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Abstract 

A graph G* is l-edge fault tolerant with respect to a graph G, denoted by I-EFT( G), if any graph obtained by removing 
an edge from G’ contains G. A l-Em(G) graph is said to be optimal if it contains the minimum number of edges among 
all I-EFT( G) graphs. Let Gf be 1 -EJ!T( Gi) for i = 1,2. It can be easily verified that the Cartesian product graph G; x G; 
is l-edge fault tolerant with respect to the Cartesian product graph GI x Gz, However, G; x G; may contain too many 
edges; hence it may not be optimal for many cases. In this paper, we introduce the concept of faithful graph with respect 
to a given graph, which is proved to be l-edge fault tolerant. Based on this concept, we present a construction method 
of the I-EIT graph for the Cartesian product of several graphs. Applying this construction scheme, we can obtain optimal 
l-edge fault tolerant graphs with respect to n-dimensional tori C(ml, m2,. . , m,), where rni 2 4 are even integers for all 
1 < i < n. @ 1997 Elsevier Science B.V. 
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1. Introduction and notations 

Computer and communication networks are usu- 
ally represented by graphs where nodes represent pro- 
cessors and edges represent links between processors. 
Among them, meshes, tori and hypercubes are widely 
used graph models for networks [ 31, which can be 
expressed as Cartesian products of graphs. 

In this paper, a graph means an undirected graph 
in which multiple edges are allowed. In order to for- 
mally define Cartesian product, we first introduce the 
definition of isomorphism. Two graphs G = ( F, El ) 
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and H = ( V& E2) are said to be isomorphic, denoted 
by G = H, if there is a bijection 4 mapping VI to VZ 
such that (KU) E El if and only if ($(u),+(u)> E 
E2. The bijection 4 is called an isomolphism from G 
to H, 4 is also called an automorphism if V(H) = 
V(G). Two vertices u and u in G are said to be sim- 
ilar if there is an automorphism mapping u to v. G 
is said to be node-symmetric if all vertices are simi- 
lar to one another. The Cartesian product of G1 and 
G2, denoted by G1 x Gz, is the graph with the vertex 
set VI x V2 such that (UI,UI) is joined to (~2.~2) k 
times if and only if either UI = ~2 and ~1 is joined 
to v2 k times in G2 or VI = v2 and ~1 is joined 
to ~42 k times in G1. An n-dimensional mesh (ab- 
breviated as mesh) M(ml, m2,. . . ,m,) is defined as 
the Cartesian product of n paths Pi of length mi, de- 
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noted by P,,,I x Pm2 x . ’ . x P,,,,, and an n-dimensional 

torus (abbreviated as torus) C( ml, m2, . . . , m,) as 
the Cartesian product of n cycles Ci of length mi, de- 
noted by C,,, x C,,, x . . . x C,” [2]. In particular, an 
n-dimensional hypercube (abbreviated as hypercube) 

QnisameshM(2,2 ,..., 2). 
Motivated by the study of computer and communi- 

cation networks that can tolerate failure of their com- 

ponents, Harary and Hayes [2] formulated the con- 
cept of edge fault tolerance in graphs. Let G be a graph 
with p nodes. A p-node graph G’ is said to be k-edge 

fault tolerant, or k-EFT, with respect to (abbreviated 
as w.r.t.) G, if every graph obtained by removing any 
k edges from G’ contains G. For brevity, we refer to 
G* as a k-Em(G) graph or simply k -Em(G). A k- 
EFT( G) graph G” is called optimal if it contains the 
least number of edges among all k-EFT(G) graphs. 
We use eftk(G) to denote the difference between the 
number of edges in an optimal k-EFI’(G) graph and 

that in G. 
Families of k-EFT graphs w.r.t. some graphs have 

been studied in literature [ 1,2,5,6]. It is observed 
that there is no general approach to the construction 
of edge fault tolerant graphs. However, we note that 
meshes, tori and hypercubes can be expressed as carte- 
sian products of several primal graphs. In this paper, 
we aim at providing a scheme for constructing 1 -edge 
fault tolerant graphs w.r.t. some graph products. Once 
we can find certain I-EFI’ graphs w.r.t. these primal 
graphs having some desired properties, this scheme 

enables us to construct a l-EFT graph w.r.t. the graph 
product. In particular, we apply this scheme to con- 

struct a I-EFI’(C(ml,m2,...,m,)) and show it is 
optimal, where ml, m2, . . . , m, are positive even inte- 

gers with each mi > 4. 
In Section 2, some graph products and graph op- 

erations are introduced. In Section 3, we define the 
concept of faithful graphs. Faithful graphs are shown 
to be l-Em w.r.t. an underlying graph and are called 
faithful l-EFT graphs. Based on the concept of faith- 
ful graphs, we can show that the graph obtained from a 
graph operation introduced in Section 2 is l-EFT w.r.t. 
a Cartesian product graph. This enables us to construct 
l-EFT graphs. In Section 4, we apply this construc- 
tion to obtain optimal l-EFT graphs with respect to 
some graphs, for example, C (ml, m2, . . . , m,) where 
mi 2 4 is even for all 1 < i < n. Concluding remarks 
are made in Section 4. 

2. Graph products and operations 

Besides Cartesian product, the Kronecker product is 
another useful graph product. The Kronecker product 

of Gl and G2, denoted by G1 o G2, is the graph with 
the vertex set VI x V2 such that (~1, ~1) is joined to 
(~2, ~2) k times if and only if u] is joined to u2 m 
times in G1 and u1 is joined to ~2 n times in G2 with 

k = mn. The Kronecker product was first introduced 
by Weichsel [7]. 

Since multiple edges are allowed in graphs studied 
in this paper, all set operations are defined on mul- 
tisets; e.g., {a, b} W {a} = {a,a, b} and {a,a, b} - 

{a, c} = {a, b}, where “U” denotes the sum operation 
of two multisets. Let G = (YE) be a graph where V 

(= V(G)) is the vertex set of G and E (= E(G)) is 
the edge set of G. S(G) and A(G) denote the mini- 
mum and the maximum degrees, respectively, of ver- 
tices in G. Let E’ be a subset of E. We use G - E’ 

to denote the spanning subgraph of G with the edge 
set E - E’. For convenience, G - e denotes G - (e}. 
We use kG to denote the graph obtained by duplicat- 
ing k times of each edge in G; in particular, G denotes 
IG. We call (G*, G) a graph pair if G* is a span- 
ning supergraph of G. Moreover, (G*, G) is a l-EFT 
pair if G* is a l-EFT( G). Throughout this paper, let 
(Gf , Gi) be a graph pair for all i with Gf = (vi, ET) 
andGi= (L$,Ei). 

We use (G;, GI ) @ (Gz , G2) to denote the graph 
withFx&asitsvertexsetandE(G,xG2)HE((GF- 

El ) o (G,* - E2)) as its edge set. Obviously, G1 x G2 
is a spanning subgraph of (GT, G1) @ (Gz , G2 ) . Then, 
we define an operator @ on two graph pairs (G;, G1 ) 
and(G;,G2),denotedby(G;,Gl)@(GG,G2),asthe 

graph pair ((G;,Gl) @ (G;,G:!),Gl x G2). For ex- 
ample, let GI = C6, G2 = Cd, G; be the graph in Fig. 
1 (a), and Gz be the graph in Fig. 1 (b) . In Figs. 1 (a) 
and (b), dashed lines represent edges G; - El and 
G; -ET. We illustrate Cl x G2, (G; -El ) o (G; - E2), 

and (G;,Gl)@(G;,G:!) inFigs. l(c), (d),and (e), 
respectively. Since x and o are commutative and as- 
sociative, the following theorem can easily be ob- 
tained. 

Theorem 1. 

(G;,Gl) @J (G;,Gz) = (G;,Gz) ~3 (G;,Gl), 

and 



(a) (b) Cc) 

(4 Cd 

Fig. 1. (a) graph C;. (b) Graph G;. (c) Graph GI x Gz. (d) Graph (G; - EI) 0 (G; - E2). (e) Graph (G;.G) CB (G;,G). 
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((G;,Gl) @ (G;>G)) CQ (G;,G3) 

= (G;,Gl) @ ((G;,G2) @ (G;,G3)). 

We can recursively define ( GT , GI ) 8 (Gz, G2) 8~ 

... @ (G,‘,G,) as ((G;,&) @ (G;,Gd @ ... 8 

(G;_,,G,_~)) @ (G;,G,). We define (G;,GI) @ 

(G;,G2)63...@(G;rGn) as ((G;,GI)@(G;,G~@ 
. . .@(G,*_,,G,_,))@(G,‘,G,). Wehavethefollow- 

ing corollary. 

Corollary 2. For any permutation IT on the set 

{1,2,..., n}, we have 

(i) (G;,Gl) @ (GZ,Gz) @...@ (G,*,G,) 

= (G&9 G,(l)) @ UZ&z~~G(2)) 

8.. .@ (G;(,,,G(n,); 

(ii) (GT,Gi) @(G;,Gz) @-..@ (G,‘,G,) 

= (G;,,,, G,(t)) @ WZ(,,S77(2)) 

CD . * .CB W;,,,Ar(n,). 

LetGfbeal-EFT(Gi)graphfori=1,2.Itiseasy 
to verify that Gi x G; is a I-EFT(Gi x G2) graph. 
However, GT x G; may contain much more edges 
than that of optimal l-EFT(Gt x Gz). For example, 
let Gt = CS and G2 = C4. The graphs G; shown in 
Fig. I (a) and G; shown in Fig. 1 (b) are I-EFT( Gt ) 
and l-EFT( G2), respectively. Hence, the graph GF x 

G; is l-EFI’(Gi x G2). It can be verified that the 
graph (GT,Gt) @ (Gs,G2) in Fig. l(e) is also l- 
EFT(Gt x G2). Since that the number of edges in 

(GT,Gt) @ (G;,Gz) is less than that in GT x G;, 
GT x G,* is not an optimal l-EFT(Gt x Gz) graph. 

For 1 < i < n, we define the ith projection of 
v, x v2 x * ..~V,asthefunctionpi: VIXV~X*..XV, -+ 

l$givenbypi((xt,X2,...,Xn)) =xiwherexj~ l$ 
for 1 6 j < n. 

3. Faithful edge fault tolerant graphs 

Let K2 be the complete graph on two vertices zt and 
~2. We refer to C2 as 2K2. Obviously, C2 is I-EFT( Kz). 
Let G = (V(G),E(G)) be a graph with V(G) = 
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(xaz,) (x,4 

(b) 

Fig. 2. (a) Graph Pi. (b) Graph (PT. P4) $ (Cz, &). 

(x0, XI,. . . ,xn_l}, and G* = (YE* ) be a spanning 
supergraph of G. Then G x K2 is a spanning subgraph 
of(G*,G)@(Q,Kz).AnyedgeinGx Kzisofthe 

form either ((xi, zt ), (xi, 73)) for some Xi E V(G) 
or ((xivzk),(xj,Zk)) forsome (xivxj> E E(G) and 
k = 1,2. Let X be a set of edges given by 

For an edge e = (Xi,Xj) in G, let Ye = {((Xi,zi), 

(Xj,zt)), ((xi,z2)v(xj,z2))}. The graph G* is said 
to be faithful or a faithful graph w.r.t. G, denoted by 

FG( G), if it satisfies the following two conditions: 
( 1) There exists a function (+ : V(G) -+ V(G) 

such that the function h : V(G x K2) -+ V(G x K2) 
given by h((xi,zl>> = (x~,zI) and h((xivZ2)) = 
(a( Xi), ~2) induces an isomorphism from G x K2 into 
asubgraphof ((G*,G) @(Cz,Kz)) -X. 

(2) For any edge e = (Xi, Xj) in G, there ex- 
ists an isomorphism fe from G x K2 into a sub- 
graph of ((G*,G) @ (C2,Kz)) - & such that 

Pl(fe((Xi,Zl))) = Pl(fe((Xi,Z2))) for every Xi E 
V(G), where p1 is the 1st projection of the specified 
vertex. 

Remark. If function u satisfies condition ( 1) , then CT 
is an automorphism on G. We call such u an inversion 
of G*. 

Let P, be a path of rr vertices, or simply called an n- 
path, with V(P,) = {xo,x~,...,x,-1) and E(P,) = 
{(XitXi+l) ( 0 6 i < n - 1). Consider a spanning 

supergraph P,* of P, given by E( P,*) = E( P,) u 

{(Xi, X,-i-l > 1 0 < i < [n/2] }. We illustrate PT and 
(P$, P4) $ (C2, K2) in Fig. 2. We define the func- 
tion u : V( P,) ---f V( P,) as I = X,-~-I for ev- 
ery i. It can be easily verified that u satisfies condi- 
tion ( 1) . We use (P$ , PS ) @ ((22, K2) for illustration. 
Figs. 3(a) and (b) show P; and (P,*, Ps)@(C,, K2). 
In Fig. 3 (c), we illustrate (P< , PS ) 63 (C2, K2), where 
the vertices are labelled according to the function h, 
and the the graph isomorphic to Ps x K2 is shown 

by dark lines. Let e = (xi, xi+1 ) be an edge of P,. 
Let the mapping fe be defined as fe ( (xi, zk) ) = 

(X,-i+j-l,zk) for 0 < j < i and fe((xj,Zk)) = 
(Xi-i-l, z3_k) for i < j < n. It is observed that the 
function fe is an isomorphism from P, x K2 into a 

subgraph of ((P,*, P,) $ (C2, K2)) - Y, such that 

Pl(fe((Xi7Zl))) = Pi(fe((Xi.22))) for every Xi E 
V( P,) . Thus the function fe satisfies condition (2). 
In Fig. 3 (d) , we illustrate the case of n = 5 and e = 

(xl, x2) where the vertices are labelled according to 

the function fe, and the dark lines represent the graph 
isomorphic to Ps x K2. Hence P,* is FG( P,,), which 
is stated in the following lemma. 

Lemma 3. P,’ is FG( P,,) . 

Consider the example illustrated in Fig. 3(d). Iden- 
tifying fe( (Xi, zt )),and fe( (Xi, ~2)) specified in con- 
dition (2)) we can obtain a graph that can tolerate fault 

on edge (xl, x2). It is not surprising that the faith- 
ful graph P,* is l-EFT( Pn). To generalize this result, 

let G be an arbitrary graph, and G* be FG(G). Ob- 

viously, (G*,G) @ (C2, K2) is l-EFI(G x K2). The 
number of edges in ((G*,G) 6~ (C2,Kz)) - X is at 

most IE(GxK2)1+2(IE(G*)J-(E(G)I)-IV(G)I. 
Since the function h is an isomorphism from G x K2 

into a subgraph of ((G’, G) @ (C2, K2)) - X, it fol- 
lows that 2(IE(G*)I - (E(G))) - IV(G)1 > 0, i.e., 

IE(G*)I--IE(G)I 2 [lV(G)I/2].Let f,beafunction 
satisfying condition (2). The function g, : V(G) -+ 

V(G) given by ge(xi) = pl(fe((xira))) is called 
an e-rotation of G*. Obviously, ge induces an isomor- 
phism from G into G* -e. Thus we have the following 
lemma. 

Lemma 4. Any faithful graph G* w.r.t. G is l- 

EFT(G).Moreover, lE(G*)I-IE(G)J > [lV<G>1/21 
for any faithful graph G* w.r.t. G. 
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(a) 

by,) 

(b) 

Cc) W 

Fig. 3. (a) Graph P; (b) Graph ( P; , Ps ) $ ( Cz, K2). (c) The function h satisfies condition ( 1). (d) The function fe satisfies condition 
(2) where e = (nl,xz). 

Since any faithful graph G* w.r.t. G is also l- 
EFT( G), we call G* afaithful l-EFT( G). 

Let G’ be the spanning supergraph of G with 
E(G’) = E(2G) kJ {(Xi,Xi) 1 xi E V(G)}. Let (+ 
be the identity function defined on V(G), and fe be 
the identity function defined on V( G x K2) for every 

e E E(G). Given these functions, it can be easily 
verified that G’ is a faithful graph w.r.t. G. We have 

the following lemma. 

Lemma 5. Any graph has a faithful supergraph. 

The question whether any I-EFT( G) is FG(G) 
naturally arises. Consider G to be an n-path P,,. 

The n-cycle C,, is a spanning supergraph of P,, with 

E(CrI) = E(P,) u {( x0, x,-i ) }. Harary and Hayes 

[2] pointed out that C, is an optimal I-EFT( P,) 
graph. It follows from Lemma 4 that C, is not FG( P,) 

if n 2 3. Therefore C,, is FG( P,,) if and only if 
n = 2. Thus any l-EFT(G) graph is not necessarily 

FG(G). 
Harary and Hayes [2] presented an optimal l- 

EFT( C,) graph C,, as follows: 

E(G) u H,, u {(xo~,/d} 
when n is even, 

E(&,) = E(C,,) U Hn 

u uxoIx(,-1)/2L (x0,x(,+,)/2)} 

when n is odd, 

where H,, = {(xi,x,_i) 1 1 < i < [n/2]}. (See 
Fig. 4.) However, C,, is not FG(C,,) if n > 5. For 
ease of exposition, we here only prove that Cn is not 
FG(C,) when n is even, and the cases that n is odd 
can be similarly proved. 

Let n be a positive even integer. Suppose C,, is 
FG( C,). There exists a function u : V( C,) -+ V( C,,) 
which is an automorphism on V( C,) such that con- 
dition ( 1) is satisfied. Since the function h speci- 
fied in condition (1) induces an isomorphism from 
C,xK2intoasubgraphof((cn,C,,)@(C2,K2))-X, 

it follows that a(xo) = x,/2, a(~,/:!) = no, and 
a(xi) = x,-i for i # 0, n/2. But (x,/2, X,-I ) = 

(4x0),4x1)) $ E(C,A, while (x0,x11 E E(C,A. 
(In Fig. 5, we illustrate the case n = 6 where the ver- 
tices are labelled according to h.) Thus there is no iso- 
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Fig. 4. (a) & for even n. (b) & for odd n. 

morphicimageofC,,xK2in((Cn,C,)@(C2,K2))- 
X, which leads to a contradiction. Hence C” is not 

FG(C,). 
Let n be a positive even integer. We construct a 

supergraph Cz of C,, as follows: E( C,*) = E( C,) U 

{(nivxi+n/2) 1 0 < i < n/2}- 

Lemma 6. Let n be a positive even integer. Ct is 

FG( C,) if and only ifn > 4. 

Proof. Note that C;! = 2K2 and CT = 3 K2. It is ob- 

served that there are two parallel edges in C2 x K2 but 

there is no parallel edge in ( (C,*, C2) @ (C2, K2) ) -Y, 
for any e E E( C2). Hence, there is no fe satisfies the 

condition (2). Thus, C; is not FG( C2). 
Now, we discuss the case n 2 4. We define a 

function g : V(C,) -+ V(C,) by assigning a(xi) = 
x( (i+n/2)m0dn) for every i. It can be observed that 
(T satisfies condition ( 1). (See Fig. 6(a) for the 
case n = 4; the vertices are labelled according to 
the function h.) Choose an arbitrary edge e from 

C,, say e = (x,/2-t, x,/2). Consider a mapping 

fe : C,, x K2 + ((C,*,C,) @ (CZ,&)) given 
by fe( (xjvzk)) = (xjvzk) if 0 6 j < n/2, and 

fe((Xj,Zk)) = (X3n/2_j_I,Z3_k) otherwise. It fOl- 
lows that fe satisfies condition (2). (See Fig. 6(b) 
for the case n = 4 with e = (xl, x2) ; the vertices are 

labelled according to fe.) Since (C,*, C,) $ (C;?, K2) 
is node-symmetric, we can always find fet for ev- 
ery edge e’ E E(C,) which satisfies condition (2). 
Hence Ci is FG( C,) . Cl 

Theorem 7. Let CT be FG( Gi) for i = 1,2. The 

graph (Gi,Gl)@(G;,G2) isFG(G1 xG2).Znother 
words, let W = {(G*, G) 1 G* is FG(G)}. Then W is 
closed under the operation 8. 

Proof. Let VI = (x0, XI, . . . , x,_ 1) and V2 = 

{YO, YI 7. . . ,y,_1}. Since Gf is FG(Gi), Gf has 

an inversion (+i for i = 1,2. We define a func- 
tion u : V(G x G2) -+ V(G1 x G2) by as- 

signing a((x,,ys)) = (a1(x,),o2(~~)). Obvi- 
ously, IJ is a one-to-one mapping on V( G1 x G2). 
Since (Ti is an automorphism on Gi for i = 

1,2, it follows that (xi, xj) E E(Gl) implies 

(gt(Xi),(+t(Xj)) E E(GI) and that (Yk,Y/) E 
E(G2) implies ((+2(yd,u2(yd) E E(Gd. If 
((Xi,yk),(Xi,yt)) E E(Gl X G2), it follows that 

(a((xi,yk)),~((Xi,y[))) E E(G X&I. sifil=ly, 

we have (a((Xi,Yk))r~((Xj,Yk))) E E(G X G2) 

if ((xivYk)v(Xj,Yk)) E E(G X G2). Thus ff is 

an automorphism on Gt x G:! and satisfies condi- 
tion (1). 

Let e be an edge of Gi x G2. We assume without 
10s~ of generality that e = ( (Xi, Yj ) , (Xk, Yj) ) where 
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Fig. 5. C6 is not a faithful graph of C6. 

179 

(X$2) (x& (xp ZJ (X,J2) 

J 
(X&) (x,z,) (xpz,) (X&) 

(a) 

(x& (X,JJ CQJ,) (xpz,) 

J 
(X&) cy,) (X&) (X2> z*) 

(b) 

Fig. 6. The graph (CT, C4) @( C2, Kz ) _ (a) The function h satisfies 

condition ( 1). (b) The function fe satisfies condition (2) where 

e = (~1.~2). 

e’ = (Xi,Xk) is an edge of Gi. IA fel be a func- 
tion from Gi x K2 into a subgraph of ( (G;, Gr ) @ 

(C2,K2)) - Kr such that ~I(~~(((x~~zI))) = 

pl(fet((Xi,z2))) for every Xi E VI. Define a func- 
tion fe : VI x V2 x V(K2) --t V, x V2 x V(K2) 

as follows: fe((Xr,ysvzt)) = (x,,yorzw) where 
(x,, z,) = fet(xr,zt), and yU = ys if zw = zt, and 
yU = ~2 ( yS) otherwise. 

For every y, E V2, the image of fe for VI x (yS) x 
V( K2) is either 

{(&?Y”~ZW) I (LZw> =fe’(Xr,Zr),Yo =ys E v2, 

and xr E K,zt E V(K2),zw = zr}, 

or 

((Xu9Yu~Zw) I (&,zw) =fe)(xr,Zt),yu=a2(ys), 

mdxr E K,z~ E V(K2),zw Z Zt}. 

In both cases, fe induces an isomorphism from VI x 
V( Kz) into its image because the function fe, satisfies 
condition (2). 

For every (x,,zl) E VI x V(K2) the image of fe 

for (xr) x V2 x {z,} is either 

{(&>YU,ZW) I (&,ZW) = fe~(&,Zr),Yu =ys 

and y, E v2,zw = zt}, 

or 

{(LYv9Zw) I (%AZW) =fe’(&,Z,),Yv =(+2(ys), 

andy, c v2,zw z z,}. 

In both cases, fe induces an isomorphism from V2 into 
its image because the function a2 is an automorphism 
on V2. 

From the above discussion, we know that the func- 
tion fe induces an isomorphism from VI x V2 x 

V(K2) into a subgraph of (G;,Gt) CB (G;,G2) @ 

(G23K2) - {((xr~ys,zl),(xr~y~~z2)) I xr E 

K9ys E v2}- Fuflhemore, p1,2(fe((xr,ys,z1))) = 

m,2(fe((xr9ys,z2))) where P~,~(x,Y,z) = (.GY>. 

Hence fr satisfies condition (2). Thus (G;, Gt ) @ 
(G;,Gz) is FG(G1 x G2). 0 

Corollary 8. Let Gf be a faithful graph of Gi for i = 
1,2. Thegraph (GT,Gl) @(Gz,Gz) is l-EFT(G1 x 
G2). Furthermore, eftl(G1 x G2) < 2(IE(G;)I - 
IUG)l)(IE(G;)I - IE(G2)l). 
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” 

(XOIYJ (X,sYlJl (X3JY2) o$'Y*~ 

Fig. 7. A reconfiguration of C4 x P3 in ((C;, Cd) $ 

(p;vp3)) - ((Xl.Yl).(~Z~Yl)). 

Proof. It follows from Theorem 7 and Lemma 4 that 

(G;,Gr) I% (G;,Gz) is l-EFT(Gi x Gz). Further- 

more, (E((G;,Gi) @ (G;,G2))1- IE(GI x G2)l < 

2((E(G;)-E(GI)I)(IE(G;)I-IE(G2)I).Therefore 
the corollary follows. 0 

Corollary 9. Let Gr be FG( Gi) for i = 1,2, and e’ = 
(Xj,Xk) be any edge ofG1. Let f : V(G1 X G2) + 
V(G1 x G2) be a function given by f( (xr, ys>) = 

( xU, yu > where -ru = g,! (x,) (i.e., e’-rotation ofGf), 
and yL, =y,ifpz(fe~((xr,zt))) =z,,andy,=al(ys) 

otherwise. Then f induces an isomorphism from GI x 
G2 into a subgruph of (GT,Gl) @ (Gz,G2) - e for 
any edge e = ((xivyj)v (xk,yj)) with yj E V(G2). 

Corollary 9 can be found in the proof of Theorem 7 
for the satisfaction of condition (2), Using Corol- 
lary 9 we can construct reconfigurations for any l- 
edge fault. We illustrate in Fig. 7 an isomorphism from 
Cd x P3 into a subgraph of (Cq*,C4) @ (P;,Ps) - 
( (x1, y1 ) , (x2, yt ) ), i.e., a reconfiguration for l-edge 

faulton ((xl,y1),(x2,y1)). 

4. Discussion 

The Cartesian product is one of useful graph prod- 
ucts. Many popular interconnection networks are 
built as Cartesian product graphs [3]. As shown 
by Sabidussi [4], all graphs have a unique prime 
factorization with respect to the Cartesian product. 
Applying Theorem 7, we can easily construct a l- 

EFT graph with respect to some graph G if we know 
the faithful extensions of all of its prime factors. For 
example, let ml, m2,. . . , m, be positive even inte- 
gers with each rni 2 4. We use C* (ml, m2,. . . , m,) 
to denote the graph CC;, , C,,,, 1 $ (C& , C,,,2 ) @ 
. . . $ (CG”, C,, ) . It follows from Lemma 6 and 
Theorem 7 that C* (ml, m2,. . . , m,) is a faithful 

graph, and thus l-EFT(C(ml,m2,...,m,)). It is 
observed that 6(H) 3 1 + S(G) for any I-EFT(G) 
graph H. Since S(C(ml,m2,...,m,)) = 2” and 

4C*Cml,m:!,...,m,)) = 2” + 1, C*(ml,mz, 
. . . , m,) is an optimal l-EFT graph w.r.t. C( ml, m2, 
. . . , m,), which is concluded in the following lemma. 

Lemma 10. Let mi 3 4 be a positive even inte- 
gerforall i. C*(ml,mz,...,m,) is an optimal l- 
EFI graph w.r.t. C( ml, ma, . . . , m,,). Furthermore, 
eft,(C(ml,m2,. . .,m,>> = ~~~=, mi. 

However, the problem of deciding eft, ( C ( ml, m2, 
. . . , m,) ) with some odd mi seems very difficult. We 
have the following conjecture. 

Conjecture 11. 

eftl(C(ml,m2,. . . , m,)) > 2”-’ fi[rni/21 
i=l 

if each mi is an odd integer with mi > 5 and n > 2. 

On the other hand, since the graph C,, is not FG( C,) 
for n 2 4, there is no straightforward method for us 
to use this family Cn for constructing I-EFT graphs 
w.r.t. tori. 

A hypercube Q, can be treated as a mesh 

M(2,2,. ..,2).LetC,“‘denotethegraph(C$,K2)@ 
(C~,K~)@...@(CZ,&) (ntimes).Itfollowsfrom 
Theorem 7 that CJ* is FG( Qn> and thus l-EFI( Qn) . 
It was also proved in [2] that C;* is an optimal 
l-EFT( Q,,) graph. 

Lemma 5 states that any graph has a faithful 
supergraph. We can apply Theorem 7 to obtain a 
faithful graph for the Cartesian product of several 
graphs. Note that our construction method enables us 
to find a l-EFT(G) though not necessarily optimal 
when G is the Cartesian product of several graphs. 
Take the mesh M(ml, m2,. . . , m,) as an example. 
It follows from Lemma 3 and Theorem 7 that the 

graph (P,*,,Pml) @ (P,&.P,,) @ .*. @ (PG”,Pp,,) 
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is l-EFT(M(mt,m2,..., m,)). The difference of 
the number of edges between these two graphs is 
2”-’ n”,, [mi/21. H owever, it was proved in [ 1 ] that 

&,(M(ml,m2,..., %)) 6 ;cn;,, wn;=,(w 

2) ) . Thus, our construction is not optimal for meshes. 

On the other hand, some graphs obtained from the 
operator @ on graph pairs are optimal I-EFI graphs. 

Consider the example of 9 x K2. It is known that 
Cs is an optimal l-EFT(P3). But C3 is not FG(P3). 

Though (Cs,Ps) @ (C2,K2) is not FG(Ps x Kz), 
Chou and Hsu [ 1 ] proved that (Cs, 9) @3 (C2, K2) 
is an optimal l-EFT( Ps x K2). 

Though (optimal) l-EFT( G) graphs may not be 
necessarily FG( G) , the concept of faithful graphs in- 
corporating with the operator @ provides a construc- 
tion scheme for l-EFT( G). In other words, applying 

Theorem 7 we can construct a FG( G), which is always 
1 -EFT( G), especially when G is the Cartesian prod- 

uct of several graphs. Furthermore, we also note that 
Cartesian product and Kronecker product are widely 

studied in graph theory. To our knowledge, no con- 
nection between these two products are known. Our 
result provides a possible connection between these 

two products. 
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