
國國國立立立交交交通通通大大大學學學

電電電信信信工工工程程程研研研究究究所所所

博博博士士士論論論文文文

二二二元元元無無無記記記憶憶憶通通通道道道的的的最最最佳佳佳極極極小小小區區區塊塊塊碼碼碼設設設計計計

Optimal Ultra-Small Block-Codes

for Binary Input

Discrete Memoryless Channels

研究生：林玄寅

指導教授：Stefan M. Moser博士

陳伯寧博士

中華民國一百零二年六月

二二二元元元無無無記記記憶憶憶通通通道道道的的的最最最佳佳佳極極極小小小區區區塊塊塊碼碼碼設設設計計計
Optimal Ultra-Small Block-Codes

for Binary Input Discrete Memoryless Channels

國國國立立立交交交通通通大大大學學學

電電電信信信工工工程程程研研研究究究所所所

博博博士士士論論論文文文

A Dissertation
Submitted to Institute of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in
Communication Engineering

Hsinchu, Taiwan

研究生：林玄寅

指導教授：莫詩台方博士

陳伯寧博士

Student: Hsuan-Yin Lin

Advisors: Dr. Stefan M. Moser

Dr. Po-Ning Chen

2013年六月

Information Theory

Laboratory
Insititute of Communication Engineering

National Chiao Tung University

Doctor Project

Optimal Ultra-Small Block-Codes

for Binary Input

Discrete Memoryless Channels

Hsuan-Yin Lin

Advisors: Prof. Dr. Stefan M. Moser National Chiao Tung University, Taiwan
Prof. Dr. Po-Ning Chen National Chiao Tung University, Taiwan

Graduation Prof. Dr. Ying Li Yuan Ze University, Taiwan
Committee: Prof. Dr. Mao-Chao Lin National Taiwan University, Taiwan

Prof. Dr. Chung-Chin Lu National Tsing Hua University, Taiwan
Prof. Dr. Hsiao-Feng (Francis) Lu National Chiao Tung University, Taiwan
Prof. Dr. Yu Ted Su National Chiao Tung University, Taiwan
Prof. Guu-Chang Yang National Chung Hsing University, Taiwan

Abstract

Optimal Ultra-Small Block-Codes

for Binary Input Discrete Memoryless Channels

Student: Hsuan-Yin Lin Advisors: Dr. Stefan M. Moser

Dr. Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Optimal block-codes with a very small number of codewords are investigated for the

binary input discrete memoryless channels. Those channels are the binary asymmetric

channel (BAC), including the two special cases of the binary symmetric channel (BSC)

and the Z-channel (ZC). The binary erasure channel (BEC) is a common used channel

with ternary output. For the asymmetric channels, a general BAC, it is shown that so-

called flip codes are optimal codes with two codewords. The optimal (in the sense of

minimum average error probability, using maximum likelihood decoding) code structure

is derived for the ZC in the cases of two, three, and four codewords and an arbitrary

finite blocklength. For the symmetric channels, the BSC and the BEC, the optimal code

structure is derived with at most three codewords and an arbitrary finite blocklength, a

statement for linear optimal codes with four codes is also given.

The derivation of these optimal codes relies heavily on a new approach of constructing

and analyzing the codebook matrix not row-wise (codewords), but column-wise. This

new tool allows an elegant definition of interesting code families that is recursive in the

blocklength n and admits their exact analysis of error performance that is not based on

the union bound or other approximations.

二二二元元元無無無記記記憶憶憶通通通道道道的的的最最最佳佳佳極極極小小小區區區塊塊塊碼碼碼設設設計計計

研究生：林玄寅 指導教授：莫詩台方博士

陳伯寧博士

國立交通大學電信工程研究所

摘要

在這篇論文中，我們探討數種二元無記憶通道模式下的極小區塊碼 (ultra-small

block code) 的最佳設計 (optimal design)，所探討的二元無記憶通道模式包含：二元

非對稱通道 (binary asymmetric channel or BAC) 與二元輸入三元輸出的二元抹除通

道 (binary erasure channel or BEC)。針對前者，我們另將特別著重兩個特例，即二元

對稱通道 (binary symmetric channel or BSC) 與Z-通道 (Z-channel or ZC)。本研究中所

謂的最佳碼，指的是在最大概度解碼 (maximum-likelihood decoding) 法則下，可達最

低平均錯誤率的區塊碼設計。而所謂的極小區塊碼指的是碼字個數極小的情況，例

如 2、3或 4。

針對二元非對稱通道 (BAC)，我們證明了當碼字個數為 2時，相對碼 (flip codes) 為

最佳區塊碼設計。另外，針對二元非對稱通道 (BAC) 的特例Z-通道，我們在碼字個數

為 2、3、4時，也提出給定任意碼長 (block length) 的最佳設計。而對於對稱式的通道，

例如二元對稱通道 (BSC) 與二元抹除通道 (BEC)，我們針對碼字個數為 2與 3的情況

下，找到給定任意碼長的最佳碼的設計規律。此外針對這兩個對稱式的通道，在碼字個

數增加為 4時，我們也設計了最佳的線性區塊碼 (linear block code)。

我們證明所設計的區塊碼可達最低的最大概度解碼錯誤率的主要關鍵技巧，乃是我們

使用新的區塊碼建構觀點。簡言之，我們不用傳統碼字 (codeword) 為基準的分析法則，

而是針對區塊碼矩陣採用以直列組合方式進行分析。這種新的分析方式可以精巧的定義

出必要的區塊碼類別, 使我們可用區塊碼的碼長遞迴的方式來建構碼，同時也讓我們可以

推導出區塊碼的平均錯誤率的精確公式，而不需依賴傳統的聯集上限 (union bound) 或是

其他所謂的錯誤率近似值的分析技巧。

Acknowledgments

First and foremost, I would like to express my deep and sincerest gratitude to Prof. Stefan

M. Moser and Prof. Po-Ning Chen, my research advisers, for their insightful comments,

patient guidance, enthusiastic encouragement and suggestions on any matter related this

thesis. Without their help and support, this thesis would not be completed. Prof. Moser,

who has supported me throughout my thesis with his patience and knowledge while al-

lowing me the space to work in my own way. He always give me right instruction and

impressed intuition guidance for the research path. He helped me get on the road to LA-

TEX and provided an experienced ear for my doubts about writing a thesis. Prof. Chen’s

strong insights in information theory and mathematics leads me in a right way for proofs

in my research, and his plenty of experiences for proving mathematical theorems indicate

me how to do theoretical research by perseverance. I have learned numerous principal

things from them, not only doing research, but also the attitude in life.

I also want to thank all the members and alumni in our Information Theory LAB.

They have helped me a lot in my oral presentation and oral defense. We do have a great

time during my Ph.D. time.

I am very grateful to my girlfriend Yi-Wen Wu, she always encourage and accompany

me when the depress time, without her support, this thesis can not be completed and I

would not continue my dream to finish my Ph.D. thesis.

Finally I would also like to extend my thanks to my parents, they never push me to

do what I don’t want to do. I am greatly indebted to my family.

Hsinchu, Taiwan 28 June 2013

Lin Hsuan-Yin

Contents

Table of Contents X

1 Introduction 2

1.1 Introduction . 2

2 Definitions 6

2.1 Discrete Memoryless Channel . 6

2.2 Coding for DMC . 7

3 Channel Models 11

4 Preliminaries 15

4.1 Error Probability of the BAC . 15

4.1.1 Capacity of the BAC . 15

4.2 Error (and Success) Probability of the ZC 16

4.3 Error (and Success) Probability of the BSC 17

4.3.1 Capacity of the BSC . 17

4.4 Error (and Success) Probability of the BEC 17

4.4.1 Capacity of the BEC . 18

4.5 Pairwise Hamming Distance . 18

5 A Counterexample 19

6 Flip Codes, Weak Flip Codes and Hadamard Codes 20

6.1 Characteristics of Weak Flip Codes . 25

7 Previous Work 29

7.1 SGB Bounds on the Average Error Probability 29

7.2 Gallager Bound . 31

7.3 PPV Bounds for the BSC . 32

7.4 PPV Bounds for the BEC . 33

XI

Contents

8 Analysis of the BAC 34

8.1 Optimal Codes . 34

8.2 The Optimal Decision Rule for Flip Codes 35

8.3 Best Codes for a Fixed Decision Rule . 37

9 Analysis of the ZC 42

9.1 Optimal Codes with Two Codewords (M = 2) 42

9.2 Optimal Codes with Three or Four Codewords (M = 3, 4) 42

9.3 Error Exponents . 46

9.4 Application to Known Bounds on the Error Probability for a Finite Block-

length . 46

9.5 Conjectured Optimal Codes with Five Codewords (M = 5) 49

10 Analysis of the BSC 51

10.1 Optimal Codes with Two Codewords (M = 2) 51

10.2 Optimal Codes with Three or Four Codewords (M = 3, 4) 51

10.3 Pairwise Hamming Distance Structure . 53

10.4 Application to Known Bounds on the Error Probability for a Finite Block-

length . 55

11 Analysis of the BEC 59

11.1 Optimal Codes with Two Codewords (M = 2) 59

11.2 Optimal Codes with Three or Four Codewords (M = 3, 4) 59

11.3 Quick Comparison between BSC and BEC 62

11.4 Application to Known Bounds on the Error Probability for a Finite Block-

length . 62

12 Conclusion 66

A Derivations concerning the BAC 67

A.1 Proof of Proposition 4.1 . 67

A.2 The LLR Function . 68

A.3 Alternative Proof of Theorem 8.1 . 69

A.4 Proof of Theorem 8.3 . 73

B Derivations concerning the ZC 76

B.1 Proof of Theorem 9.2 . 76

B.2 Proof of Lemma 9.5 . 80

C Derivations concerning the BSC 84

C.1 Proof of Theorem 10.2 . 84

C.1.1 Case i: Step from n− 1 = 3k − 1 to n = 3k 86

C.1.2 Case ii: Step from n− 1 = 3k to n = 3k + 1 92

XII

CONTENTS Chapter 0

C.1.3 Case iii: Step from n− 1 = 3k + 1 to n = 3k + 2 93

C.2 Proof of Theorem 10.3 . 94

D Derivations concerning the BEC 109

D.1 Proof of Theorem 11.2 . 109

List of Figures 110

Bibliography 112

1

Chapter 1

Introduction

1.1 Introduction

Shannon proved in his ground-breaking work [1] that it is possible to find an information

transmission scheme that can transmit messages at arbitrarily small error probability as

long as the transmission rate in bits per channel use is below the so-called capacity of the

channel. However, he did not provide a way on how to find such schemes. In particular,

he did not tell us much about the design of codes apart from the fact that good codes may

need to have a large blocklength.

For many practical applications, exactly this latter constraint is rather unfortunate as

we often cannot tolerate too much delay (e.g., in inter-human communication, in time-

critical control and communication, etc.). Moreover, the system complexity usually grows

exponentially in the blocklength, and in consequence having large blocklength might not

be an option and we have to restrict the codewords to some reasonable size. The question

now arises what can theoretically be said about the performance of communication systems

with such restricted block size.

During the last years, there has been an renewed interest in the theoretical understand-

ing of finite-length coding [2]–[5]. There are several possible ways on how one can approach

the problem of finite-length codes. In [2], the authors fix an acceptable error probability

and a finite blocklength and then find bounds on the maximal achievable transmission

rate. This parallels the method of Shannon who set the acceptable error probability to

zero, but allowed infinite blocklength, and then found the maximum achievable transmis-

sion rate (the capacity). A typical example in [2] shows that for a blocklength of 1800

channel uses and for an error probability of 10−6, one can achieve a rate of approximately

80 percent of the capacity of a binary symmetric channel of capacity 0.5 bits.

In another approach, one fixes the transmission rate and studies how the error prob-

ability depends on the blocklength n (i.e., one basically studies error exponents, but for

relatively small n [6]). For example, [5] introduces new random coding bounds that enable

a simple numerical evaluation of the error probability for finite blocklengths.

All these results have in common that they are related to Shannon’s ideas in the sense

2

1.1 Introduction Chapter 1

that they try to make fundamental statements about what is possible and what not. The

exact manner how these systems have to be built is ignored on purpose.

Our approach in this thesis is different. Based on the insight that for very short

blocklength, one has no big hope of transmitting much information with acceptable error

probability, we concentrate on codes with a small fixed number of codewords: so-called

ultra-small block-codes. By this reduction of the transmission rates, our results are directly

applicable even for very short blocklengths. In contrast to [2] that provide bounds on the

best possible theoretical performance, we try to find a best possible design that minimizes

the average error probability. Hence, we put a big emphasis on finding insights in how to

actually build an optimal system. In this respect, this thesis could rather be compared

to [7]. There the authors try to describe the empirical distribution of good codes (i.e., of

codes that approach capacity with vanishing error probability) and show that for a large

enough blocklength, the empirical distribution of certain good codes converges in the

sense of divergence to a set of input distributions that maximize the input-output mutual

information. Note, however, that [7] again focuses on the asymptotic regime, while our

focus lies on finite blocklength.

There are interesting applications for ultra-small block-codes, e.g., in the situation of

establishing an initial connection in a wireless link: the amount of information that needs

to be transmitted during the setup of the link is very limited, usually only a couple of

bits, but these bits need to be transmitted in very short time (e.g., blocklength in the

range of n = 20 to n = 30) with the highest possible reliability [8]. Another important

application for ultra-small block-codes is in the area of quality of service (QoS). In many

delay-sensitive wireless systems like, e.g., voice over IP (VoIP) and wireless interactive and

streaming video applications, it is essential to comply with certain limitations on queuing

delays or buffer violation probabilities [3]–[4]. A further area where the performance of

short codes is relevant is proposed in [9]: effective rateless short codes can be used to

transmit some limited feedback about the channel state information in a wireless link

or in some other latency-constrained application. Hence, it is of significant interest to

conduct an analysis of (and to provide predictions for) the performance levels of practical

finite-blocklength systems. Note that while the motivation of this work focuses on rather

smaller values of n, our results nevertheless hold for arbitrary finite n.

The study of ultra-small block-codes is interesting not only because of the above men-

tioned direct applications, but because their analytic description is a first step to a better

fundamental understanding of optimal nonlinear coding schemes (with ML decoding) and

of their performance based on the exact error probability rather than on an upper bound on

the achievable error probability derived from the union bound or the mutual information

density bound and its statistics [10], [11].

To simplify our analysis, we have restricted ourselves for the moment to binary input

and output discrete memoryless channels, that we call in their general form binary asym-

metric channels (BAC). The two most important special cases of the BAC, the binary

symmetric channel (BSC) and the Z-channel (ZC), are then investigated more in detail.

The other channel we focus on more is the binary input and ternary output channel, which

3

Chapter 1 Introduction

is called binary erasure channel (BEC).

Our main contributions are as follows:

• We provide first fundamental insights into the performance analysis of optimal non-

linear code design for the BAC. Note that there exists a vast literature about linear

codes, their properties and good linear design (e.g., [12]). Some Hamming-distance

related topics of nonlinear codes are addressed in [13].1

• We provide new insights in the optimal code construction for the BAC for an arbi-

trary finite blocklength n and for M = 2 codewords.

• We provide optimal code constructions for the ZC for an arbitrary finite blocklength

n and for M = 2, 3 and 4 codewords. For the BSC, we show an achievable best code

design for M = 2, 3. We have also found the linear optimal codes for M = 4. For

the ZC we also conjecture an optimal design for M = 5.

• We provide optimal code constructions for the BEC for an arbitrary finite block-

length n and for M = 2, 3 codewords. We have also found the linear optimal codes

for M = 4. We also conjecture an optimal design for M = 5, 6. For some certain

blocklength, a optimal code structure is conjectured with arbitrary M.

• For the ZC, BSC, and BEC these channels, we can derive its exact performance

for comparison. Some known bounds for a finite blocklegnth with fixed number of

codewords are introduced.

• We propose a new approach to the design and analysis of block-codes: instead of

focusing on the codewords (i.e., the rows in the codebook matrix), we look at the

codebook matrix in a column-wise manner.

The remainder of this thesis is structured as follows: after some comments about our

notation we will introduce some common definitions and our channel models in Chapter 2

and Chapter 3. After some more preliminaries in Chapter 4. Chapter 5 contains a very

short example showing that the analysis of even such simple channel models is nontrivial

and often nonintuitive. Chapter 6 then presents new code definitions that will be used for

our main results. In Chapter 7, we review some important previous work. Chapter 8–11

then contain our main results. In Chapter 8 we analyze the BAC only for two codewords,

Chapter 9 takes a closer look at the ZC. In Chapter 10 and Chapter 11, we investigate the

BSC and BEC, respectively. Many of the lengthy proofs have been moved to the appendix.

As is common in coding theory, vectors (denoted by bold face Roman letters, e.g.,

x) are row-vectors. However, for simplicity of notation and to avoid a large number of

transpose-signs, we slightly misuse this notational convention for one special case: any

vector c is a column-vector. It should be always clear from the context because these

1Note that some of the code designs proposed in this thesis actually have interesting “linear-like”

properties and can be considered as generalizations of linear codes with 2k codewords to codes with a

general number of codewords M. For more details see [14].

4

1.1 Introduction Chapter 1

vectors are used to build codebook matrices and are therefore also conceptually quite

different from the transmitted codewords x or the received sequence y. Otherwise our

used notation follows the main stream. We use capital letters for random quantities and

small letters for realizations; sets are denoted by a calligraphic font, e.g., D; and constants

are depicted by Greek letters, small Romans or a special font, e.g., M.

5

Chapter 2

Definitions

2.1 Discrete Memoryless Channel

The probably most fundamental model describing communication over a noisy channel is

the so-called discrete memoryless channel (DMC). A DMC consists of a

• a finite input alphabet X ;

• a finite output alphabet Y; and

• a conditional probability distribution PY |X(·|x) for all x ∈ X such that

PYk|X1,X2,...,Xk,Y1,Y2,...,Yk−1
(yk|x1, x2, . . . , xk, y1, y2, . . . , yk−1)

= PY |X(yk|xk) ∀ k. (2.1)

Note that a DMC is called memoryless because the current output Yk depends only on the

current input xk. Moreover also note that the channel is time-invariant in the sense that

for a particular input xk, the distribution of the output Yk does not change over time.

Definition 2.1 We say a DMC is used without feedback, if

P (xk|x1, . . . , xk−1, y1, . . . , yk−1) = P (xk|x1, . . . , xk−1) ∀ k, (2.2)

i.e., Xk depends only on past inputs (by choice of the encoder), but not on past outputs.

Hence, there is no feedback link from the receiver back to the transmitter that would inform

the transmitter about the last outputs.

Note that even though we assume the channel to be memoryless, we do not restrict the

encoder to be memoryless! We now have the following theorem.

Theorem 2.2 If a DMC is used without feedback, then

P (y1, . . . , yn|x1, . . . , xn) =
n
∏

k=1

PY |X(yk|xk) ∀n ≥ 1. (2.3)

Proof: See, e.g., [15].

6

2.2 Coding for DMC Chapter 2

2.2 Coding for DMC

Definition 2.3 A (M, n) coding scheme for a DMC (X ,Y, PY |X) consists of

• the message set M = {1, . . . ,M} of M equally likely random messages M ;

• the (M, n) codebook (or simply code) consisting of M length-n channel input se-

quences, called codewords;

• an encoding function f : M → X n that assigns for every message m ∈ M a codeword

x = (x1, . . . , xn); and

• a decoding function g : Yn → M̂ that maps the received channel output n-sequence

y to a guess m̂ ∈ M̂. (Usually, we have M̂ = M.)

Note that an (M, n) code consist merely of a unsorted list of M codewords of length

n, whereas an (M, n) coding scheme additionally also defines the encoding and decoding

functions. Hence, the same code can be part of many different coding schemes.

Definition 2.4 A code is called linear if the sum of any two codewords again is a code-

word.

Note that a linear code always contains the all-zero codeword.

The two main parameters of interest of a code are the number of possible messages M

(the larger, the more information is transmitted) and the blocklength n (the shorter, the

less time is needed to transmit the message):

• we have M equally likely messages, i.e., the entropy is H(M) = log2M bits and we

need log2M bits to describe the message in binary form;

• we need n transmissions of a channel input symbol Xk over the channel in order to

transmit the complete message.

Hence, it makes sense to give the following definition.

Definition 2.5 The rate2 of a (M, n) code is defined as

R !
log2M

n
bits/transmission. (2.4)

It describes what amount of information (i.e., what part of the log2M bits) is transmitted

in each channel use.

However, this definition of a rate makes only sense if the message really arrives at the

receiver, i.e., if the receiver does not make a decoding error!

2We define the rate here using a logarithm of base 2. However, we can use any logarithm as long as we

adapt the units accordingly.

7

Chapter 2 Definitions

Definition 2.6 An (M, n) coding scheme for a DMC consists of a codebook C (M,n) with

M codewords xm of length n (m = 1, . . . ,M), an encoder that maps every message m

into its corresponding codeword xm, and a decoder that makes a decoding decision g(y) ∈

{1, . . . ,M} for every received binary n-vector y.

We will always assume that the M possible messages are equally likely.

Definition 2.7 Given that message m has been sent, let λm
(

C (M,n)
)

be the probability

of a decoding error of an (M, n) coding scheme with blocklength n:

λm
(

C
(M,n)

)

! Pr[g(Y) &= m|X = xm] (2.5)

=
∑

y

PY|X(y|xm) I{g(y) &= m}, (2.6)

where I{·} is the indicator function

I{statement} !

{

1 if statement is true,

0 if statement is wrong.
(2.7)

The maximum error probability λ
(

C (M,n)
)

of an (M, n) coding scheme is defined as

λ
(

C
(M,n)

)

! max
m∈M

λm
(

C
(M,n)

)

. (2.8)

The average error probability Pe
(

C (M,n)
)

of an (M, n) coding scheme is defined as

Pe
(

C
(M,n)

)

!
1

M

M
∑

m=1

λm
(

C
(M,n)

)

. (2.9)

Moreover, sometimes it will be more convenient to focus on the probability of not making

any error, denoted success probability ψm

(

C (M,n)
)

:

ψm

(

C
(M,n)

)

! Pr[g(Y) = m|X = xm] (2.10)

=
∑

y

PY|X(y|xm)I{g(y) = m}. (2.11)

The definition of minimum success probability ψ
(

C (M,n)
)

and the average success proba-

bility3 Pc
(

C (M,n)
)

are accordingly.

Definition 2.8 For a given (M, n) coding scheme, we define the decoding region D(M,n)
m

as the set of n-vectors y corresponding to the m-th codeword xm as follows:

D(M,n)
m ! {y : g(y) = m}. (2.12)

3The subscript “c” stands for “correct.”

8

2.2 Coding for DMC Chapter 2

Note that we will always assume that the M possible messages are equally likely and that

the decoder g is a maximum likelihood (ML) decoder :

g(y) ! arg max
1≤m≤M

PY|X(y|xm) (2.13)

that minimizes the average error probability Pe
(

C (M,n)
)

among all possible decoders.

Hence, we are going to be lazy and directly concentrate on the set of codewords C (M,n),

called (M, n) codebook or usually simply (M, n) code. Sometimes we follow the custom

of traditional coding theory and use three parameters:
(

M, n, d
)

code, where the third

parameter d denotes the minimum Hamming distance, i.e., the minimum number of com-

ponents in which any two codewords differ.

Moreover, we also make the following definitions.

Definition 2.9 By dα,β(xm,y) we denote the number of positions j, where xm,j = α and

yj = β. For m &= m′, the joint composition qα,β(m,m′) of two codewords xm and xm′ is

defined as

qα,β(m,m′) !
dα,β(xm,xm′)

n
. (2.14)

Note that dH(·, ·) ! d0,1(·, ·) + d1,0(·, ·) and wH(x) ! dH(x,0) denote the commonly used

Hamming distance and Hamming weight, respectively.

The following remark deals with the way how codebooks can be described. It is not

standard, but turns out to be very important and is actually the clue to our derivations.

Remark 2.10 Usually, the codebook C (M,n) is written as an M×n codebook matrix with

the M rows corresponding to the M codewords:

C
(M,n) =






x1
...

xM




 =




c1 c2 · · · cn




 . (2.15)

However, it turns out to be much more convenient to consider the codebook column-wise

rather than row-wise! So, instead of specifying the codewords of a codebook, we actually

specify its (length-M) column-vectors cj.

Remark 2.11 Since we assume equally likely messages, any permutation of rows only

changes the assignment of codewords to messages and has no impact on the performance.

We consider two codes with permuted rows as being equal, i.e., a code is actually a set of

codewords, where the ordering of the codewords is irrelevant.

Furthermore, since we are only considering memoryless channels, any permutation

of the columns of C (M,n) will lead to another codebook that is equivalent to the first in

the sense that it has the exact same error probability. We say that such two codes are

equivalent. We would like to emphasize that two codebooks being equivalent is not the same

as two codebooks being equal. However, as we are mainly interested in the performance of

9

Chapter 2 Definitions

a codebook, we usually treat two equivalent codes as being the same. In particular, when

we speak of a unique code design, we do not exclude the always possible permutations of

columns.

In spite of this, for the sake of clarity of our derivations, we usually will define a

certain fixed order of the codewords/codebook column vectors.

The most famous relation between code rate and error probability has been derived

by Shannon in his landmark paper from 1948 [1].

Theorem 2.12 (The Channel Coding Theorem for a DMC) Define

C ! max
PX(·)

I(X;Y) (2.16)

where X and Y have to be understood as input and output of a DMC and where the

maximization is over all input distributions PX(·).

Then for every R < C there exists a sequence of (2nR, n) coding schemes with maximum

error probability λ
(

C (M,n)
)

→ 0 as the blocklength n gets very large.

Conversely, any sequence of (2nR, n) coding schemes with maximum error probability

λ
(

C (M,n)
)

→ 0 must have a rate R ≤ C.

So we see that C denotes the maximum rate at which reliable communication is possible.

Therefore C is called channel capacity.

Note that this theorem considers only the situation of n tending to infinity and thereby

the error probability going to zero. However, in a practical system, we cannot allow the

blocklength n to be too large because of delay and complexity. On the other hand it is

not necessary to have zero error probability either.

So the question arises what we can say about “capacity” for finite n, i.e., if we allow

a certain maximal probability of error, what is the smallest necessary blocklength n to

achieve it? Or, vice versa, fixing a certain short blocklength n, what is the best average

error probability that can be achieved? And, what is the optimal code structure for a

given channel?

10

Chapter 3

Channel Models

We consider a discrete memoryless channel (DMC) with both a binary input and a binary

output alphabets. The most general such binary DMC is the so-called binary asymmetric

channel (BAC) and is specified by two parameters: ε0 denotes the probability that a 0 is

flipped into a 1, and ε1 denotes the probability that a 1 is flipped into a 0, see Fig. 3.1.

00

11

ε0

ε1

1− ε0

1− ε1

X Y

Figure 3.1: The binary asymmetric channel (BAC).

For symmetry reasons and without loss of generality, we can restrict the values of these

parameters as follows:

0 ≤ ε0 ≤ ε1 ≤ 1 (3.1)

ε0 ≤ 1− ε0 (3.2)

ε0 ≤ 1− ε1. (3.3)

Note that in the case when ε0 > ε1, we simply flip all zeros to ones and vice versa to get

11

Chapter 3 Channel Models

ε0

ε1

Ω

ε0 + ε1 = 1

(completely

noisy channel)

ε0 = ε1
(BSC)

ε0 = 0

(ZC)

0.5

1

0.5 1

Figure 3.2: Region of possible choices of the channel parameters ε0 and ε1 of a BAC. The

shaded area corresponds to the interesting area according to (3.1)–(3.3).

12

Chapter 3

an equivalent channel with ε0 ≤ ε1. For the case when ε0 > 1− ε0, we flip the output Y ,

i.e., change all output zeros to ones and ones to zeros, to get an equivalent channel with

ε0 ≤ 1 − ε0. Note that (3.2) can be simplified to ε0 ≤ 1
2 and is actually implied by (3.1)

and (3.3). And for the case when ε0 > 1 − ε1, we flip the input X to get an equivalent

channel that satisfies ε0 ≤ 1− ε1.

We have depicted the region of possible choices of the parameters ε0 and ε1 in Fig. 3.2.

The region of interesting choices given by (3.1)–(3.3) is denoted by Ω.

Note that the boundaries of Ω correspond to three special cases: The binary symmetric

channel (BSC) (see Fig. 3.3) has equal cross-over probabilities ε0 = ε1 = ε. According to

(3.2), we can assume without loss of generality that ε ≤ 1
2 .

00

11

ε

ε

1− ε

1− ε

X Y

Figure 3.3: The binary symmetric channel (BSC).

00

11

1

ε1

1− ε1

X Y

Figure 3.4: The Z-channel (ZC).

The Z-channel (ZC) (see Fig. 3.4) will never distort an input 0, i.e., ε0 = 0. An input

1 is flipped to 0 with probability ε1 < 1.

Finally, the case ε0 = 1−ε1 corresponds to a completely noisy channel of zero capacity:

given Y = y, the events X = 0 and X = 1 are equally likely, i.e., X ⊥⊥ Y .

13

Chapter 3 Channel Models

A special case of the binary input and ternary output channel is BEC, which is not

belong the special case of BAC, we have the transition probability, δ, from zero to one.

The output alphabets of BEC are {0, 1, 2}, which is not binary. Here is the channel model

defined as the following figure:

0

0

1

1

2

δ

δ

1− δ

1− δ

Figure 3.5: BEC

Due to the symmetry of the BSC and BEC, we have an additional equivalence in the

codebook design.

Lemma 3.1 Consider an arbitrary code C (M,n) to be used on the BSC or BEC and con-

sider an arbitrary M-vector c. Now construct a new length-(n + 1) code C (M,n+1) by

appending c to the codebook matrix of C (M,n) and a new length-(n + 1) code C
(M,n+1)

by appending the flipped vector c̄ = c ⊕ 1 to the codebook matrix of C (M,n). Then the

performance of these two new codes is identical:

P (n+1)
e

(

C
(M,n+1)

)

= P (n+1)
e

(

C
(M,n+1)

)

. (3.4)

We remind the reader that our ultimate goal is to find the structure of an optimal code

C (M,n)∗ that satisfies

P (n)
e

(

C
(M,n)∗) ≤ P (n)

e

(

C
(M,n)

)

(3.5)

for any code C (M,n).

14

Chapter 4

Preliminaries

4.1 Error Probability of the BAC

The conditional probability of the received vector y given the sent codeword xm of the

BAC can be written as

Pn
Y |X(y|xm) = (1− ε0)

d0,0(xm,y) · ε
d0,1(xm,y)
0 · ε

d1,0(xm,y)
1 · (1− ε1)

d1,1(xm,y) (4.1)

where we use Pn
Y |X to denote the product distribution

Pn
Y |X(y|x) =

n
∏

j=1

PY |X(yj |xj). (4.2)

Considering that

n = d0,0(xm,y) + d0,1(xm,y) + d1,0(xm,y) + d1,1(xm,y) (4.3)

the average error probability of a coding scheme C (M,n) over a BAC can now be written

as

Pe
(

C
(M,n)

)

=
1

M

M
∑

m=1

∑

y
g(y) &=m

Pn
Y |X(y|xm) (4.4)

=
(1− ε0)n

M

∑

y

M
∑

m=1
m &=g(y)

(
ε0

1− ε0

)d0,1(xm,y)

·

(
ε1

1− ε0

)d1,0(xm,y)(1− ε1
1− ε0

)d1,1(xm,y)

(4.5)

where g(y) is the ML decision (2.13) for the observation y.

4.1.1 Capacity of the BAC

Without loss of generality, we can only consider BACs with 0 ≤ ε0 ≤ ε1 ≤ 1 and 0 ≤

ε0 + ε1 ≤ 1.

15

Chapter 4 Preliminaries

Proposition 4.1 The capacity of a BAC is given by

CBAC =
ε1

1− ε0 − ε1
·Hb(ε0)−

1− ε0
1− ε0 − ε1

·Hb(ε1) + log2

(

1 + 2
Hb(ε1)−Hb(ε0)

1−ε0−ε1

)

(4.6)

bits, where Hb(·) is the binary entropy function defined as

Hb(p) ! −p log2 p− (1− p) log2(1− p). (4.7)

The input distribution P ∗
X(·) that achieves this capacity is given by

P ∗
X(0) = 1− P ∗

X(1) =
z − ε1(1 + z)

(1 + z)(1− ε0 − ε1)
(4.8)

with

z ! 2
Hb(ε1)−Hb(ε0)

1−ε0−ε1 . (4.9)

4.2 Error (and Success) Probability of the ZC

In the special case of a ZC, the average success probability can be expressed as follows:

Pc
(

C
(M,n)

)

=
1

M

∑

y

M
∑

m=1
g(y)=m

I {d01(xm,y) = 0} εd10(xm,y)
1 (1− ε1)

d11(xm,y) (4.10)

=
1

M

∑

y

M
∑

m=1
g(y)=m

I {d0,1(xm,y) = 0}

(
ε1

1− ε1

)d1,0(xm,y)

· (1− ε1)
d1,1(xm,y)+d1,0(xm,y) (4.11)

=
1

M

M
∑

m=1

∑

y
g(y)=m

I {d0,1(xm,y) = 0}

(
ε1

1− ε1

)d1,0(xm,y)

· (1− ε1)
wH(xm) . (4.12)

The error probability formula is accordingly

Pe
(

C
(M,n)

)

=
1

M

M
∑

m=1

∑

y
g(y) &=m

I {d0,1(xm,y) = 0} ·

(
ε1

1− ε1

)d1,0(xm,y)

(1− ε1)
wH(xm) . (4.13)

From (B.52), note that the capacity-achieving distribution for ε1 =
1
2 is

P ∗
X(1) =

2

5
. (4.14)

The capacity-achieving distribution is strongly depends on the cross-over probability ε1.

16

4.3 Error (and Success) Probability of the BSC Chapter 4

4.3 Error (and Success) Probability of the BSC

In the special case of a BSC, (4.5) simplifies to

Pe
(

C
(M,n)

)

=
(1− ε)n

M

∑

y

M
∑

m=1
g(y) &=m

(
ε

1− ε

)dH(xm,y)

. (4.15)

The success probability is accordingly

Pc
(

C
(M,n)

)

=
(1− ε)n

M

∑

y

M
∑

m=1
g(y)=m

(
ε

1− ε

)dH(xm,y)

. (4.16)

4.3.1 Capacity of the BSC

From (C.97), the capacity of a BSC is given by

CBSC = 1−Hb(ε) (4.17)

bits. The input distribution P ∗
X(·) that achieve the capacity is the uniform distribution

given by

P ∗
X(0) = 1− P ∗

X(1) =
1

2
, (4.18)

which is irrelevant to the cross-over prbability ε.

4.4 Error (and Success) Probability of the BEC

The only difference of BEC is the output turn out to be ternary.

Definition 4.2 To make the conditional probability express shortly, we defined the number

of times the symbol a occurs in one received vector y by N(a|y). By I(a|y) we denote the

set of indices i such that yi = a, hence N(a|y) = |I(a|y)|, i.e., xI(a|y) is a vector of length

N(a|y) containing all xi where i ∈ I(a|y).

It is often easier to maximize the success probability instead of minimizing the error

probability. For the convenience of later derivations, we are going to derive its error and

success probabilities:

Pc(C
(M,n)) =

1

M

M
∑

m=1

∑

y
g(y)=m

(1− ε)n−N(2|y) · εN(2|y)

·I
{

dH
(

xm I(b|y),yI(b|y)
)

= 0
}

, (4.19)

17

Chapter 4 Preliminaries

where b ∈ {0, 1}. The error probability formula is accordingly

Pe(C
(M,n)) =

1

M

M
∑

m=1

∑

y
g(y) &=m

(1− ε)n−N(2|y) · εN(2|y)

·I
{

dH
(

xm I(b|y),yI(b|y)
)

= 0
}

(4.20)

4.4.1 Capacity of the BEC

The capacity of a BEC is given by

CBEC = 1− δ (4.21)

bits. The input distribution P ∗
X(·) that achieve the capacity is the uniform distribution

given by

P ∗
X(0) = 1− P ∗

X(1) =
1

2
, (4.22)

which is also irrelevant to the cross-over probability δ.

4.5 Pairwise Hamming Distance

The minimum Hamming distance is a well-known and often used quality criterion of a

codebook [12], [13]. [13, Ch. 2] discusses the maximum minimum Hamming distance for a

given code C (M,n), e.g., the Plotkin bound and Levenshtein’s theorem. (For discussions of

the upper and lower bounds to average error probability, see Chapter 7.) Unfortunately, a

design based on the minimum Hamming distance can fail even for linear codes and even for

a very symmetric channel like the BSC, whose error probability performance is completely

specified by the Hamming distances between codewords and received vectors.

We therefore define a slightly more general and more concise description of a codebook:

the pairwise Hamming distance vector.

Definition 4.3 Given a codebook C (M,n) with codewords xm, 1 ≤ m ≤ M, we define the

length 1
2(M− 1)M pairwise Hamming distance vector

d
(

C
(M,n)

)

!
(

dH(x1,x2),

dH(x1,x3), dH(x2,x3),

dH(x1,x4), dH(x2,x4), dH(x3,x4),

. . . ,

dH(x1,xM), dH(x2,xM), . . . , dH(xM−1,xM)
)

. (4.23)

The minimum Hamming distance dmin
(

C (M,n)
)

is then defined as the minimum component

of the pairwise Hamming distance vector d
(

C (M,n)
)

.

18

Chapter 5

A Counterexample

To show that the search for an optimal (possibly nonlinear) code is neither trivial nor

intuitive even in the symmetric BSC case, we would like to start with a simple example

before we summarize our main results.

Assume a BSC with cross probability ε = 0.4, M = 4, and a blocklength n = 4. Then

consider the following codes:4

C
(4,4)
1 =








0 0 0 0

0 0 0 1

1 1 1 0

1 1 1 1








, C
(4,4)
2 =








0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1








. (5.1)

We observe that while both codes are linear (i.e., any sum of two codewords is also a

codeword), the first code has a minimum Hamming distance 1, and the second has a

minimum Hamming distance 2. It is quite common to believe that C
(4,4)
2 shows a better

performance. This intuition is based on Gallager’s famous performance bound [6, Exercise

5.19]:

Pe
(

C
(M,n)

)

≤ (M− 1)e
−dmin(C (M,n)) log 1√

4ε(1−ε) . (5.2)

However, the exact average error probability as given in (4.15) actually can be evaluated as

Pe
(

C
(4,4)
1

)

≈ 0.6112 and Pe
(

C
(4,4)
2

)

= 0.64. Hence, even though the minimum Hamming

distance of the first codebook is smaller, its overall performance is superior to the second

codebook!

Our goal is to find the structure of an optimal code C (M,n)∗ that satisfies

Pe
(

C
(M,n)∗) ≤ Pe

(

C
(M,n)

)

(5.3)

for any code C (M,n).

4We will see in Chapter 6 that both codes are weak flip codes. In this example, C
(4,4)
1 = C

(4,4)
1,0 and

C
(4,4)
2 = C

(4,4)
2,0 according to Definition 6.5 given later.

19

Chapter 6

Flip Codes, Weak Flip Codes and
Hadamard Codes

We next introduce some special families of binary codes. We start with a family of codes

with two codewords.

Definition 6.1 The flip code of type t for t ∈
{

0, 1, . . . ,
⌊
n
2

⌋}

is a code with M = 2

codewords defined by the following codebook matrix C
(2,n)
t :

t columns
︷ ︸︸ ︷

C
(2,n)
t !

(

x

x̄

)

=

(

0 · · · 0 1 · · · 1

1 · · · 1 0 · · · 0

)

. (6.1)

Defining the column vectors

{

c(2)1 !

(

0

1

)

, c(2)2 !

(

1

0

)}

, (6.2)

we see that a flip code of type t is given by a codebook matrix that consists of n− t columns

c(2)1 and t columns c(2)2 .

We again remind the reader that due to the memorylessness of the BEC, other codes with

the same columns as C
(2,n)
t , but in different order are equivalent to C

(2,n)
t . Moreover, we

would like to point out that while the flip code of type 0 corresponds to a repetition code,

the general flip code of type t with t > 0 is neither a repetition code nor is it even linear.

We have shown in [16] that for any blocklength n and for a correct choice5 of t, the

flip codes are optimal on any binary-input binary-output channel for arbitrary channel

parameters. In particular, they are optimal for the BSC and the ZC [16].

The columns given in the set in (6.2) are called candidate columns. They are flipped

versions of each other, therefore also the name of the code.

5We would like to emphasize that the optimal choice of t for many binary channels is not 0, i.e., the

linear repetition code is not optimal!

20

Chapter 6

The definition of a flip code with one codeword being the flipped version of the other

cannot be easily extended to a situation with more than two codewords. Hence, for M > 2,

we need a new approach. We give the following definition.

Definition 6.2 Given an M > 2, a length-M candidate column c is called a weak flip

column if its first component is 0 and its Hamming weight equals to
⌊
M

2

⌋

or
⌈
M

2

⌉

. The

collection of all possible weak flip columns is called weak flip candidate columns set and

is denoted by C(M).

We see that a weak flip column contains an almost equal number of zeros and ones.

The restriction of the first component to be zero is based on the insight of Lemma 3.1.

For the remainder of this work, we introduce the shorthand

' !
⌈
M

2

⌉

. (6.3)

Lemma 6.3 The cardinality of a weak flip candidate columns set is

∣
∣C(M)

∣
∣ =

(
2'− 1

'

)

. (6.4)

Proof: If M = 2', then we have
(2#−1

#

)

possible choices, while if M = 2' − 1, we

have
(2#−2
#−1

)

+
(2#−2

#

)

=
(2#−1

#

)

choices.

We are now ready to generalize Definition 6.1.

Definition 6.4 A weak flip code is a codebook that is constructed only by weak flip

columns.

Concretely, for M = 3 or M = 4, we have the following.

Definition 6.5 The weak flip code of type (t2, t3) for M = 3 or M = 4 codewords is

defined by a codebook matrix C
(M,n)
t2,t3

that consists of t1 ! n − t2 − t3 columns c(M)
1 , t2

columns c(M)
2 , and t3 columns c(M)

3 , where








c(3)1 !






0

0

1




 , c(3)2 !






0

1

0




 , c(3)3 !






0

1

1














(6.5)

or 











c(4)1 !








0

0

1

1








, c(4)2 !








0

1

0

1








, c(4)3 !








0

1

1

0




















, (6.6)

respectively. We often describe the weak flip code of type (t2, t3) by its code parameters

[t1, t2, t3] (6.7)

21

Chapter 6 Flip Codes, Weak Flip Codes and Hadamard Codes

where t1 can be computed from the blocklength n and the type (t2, t3) as t1 = n − t2 − t3.

Moreover, we use

D(M,n)
t2,t3;m ! {y : g(y) = m} (6.8)

to denote the decoding region of the mth codeword of C
(M,n)
t2,t3

.

An interesting subfamily of weak flip codes of type (t2, t3) for M = 3 or M = 4 is

defined as follows.

Definition 6.6 A fair weak flip code of type (t2, t3),C
(M,n)
t2,t3

, with M = 3 or M = 4

codewords satisfies that

t1 = t2 = t3. (6.9)

Note that the fair weak flip code of type (t2, t3) is only defined provided that the block-

length satisfies n mod 3 = 0. In order to be able to provide convenient comparisons for

every blocklength n, we define a generalized fair weak flip code for every n, C
(M,n)

,n+1
3 -,,n

3 -
,

where

t2 =

⌊
n+ 1

3

⌋

, t3 =
⌊n

3

⌋

. (6.10)

If n mod 3 = 0, the generalized fair weak flip code actually is a fair weak flip code.

The following lemma follows from the respective definitions in a straightforward man-

ner. We therefore omit its proof.

Lemma 6.7 The pairwise Hamming distance vector of a weak flip code of type (t2, t3) can

be computed as follows:

d(3,n) = (t2 + t3, t1 + t3, t1 + t2),

d(4,n) = (t2 + t3, t1 + t3, t1 + t2, t1 + t2, t1 + t3, t2 + t3).

A similar definition can be given also for larger M, however, one needs to be aware

that the number of weak flip candidate columns is increasing fast. For M = 5 or M = 6

we have ten weak flip candidate columns:
















c(5)1 !










0

0

0

1

1










, c(5)2 !










0

0

1

0

1










, c(5)3 !










0

0

1

1

0










,

c(5)4 !










0

0

1

1

1










, c(5)5 !










0

1

0

0

1










, c(5)6 !










0

1

0

1

0










, c(5)7 !










0

1

0

1

1










,

22

Chapter 6

c(5)8 !










0

1

1

0

0










, c(5)9 !










0

1

1

0

1










, c(5)10 !










0

1

1

1

0


























, (6.11)

and




















c(6)1 !












0

0

0

1

1

1












, c(6)2 !












0

0

1

0

1

1












, c(6)3 !












0

0

1

1

0

1












,

c(6)4 !












0

0

1

1

1

0












, c(6)5 !












0

1

0

0

1

1












, c(6)6 !












0

1

0

1

0

1












, c(6)7 !












0

1

0

1

1

0












,

c(6)8 !












0

1

1

0

0

1












, c(6)9 !












0

1

1

0

1

0












, c(6)10 !












0

1

1

1

0

0
































, (6.12)

respectively.

We will next introduce a generalized fair weak flip codes, as we will see in Section 6.1,

possess particularly beautiful properties.

Definition 6.8 A weak flip code is called fair if it is constructed by an equal number of

all possible weak flip candidate columns in C(M). Note that by definition the blocklength of

a fair weak flip code is always a multiple of
(2#−1

#

)

, ' ≥ 2.

Fair weak flip codes have been used by Shannon et al. [17] for the derivation of error

exponents, although the codes were not named at that time. Note that the error exponents

are defined when the blocklength n goes to infinity, but in this work we consider finite n.

Related to the weak flip codes and the fair weak flip codes are the families of Hadamard

codes [13, Ch. 2].

Definition 6.9 For an even integer n, a (normalized) Hadamard matrix Hn of order n

is an n × n matrix with entries +1 and −1 and with the first row and column being all

+1, such that

HnH
T

n = nIn, (6.13)

23

Chapter 6 Flip Codes, Weak Flip Codes and Hadamard Codes

if such a matrix exists. Here In is the identity matrix of size n. If the entries +1 are

replaced by 0 and the entries −1 by 1, Hn is changed into the binary Hadamard matrix

An.

Note that a necessary (but not sufficient) condition for the existence of Hn (and the

corresponding An) is that n is a 1, 2 or multiple of 4 [13, Ch. 2].

Definition 6.10 The binary Hadamard matrix An gives rise to three families of Hadamard

codes:

1. The
(

n, n− 1, n2
)

Hadamard code H1,n consists of the rows of An with the first

column deleted. The codewords in H1,n that begin with 0 form the
(
n
2 , n− 2, n2

)

Hadamard code H ′
1,n if the initial zero is deleted.

2. The
(

2n, n− 1, n2 − 1
)

Hadamard code H2,n consists of H1,n together with the com-

plements of all its codewords.

3. The
(

2n, n, n2
)

Hadamard code H3,n consists of the rows of An and their comple-

ments.

Further Hadamard codes can be created by an arbitrary combinations of the codebook ma-

trices of different Hadamard codes.

Example 6.11 Consider a (6, 10, 6) H ′
1,12 code:












0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

0 1 1 1 0 0 0 1 1 1

1 0 1 1 0 1 1 0 0 1

1 1 0 1 1 0 1 0 1 0

1 1 1 0 1 1 0 1 0 0












(6.14)

From this code, see the candidate columns (6.12) for M = 6, it is identical to the fair weak

flip code for M = 6. Since the fair weak flip code already used up all the possible weak flip

candidate columns, hence, there is only one (6, 10, 6) H ′
1,12 in column-wise respect.

Example 6.12 Consider an (8, 7, 4) H1,8 code:

H
1
1,8 =

















0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 0 1 1

0 1 1 1 1 0 0

1 0 0 1 1 0 1

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 1 0 0 0 1

















, (6.15)

24

6.1 Characteristics of Weak Flip Codes Chapter 6

and the other (8, 7, 4) H 2
1,8 code:

H
2
1,8 =

















0 0 0 0 0 0 0

0 0 1 0 1 1 1

1 0 0 1 1 0 1

0 1 1 1 1 0 0

1 1 1 0 0 0 1

1 0 1 1 0 1 0

0 1 0 1 0 1 1

1 1 0 0 1 1 0

















. (6.16)

From these codes, an (8, 35, 20) Hadamard code can be constructed by simply concatenating

H 1
1,8 five times, or concatenating H 1

1,8 three times and H 2
1,8 two times.

Note that since the rows of Hn are orthogonal, any two rows of An agree in 1
2n places

and differ in 1
2n places, i.e., they have a Hamming distance 1

2n. Moreover, by definition

the first row of a binary Hadamard matrix is the all-zero row. Hence, we see that all

Hadamard codes are weak flip codes, i.e., the family of weak flip codes is a superset of

Hadamard codes.

On the other hand, every Hadamard code of parameters (M, n), for which fair weak

flip codes exist, is not necessarily equivalent to a fair weak flip code. We also would like

to remark that the Hadamard codes rely on the existence of Hadamard matrices. So in

general, it is very difficult to predict whether for a given pair (M, n), a Hadamard code

will exist or not. This is in stark contrast to weak flip codes (which exist for all M and

n) and fair weak flip codes (which exist for all M and all n being a multiple of
(2#−1

#

)

).

Example 6.13 We continue with Example 6.12 and note that the (8, 35, 20) Hadamard

code that is constructed by five repetitions of the matrix given in (6.15) is actually not a

fair weak flip code, since we have to use up all possible weak flip candidate columns to get

a (8, 35, 20) fair weak flip code.

Note that two Hadamard matrices can be equivalent if one can be obtained from the

other by permuting rows and columns and multiplying rows and columns by −1. In other

words, Hadamard codes can actually be constructed from weak candidate columns. This

also follows directly from the already mentioned fact that Hadamard codes are weak flip

codes.

6.1 Characteristics of Weak Flip Codes

In conventional coding theory, most results are restricted to so called linear codes that

possess very powerful algebraic properties. For the following definitions and proofs see,

e.g., [12], [13].

25

Chapter 6 Flip Codes, Weak Flip Codes and Hadamard Codes

Definition 6.14 Let M = 2k, where k ∈ N. The binary code C
(M,n)
lin is linear if its

codewords span a k-dimensional subspace of {0, 1}n.

One of the most important property of a linear code is as follows.

Proposition 6.15 Let Clin be linear and let xm ∈ Clin be given. Then the code that we

obtain by adding xm to each codeword of Clin is equal to Clin.

Another property concerns the column weights.

Proposition 6.16 If an (M, n) binary code is linear, then each column of its codebook

matrix has Hamming weight M

2 , i.e., the code is a weak flip code.

Hence, linear codes are weak flip codes. Note, however, that linear codes only exist if

M = 2k, where k ∈ N, while weak flip codes are defined for any M. Also note that the

converse of Proposition 6.16 does not hold, i.e., even if M = 2k for some k ∈ N, a weak

flip code C (M,n) is not necessarily linear. It is not even the case that a fair weak flip code

for M = 2k is necessarily linear!

Now the question arises as to which of the many powerful algebraic properties of linear

codes are retained in weak flip codes.

Theorem 6.17 Consider a weak flip code C (M,n) and fix some codeword xm ∈ C (M,n).

If we add this codeword to all codewords in C (M,n), then the resulting code C̃ (M,n) !
{

xm ⊕ x
∣
∣ ∀x ∈ C (M,n)

}

is still a weak flip code, however, it is not necessarily the same

one.

Proof: Let C (M,n) be according to Definition 6.4. We have to prove that









x1

x2
...

xM









⊕









xm

xm

...

xm









=












x1 ⊕ xm

...

xm ⊕ xm = 0
...

xM ⊕ xm












! C̃
(M,n) (6.17)

is a weak flip code. Let ci denote the column vectors of C (M,n). Then C̃ (M,n) has the

column vectors

c̃i =

{

ci if xm,i = 0,

c̄i if xm,i = 1,
(6.18)

for 1 ≤ i ≤ n. Since ci is a weak flip column, either wH(ci) =
⌊
M

2

⌋

and therefore

wH(c̄i) =
⌈
M

2

⌉

, or wH(ci) =
⌈
M

2

⌉

and therefore wH(c̄i) =
⌊
M

2

⌋

. So we only need to

interchange the first codeword of C̃ and the all-zero codeword in the mth row in C̃ (which

is always possible, see discussion after Definition 2.7), and we see that C̃ is also a weak

flip code.

Theorem 6.17 is a beautiful property of weak flip codes; however, it still represents a

considerable weakening of the powerful property of linear codes given in Proposition 6.15.

This can be fixed by considering the subfamily of fair weak flip codes.

26

6.1 Characteristics of Weak Flip Codes Chapter 6

Theorem 6.18 (Quasi-Linear Codes) Let C be a fair weak flip code and let xm ∈ C

be given. Then the code C̃ =
{

xm ⊕ x
∣
∣ ∀x ∈ C (M,n)

}

is equivalent to C .

Proof: We have already seen in Theorem 6.17 that adding a codeword will result in

a weak flip code again. In the case of a fair weak flip code, however, all possible candidate

columns will show up again with the same equal frequency. It only remains to rearrange

some rows and columns.

If we recall Proposition 6.16 and the discussion after it, we realize that the definition

of the quasi-linear fair weak flip code is a considerable enlargement of the set of codes

having the property given in Theorem 6.18.

The following corollary is a direct consequence of Theorem 6.18.

Corollary 6.19 The Hamming weights of each codeword of a fair weak flip code are all

identical except the all-zero codeword x1. In other words, if we let wH(·) be the Hamming

weight function, then

wH(x2) = wH(x3) = · · · = wH(xM). (6.19)

Before we next investigate the minimum Hamming distance for the quasi-linear fair

weak flip codes, we quickly recall an important bound that holds for any
(

M, n, d
)

code.

Lemma 6.20 (Plotkin Bound [13]) The minimum distance of an (M, n) binary code

C (M,n) always satisfies

dmin
(

C
(M,n)

)

≤









n·M2
M−1 M even,

n·M+1
2

M
M odd.

(6.20)

Proof: We show a quick proof. We sum the Hamming distance over all possible

pairs of two codewords apart from the codeword with itself:

M(M− 1) · dmin(C
(M,n)) ≤

∑

u∈C (M,n)

∑

v∈C (M,n)

v &=u

dH(u,v) (6.21)

=
n
∑

j=1

2bj · (M− bj) (6.22)

≤

{

n · M2

2 if M even (achieved if bj = M/2),

n · M2−1
2 if M odd (achieved if bj = (M± 1)/2).

(6.23)

Here in (A.33) we rearrange the order of summation: instead of summing over all code-

words (rows), we approach the problem column-wise and assume that the jth column of

C (M,n) contains bj zeros and M − bj ones: then this column contributes 2bj(M − bj) to

the sum.

Note that from the proof of Lemma 6.20 we can see that a necessary condition for

a codebook to meet the Plotkin-bound is that the codebook is composed by weak flip

27

Chapter 6 Flip Codes, Weak Flip Codes and Hadamard Codes

candidate columns. Furthermore, Levenshtein [13, Ch. 2] proved that the Plotkin bound

can be achieved, provided that Hadamard matrices exist.

Theorem 6.21 Fix some M and a blocklength n with n mod
(2#−1

#

)

= 0. Then a fair

weak flip code C (M,n) achieves the largest minimum Hamming distance among all codes of

given blocklength and satisfies

dmin
(

C
(M,n)

)

=
n · '

2'− 1
. (6.24)

Proof: ForM = 2', we know that by definition the Hamming weight of each column

of the codebook matrix is equal to '. Hence, when changing the sum from column-wise

to row-wise, where we can ignore the first row of zero weight (from the all-zero codeword

x1), we get

n · ' =
n
∑

j=1

wH(cj) =
2#
∑

m=2

wH(xm) (6.25)

=
2#
∑

m=2

dmin
(

C
(M,n)

)

(6.26)

= (2'− 1) · dmin
(

C
(M,n)

)

. (6.27)

Here, (B.42) follows from Theorem 6.18 and from Corollary 6.19. For M = 2' − 1, the

Hamming distance remains the same due to the fair construction.

It remains to show that a fair weak flip code achieves the largest minimum Hamming

distance among all codes of given blocklength. From Corollary 6.19 we know that (apart

from the all-zero codeword) all codewords of a fair weak flip code have the same Hamming

weight. So, if we flip an arbitrary 1 in the codebook matrix to become a 0, then the

corresponding codeword has a decreased Hamming weight and is therefore closer to the

all-zero codeword. If we flip an arbitrary 0 to become a 1, then the corresponding codeword

is closer to some other codeword that already has a 1 in this position. Hence, in both

cases we have reduced the minimum Hamming distance. Finally, based on the concept of

looking at the code in column-wise, it can be seen that whenever we change more than

one bit, we either get back to a fair weak flip code or to another code who is worse.

28

Chapter 7

Previous Work

7.1 SGB Bounds on the Average Error Probability

In [17], Shannon, Gallager, and Berlekamp derive upper and lower bounds on the average

error probability of a given code used on a DMC. We next quickly review their results.

Definition 7.1 For 0 < s < 1 we define

µα,β(s) ! ln
∑

y

PY |X(y|α)1−sPY |X(y|β)s. (7.1)

Therefore, the generalized µ(s) for blocklength n between xm and xm′ can be defined and

expressed in terms of (7.1) by

µ(s) ! ln
∑

y

PY|X(y|xm)1−sPY|X(y|xm′)s = n
∑

α

∑

β

qα,β(m,m′)µα,β(s), (7.2)

and the discrepancy D
(DMC)(m,m′) between xm and xm′ is defined as

D
(DMC)(m,m′) ! − min

0≤s≤1

∑

α

∑

β

qα,β(m,m′)µα,β(s) (7.3)

with qα,β(m,m′) given in Def. 2.9.

Note that the discrepancy is a generalization of the Hamming distance, however, it depends

strongly on the channel cross-over probabilities. We use a superscript “(DMC)” to indicate

the channel which the discrepancy refers to.

Definition 7.2 The minimum discrepancy D
(DMC)
min (C (M,n)) for a codebook is the mini-

mum value of D(DMC)(m,m′) over all pairs of codewords. The maximum minimum dis-

crepancy is the maximum value of D
(DMC)
min (C (M,n)) over all possible C (M,n) codebooks:

maxC (M,n) D
(DMC)
min (C (M,n)).

29

Chapter 7 Previous Work

Theorem 7.3 (Lower Bounds to Conditional Error Probability [17]) If xm and

xm′ are pair of codewords in a code of blocklength n, then either

λm >
1

4
exp−n

[

D
(DMC)(m,m′) +

√

2

n
ln (1/Pmin)

]

(7.4)

or

λm′ >
1

4
exp−n

[

D
(DMC)(m,m′) +

√

2

n
ln (1/Pmin)

]

, (7.5)

where Pmin is the smallest nonzero transition probability for the channel.

Conversely, one can also show that

λm ≤ (M− 1) exp−n
(

D
(DMC)
min

(

C
(M,n)

)
)

, for all m. (7.6)

Theorem 7.4 (SGB Bounds on Average Error Probability [17]) For an arbitrary

DMC, the average error probability Pe
(

C (M,n)
)

of a given code C (M,n) with M codewords

and blocklength n is upper- and lower-bounded as follows:

1

4M
e
−n

(

D
(DMC)
min (C (M,n))+

√

2
n
log 1

Pmin

)

≤ Pe
(

C
(M,n)

)

≤ (M− 1)e−nD
(DMC)
min (C (M,n)) (7.7)

where Pmin denotes the smallest nonzero transition probability of the channel.

Note that these bounds are specific to a given code design (via D
(DMC)
min). Therefore, the

upper bound is a generally valid upper bound on the optimal performance, while the lower

bound only holds in general if we apply it to the optimal code or to a suboptimal code

that achieves the optimal Dmin.

The bounds (7.7) are tight enough to derive the error exponent of the DMC (for a

fixed number M of codewords).

Theorem 7.5 ([17]) The error exponent of a DMC for a fixed number M of codewords

EM ! lim
n→∞

max
C (M,n)

{

−
1

n
logPe

(

C
(M,n)

)
}

(7.8)

is given as

EM = lim
n→∞

max
C (M,n)

D
(DMC)
min

(

C
(M,n)

)

. (7.9)

Unfortunately, in general the evaluation of the error exponent is very difficult. For some

cases, however, it can be done. For example, for M = 2, we have

E2 = max
C (2,n)

D
(DMC)
min

(

C
(2,n)

)

= max
α,β

{

− min
0≤s≤1

µα,β(s)

}

. (7.10)

Also for the class of so-called pairwise reversible channels, the calculation of the error

exponent turns out to be uncomplicated.

30

7.2 Gallager Bound Chapter 7

Definition 7.6 A pairwise reversible channel is a DMC that has µ′
α,β(

1
2) = 0 for any

inputs α,β.

Clearly, the BSC and BEC are pairwise reversible channels.

Note that it is easy to compute the pairwise discrepancy of a linear code on a pairwise

reversible channel, so linear codes are quite suitable for computing (7.7).

Theorem 7.7 ([17]) For pairwise reversible channels with M > 2,

EM =
1

M(M− 1)
max
Mx s.t.

∑

x Mx=M

∑

all input
letters x

∑

all input
letters x′

MxMx′

·

(

− ln
∑

y

√

PY |X(y|x)PY |X(y|x′)

)

(7.11)

where Mx denotes the number of times the channel input letter x occurs in a column.

Moreover, EM is achieved by fair weak flip codes.6

We would like to emphasize that while Shannon et al. proved that fair weak flip codes

achieve the error exponent, they did not investigate the error performance of fair weak

flip codes for finite n. As we will show later, fair weak flip might be strictly suboptimal

codes for finite n (see also [18]).

7.2 Gallager Bound

Another famous bound is by Gallager [6].

Theorem 7.8 ([6]) For an arbitrary DMC, there exists a code C (M,n) with M =
⌊

enR
⌋

such that

Pe
(

C
(M,n)

)

≤ e−nEG(R) (7.12)

where EG(·) is the Gallager exponent and is given by

EG(R) = max
Q(·)

max
0≤ρ≤1

{

E0(ρ, Q)− ρR
}

(7.13)

with

E0(ρ, Q) ! −log





∑

y

(

∑

x

Q(x)PY |X(y|x)
1

1+ρ

)1+ρ


 .

(7.14)
6While throughout we only consider binary inputs and M = 3 or M = 4, the definitions of our fair

weak flip codes can be generalized to nonbinary inputs and larger M. Also these generalized fair weak flip

codes will achieve the corresponding error exponents. Note that Shannon et al. did not actually name

their exponent-achieving codes.

31

Chapter 7 Previous Work

7.3 PPV Bounds for the BSC

In [2], Polyanskiy, Poor, and Verdú present upper and lower bounds on the optimal average

error probability for finite blocklength for the BSC. The upper bound is based on random

coding.

Theorem 7.9 (PPV Upper Bound [19, Theorem 2], [2, Theorem 32]) If the code-

book C(M,n) is created at random based on a uniform distribution, the expected average error

probability (averaged over all codewords and all codebooks) satisfies

E
[

Pe
(

C
(M,n)

)]

= 1− 2n−nM
n
∑

i=0

(
n

i

)

εi(1− ε)n−i

·






M−1
∑

m=0

1

m+ 1

(
M− 1

m

)(
n

i

)m




n
∑

j=i+1

(
n

j

)




M−1−m



 .

(7.15)

Note that there must exist a codebook whose average error probability achieves (7.15),

so Theorem 7.9 provides a general achievable upper bound, although we do not know its

concrete code structure.

Polyanskiy, Poor, and Verdú also provide a new general converse for the average error

probability: the so-called meta-converse, which is based on binary hypothesis testing. For

a BSC, the meta-converse lower bound happens to be equivalent to Gallager’s sphere-

packing bound.

Theorem 7.10 (PPV Lower Bound [6, p. 163, Eq. (5.8.19)], [2, Theorem 35]) Any

codebook C (M,n) satisfies

Pe
(

C
(M,n)

)

≥

(
(
n

N

)

−
1

M

M
∑

m=1

Am,N

)

εN(1− ε)n−N

+
n
∑

j=N+1

(
n

j

)

εj(1− ε)n−j (7.16)

where for m ∈ {1, . . . ,M} and for j ∈ {1, . . . ,N− 1, N+ 1, . . . , n}

Am,j =







(
n
j

)

0 ≤ j ≤ N− 1

0 N+ 1 ≤ j ≤ n
(7.17)

and where the positive integer N and coefficients Am,N are chosen such that

M

N−1
∑

j=0

Am,j +
M
∑

m=1

Am,N = 2n (7.18)

0 <
M
∑

m=1

Am,N ≤ M

(
n

N

)

. (7.19)

32

7.4 PPV Bounds for the BEC Chapter 7

7.4 PPV Bounds for the BEC

In [2], Polyanskiy, Poor, and Verdú present upper and lower bounds on the optimal average

error probability for finite blocklength for the BEC. The upper bound is based on random

coding.

Theorem 7.11 For the BEC with crossover probability δ, the average error probability

for an random code is given by

E
[

Pe
(

C
(M,n)

)
]

= 1−
n
∑

j=0

(
n

j

)

(1− δ)jδn−j
M−1
∑

#=0

1

'+ 1

(
M− 1

'

)

(2−j)#(1− 2−j)M−1−#. (7.20)

Note that there must exist a codebook whose average error probability achieves (C.16),

so Theorem 7.11 provides a general achievable upper bound, although we do not know its

concrete code structure.

Polyanskiy, Poor, and Verdú also provide a new general converse for the average error

probability for a BEC.

Theorem 7.12 For the BEC with erasure probability δ, the average error probability of a

C (M,n) code satisfies

Pe
(

C
(M,n)

)

≥
n
∑

#=*n−log2 M++1

(
n

'

)

δ#(1− δ)n−#

(

1−
2n−#

M

)

. (7.21)

Note that this lower bound is not derived by the method: meta-converse, it is from

other technique.

33

Chapter 8

Analysis of the BAC

We start with results that hold for the general BAC. In this section we will restrict ourselves

to two codewords M = 2. One can show that the BAC is a pairwise reversible channel,

however, in this analysis we do not focus on its bounds on its performance, but put a

special emphasis on the optimal code design.

8.1 Optimal Codes

Theorem 8.1 Consider a BAC and a blocklength n. Then, irrespective of the channel

parameters ε0 and ε1, there exists a choice of t, 0 ≤ t ≤
⌊
n
2

⌋

, such that the flip code of

type t, C
(2,n)
t , is optimal in the sense that it minimizes the average error probability.

Proof: Consider an arbitrary code with M = 2 codewords and a blocklength n+ j,

and assume that this code is not a flip code, but that it has a number j of positions where

both codewords have the same symbol. An optimal decoder will ignore these j positions

completely. Hence, the performance of this code will be identical to a flip code of length n.

Now, change this code in the j positions with identical symbol such that the code becomes

a flip code. If we use a suboptimal decoder that ignores these j positions we still keep the

same performance. However, an ML decoder can potentially improve the performance,

i.e., we have

Pe
(

C
(M,n+j)
not flip

)

ML decoder
= Pe

(

C
(M,n+j)
flip

)

suboptimal decoder
(8.1)

≥ Pe
(

C
(M,n+j)
flip

)

ML decoder
. (8.2)

An alternative proof is shown in Appendix A.3. While this proof is more elaborate, it

turns out to be very useful for the derivation of Theorem 8.3.

This result is intuitively very pleasing because it seems to be a rather bad choice to

have two codewords with the same symbol in a particular position, i.e., x1,j = x2,j = 0 in

the same position j. However, note that the theorem does not exclude the possibility that

another code might exist that also is optimal and that has an identical symbol in both

codewords at a given position.

34

8.2 The Optimal Decision Rule for Flip Codes Chapter 8

We would like to point out that the exact choice of t is not obvious and depends

strongly on n, ε0, and ε1. As an example, the optimal choices of t are shown in Fig. 8.6 for

n = 7. We see that depending on the channel parameters, the optimal value of t changes.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 2, n = 7

t = 0

t = 1

t = 2

t = 3

ε0

ε 1

Figure 8.6: Optimal codebooks on a BAC: the optimal choice of the parameter t for

different values of ε0 and ε1 for a fixed blocklength n = 7.

Note that for a completely noisy channel (ε1 = 1 − ε0), the choice of t is irrelevant since

the probability of error is 1
2 for any code. Moreover, in Theorem 9.1 it will be shown that

the flip codes of type 0 is optimal on the ZC; and in Theorem 10.1 it will be shown that

the flip codes are optimal on the BSC for any choice of t. We defer the exact treatment

of the ZC and the BSC to Chapter 9 and 10, respectively.

8.2 The Optimal Decision Rule for Flip Codes

Having only two codewords, the ML decision rule can be expressed using the log-likelihood

ratio (LLR). For the flip code of type t, C
(2,n)
t (see Def. 6.1), the LLR is given as

log

(

Pn
Y |X(y|x1)

Pn
Y |X(y|x2)

)

35

Chapter 8 Analysis of the BAC

= log





(
ε0

1−ε0

)d01(x1,y)(ε1
1−ε0

)d10(x1,y)

(
ε0

1−ε0

)t−d10(x1,y)(ε1
1−ε0

)n−t−d01(x1,y)

·

(
1−ε1
1−ε0

)t−d10(x1,y)

(
1−ε1
1−ε0

)d01(x1,y)



 (8.3)

=
(

t− d01(x1,y)− d10(x1,y)
)

log

(
1− ε1
ε0

)

+
(

n− t− d01(x1,y)− d10(x1,y)
)

log

(
1− ε0
ε1

)

(8.4)

= (t− d) log

(
1− ε1
ε0

)

+ (n− t− d) log

(
1− ε0
ε1

)

(8.5)

! LLR(n)
t (ε0, ε1, d) (8.6)

where we have defined

d ! d01(x1,y) + d10(x1,y) = dH(x1,y) (8.7)

to be the Hamming distance of the received sequence to the first codeword.

Hence we now express the ML decision rule for the flip code of type t as

LLR(n)
t (ε0, ε1, d)

{

≥ 0 =⇒ g(y) = 1,

< 0 =⇒ g(y) = 2.
(8.8)

Recall that ε0 and ε1 are parameters describing the channel (BAC), t and n describe

the codebook (flip code C
(2,n)
t), and 0 ≤ d ≤ n describes the received vector y (with

respect to the first codeword). As an example, Fig. 8.7 depicts the log-likelihood ratio

LLR(n)
t (ε0, ε1, d) as a function of ε0 (with ε1 = 1− 2ε0) for the flip code C

(2,n)
1 in the cases

of n = 6 and n = 7. We see that for some integer ', LLR(n)
t (ε0, ε1, d) is always larger than

0 for d ≤ ' and smaller than 0 for d > '.

More properties of LLR(n)
t (ε0, ε1, d) are summarized in Appendix A.2.

From Prop. A.1 in Appendix A.2, it follows directly that the ML decision rule for a

flip code is a threshold rule, i.e., there exists an integer ' such that for d ≤ ', the received

vector y is decoded to x1, and for d > ', y is decoded to x2.

Corollary 8.2 (Threshold Rule) For every flip code C
(2,n)
t and every BAC (ε0, ε1) ∈ Ω,

there exists a threshold ', t ≤ ' ≤
⌊
n−1
2

⌋

, such that the ML decision rule can be stated as

g(y) =

{

1 if 0 ≤ d ≤ '

2 if '+ 1 ≤ d ≤ n.
(8.9)

The threshold ' depends on (ε0, ε1). The region of channel parameters with identical thresh-

old ' (for given n and t) is then defined as follows:

Ω(n)
#,t !

{

(ε0, ε1) : LLR
(n)
t (ε0, ε1, ') ≥ 0 and

LLR(n)
t (ε0, ε1, '+ 1) ≤ 0

}

. (8.10)

36

8.3 Best Codes for a Fixed Decision Rule Chapter 8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−5

−4

−3

−2

−1

00

1

2

3

4

5

L
L
R

(n
)

t
(ε

0
,1

−
2ε

0
,d
)

ε0

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

Ω(7)
'=2,t=1

Figure 8.7: The log-likelihood ratio LLR(n)
t (ε0, ε1 = 1 − 2ε0, d) for C

(2,n)
1 (i.e., t = 1) as

a function of ε0 for different values of d. The solid blue lines correspond to n = 7, the

dashed red lines to n = 6. Observe that for n = 7 and ε0 ∈ [0.136, 0.270] (i.e., the region

between the two vertical purple lines), the threshold for the optimal ML decision rule is

' = 2, see Cor. 8.2.

8.3 Best Codes for a Fixed Decision Rule

Our original goal was to find the optimal code for a given channel (ε0, ε1). We have shown

that this is equivalent in finding an optimal t. Unfortunately, this search is difficult because

the borders between the regions of different optimal t (see, e.g., Fig. 8.6) are defined by

the combined influences of two different forces: when varying (ε0, ε1), either the optimal

code C
(2,n)
t changes, but the optimal threshold ' remains the same, or the optimal choice

of ' changes, too. Hence, a joint optimization of t and ' is necessary.

We now simplify the problem by fixing the decision rule (i.e., the threshold ') and then

search for the best code C
(2,n)
t for the given threshold ' and the given channel (ε0, ε1). This

turns out to be easier, but unless we happen to have chosen the optimal ' for the given

BAC (ε0, ε1), this will result in a suboptimal solution.

We start with the following interesting result that has some important consequences.

37

Chapter 8 Analysis of the BAC

Theorem 8.3 Fix a blocklength n, a code parameter 0 ≤ t ≤
⌊
n
2

⌋

, and a decision rule

threshold '. Then the roots (ε0, ε1) of

2P (#)
e

(

C
(2,n)
t

)

− 2P (#)
e

(

C
(2,n)
t+1

)

= 0 (8.11)

are identical to the roots of

LLR(n−1)
t (ε0, ε1, ') = 0 (8.12)

where P (#)
e
(

C
(2,n)
t

)

denotes the error probability of code C
(2,n)
t decoded under the decision

threshold '. Moreover, for a fixed ε0 ∈ Ω, there exists at most one ε1 ∈ Ω such that (8.11)

holds; and for a fixed ε1 ∈ Ω, there exists at most one ε0 ∈ Ω such that (8.11) holds. This

means that if (8.11) has a solution, then this solution is unique for a fixed ε0 or ε1.

Proof: See Appendix A.4.

Using Theorem 8.3 and Prop. A.1, we can now state conditions on t such that C
(2,n)
t

is best under a fixed decision rule '.

Corollary 8.4 Fix a blocklength n and a decision rule '. Then the flip code of type t,

C
(2,n)
t , is best for a fixed decision rule ' if, and only if, (ε0, ε1) belongs to

{

(ε0, ε1) : LLR
(n−1)
t (ε0, ε1, ') > 0 and

LLR(n−1)
t−1 (ε0, ε1, ') < 0

}

. (8.13)

If the region is empty, then t is not best for any channel.

Proof: From (A.47) in the proof of Theorem 8.3 in Appendix A.4 and from as-

sumption (3.1) it follows that

LLR(n−1)
t (ε0, ε1, ') > 0 ⇐⇒ P (#)

e

(

C
(2,n)
t

)

< P (#)
e

(

C
(2,n)
t+1

)

.

(8.14)

As we know from Prop. A.1 that LLR(n−1)
t (ε0, ε1, ') is increasing in t, this means that if

both (8.14) and

LLR(n−1)
t−1 (ε0, ε1, ') < 0 (8.15)

are satisfied, the code C
(2,n)
t is best for the given channel (ε0, ε1), for the given blocklength

n, and for the fixed decision rule '.

We illustrate Cor. 8.4 by an example. We fix n = 7, ' = 2, ε1 = 0.5, and let ε0 increase

from 0 to min{ε1, 1− ε1} = 0.5, see Fig. 8.8. Starting with t = 3, we check that

LLR(6)
2 (ε0, 0.5, 2) > 0 (8.16)

for all ε0, i.e., P
(#)
e
(

C
(2,7)
2

)

< P (#)
e
(

C
(2,7)
3

)

. Next, we check t = 2:

LLR(6)
1 (ε0, 0.5, 2) < 0 (8.17)

38

8.3 Best Codes for a Fixed Decision Rule Chapter 8

for small ε0, i.e., the code C
(2,7)
2 is best for those ε0. When increasing ε0, as soon as

LLR(6)
1 (ε0, 0.5, 2) = 0, there is a change and C

(2,7)
1 becomes best. Further increasing

ε0 while keeping t = 1 then finally reveals the last change that happens at the root of

LLR(6)
0 (ε0, 0.5, 2). So there are three best codes for (ε0, 0.5) ∈ Ω:

• C
(2,7)
2 is best in

{

ε0 : LLR
(6)
2 (ε0, 0.5, 2) > 0 and LLR(6)

1 (ε0, 0.5, 2) < 0
}

;

• C
(2,7)
1 is best in

{

ε0 : LLR
(6)
1 (ε0, 0.5, 2) > 0 and LLR(6)

0 (ε0, 0.5, 2) < 0
}

;

• C
(2,7)
0 is best in

{

ε0 : LLR
(6)
0 (ε0, 0.5, 2) > 0

}

.

In Fig. 8.8 the error probabilities of the various flip codes are shown as a function of ε0.

The best choices of t for all values of (ε0, ε1) ∈ Ω for n = 7 and ' = 2 are shown in Fig. 8.9.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε0

P
(2

)
e
(

C
(2

,n
)

t

)

M = 2, n = 7, ' = 2, ε1 = 0.5

t = 0

t = 1

t = 2

t = 3

Figure 8.8: The error probabilities of all possible flip codes C
(2,n)
t as a function of the

channel parameter ε0, for a fixed blocklength n = 7, ε1 = 0.5, and a fixed decision rule

' = 2. For any ε0, the best code is the one with the smallest error probability value.

Cor. 8.4 shows that for a fixed decision rule ', the choice of the best code parameter

t depending on the given parameters n, ε0, and ε1 is much easier than the choice of the

jointly optimal t and ' for a globally optimal code. In particular, we have the following

regular structure.

39

Chapter 8 Analysis of the BAC

Corollary 8.5 Fix a blocklength n and a decision rule ', and consider a BAC. If we

increase ε0 or decrease ε1, then the best value of t is nonincreasing.

More sloppily we can say that when we are moving inside of Ω (see Fig. 3.2) to the right

or downwards, the best t will either remain the same or be reduced by 1. This means that

the picture of the regions of best codes is much more regular without seemingly random

jumps between different t. For an illustration compare the best codes for a fixed decision

rule ' = 2 in Fig. 8.9 with the corresponding globally optimal regions of Fig. 8.6.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 2, n = 7, ' = 2

t = 0

t = 1

t = 2

ε0

ε 1

LLR(6)
0 (ε0, ε1, 2) = 0

LLR(6)
1 (ε0, ε1, 2) = 0

Figure 8.9: Best codebooks on a BAC for a fixed decision rule: for all possible (ε0, ε1) this

plot shows the best choice of the code parameter t. The blocklength is n = 7 and the

decision rule is ' = 2.

Even more importantly, Theorem 8.3 also allows us to locate the exact location of

some of the boundaries between the different areas of globally optimal codes (Fig. 8.6).

Corollary 8.6 Consider the boundary between two areas of globally optimal codes (as,

e.g., shown in Fig. 8.6). If the optimal decision rule on both sides of the boundary takes

the same value ' and if the optimal code on the left is t+1, while the optimal code on the

right is t, then this boundary is identical to a corresponding boundary in the situation with a

fixed decision rule '. In particular, this boundary is given by the roots of LLR(n−1)
t (ε0, ε1, ').

40

8.3 Best Codes for a Fixed Decision Rule Chapter 8

We again show the example of n = 7 from Fig. 8.6: in Fig. 8.10 the same plot is shown

including a boundary that is identical to a boundary given in Fig. 8.9.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 2, n = 7

t = 0

t = 1

t = 2

t = 3

ε0

ε 1

LLR(6)
0 (ε0, ε1, 2) = 0

Figure 8.10: Globally optimal codebooks on a BAC for a blocklength n = 7 (identical to

Fig. 8.6). The shown boundary between t = 1 and t = 0 is identical to the corresponding

boundary given in Fig. 8.9, where a fixed decision rule ' = 2 has been assumed.

We also would like to point out that the results for a given fixed decision rule simplify

the search for a globally optimal code considerably. It can be summarized by the following

algorithm.

Step 0: Fix a channel (ε0, ε1) and find the best t under the fixed decision rule ' = 0 and

its corresponding error probability p ! P (0)
e
(

C
(2,n)
t

)

. Then set ' ! 1.

Step 1: Find the best ttemp under a fixed decision rule ' and the corresponding error

probability P (#)
e
(

C
(2,n)
ttemp

)

.

Step 2: Check whether P (#)
e
(

C
(2,n)
ttemp

)

< p. If yes, set t ! ttemp and p ! P (#)
e
(

C
(2,n)
ttemp

)

.

Step 3: If ' <
⌊
n−1
2

⌋

, ' → ' + 1 and return to Step 1. Otherwise put out t (describing

the optimal code) and p (giving the minimum error probability).

41

Chapter 9

Analysis of the ZC

9.1 Optimal Codes with Two Codewords (M = 2)

Theorem 9.1 For a ZC and for any n ≥ 1, an optimal codebook with two codewords

M = 2 is the flip code of type 0, C
(2,n)
0 . It has an error probability

Pe
(

C
(2,n)
0

)

=
1

2
εn1 . (9.1)

Proof: Due to Theorem 8.1, we can restrict our search to flip codes of some type t,

C
(2,n)
t , i.e., x2 = x̄ is the flipped version of x1 = x.

For such a flip code, we observe that due to the peculiarity of the ZC that will never

flip a zero to a one, an error can only occur when the received vector is the all-zero vector

y = 0:

min
{

Pn
Y |X(y|x1), P

n
Y |X(y|x2)

}

=

{

0 if y &= 0

εmax{wH(x1)wH(x2)}
1 if y = 0.

(9.2)

This error probability is minimized if one of the codewords is the all-one codeword; hence,

C
(2,n)
0 is optimal.

Note the optimal code is linear. Moreover, from the proof it also follows that C
(2,n)
0 is

the unique optimal code.

9.2 Optimal Codes with Three or Four Codewords (M =

3, 4)

Before we describe how we addressing the optimal codes for a ZC, we can firstly show that

actually an optimal code must contain the all-zero vector 0 to be a codeword, this general

property for any number of codewords M is proved in Lemma B.1 in Appendix B.1. Next

we have shown that the optimal codes with theree or four codewords for a ZC can be

constructed by the weak flip codes of type (t2, t3).

42

9.2 Optimal Codes with Three or Four Codewords (M = 3, 4) Chapter 9

Theorem 9.2 For a ZC and for any n ≥ 2, an optimal codebook with three codewords

M = 3 or four codewords M = 4 is the weak flip code of type (t∗, 0), C
(M,n)
t∗,0 , with

t∗ !
⌊n

2

⌋

. (9.3)

Moreover, the optimal code achieves the average error probability

Pe
(

C
(M,n)
t∗,0

)

=

{
1
3

(

εt
∗

1 + εn−t∗

1

)

if M = 3
1
4

(

2εt
∗

1 + 2εn−t∗

1 − εn1
)

if M = 4.
(9.4)

Proof: See Appendix B.1.

Similar to the case of M = 2, we see that for M = 4 the optimal code given in

Theorem 9.2 is linear. Also note that from the discussion in Appendix B.1 it follows that

for even n, these linear codes are the unique optimal codes, while for odd n there are other

(also nonlinear) designs that achieve the same optimal performance.

It is remarkable that these optimal codes perform quite well even for a very short

blocklength. As an example, consider four codewords M = 4 of blocklength n = 10 that

are used over a ZC with ε1 = 0.3. The optimal average error probability is Pe
(

C
(4,10)
5,0

)

≈

2.43 · 10−3. If we increase the blocklength to n = 20, we already achieve an average

error probability Pe
(

C
(4,20)
10,0

)

≈ 5.90 · 10−6. The asymptotic behavior of the optimal error

probability for n going to infinity will be discussed in next section.

Next we will investigate the optimal code design from a new perspective: based on the

fact that we consider a DMC, i.e., a channel that is memoryless and stationary, we would

like to construct the codes recursively in the blocklength n.

We start with the following lemma.

Lemma 9.3 Fix some arbitrary integers M ≥ 2, n ≥ 1, and γ ≥ 1. Consider a DMC

and a code C (M,n) for this DMC with M codewords and blocklength n, and create a new

code C (M,n+γ) by appending γ arbitrary column vectors to the codebook matrix of C (M,n).

Then the average success probability of this new code cannot be smaller than the success

probability of the original code:

Pc
(

C
(M,n+γ)

)

≥ Pc
(

C
(M,n)

)

. (9.5)

Proof: For a given code C (M,n), the average success probability is given by

Pc
(

C
(M,n)

)

=
1

M

M
∑

m=1

∑

y(n)∈D(n)
m

PY|X
(

y(n)
∣
∣x(n)

m

)

. (9.6)

Now we consider the new codebook C (M,n+γ), which is formed by appending γ columns to

the original codebook matrix of C (M,n). For convenience, we express the new codewords

by

x(n+γ)
m =

[

x(n)
m x(γ)

m

]

(9.7)

!
(

xm,1 xm,2 · · · xm,n xm,n+1 · · · xm,n+γ

)

(9.8)

43

Chapter 9 Analysis of the ZC

and likewise the extended received vector by

y(n+γ) =
[

y(n) y(γ)
]

!
(

y1 y2 · · · yn+γ

)

. (9.9)

Assume that a length-n received vector y(n) is in the mth decoding region, y(n) ∈ D(n)
m .

According to the ML decoding rule, a corresponding new received vector y(n+γ) will change

to another decoding region D(n+γ)
m′ if

PY|X

(
[

y(n) y(γ)
]
∣
∣
∣

[

x(n)
m′ x(γ)

m′

]
)

PY|X

(
[

y(n) y(γ)
]
∣
∣
∣

[

x(n)
m x(γ)

m

]
) ≥ 1. (9.10)

Obviously, if no extended received vectors change its original decoding region from its

length-n counterpart, then

Pc
(

C
(M,n+γ)

)

=
1

M

M
∑

m=1






∑

y(n)∈D(n)
m

PY|X
(

y(n)
∣
∣x(n)

m

)

·
∑

y(γ)∈Yγ

PY|X
(

y(γ)
∣
∣x(γ)

m

)

︸ ︷︷ ︸

=1




 (9.11)

= Pc
(

C
(M,n)

)

(9.12)

where Y denotes the output alphabet. However, if some y(n+γ) change its original decoding

region of blocklength n, the new success probability will be

Pc
(

C
(M,n+γ)

)

= Pc
(

C
(M,n)

)

+
1

M

M
∑

m=1

∑

y(n+γ)

s.t. y(n)∈D(n)
m

but y(n+γ)∈D(n+γ)

m′

(

PY|X

(

y(n+γ)
∣
∣
∣x

(n+γ)
m′

)

− PY|X
(

y(n+γ)
∣
∣x(n+γ)

m

)
)

(9.13)

! Pc
(

C
(M,n)

)

+∆Ψ
(

C
(M,n+γ)

)

. (9.14)

The proof of Lemma 9.3 is completed by noting from (9.10) that ∆Ψ
(

C (M,n+γ)
)

is always

nonnegative.

Definition 9.4 The term ∆Ψ
(

C (M,n+γ)
)

in (9.14) is called total probability increase for

a step-size γ and describes the amount by which the average success probability of the code

C (M,n) grows when γ column vectors are appended to its codebook matrix.

Lemma 9.5 For a ZC, for any n ≥ 2, and for 1 ≤ t ≤
⌊
n
2

⌋

, consider the weak flip code of

type (t, 0) with four codewords M = 4, C
(4,n)
t,0 , and append a column to the codebook matrix

44

9.2 Optimal Codes with Three or Four Codewords (M = 3, 4) Chapter 9

to create a new code of length n + 1. Then the total probability increase is maximized if,

among all possible 24 = 16 columns, we choose c(4)2 . If t <
⌊
n
2

⌋

, or if n is odd and t =
⌊
n
2

⌋

,

then this choice is unique.

For M = 3, appending c(3)2 or c(3)3 to C
(3,n)
t,0 is equally optimal.

Proof: See Appendix B.2.

We would like to point out that the codes C
(4,n)
t,0 can be seen as double-flip codes

consisting of the combination of the (two-codeword) flip code of type 0 with the (two-

codeword) flip code of type t > 0:

C
(4,n)
t,0 =








x1

x2

x3

x4








=








0

x

x̄

1








(9.15)

with x and x̄ defined in (6.1).

From the recursive technique that we have used in the derivation of Lemma 9.5 and

that is based on the addition of columns to the codebook matrix, it immediately follows

that our optimal codes can be constructed recursively in n. Concretely, we have the

following corollary.

Corollary 9.6 The optimal codebooks defined in Theorem 9.2 for M = 3 and M = 4 can

be constructed recursively in the blocklength n by adding a column that yields the maximum

total probability increase. We start with an optimal codebook for n = 2:

C
(M,2)∗
ZC =

(

c(M)
1 c(M)

2

)

. (9.16)

Then, we recursively construct the optimal codebook for n ≥ 3 by using C
(M,n−1)∗
ZC and

appending

{

c(M)
1 if n mod 2 = 1

c(M)
2 if n mod 2 = 0.

(9.17)

Proof: We only need to show that the constructed codes from (9.17) are equivalent

to the optimal codes given in Theorem 9.2. The optimal code for M = 4 and n = 2 is

trivial and given by (9.16). Next assume that for blocklength n, C
(4,n)

,n
2 -,0

is optimal. From

Lemma 9.5 we know that the largest total probability increase is achieved when adding

column c(4)2 . Now note that for n even with t = n
2 , adding the column c(4)2 to the code

C
(4,n)
n
2 ,0

will result in a code that is equivalent to C
(4,n+1)

,n+1
2 -,0

: we only need to exchange the

roles of the second and third codeword and then re-order the columns. For n odd with

t =
⌊
n
2

⌋

, adding the column c(4)2 to the code C
(4,n)

,n
2 -,0

results in C
(4,n+1)
n+1
2 ,0

.

Hence, we see that C
(4,n+1)

,n+1
2 -,0

is still optimal. The claim now follows by induction in n.

The case with three codewords M = 3 can be proved in a similar manner.

45

Chapter 9 Analysis of the ZC

Note that we have actually proven that any codebook consisting of n − t∗ columns

c(3)1 and t∗ columns arbitrarily chosen from c(3)2 or c(3)3 is optimal on a ZC (see the main

discussion in Appendix B.1).

We conclude this section by a remark. While it is very intuitive to construct the codes

recursively, i.e., to start from an optimal code for n and then to add one column that

maximizes the total probability increase, unfortunately, from a proof perspective, such a

recursive construction only guarantees local optimality: one still needs a proof (Thm. 9.2)

that the achieved code of blocklength n+ 1 is globally optimum.

9.3 Error Exponents

Since the ZC is not pairwise reversible, the error exponents for M = 3 or M = 4 codewords

were previously unknown. Using that for the optimal code C
(M,n)
t∗,0 we have

D
(ZC)
min

(

C
(M,n)
t∗,0

)

=

{

−1
2 log ε1 if n mod 2 = 0

−
*n
2 +
n log ε1 if n mod 2 = 1

(9.18)

and

D
(ZC)
min

(

C
(M,n)

*n+1
3 +,*n

3 +

)

=











−1
3 log ε1 if n mod 3 = 0

−
*n
3 ++1
n log ε1 if n mod 3 = 1

−
*n
3 ++1
n log ε1 if n mod 3 = 2

(9.19)

we can now compute them:

E3 = E4 = −
1

2
log ε1. (9.20)

9.4 Application to Known Bounds on the Error Probability

for a Finite Blocklength

Since we now know the optimal code structure and its performance, it is interesting to

compare it to the known bounds introduced in Section 7.1. Fig. 9.11 and Fig. 9.12 compare

some SGB bounds and the Gallager bound with the exact performance of the optimal code

(for M = 3 and M = 4 codewords, respectively). Besides the Gallager bound, we plot

the SGB lower bound based on the optimal code structure (thereby making sure that this

lower bound is valid generally), and we show two SGB upper bounds: one that is based on

the optimal code design and one that is based on the fair weak flip code used by Shannon

et al.

We see that the SGB upper bound that is based on the optimal code is quite close

to the exact performance, in particular, it exhibits the correct error exponent. The SGB

upper bound that is based on the fair weak flip code, on the other hand, does not achieve

the error exponent (which can be expected because the ZC is not pairwise reversible).

Also the Gallager bound does not achieve the correct exponential behavior. The SGB

lower bound is quite loose.

46

9.4 Application to Known Bounds on the Error Probability for a Finite
Blocklength Chapter 9

0 5 10 15 20 25 30 35 40 45 50
11

−20

11
−18

11
−16

11
−14

11
−12

11
−10

11
−8

11
−6

11
−4

11
−2

11
−0

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

SGB upper bound for t2=t∗, t3=0

Optimal (exact, t2=t∗, t3=0)

SGB lower bound for t2=t∗, t3=0

Figure 9.11: Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the ZC with ε1 = 0.3 as a function of the blocklength n.

47

Chapter 9 Analysis of the ZC

0 5 10 15 20 25 30 35 40 45 50
11

−20

11
−18

11
−16

11
−14

11
−12

11
−10

11
−8

11
−6

11
−4

11
−2

11
−0

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

SGB upper bound for t2=t∗, t3=0

Optimal (exact, t2=t∗, t3=0)

SGB lower bound for t2=t∗, t3=0

Figure 9.12: Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the ZC with ε1 = 0.3 as a function of the blocklength n.

48

9.5 Conjectured Optimal Codes with Five Codewords (M = 5) Chapter 9

9.5 Conjectured Optimal Codes with Five Codewords (M =

5)

The idea of designing an optimal code recursively promises to be a very powerful approach.

Unfortunately, for larger values of M, we might need a recursion from n to n + γ with a

step-size γ > 1. In the following we conjecture an optimal code construction for a ZC in

the case of five codewords M = 5 with a different recursive design for n odd and n even

(i.e., with a step-size γ = 2).

We define the following five weak flip column vectors:

















c(5)1 !










0

0

0

1

1










, c(5)2 !










0

0

1

0

1










, c(5)3 !










0

1

0

0

1










,

c(5)4 !










0

0

1

1

1










, c(5)5 !










0

1

0

1

1


























. (9.21)

An optimal code can be constructed recursively for even n in the following way. We start

with an optimal codebook for n = 8:

C
(5,8)∗
ZC =

(

c(5)1 c(5)2 c(5)3 c(5)1 c(5)2 c(5)3 c(5)4 c(5)5

)

.

(9.22)

Then we recursively construct the optimal codebook for n ≥ 10, n even, by using C
(5,n−2)∗
ZC

and appending
























(

c(5)4 c(5)5

)

if n mod 10 = 0
(

c(5)1 c(5)2

)

if n mod 10 = 2
(

c(5)1 c(5)3

)

if n mod 10 = 4
(

c(5)3 c(5)4

)

if n mod 10 = 6
(

c(5)2 c(5)5

)

if n mod 10 = 8.

(9.23)

For n odd, we start with the length-9 code

C
(5,9)∗
ZC =

(

c(5)1 c(5)2 c(5)3 c(5)4 c(5)5 c(5)1 c(5)2

c(5)1 c(5)3

)

(9.24)

and recursively construct the optimal codebook for n ≥ 11, n odd, by using C
(5,n−2)∗
ZC and

49

Chapter 9 Analysis of the ZC

appending 























(

c(5)3 c(5)4

)

if n mod 10 = 1
(

c(5)2 c(5)5

)

if n mod 10 = 3
(

c(5)4 c(5)5

)

if n mod 10 = 5
(

c(5)1 c(5)2

)

if n mod 10 = 7
(

c(5)1 c(5)3

)

if n mod 10 = 9.

(9.25)

Note that the recursive structure in (9.23) and (9.25) is actually identical apart from the

ordering. Also note that when increasing the blocklength by 10, we add each of the five

column vectors in (A.5) exactly twice. For n < 10 the optimal code structure goes through

some transient states.

50

Chapter 10

Analysis of the BSC

10.1 Optimal Codes with Two Codewords (M = 2)

Theorem 10.1 For a BSC and for any n ≥ 1, an optimal codebook with two codewords

M = 2 is the flip code of type t for any t ∈
{

0, 1, . . . ,
⌊
n
2

⌋}

.

Proof: From Theorem 8.1 we already know that there must exist a flip code that is

optimal. Moreover, Theorem 8.1 also shows that the all-zero and the all-one column in a

codebook matrix is strictly suboptimal. So, we only have two possible choices of candidate

columns: (0 1)T and (1 0)T. However, by the symmetry of a BSC, both columns will result

in an identical performance. Therefore every flip code has the same performance, i.e., all

of them must be optimal.

10.2 Optimal Codes with Three or Four Codewords (M =

3, 4)

Unlike in the case of a ZC, for a BSC it is not easy to derive the exact average error

probability expressed only by the candidate column parameters ti. So instead we use the

idea of a recursive code construction that guarantees largest total probability increase.

Theorem 10.2 For a BSC with arbitrary crossover probability 0 ≤ ε < 1
2 , the optimal

code for n = 2 is

C
(M,2)∗
BSC =

(

c(M)
1 c(M)

2

)

. (10.1)

If we recursively construct a locally optimal codebook for n ≥ 3 by using C
(M,n−1)∗
BSC and

appending a new column, the total probability increase is maximized by the following choice

of appended columns:










c(M)
1 if n mod 3 = 0

c(M)
3 if n mod 3 = 1

c(M)
2 if n mod 3 = 2.

(10.2)

51

Chapter 10 Analysis of the BSC

Proof: See Appendix C.1.

While Theorem 10.2 only guarantees optimality under the condition that the optimal

code can be constructed recursively, much points to that the given construction indeed is

optimum.

Theorem 10.3 For a BSC and for any n ≥ 2, an optimal codebook with three codewords

M = 3 or a linear optimal codebook with four codewords M = 4 is the weak flip code of

type (t∗2, t
∗
3), C

(M,n)
t∗2,t

∗
3

, where

t∗2 !
⌊
n+ 1

3

⌋

, t∗3 !
⌊
n− 1

3

⌋

. (10.3)

Using the shorthands

k !
⌊n

3

⌋

, p !
(

ε

1− ε

)

< 1 (10.4)

the code parameters of these optimal codes can be written as

[t∗1, t
∗
2, t

∗
3] =











[k + 1, k, k − 1] if n mod 3 = 0

[k + 1, k, k] if n mod 3 = 1

[k + 1, k + 1, k] if n mod 3 = 2.

(10.5)

Furthermore, the exact average success probability can be derived recursively in blocklength

n, starting with

3Pc(C
(3,2)∗
BSC) = (1− ε)2 · (3 + p). (10.6)

Then

3Pc
(

C
(3,n)
t∗2,t

∗
3

)

= 3Pc
(

C
(3,n−1)
t∗2,t

∗
3

)

+
k−1
∑

a3=0

a3∑

a2=0

(
k

a1 = a2

)(
k

a2

)(
k − 1

a3

)

·(1− ε)n
(

p2k−1−a3 − p2k−a3
)

if n = 3k (10.7)

3Pc
(

C
(3,n)
t∗2,t

∗
3

)

= 3Pc
(

C
(3,n−1)
t∗2,t

∗
3

)

+
k
∑

a2=1

a2∑

a1=1

(
k + 1

a1

)(
k

a2

)(
k − 1

a3 = a1 − 1

)

·(1− ε)n
(

p2k−a2 − p2k+1−a2
)

if n = 3k + 1 (10.8)

3Pc
(

C
(3,n)
t∗2,t

∗
3

)

= 3Pc
(

C
(3,n−1)
t∗2,t

∗
3

)

+
k+1
∑

a1=1

a1−1
∑

a3=0

(
k + 1

a1

)(
k

a2 = a3

)(
k

a3

)

·(1− ε)n
(

p2k+1−a1 − p2k+2−a1
)

if n = 3k + 2. (10.9)

52

10.3 Pairwise Hamming Distance Structure Chapter 10

While for M = 4 the exact average success probability is very similar to the case of M = 3.

In the above equations, am actually denotes the number of positions where the receive vector

differrs from those t∗m columns. These convenient notations will be useful in proving the

results (See (C.31)).”

Note that for M = 2, the optimal codes given in Theorem 10.1 can be linear or non-

linear. For M = 4, only the linear globally optimal codes in Theorem 10.3 is investigated.

However, due to the strong symmetry of the BSC, there also exist nonlinear codes with

the same optimal performance.

We also would like to point out the regularity of the code design in Theorem 10.2 that

repeats in n with a period of 3. For M = 5, we expect a similar behavior, but with a

period that is larger than 3.

Moreover, a closer inspection of the proof of Theorem 10.3 shows that when M = 3,

the received vector y farthest from the three codewords is

y = (1 · · · 1
︸ ︷︷ ︸

t∗1

1 · · · 1
︸ ︷︷ ︸

t∗2

0 · · · 0
︸ ︷︷ ︸

t∗3

), (10.10)

which corresponds to the optimal choice of the fourth linear codeword x4 when M = 4.

10.3 Pairwise Hamming Distance Structure

As already mentioned in Section 4.5, it is quite common in conventional coding theory to

use the minimum Hamming distance or the weight enumerating function (WEF) of a code

as a design and quality criterion [12]. This is motivated by the equivalence of Hamming

weight and Hamming distance for linear codes, and by the union bound that converts

the search for the global error probability into pairwise error probabilities. Since we are

interested in the globally optimal code design and the best performance achieved by an

ML decoder, we can neither use the union bound, nor can we a priori restrict our search

to linear codes. Note that for most values of M, linear codes do not even exist!7

We would like to come back to the example shown in Chapter 5 and further deepen our

analysis of the minimum Hamming distance of our optimal codes on the very symmetric

BSC. Although, as (4.16) shows, the error probability performance of a BSC is completely

specified by the Hamming distance between codewords and received vectors, we will now

demonstrate that a design based on the minimum Hamming distance can fail, even for the

very symmetric BSC and even for linear codes. In the case of a more general (and not

symmetric) BAC, this will be even more pronounced.

We compare the optimal codes given in Theorem 10.2 with the following different weak

7Interestingly, a subfamily of the weak flip codes can be shown to have many linear-like properties. For

more details see [14].

53

Chapter 10 Analysis of the BSC

flip code C
(M,n)
subopt with code parameters

[t1, t2, t3] =











[k, k, k] if n mod 3 = 0

[k + 1, k + 1, k − 1] if n mod 3 = 1

[k + 2, k, k] if n mod 3 = 2.

(10.11)

This code can be constructed from the optimal code C
(M,n−1)∗
BSC by appending a suboptimal

column8 and—based on a closer inspection of the proof of Theorem 10.2—can be shown

to be strictly suboptimal.

Recalling Lemma 6.7, we compute the pairwise Hamming distance vector of the optimal

code for M = 3:

d
(

C
(3,n)∗
BSC

)

=











(2k − 1, 2k, 2k + 1) if n mod 3 = 0

(2k, 2k, 2k + 1) if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2) if n mod 3 = 2

(10.12)

i.e.,

dmin
(

C
(3,n)∗
BSC

)

=











2k − 1 if n mod 3 = 0

2k if n mod 3 = 1

2k + 1 if n mod 3 = 2.

(10.13)

For M = 4 we get accordingly:

d
(

C
(4,n)∗
BSC

)

=





















(2k − 1, 2k, 2k + 1, 2k + 1, 2k, 2k − 1)

if n mod 3 = 0

(2k, 2k, 2k + 1, 2k + 1, 2k, 2k) if n mod 3 = 1

(2k + 1, 2k + 1, 2k + 2, 2k + 2, 2k + 1, 2k + 1)

if n mod 3 = 2

(10.14)

with the same values for the minimum Hamming distance as for the M = 3.

Comparing this with the suboptimal code (10.11) now yields for M = 3:

d
(

C
(3,n)
subopt

)

=











(2k, 2k, 2k) if n mod 3 = 0

(2k, 2k, 2k + 2) if n mod 3 = 1

(2k, 2k + 2, 2k + 2) if n mod 3 = 2

(10.15)

8The choice of column depends on n.

54

10.4 Application to Known Bounds on the Error Probability for a Finite
Blocklength Chapter 10

i.e., dmin
(

C
(3,n)
subopt

)

= 2k in all cases. For M = 4 we have

d
(

C
(4,n)
subopt

)

=

















(2k, 2k, 2k, 2k, 2k, 2k) if n mod 3 = 0

(2k, 2k, 2k + 2, 2k + 2, 2k, 2k) if n mod 3 = 1

(2k, 2k + 2, 2k + 2, 2k + 2, 2k + 2, 2k)

if n mod 3 = 2

(10.16)

with also dmin
(

C
(4,n)
subopt

)

= 2k in all cases.

Hence, we see that for n mod 3 = 0 the minimum Hamming distance of the optimal

code is 2k − 1 and therefore strictly smaller than the corresponding minimum Hamming

distance 2k of the suboptimal code.

By adapting the construction of the strictly suboptimal code C
(M,n)
subopt, a similar state-

ment can be made for the case when n mod 3 = 1.

We have shown the following proposition.

Proposition 10.4 On a BSC for M = 3 or M = 4 and for all n with n mod 3 = 0 or

n mod 3 = 1, codes that maximize the minimum Hamming distance dmin
(

C (M,n)
)

can be

strictly suboptimal. This is not true in the case of n mod 3 = 2.

As a matter of fact, using a result from [14], one can show that on a BSC for M = 3 or

M = 4 and in the case of n mod 3 = 0, all codes that maximize the minimum Hamming

distance are strictly suboptimal.

10.4 Application to Known Bounds on the Error Probabil-

ity for a Finite Blocklength

We again provide a comparison between the performance of the optimal code to the known

bounds of Chapter 7.

Note that the error exponents for M = 3, 4 codewords are

E3 = E4 = −
2

3
log
√

4ε(1− ε). (10.17)

Moreover, for M = 3, 4,

D
(BSC)
min

(

C
(M,n)

*n+1
3 +,*n

3 +

)

=













−2
3 log

√

4ε(1− ε) if n mod 3 = 0

−
,n

3 -+,
n+1
3 -

n log
√

4ε(1− ε) if n mod 3 = 1

−
,n

3 -+,
n+1
3 -

n log
√

4ε(1− ε) if n mod 3 = 2.

(10.18)

Figs. 11.15 and 11.16 compare the exact optimal performance for M = 3 and M = 4,

respectively, with some bounds: the SGB upper bound based on the weak flip code used by

55

Chapter 10 Analysis of the BSC

Shannon et al.,9, the SGB lower bound based on the weak flip code (which is suboptimal,

but achieves the optimal D(DMC)
min and is therefore a generally valid lower bound), the

Gallager upper bound, and also the PPV upper and lower bounds.

We can see that the PPV upper bound is tighter to the exact optimal performance than

the SGB upper bound. Note, however, that neither exhibits the correct error exponent.

It is shown in [20] that, for n going to infinity, the random coding (PPV) upper bound

tends to the Gallager exponent for R = 0 [6], which is of course not necessarily equal to

EM for finite M.

Concerning the lower bounds, we see that the PPV lower bound (meta-converse) is

much better for finite n than the SGB bound. However, for n large enough, its exponential

growth will approach that of the sphere-packing bound [17], which does not equal to EM

either.

Once more we would like to point out that even though the fair weak flip codes achieve

the error exponent, they are strictly suboptimal for every n mod 3 = 0.

9The SGB upper bound based on the optimal code performs almost identically (because the BSC is

pairwise reversible) and is therefore omitted.

56

10.4 Application to Known Bounds on the Error Probability for a Finite
Blocklength Chapter 10

0 10 20 30 40 50 60 70 80 90 100
11

−12

11
−10

11
−8

11
−6

11
−4

11
−2

11
−0

11
2

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

PPV upper bound

Optimal (exact, t2=t∗2 , t3=t∗3)

PPV lower bound

SGB l. b. for t2=$n+1
3

%, t3=$n

3
%

Figure 10.13: Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the BSC with ε = 0.3 as a function of the blocklength n.

57

Chapter 10 Analysis of the BSC

0 10 20 30 40 50 60 70 80 90 100
11

−12

11
−10

11
−8

11
−6

11
−4

11
−2

11
−0

11
2

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

PPV upper bound

Optimal (exact, t2=t∗2 , t3=t∗3)

PPV lower bound

SGB l. b. for t2=$n+1
3

%, t3=$n

3
%

Figure 10.14: Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the BSC with ε = 0.3 as a function of the blocklength n.

58

Chapter 11

Analysis of the BEC

The definition of the flip, the weak flip, and the fair weak flip codes is interesting not only

due to their generalization of the concept of linear codes, but also because we can show

that they are optimal for the BEC for many values of the blocklength n.

11.1 Optimal Codes with Two Codewords (M = 2)

Theorem 11.1 For a BEC and for any n ≥ 1, an optimal codebook with M = 2 codewords

is the flip code of type t for any t ∈
{

0, 1, . . . ,
⌊
n
2

⌋}

.

Proof: Omitted. Similar argument as Theorem 10.1.

11.2 Optimal Codes with Three or Four Codewords (M =

3, 4)

Theorem 11.2 For a BEC with arbitrary crossover probability 0 ≤ δ < 1, the optimal

code for n = 2 is

C
(M,2)∗
BEC =

(

c(M)
1 c(M)

2

)

. (11.1)

If we recursively construct a locally optimal codebook for n ≥ 3 by using C
(M,n−1)∗
BEC and

appending a new column, the total probability increase is maximized by the following choice

of appended columns:










c(M)
3 if n mod 3 = 0

c(M)
1 if n mod 3 = 1

c(M)
2 if n mod 3 = 2.

(11.2)

Proof: See Appendix D.1.

While Theorem 11.2 only guarantees optimality under the condition that the opti-

mal code are happened to be the code maximizing the total probability increase that

constructed recursively.

59

Chapter 11 Analysis of the BEC

Theorem 11.3 For a BEC and for any n ≥ 2, an optimal codebook with M = 3 or a

linear optimal codebook with M = 4 codewords is the weak flip code of type (t∗2, t
∗
3), where

t∗2 !
⌊
n+ 1

3

⌋

, t∗3 !
⌊n

3

⌋

. (11.3)

Using the shorthands

k !
⌊n

3

⌋

(11.4)

the code parameters of these optimal codes can be written as

[t∗1, t
∗
2, t

∗
3] =











[k, k, k] if n mod 3 = 0

[k + 1, k, k] if n mod 3 = 1

[k + 1, k + 1, k] if n mod 3 = 2.

(11.5)

Furthermore, the exact average success probability can be derived recursively in blocklength

n, starting with

3Pc(C
(3,2)∗
BEC) = 3(1− δ)2 + 4δ(1− δ) + δ2. (11.6)

Then

3Pc(C
(3,n)
t∗2,t

∗
3
) = 3Pc(C

(3,n−1)
t∗2,t

∗
3

) +
(

δ2k−1 + δ2k−1 − δn−1
)

;(if n = 3k) (11.7)

3Pc(C
(3,n)
t∗2,t

∗
3
) = 3Pc(C

(3,n−1)
t∗2,t

∗
3

) +
(

δ2k + δ2k − δn−1
)

; (if n = 3k + 1) (11.8)

3Pc(C
(3,n)
t∗2,t

∗
3
) = 3Pc(C

(3,n−1)
t∗2,t

∗
3

) +
(

δ2k + δ2k+1 − δn−1
)

. (if n = 3k + 2) (11.9)

While for M = 4 the exact average success probability is very similar to the case of M = 3.

Proof: Similar to the proof of Theorem 10.3, combing with the proof of Theo-

rem 11.2.

Note that the idea of designing an optimal code recursively promises to be a very

powerful approach. Unfortunately, for larger values of M, we might need a recursion from

n to n+ γ with a step-size γ > 1, and this step-size γ might be a function of blocklength

n. However, based on our definition of fair weak flip codes and on Conjecture 11.5 below,

we conjecture that the necessary step-size satisfies γ ≤
(2#−1

#

)

.

We have conjectured that this recursive approach also to the cases of M = 5 and

M = 6.

Conjecture 11.4 For a BEC and for any n ≥ 3, if the optimal codebook can be recursively

constructed in blocklength n, an optimal codebook with M = 5 codewords can be constructed

recursively in the blocklength n. We start with an optimal codebook for n = 3:

C
(M,3)∗
BEC =

(

c(M)
1 , c(M)

2 , c(M)
5

)

(11.10)

60

11.2 Optimal Codes with Three or Four Codewords (M = 3, 4) Chapter 11

and recursively construct the optimal codebook for n ≥ 5 by using C
(M,n−γ)∗
BEC , γ ∈ {1, 2, 3},

and appending






















(

c(M)
1 , c(M)

2 , c(M)
5

)

if n mod 10 = 3,
(

c(M)
3 , c(M)

6

)

if n mod 10 = 5,
(

c(M)
9 , c(M)

10

)

if n mod 10 = 7,
(

c(M)
4 , c(M)

7

)

if n mod 10 = 9,

c(M)
8 if n mod 10 = 0.

(11.11)

For M = 6 codewords, an optimal codebook can be constructed recursively in the blocklength

n by starting with an optimal codebook for n = 4:

C
(M,3)∗
BEC =

(

c(M)
1 , c(M)

2 , c(M)
6 , c(M)

8

)

. (11.12)

Then we recursively construct the optimal codebook for n ≥ 6 by using C
(M,n−2)∗
BEC and

appending
























(

c(M)
1 , c(M)

2

)

if n mod 10 = 2,
(

c(M)
6 , c(M)

8

)

if n mod 10 = 4,
(

(c(M)
3 , c(M)

5

)

if n mod 10 = 6,
(

c(M)
4 , c(M)

7

)

if n mod 10 = 8,
(

c(M)
9 , c(M)

10

)

if n mod 10 = 0.

(11.13)

For space reasons we omit the proof and only remark once again that the ideas of the

derivation follow the same ideas as shown above in Lemma 9.3 and Claim D.1.

An interesting special case of Conjecture 11.4 is as follows.

Conjecture 11.5 For a BEC and for any n being a multiple of 10, an optimal codebook

with M = 5 or M = 6 codewords is the corresponding fair weak flip code.

Note that the restriction on n comes from the restriction that fair weak flip codes are only

defined for n with n mod
(2#−1

#

)

= n mod 10 = 0. Even though Conjecture 11.5 actually

follows as special case from Conjecture 11.4, it can be proven directly and more elegantly

using the properties of fair weak flip codes derived in Section 6.1.

How about the optimal codes on BEC for higher number of codewords M? We strongly

believe that Conjecture 11.5 can be generalized to arbitrary M.

Conjecture 11.6 For a BEC and for an arbitrary M, the optimal code for a blocklength

n that satisfies n mod
(2#−1

#

)

= 0 is the corresponding fair weak flip code.

61

Chapter 11 Analysis of the BEC

11.3 Quick Comparison between BSC and BEC

It has been shown that optimal codes for M = 3 or linear optimal codes for M = 4 are

weak flip codes with code parameters:

[t∗1, t
∗
2, t

∗
3] =











[k + 1, k, k − 1] if n mod 3 = 0,

[k + 1, k, k] if n mod 3 = 1,

[k + 1, k + 1, k] if n mod 3 = 2,

(11.14)

where we use

k !
⌊n

3

⌋

. (11.15)

The corresponding pairwise Hamming distance vectors (see Lemma 6.7) are










(2k − 1, 2k, 2k + 1) if n mod 3 = 0,

(2k, 2k + 1, 2k + 1) if n mod 3 = 1,

(2k + 1, 2k + 1, 2k + 2) if n mod 3 = 2.

(11.16)

If we compare this to Theorem 11.2:

[t∗1, t
∗
2, t

∗
3] =











[k, k, k] if n mod 3 = 0,

[k + 1, k, k] if n mod 3 = 1,

[k + 1, k + 1, k] if n mod 3 = 2

(11.17)

with corresponding pairwise Hamming distance vectors










(2k, 2k, 2k) if n mod 3 = 0,

(2k, 2k + 1, 2k + 1) if n mod 3 = 1,

(2k + 1, 2k + 1, 2k + 2) if n mod 3 = 2,

(11.18)

we can conclude the following.

Corollary 11.7 Apart from n mod 3 = 0, the optimal codes for a BSC are identical to

the optimal codes for a BEC for M = 3 or linear optimal codes for M = 4 codewords.

It is interesting to note that for n mod 3 = 0 the optimal codes for the BEC are fair

and therefore maximize the minimum Hamming distance, while this is not the case for the

(very symmetric!) BSC. However, note that the converse is not true: if a code maximizes

the minimum Hamming distance, then it is not necessarily an optimal code for the BEC!

So, in particular, it is not clear if binary nonlinear Hadamard codes are optimal.

11.4 Application to Known Bounds on the Error Probabil-

ity for a Finite Blocklength

We again provide a comparison between the performance of the optimal code to the known

bounds of Chapter 7.

62

11.4 Application to Known Bounds on the Error Probability for a Finite
Blocklength Chapter 11

Note that the error exponents for M = 3, 4 codewords are

E3 = E4 = −
2

3
log δ. (11.19)

Moreover, for M = 3, 4,

D
(BEC)
min

(

C
(M,n)

*n+1
3 +,*n

3 +

)

=













−2
3 log δ if n mod 3 = 0

−
,n

3 -+,
n+1
3 -

n log δ if n mod 3 = 1

−
,n

3 -+,
n+1
3 -

n log δ if n mod 3 = 2.

(11.20)

Figs. 11.15 and 11.16 compare the exact optimal performance for M = 3 and M = 4,

respectively, with some bounds: the SGB upper bound based on the weak flip code used by

Shannon et al.,10, the SGB lower bound based on the weak flip code (which is suboptimal,

but achieves the optimal D(DMC)
min and is therefore a generally valid lower bound), the

Gallager upper bound, and also the PPV upper and lower bounds.

We can see that the SGB upper bound is tighter to the exact optimal performance

than the PPV upper bound. Note, however, the PPV upper bound does not exhibit the

correct error exponent. It is shown in [20] that, for n going to infinity, the random coding

(PPV) upper bound tends to the Gallager exponent for R = 0 [6], which is of course not

necessarily equal to EM for finite M.

Concerning the lower bounds, we see that the PPV lower bound (converse) is much

better for finite n than the SGB bound. However, for n large enough, its exponential

growth will approach that of the sphere-packing bound [17], which does not equal to EM

either.

Once more we would like to point out that even though the fair weak flip codes achieve

the error exponent, they are optimal codes in the BEC, however, they are strictly subop-

timal for every n mod 3 = 0 in the BSC.

10The SGB upper bound based on the optimal code performs almost identically (because the BSC is

pairwise reversible) and is therefore omitted.

63

Chapter 11 Analysis of the BEC

0 5 10 15 20 25 30 35
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

PPV upper bound

Optimal (exact, t2=t∗2 , t3=t∗3)

PPV lower bound

SGB l. b. for t2=$n+1
3

%, t3=$n

3
%

Figure 11.15: Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the BEC with δ = 0.3 as a function of the blocklength n.

64

11.4 Application to Known Bounds on the Error Probability for a Finite
Blocklength Chapter 11

0 5 10 15 20 25 30 35
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
rr
or

P
ro
b
ab

il
it
y

Blocklength n

Gallager upper bound

SGB up. b. for t2=$n+1
3

%, t3=$n

3
%

PPV upper bound

Optimal (exact, t2=t∗2 , t3=t∗3)

PPV lower bound

SGB l. b. for t2=$n+1
3

%, t3=$n

3
%

Figure 11.16: Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the BEC with δ = 0.3 as a function of the blocklength n.

65

Chapter 12

Conclusion

For an arbitrary finite blocklength n, we have studied the optimal code design of ultra-small

block-codes for the most general binary input and the binary output discrete memoryless

channel, the so-called binary asymmetric channel (BAC), and the binary input and ternary

output symmetric discrete memoryless channel: the binary erasure channel (BEC).

We then have put special emphasis on the two most important special cases of binary

channels, the Z-channel (ZC) and the binary symmetric channel (BSC). There, again for

an arbitrary finite blocklength n, we have derived an optimal code design with four or

less messages. In the case of the ZC, we have also conjectured an optimal code design

with five messages. Note that since the optimal codes we proposed do not depend on

the crossover probability of the channel the optimal codes remain the same even if the

channel is nonergodic or nonstationary. Also note that the optimal weak flip codes are by

definition coset codes: the M = 3 nonlinear code is always a coset of the M = 4 linear

code. However, they are not fixed composition codes.

We have introduced a new way of generating these codes recursively by using a column-

wise build-up of the codebook matrix. This column view of the codebook turns out to be

far more powerful for analysis than the standard row-wise view (i.e., the analysis based

on the codewords). We believe that the recursive construction of codes may be extended

to a higher number of codewords and also to more complex channel models. Indeed, we

have achieved some first promising results for the binary erasure channel (BEC). Note,

however, that in these more complex situations we might need a recursion from n to n+γ

with a step-size γ > 1.

We have also investigated the well-known and commonly used code parameter mini-

mum Hamming distance. We show that it may not be suitable as a design criterion for

optimal codes, even for very symmetric channels like the BSC.

Finally, we would like to point out that the family of weak flip codes defined in Chap-

ter 6 (and in particular a subfamily called fair weak flip codes) turn out to have many

interesting properties. They can be seen as a subset of a well-known codes: the Hadamard

codes. A first closer investigation of some of these properties and these codes’ relation to

linear codes have also been presented.

66

Appendix A

Derivations concerning the BAC

A.1 Proof of Proposition 4.1

Let PX(0) = p, then PX(1) = 1− p, we have

PY (0) = PX(0)PY |X(0|0) + PX(1)PY |X(0|1) = p(1− ε0) + (1− p)ε1, (A.1)

PY (1) = PX(0)PY |X(1|0) + PX(1)PY |X(1|1) = pε0 + (1− p)(1− ε1). (A.2)

Then the mutual information I(X;Y) of BAC

I(X;Y) = H(Y)−H(Y |X) (A.3)

= −PY (0) logPY (0)− PY (1) logPY (1)−
∑

x=0,1

PX(x)H(Y |X = x) (A.4)

= −
[

p(1− ε0) + (1− p)ε1
]

log
[

p(1− ε0) + (1− p)ε1
]

−
[

pε0 + (1− p)(1− ε1)
]

log
[

pε0 + (1− p)(1− ε1)
]

−pHb(ε0) log 2− (1− p)Hb(ε1) log 2 (nats). (A.5)

Therefore, take the derivative of the mutual information, we get

−
[

1− ε0 − ε1
]

log
[

p(1− ε0) + (1− p)ε1
]

− 1 ·
(

1− ε0 − ε1
)

−
[

ε0 − (1− ε1)
]

log
[

pε0 + (1− p)(1− ε1)
]

− 1 ·
(

ε0 − (1− ε1)
)

−Hb(ε0) log 2 +Hb(ε1) log 2
!
= 0 (A.6)

=⇒ (1− ε0 − ε1)

(

log2
p(1− ε0) + (1− p)ε1
pε0 + (1− p)(1− ε1)

)

= Hb(ε1)−Hb(ε0) (A.7)

=⇒
p(1− ε0) + (1− p)ε1
pε0 + (1− p)(1− ε1)

= 2
Hb(ε1)−Hb(ε0)

1−ε0−ε1 (A.8)

=⇒
(1− ε0) + (1−p

p)ε1

ε0 + (1−p
p)(1− ε1)

= z =⇒ (
1− p

p
)(ε1 − z(1− ε1)) = zε0 − (1− ε0) (A.9)

=⇒
1

p
− 1 =

1− ε0 − zε0
z(1− ε1)− ε1

(A.10)

67

Appendix A Derivations concerning the BAC

=⇒
1

p
=

z(1− ε1)− ε1 + 1− ε0 − zε0
z(1− ε1)− ε1

(A.11)

=⇒ p =
z − ε1(1 + z)

(1 + z)(1− ε1 − ε0)
. (A.12)

Hecne, the capacity-input achieving distributions are

P ∗
X(0) =

z − ε1(1 + z)

(1 + z)(1− ε0 − ε1)
, P ∗

X(1) =
1− ε0(1 + z)

(1 + z)(1− ε0 − ε1)
(A.13)

Similarly, the capacity-output achieving distributions are

P ∗
Y (0) =

(1 + z)(1− ε0 − ε1)− (1− ε0 − ε1)

(1 + z)(1− ε0 − ε1)
=

z

1 + z

P ∗
Y (1) =

1

1 + z
. (A.14)

Next we substitute this p into I(X;Y) (A.5), we have

CBAC = −
z

1 + z
log2 (

z

1 + z
)−

1

1 + z
log2

1

1 + z
− P ∗

X(0)Hb(ε0)− P ∗
X(1)Hb(ε1)(A.15)

= −
z

1 + z
log2 2

Hb(ε1)−Hb(ε0)
1−ε0−ε1 + log2 (1 + z)

−
z − ε1(1 + z)

(1 + z)(1− ε0 − ε1)
Hb(ε0)−

1− ε0(1 + z)

(1 + z)(1− ε0 − ε1)
Hb(ε1) (A.16)

=

[
z

(1 + z)(1− ε0 − ε1)
−

z − ε1(1 + z)

(1 + z)(1− ε0 − ε1)

]

Hb(ε0)

+

[

−
z

(1 + z)(1− ε0 − ε1)
−

1− ε0(1 + z)

(1 + z)(1− ε0 − ε1)

]

Hb(ε1) + log2 (1 + z)(A.17)

=
ε1

1− ε0 − ε1
Hb(ε0)−

1− ε0
1− ε0 − ε1

Hb(ε1) + log2 (1 + z). (A.18)

A.2 The LLR Function

Proposition A.1 (Properties of LLR(n)
t (ε0, ε1, d))

1. If ε0 + ε1 = 1, then LLR(n)
t (ε0, ε1, d) = 0 irrespective of d, t, or n.

2. LLR(n)
t (ε0, ε1, d) is a nonincreasing function in d for every n, t:

LLR(n)
t (ε0, ε1, d) ≤ LLR(n)

t (ε0, ε1, d− 1), 1 ≤ d ≤ n.

(A.19)

3. For certain values of d, the value of LLR(n)
t (ε0, ε1, d) is always nonnegative (or always

nonpositive) for all ε0 and ε1:

LLR(n)
t (ε0, ε1, d)

















≥ 0 if 0 ≤ d ≤ t

≶ 0 if t < d ≤
⌊
n
2

⌋

(de-

pending on ε0, ε1)

≤ 0 if
⌊
n
2

⌋

< d ≤ n.

(A.20)

68

A.3 Alternative Proof of Theorem 8.1 Appendix A

4. LLR(n)
t (ε0, ε1, d) is a nondecreasing function in n for fixed t, d, and (ε0, ε1).

5. LLR(n)
t (ε0, ε1, d) is a nondecreasing function in t for fixed n, d, and (ε0, ε1).

6. For 0 ≤ d ≤ n,

LLR(n+1)
t (ε0, ε1, d+ 1) < LLR(n)

t (ε0, ε1, d). (A.21)

Proof: These properties follow quite easily from the definition of LLR(n)
t (ε0, ε1, d)

and the relations (3.1)–(3.3). We only show a proof of the second property:

LLR(n)
t (ε0, ε1, d− 1)− LLR(n)

t (ε0, ε1, d)

= log

(
1− ε1
ε0

)

+ log

(
1− ε0
ε1

)

≥ 0. (A.22)

A.3 Alternative Proof of Theorem 8.1

Assume that the optimal code for blocklength n is not a flip code. Then the code has a

number j of positions where both codewords have the same symbol. The optimal decoder

will ignore these j positions completely. Hence, the performance of this code will be

identical to a flip code of length n− j.

We therefore only need to show that increasing n will always allow us to find a new

flip code with a better performance. In other words, Theorem 8.1 is proven once we have

shown that

Pe
(

C
(2,n−1)
t

)

≥ max
{

Pe
(

C
(2,n)
t

)

, Pe
(

C
(2,n)
t+1

)
}

. (A.23)

Note that for the length-(n− 1) flip code of type t

C
(2,n−1)
t =

(

x(n−1)
1

x(n−1)
2

)

(A.24)

we can derive two nontrivial length-n codes:

C
(2,n)
t =

([

x(n−1)
1 0

]

[

x(n−1)
2 1

]

)

, C
(2,n)
t+1 =

([

x(n−1)
1 1

]

[

x(n−1)
2 0

]

)

. (A.25)

Both of these codes happen to be (or at least be equivalent to) flip codes. We would like

to remind the reader that x(n−1)
2 is a flipped version of x(n−1)

1 .

Since in the following we are going to compare different flip codes of either length n−1

or n, we need to clarify our notation. So for the received vectors y(n) we use a superscript

(n) to denote their length, and for the codewords x(n)
m , optimal decoding threshold '(n),

and the Hamming distance d(n) between a received sequence and the first codeword we

69

Appendix A Derivations concerning the BAC

use the superscript (n) to denote their affiliation with the corresponding code of length n.

Hence, as shown in Cor. 8.2, the optimal ML decision rule for C
(2,n)
t can be expressed as

g(y) =

{

1 if 0 ≤ d(n) ≤ '(n)

2 if '(n) + 1 ≤ d(n) ≤ n.
(A.26)

The threshold satisfies 0 ≤ '(n) ≤
⌊
n−1
2

⌋

. Note that when '(n) =
⌊
n−1
2

⌋

, the decision rule

is equivalent to a majority rule. Also note that when n is even and d(n) = n
2 , the decisions

for x(n)
1 and x(n)

2 are equally likely, i.e., without loss of generality we then always decode

to x(n)
2 .

So let the threshold for C
(2,n−1)
t be '(n−1). We will now argue that the threshold for

C
(2,n)
t and C

(2,n)
t+1 (compare with (A.25)) must satisfy

'(n) = '(n−1) or '(n) = '(n−1) + 1. (A.27)

Consider firstly the code C
(2,n)
t and assume by contradiction for the moment that '(n) <

'(n−1). Then pick a received y(n−1) with d(n−1) = '(n−1) that (for the code C
(n−1)
t) is

decoded to x(n−1)
1 . The received length-n vector y(n) =

[

y(n−1) 0
]

has d(n) = '(n−1) > '(n),

i.e., it will be now decoded to x(n)
2 . This, however, is a contradiction to the assumption

that the ML decision for the code C
(2,n−1)
t was x(n−1)

1 .

Secondly, again considering code C
(2,n)
t , assume by contradiction that '(n) > '(n−1)+1.

Pick a received y(n−1) with d(n−1) = '(n−1) + 1 that (for the code C
(2,n−1)
t) is decoded to

x(n−1)
2 . The received length-n vector y(n) =

[

y(n−1) 1
]

has d(n) = '(n−1) + 2 < '(n) + 1,

i.e., it will be now decoded to x(n)
1 . This, however, is a contradiction to the assumption

that the ML decision for the code C
(2,n−1)
t was x(n−1)

1 .

The same arguments also hold for the other code C
(2,n)
t+1 . Hence, we see that there are

only two possible changes with respect to the decoding rule to be considered. We will next

use this fact to prove that Pe
(

C
(2,n−1)
t

)

≥ Pe
(

C
(2,n)
t

)

.

The error probability of a length-n code with two codewords x1 and x2 is given by

Pe =
1

2

∑

y
g(y)=2

Pn
Y |X(y|x1) +

1

2

∑

y
g(y)=1

Pn
Y |X(y|x2). (A.28)

For C
(2,n−1)
t , (A.28) can be written as follows:

2Pe
(

C
(2,n−1)
t

)

=
∑

y(n−1)

#(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

+
∑

y(n−1)

0≤d(n−1)≤#(n−1)

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

(A.29)

=
∑

y(n−1)

#(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

PY |X(1|0)

70

A.3 Alternative Proof of Theorem 8.1 Appendix A

+
∑

y(n−1)

#(n−1)+1≤d(n−1)≤n−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

PY |X(0|0)

+
∑

y(n−1)

0≤d(n−1)≤#(n−1)

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

PY |X(1|1)

+
∑

y(n−1)

0≤d(n−1)≤#(n−1)

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

PY |X(0|1) (A.30)

=
∑

y(n−1)

#(n−1)+2≤d(n)≤n

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

#(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

1≤d(n)≤#(n−1)+1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

)

+
∑

y(n−1)

0≤d(n)≤#(n−1)

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
2

)

. (A.31)

Here, in (A.30) we use the fact that PY |X(1|0)+PY |X(0|0) = 1 and PY |X(1|1)+PY |X(0|1) =

1; and in (A.31) we combine the terms together using the definition of C
(2,n)
t according to

(6.1) (and (A.25)).

We can now distinguish the two cases (A.27):

(i) If the decision rule for C
(2,n)
t is unchanged, i.e., '(n) = '(n−1), we only need to take

care of the third summation in (A.31) that contains some terms that will now be

decoded differently. We split this sum up into two parts:

∑

y(n−1)

1≤d(n)≤#(n−1)+1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

)

=
∑

y(n−1)

d(n)=#(n−1)+1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

)

+
∑

y(n−1)

1≤d(n)≤#(n−1)

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

)

. (A.32)

Since we have assumed that '(n) = '(n−1), we know that for all y(n−1) with d(n−1) =

'(n−1) the length-n received vector
[

y(n−1) 1
]

has d(n) = '(n−1) + 1 = '(n) + 1 and

71

Appendix A Derivations concerning the BAC

will be decoded to x(n)
2 . Hence we must have

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
1

)

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

) ≤ 1. (A.33)

Hence, we have

2Pe
(

C
(2,n−1)
t

)

≥
∑

y(n−1)

#(n−1)+2≤d(n)≤n

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

#(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

d(n)=#(n−1)+1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

1≤d(n)≤#(n−1)

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣x

(n)
2

)

+
∑

y(n−1)

0≤d(n)≤#(n−1)

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
2

)

(A.34)

=
∑

y(n)

#(n−1)+1≤d(n)≤n

Pn
Y |X
(

y(n)
∣
∣x(n)

1

)

+
∑

y(n)

0≤d(n)≤#(n−1)

Pn
Y |X
(

y(n)
∣
∣x(n)

2

)

(A.35)

= 2Pe
(

C
(2,n)
t

)

. (A.36)

(ii) If the decision rule is changed such that '(n) = '(n−1) + 1, we need to take care of

the second summation in (A.31) that contains some terms that will now be decoded

differently. Again, we split this sum into two parts:

∑

y(n−1)

#(n−1)+1≤d(n)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

=
∑

y(n−1)

d(n)=#(n−1)+1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

+
∑

y(n−1)

#(n−1)+2≤d(n)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

. (A.37)

72

A.4 Proof of Theorem 8.3 Appendix A

Since we have assumed that '(n) = '(n−1) + 1, we know that for all y(n−1) with

d(n−1) = '(n−1)+1 the length-n received vector
[

y(n−1) 0
]

has d(n) = '(n−1)+1 = '(n)

and will be decoded to x(n)
1 . Hence we must have

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
1

)

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣x

(n)
2

) ≥ 1. (A.38)

The rest of the argument now is analogous to Case (i).

This proves that Pe
(

C
(2,n−1)
t

)

≥ Pe
(

C
(2,n)
t

)

. The remaining proof of Pe
(

C
(2,n−1)
t

)

≥

Pe
(

C
(2,n)
t+1

)

is similar and omitted.

We remark that while in general Pe
(

C
(2,n−1)
t

)

≥ Pe
(

C
(2,n)
t

)

, we only achieve equality

if n is even and '(n−1) =
⌊
n−1
2

⌋

. This long proof suggests that how to deal with the total

probability increase if we know the ML decoder threshold. It is very helpful for the proof

of Theorem 8.3. However, we don’t have the closed form for the total probability increase

when the threshold strongly depends on the blocklength n on BAC.

A.4 Proof of Theorem 8.3

In order to derive the error probability expressions for C
(2,n)
t and C

(2,n)
t+1 , we introduce the

flip code C
(2,n−1)
t and add either a column (0 1)T or (1 0)T, respectively. Moreover, we

assume that C
(2,n−1)
t also is decoded using the same fixed threshold '.

Note that since we are using a similar approach as in Appendix A.3, we also apply the

notation introduced there, i.e., we use a superscript (n) to denote length and affiliation.

We now write the error probability of C
(2,n)
t for the given decoding rule ' as follows:

2P (#)
e

(

C
(2,n)
t

)

=
∑

y(n−1)

#+1≤d(n−1)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣

[

x(n−1)
1 0

]
)

+
∑

y(n−1)

#≤d(n−1)≤n−1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣

[

x(n−1)
1 0

]
)

+
∑

y(n−1)

0≤d(n−1)≤#

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣

[

x(n−1)
2 1

]
)

+
∑

y(n−1)

0≤d(n−1)≤#−1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣

[

x(n−1)
2 1

]
)

(A.39)

=
∑

y(n−1)

#+1≤d(n−1)≤n−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

(1− ε0 + ε0)

73

Appendix A Derivations concerning the BAC

+
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

ε0

+
∑

y(n−1)

0≤d(n−1)≤#−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

(ε1 + 1− ε1)

+
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

ε1. (A.40)

Similarly, we can express the error probability of C
(2,n)
t+1 :

2P (#)
e

(

C
(2,n)
t+1

)

=
∑

y(n−1)

#+1≤d(n−1)≤n−1

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣

[

x(n−1)
1 1

]
)

+
∑

y(n−1)

#≤d(n−1)≤n−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣

[

x(n−1)
1 1

]
)

+
∑

y(n−1)

0≤d(n−1)≤#

Pn
Y |X

(
[

y(n−1) 1
]
∣
∣
∣

[

x(n−1)
2 0

]
)

+
∑

y(n−1)

0≤d(n−1)≤#−1

Pn
Y |X

(
[

y(n−1) 0
]
∣
∣
∣

[

x(n−1)
2 0

]
)

(A.41)

=
∑

y(n−1)

#+1≤d(n−1)≤n−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

(1− ε1 + ε1)

+
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

ε1

+
∑

y(n−1)

0≤d(n−1)≤#−1

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

(ε0 + 1− ε0)

+
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

ε0. (A.42)

Subtracting (A.42) from (A.40) then yields

2P (#)
e

(

C
(2,n)
t

)

− 2P (#)
e

(

C
(2,n)
t+1

)

=
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

ε0

+
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

ε1

74

A.4 Proof of Theorem 8.3 Appendix A

−
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

ε1

−
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

ε0 (A.43)

=
∑

y(n−1)

d(n−1)=#

(

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

− Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)
)

(ε1 − ε0) (A.44)

=
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

·



1−
Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

1

)

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)



 (ε1 − ε0) (A.45)

=
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

·
(

1− eLLR
(n−1)
t (ε0,ε1,#)

)

(ε1 − ε0) (A.46)

=
(

1− eLLR
(n−1)
t (ε0,ε1,#)

)

· (ε1 − ε0)
∑

y(n−1)

d(n−1)=#

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

2

)

(A.47)

where in (A.46) we make use of our assumption that C
(2,n−1)
t is decoded also using the

same threshold '.

Hence, we see that unless ε0 = ε1, in which case the difference is always zero, 2P (#)
e
(

C
(2,n)
t

)

−

2P (#)
e
(

C
(2,n)
t+1

)

can only be zero if

LLR(n−1)
t (ε0, ε1, ') = 0. (A.48)

From the definition of the log-likelihood ratio, we see that if we fix ε0, then there exists at

most one ε1 such that (A.48) is satisfied. The same is true if we fix ε1 and search for an

ε0.

75

Appendix B

Derivations concerning the ZC

B.1 Proof of Theorem 9.2

We first start with a general lemma that helps to reduce the size of the set of candidate

columns that needs to be searched for the optimal codebooks of the ZC.

Lemma B.1 (Sufficient Set of Candidate Columns for the ZC) For a ZC, for any

blocklength n, and for an arbitrary number M of codewords, an optimal codebook must con-

tain the all-zero codeword 0.

Proof: Consider a general codebooks matrix C (M,n) with codewords x1,x2, . . . ,xM.

Considering Rem. 2.11, we can assume without loss of generality that

w ! wH(x1) ≤ wH(x2) ≤ · · · ≤ wH(xM) (B.1)

and that all ones of the first codeword are in the last w positions, i.e.,

x1 = (0 0 · · · 0 1 · · · 1
︸ ︷︷ ︸

w pos.

). (B.2)

We are going to show that an optimal codebook must satisfy w = 0.

We note that for each y and for every codeword xm, 1 ≤ m ≤ M, the conditional

channel law is

PX|Y (y|xm) = I {d0,1(xm,y) = 0} ε
wH(xm)−d1,1(x1,y)
1

· (1− ε1)
d1,1(x1,y) (B.3)

where I{·} denotes again the indicator function. Hence, for any y = (0 · · · 0 yn−w+1 · · · yn)

with 0 ≤ wH(y) ≤ w,

max
{

Pn
Y |X(y|x1), . . . , P

n
Y |X(y|xm), . . . , Pn

Y |X(y|xM)
}

= max
{

ε
w−d1,1(x1,y)
1 (1− ε1)

d1,1(x1,y),

I {d0,1(x2,y) = 0} ε
wH(x2)−d1,1(x1,y)
1 (1− ε1)

d1,1(x1,y),

76

B.1 Proof of Theorem 9.2 Appendix B

. . . ,

I {d0,1(xM,y) = 0} ε
wH(xM)−d1,1(x1,y)
1 (1− ε1)

d1,1(x1,y)
}

(B.4)

= ε
w−d1,1(x1,y)
1 (1− ε1)

d1,1(x1,y). (B.5)

Since when transmitting x1, the received sequence cannot have any ones in the first n−w

positions, this now shows that the optimal decoding region for the first codeword is

D(M,n)
1 =

{

y : y =
(

0 · · · 0
︸ ︷︷ ︸

n−w pos.

yn−w+1 · · · yn
︸ ︷︷ ︸

w pos.

)
}

(B.6)

which yields the conditional success probability

ψ1 =
w
∑

d=0

(
w

d

)

εd1 · (1− ε1)
w−d = 1. (B.7)

Hence, we see that ψ1 = 1 independent of the choice of w. If we choose w = 0, though, then

the size of D(M,n)
1 is minimized, i.e., many vectors y that belong to D(M,n)

1 for w > 0 will be

moved to some other decoding region D(M,n)
m , m > 1. This move will increase the success

probabilities ψm of the corresponding other codeword (because the success probability will

contain more terms in their corresponding sum over all y ∈ D(M,n)
m). Hence, as ψ1 remains

constant, the total success probability is increased.

Note that this increase is strictly larger than zero if there exist some other codewords

that have one or more ones in the last w positions.

Now we are ready to prove Theorem 9.2. Our proof is based on an exact expression of

the average success probability as a function of the numbers of candidate columns ti. The

problem is then transformed into an optimization problem.

We firstly consider the easier case of M = 3. By Lemma B.1 and because the all-zero

column can be ignored (based on the argument used in the proof of Theorem 8.1), we can

restrict our search to the candidate columns given in (6.5). Hence, for any blocklength

n, with t1 + t2 + t3 = n, denote an arbitrary codebook C
(3,n)
t2,t3

. Again, without loss of

generality, assume that

wH(x1) ≤ wH(x2) ≤ wH(x3) (B.8)

and note that

wH(x1) = 0, wH(x2) = t2 + t3, wH(x3) = t1 + t3 (B.9)

and (because wH(x2) ≤ wH(x3)) that t2 ≤ t1.

The decoding region of the first codeword is then just the all-zero vector 0 with ψ1 = 1.

Defining t ! t2 + t3 and using a derivation similar to (B.4)–(B.6), we further realize

that

D(3,n)
t2,t3;2 =

{

y : y =
(

0 · · · 0
︸ ︷︷ ︸

n−t pos.

yn−t+1 · · · yn
︸ ︷︷ ︸

t pos.

)

with 1 ≤ wH(y) ≤ t
}

(B.10)

77

Appendix B Derivations concerning the ZC

and

ψ2 = 1− εt1. (B.11)

Finally, the remaining y belong to D(3,n)
t2,t3;3:

D(3,n)
t2,t3;3 = {0, 1}n \

(

D(3,n)
t2,t3;2 ∪ {0}

)

(B.12)

=
{

y : [y(t1) 0(t2) y(t3)] with 1 ≤ wH(y
(t1)) ≤ t1, 0 ≤ wH(y

(t3)) ≤ t3
}

(B.13)

with

ψ3 =

(
t1−1
∑

d=0

εd1(1− ε1)
t1−d

)

·

(
t3∑

d=0

εd1(1− ε1)
t3−d

)

(B.14)

=
(

1− εt11
)

· 1. (B.15)

Hence, the average success probability for a codebook C
(3,n)
t2,t3

with t = t2 + t3 and

t1 ≥ t2 is

3Pc
(

C
(3,n)
t2,t3

)

= 1 + (1− εt1) + (1− εn−t
1). (B.16)

The proof for the case M = 3 is now completed by showing that the average success

probability (B.16) is maximized by the choice t∗ = ,n/2-.

In the case of M = 4, we cannot only rely on the candidate columns in (6.6), but

unfortunately need to consider totally seven candidate columns:












c(4)1 !








0

0

0

1








c(4)2 !








0

0

1

0








, c(4)3 !








0

0

1

1








, c(4)4 !








0

1

0

0








,

c(4)5 !








0

1

0

1








, c(4)6 !








0

1

1

0








, c(4)7 !








0

1

1

1




















. (B.17)

We use t = [t1, t2, t3, t4, t5, t6, t7] to describe an arbitrary code, and again, without loss of

generality, assume that

wH(x1) ≤ wH(x2) ≤ wH(x3) ≤ wH(x4). (B.18)

Also note that

wH(x1) = 0 (B.19)

wH(x2) = t4 + t5 + t6 + t7 (B.20)

wH(x3) = t2 + t3 + t6 + t7 (B.21)

wH(x3) = t1 + t3 + t5 + t7 (B.22)

78

B.1 Proof of Theorem 9.2 Appendix B

and, as a result, t4 + t5 ≤ t2 + t3 and t2 + t6 ≤ t1 + t5. Again, we investigate the decoding

region with corresponding success probability.

The first two decoding regions are very similar to case of M = 3 and yield

ψ1 = 1, ψ2 = 1− εt4+t5+t6+t7
1 . (B.23)

Then, we have

D(4,n)
3 =

{

y(n) : y(n) =
[

0(t1) y(t2+t3) 0(t4+t5) y(t6+t7)
]

with 1 ≤ wH
(

y(t2+t3)
)

≤ t2 + t3,

and 0 ≤ wH(y
(t6+t7)) ≤ t6 + t7

}

(B.24)

with

ψ3 = 1− εt2+t3
1 . (B.25)

The fourth decoding region is more complicated. It can be written as

D(4,n)
4 = P \

(

D(4,n)
2 ∪D(4,n)

3

)

(B.26)

where

P !
{

y(n) : y(n) =
[

y(t1) 0(t2) y(t3) 0(t4) y(t5) 0(t6) yt7)
]

with 1 ≤ wH(y
(n)) ≤ t1 + t3 + t5 + t7

}

. (B.27)

Hence

ψ4 =
∑

y∈P
PY |X(y|x4)−

∑

y∈P∩D(4,n)
2

PY |X(y|x4)

−
∑

y∈(P\D(4,n)
2)∩D(4,n)

3

PY |X(y|x4) (B.28)

=

(
t1+t3+t5+t7−1

∑

d=0

εd1(1− ε1)
t1+t3+t5+t7−d

)

− εt1+t3
1

(
t5+t7−1
∑

d=0

εd1(1− ε1)
t5+t7−d

)

− εt1+t5
1

(
t3−1
∑

d=1

εd1(1− ε1)
t3−d

)(
t7∑

d=1

εd1(1− ε1)
t7−d

)

(B.29)

=
(

1− εt1+t3+t5+t7
1

)

− εt1+t3
1

(

1− εt5+t7
1

)

− εt1+t5
1

(

1− εt31
)

(B.30)

= 1− εt1+t3
1 − εt1+t5

1 (1− εt31) (B.31)

79

Appendix B Derivations concerning the ZC

where

P ∩D(4,n)
2

=
{

y(n) : y(n) =
[

0(t1) 0(t2) 0(t3) 0(t4) y(t5) 0(t6) yt7)
]

with 1 ≤ wH(y) ≤ t5 + t7
}

(B.32)

and
(

P \ D(4,n)
2

)

∩D(4,n)
3

=
{

y(n) : y(n) =
[

0(t1) 0(t2) y(t3) 0(t4) 0(t5) 0(t6) y(t7)
]

with 1 ≤ wH(y
(t3)) ≤ t3, 0 ≤ wH(y

(t7)) ≤ t7
}

.

(B.33)

Hence, the average success probability for a codebook C (4,n) with t4 + t5 ≤ t2 + t3 and

t2 + t6 ≤ t1 + t5 is

4Pc
(

C
(4,n)

)

= 1 +
(

1− εn−(t1+t2+t3)
1

)

+
(

1− εt2+t3
1

)

+
(

1− εt1+t3
1 − εt1+t5

1 (1− εt31)
)

(B.34)

and is maximized for

t∗ =
[

0, 0,
⌊n

2

⌋

, 0,
⌈n

2

⌉

, 0, 0
]

. (B.35)

Furthermore, it can be shown that the optimum t∗ is unique for even n, while there are

also other solutions for odd n.

B.2 Proof of Lemma 9.5

We apply (B.16) and (B.34) to the weak flip code of type (t, 0).

Corollary B.2 On a ZC, for M = 3 or M = 4, and for any n ≥ 2, the optimal decoding

regions D(M,n)
t,0;m for the weak flip code of type (t, 0), C

(M,n)
t,0 , for 1 ≤ t ≤

⌊
n
2

⌋

, are

D(M,n)
t,0;1 = {0} (B.36)

D(M,n)
t,0;2 =

{

y : y =
(

0 · · · 0
︸ ︷︷ ︸

n−t
pos.

yn−t+1 · · · yn
︸ ︷︷ ︸

t pos.

)

with 1 ≤ wH(y) ≤ t
}

(B.37)

D(M,n)
t,0;3 =

{

y : y =
(

y1 · · · yn−t
︸ ︷︷ ︸

n−t pos.

0 · · · 0
︸ ︷︷ ︸

t pos.

)

with 1 ≤ wH(y) ≤ n− t
}

(B.38)

D(4,n)
t,0;4 = {0, 1}n \

3
⋃

m=1

D(4,n)
t,0;m. (B.39)

80

B.2 Proof of Lemma 9.5 Appendix B

The corresponding average success probabilities are

3Pc
(

C
(3,n)
t,0

)

= 1 +
(

1− εt1
)

+
(

1− εn−t
1

)

(B.40)

4Pc
(

C
(4,n)
t,0

)

= 1 +
(

1− εt1
)

+
(

1− εn−t
1

)

+
(

1− εn−t
1

)

− εt1
(

1− εn−t
1

)

. (B.41)

Note that all received sequences in D(4,n)
t,0;4 have zero probability of occurring in the situ-

ation of M = 3 because the code C
(3,n)
t,0 does not contain the all-one codeword. Therefore,

we do not need to include them into any decoding region for M = 3.

We start withM = 4 and recall again that there are the seven possible columns given in

(B.17) that we can choose from (the all-zero column can be ignored based on the argument

used in the proof of Theorem 8.1). To prove Lemma 9.5 we append an additional bit to

all four codewords of C
(4,n)
t,0 as follows:








[0 x1,n+1]

[x x2,n+1]

[x̄ x3,n+1]

[1 x4,n+1]








(B.42)

where xm,n+1 ∈ {0, 1} and where x and x̄ are given in (6.1) with t ∈
{

1, 2, . . . ,
⌊
n
2

⌋}

. We

denote11 this new code by C (4,n+1). We now need to establish the decoding regions for the

new code C (4,n+1). If we simply extend the decoding regions given in (B.36)–(B.39) by one

bit,
[

D(4,n)
t,0;m 0

]

∪
[

D(4,n)
t,0;m 1

]

, for m = 1, 2, 3, 4, then we retain the same success probability

because

ψm

(

C
(4,n+1)

)

= ψm

(

C
(4,n)
t,0

)

· PY |X(0|xm,n+1)

+ ψm

(

C
(4,n)
t,0

)

· PY |X(1|xm,n+1) (B.43)

= ψm

(

C
(4,n)
t,0

)

·
(

PY |X(0|xm,n+1) + PY |X(1|xm,n+1)
)

(B.44)

= ψm

(

C
(4,n)
t,0

)

. (B.45)

However, it is quite clear that these regions are in general no longer the optimal decision

regions for C (4,n+1). So the question is how to fix them to make them optimal again (and

thereby also finding how to optimally choose xm,n+1).

Firstly note that if xm,n+1 = 0, adding a 0 to the received vector y(n) will not change

the decision m because 0 is the success outcome anyway. Similarly, if xm,n+1 = 1, adding

a 1 to the vector y(n) will not change the decision m.

Secondly, we claim that even if xm,n+1 = 1, all received vectors y(n+1) ∈
[

D(4,n)
t,0;m 0

]

still

will optimally be decoded to m. To see this, we have a look at the four cases separately:

11Note that again we use a proof technique that uses a given code to create a new code by adding a

column to the codebook matrix. We therefore again use the notation introduced in Appendix A.3, i.e., we

use superscripts (n) to clarify length and affiliation.

81

Appendix B Derivations concerning the ZC

•
[

D(4,n)
t,0;1 0

]

: The decoding region
[

D(4,n)
t,0;1 0

]

only contains one vector: the all-zero

vector. We have

Pn+1
Y |X

(

0(n+1)
∣
∣x(n+1)

1 =
[

0(n) 1
])

= ε1 ≥ Pn+1
Y |X

(

0(n+1)
∣
∣x(n+1)

m

)

, ∀m = 2, 3, 4 (B.46)

independently of the choices for xm,n+1, m = 2, 3, 4. Hence, we decide for m = 1.

•
[

D(4,n)
t,0;2 0

]

: All vectors in
[

D(4,n)
t,0;2 0

]

contain ones in positions that make it impossible

to decode it as m = 1 or m = 3. On the other hand, m = 4 obviously is less likely

than m = 2, i.e., we decide m = 2.

•
[

D(4,n)
t,0;3 0

]

: All vectors in
[

D(4,n)
t,0;3 0

]

contain ones in positions that make it impossible

to decode it as m = 1 or m = 2. On the other hand, m = 4 obviously is less likely

than m = 3, i.e., we decide m = 3.

•
[

D(4,n)
t,0;4 0

]

: All vectors in
[

D(4,n)
t,0;4 0

]

contain ones in positions that make it impossible

to decode it as m = 1, m = 2, or m = 3. It only remains to decide m = 4.

So, it only remains to investigate the decisions made about the vectors in
[

D(4,n)
t,0;m 1

]

if

xm,n+1 = 0. Note that we do not need to bother about
[

D(4,n)
t,0;4 1

]

as it is impossible to

receive such a vector. For m = 1, 2, or 3, if xm,n+1 = 0, the received vectors in
[

D(4,n)
t,0;m 1

]

will change to another decoding region not equal to m because PY |X(1|0) = 0.

•
[

D(4,n)
t,0;1 1

]

: If we assign these vectors (actually, it has only one) to the new decoding

region D(4,n+1)
t,0;2 , the conditional success probability for m = 2 is increased by

∆ψ2 ! ψ2
(

C
(4,n+1)

)

− ψ2
(

C
(4,n)
t,0

)

(B.47)

=
∑

y(n)∈D(4,n)
t,0;1

Pn+1
Y |X

(
[

y(n) 1
]
∣
∣
∣

[

0(n−t) 1t 1
]
)

· (x2,n+1 − x1,n+1)
+ (B.48)

= εt1(1− ε1)(x2,n+1 − x1,n+1)
+ (B.49)

where

(x)+ = x · I{x ≥ 0} =

{

x if x ≥ 0

0 if x < 0.
(B.50)

Note that we only have a positive increase in the success probability if x2,n+1 = 1.

Similarly, we compute

∆ψ3 = εn−t
1 (1− ε1)(x3,n+1 − x1,n+1)

+ (B.51)

∆ψ4 = εn1 (1− ε1)(x4,n+1 − x1,n+1)
+. (B.52)

82

B.2 Proof of Lemma 9.5 Appendix B

From εt1 ≥ εn−t
1 > εn1 , we see that ∆ψ2 gives the highest increase, followed by ∆ψ3

and then∆ψ4. Hence, in order to represent this choice of ordering, we rewrite (B.49),

(B.51), and (B.52) as follows:

∆ψ2 = εt1(1− ε1)(x2,n+1 − x1,n+1)
+ (B.53)

∆ψ3 = εn−t
1 (1− ε1)(x3,n+1 − x2,n+1 − x1,n+1)

+ (B.54)

∆ψ4 = εn1 (1− ε1) · (x4,n+1 − x3,n+1 − x2,n+1 − x1,n+1)
+. (B.55)

•
[

D(4,n)
t,0;2 1

]

: In this case, only D(4,n+1)
t,0;4 yields a nonzero additional conditional success

probability:

∆ψ4 =
∑

y(n)∈D(4,n)
t,0;2

Pn+1
Y |X

([

y(n) 1
]∣
∣
[

1(n) 1
])

· (x4,n+1 − x2,n+1)
+ (B.56)

=
t−1
∑

d=0

(
t

d

)

(1− ε1)
t−dεn−t+d

1 (1− ε1) · (x4,n+1 − x2,n+1)
+ (B.57)

=
(

εn−t
1 − εn1

)

(1− ε1)(x4,n+1 − x2,n+1)
+. (B.58)

•
[

D(4,n)
t,0;3 1

]

: Again, only D(4,n+1)
t,0;4 yields a nonzero additional conditional success prob-

ability:

∆ψ4 =
∑

y(n)∈D(4,n)
t,0;3

Pn+1
Y |X

([

y(n) 1
]∣
∣
[

1(n) 1
])

· (x4,n+1 − x3,n+1)
+ (B.59)

=
(

εt1 − εn1
)

(1− ε1)(x4,n+1 − x3,n+1)
+. (B.60)

For εt1 > εn−t
1 > εn1 , we can now conclude that the unique best solution for the choice

of xm,n+1, yielding the largest increase in success probability in (B.53), (B.54), (B.55),

(B.58), and (B.60), is as follows:











x2,n+1 − x1,n+1 = 1

x4,n+1 − x2,n+1 = 0

x4,n+1 − x3,n+1 = 1

=⇒

















x1,n+1 = 0

x2,n+1 = 1

x3,n+1 = 0

x4,n+1 = 1

(B.61)

which corresponds to c(4)2 . This choice will lead to a total success probability increase of

∆Ψ
(

C
(4,n+1)
t+1,0

)

=
1

4
εt1(1− ε1) +

1

4

(

εt1 − εn1
)

(1− ε1) (B.62)

=
1

4

(

2εt1 − εn1
)

(1− ε1). (B.63)

If n is even and t = n
2 , then ε

t
1 = εn−t

1 . In this case c(4)2 still yields the largest increase in

success probability, but it is not anymore the unique choice to do so.

The proof for M = 3 is similar and omitted.

83

Appendix C

Derivations concerning the BSC

C.1 Proof of Theorem 10.2

We firstly consider the case M = 3.

Our proof is based on induction in n. We start with a locally optimal code of length n−1

and then prove that appending a column according to the choice given in Theorem 10.2

will result in a new locally optimal code that maximizes the total probability increase. We

rely on a couple of observations that for clarity are summarized here once more:

• The proof that the n = 2 binary code given in (11.1) is optimal is straightforward

and omitted.

• We do not need to worry about any other codebook columns than those given in

(6.5) because firstly the all-zero and the all-one column can be neglected by the

same argument as used in the proof of Theorem 8.1, and because secondly the

flipped version of the columns c(3)1 , c(3)2 , and c(3)3 will result in the same performance

because the BSC is strongly symmetric.

• Due to Lemma 6.7 and the average success probability only depends on d
(

C
(3,n)
t2,t3

)

,

no matter how the components order is. W.L.O.G., we can assume that the general

code parameters [t1, t2, t3] with t1 ≥ t2 ≥ t3.

• We need to distinguish three cases in the induction from n − 1 to n, depending on

whether n mod 3 = 0, 1, or 2.

Note that once again we use the notation introduced in App. A.3, i.e., we use a superscript

(n) to denote length and affiliation. Moreover, we introduce the following shorthands:

d(n)m (y) ! dH(xm,y), m = 1, . . . ,M (C.1)

and

d(n)(y) !
(

d(n)1 (y), d(n)2 (y), . . . , d(n)
M

(y)
)

. (C.2)

84

C.1 Proof of Theorem 10.2 Appendix C

Be aware not to confuse d(n)(y), which is a vector that compares all length-n codewords

with a given received vector y, with the pairwise Hamming distance vector d
(

C (M,n)
)

,

which compares all possible pairing combinations of the codewords of a codebook C (M,n).

We also remind the reader that k !
⌊
n
3

⌋

and p !
(

ε
1−ε

)

.

Using these shorthands, we can describe the ML decoding rule for a BSC quite simply

as

g(y) = argmin
1≤m≤M

{

d(n)m (y)
}

. (C.3)

We start with an observation about a basic property of the weak flip code given in

(10.3).

Claim C.1 For the weak flip code of (10.3), C
(3,n)
t∗2,t

∗
3
, the largest received Hamming distance

between any y and the nearest codeword is given by the minimum Hamming distance of

the codebook:

max
y

min
j∈{1,2,3}

d(n)j (y) = dmin
(

C
(3,n)
t∗2,t

∗
3

)

. (C.4)

Proof: It is not too difficult to see that a y that achieves the maximum in (C.4)

should have t∗1 ones, t∗2 ones, and t∗3 zeros in the positions where the optimal codebook

consists of c(3)1 , c(3)2 , and c(3)3 , respectively:

ymax ! (1 · · · 1
︸ ︷︷ ︸

t∗1

1 · · · 1
︸ ︷︷ ︸

t∗2

0 · · · 0
︸ ︷︷ ︸

t∗3

). (C.5)

Then,

max
y

min
j∈{1,2,3}

d(n)j (y)

= max
y

min
{

d(n)1 (y), d(n)2 (y), d(n)3 (y)
}

(C.6)

= min
{

d(n)1 (ymax), d
(n)
2 (ymax), d

(n)
3 (ymax)

}

(C.7)

= min{t∗1 + t∗2, t
∗
1 + t∗3, t

∗
2 + t∗3} (C.8)

= min
{

dH
(

x(n)
2 ,x(n)

3

)

, dH
(

x(n)
1 ,x(n)

3

)

, dH
(

x(n)
1 ,x(n)

2

)
}

(C.9)

= dmin
(

C
(3,n)
t∗2,t

∗
3

)

. (C.10)

Note that for other code structures, this claim is in general not true.

Also note that the (length-3) pairwise Hamming distance vector of any code C (3,n−1)

will have exactly 2 components increased by 1 when appending either c(3)1 , c(3)2 , or c(3)3 to

the codebook matrix to form a new code C (3,n). For example, if we add c(3)1 , then

d
(

C
(3,n)

)

=
(

dH
(

x(n−1)
1 ,x(n−1)

2

)

, dH
(

x(n−1)
1 ,x(n−1)

3

)

+ 1,

dH
(

x(n−1)
2 ,x(n−1)

3

)

+ 1
)

. (C.11)

We are now ready for our induction proof.

85

Appendix C Derivations concerning the BSC

C.1.1 Case i: Step from n− 1 = 3k − 1 to n = 3k

We start with the code C
(3,n−1)
t∗2,t

∗
3

, whose code parameters, pairwise Hamming distance

vector, and minimum Hamming distance are as follows:

code parameters:

[t∗1, t
∗
2, t

∗
3] = [k, k, k − 1] (C.12)

pairwise Hamming distance vector:

d
(

C
(3,n−1)
t∗2,t

∗
3

)

= (2k − 1, 2k − 1, 2k) (C.13)

minimum Hamming distance:

dmin
(

C
(3,n−1)
t∗2,t

∗
3

)

= 2k − 1. (C.14)

The corresponding success probability formula looks as follows:

3Pc
(

C
(3,n−1)
t∗2,t

∗
3

)

=
3
∑

m=1

∑

y(n−1)∈D(3,n−1)
k,k−1;m

Pn−1
Y |X

(

y(n−1)
∣
∣x(n−1)

m

)

(C.15)

= (1− ε)n−1
3
∑

m=1

∑

y(n−1)∈D(3,n−1)
k,k−1;m

(
ε

1− ε

)dH(x
(n−1)
m ,y(n−1))

(C.16)

= (1− ε)n−1






∑

y(n−1)∈D(3,n−1)
k,k−1;1

pd
(n−1)
1 (y(n−1))

+
∑

y(n−1)∈D(3,n−1)
k,k−1;2

pd
(n−1)
2 (y(n−1))

+
∑

y(n−1)∈D(3,n−1)
k,k−1;3

pd
(n−1)
3 (y(n−1))




 (C.17)

= (1− ε)n






∑

y(n−1)∈D(3,n−1)
k,k−1;1

pd
(n−1)
1 (y(n−1))

+
∑

y(n−1)∈D(3,n−1)
k,k−1;1

pd
(n−1)
1 (y(n−1))+1

+
∑

y(n−1)∈D(3,n−1)
k,k−1;2

pd
(n−1)
2 (y(n−1))

+
∑

y(n−1)∈D(3,n−1)
k,k−1;2

pd
(n−1)
2 (y(n−1))+1

86

C.1 Proof of Theorem 10.2 Appendix C

+
∑

y(n−1)∈D(3,n−1)
k,k−1;3

pd
(n−1)
3 (y(n−1))

+
∑

y(n−1)∈D(3,n−1)
k,k−1;3

pd
(n−1)
3 (y(n−1))+1




 (C.18)

where in the last equality we used the trick to write

1 = (1− ε)

(

1 +
ε

1− ε

)

= (1− ε)(1 + p). (C.19)

Appending c(3)3 : We now build a new length-n (weak flip) code C (3,n) from the given

code C
(3,n−1)
t∗2,t

∗
3

by appending c(3)2 = (0 1 1)T. The cases when we append c(3)1 or c(3)2 will be

discussed later. The new code has the following parameters:

[t1, t2, t3] = [k, k, k] (C.20)

d
(

C
(3,n)

)

= (2k, 2k, 2k) (C.21)

dmin
(

C
(3,n)

)

= 2k. (C.22)

Note that we can rewrite (C.18) in the following way:

3Pc

(

C
(3,n−1)
t∗2,t

∗
3

)

= (1− ε)n







∑

y(n)∈
[

D(3,n−1)
k,k−1;1 0

]

pd
(n−1)
1 (y(n−1))

+
∑

y(n)∈
[

D(3,n−1)
k,k−1;1 1

]

pd
(n−1)
1 (y(n−1))+1

+
∑

y(n)∈
[

D(3,n−1)
k,k−1;2 1

]

pd
(n−1)
2 (y(n−1))

+
∑

y(n)∈
[

D(3,n−1)
k,k−1;2 0

]

pd
(n−1)
2 (y(n−1))+1

+
∑

y(n)∈
[

D(3,n−1)
k,k−1;3 1

]

pd
(n−1)
3 (y(n−1))

+
∑

y(n)∈
[

D(3,n−1)
k,k−1;3 0

]

pd
(n−1)
3 (y(n−1))+1







. (C.23)

We compare this with the success probability of the new code:

3Pc
(

C
(3,n)

)

87

Appendix C Derivations concerning the BSC

= (1− ε)n






∑

y(n)∈D(3,n)
1

pd
(n)
1 (y(n)) +

∑

y(n)∈D(3,n)
2

pd
(n)
2 (y(n))

+
∑

y(n)∈D(3,n)
3

pd
(n)
3 (y(n))




 (C.24)

where we use D(3,n)
m to denote the decoding region of the new code C (3,n). In order to be

able to compare (C.23) with (C.24), we need to be able to compare D(3,n−1)
k,k−1;m with D(3,n)

m

and d(n−1)
m

(

y(n−1)
)

with d(n)m

(

y(n)
)

. Note that every y(n) can be uniquely written as some

y(n−1) plus an appended 0 or 1.

Since we have appended c(3)3 = (0 1 1)T to the code of length n− 1, it is obvious that

if y(n−1) ∈ D(3,n−1)
k,k−1;1 =⇒

[

y(n−1) 0
]

∈ D(3,n)
1 ; d(n)1

(

y(n)
)

= d(n−1)
1

(

y(n−1)
)

(C.25)

if y(n−1) ∈ D(3,n−1)
k,k−1;2 =⇒

[

y(n−1) 1
]

∈ D(3,n)
2 ; d(n)2

(

y(n)
)

= d(n−1)
2

(

y(n−1)
)

(C.26)

if y(n−1) ∈ D(3,n−1)
k,k−1;3 =⇒

[

y(n−1) 1
]

∈ D(3,n)
3 ; d(n)3

(

y(n)
)

= d(n−1)
3

(

y(n−1)
)

. (C.27)

The problems are the other three cases. For example,

if y(n−1) ∈ D(3,n−1)
k,k−1;1 =⇒

[

y(n−1) 1
]

∈ D(3,n)
1 or D(3,n)

2 or D(3,n)
3 (C.28)

depending on the exact value of d(n−1)
m

(

y(n−1)
)

. To be able to investigate the different

possible cases depending on d(n−1)
m

(

y(n−1)
)

, we introduce a shorthand

d ! min
m∈{1,2,3}

d(n−1)
m

(

y(n−1)
)

= d(n−1)
1

(

y(n−1)
)

(C.29)

to denote the distance to the closest codeword (which is the first codeword in this case) and

another shorthand d+ to denote any value strictly larger than d. The received Hamming

distance vector can take on one out of four possible values:

d(n−1)
(

y(n−1)
)

= (d, d, d) or (d, d, d+) or (d, d+, d)

or (d, d+, d+). (C.30)

If we append a 1 to y(n−1), then only the first component of d(n)
(

y(n)
)

will be increased

by 1 in comparison to d(n−1)
(

y(n−1)
)

, while the second and third components remains

unchanged. This means that in the fourth case in (C.30), the new vector
[

y(n−1) 1
]

will

belong to D(3,n)
1 , while in the other cases it will belong to D(3,n)

2 or D(3,n)
3 . However, we

will show next that the first and the second case can never occur!

88

C.1 Proof of Theorem 10.2 Appendix C

To show this, first of all note that d ≥ k because the codebook’s minimum Hamming

distance between codewords is 2k − 1 and therefore it is not possible that a vector y(n−1)

has a distance to two (or more) codewords that is smaller than k. Also, from Claim C.1

it follows that d ≤ 2k − 1.

Now let’s describe d(n−1)
(

y(n−1)
)

, using y(n−1)
max defined analogously to (C.5). To that

goal we define am to be the number of positions where y(n−1) differs from y(n−1)
max when we

only consider the t∗m positions corresponding to c(3)m , i.e., 0 ≤ am ≤ t∗m, m = 1, 2, 3. For

example, the all-zero vector y = 0 has a1 = t∗1, a2 = t∗2, and a3 = 0.

Then we define a matrix





t∗1 − a1 t∗2 − a2 a3
t∗1 − a1 a2 t∗3 − a3

a1 t∗2 − a2 t∗3 − a3






=






k − a1 k − a2 a3
k − a1 a2 k − 1− a3
a1 k − a2 k − 1− a3




 (C.31)

from which the received Hamming distance vector can be computed as follows:






d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)






=






k − a1 k − a2 a3
k − a1 a2 k − 1− a3
a1 k − a2 k − 1− a3











1

1

1




 . (C.32)

It is straightforward to prove the following claim.

Claim C.2 There exists no integer solution (a1, a2, a3), 0 ≤ a1 ≤ k, 0 ≤ a2 ≤ k, 0 ≤

a3 ≤ k − 1, that satisfies






k − a1 k − a2 a3
k − a1 a2 k − 1− a3
a1 k − a2 k − 1− a3











1

1

1






=






d

d

d




 or






d

d

d+




 or






d

d+

d




 (C.33)

for k ≤ d ≤ 2k − 1 and d+ > d. But there do exist integer solutions that satisfy






k − a1 k − a2 a3
k − a1 a2 k − 1− a3
a1 k − a2 k − 1− a3











1

1

1




 =






d+

d

d




 . (C.34)

89

Appendix C Derivations concerning the BSC

Hence, we have shown that

if y(n−1) ∈ D(3,n−1)
k,k−1;1 =⇒

[

y(n−1) 1
]

∈ D(3,n)
1 ; d(n)1

(

y(n)
)

= d(n−1)
1

(

y(n−1)
)

+ 1.

(C.35)

Similarly,

if y(n−1) ∈ D(3,n−1)
k,k−1;2 =⇒

[

y(n−1) 0
]

∈ D(3,n)
1 or D(3,n)

2

(C.36)

depending on the exact value of d(n−1)
(

y(n−1)
)

. Note that
[

y(n−1) 0
]

/∈ D(3,n)
3 because we

have added a 1 to the third codeword. If we append a 0 to y(n−1), then the second and

the third component of d(n)
(

y(n)
)

will be increased by 1 in comparison to d(n−1)
(

y(n−1)
)

,

while the first component remains unchanged. Again, the received Hamming distance

vector can take on one out of four possible values:

d(n−1)
(

y(n−1)
)

= (d, d, d) or (d, d, d+) or (d+, d, d)

or (d+, d, d+). (C.37)

In the first and two case
[

y(n−1) 0
]

will change to D(3,n)
1 , in the other two cases it will

remain in D(3,n)
2 . However, both the first and the two case are not possible according to

(C.33).

Finally,

if y(n−1) ∈ D(3,n−1)
k,k−1;3 =⇒

[

y(n−1) 0
]

∈ D(3,n)
1 or D(3,n)

3 (C.38)

depending on the exact value of d(n−1)
(

y(n−1)
)

:

d(n−1)
(

y(n−1)
)

= (d, d, d) or (d+, d, d) or (d, d+, d)

or (d+, d+, d). (C.39)

In the first and third case
[

y(n−1) 0
]

will change to D(3,n)
1 , while in the other two cases

it will remain in D(3,n)
3 . Again, the first and the third case are not possible according to

(C.33).

Hence, we have shown that

if y(n−1) ∈ D(3,n−1)
k,k−1;1 =⇒

[

y(n−1) 1
]

∈ D(3,n)
1 ; d(n)1

(

y(n)
)

= d(n−1)
1

(

y(n−1)
)

+ 1

(C.40)

if y(n−1) ∈ D(3,n−1)
k,k−1;2 =⇒

90

C.1 Proof of Theorem 10.2 Appendix C

[

y(n−1) 0
]

∈ D(3,n)
2 ; d(n)2

(

y(n)
)

= d(n−1)
2

(

y(n−1)
)

+ 1

(C.41)

if y(n−1) ∈ D(3,n−1)
k,k−1;3 =⇒

[

y(n−1) 0
]

∈ D(3,n)
3 ; d(n)3

(

y(n)
)

= d(n−1)
3

(

y(n−1)
)

+ 1.

(C.42)

But this proves that the success probability of (C.24) is identical to the success probability

of (C.23)! So in spite of increasing the length n − 1 by 1, we have not improved our

performance.

Appending c(3)1 : Next, we investigate what happens if we append c(3)1 = (0 0 1)T.

The new code has the following parameters:

[t1, t2, t3] = [k + 1, k, k − 1] (C.43)

d
(

C
(3,n)

)

= (2k − 1, 2k, 2k + 1) (C.44)

dmin
(

C
(3,n)

)

= 2k − 1. (C.45)

One of the three problematic cases now is

if y(n−1) ∈ D(3,n−1)
k,k−1;2 =⇒

[

y(n−1) 1
]

∈ D(3,n)
2 or D(3,n)

3

(C.46)

depending on the exact value of d(n−1)
(

y(n−1)
)

given in (C.37). If we append a 1 to y(n−1),

the first and the second component of d(n)
(

y(n)
)

will be increased by 1 in comparison to

d(n−1)
(

y(n−1)
)

, while the third component remains unchanged. This means that in the

first and third case the new vector
[

y(n−1) 1
]

will belong to D(3,n)
3 , while in the second and

the fourth case it will belong to D(3,n)
2 . According to Claim C.2, the third case is possible

and does happen. If
[

y(n−1) 1
]

∈ D(3,n)
3 , then we have that

d(n)3

(

y(n)
)

= d(n−1)
2

(

y(n−1)
)

(C.47)

without the additional increase by 1. This then means that the success probability of

(C.24) is strictly larger than the success probability of C
(3,n−1)
t∗2,t

∗
3

because

pd
(n)
3 (y(n)) = pd

(n−1)
2 (y(n−1)) (C.48)

> pd
(n−1)
2 (y(n−1))+1 (C.49)

and the choice of c(3)1 is effective.

The investigation of the other two problematic cases is similar and omitted.

Appending c(3)2 : Finally, we look at the case when we append c(3)2 = (0 1 0)T. The

new code has the following parameters:

[t1, t2, t3] = [k, k + 1, k − 1] (C.50)

d
(

C
(3,n)

)

= (2k, 2k − 1, 2k + 1) (C.51)

dmin
(

C
(3,n)

)

= 2k − 1. (C.52)

91

Appendix C Derivations concerning the BSC

We realize that these code parameters are simply a permutation of the parameters of the

case when we append c(3)1 . Hence, the investigation will not fundamentally change and

result in an identical performance. So, both choices of vectors c(3)1 and c(3)2 are optimal.

We decide to choose c(3)1 for keeping the ordering t1 ≥ t2 ≥ t3.

C.1.2 Case ii: Step from n− 1 = 3k to n = 3k + 1

In this case, we start with the code C
(3,n−1)
t∗2,t

∗
3

with code parameters, pairwise Hamming

distance vector, and minimum Hamming distance as follows:

code parameters:

[t∗1, t
∗
2, t

∗
3] = [k + 1, k, k − 1] (C.53)

pairwise Hamming distance vector:

d
(

C
(3,n−1)
t∗2,t

∗
3

)

= (2k − 1, 2k, 2k + 1) (C.54)

minimum Hamming distance:

dmin
(

C
(3,n−1)
t∗2,t

∗
3

)

= 2k − 1. (C.55)

If we append c(3)1 = (0 0 1)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 2, k, k − 1] (C.56)

d
(

C
(3,n)

)

= (2k − 1, 2k + 1, 2k + 2) (C.57)

dmin
(

C
(3,n)

)

= 2k − 1. (C.58)

If we append c(3)2 = (0 1 0)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 1, k + 1, k − 1] (C.59)

d
(

C
(3,n)

)

= (2k, 2k, 2k + 2) (C.60)

dmin
(

C
(3,n)

)

= 2k. (C.61)

And if we append c(3)3 = (0 1 1)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 1, k, k] (C.62)

d
(

C
(3,n)

)

= (2k, 2k + 1, 2k + 1) (C.63)

dmin
(

C
(3,n)

)

= 2k. (C.64)

The corresponding investigation of possible situations now reads as follows.

Claim C.3 There exists no integer solution (a1, a2, a3), 0 ≤ a1 ≤ k + 1, 0 ≤ a2 ≤ k,

0 ≤ a3 ≤ k − 1, that satisfies





k + 1− a1 k − a2 a3
k + 1− a1 a2 k − 1− a3

a1 k − a2 k − 1− a3











1

1

1






=






d

d

d




 or






d

d

d+




 or






d+

d

d




 (C.65)

92

C.1 Proof of Theorem 10.2 Appendix C

for k ≤ d ≤ 2k − 1 and d+ > d. But there do exist integer solutions that satisfy






k + 1− a1 k − a2 a3
k + 1− a1 a2 k − 1− a3

a1 k − a2 k − 1− a3











1

1

1




 =






d

d+

d




 . (C.66)

The investigation is similar and shows that appending c(3)2 is strictly suboptimal, while

appending c(3)1 and c(3)3 are equivalent and optimal. The detailed examination will be

discussed in Appendix C.2.

C.1.3 Case iii: Step from n− 1 = 3k + 1 to n = 3k + 2

In this case, we start with the code C
(3,n−1)
t∗2,t

∗
3

with code parameters, pairwise Hamming

distance vector, and minimum Hamming distance as follows:

code parameters:

[t∗1, t
∗
2, t

∗
3] = [k + 1, k, k] (C.67)

pairwise Hamming distance vector:

d
(

C
(3,n−1)
t∗2,t

∗
3

)

= (2k, 2k + 1, 2k + 1) (C.68)

minimum Hamming distance:

dmin
(

C
(3,n−1)
t∗2,t

∗
3

)

= 2k. (C.69)

If we append c(3)1 = (0 0 1)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 2, k, k] (C.70)

d
(

C
(3,n)

)

= (2k, 2k + 2, 2k + 2) (C.71)

dmin
(

C
(3,n)

)

= 2k. (C.72)

If we append c(3)2 = (0 1 0)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 1, k + 1, k] (C.73)

d
(

C
(3,n)

)

= (2k + 1, 2k + 1, 2k + 2) (C.74)

dmin
(

C
(3,n)

)

= 2k + 1. (C.75)

And if we append c(3)3 = (0 1 1)T, we get a new code with the following parameters:

[t1, t2, t3] = [k + 1, k, k + 1] (C.76)

d
(

C
(3,n)

)

= (2k + 1, 2k + 2, 2k + 1) (C.77)

dmin
(

C
(3,n)

)

= 2k + 1. (C.78)

The corresponding investigation of possible situations now reads as follows.

93

Appendix C Derivations concerning the BSC

Claim C.4 There exists no integer solution (a1, a2, a3), 0 ≤ a1 ≤ k + 1, 0 ≤ a2 ≤ k,

0 ≤ a3 ≤ k, that satisfies





k + 1− a1 k − a2 a3
k + 1− a1 a2 k − a3

a1 k − a2 k − a3











1

1

1






=






d

d

d




 or






d+

d

d




 or






d

d+

d




 (C.79)

for k ≤ d ≤ 2k and d+ > d. But there do exist integer solutions that satisfy





k + 1− a1 k − a2 a3
k + 1− a1 a2 k − a3

a1 k − a2 k − a3











1

1

1




 =






d

d

d+




 . (C.80)

The investigation is similar and shows that appending c(3)1 is strictly suboptimal, while

appending c(3)2 and c(3)3 are equivalent and optimal.

This completes the proof for M = 3.

Finally, we turn to the case M = 4. We note that the fourth codeword for M = 4 is

exactly the furthest received vector for M = 3. We can therefore adapt the computation

of the received Hamming distance vector as follows:








d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)

d(n−1)
4

(

y(n−1)
)









=








t1 − a1 t2 − a2 a3
t1 − a1 a2 t3 − a3

a1 t2 − a2 t3 − a3
a1 a2 a3













1

1

1




 .

(C.81)

The derivation follows then exactly the same lines as for M = 3. The only main difference

is that we need to investigate more different columns. Actually, we need to investigate

also some columns that have not been named in Definition 6.5. like, e.g., c = (0 0 0 1)T

and prove that they are strictly suboptimal. The details are omitted.

C.2 Proof of Theorem 10.3

This proof will use the same approach as App. C.1 but is much more elaborate. Unlike

the case of the ZC, we don’t have the closed form for the exact average success probability

for given a general codebook C (M,n). Hence, to solve this global optimization problem for

discrete variables, we still use the method based on induction in n. In addition, to be able

to compare the total probability increase for all possible codebooks, we use the recursive

construction in blocklength n for not only the locally optimal codebooks C
(M,n)∗
BSC given in

Theorem 10.2, but also other locally optimal codebooks.

94

C.2 Proof of Theorem 10.3 Appendix C

We again firstly consider the case M = 3 and because of the similar argument in

App. C.1, here in this proof we only think about the case of n = 3k. We summarized some

important observations for our long proof.

• A principal lemma shows that how to simplify the recursive construction in block-

length n by fixing one of the code parameters.

• By fixing the code parameter t3, the free discrete variable left only is t2 because

t1 = n− t2 − t3; we then try to find the best code parameters [t'1, t
'
2, t3] by examing

all possible code parameters for the given t3.

• We will list all the possible comparable best code parameters when we fixed the code

parameter t3.

• After obtaining the best code parameters [t'1, t
'
2, t3], we allow the t3 to be a free

discrete variable again; we then prove that the optimal code parameter is equal to

[t∗1, t
∗
2, t

∗
3] = [k + 1, k, k − 1].

The following lemma shows that a better strategy for appending the new n-th column

to a given C
(3,n−1)
t2,t3

as we fix one of the code parameters.

Lemma C.5 Consider the general code parameters [t1, t2, t3] with t1 ≥ t2 ≥ t3, t1 + t2 +

t3 = (n − 1) for a BSC. Fixing one of the code parameters, if we recursively construct a

locally optimal codebook for n ≥ 3 by appending a new n-th column from one of the two

other columns. The better choice to have a larger total probability increase is by appending

the following choice of appended columns:

1. If t3 is fixed, appending

















c(3)1 if (t1 − t3) is even but (t2 − t3) is odd;

c(3)2 if (t1 − t3) is even and (t2 − t3) is even;

c(3)2 if (t1 − t3) is odd but (t2 − t3) is even;

c(3)1 ≡ c(3)2 if (t1 − t3) is odd and (t2 − t3) is odd;

(C.82)

2. If t2 is fixed, appending

















c(3)1 if (t1 − t2) is even but (t2 − t3) is odd;

c(3)3 if (t1 − t2) is even and (t2 − t3) is even;

c(3)3 if (t1 − t2) is odd but (t2 − t3) is even;

c(3)1 ≡ c(3)3 if (t1 − t2) is odd and (t2 − t3) is odd;

(C.83)

95

Appendix C Derivations concerning the BSC

3. If t1 is fixed, appending

















c(3)2 if (t1 − t2) is even but (t1 − t3) is odd;

c(3)3 if (t1 − t2) is even and (t1 − t3) is even;

c(3)3 if (t1 − t2) is odd but (t1 − t3) is even;

c(3)2 ≡ c(3)3 if (t1 − t2) is odd and (t1 − t3) is odd;

(C.84)

Proof: Analogous to (C.31), the general code parameters [t1, t2, t3] with received

Hamming distances d(n−1)
(

y(n−1)
)

can be computed as follows






d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)






=






t1 − a1 t2 − a2 a3
t1 − a1 a2 t3 − a3

a1 t2 − a2 t3 − a3











1

1

1




 . (C.85)

Next we start clarifying the decoding regions D(3,n)
m change depending on the n-th column

we appended.

Appending c(3)1 : Following the previous discussion in App. C.1, we know that one of

the problematic case is

if y(n−1) ∈ D(3,n−1)
t2,t3;1 =⇒

[

y(n−1) 1
]

∈ D(3,n)
1 or D(3,n)

3

(C.86)

depending on the exact value of d(n−1)
m

(

y(n−1)
)

in (C.30), the first and third case in (C.30)

will make
[

y(n−1) 1
]

change to D(3,n)
3 . Note that because of the first and third received

Hamming distances are both equal to d, we can decode these y(n−1) to D(3,n−1)
t2,t3;1 , while in

the case of y(n−1) ∈ D(3,n−1)
t2,t3;3 , we will not count these y(n−1) repeatedly.

The other two cases are

if y(n−1) ∈ D(3,n−1)
t2,t3;2 =⇒

[

y(n−1) 1
]

∈ D(3,n)
2 or D(3,n)

3

(C.87)

if y(n−1) ∈ D(3,n−1)
t2,t3;3 =⇒

[

y(n−1) 0
]

∈ D(3,n)
1 or D(3,n)

2 or D(3,n)
3 . (C.88)

Again, in (C.37) the first and third case will make
[

y(n−1) 1
]

change to D(3,n)
3 . In (C.39)

except the fourth case, other cases will make
[

y(n−1) 0
]

change toD(3,n)
1 orD(3,n)

2 . However,

as mentioned before, it is not necessary to count these received Hamming distances again.

96

C.2 Proof of Theorem 10.3 Appendix C

Finally, to figure out what the total probability increase are when appending c(3)1 , the

whole cases that we have to take into account are

d(n−1)
(

y(n−1)
)

= (d, d, d) or (d, d+, d) or (d+, d, d). (C.89)

Now we study the conditions that result in the integer solutions of (a1, a2, a3). I.e.,

corresponding a positive probability increase ∆ψm (See the explanations from (C.47)–

(C.49)).

The first case of (C.89) is a special case if both the other two cases holds. We first

investigate the second case

d(n−1)
1

(

y(n−1)
)

= d = d(n−1)
3

(

y(n−1)
)

(C.90)

=⇒ (t1 − a1) + a3 = a1 + (t3 − a3) (C.91)

=⇒ (t1 − t3) = 2(a1 − a3) (C.92)

=⇒ a1 − a3 =
t1 − t3

2
(C.93)

Since we only have the integer solutions ai by assumption, hence there do exist integer

solutions ai if t1 − t3 is even. On the other hand, there exists no integer solutions ai if

t1 − t3 is odd. Similarly, in the third case of (C.89), there do exist integer solutions ai if

t1 − t2 is even. Hence, we have shown that there do exist integer solutions such that

d(n−1)
(

y(n−1)
)

=













(d, d+, d)

(d+, d, d)

(d, d, d)

if















(t1 − t3) is even

(t1 − t2) is even

(t1 − t2), (t2 − t3), (t1 − t3) are all even.

(C.94)

Appending c(3)2 : Using the same argument, we can also show that

d(n−1)
(

y(n−1)
)

=













(d, d, d+)

(d+, d, d)

(d, d, d)

if















(t2 − t3) is even

(t1 − t2) is even

(t1 − t2), (t2 − t3), (t1 − t3) are all even.

(C.95)

97

Appendix C Derivations concerning the BSC

Appending c(3)3 : In this case, we have shown that

d(n−1)
(

y(n−1)
)

=













(d, d, d+)

(d, d+, d)

(d, d, d)

if















(t2 − t3) is even

(t1 − t3) is even

(t1 − t2), (t2 − t3), (t1 − t3) are all even.

(C.96)

Fixing t3

To prove the first statement, when we fixed t3, let us only allow the code parameters t1
and t2 to increase step 1 for building up a new C (3,n) code. Compare (C.94) and (C.95),

we can see that the condition of (t1 − t2) is even both shows up for appending c(3)1 or

c(3)2 . Hence, for instance, if we have (t1 − t3) is even, but (t2 − t3) is odd. Since the case

of (d, d, d+) does not happen if (t1 − t3) is odd and no matter (t1 − t2) is odd or even,

it is obvious that the total probability increase of appending c(3)1 will strictly lager than

the total probability increase of appending c(3)2 (Actually, in this situation, appending c(3)2

result in zero total probability increase, since (t1 − t2) can not be even). This argument

can be used to those cases that at least one of (t1 − t3) or (t2 − t3) is odd.

The most problematic case is that both (t1− t3) and (t2 − t3) are even, note that there

are only two possible values of the code parameters [t1, t2, t3] in this case, i.e. all ti are

odd or all ti are even. We are going to show that appending c2 will result in a larger total

probability increase. First introduce the shorthands

u !
t1 − t3

2
, v !

t2 − t3
2

, d̄ !
t1 + t2

2
+ t3. (C.97)

Note that as the special case of t1 = t2, the code parameters is [t1, t1, t3], then appending

c(3)1 or c(3)2 are equivalent since [t1 + 1, t1, t3] ≡ [t1, t1 + 1, t3]. W.L.O.G., we can assume

that t1 > t2, then we have u > v.

By (C.93), we then compute the received Hamming distances

d(n−1)
1

(

y(n−1)
)

= d = (t2 − a2) +
t1 + t3

2
;

= d(n−1)
3

(

y(n−1)
)

; (C.98)

d(n−1)
2

(

y(n−1)
)

= d+ = a2 + (t1 + t3)− (a1 + a3);

with the solutions of (a1, a2, a3):

a1 = u+ a3, a2 ≥ v + a3. (C.99)

98

C.2 Proof of Theorem 10.3 Appendix C

Set a2 ! v + r with r ≥ a3, then

d = (t2 − v − r) +
t1 + t3

2
=

t1 + t2
2

+ t3 − r; (C.100)

d+ = v + r + (t1 + t3)− (u+ 2a3)

=
t1 + t2

2
+ t3 + (r − 2a3). (C.101)

Reminding that the range of integer solutions ai is 0 ≤ ai ≤ ti, the corresponding

d(n−1)
(

y(n−1)
)

is







d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)







=






d

d+

d




 =






d̄− r

d̄+
(

r − 2a3
)

d̄− r




 , (C.102)

for 0 ≤ a3 ≤ t3, a3 ≤ r ≤ t2+t3
2 .

In such situation, say

y(n−1) ∈ D(3,n−1)
t2,t3;1 =⇒ [y(n−1) 1] ∈ D(3,n)

3 (C.103)

d(n)3

(

y(n−1) 1
)

= d(n−1)
1

(

y(n−1)
)

= d (C.104)

depending on the solutions of (a1, a2, a3) = (u+a3, v+r, a3). And the probability increase

for each y(n−1) is

pd
(n)
3

([

y(n−1) 1
])

− pd
(n−1)
1

(

y(n−1)
)

+1 = pd − pd+1. (C.105)

Moreover, for these type of y(n−1) with d(n−1)
1

(

y(n−1)
)

= d, there are

(
t1

u+ a3

)(
t2

v + r

)(
t3
a3

)

(C.106)

numbers of such y(n−1).

The computation for the success probability increase of the new decoding region D(3,n)
3

can be derived as

∆ψ3
(

C
(3,n)
t2,t3

)

=
t3∑

a3=0

t2+t3
2∑

r≥a3

(
t1

u+ a3

)(
t2

v + r

)(
t3
a3

)

·(1− ε)n
(

pd̄−r − pd̄−r+1
)

. (C.107)

If we interchange the roles of r and a3, rewrite (C.107), then

∆ψ3
(

C
(3,n)
t2,t3

)

=

t2+t3
2∑

r=0

min {r,t3}∑

a3=0

(
t1

u+ a3

)(
t2

v + r

)(
t3
a3

)

·(1− ε)n
(

pd̄−r − pd̄−r+1
)

. (C.108)

99

Appendix C Derivations concerning the BSC

Similarly, in the case of d(n−1)
(

y(n−1)
)

= (d, d, d+), we have

d(n−1)
1

(

y(n−1)
)

= d = (t1 − a1) +
t2 + t3

2

= d(n−1)
2

(

y(n−1)
)

; (C.109)

d(n−1)
3

(

y(n−1)
)

= d+ = a1 + (t2 + t3)− (a2 + a3).

with the solutions of (a1, a2, a3):

a1 ! u+ r ≥ u+ a3, a2 = v + a3. (C.110)

As a consequence, the corresponding d(n−1)
(

y(n−1)
)

is:






d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)







=






d̄− r

d̄− r

d̄+
(

r − 2a3
)




 , (C.111)

for 0 ≤ a3 ≤ t3, a3 ≤ r ≤ t1+t3
2 .

Likewise, the success probability increase of the new decoding region D(3,n)
2 can be

derived as

∆ψ2
(

C
(3,n)
t2+1,t3

)

=
t3∑

a3=0

t1+t3
2∑

r≥a3

(
t1

u+ r

)(
t2

v + a3

)(
t3
a3

)

·(1− ε)n
(

pd̄−r − pd̄−r+1
)

(C.112)

=

t1+t3
2∑

r=0

min {r,t3}∑

a3=0

(
t1

u+ r

)(
t2

v + a3

)(
t3
a3

)

·(1− ε)n
(

pd̄−r − pd̄−r+1
)

. (C.113)

Therefore, compare the coefficients of (C.108) to (C.113), we are going to show that

(C.113) > (C.108) with the assumption t1 > t2. This will complete the proof of statement

1).

Claim C.6 For the nonnegative integers t1, t2 both are even or odd, let t1 > t2 and ν1,

ν2 be two nonnegative integers with t2
2 ≥ ν1 > ν2 ≥ 0, we have

(
t1

3 t12 4+ ν1

)(
t2

3 t22 4+ ν2

)

−

(
t1

3 t12 4+ ν2

)(
t2

3 t22 4+ ν1

)

=

(
t1

, t12 - − ν1

)(
t2

3 t22 4+ ν2

)

−

(
t1

3 t12 4+ ν2

)(
t2

, t22 - − ν1

)

=

(
t1

, t12 - − ν1

)(
t2

, t22 - − ν2

)

−

(
t1

, t12 - − ν2

)(
t2

, t22 - − ν1

)

=

(
t1

3 t12 4+ ν1

)(
t2

, t22 - − ν2

)

−

(
t1

, t12 - − ν2

)(
t2

3 t22 4+ ν1

)

> 0

(C.114)

100

C.2 Proof of Theorem 10.3 Appendix C

The proof of Claim C.6 can be shown as following, note that
(

t
* t
2 +−ν

)

is equal to
(

t
. t
2 /+ν

)

is clear from the definition of binomial coefficients. We then only prove the first equation

of (C.114) for the case that t1, t2 are both even. Write

(
t1

t1
2 + ν1

)(
t2

t2
2 + ν2

)

=

(
t1
2 − ν1 + 1

)

· · · (t12)
(
t1
2 + ν1

)

· · ·
(
t1
2 + 1

) ×
t1!

t1
2 !

t1
2 !

×

(
t2
2 − ν2 + 1

)

· · · (t22)
(
t2
2 + ν2

)

· · ·
(
t2
2 + 1

) ×
t2!

t2
2 !

t2
2 !

(C.115)
(

t1
t1
2 + ν2

)(
t2

t2
2 + ν1

)

=

(
t1
2 − ν2 + 1

)

· · · (t12)
(
t1
2 + ν2

)

· · ·
(
t1
2 + 1

) ×
t1!

t1
2 !

t1
2 !

×

(
t2
2 − ν1 + 1

)

· · · (t22)
(
t2
2 + ν1

)

· · ·
(
t2
2 + 1

) ×
t2!

t2
2 !

t2
2 !

(C.116)

Divide (C.115) by (C.116), since t1 > t2 and ν1 > ν2, we get

(t1
t1
2 +ν1

)(t2
t2
2 +ν2

)

(t1
t1
2 +ν2

)(t2
t2
2 +ν1

) =

(
t1
2 −ν1+1
t1
2 +ν1

)

· · ·

(
t1
2 −ν2

t1
2 +ν2+1

)

(
t2
2 −ν1+1
t2
2 +ν1

)

· · ·

(
t2
2 −ν2

t2
2 +ν2+1

) > 1. (C.117)

where the inequality of (C.117) is because the fact that with b, c, e ∈ N,

b

c
>

b− e

c− e
provided that e < b < c. (C.118)

This complete the proof of Claim C.6.

In the rest of proof, we also only deal with the case that ti are all even. Now we

substracting (C.108) from (C.113), we have

∆ψ2
(

C
(3,n)
t2+1,t3

)

−∆ψ3
(

C
(3,n)
t2,t3

)

=

t2+t3
2∑

r=0

min {r,t3}∑

a3=0

[(
t1

u+ r

)(
t2

v + a3

)

−

(
t1

u+ a3

)(
t2

v + r

)]

·

(
t3
a3

)

(1− ε)n
(

pd̄−r − pd̄−r+1
)

+

t1+t3
2∑

r=
t2+t3

2 +1

min {r,t3}∑

a3=0

(
t1

u+ r

)(
t2

v + a3

)(
t3
a3

)

·(1− ε)n
(

pd̄−r − pd̄−r+1
)

. (C.119)

We observed that the second term of (C.119) is strictly larger than zero. The first term

101

Appendix C Derivations concerning the BSC

of (C.119) can be rewritten as

t3∑

r=0

r
∑

a3=0

[(
t1

u+ r

)(
t2

v + a3

)

−

(
t1

u+ a3

)(
t2

v + r

)]

·

(
t3
a3

)

(1− ε)n
(

pd̄−r − pd̄−r+1
)

+

t2+t3
2∑

r=t3+1

t3∑

a3=0

[(
t1

u+ r

)(
t2

v + a3

)

−

(
t1

u+ a3

)(
t2

v + r

)]

·

(
t3
a3

)

(1− ε)n
(

pd̄−r − pd̄−r+1
)

(C.120)

Then we consider the first term binomial coefficients of (C.120), they are equal to
[(

t1
t1
2 + r − t3

2

)(
t2

t2
2 + a3 −

t3
2

)

−

(
t1

t1
2 + a3 −

t3
2

)(
t2

t2
2 + r − t3

2

)](
t3
a3

)

. (C.121)

Because of t3 ≥ r ≥ a3 ≥ 0, observed that if r = a3, we have
(

t1
t1
2 + r − t3

2

)(
t2

t2
2 + a3 −

t3
2

)

−

(
t1

t1
2 + a3 −

t3
2

)(
t2

t2
2 + r − t3

2

)

= 0 (C.122)

If r + a3 = t3, then we also get
(

t1
t1
2 + t3

2 − r

)(
t2

t2
2 + t3

2 − r

)

−

(
t1

t1
2 + t3

2 − r

)(
t2

t2
2 + r − t3

2

)

= 0 (C.123)

If neither r − a3 = 0 nor r + a3 = t3, in general, we have

r − a3 = 1, · · · , t3 − 1. (C.124)

We will next illustate the case that r − a3 = 1 ⇒ r = a3 + 1, then (C.121) becomes
[(

t1
t1
2 + a3 + 1− t3

2

)(
t2

t1
2 + a3 −

t3
2

)

−

(
t1

t1
2 + a3 −

t3
2

)(
t2

t2
2 + a3 + 1− t3

2

)](
t3
a3

)

(C.125)

If a3 ≤
t3
2 − 1, then (C.125) equal to

[(
t1

t1
2 + t3

2 − a3 − 1

)(
t2

t1
2 + t3

2 − a3

)

−

(
t1

t1
2 + t3

2 − a3

)(
t2

t2
2 + t3

2 − a3 − 1

)](
t3
a3

)

, (C.126)

102

C.2 Proof of Theorem 10.3 Appendix C

which is smaller than zero due to Claim C.6. However, if a3 >
t3
2 − 1, then (C.125) becomes

[(
t1

t1
2 + a3 −

t3
2 + 1

)(
t2

t1
2 + a3 −

t3
2

)

−

(
t1

t1
2 + a3 −

t3
2

)(
t2

t2
2 + a3 −

t3
2 + 1

)](
t3
a3

)

, (C.127)

which is larger than zero. Reminding that the range of a3 is from 0 to t3−1, taking a3 = 0

(r = 1) for (C.126) and a′3 = t3 − 1 (r = t3) for (C.127), sum up them together
[(

t1
t1
2 + t3

2 − 1

)(
t2

t1
2 + t3

2

)

−

(
t1

t1
2 + t3

2

)(
t2

t2
2 + t3

2 − 1

)](
t3
0

)

+

[(
t1

t1
2 + t3

2

)(
t2

t1
2 + t3

2 − 1

)

−

(
t1

t1
2 + t3

2 − 1

)(
t2

t2
2 + t3

2

)](
t3

t3 − 1

)

(C.128)

=

[(
t1

t1
2 + t3

2

)(
t2

t1
2 + t3

2 − 1

)

−

(
t1

t1
2 + t3

2 − 1

)(
t2

t2
2 + t3

2

)]

·

[(
t3

t3 − 1

)

−

(
t3
0

)]

> 0, (C.129)

where (C.129) is due to that
(

t3
t3−1

)

>
(
t3
0

)

. Furthermore, since
(

pd̄−r − pd̄−r+1
)

is strictly

increasing in r, hence
[(

t1
t1
2 + t3

2

)(
t2

t1
2 + t3

2 − 1

)

−

(
t1

t1
2 + t3

2 − 1

)(
t2

t2
2 + t3

2

)]

·

[(
t3

t3 − 1

)
(

pd̄−t3 − pd̄−t3+1
)

−

(
t3
0

)
(

pd̄ − pd̄+1
)
]

> 0 (C.130)

Similarly, for the other cases that a3 + a′3 = t3 − 1, the binomial coefficients terms of

a′3 >
t3
2 −1 will always compensate for the binomial coefficients terms of a3 ≤

t3
2 −1. These

would make the whole summations are still larger than zero for the case of r − a3 = 1.

For the rest cases that r− a3 = κ, κ = 2, . . . , t3− 1, we can apply the similar argument to

show that the first summation term of (C.120) is always larger than zero. The final step

is showing that the second term of (C.120) is always strictly larger than zero, too.

Again, consider the ranges of (r, a3): t3 ≤ r ≤ t2+t3
2 , 0 ≤ a3 ≤ t3, for instance,

substitute r = t3 + 1 in (C.121), we have
[(

t1
t1
2 + t3

2 + 1

)(
t2

t2
2 + a3 −

t3
2

)

−

(
t1

t1
2 + a3 −

t3
2

)(
t2

t2
2 + t3

2 + 1

)](
t3
a3

)

. (C.131)

103

Appendix C Derivations concerning the BSC

Since 0 ≤ a3 ≤ t3, then
∣
∣a3 −

t3
2

∣
∣ ≤ t3

2 , therefore, apply Claim C.6 again, (C.131) is always

lager than zero. This complete the proof that (C.113)> (C.108).

The second and third statement of Lemma C.5 can be proved in a similar way.

According to the proof in Lemma C.5, we can also recursively compute the total

probability increase in blocklength n for applying each case in Theorem 10.2.

Corollary C.7 For a BSC and for any n ≥ 2, the optimal codes exact average success

probability with three codewords M = 3 can be derived recursively in blocklength n. Starting

as (10.6), and then apply (10.7)–(10.9).

Proof: It is quite simple to get the starting expression (10.6) for n = 2 from (11.1).

We only illustrate the calculation for the case as n− 1 = 3k − 1 to n = 3k. The optimal

code parameters for n− 1 = 3k − 1 is [k, k, k − 1]. Since we are going to append c(3)1 for

n = 3k, the solutions of (a1, a2, a3) for d(n−1)
(

y(n−1)
)

= (d+, d, d) are

a1 = a2, a2 ≤ a3. (C.132)

The corresponding d(n−1)
(

y(n−1)
)

is







d(n−1)
1

(

y(n−1)
)

d(n−1)
2

(

y(n−1)
)

d(n−1)
3

(

y(n−1)
)







=






2k +
(

a3 − 2a2
)

(2k − 1)− a3

(2k − 1)− a3




 , (C.133)

for 0 ≤ a2 ≤ t2, a2 ≤ a3 ≤ t3.

Therefore, the total probability increase from the third decoding region D(3,n)
3 is

∆Ψ
(

C
(3,n)
k,k−1

)

=
k−1
∑

a3=0

a3∑

a2=0

(
k

a2

)(
k

a2

)(
k − 1

a3

)

·(1− ε)n
(

p2k−1−a3 − p2k−a3
)

. (C.134)

The other two cases are similar to (C.108) and (C.113).

Now we back into the proof of Theorem 10.3, we have a important strictly increasing

property in t2.

Corollary C.8 For a BSC and for any n ≥ 2 with any code parameters [t1, t2, t3] that

satisfy t1 ≥ t2 + 2 ≥ t3, we have

3Pc
(

C
(3,n)
t2,t3

)

< 3Pc
(

C
(3,n)
t2+2,t3

)

. (C.135)

Proof: Consider the codebook C
(3,n−2)
t2,t3

with code parameters [t1, t2, t3]. From

blocklength n − 2 to blocklength n by fixing the number of t3, there are three possible

code parameters extensions that will happen in blocklength n. The following picture C.17

shows that how to recursively construct the code parameters corresponding to their average

success probabilities.

104

C.2 Proof of Theorem 10.3 Appendix C

n− 2

3Pc
(

C
(3,n−2)
t2,t3

)

[t1, t2, t3]

c(3)1

c(3)2

!
!

!
!!"

#
#

#
##$

!
!

!
!!"

#
#

#
##$

!
!

!
!!"

#
#

#
##$

c(3)1

c(3)2

c(3)1

c(3)2

n− 1

3Pc
(

C
(3,n−1)
t2,t3

)

[t1 + 1, t2, t3]

3Pc
(

C
(3,n−1)
t2+1,t3

)
[t1, t2 + 1, t3]

n

3Pc
(

C
(3,n)
t2,t3

)
[t1 + 2, t2, t3]

3Pc
(

C
(3,n)
t2+1,t3

)

[t1 + 1, t2 + 1, t3]

3Pc
(

C
(3,n)
t2+2,t3

)

[t1, t2 + 2, t3]

Figure C.17: The code parameters construction from blocklength n− 2 to n

The condition of t1 ≥ t2 + 2 is needed to make sure that at blocklength n, the code

parameters ordering is still nonincreasing.

Using the same approach as Lemma C.5, there are four cases have to be concerned in

the staring case at blocklength n− 2. I.e. (t1 − t3) is even and (t2 − t3) is even, (t1 − t3)

is even but (t2 − t3) is odd, (t1 − t3) is odd and (t2 − t3) is even, or (t1 − t3) is odd and

(t2 − t3) is odd.

The two cases that only one of the two differences (t1 − t3) or (t2−t3) is odd are simple

to argue. For instance, if (t1 − t3) is even but (t2 − t3) is odd, then by Lemma C.5, we

have

3Pc
(

C
(3,n−1)
t2,t3

)

> 3Pc
(

C
(3,n−1)
t2+1,t3

)

. (C.136)

However, both (t1 + 1− t3) and (t2 − t3) are odd, therefore

3Pc
(

C
(3,n)
t2,t3

)

= 3Pc
(

C
(3,n)
t2+1,t3

)

. (C.137)

Furthermore, from [t1, t2 + 1, t3], due to that both (t1 − t3) and (t2 + 1− t3) are even, by

Lemma C.5 again, we have

3Pc
(

C
(3,n)
t2+2,t3

)

> 3Pc
(

C
(3,n)
t2+1,t3

)

(C.138)

= 3Pc
(

C
(3,n)
t2,t3

)

. (C.139)

The case that both (t1 − t3) and (t2 − t3) are even can be shown as follows, according

to Lemma C.5, then

3Pc
(

C
(3,n−1)
t2+1,t3

)

> 3Pc
(

C
(3,n−1)
t2,t3

)

. (C.140)

105

Appendix C Derivations concerning the BSC

Since (t1+1− t3) is even but (t2− t3) is odd, and (t1− t3) is even but (t2+1− t3) is odd,

we have

3Pc
(

C
(3,n)
t2,t3

)

= 3Pc
(

C
(3,n−1)
t2,t3

)

(C.141)

< 3Pc
(

C
(3,n−1)
t2+1,t3

)

= 3Pc
(

C
(3,n)
t2+2,t3

)

. (C.142)

Finally, for the case of both (t1 − t3) and (t2 − t3) are odd. Because of

3Pc
(

C
(3,n−1)
t2,t3

)

= 3Pc
(

C
(3,n−1)
t2+1,t3

)

. (C.143)

Now since (t1+1−t3) and (t2+1−t3) are even, and by assumption (t1+1−t3) ≥ (t2+1−t3).

Using the similar discussion in the proof of C.5, we can also show that

3Pc
(

C
(3,n)
t2,t3

)

= 3Pc
(

C
(3,n−1)
t2,t3

)

+∆Ψ
(

C
(3,n)
t2,t3

)

(C.144)

< 3Pc
(

C
(3,n−1)
t2+1,t3

)

+∆Ψ
(

C
(3,n)
t2+2,t3

)

(C.145)

= 3Pc
(

C
(3,n)
t2+2,t3

)

. (C.146)

Corollary C.8 will lead us to get the optimized code parameters [t'1, t
'
2, t3] while fixing t3.

Corollary C.9 For a BSC and for any n ≥ 2, set n = 3k with any code parameters

[t1, t2, t3] satisfy t1 ≥ t2 ≥ t3. Fixing t3 = k−κ, 0 ≤ κ ≤ k. Then the best code parameters

among all possible t2 for every given t3 is

[t'1, t
'
2, k − κ] =













[k, k, k]
[

k +
⌈
κ
2

⌉

, k +
⌊
κ
2

⌋

, k − κ
]

[

k +
⌈
κ
2

⌉

+ 1, k +
⌊
κ
2

⌋

− 1, k − κ
]

if











κ = 0

κ mod 4 = 1, 2, 3

κ mod 4 = 0, κ &= 0.

(C.147)

In the proofs later on, we again introduce the shorthand:

η !
⌊κ

4

⌋

. (C.148)

Proof: Due to n = 3k, then t1 + t2 = 2k + κ. Hence, by Cor. C.8, we know that

while fixing t3, the average success probability have a strictly increasing property in t2 to

t2 + 2, also since t1 ≥ t2 ≥ t3 = k − κ, the two possible best code parameters can only be

either
[

k +
⌈κ

2

⌉

, k +
⌊κ

2

⌋

, k − κ
]

or
[

k +
⌈κ

2

⌉

+ 1, k +
⌊κ

2

⌋

− 1, k − κ
]

(C.149)

106

C.2 Proof of Theorem 10.3 Appendix C

In the case of κ = 0, the only possible code parameters is the first one of (C.149): [k, k, k]

because of k − 1 < k.

We now illustrate the case of κ mod 4 = 1, let κ = 4η + 1. Then the two possible best

code parameters become either

[k + 2η + 1, k + 2η, k − (4η + 1)] or

[k + 2η + 2, k + 2η − 1, k − (4η + 1)] . (C.150)

The two possible best code parameters are both from the n− 1 code parameters:

[k + 2η + 1, k + 2η − 1, k − (4η + 1)] (C.151)

Since k + 2η + 1− (k − (4η + 1)) = 6η + 2 and k + 2η − 1− (k − (4η + 1)) = 6η both are

even, by Lemma C.5, we have

3Pc
(

C
(3,n)
k+2η,k−(4η+1)

)

> 3Pc
(

C
(3,n)
k+2η−1,k−(4η+1)

)

. (C.152)

The remaining proofs of other cases are similar and omitted.

Finally, to finish the proof that verifying the code parameters [k + 1, k, k − 1] is the

global optimal code. We are using Cor. C.9 and Lemma C.5 to complete the proof. Note

that in the proof of Theorem 10.2, we have shown that

3Pc
(

C
(3,n)
k,k

)

< 3Pc
(

C
(3,n)
k,k−1

)

. (C.153)

Claim C.10 For κ ≥ 1, the average success probability is decreasing in κ among all

[t'1, t
'
2, k − κ] given in (C.147). In particular, we have

3Pc
(

C
(3,n)
t$2,k−κ

)

≥ 3Pc
(

C
(3,n)
t$2,k−(κ+1)

)

. (C.154)

Proof: In the case of κ = 4η+1, κ+1 = 4η+2. The best code parameters [t'1, t
'
2, t3]

are

[k + 2η + 1, k + 2η, k − (4η + 1)] , (C.155)

[k + 2η + 1, k + 2η + 1, k − (4η + 2)] , (C.156)

respectively. These two best code parameters are from the n− 1 blocklength code param-

eters

[k + 2η + 1, k + 2η, k − (4η + 2)]. (C.157)

Again, use Lemma C.5, due to that both
(

k+2η+1−(k+2η)
)

= 1 and (k + 2η + 1− (k − (4η + 2))) =

6η + 3 are odd, thus

3Pc
(

C
(3,n)
k+2η,k−(4η+1)

)

= 3Pc
(

C
(3,n)
k+2η+1,k−(4η+2)

)

. (C.158)

107

Appendix C Derivations concerning the BSC

In the case of κ = 4η + 2. The best code parameters [t'1, t
'
2, t3] are

[k + 2η + 1, k + 2η + 1, k − (4η + 2)] , (C.159)

[k + 2η + 2, k + 2η + 1, k − (4η + 3)] , (C.160)

respectively. Both of those are from

[k + 2η + 1, k + 2η + 1, k − (4η + 3)] (C.161)

Since
(

k+2η+1− (k+2η+1)
)

= 0 and (k + 2η + 1− (k − (4η + 3))) = 6η+4 are even,

thus

3Pc
(

C
(3,n)
k+2η,k−(4η+2)

)

> 3Pc
(

C
(3,n)
k+2η+1,k−(4η+3)

)

(C.162)

The remaining cases are similar and omitted. As a consequence, we have

3Pc
(

C
(3,n)
k+2η+1,k−(4η+3)

)

= 3Pc
(

C
(3,n)
k+2η+1,k−(4η+4)

)

, (C.163)

3Pc
(

C
(3,n)
k+2η+1,k−(4η+4)

)

> 3Pc
(

C
(3,n)
k+2η+2,k−(4η+5)

)

. (C.164)

This complete the proof.

Because we have shown that 3Pc
(

C
(3,n)
t$2,(k−κ)

)

is decreasing in κ ≥ 1 and 3Pc
(

C
(3,n)
k,k−1

)

>

3Pc
(

C
(3,n)
k,k

)

, we then prove that 3Pc
(

C
(3,n)
k,k−1

)

is the largest average success probability we

can get among all possible code parameters [t1, t2, t3] satisfy that t1 ≥ t2 ≥ t3. Note that

in the proof of Claim C.10. According to (C.158), we know that for n = 3k, there are two

global optimal code parameters [t∗1, t
∗
2, t

∗
3] = [k + 1, k, k − 1] or [k + 1, k + 1, k − 2].

In the cases of n = 3k + 1, 3k + 2 are similar to those argument above.

In the end, we turn to the case of M = 4, we firstly have to remark that the linear

optimal codes of M = 4 can be constructed from the the weak flip codes of type (t2, t3).

Using the same derivations as we early discussed that (t1 − t2), (t2 − t3) or (t1 − t3) is

even or odd. This can be shown by using the adapt computation of the received Hamming

distance vector as (C.81). The other derivations will follow the same line as the proofs of

M = 3. The details are omitted.

108

Appendix D

Derivations concerning the BEC

D.1 Proof of Theorem 11.2

In the proof of Theorem 11.2, our goal is to maximize ∆Ψ
(

C (M,γ)
)

among all possible

C (M,γ); hence, for every blocklength n, we can maximize the improvement of performance.

Note that our optimal codes based on an important assumption: if the optimal codes

can be constructed recursively in maximizing the improvement of performance for every

blocklength n. This induction proof for a BEC follows the lines of the proof for the BSC

shown in [16, App. C] with some modifications that take into account the details of the

decoding rules for the BEC. Similarly to [16, App. C], we need a case distinction depending

on n mod 3. For space reason, we only outline the case from n = 3k − 1 to n = 3k.

For M = 3, we note that similarly to the proof for the BSC and due to the symmetry of

the BEC (see Lemma 3.1), we can reduce the number of candidate columns to c(3)1 , c(3)2 , c(3)3 .

We start with the code C
(3,n−1)
t∗2,t

∗
3

, whose code parameters, pairwise Hamming distance

vector, and minimum Hamming distance are as follows:

[t∗1, t
∗
2, t

∗
3] = [k, k − 1, k]; (D.1)

d
(

C
(3,n−1)
t∗2,t

∗
3

)

= (2k − 1, 2k, 2k − 1); (D.2)

dmin
(

C
(3,n−1)
t∗2,t

∗
3

)

= 2k − 1. (D.3)

We require to show that appending c(3)2 yields a larger success probability than append-

ing c(3)1 or c(3)3 . Note that appending c(3)1 will result in the same success probability as

appending c(3)3 .

Consider the three possible extended decoding regions of blocklength n, i.e.,
[

D(n−1)
m 0

]

,
[

D(n−1)
m 1

]

, and
[

D(n−1)
m 2

]

. Owing to PY |X(0|1) = PY |X(1|0) = 0, we know for the mth

new codeword of blocklength n with xm,n = b, where b ∈ {0, 1}, its extended decoding

region D(n)
m should include both

[

D(n−1)
m b

]

and
[

D(n−1)
m 2

]

, and all the received vectors

in
[

D(n−1)
m b̄

]

will be decoded to one of the other two codewords. Since ψ(n−1)
m is equal

to the occurrence probabilities of those received vectors in the union of
[

D(n−1)
m b

]

and
[

D(n−1)
m 2

]

, ψ(n)
m is no less than ψ(n−1)

m . As a result, the increment of success probability for

109

List of Figures

each codeword will be determined by how the received vectors in
[

D(n−1)
m b̄

]

are decoded

to the other two codewords.

The following claim is going to help answering this question.

Claim D.1 Let m, m′ and m′′ be distinct numbers in {1, 2, 3}. If dH
(

x(n−1)
m ,x(n−1)

m′

)

≥

dH
(

x(n−1)
m ,x(n−1)

m′′

)

and if xm,n = b is different from xm′,n = xm′′,n = b̄, then the received

vectors in
[

D(n−1)
m b̄

]

should be assigned to D(n)
m′′ rather than to D(n)

m′ , as this will result in

a higher success probability.

Proof of Claim D.1: To facilitate the explanation of our idea behind the proof of

Claim D.1, we assume without loss of generality that m = 1, m′ = 2 and m′′ = 3, and

consider y(n−1) ∈ D(n−1)
1 , whose components must be either an erasure 2 or equal to the

corresponding component of the first codeword: yj ∈ {x1,j , 2} (where actually x1,j = 0;

also note that since m = 1, we have b = 0). Now we investigate all those length-n received

vectors y(n) in
[

D(n−1)
1 b̄

]

with positive probability. Note that because of the last digit

yn = b̄ = 1 these vectors cannot be assigned to D(n)
1 .

If there exists a position yj of y(n) that corresponds to a code matrix column c(3)1 and

that takes value yj = x1,j (= 0), then this received vector must be assigned to D(n)
2 , where

we can infer from the assumption of y(n) having positive probability that all positions in

y(n) corresponding to code matrix columns c(3)2 or c(3)3 must be erased to 2. Likewise, if

there exists a position yj that corresponds to a code matrix column c(3)2 and yj = x1,j
(= 0), then such received vectors will be classified to D(n)

3 , where we can infer that all

positions of y(n) corresponding to code matrix columns c(3)1 or c(3)3 must be 2.

Since by assumption dH
(

x(n−1)
1 ,x(n−1)

2

)

is larger than dH
(

x(n−1)
1 ,x(n−1)

3

)

, in the code

matrix of length n−1, c(3)2 will occur more often than c(3)1 . We will therefore gain a higher

increase in the success probability if the vectors in
[

D(n−1)
1 b̄

]

are assigned to D(n)
3 .

Using a similar approach as shown in the proof of Claim D.1 together with d(n−1)
12 =

2k − 1 < d(n−1)
13 = 2k, we can proceed to show that we gain a larger increment of success

probability if we append c(3)2 as the nth code matrix column rather than appending c(3)1 .

This then completes the proof of the exemplified special case in Theorem 11.2.

Similar arguments can be applied to M = 4.

110

List of Figures

3.1 The binary asymmetric channel (BAC). 11

3.2 Region of possible choices of the channel parameters ε0 and ε1 of a BAC.

The shaded area corresponds to the interesting area according to (3.1)–(3.3). 12

3.3 The binary symmetric channel (BSC). 13

3.4 The Z-channel (ZC). 13

3.5 BEC . 14

8.6 Optimal codebooks on a BAC: the optimal choice of the parameter t for

different values of ε0 and ε1 for a fixed blocklength n = 7. 35

8.7 The log-likelihood ratio LLR(n)
t (ε0, ε1 = 1 − 2ε0, d) for C

(2,n)
1 (i.e., t = 1)

as a function of ε0 for different values of d. The solid blue lines correspond

to n = 7, the dashed red lines to n = 6. Observe that for n = 7 and

ε0 ∈ [0.136, 0.270] (i.e., the region between the two vertical purple lines),

the threshold for the optimal ML decision rule is ' = 2, see Cor. 8.2. 37

8.8 The error probabilities of all possible flip codes C
(2,n)
t as a function of the

channel parameter ε0, for a fixed blocklength n = 7, ε1 = 0.5, and a fixed

decision rule ' = 2. For any ε0, the best code is the one with the smallest

error probability value. 39

8.9 Best codebooks on a BAC for a fixed decision rule: for all possible (ε0, ε1)

this plot shows the best choice of the code parameter t. The blocklength is

n = 7 and the decision rule is ' = 2. 40

8.10 Globally optimal codebooks on a BAC for a blocklength n = 7 (identical to

Fig. 8.6). The shown boundary between t = 1 and t = 0 is identical to the

corresponding boundary given in Fig. 8.9, where a fixed decision rule ' = 2

has been assumed. 41

9.11 Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the ZC with ε1 = 0.3 as a function of the blocklength n. 47

9.12 Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the ZC with ε1 = 0.3 as a function of the blocklength n. 48

111

10.13Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the BSC with ε = 0.3 as a function of the blocklength

n. 57

10.14Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the BSC with ε = 0.3 as a function of the blocklength

n. 58

11.15Exact value of, and bounds on, the performance of an optimal code with

M = 3 codewords on the BEC with δ = 0.3 as a function of the blocklength

n. 64

11.16Exact value of, and bounds on, the performance of an optimal code with

M = 4 codewords on the BEC with δ = 0.3 as a function of the blocklength

n. 65

C.17 The code parameters construction from blocklength n− 2 to n 105

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.

[2] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite block-

length regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–

2359, May 2010.

[3] M. C. Gursoy, “Throughput analysis of buffer-constrained wireless systems in the

finite blocklength regime,” in Proceedings IEEE International Conference on Com-

munications (ICC), Kyoto, Japan, June 5–9, 2011.

[4] T. J. Riedl, T. P. Coleman, and A. C. Singer, “Finite block-length achievable rates

for queuing timing channels,” in Proceedings IEEE Information Theory Workshop

(ITW), Paraty, Brazil, October 16–20, 2011, pp. 200–204.

[5] A. Martinez and A. Guillén i Fàbregas, “Saddlepoint approximation of random cod-

ing bounds,” in Proceedings Information Theory and Applications Workshop (ITA),

University of California, San Diego, USA, February 6–11, 2011.

[6] R. G. Gallager, Information Theory and Reliable Communication. New York: John

Wiley & Sons, 1968.

[7] S. Shamai (Shitz) and S. Verdú, “The empirical distribution of good codes,” IEEE

Transactions on Information Theory, vol. 43, no. 3, pp. 836–846, May 1997.

[8] C.-L. Wu, P.-N. Chen, Y. S. Han, and Y.-X. Zheng, “On the coding scheme for joint

channel estimation and error correction over block fading channels,” in Proceedings

IEEE International Symposium on Personal, Indoor and Mobile Radio Communica-

tions (PIMRC), Tokyo, Japan, September 13–16, 2009, pp. 1272–1276.

[9] M. Dohler, R. W. Heath Jr., A. Lozano, C. B. Papadias, and R. A. Valenzuela, “Is

the PHY layer dead?” IEEE Communications Magazine, vol. 49, no. 4, pp. 159–165,

April 2011.

[10] J. N. Laneman, “On the distribution of mutual information,” in Proceedings Informa-

tion Theory and Applications Workshop (ITA), University of California, San Diego,

USA, February 6–10, 2006.

113

Bibliography

[11] D. Buckingham and M. C. Valenti, “The information-outage probability of finite-

length codes over AWGN channels,” in Proceedings Annual Conference on Infor-

mation Sciences and Systems (CISS), Princeton, NJ, USA, March 19–21, 2008, pp.

390–395.

[12] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River,

NJ: Prentice Hall, 2004.

[13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Am-

sterdam: North-Holland, 1977.

[14] P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Weak flip codes and applications to op-

timal code design on the binary erasure channel,” in Proceedings Fiftieth Allerton

Conference on Communication, Control and Computing, Allerton House, Monticello,

IL, USA, October 1–5, 2012.

[15] S. M. Moser, Information Theory (Lecture Notes), version 1, fall semester 2011/2012,

Information Theory Lab, Department of Electrical Engineering, National Chiao

Tung University (NCTU), September 2011. [Online]. Available: http://moser.cm.nc

tu.edu.tw/scripts.html

[16] P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Optimal ultra-small block-codes for

binary discrete memoryless channels,” 2013, to appear in IEEE Transactions on

Information Theory. [Online]. Available: http://moser.cm.nctu.edu.tw/publications.

html

[17] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to error prob-

ability for coding on discrete memoryless channels,” Information and Control, pp.

522–552, May 1967, part II.

[18] P.-N. Chen, H.-Y. Lin, and S. M. Moser, “Equidistant codes meeting the Plotkin

bound are not optimal on the binary symmetric channel,” to be presented at IEEE

International Symposium on Information Theory (ISIT), Istanbul, Turkey, July

7–13, 2013. [Online]. Available: http://moser.cm.nctu.edu.tw/publications.html

[19] S. J. MacMullan and O. M. Collins, “A comparison of known codes, random codes,

and the best codes,” IEEE Transactions on Information Theory, vol. 44, no. 7, pp.

3009–3022, October 1998.

[20] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,” 2013, to

appear in IEEE Transactions on Information Theory.

114

