# Very Low V<sub>t</sub> [Ir-Hf]/HfLaO CMOS Using Novel Self-Aligned Low Temperature Shallow Junctions

C. F. Cheng<sup>a</sup>, C. H. Wu<sup>b</sup>, N. C. Su<sup>b</sup>, S. J. Wang<sup>b</sup>, S. P. McAlister<sup>c</sup> and Albert Chin<sup>a</sup>

<sup>a</sup> Dept. of EE., National Chiao-Tung Univ., Hsinchu, Taiwan, ROC <u>albert\_achin@hotmail.com</u> <sup>b</sup> Inst. of Microelectronics, Dept. of Electronics Eng., National Cheng Kung Univ., Tainan, Taiwan ROC <sup>c</sup> National Research Council of Canada, Ottawa, Canada

#### Abstract

We report very low  $V_t$  [Ir-Hf]/HfLaO CMOS using novel self-aligned low-temperature ultra shallow junctions with gate-first process compatible with current VLSI. At 1.2 nm EOT, good  $\phi_{\text{m-eff}}$  of 5.3 and 4.1 eV, low  $V_t$  of +0.05 and 0.03 V, high mobility of 90 and 243 cm<sup>2</sup>/Vs, and small 85°C BTI <32 mV (10 MV/cm, 1 hr) are measured for *p*- and *n*-MOS.

# Undesired high Vt & EOT scaling challenges

The major challenge for metal-gate/high-κ CMOSFET is to lower the undesired high  $V_t$ , while the detailed mechanisms are still not clear yet [1]-[6]. One method to address this issue is to compensate the high  $V_t$  by using proper dual metal-gates, which have an effective work-function ( $\phi_{m-eff}$ ) lower than the target 4.1 eV for n-MOS, and higher than the needed 5.2 eV for p-MOS. Although Lanthanide-silicide FUSI (Yb<sub>x</sub>Si) [2] and TaC gates work well for n-MOS, the choice of an appropriate metal gate for *p*-MOS is especially difficult. This is because only Pt and Ir in the Periodic Table have a required work-function greater than the target 5.2 eV [2], but Pt is also difficult to be etched by RIE. Previously, we showed that Ir<sub>3</sub>Si/HfLaON *p*-MOS [1] has the needed high  $\phi_{m-eff}$  of 5.08 eV and low  $V_t$  of -0.1 V at 1.6 nm equivalent-oxide-thickness (EOT), even after ion implant activation of a 1000°C RTA. Unfortunately, further scaling EOT to 1.2 nm, reduces flat-band voltage  $(V_{fb})$  of these devices to produce an undesirable high  $V_t$ . Since this approach was not successful, a fundamental understanding of the high  $V_t$  and  $V_{fb}$  roll-off is necessary, when EOT is scaled.

In this paper, we report a new method to address these basic challenges. At 1.2 nm EOT, the self-aligned and gate-first [Ir-Hf]/HfLaO p- and n-MOS showed proper  $\phi_{\text{m-eff}}$  of 5.3 and 4.1 eV, low  $V_t$  of +0.05 and 0.03 V, together with high mobility of 90 and 243 cm<sup>2</sup>/Vs and good 85°C BTI reliability. This good device performance was achieved by using a novel low-temperature (<900°C) ultra-shallow junction (USJ) process, which lowers the interface reaction exponentially compared with a conventional 1000°C RTA needed for dopant activation. Besides, the measured USJ depth (X<sub>i</sub>) was only 9.5~20 nm for  $p^+/n$  case. The X<sub>i</sub> for  $n^+/p$ was 23 $\sim$ 35 nm, better than that for a 1 keV As<sup>+</sup> implant [7] at the same sheet resistance  $(R_s)$ . This is due to a reduction of defect-assisted diffusion arising from ion implant damage. These results compare well with previous work [1]-[6], and display a lower  $V_t$  and smaller EOT, with a self-aligned USJ and gate-first process that is compatible with VLSI.

#### **Experimental Details**

The Metal-gate/HfLaO *C*MOSFET process included depositing HfLaO using PVD [1], a post-deposition anneal, and TaN/Ir and Ir/TaN/Hf deposition. After gate patterning, self-aligned 5 nm Ga or 10-nm-Ni/5-nm-Ga (with top 100 nm SiO<sub>2</sub> capping layer) was deposited for *p*-MOS, followed by  $550 \sim 900^{\circ}$ C RTA solid-phase diffusion (SPD). For *n*-MOS, NiAl-silicide Schottky contact for sub-45-nm node was made [8], or self-aligned H<sub>3</sub>PO<sub>4</sub> was spun deposited, transformed to P<sub>2</sub>O<sub>5</sub> at 200°C and SPD at 850~900°C RTA. Such wet H<sub>3</sub>PO<sub>4</sub> spray and doping processes are used for commercial Si solar cell manufacture. Finally, source-drain metal contacts were added. For comparison, [Ir<sub>3</sub>Si-Hf<sub>x</sub>Si]/HfLaON CMOS using B<sup>+</sup> and As<sup>+</sup> implant and 1000°C RTA were also fabricated [1].

## **Results and Discussion**

# A. $V_{fb}$ roll-off at scaled EOT:

Fig. 1 shows the *C-V* characteristics of HfLaON *C*MOS after a 1000°C RTA, where EOT of 1.6 and 1.2 nm are determined using a quantum-mechanical *C-V* simulation. A low  $V_{fb}$  is obtained for *n*-MOS using an Hf<sub>x</sub>Si gate at 1.2nm EOT; however, the  $V_{fb}$  is reduced for the Ir<sub>3</sub>Si/HfLaON *p*-MOS. Since the same Ir<sub>3</sub>Si metal-gate was used for the HfLaON, the unwanted lower  $V_{fb}$  at thinner EOT may be attributed to the higher oxide charge density as described by the  $V_{fb}$  equation in Fig. 2. These charges arise from inevitable charged vacancy and dangling bonds in non-stoichiometric oxides (*x*<2) from interface reaction and inter-diffusion:

$$Si + HfO_2 \xrightarrow{} SiO_x + HfO_{2-x}$$
 (x < 2) (1)

Such reactions are possible at high temperature owing to the similar bond enthalpies of 800 and 802 kJ/mol for respective  $SiO_2$  and  $HfO_2$  [2]. Also at thinner EOT, only thin interfacial  $SiO_2$  is permissible to meet the required high  $\kappa$  value for low leakage current. Since the interfacial chemical reactions follow Arrhenius temperature dependence, we aimed to develop a low temperature process to reduce such effects.

## B. Low temperature shallow junctions:

Figs. 3-6 show the  $R_s$ , J-V and SIMS of  $p^+/n$  junctions for different cases. Adding Ni to Ga SPD improves the  $R_s$ through Ni-Ga co-diffusion and silicide formation while maintaining good  $p^+/n$  characteristics with an ideality factor (n) of 1.36. A USJ  $X_j$  of 9.5 and 20 nm was measured by SIMS for the Ga and Ni/Ga cases. Figs. 7-10 show the  $R_{ss}$  J-Vand SIMS of  $n^+/p$  junctions. Although the NiAl-silicide Schottky contact has an n of 1.9, the self-aligned H<sub>3</sub>PO<sub>4</sub> spin process improves *n* to 1.4, gives a 10X smaller leakage and a low  $R_s$ . A USJ  $X_j$  of 23 or 35 nm was measured by SIMS after 850 or 875°C RTA – this is better than that for a 1 keV As<sup>+</sup> implant and spike RTA at the same  $R_s$  [7]. This is due to the free from defect-assisted diffusion caused by As<sup>+</sup> implant damage. This ≤900°C process temperature is important for HfLaO in preserving its amorphous structure at 900°C (as shown in Fig. 11) without using the nitrided HfLaON, which reduces the possible pinning at metal-gate/high- $\kappa$  interface. The amorphous structure of HfLaO at 900°C is better than crystallized HfO<sub>2</sub> for achieving good BTI, by avoiding charge trapping at poly-HfO<sub>2</sub> grain boundaries [1]-[3].

#### C. Device characteristics:

Figs. 12-15 are the *C-V* and *J-V* characteristics of TaN/Ir and Ir/TaN/Hf on HfLaO devices. At 1.2 nm EOT, the gate leakage current was only  $2.4 \times 10^{-4}$  and  $1.8 \times 10^{-4}$  A/cm<sup>2</sup> at  $\pm 1$ V. Fig. 16 shows the *J-EOT* plot, where much better leakage current than SiO<sub>2</sub> is obtained at 1.2 nm EOT. Reducing the RTA temperature to <900°C is vital for choosing proper  $\phi_{m-eff}$ pure metal gate electrode, since Ir/HfLaO failed after 1000°C RTA due to Ir diffusion through the high- $\kappa$  dielectric [2].

Note that the  $V_{fb}$  of TaN/Ir/HfLaO at 850°C is 0.7 V larger than TaN/Ir<sub>3</sub>Si/HfLaON at 1000°C in Fig. 1. To understand this large improvement, we have plotted the  $V_{fb}$ -EOT in Fig. 17 and proper  $\phi_{\text{m-eff}}$  of 5.3 and 4.1 eV are obtained for *p*- and *n*-MOS. The  $\phi_{m-eff}$  at top Ir interface is only 0.3 eV higher than Ir<sub>3</sub>Si (5.0 eV) and insufficient to explain the large 0.7 V  $V_{tb}$  roll-off. Since similar high- $\kappa$  was used, the undesired  $V_{tb}$ lowering is attributed to the charges in non-stoichiometric oxides in eq. (1) – these being created during the higher 1000°C RTA for the Ir<sub>3</sub>Si/HfLaON case. Such oxide vacancies can be predicted theoretically, and can create lower energy traps within the  $HfO_2$  [9]. This may be one of the reasons for pinning the  $\phi_{m-eff}$  to Si midgap via lower energy barrier trap-assisted conduction. This interface reaction reduces exponentially when reducing the process temperature to <900°C for the Ir/HfLaO devices.

The  $I_d$ - $V_d$ ,  $I_d$ - $V_g$  and  $\mu_{eff}$ -E characteristics of [Ir-Hf]/HfLaO p- and n- MOSFETs are shown in Figs. 18-20, respectively. Good transistor characteristics, low  $V_t$  of +0.05 and 0.03 V and high mobility of 90 and 243 cm<sup>2</sup>/Vs are measured. The improved mobility, compared with 1000°C RTA HfLaON CMOS, is consistent with lower charged vacancies associated with interfacial reactions in eq. (1). The gate reliability is shown in the BTI data of Fig. 21, where a small  $\Delta V_t < 32$  mV occurs for CMOS stressed at 10 MV/cm and 85°C for 1 hr. Such good BTI reliability is due to the amorphous structure of HfLaO under ≤900°C process temperature, which prevents BTI degradation by carrier-trapping in poly grain boundaries of HfO<sub>2</sub> case. Table 1 compares various metal-gate/high-k CMOS data [1]-[6]. The merits of self-aligned [Ir-Hf]/HfLaO *p*-and *n*-MOS with SPD USJ are proper  $\phi_{m-eff}$  of 5.3 and 4.1 eV, low  $V_t$  of +0.05 and 0.03 V, high mobility of 90 and 243  $cm^2/Vs$ , and small BTI <32 mV (85°C, 10 MV/cm & 1 hr).

Our results are comparable with or better than the best reported data for metal-gate/high- $\kappa$  CMOS [1]-[6], with a small 1.2 nm EOT, and using a self-aligned and gate-first process compatible with VLSI line.

## Conclusions

We have shown that the interfacial reactions are key factors for  $V_{fb}$  roll-off that then yields an undesired high  $V_t$  for highly-scaled EOT. Our ultra-shallow junction process, performed at  $\leq 900^{\circ}$ C, produced appropriate  $\phi_{m,eff}$  values, small leakage and low threshold voltages for [Ir-Hf]/HfLaO CMOS devices.

## Acknowledgments

The authors at NCTU would like to thank Dept. Head R. N. Kwo of Physics Dept., Prof. M. H. Hong at Materials Sci. & Eng. Dept, and Director H. L. Hwang at Electrical Eng. Dept., National Tsing Hua University for their help.

## References

- [1] C. H. Wu, B. F. Hung, Albert Chin, S. J. Wang, W. J. Chen, X. P. Wang, M. –F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, "High temperature stable [Ir<sub>3</sub>Si-TaN]/HfLaON CMOS with large workfunction difference," in *IEDM Tech. Dig.*, 2006, pp. 617-620.
- [2] D. S. Yu, A. Chin, C. H. Wu, M.-F. Li, C. Zhu, S. J. Wang, W. J. Yoo, B. F. Hung and S. P. McAlister, "Lanthanide and Ir-based dual metal-gate/HfAION CMOS with large work-function difference," in *IEDM Tech. Dig.*, 2005, pp. 649-652.
- [3] X. Yu, C. Zu, X. P. Wang, M. -F. Li, A. Chin, A. Y. Du, W. D. Wang, and D. L. Kwong, "High mobility and excellent electrical stability of MOSFETs using a novel HfTaO gate dielectric," in *VLSI Symp. Tech. Dig.*, 2004, pp. 110-111.
- [4] T. Hoffmann, A. Veloso, A. Lauwers, H. Yu, H. Tigelaar, M. Van Dal, T. Chiarella, C. Kerner, T. Kauerauf, A. Shickova, R. Mitsuhashi, I. Satoru, M. Niwa, A. Rothschild, B. Froment, J. Ramos, A. Nackaerts, M. Rosmeulen, S. Brus, C. Vrancken, P. P. Absil, M. Jurczak, S. Biesemans, and J. A. Kittl, "Ni-based FUSI gates: CMOS Integration for 45nm node and beyond," in *IEDM Tech. Dig.*, 2006, pp. 269-272.
- [5] H. Y. Yu, R. Singanamalla, K. Opsomer, E. Augendre, E. Simoen, J. A. Kittl, S. Kubicek, S. Severi, X. P. Shi, S. Brus, C. Zhao, J. F. de Marneffe, S. Locorotondo, D. Shamiryan, M. Van Dal, A. Veloso, A. Lauwers, M. Niwa, K. Maex, K. D. Meyer, P. Absil, M. Jurczak, and S. Biesemans, "Demonstration of Ni fully germanosilicide as a pFET gate electrode candidate on HfSiON," in *IEDM Tech. Dig.*, 2005, pp. 653-656.
- [6] K. Takahashi, K. Manabe, T. Ikarashi, N. Ikarashi, T. Hase, T. Yoshihara, H. Watanabe, T. Tatsumi, and Y. Mochizuki, "Dual workfunction Ni-silicide/HfSiON gate stacks by phase-controlled full-silicidation (PC-FUSI) technique for 45nm-node LSTP and LOP devices," in *IEDM Tech. Dig.*, 2004, pp. 91-94.
- [7] R. Kasnavi, P. B. Griffin, and J. D. Plummer, "Ultra low energy arsenic implant limits on sheet resistance and junction depth," in *Symp. On VLSI Tech. Dig.*, 2000, pp. 112-113.
- [8] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, H. S. Wong, P. C. Lim, D. M. Y. Lai, G. Q. Lo, C. H. Tung, G. Samudra, D. Z. Chi, and Y. C, Yeo, "Novel nickel-alloy silicides for source/drain contact resistance reduction in n-channel multiple-gate transistors with sub-35nm gate length," in *IEDM Tech. Dig.*, 2006, pp. 851-854.
- [9] K. Xiong, J. Robertson, M. C Gibson and S. J. Clark, "Defect energy levels in HfO<sub>2</sub> high-dielectric-constant gate oxide," *Appl. Phy. Lett.*, vol. 87, no. 18, p. 183505, 2005.



Fig. 1. *C-V* of metal-gate/HfLaON CMOS after 1000°C RTA. The  $|V_{fb}|$  roll-off with EOT scaling indicates the importance of the interface.



Fig. 4. J-V of  $p^+/n$  junction formed by SiO<sub>2</sub>/Ga SPD at 900°C RTA, and a control B<sup>+</sup> implantation at a 1000°C RTA.



Fig. 7. Variation  $R_s$  of NiAl (insert), H<sub>3</sub>PO<sub>4</sub> spin SPD and As+ implant with RTA condition. Data for the 1 keV As<sup>+</sup> implant and  $1020^{\circ}$ C RTA are from [7].



Fig. 10. Phosphorus SIMS profile for H<sub>3</sub>PO<sub>4</sub> spin SPD, with  $X_j$  of 23 and 35 nm, for 850 and 875°C RTAs. The  $X_j$  data from [7] are included for comparison.



Fig. 2. The  $|V_t|$  increase can arise from top and bottom interface. The charged oxide vacancies in non-stoichiometric SiOx, and HfO<sub>2-x</sub> can modify  $V_{fb}$  and increase  $|V_t|$ .



Fig. 5. J-V of  $p^+/n$  junction for SiO<sub>2</sub>/Ni/Ga SPD at 550~850°C RTA. Leakage and nfactors were comparable with the Ga 900°C SPD but formed at a lower temperature.



Fig. 8. *J-V* of  $n^+/p$  junction with NiAl Schottky contact. Although  $R_s < 10 \Omega/sq$ , the leakage and n are poor.



Fig. 3. R<sub>s</sub> of Ga and Ni/Ga, formed by Solid Phase Diffusion (SPD), as a function of RTA temperature.



Fig. 6. SIMS profile of Ga and Ni/Gasilicide, with ultra shallow junctions of 9.5 or 20 nm at SPD of 900°C or 700°C RTA. The  $X_j$  is defined at 10<sup>18</sup> cm<sup>-3</sup> in [7].



Fig. 9. J-V of  $n^+/p$  junctions made by H<sub>3</sub>PO<sub>4</sub> spin SPD at 850 and 875°C RTA. The leakage and n are similar to those for the As<sup>+</sup> implant and 1000°C RTA case.



30 20 (degree) Fig. 11. Grazing incident XRD spectra of HfLaO after 600°C and 900°C 30 sec RTA. Amorphous structure w/o crystallization is still preserved and is important for BTI.

25

HfO 600°C

HfLaO 900°C HfLaO 600°C

35

Intensity (counts

20

Fig. 12. C-V of HfLaO p-MOS with TaN/Ir and TaN gates, after 850 and 900°C RTAs.  $V_{fb}$  is 0.7 V higher than for Ir<sub>3</sub>Si/HfLaON after a 1000°C RTA (Fig. 1).



Fig. 13. *J-V* of HfLaO *p*-MOS with TaN/Ir gate after 850°C or 1000°C RTA. Low leakage current occurs for a 850°C RTA but fails at 1000°C because of metal diffusion.



Fig. 16. Gate leakage current density for HfLaO at 1.2 nm EOT, compared with  $SiO_2$  and HfLaON [1].



Fig. 19.  $I_d - V_g$  of self-aligned & gate-first *p*and *n*-MOSFETs, compared with dual gated [Ir<sub>3</sub>Si-Hf<sub>x</sub>Si]/HfLaON CMOS (1000°C RTA).



Fig. 14. *C-V* of HfLaO *n*-MOS with Ir/TaN/Hf and TaN gates after 875 and 900 °C RTAs. Data from a quantum-mechanical C-V simulation are included.



Fig. 17.  $V_{fb}$ -EOT for Ir, TaN and Hf gates. Effective work-functions are 5.3, 4.3 and 4.1 eV.



Fig. 15. J-V of HfLaO *n*-MOS with Ir/TaN/Hf and TaN gates, after 875 and 900°C RTAs.



Fig. 18.  $I_d V_d$  of self-aligned and gate-first *p*- and *n*-MOSFETs.

nMOSFET, 10 MV/cm and 85°C

pMOSFET, 10 MV/cm and 85°C

50 mV



Fig. 20. Hole and electron mobility of selfaligned gate-first CMOSFETs compared with  $[Ir_3Si-Hf_xSi]/HfLaON CMOS (1000°C RTA).$ 

Fig. 21. The  $\Delta V_i$  shift for dual-gated HfLaO CMOSFETs stressed at 85°C and 10 MV/cm for 1 hour.

10<sup>2</sup> Time (sec) 10

10<sup>1</sup>

| High-ĸ           | Metal-Gate, <i>p/n</i>                   | EOT (nm) | <i>¢<sub>m-eff</sub></i> (eV), p/n | V <sub>t</sub> (V), p/n | Process Temp.     | Mobility (cm²/Vs), p/n |
|------------------|------------------------------------------|----------|------------------------------------|-------------------------|-------------------|------------------------|
| This work HfLaO  | Ir / Hf                                  | 1.2      | 5.3 / 4.1                          | +0.05 / 0.03            | <900°C SPD        | 90 / 243               |
| This work HfLaON | Ir <sub>3</sub> Si / Hf <sub>x</sub> Si  | 1.2      | 5.0 / 4.3                          | -0.25 / 0.19            | 1000°C            | 86 / 214               |
| HfLaON [1]       | Ir <sub>3</sub> Si / TaN                 | 1.6      | 5.08 / 4.28                        | -0.1 / 0.18             | 1000°C            | 84 / 217               |
| HfAlON [2]       | Ir <sub>x</sub> Si / Yb <sub>x</sub> Si  | 1.7      | 4.9 / 4.15                         | -0.29 / 0.1             | 950°C/Low T. FUSI | 80 / 180               |
| HfTaO [3]        | - / TaN                                  | 1.6      | -/ 4.6                             | - / -                   | 1000°C            | - / 354                |
| HfSiON [4]       | Ni <sub>31</sub> Si <sub>12</sub> / NiSi | 1.5      | ~4.8 / ~4.5                        | -0.4 / 0.5              | Low Temp. FUSI    | ~70 / ~240             |
| HfSiON [5]       | NiSiGe / -                               | 1.3      | - / -                              | -0.5 / -                | Low Temp. FUSI    | 70 / -                 |
| HfSiON [6]       | Ni <sub>3</sub> Si / NiSi <sub>2</sub>   | 1.7      | 4.8 / 4.4                          | -0.69 / 0.47            | Low Temp. FUSI    | 65 / 230               |

Table 1. Comparison of device integrity data for various metal-gate/high-κ n- and p-MOSFETs.

336

10<sup>4</sup>