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Abstract Experimental Details

We report very low V, [Ir-Hfl/HfLaO CMOS using novel The Metal-gate/HfLaO CMOSFET process included
self-aligned low-temperature ultra shallow junctions with depositing HfLaO using PVD [1], a post-deposition anneal,
gate-first process compatible with current VLSI. At 1.2 nm and TaN/Ir and kr/TaN/Hf deposition. After gate patterning,
EOT, good Om-eff of 5.3 and 4.1 eV, low V, of +0.05 and 0.03 self-aligned 5 nm Ga or 10-nm-Ni/5-nm-Ga (with top 100 nm
V, high mobility of 90 and 243 cm2/Vs, and small 850C BTI SiO2 capping layer) was deposited for p-MOS, followed by
<32 mV (10 MV/cm, 1 hr) are measured forp- and n-MOS. 550-9000C RTA solid-phase diffusion (SPD). For n-MOS,

NiAl-silicide Schottky contact for sub-45-nm node was made
Undesired high Vt & EOT scaling challenges [8], or self-aligned H3PO4 was spun deposited, transformed to

P205 at 2000C and SPD at 850-9000C RTA. Such wet H3PO4
The major challenge for metal-gate/high-K CMOSFETis spray and doping processes are used for commercial Si solar

to lower the undesired highf/- , while the detailed mechanisms cell manufacture. Finally, source-drain metal contacts were
are still not clear yet [1]-[6]. One method to address this issue added. For comparison, [Ir3Si-HfxSi]/HfLaON CMOS using
iS to compensate the high f/t by using proper dual metal-gates, B+ and As+ implant and 1 000°C RTA were also fabricated [ 1]
which have an effective work-function (Om-eff) lower than the
target 4.1 eV for n-MOS, and higher than the needed 5.2 eV Results and Discussion
for p-MOS. Although Lanthanide-silicide FUSI (Yb,Si) [2]
and TaC gates work well for n-MOS, the choice of an A. fJbroll-offat scaledEOT
appropriate metal gate for p-MOS is especially difficult. This Fig. 1 shows the C-V characteristics of HfLaON CMOS
is because only Pt and Ir in the Periodic Table have a required after a 1000°C RTA, where EOT of 1.6 and 1.2 nm are
work-function greater than the target 5.2 eV [2], but Pt is also determined using a quantum-mechanical C-V simulation. A
difficult to be etched by RIE. Previously, we showed that low Vf/f is obtained for n-MOS using an HfXSi gate at 1 .2nm
Ir3Si/HfLaON p-MOS [1] has the needed high 0)m-eff of 5.08 EOT; however, the Vf/ is reduced for the Ir3Si/HfLaON
eV and low V, of -0.1 V at 1.6 nm equivalent-oxide-thickness p-MOS. Since the same Jr3Si metal-gate was used for the
(EOT), even after ion implant activation of a 1000°C RTA. HfLaON, the unwanted lower Vfb at thinner EOT may be
Unfortunately, further scaling EOT to 1.2 nm, reduces attributed to the higher oxide charge density as described by
flat-band voltage (Vfl) of these devices to produce an the Vfb equation in Fig. 2. These charges arise from inevitable
undesirable high V,. Since this approach was not successful, a charged vacancy and dangling bonds in non-stoichiometric
fundamental understanding of the high V, and Vfb roll-off is oxides (x<2) from interface reaction and inter-diffusion:
necessary, when EOT is scaled. S' + HfO SO + HfO2 (x < 2) (1)

In this paper, we report a new method to address these 2 A xS-O
basic challenges. At 1.2 nm EOT, the self-aligned and Such reactions are possible at high temperature owing to the
gate-first [Ir-Hfl/HfLaO p- and n-MOS showed proper similar bond enthalpies of 800 and 802 kJ/mol for respective
¢m-eff of 5.3 and 4.1 eV, low V, of +0.05 and 0.03 V, together SiO2 and HfO2 [2]. Also at thinner EOT, only thin interfacial
with high mobility of 90 and 243 cm2/Vs and good 850C BTI SiO2 is permissible to meet the required high K value for low
reliability. This good device performance was achieved by leakage current. Since the interfacial chemical reactions
using a novel low-temperature (<9000C) ultra-shallow follow Arrhenius temperature dependence, we aimed to
junction (USJ) process, which lowers the interface reaction develop a low temperature process to reduce such effects.
exponentially compared with a conventional 1000°C RTA B. Low temperature shallowjunctions.
needed for dopant activation. Besides, the measured USJ . +

depth (Xj) was only 9.5-20 nm for p /n case. The Xj for n ipg. 36soth R iJ
o Ga SIM ifpn ons foR+.J ~different cases. Adding Ni to Ga SPD improves the Rs

was 23>35 nm, better than that for a 1 keV As+ implant [7] at through Ni-Ga co-diffusion and silicide formation while
the same sheet resistance (Rs). This is due to a reduction of m g p c

and gate-firstprocesshatiscmpatib i . Smai.tatky c oodhas/n characternst1cswtth an Hdeality factor
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process improves n to 1.4, gives a I OX smaller leakage and a Our results are comparable with or better than the best
low Rs. A USJXj of 23 or 35 nm was measured by SIMS after reported data for metal-gate/high-K CMOS [1]-[6], with a
850 or 8750C RTA - this is better than that for a 1 keV As+ small 1.2 nm EOT, and using a self-aligned and gate-first
implant and spike RTA at the same Rs [7]. This is due to the process compatible with VLSI line.
free from defect-assisted diffusion caused by As+ implant
damage. This <9000C process temperature is important for Conclusions
HfLaO in preserving its amorphous structure at 9000C (as We have shown that the interfacial reactions are key
shown in Fig. 11) without using the nitrided HfLaON, which factors for r
reduces the possible pinning at metal-gate/high-K interface. highy-sale t.aOur u ltshal unction p oc
The amorphous structure of HfLaO at 9000C is better than
crystallized HfO2 for achieving good BTI, by avoiding charge performed at <9000C, produced appropriate Om,eff values,
trapping at poly-HfO2grain boundaries [I]-[3]. small leakage and low threshold voltages for [Ir-Hfl/HfLaO

CMOS devices.
C. Device characteristics.
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