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Abstract

A graph G* is 1-edge fault tolerant with respect to a graph G, denoted by 1-EFT(G), if any graph obtained by removing
an edge from G* contains G. A 1-EFT(G) graph is said to be optimal if it contains the minimum number of edges among
all 1-EFT(G) graphs. Let G be 1-EFT(G;) for i = 1,2. It can be easily verified that the cartesian product graph G} x G;
is 1-edge fault tolerant with respect to the cartesian product graph G; x G2. However, GI x G; may contain too many
edges; hence it may not be optimal for many cases. In this paper, we introduce the concept of faithful graph with respect
to a given graph, which is proved to be l-edge fault tolerant. Based on this concept, we present a construction method
of the 1-EFT graph for the cartesian product of several graphs. Applying this construction scheme, we can obtain optimal

1-edge fault tolerant graphs with respect to n-dimensional tori C(my, m,...,m,), where m; > 4 are even integers for all

1 € i< n. © 1997 Elsevier Science B.V.
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1. Introduction and notations

Computer and communication networks are usu-
ally represented by graphs where nodes represent pro-
cessors and edges represent links between processors.
Among them, meshes, tori and hypercubes are widely
used graph models for networks {3], which can be
expressed as cartesian products of graphs.

In this paper, a graph means an undirected graph
in which multiple edges are allowed. In order to for-
mally define cartesian product, we first introduce the
definition of isomorphism. Two graphs G = (W1, E;)
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and H = (V,, E,) are said to be isomorphic, denoted
by G = H, if there is a bijection ¢ mapping V| to V,
such that (u,v) € E; if and only if (d(u),d(v)) €
E,. The bijection ¢ is called an isomorphism from G
to H; ¢ is also called an automorphism if V(H) =
V{G). Two vertices u and v in G are said to be sim-
ilar if there is an automorphism mapping u to v. G
is said to be node-symmetric if all vertices are simi-
lar to one another. The cartesian product of G; and
G,, denoted by G X Ga, is the graph with the vertex
set Vi x V; such that (u),v)) is joined to (uz,v2) k
times if and only if either #; = u» and v; is joined
to v, k times in Gy or v; = vy and u; is joined
to up k times in G;. An n-dimensional mesh (ab-
breviated as mesh) M(m;,my,...,m,) is defined as
the cartesian product of n paths P; of length m;, de-

0020-0190/97/%$17.00 © 1997 Elsevier Science B.V. All rights reserved.

Pl $0020-0190(97)00003-3



174 S.-Y Wang et al./Information Processing Letters 61 (1997) 173181

noted by Py, X Pp, X - -+ X Py, and an n-dimensional
torus (abbreviated as torus) C(my,my,...,m,) as
the cartesian product of n cycles C; of length m;, de-
noted by C, X Cpy, X - -+ X Cpy, [2]. In particular, an
n-dimensional hypercube (abbreviated as hypercube)
O, is amesh M(2,2,...,2).

Motivated by the study of computer and communi-
cation networks that can tolerate failure of their com-
ponents, Harary and Hayes [2] formulated the con-
cept of edge fault tolerance in graphs. Let G be a graph
with p nodes. A p-node graph G’ is said to be k-edge
fault tolerant, or k-EFT, with respect to (abbreviated
as w.r.t.) G, if every graph obtained by removing any
k edges from G’ contains G. For brevity, we refer to
G* as a k-EFT(G) graph or simply k -EFT(G). A k-
EFT(G) graph G* is called optimal if it contains the
least number of edges among all k-EFT(G) graphs.
We use eft, (G) to denote the difference between the
number of edges in an optimal k-EFT(G) graph and
that in G.

Families of k-EFT graphs w.r.t. some graphs have
been studied in literature [1,2,5,6]. It is observed
that there is no general approach to the construction
of edge fault tolerant graphs. However, we note that
meshes, tori and hypercubes can be expressed as carte-
sian products of several primal graphs. In this paper,
we aim at providing a scheme for constructing 1-edge
fault tolerant graphs w.r.t. some graph products. Once
we can find certain 1-EFT graphs w.r.t. these primal
graphs having some desired properties, this scheme
enables us to construct a 1-EFT graph w.r.t. the graph
product. In particular, we apply this scheme to con-
struct a 1-BFT(C (my,ms,...,m,)) and show it is
optimal, where m;, ms, ..., m, are positive even inte-
gers with each m; > 4.

In Section 2, some graph products and graph op-
erations are introduced. In Section 3, we define the
concept of faithful graphs. Faithful graphs are shown
to be 1-EFT w.r.t. an underlying graph and are called
faithful 1-EFT graphs. Based on the concept of faith-
ful graphs, we can show that the graph obtained from a
graph operation introduced in Section 2 is 1-EFT w.r.t.
a cartesian product graph. This enables us to construct
1-EFT graphs. In Section 4, we apply this construc-
tion to obtain optimal 1-EFT graphs with respect to
some graphs, for example, C(my,my, . ..,m,) where
m; > 4 is even for all 1 < i < n. Concluding remarks
are made in Section 4.

2. Graph products and operations

Besides cartesian product, the Kronecker product is
another useful graph product. The Kronecker product
of G and G,, denoted by G| o Gy, is the graph with
the vertex set V) x ¥, such that (u;,01) is joined to
(up,02) k times if and only if u; is joined to uy m
times in G| and vy is joined to vy n times in G, with
k = mn. The Kronecker product was first introduced
by Weichsel [7].

Since multiple edges are allowed in graphs studied
in this paper, all set operations are defined on mul-
tisets; e.g., {a,b} W {a} = {a,a,b} and {a,a,b} —
{a,c} = {a, b}, where “&” denotes the sum operation
of two multisets. Let G = (W E) be a graph where V
(= V(G)) is the vertex set of G and E (= E(G)) is
the edge set of G. 6(G) and A(G) denote the mini-
mum and the maximum degrees, respectively, of ver-
tices in G. Let E' be a subset of E. We use G — E'
to denote the spanning subgraph of G with the edge
set E — E'. For convenience, G — ¢ denotes G — {e}.
We use G to denote the graph obtained by duplicat-
ing k times of each edge in G; in particular, G denotes
1G. We call (G*,G) a graph pair if G* is a span-
ning supergraph of G. Moreover, (G*,G) is a 1-EFT
pair if G* is a 1-EFT(G). Throughout this paper, let
(G}, G;) be a graph pair for all i with G = (V,, E}')
and G; = (V,, E;).

We use (G7,G1) ® (G}, Gz2) to denote the graph
with V) x V; as its vertex set and E( G X G2)WE( (G} —
E)) o (G5 — Ey)) as its edge set. Obviously, G, x G,
is a spanning subgraph of (G}, G,) ® (G5, Gy). Then,
we define an operator ® on two graph pairs (G5, G;)
and (G3, G;), denoted by (G}, G1) ®(G3,G2), as the
graph pair ((G7,G1) ® (G5,G2),Gy x Gy). For ex-
ample, let Gy = Cg, G2 = Cy4, G} be the graph in Fig.
1(a), and G; be the graph in Fig. 1(b). In Figs. 1(a)
and (b), dashed lines represent edges G} — E; and
G; —E>. Weillustrate Gy X Gy, (G} —E ) o (G5~ E),
and (G}, G1) ®(G;,G?) inFigs. 1(c), (d), and (e),
respectively. Since x and o are commutative and as-
sociative, the following theorem can easily be ob-
tained.

Theorem 1.
(G,G1) ®(G;,Gy) =(G3,G2) ® (G1,Gy),

and
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Fig. 1. (a) graph G}. (b) Graph G;. (c) Graph G| X G;. (d) Graph (G} — E1) o (G5 — E2). (e) Graph (G1.G1) & (G3,Ga).

((G],G1) ® (G3,G62)) ® (G3,G3)
= (G}, G1) ® ((G3,G2) ® (G35, G3)).
We can recursively define (G7,G1) ® (G3,G2) ®

-~ ® (Gy,Gn) as ((G1,G1) ® (G3,G2) @ -+ ®
(G:_1,Gy—1)) ® (G, G,). We define (GY,G)) ©

n—1°
(G5,G2)D---®(G,, Gp) as ((GT,G1)®(G3,62)®
- ®(Gi_1,Gu-1)) ® (G, G,). We have the follow-
ing corollary.

Corollary 2. For any permutation 7 on the set
{1,2,...,n}, we have

() (G1,G1) ®(G3,G2) ® - ® (G, Gy)
= (Gr1y» Gr(1)) ® (Gr(2), Gr(2))
® - ® (Griny» Gan))s
(i) (G],G1) ®(G3,G2) @ - @ (Gy,Gy)
= (Gr1ys Gr(1y) @ (Gr(z), Ga(2))
@ ®(Griny Grimy)-

Let G} be a 1-EFT(G;) graph for i = 1, 2. It is easy
to verify that G} x Gj is a 1-EFT(G; x Gy) graph.
However, G] x G5 may contain much more edges
than that of optimal 1-EFT(G, x G;). For example,
let Gy = C¢ and G, = C4. The graphs G} shown in
Fig. 1(a) and Gj shown in Fig. 1(b) are 1-EFT(G)
and 1-EFT(G;), respectively. Hence, the graph G} x

5> is 1-EFT(G; x G3). It can be verified that the
graph (G}, G1) ® (G3,G,) in Fig. 1(e) is also 1-
EFT(G, x G7). Since that the number of edges in
(GT,G1) ® (G3,Gy) is less than that in G} x Gj,
G x G; is not an optimal 1-EFT(G; x G2) graph.

For 1 < i < n, we define the ith projection of
WxWx.--xV,asthefunctionp; :  xVpx:--xV, —
V; given by p;((x1,%2,...,%,)) = x; where x; € V;
forl<j<n

3. Faithful edge fault tolerant graphs

Let K5 be the complete graph on two vertices z; and
22. Werefer to C; as 7 K3. Obviously, Cy is 1-EFT(K3).
Let G = (V(G),E(G)) be a graph with V(G) =
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Fig. 2. (a) Graph P;. (b) Graph (P}, P4) @ (C2, K3).

{x0,x1,...,xn—1}, and G* = (V E*) be a spanning
supergraph of G. Then G X Kj is a spanning subgraph
of (G*,G) @ (C2,K2). Any edge in G x Kj is of the
form either ((x;,z1), (x;,22)) for some x; € V(G)
or ((xi, z),(xj,z)) for some (x;,x;) € E(G) and
k=1,2.Let X be a set of edges given by

X={((xi,21), (x:,22)) | Vxi € V(G) }.

For an edge ¢ = (x;,x;) in G, let ¥, = {((x;,21),
(xj,21)), ((xi,22), (xj,22)) }. The graph G* is said
to be faithful or a faithful graph w.rt. G, denoted by
FG(G), if it satisfies the following two conditions:

(1) There exists a function o : V(G) — V(G)
such that the function A : V(G X K») — V(G X K3)
given by h((x;,21)) = (xiz1) and h((x;,22)) =
(o (x;), z2) induces an isomorphism from G x K3 into
a subgraph of ((G*,G) ® (C2,K3)) — X.

(2) For any edge ¢ = (x;,x;) in G, there ex-
ists an isomorphism f, from G x K; into a sub-
graph of ((G*.G) @ (C2,K3)) — Y, such that
P1(fe({xi,21))) = pr1(fe((x:,22))) for every x; €
V(G), where p; is the 1st projection of the specified
vertex.

Remark. If function o satisfies condition (1), then o
is an automorphism on G. We call such o an inversion
of G*.

Let P, be a path of n vertices, or simply called an n-
path, with V(P,) = {xo,xl,...,x,,_l}’ and E(P,) =
{(xi.xi41) | 0 € i < n - 1}. Consider a spanning

supergraph P; of P, given by E(P}) = E(P,) U
{(xisxp—i1) | 0 < i < [n/2]}. We illustrate P} and
(P, Py) @ (C2,K») in Fig. 2. We define the func-
tion o : V(P,) — V(P,) as o(x;) = x,—;_; for ev-
ery i. It can be easily verified that o satisfies condi-
tion (1). We use (P, Ps) & (C3, K;) for illustration.
Figs. 3(a) and (b) show P and (PS5, Ps) ©(Cs, K>).
In Fig. 3(c), we illustrate (P5', Ps) & (Cy, K»), where
the vertices are labelled according to the function h,
and the the graph isomorphic to Ps x K; is shown
by dark lines. Let e = (x;, x;11) be an edge of P,.
Let the mapping f. be defined as f.((x;,z))
(Xn—irj—1,2ze) for 0 < j < iand fo((xj,2)) =
(xj—i—1,23-4) for i < j < n. It is observed that the
function f, is an isomorphism from P, X K into a
subgraph of ((P;,P,) ® (C2,K>)) — Y, such that
P1(fe((xi,21))) = p1(fe({x;,22))) for every x; €
V(P,). Thus the function f, satisfies condition (2).
In Fig. 3(d), we illustrate the case of n =5 and e =
(x1,x2) where the vertices are labelled according to
the function f,, and the dark lines represent the graph
isomorphic to Ps x K». Hence P is FG(P,), which
is stated in the following lemma.

Lemma 3. P; is FG(P,).

Consider the example illustrated in Fig. 3(d). Iden-
tifying f.((x;,z1) ) and f.((x;, 22)) specified in con-
dition (2), we can obtain a graph that can tolerate fault
on edge (xi,x2). It is not surprising that the faith-
ful graph P; is 1-EFT(P,). To generalize this result,
let G be an arbitrary graph, and G* be FG(G). Ob-
viously, (G*,G) & ((3, K3) is 1-EFT(G x K,). The
number of edges in ((G*,G) ® (C,,K3)) — X is at
most |E(G x K2)| +2(|E(G*)| - |E(G)]) = [V(G)|.
Since the function 4 is an isomorphism from G x K,
into a subgraph of ((G*,G) & (C3, K3)) - X, it fol-
lows that 2(|E(G*)| — |[E(G)|) — |[V(G)| = 0, i.e.,
|E(G*)|~|E(G)| = [IV(G)|/2].Let f. be a function
satisfying condition (2). The function g, : V(G) —
V(G) given by g.(x;) = pi1(fe((xi,21))) is called
an e-rotation of G*. Obviously, g, induces an isomor-
phism from G into G* —e. Thus we have the following
lemma.

Lemmad4. Any faithful graph G* w.r.t. G is 1-
EFT(G). Moreover, |[E(G*)|—|E(G)| = [|V(G)|/2]
Sfor any faithful graph G* w.r.t. G.
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Fig. 3. (a) Graph Ps*. (b) Graph (P>, P5) @ (C3, K2). (¢) The function h satisfies condition (1). (d) The function f, satisfies condition

(2) where e = (x1,x2).

Since any faithful graph G* wrt. G is also 1-
EFT(G), we call G* a faithful 1-EFT(G).

Let G’ be the spanning supergraph of G with
E(G) = EQG) W {(x;,x;) | x; € V(G)}. Let &
be the identity function defined on V(G), and f, be
the identity function defined on V(G x K3) for every
e € E(G). Given these functions, it can be easily
verified that G’ is a faithful graph w.r.t. G. We have
the following lemma.

Lemma 5. Any graph has a faithful supergraph.

The question whether any 1-EFT(G) is FG(G)
naturally arises. Consider G to be an n-path P,.
The n-cycle C, is a spanning supergraph of P, with
E(C,) = E(P,) U {(x0,xn-1)}- Harary and Hayes
[2] pointed out that C, is an optimal 1-EFT(P,)
graph. It follows from Lemma 4 that C, is not FG(P,)
if n > 3. Therefore C, is FG(P,) if and only if
n = 2. Thus any 1-EFT(G) graph is not necessarily
FG(G).

Harary and Hayes [2] presented an optimal 1-
EFT(C,) graph C’,, as follows:

E(C)) UH, U {(X(), xn/2)}
when n is even,
E(Cy) UH,

U {(x0, X(n=1)/2) » (X0, X(nt1)/2) }
when n is odd,

E(C,) =

where H, = {(xi,)f,,_,-) | 1 < i < |n/2]}. (See
Fig. 4.) However, C, is not FG(C,) if n > 5. For
ease of exposition, we here only prove that C, is not
FG{C,) when n is even, and the cases that n is odd
can be similarly proved.

Let n be a positive even integer. Suppose ¢, is
FG(C,). There exists a functiono : V(C,) — V(C,)
which is an automorphism on V(C,) such that con-
dition (1) is satisfied. Since the function & speci-
fied in condition (1) induces an isomorphism from
C, x K; into a subgraph of ((,,, C,) ®(Ca, K2)) — X,
it follows that o(x0) = Xxu/2, 0(xn2) = xo, and
o(x;) = xp; for i # 0,n/2. But (x5/2,%Xn-1) =
(a(x0),0(x1)) ¢ E(Cy), while (x0,x1) € E(Cp).
(In Fig. 5, we illustrate the case n = 6 where the ver-
tices are labelled according to A.) Thus there is no iso-
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Fig. 4. (a) Cy for even n. (b) C, for odd n.

morphic image of C, x Ky in ((Cp, Cn) ®(Cy, K2)) —
X, which leads to a contradiction. Hence €, is not
FG(Cy).

Let n be a positive even integer. We construct a
supergraph C;} of C, as follows: E(C;) = E(C,) U
{(x,-,xi+,,/2) l 0<£i< n/2}

Lemma 6. Let n be a positive even integer. C; is
FG(C,) ifand only if n > 4.

Proof. Note that C; = ,K; and CJ = 3K;. It is ob-
served that there are two parallel edges in C; X K3 but
there is no parallel edge in ((Cy, C2) €(Cy, K2)) Y.
for any e € E(C3). Hence, there is no f, satisfies the
condition (2). Thus, C5 is not FG(C»).

Now, we discuss the case n > 4. We define a
function o : V(C,) — V(C,) by assigning o(x;) =
X((i+n/2)modn)y fOr every i. It can be observed that
o satisfies condition (1). (See Fig. 6(a) for the
case n = 4; the vertices are labelled according to
the function h.) Choose an arbitrary edge e from
Cy, say e = (Xxp2_1,%n/2). Consider a mapping
fe 1 Cp x Kb — ((Cy,Cp) & (C2,K2)) given
by fe((xj,z)) = (xj, %) if 0 < j < n/2, and
fe((xj,2)) = (X3nj2—j—1,23-k) otherwise. It fol-
lows that f, satisfies condition (2). (See Fig. 6(b)
for the case n = 4 with e = (x;, x;); the vertices are
labelled according to f..) Since (C,,C,) @ (C2, K2)
is node-symmetric, we can always find f.- for ev-
ery edge ¢ € E(C,) which satisfies condition (2).
Hence C; is FG(C,). O

Theorem 7. Let G} be FG(G;) for i = 1,2. The
graph (G},G1) @ (G3, Gy) is FG(G) x Gy). In other
words, let W = {(G*,G) | G* is FG(G)}. Then W is
closed under the operation Q.

Proof. Let Vi = {x0,x1,...,Xn—1} and ¥, =
{¥o,y1,.-..¥n—1}. Since G is FG(G;), G} has
an inversion o; for i = 1,2. We define a func-
tion ¢ : V(G x G3) — V(G x Gy) by as-
signing a((xr,y5)) = (o1(x,),02(ys)). Obvi-
ously, o is a one-to-one mapping on V(Gi x G2).
Since ¢; is an automorphism on G; for i =
1,2, it follows that (xi,x;) € E(G,) implies
(o1(x;),01(x;)) € E(Gy) and that (yi,y) €
E(Gy) implies (o2(yx),02(y)) € E(Gy). If
((xi,ve), (xi, 7)) € E(G) x Gy), it follows that
(o((xi,¥)),0((xi,¥1))) € E(Gy X Gy). Similarly,
we have (o ((xi,y:)),0((x;, %)) € E(Gy x Gz)
if ((xi,90),(xj,3%)) € E(Gi x G). Thus o is
an automorphism on G; x G, and satisfies condi-
tion (1).

Let e be an edge of G; x G,. We assume without
loss of generality that e = ((xi,y;), (xx,y;)) where
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Fig. 5. C¢ is not a faithful graph of Cg.
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Fig. 6. The graph (CJ, C4) D(C2, K2). (a) The function 4 satisfies
condition (1). (b) The function f, satisfies condition (2) where
e=(x1,x2).

e’ = (x;,x¢) is an edge of G;. Let fo be a func-
tion from G, x K into a subgraph of ((G},G1) &
(C2,K2)) — Yo such that pi(fe((xi,21))) =
P1{fer ((xi,22))) for every x; € Vj. Define a func-
tion fo : Vi x b Xx V(K3) — V| x Kb x V(Kp)
as follows: fe((xr,¥s,2)) = (xy,Yy,2w) Where
(%u>2w) = fer(xr,2:), and y, = ys if 2w = z;, and
v, = 02 (ys) otherwise.

For every y; € V4, the image of f, for Vj x {y;} x
V(K>) is either

{(Xu»)’v»Zw) I (xu;zw) =.f€’(x"’z’)’yv =y5 e ‘/2’
and x, € i,z € V(K2), 2y = 21},

or

{(xu’}’v,Zw) l (xus20) = fer (xXr,2), Yo = 02(¥5) s
and x, € V1,2 € V(K2), 2, # Zt}-

In both cases, f, induces an isomorphism from ¥ x
V(K>) into its image because the function f,- satisfies
condition (2).

For every (x,,z;) € Vi x V(K3) the image of f,
for {x,} x V» x {z,} is either

{(x yorzw) | (s 2w) = fer(Xr 2) 90 = Y5
and y; € Vo, 2, = 7, },

or

{usyor z) | (Xus2) = for (X, 20, Yo = 02(Y5),
and y; € Vo, 24 # 2z}

In both cases, f, induces an isomorphism from V4 into
its image because the function o~ is an automorphism
on V5.

From the above discussion, we know that the func-
tion f, induces an isomorphism from W} x ¥, x
V(K3) into a subgraph of (G},Gi) @ (G3,G2) @
(G, Ky) — {((xr,ys,zl)s(xray,hZZ)) | Xy €
Vi, ys € VZ} Furthermore, p1.2(fe((xr, Vs, 21) )) =
P12(fe((xr,¥s5,22))) where p1a(x,y,2) = (x,).
Hence f, satisfies condition (2). Thus (G}, Gy) &
(G3,G2) isFG(G1 x Gp). O

Corollary 8. Let G} be a faithful graph of G; fori =
1,2. The graph (G}, G1) & (G3,Gz) is 1-EFT(G| x
Gz). Furthermore, eft; (G x G2) < 2(|E(G})| —
IE(GD)(|E(G3)| — |E(G2)]).
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e — A A ———
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Fig. 7. A reconfiguration of Cs x P in ((C;,Cs) @
(PF,P3)) — ((x1,¥1), (x2, Y1)

Proof. It follows from Theorem 7 and Lemma 4 that
(GT,G1) @ (G3,Gy) is 1-EFT(Gy x Gz). Further-
more, [E((G},G1) ® (G}.G2))| ~ [E(Gy x G3)| <
2(1E(G}) —E(G|) (|E(G3)|—|E(G2)|). Therefore
the corollary follows. [

Corollary 9. Let Gt be FG(G;) fori=1,2,and e’ =
(xj,x¢) be any edge of Gy. Let f : V(Gi x Gp) —
V(G) x Gy) be a function given by f((x,,y5)) =
(x4, y,) where x, = g (x,) (i.e., &'-rotation of G7),
andy, = ys if p2(fer ((%r,2))) = 21, and y, = aa(ys)
otherwise. Then f induces an isomorphism from Gy x
G, into a subgraph of (GY,G1) ® (G3,G2) — e for
any edge e = ((x;,y;), (x, y;)) withy; € V(G,).

Corollary 9 can be found in the proof of Theorem 7
for the satisfaction of condition (2). Using Corol-
lary 9 we can construct reconfigurations for any 1-
edge fault. We illustrate in Fig. 7 an isomorphism from
C4 X P into a subgraph of (C},Ci) @ (P, F3) —
((x1,3),(x2, 1)), i.e., areconfiguration for 1-edge
fault on ((x1, y1), (%2,1))-

4. Discussion

The cartesian product is one of useful graph prod-
ucts. Many popular interconnection networks are
built as cartesian product graphs [3]. As shown
by Sabidussi [4], all graphs have a unique prime
factorization with respect to the cartesian product.
Applying Theorem 7, we can easily construct a 1-

EFT graph with respect to some graph G if we know
the faithful extensions of all of its prime factors. For
example, let my,my,...,m, be positive even inte-
gers with each m; > 4. We use C*(my,mp,...,my)
to denote the graph (C, ,Cn) @ (C,,,Cpny) @
- @ (Cp s Cp,). It follows from Lemma 6 and
Theorem 7 that C*(my,ma,...,m,) is a faithful
graph, and thus 1-EFT(C(mi,ma,...,m,)). It is
observed that 8(H) > 1 + 8(G) for any 1-EFT(G)
graph H. Since 6(C(my,my,...,my)) = 2" and
AC*(m,my,...,my)) = 2" + 1, C*(my,my,

..,my) is an optimal 1-EFT graph w.r.t. C (m;, my,
...,my), which is concluded in the following lemma.

Lemma 10. Let m; > 4 be a positive even inte-
ger for all i. C*(my,ma,...,my,) is an optimal 1-
EFT graph w.r.t. C(my,my,...,m,). Furthermore,
eft (C(my,my, ... ,my)) = %H;':l m;.

However, the problem of deciding eft, (C(my, ma,
...,my)) with some odd m; seems very difficult. We
have the following conjecture.

Conjecture 11,
eft,(C(my,my, ... ,my)) > 2""H[m,~/2'|

i=1

if each m; is an odd integer withm; 2 5 and n 2 2.

On the other hand, since the graph C,, is not FG(C,)
for n > 4, there is no straightforward method for us
to use this family C, for constructing 1-EFT graphs
w.r.t. tori.

A hypercube @, can be treated as a mesh
M(2,2,...,2).Let C}" denote the graph (C», K2) &
(C1,K2)®---®(Ca,K3) (ntimes). It follows from
Theorem 7 that Cﬁ'* is FG(Q,) and thus 1-EFT(Q,,).
It was also proved in [2] that Cg" is an optimal
1-EFT(Q,) graph.

Lemma 5 states that any graph has a faithful
supergraph. We can apply Theorem 7 to obtain a
faithful graph for the cartesian product of several
graphs. Note that our construction method enables us
to find a 1-EFT(G) though not necessarily optimal
when G is the cartesian product of several graphs.
Take the mesh M(my,m;,...,m,) as an example.
It follows from Lemma 3 and Theorem 7 that the
graph (Pr;:l’me) D (PpsPy) - & (P,;",Pm,.)
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is 1-EFT(M{(m;,m,,...,m,)). The difference of
the number of edges between these two graphs is
2" 1%, [m:/2]. However, it was proved in [1] that
efty (M(my, my, ... ,my)) < 5(TTiy mi — [Ticy (mi—
2)). Thus, our construction is not optimal for meshes.
On the other hand, some graphs obtained from the
operator & on graph pairs are optimal 1-EFT graphs.
Consider the example of P; x K. It is known that
C; is an optimal 1-EFT(P3). But C; is not FG(Ps).
Though (Cs3,P3) @ (C2,. K3) is not FG(P; x K3),
Chou and Hsu [1] proved that (C3, P3) @& (C2, K3)
is an optimal 1-EFT(P; x K3).

Though (optimal) 1-EFT(G) graphs may not be
necessarily FG(G), the concept of faithful graphs in-
corporating with the operator & provides a construc-
tion scheme for 1-EFT(G). In other words, applying
Theorem 7 we can construct a FG(G), which is always
1-EFT(G), especially when G is the cartesian prod-
uct of several graphs. Furthermore, we also note that
cartesian product and Kronecker product are widely
studied in graph theory. To our knowledge, no con-
nection between these two products are known. Our
result provides a possible connection between these
two products.
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