + p). (3.2)

This can be used to derive a upper bound on the capacity of the AIGN channel:

C(m) £ sup I(X;Y) (3.3)
fx(z): E[X]<m
= sup h(Y) — hrg(u (3.4)
fx(@): qu<m{ =)
= Sup h(Y) - hIG(,u,A) (35)
fx(z): E[X]<m
=1+ ln(m + ,U,) - hIG(H:)\)' (36)
Hence,
1. AMm+p)? 3 2\ 2\ 1
< = _ =z = _== -
C(m) < 5 log 23 exp . Ei . + (3.7)
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In [3], the choice of the input X ~ Exp(%) get the asympototically tight lower
bound:

2 %
1 2 am 2
Clog (14 —eiy/ —2 g [ 4/ 22 4 k22
og( —i—meu 2+ k2 m 1( m+ >
1 A4 am A
St AT (o ]2 sz ) .
T ome” 1+ k2m m+k A (38)

where Kj is type one bessel function.
We can see in Fig. 3.3 that for the capacity with only a.average delay constraint

is aympototically tight in both m.and .

A 3 A1 3 2 2\
C(m) Zlog%+%—;+k>\+§logﬁ+—log%—562;? Ei(—)

Upper bound (3.7)
Lower bound (3.8)

0.5

Figure 3.3: Known bounds for the choice: u = 0.5, A = 1 respect to m.
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Figure 3.4: Known bounds for the choice: m =1, A = 1 respect to v.

15
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Chapter 4

Main Result

To state our results we distinguish between two cases, 0 < a < 0.5 and 0.5 < a < 1.
For the first case, the difference between upper-bound andlower-bound tends to zero
as the allowed peak delay tends to infinity, thus, revealing the asymptotic capacity
at high power.

Theorem 4.1 (Boundsfor 0 < & < 0.5). For 0 < a < 0.5, C(T, aT) is lower-bounded

C(T,aT) > log T=log 5* 4 log (1 = e_ﬁ*) A + 57_: (aT+ w)+ \/2)\ (A — 5;)

p 2u2
1 2mepnd ) 3022 2
— =1 ——enr Ei| — 4.1
P o
for
* .2
T> 25/\’”‘ . (4.2)

And upper-bounded by

CMaN <R —Q"—2(Q" —Q")log(Q~ — Q™)
—2(1-Q +QMNlog(1 - Q™ +Q™M)
+ max {o, (@ —Q)log (1(Q™ +Q7) +aT(Q —QT)) } +ap”

- aB*(T+5)
— logaf* 4 log(aT 4+ ) + log (1 —e aT+u—aT<Q—Q+)—u<Q+Q+>>

1. 2mep® 3 22 [/ 2\
—ilog N 3¢ E1<_,u> (4.3)
for
1 * —af*
T>< ab’e” . —u) (4.4)
« 1— 675* mln(l,ﬁ&))

17



Chapter 4 Main Result

where & is the minimum value of 6, and

()
)

Here, § > y is free parameter, and * is the unique solution to

(1>

0

lI>

Q+

1 e P
=— - 4,
N (1.7)
A suboptimal but useful choice of the free parameter in (4.3) is
d =log(T4 1)=10m: (4.8)

Fig. 4.5 and Fig. 4.6 showthe bounds of Theorem 4.1 for ae =0.3 as a function
of T and v, respectly.

Corollary 4.2 (Asymptoties for the case of 0 < o < 0.5). If0< o < 0.5, then

tim {C(T, oT= Jogmji=as" 105 8" 10 (1~ )

and
lim {C(v) — §logv} =log T—log 5" +log (1 — e‘ﬂ*) +af* + 1log i (4.10)
vToo 2 2 2me

Theorem 4.3 (Bounds for 0.5 € a <.1). If 0.5 < a < 1ythen C(T,aT) is lower-
bounded by

C(T,aT) > log T - %log i e Ei<—2/\) (4.11)
and upper-bounded by
CTal) <Q™ -Q"-2(Q™ —Q")log (Q™ - Q)
—(1-Q~+Q")log(1-Q~ +Q7)
+(Q~ — Q") max {0, log (M(Q_ + Q) +aT(Q™ — Q+))} +log(T+ 0)

3
log 2W§“ _ 32 <—2:> . (4.12)

1
2

for
T>1—mind (4.13)

where Q= and Q are given in the (4.5) and (4.6), respectively.
Here, § >  is free parameter, and 5* is the unique solution to (4.7). A suboptimal
but useful choice of the free parameter in (4.12)

d =log(T+1)+ 10u (4.14)

18
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Corollary 4.4 (Asymptotics for the case of 0.5 < a <1). If0.5 < «a <1, then

1. 2meu? 2 2)
lim {C(T, aT) — 1ogT} — 5 log ”;“ - gezf Ei(—ﬂ) (4.15)
and
lim{C(v)—§lo v}—lo T—|—llo A (4.16)
vToo 2 & =08 2 g271'€ '

Fig. 4.7 and Fig. 4.8 show the bounds of Theorem (4.3) for a = 0.7. In addition,
Fig. 4.11 and Fig. 4.12 show how the bounds in (4.3) and (4.12) performance with
different . Fig. 4.9 and Fig. 4.10 show that the difference of the choice of different
d, the blue line is the numerical optimal.J.. Furthermore, the Fig. 4.13 shows the
continuity of the capacity.

4.5 T T T T T T

Lo A — Known upper bound (3.7)
|
! ———— Upper bound (4.3)
I
I
|

------ Lower bound (4.1)

T T T T T T T
0 10 20 30 40 5p 60 70 80 90 100

Figure 4.5: Comparison between the upper and lower bound in (4.3) and (4.1) and
known upper bound (3.7) for the choice: p = 0.5, A = 0.25, and a = 0.3.
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] SRR I - Known upper bound (3.7) ]
Upper bound (4.12)

o} |

Lower bound (4.11)

3 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

T

Figure 4.7: Bounds in (4.12), (4.11) and (3.7) for the choice: p = 0.5, A = 0.25, and
a=0.7.

20



Chapter 4

I(X;Y) (nats)

=10, A = 0.25,

o o - Known bound (3.7)

(
Upper bound (4.12)
Lower bound (4.11)

A ~ Upper bound (sub-optimal ¢)

0 10 20 30 40 50 60 70

T

80 920 100

Figure 4.9: Bounds in (4.12), (4.11) with and (3.7) optimal and sub-optimal § =
log(T+ 1) + 10p for the choice: p = 0.5, A\ = 0.25 and a = 0.7.
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Figure 4.10: Bounds in . ptimal § =

ULH for the choice: T=

Figure 4.11: Upper bounds, (4.3) and (4.12), with different « for the choice: p = 0.5
and A = 0.25.
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4.5

I(X;Y) (nats)

and A = 0.25.
—
w0
=
S 4 :
S~—
—
b
S~—
~
210 i
upper bound
1F i
lower bound
0 1 1 1
0 0.1 0.2 0.3 04 05 06 07 08 0.9 1

Figure 4.13: Upper bounds and lower bounds with different « for the choice: T =
1000, i = 0.5, and A = 0.25.
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Chapter 5

Derivations

5.1 Proof of.-Upper-Bound of Capacity

5.1.1 For 0<a<0.5

The derivation of the upper-bounds (4.3) is based on Proposition (2.10) with the
following choice of output distribution:

B = i ) <ly < To
D 000 Sl |
fy(y) = (5.1)
vpe *(=T-9) ity > T4/,

where (3, p, v and d-are free parameters with following constraints:

B >0, (5.2)
5 >0, (5.3)
v >0, (5.4)
0<p<l1. (5.5)
The capacity is upper bounded as follow:
C(T,aT) < B+ [D(fyx (1X)Ifr ()] (5.6)
T+6 _
< —h(N) — Eg- / fyix (ylz) log 1= p) —~¢ |y
0 T<1 - eﬂ(HT))
— Eq- [ /T , fyx (ylz) log (pve_”(y‘T“”)dy] : (5.7)
Since
A Ay — 2 — p)?
fyix(ylz) = mexp <—w> H{y > =}, (5.8)
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Chapter 5 Derivations

plugging fy|x into (5.7) then we can get

C(T,aT) < —h(N) —logp —logv — v(T(1 — @) + 6 + p)
+ Egr[er(X)]

1— 675(1+T)
. logi—i-logT—Hogl +v(T+9)

p
+ (f_ — I/> EQ*[XCl(X) +02(X)]7

T+5 T / -A(t u)2
Cl( 2p2

0 7T

T+5 z [y _m u)2
62( 22

0 27Tt

To further bound ¢ (z) and ¢3(x), welet-w = L (=) =

T+6—x —A(t u)2
t
/ 27rt3

where

A A
T+o—a

/T+6 z\/>e>\2(; )2
el
sl

Since 0 < z < T, so 7(x) must satisfy

0<7(z) <

>I=

andp:%

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Noted that because of (5.18), ¢1(x) and co(x) are both monotonically decreasing in

7(z); furthermore, ¢ (z) and co(x) goes to zero as 7(x) goes to zero. Hence, we can
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5.1 Proof of Upper-Bound of Capacity Chapter 5

the bound of ¢;(z) and ca(x) by using (5.18)

o8 ()

<c(z) <1 (5.19)
0<wp|l-2Q \/> —,ueQ%Q 2 5+\/ﬁ
p\\ p 0
< co() (5.20)
To simplify the notations, we use the shorthand given in (4.5) and (4.6):
0<1L=Q 4+ Q7 <eyx) <1 (5.21)
0<u(l-Q — Q) Se®) S p (5.22)
Next, we choose for the free parameters p and v:
p E1=Eq-[ca(X)] (5.23)
w~+aT— EQ*[XCI(X) - CQ(X)]
From (5.21), we know that
0<1—Eg-[ei(X)] <1 (5.25)
and
al +p —Eg«[Xc1(X) + e2(X)] 20, (5.26)

so that 0 < p <1 and v > 0 as.required. Plugging p and v into the (5.9) then we
get the following bound:

e < 0+ 1 Eelel0D (1 i o)

—2(1 — Eg:[e1(X)]) log (1 — Eg+[c1(X)])
+ (1 — Eg+[c1(X)]) log (u +aT—Eg«[Xe1(X) + CQ(X)])

+ Eo-[e1(X)] <10g T—log § + log <1 - e—ﬁ(l+i)>

+ ZEqu[Xe1(X) + 2(X)] — Eqeler (X)) log Eq[er (X)) (5.27)
then we choose § as:
TEQ-[c1(X)] "
T B K () + e (>:2%)
where £* is non-zero solution to a = F — le;lj;* for 0 < a < 0.5. Furthermore,

—log 8 = —log(aT) — log 8* — log Eg«[c1(X)] + log (Eg+[Xc1(X) + c2(X)]) (5.29)
—log(aT) —log 8* — log Eg-[c1(X)] + log (aT+ ), (5.30)
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and
Egxle1(X)] .
log (1 _ e—ﬂ(l-ﬁ-#)) = log (1 _ 67(T+5) Eg[Xe1 (X)+ea(X)] op ) (5'31)

- af* (T46)
< log <1 —e aT+uaT<QQ+>u(Q+Q+)> (5.32)

Hence, for 0 < a < 0.5

C(TaT) < (V) + (1~ Eg far (X)) (1= it - BB
— 21— Eqrfer (X)) log (1 — Egr[en(X)])

(
+ (1 - Eg+[er(X)]) log (u(QT + Q1) + oM@ .~ Q7))

+ Eq-[er (X)) (w* 168 o — log 8" + log(a Ty

/ aB*(T+9)
+ log | I e/ aT+Hu—aT@==QN—u(@T +QF)

— 2Eq- [c1(X)] logEg+[ex(X)] (5.33)
It can be shown that for ¢ > \/E1+1
z(t) =1—t—2(1 —t)log(1 —¢) —2tlogt (5.34)

is monotonically decreasing:” In our proof, we choose t = Eg- [¢1(X)], as long as

1-Q +Qt > \/El+1’ Eq-[¢1(X)] always larger than \/E1+1' In‘addition, for § > pu

this requirement always be satisfied:
In addition,

(T+0)(1 —Eg-[er (X)])
al(Q™ — Q%) +p(@ +QF)

Hence, we can get the upper bound for 0 < a < 0.5:

0. (5.35)

C(T,al) < —h(N)+Q — Q" —2(Q~ — Q") log (@~ — Q™)
-21-Q™ +Q")log(1 - Q™ +Q7)
+(Q — Q@) max {0,log (W(Q™ + Q") +aT(Q™ — Q1)) }

+ Eg+[c1(X))] (aﬁ* —logaf” +log(aT + p)

_ aB*(T+9)
+ log <1 —e aT+uaT<QQ+>u(Q+Q+>) ) (5.36)

To further bound the capacity, we have to let

T> L ( apre™” > , (5.37)

0] 1— 67,3* min(l,%éo) A
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5.1 Proof of Upper-Bound of Capacity Chapter 5

where §p is the minimun value of §, then it can be shown that

af* (T+6)

af* —log af* + log(aT+ u) + log (1 —e aT+H—aT<Q‘—Q+)—H(Q‘+Q+)> >0. (5.38)

Hence, in (5.36), the Eg+[ci(X)] need to be upper-bounded, finally we get the upper
bound of capacity when 0 < a < 0.5:

C(TMah)<Q —Q"—2(Q” —Q")log(Q™ — Q™)
—2(1-Q +Q")log(1 - Q™ +Q7)
+(Q™ — Q) max {0,log (M(Q™ + Q) +aT(Q™ - Q7)) } + af*
— logaB* +log(aT+ p) + log (1 —e 0T+u—aT(Qa_B—EQT++)5—)u(Q‘+Q+))

1 27re,u3 3 2 2\

5.1.2 For 0.5b<a<1

For proving (4:12); we use different output distribution:

ip if0<y<T+6
fry) =9 A (5.40)
vpe PW=T=0) if g > T4 6,
where p, v and d-are free parameters with following constraints:
0 >0, (5.41)
v >0, (5.42)
0<p<1. (5.43)
From similar derivation in section 5.1.1, choosing
p=1—Eg[c1(X)], (5.44)
1 —Eg+[c1(X
ve o le(X)) . (5.45)

© p+aT—Eg[Xer(X) + (X))
We get:

G < 0+ 1 ol (1t T )

—2(1 — Eg:[c1(X)]) log (1 — Eg+[c1(X)])
+ (1 — Eg+[c1(X)]) log (u +aT - Eg«[ X1 (X) + ca(X)] )
— E@+[c1(X)]log Eg+[e1(X)] + Eq+ [c1(X)] log(T+ 9) (5.46)

It can be shown that for ¢ > (/5 — 1)?

z(t)=1—t—2(1 —t)log(1 —t) —tlogt (5.47)
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Chapter 5 Derivations

is monotonically decreasing. Same as before, we choose ¢t = Eg-[c1(X)], as long
as 1 — Q™ 4+ Q" > 1(V5 — 1), the Eg-[c1(X)] always larger than 1(v/5 —1)%. In
addition, for § > u this requirement always be satisfied.

Hence, we get the upper bound for 0.5 < a < 1:

C(Tah) <Q —Q"—-2(Q” —Q")log(Q~ — Q™)
—(1-Q +Q")log(1-Q~ +Q")

+(Q — Q") max {0, log (M(Q +QT) +aT(Q™ — Q+))} + log(T+0)
1 27T6M 3 2 . 2\
51 3 56 n El(—u> . (5.48)
where
T> 1 — mind (5.49)
1 7@ +Q=> (\/5—1) (5.50)

5.2 Proof of Lower-Bound of Capacity

5.2.1 For 0<a<0.5

One can always find a lower bound on capacity by dropping the maximization and
choosing an arbitrary input distribution fx () in (1.13). ~To get a tight bound,
this choice of fx(z) should yield a mutual information that is reasonably close
to capacity. From [3], we know the lower-bound is tight when the input is an
exponential distribution; however; sincenwe have a peak constraint, we only can
choose the cut exponential as our input distributiony fx (), and fy(n) denotes the
channel distribution,

fx(@) =37 _ﬁe_ﬁ)efﬁ{o <z<T, (5.51)
A\ — )2
fntm) =/ ;n?) exp (W)I{n > 0} (5.52)

where § > 0 is free parameter. Therefore, the channel output fy (y) is

Iy (y) = (fx = fn)(y) (5.53)
= [ v sty - o) (5.54)
)2
= / \/ < o )I{x > 0}
me FE-2)1{0 <y — 2 < Thdz. (5.55)
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5.2 Proof of Lower-Bound of Capacity Chapter 5

To calculate the convolution, we separate it to two cases, y — T< 0 and y — T > 0.
and follow a similar calculation as given in [11].
For the first case, y < T, we have:

A A_B Y (2 _BY_ X
SR e A N
- 0

Let a2 = % and b? = 22, — % We assume b? > 0, so

= 3
o) 2
T> 28 (5.57)
A
Then [;(y) is
g ms _z(i_é)_A
Li(y) —/ T Zen \2020 T 2udy (5.58)
0
y .2
:/ g 2e” T g, (5.59)
0
1
Lett=a"2,
o0 ) b2
L(y) = /1 exp (a t* — t—2)dt (5.60)

from the Abramowitz and Stegun, 7.4.33 [12]:

L(y) = gj {e2ab [1 - erf(b\/ﬂ i \jﬂ)}
+ e~ 2ab [1 - erf(—b\/g] + \%)] } (5.61)

E {0 l)
+ eme (— 2y <A — ’8> + A) } . (5.62)

Y a2 _BY_ X
=gyt P Lt e e
~ -
()
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where
vy 3 ,x<¢,§),¢
Iy(y) = / xTze T\wF T/ 2y (5.64)
-T
yy 3 a? 2
:/ $7§ef77xb dz (565)
y—T
VT b2
=2 / . exp (—a2t2 - t2>dt (5.66)
Vi
3] b2 e8] b2
= /1 exp <a2t2 - t2>dt - / . oexp (a2t2 - t2>dt (5.67)
VY Vy=T

E [l s 5]

+ \2/5 {62‘“’ [1 - erf<b\/FI_+ \/LTH
e[y [ erf( =

e (F—Tﬁ

ot %)

20 Yy

R Vs
LoV Etg <—\/2(y -7 <2—22 - g) + \/yiT> } (5.69)

= N(y) — I2(y) (5.70)

(5.68)

where I»(y) > 0 for all y.
Hence, we have output distribution fy (y):

V 5 T e Tn(y) y<T
friy)=q VAT (5.71)

Vartazene ) y>T

This now yields the following lower bound on capacity:
C 2 max I(X;Y) (5.72)
fx ()

> I(X5Y) |y sy (5.73)
= (b(Y) = B 1) (570
Y)\wa(x) — h(N) (5.75)
= Ey[—log fy (Y)] }XNf(x) — h(N) (5.76)
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5.2 Proof of Lower-Bound of Capacity Chapter 5

=PrlY > TE[-log fy (Y)Y > T+ Pr[Y < TJE[—log fy (Y)|Y < T]
— h(N) (5.77)
= —h(N) + (Pr[Y > T+ Pr[Y <T))

[ A A
. (—log — +1logT—log 8 + log (1 — e’ﬁ) — >
27 7

Dk

+ Py <T] (T [YY <T —E[logI;(Y)]Y < ﬂ)

L Py > ] <$E[Y\Y >T-E [log (L(Y) - fg(Y))’Y > TD (5.78)

> —h(N)+ —log\/;+logT— log 3+ log (1 - e‘ﬁ> - 2
+ ZE[y] «Eog(¥)] (5.79)
A A
> —log %—l—logT—logﬁ—HOg(l—e_ﬁ)—; ?_(aT—F,u)
— Eflog 11 (V)] —h{N) (5.80)

We further bound the log term,

because the function
Aoy < 2u25) \/ﬁ
1— A OV —JE
v Q( % (\/u AT Yy
LoV EEo (ALY <1 - 2“25) + \ﬁ (5.83)
7 p AT (0

is monotonically increasing, so we upper-bounded it by y goes infinity, then (5.83)

is bouned by 1, i.e.

BN ICHEY:
Il(y)gq/%re w7 (5.84)
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which does not depend on y anymore, so we can get rid of the expectation directly.
Finally, we get the lower bound of capacity:

C(T,aT) > log T—log 8 + log (1 - e_ﬂ> - Z + _!i_ (aT+ )+ (/22 (222 - _’i)
~ 5 log 2”§“3 L Ei<—2:\> (5.85)
_logT—logB*—l—log(l—e_B*)—M+B_;(aT—|—u) \/2/\ (222—5_;>
- %log 2”;“3 - ge% Ei<—2:> (5.86)

1

Here, we choose 8 as solution of 3* which-satisfied o = B~ —eﬁ;—* for 0 < a0 < 0.5.

1—e

5.2.2 For (05 <a<l1

For 0.5 < a <1, we choose uniform distribution as our input, distribution:

1
fX(m):T-I{OngT} (5.87)
since E[X] = 0.5, the average delay constraint is always satisfied.
Hence,
fy(y) = (fx xfn)(Y) (5.88)
= / n@) fx(y— o) dz (5.89)
—N(z—p
2 2:c > < - < .
/ 2m3 e g Do Tdz  (5.90)

Similary, we separate it to two cases, y — T<0 and y — T > 0.
For the first case, y — T< 0:
—>\(T ;1.)2
/ 207 (5.91)

27T:L'3

Note that the integration is like the c¢;(x) we use in the upper bound, the only
different thing is the range of the mtegratlon. So, we have:

(f (i- @)
+eug<\[<\f [))] (5.93)

2 Ix(y) (5.94)
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5.3 Asymptotic Capacity of AIGN Channel Chapter 5

For the second case, y — T > 0:

5y 5.95
2 x
T/y T 271'953 - (5.95)
1 Y “AMaz—p)? y=T “Aa—w? u)2
T /0 27Tx3 v de _/ 2713:3 v (5.96)
= I3(y) — (5.97)

where I3 > 0 for all y. Hence, we have output distribution fy (y):

I5(y) y<T
= - 5.98
F Law—@w>y>T o4

This now yields the following lower bound on capacity:

c2 }nf(iX) I(X;Y) (5.99)
> I1(X;Y) \X ~f(d (5.100)
= (h(¥) - (Y|X))\wa(x) (5.101)
=h \wa (z) =) (5.102)

(5.103)

= —Ey|log fy (Y |X~f(:c) = h(IV)
— PrYs TE [ loa (V) > T+ PiY < TIE[Z lomgy (V)[Y < T

— h(N) (5.104)
— RN BHY <TEflog I5(1V)|Y < T]

— Py SAE [log (I5(Y) — fg(Y))‘Y > T} (5.105)
> _h(N) — E[log I3(Y})] (5.106)

We futher bound I3(y):

1 A
o= ({3 D) e ()] o
T p\V (1
1
1 5.108
<1 (5.10)
Equation (5.108) is because (5.107) is monotonically decreasing in y.
Hence, we get the lower bound for 0.5 < a < 1:
1. 2mep? 2 2\
C(T,aT) > log T — glog 7r/c;,u — ge? Ei<_,u) . (5.109)

5.3 Asymptotic Capacity of AIGN Channel

In this section, we try to figure out how the capacity behaves when the drift velocity
v or the peak-delay constraint T tend to infinity.
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5.3.1 When T Large

From chapter 4, we have for 0 < o < 0.5:

1 2mepd 3 2 2\
— =1 ——er Eil —— A1
5 log — 5¢ " 1< > (5.110)

when T goes to infinity, we get

C(T) > log T+ af* — log f* + log (1 _ e—ﬂ*)

1 2mepd 3 2 12X
—ilog D 1(—7> +o(1) (5.111)

and the capacity upper-bounded by

C(Tah) <Q - QT —2(Q < Q*)log(Q - Q")
—2(1 - Q™ +0QF)log(1 —Q==+ Q%)
+ (@ — Qylog (M@ +QF) +aT(Q-< Q)" + st
— log aﬁ* + log(aT+ M) + log (1 2 e_ocT+uaT(QaB(QTJ:L)5)H(Q+Q+)>

1. 2mep’ s 3 2 2\
— =1 — = Fil —— 112
5 og 3 26 0 1< g ) (5 )

T
connlB(firf])) o

As T goes to infinity, the capacity become:

where

C(T,aT) <log T+ ap* —log f* + log (1 — e*ﬂ*> +o(1)

1 2mepu 3 2 2\
— -1 ——er Eil — A1
5 l0g — 5¢ " 1( > (5.115)

Here, (5.115) is because when T goes to infinity, @~ and QT will go to zero.
From (5.111) and (5.115). Note that the upper bound and lower bound coincide,
which gives us

. _ _ * * _—B*
%m{C(T,aI) logT}—aﬁ log 8™ + log (1 e )
3
1. 2mep® 3 %Ei< 2)\)

. (5.116)

—=lo — —eH
2

2 %% )
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5.3 Asymptotic Capacity of AIGN Channel Chapter 5

For 0.5 < a < 1:

1. 2mep® 3 21 22
C(T,aT) > logT— §log w)e\,u - QeQH Ei(_,u> (5.117)
when T goes to infinity, we get the same equation:
1. 2meu? 2 2)
C(T,aT) > log T~ ; log 77;“ - gezf Ei<—ﬂ) (5.118)

and the upper bound, from (4.12):

C(Tal) <@ —Q"-2(Q” —Q7)log (@~ — Q)
1-Q  +Q")lgd =@ H@Q1)
(

+(Q™ — Q%) max {0,log (M Q=+ Q) +aT(Q™ — Q7)) } +1og(T+ )
1. 2mep? "3 22 _ [ 2\
- 5 log ”i“ = e E1<—M> . (5.119)

where @~ and @7 are same-as(5.113) and«(5.114).
We choose § = log T, then as T goes to-infinity, Q@ and Q" will go to zero. Therefore,
we get asymptotically upper bound:

3
zﬂ)@\“ 2 <—2A> o) (5.120)

1
C(TaT) <logT-— §log

We can see (5.118) and (5.120)-are coincide as T goes to infinity. Hence we get the
asympototic capacity when T goes to infinity for 0:5 < o < 1:

_PTIOI; {C(T, o) — 1ogT} = —%log 27?;”3 Lo Ei(—ij) (5.121)
5.3.2 wv Large
We rewrite the bound (4.3) by using v = i, for 0 < a < 0.5:
C(v) > log T— log 8" + log (1 - e—ﬂ*) ot % <aT+ i) + \/2)\ (A;’Q - ﬁT)
— % g % - 262’\” Ei(—2\v) (5.122)
> log T—log 8* + log (1 — e_ﬁ*) — v+ QT* <aT+ 11)) + \/2)\ (1);)\ — ﬂ_;)
+ glog’u + %log 277/\re + Zlog <1 + 211\) (5.123)

where (5.123) is simply plugging in the lower bound of Ei(-) from Proposition 2.14.
Its asymptotic lower bound is:

. 3 1 A
> log T — log B* —e P - —log — . (5.
C(v) > log og B* + log (1 e ) +af* + 5 logv + ) log Sre +o(1). (5.124)
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Similary, we rewrite (4.12):
C) Q™ -Q"-2(Q" —Q")log(Q™ - Q)
—2(1-Q" +QN)log(1 - Q™ +Q7)
+(Q~ — Q") max {0, log <11}(Q +QT)+aT(Q™ — Q*)) } + af*

1 _— af™(T+5)
— logaf* +log(aT+—)+log|1—e aT+i-aT(@—-QH)-2(@—+Qh)
v

121 3 gy
~ 3 log w8 3¢ Ei(—2\v) (5.125)
where
1
Q™20 <\/)\v <\/5 - vé)) (5.126)

QLo <x/ﬁ (x/EJr \/%)) (5.127)

We choose § = %}, then when v goes to infinity, it is obvious that Q= will go to
zero. For Q+:

pea\ye) (m <m+ /%)) < %e—’?(x/@r %) (5.128)

which will also goes to zero‘as v goes to infinity. Therefore, we get asymptotically
upper bound:

A 3 1 A
C(v) <logT—log * + log (1 —eF ) +af* + B logv + ilog Ime +o(1). (5.129)
i

We can see (5.124) and (5.129) are coincide as v goes to infinity. Hence we get the
asympototic capacity for v goes to infinity:

* 1
})lTIOIé {C(v) — glogv} =log T—log 5* + log (1 —e P ) +ap* + §log %’7‘(’6 (5.130)
For 0.5 <a<1:

A hw 22 Ei(—200) (5.131)

1 A 3 1
> e “log 24+ 2 — ,
> log T+ 5 logwv + 5 log 5o + 4log (1 + 2v)\> (5.132)

where (5.132) is simply plugging in the lower bound of Ei(-) from Proposition 2.14.
Its asymptotic lower bound is:

3 1 A
> log T+ — + =~ log — + )
C(v) > log 2 log v 2 log e o(1) (5.133)

38



5.3 Asymptotic Capacity of AIGN Channel Chapter 5

and the upper bound, from (4.12):

C(MaN<Q™ -Q"—2(Q” —Q")log (@™ - Q)
—(1-Q +Q")log(1-Q™ + Q")
+(Q -~ Q"maxfolog (1Q+Q7) +aTQ - @) | +log(T+0)

1 2me 3 20V 1
2log %8 2¢ Ei(—2\v). (5.134)

where Q@ and Q7 are defined by (5.126) and (5.127).

Similary, we choose 6 = ﬁ, as v goes to infinity, @~ and QT will go to zero.

Therefore, we get asymptotical : nd for 0.5 < o < 1:

(5.135)

We can see (5.133) ¢ \\qj- nity. Hence we get the
asympototic ca

(5.136)
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Chapter 6

Discussion and Conclusion

This thesis provide new upper bound and lower bound on. the capacity of the AIGN
channel in the situation of both a peak-delay constraint and-average delay constraint.

We have derived the upper-bound and lower bound of capacity, and they are very
tight when either T'or v goes-to infinity.  We alsovhave found that as « increased,
our upper bound become the-difference between known upperbound is increased.
For the first point, it is because for fixed peak delay constraint, the average delay
constraint become weaker and weaker as o growing;however, as « increased, the peak
constraint become stronger, and that’sthe main reason for the second phenomenon.
Moreover, when the fluid velocity, v, is extremely small, from the Fig. 4.6 and
Fig. 4.8, the noise caused by Brownian motion actually helps the transmission.

With the help_of [11], we were able to compute the exact output distribution
of an exponential input.. This lower bound (4.1) was much tighter than the known
bound with respect to both'w and.T. It turned out that together with the known
upper bound, this lower bound allowed us to derive the asymptotic capacity at high
T and high v.

For future research, we propose the following problems related to the additive

inverse Gaussian noise channel:
e Derivation of the channel capacity when T and v is small.

e Proof for a > 0.5, the capacity dose not depend on the a.
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