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Chaos Synchronization and Chaos-Excited Hyperchaos,
for Integral and Fractional Order Rotational Machine

System with Centrifugal Governor
Student : Wei-Ren Jhuang Advisor : Zheng-Ming Ge

Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

Chaos synchronization and chaos-excited hyperchaos, for integral and fractional order
rotational machine system with centrifugal governor are studied in this thesis. By applying
numerical analysis such as phase portrait, ‘bifurcation diagram and Lyapunov exponent,
periodic and chaotic motions are-observed. Chaos synchronization for integral order system is
accomplished by employing both linear feedback -control and adaptive control based on
Lyapunov first approximation theorem-and asymptotical stability theorem. Then a new
concept of chaos driven by states of chaotic system instead of driven by sinusoidal time
function is put forward. This research is a completely new field, hyperchaos and broader
ranges of chaos are obtained. Finally, it is found that chaos exists in the fractional order
system with order less and more than number of states of the system. By utilizing the similar
scheme as that for their integral order correspondence, chaos control and chaos

synchronization are accomplished.
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Chapter 1

Introduction

It goes without doubt that chaos synchronization has been the important issues in the
recent years [1-9]. A lot of researches have shown that chaotic phenomena are observed in
many physical systems that possess nonlinearity [10-12]. Chaotic motions also occur in
many nonlinear control systems [13-14]. Chaotic phenomena are quite useful in many
applications such as human brain [15-16], optical communication [17-20], heart rate
variability [21-22], etc. Chaos synchronization has been applied in many fields such as
secure communication [23-28], chemical and biological systems, etc.

Most of physical systems in nature are nonlinear and can be described by the nonlinear
equations of motion which in general can not be linearized. Hence the studies of nonlinear
systems spread quickly today. For the nonlinear system, the study of the types of system
behavior, the effects to the behavier caused by. different parameters and initial conditions,
the behavior analysis of the system, consist.of the major tasks. Besides, we are also
interested in the understanding of the complicated phenomena arose from nonlinearity. The
central characteristics are that a proc¢ess like*randomization happens in the deterministic
system and small differences in the system parameters or initial conditions produce great
ones in the final phenomena. The unpredictable and irregular motions of many nonlinear
systems have been labeled “chaotic”. By applying various numerical results, such as
bifurcation, phase portraits, time history analysis, the behavior of the chaotic motion are
presented. In Chapter 2, the governing equations of motion will be formulated, Lyapunov
exponents will be used to detect the chaos existing in the system.

By Lyapunov stability theory and by using the coupling term, two dynamical systems
will be synchronized or generalized synchronized. In the synchronized systems, one is
called drive and another is called response. A lot of approaches have been proposed for the
synchronization of chaotic systems which include linear and nonlinear feedback control,
time-delay feedback control, adaptive control, and impulsive control. In Chapter 3, by
employing both linear feedback control and adaptive control based on Lyapunov first
approximation theorem [29] and asymptotical stability theorem, chaos synchronizations are
accomplished.

Pecora and Carroll in their pioneering paper [30] proposed a method (PC method) for

1



synchronization by replacing the corresponding state variables of the slave system by the
state variables of the master system. The difference of our method from PC method lies in
that our autonomous and nonautonomous systems are all chaotic systems. PC method
devotes to the chaos synchronization of the identical systems, while Chapter 4 devotes to a
new concept of chaos driven by states of chaotic system instead of driven by sinusoidal
function of time. This research is a completely new field, and some interesting results are
obtained.

Fractional calculus is a 300-year-old mathematical topic. Although it has a long history,
the applications of fractional calculus to physics and engineering are just a recent focus of
interest [31]. Many systems are known to display fractional order dynamics, such as
viscoelastic systems [32], dielectric polarization, electrode—electrolyte polarization, and
electromagnetic waves. More recently, there is a new trend to investigate the control and
dynamics of fractional order dynamical systems [33-35]. In [34], it is shown that
nonautonomous Duffing systems of order less than 2 can still behave in a chaotic manner. In
[35], chaos synchronization of fractionalporder chaotic systems are studied. In [36], the
author presents a broad review of existing-meodels of fractional kinetics and their connection
to dynamical models, phase space topology, and other-characteristics of chaos. In Chapter 5,
we study the chaotic behaviors-in the fractional order autonomous and nonautonomous
nonlinear systems of rotational = machine with+ centrifugal governor. By utilizing
approximation approach of fractional operator, it is shown that systems with total order less
than three exhibit chaos as well as other nonlinear behavior. Bifurcation diagrams assure
existence of chaotic phenomena. By utilizing the similar scheme as that for their integral

order correspondence, chaos control and chaos synchronization are accomplished.



Chapter 2
Regular and Chaotic Dynamics of Rotational Machine System

with Centrifugal Governor

2.1 Autonomous System

The rotational machine system with centrifugal governor is shown in Fig. 2.1.1. Some
basic assumptions for the system are
1. the mass of the sleeve and the rods is neglected;

2. viscous damping in the rod bearing of the fly-ball is presented by damping constant

.

From Fig. 2.1.1, the kinetic and potential energies:of the system are written as follows:
T= 2>{%m(|2772 sin’ @+ 179" )} = ml*p"sin® o +ml°¢p*,

V =-2mgl cos ¢
wherel, m, ¢ and 7 represent the length of the rod, the mass of the fly-ball, the angle

between the rotational axis and the rod, and the angular velocity of the governor,

respectively. It is easy to obtain the Lagrangian
L=T-V =ml*n’sin’ ¢ + ml*¢* + 2mgl cos ¢.
Using the Lagrange equation, the equation of motion is derived

B.. 9

¢+—¢+Tsin(p:n2sin(pc05(p. (2.1.1)
m

The net torque is the difference between the torque Q produced by the engine and the load

torque Q, , which is available for angular acceleration. That is,

dw
JE—Q—QL (2.1.2)

where J is the moment of inertia of the machine. As the angle ¢ varies, the position of

the control valve which admits the fuel is also varied. Their relation is presented by

Refs.[37], so Eq. (2.1.2) is written in the form



Jo=ycosp—P (2.1.3)
where y >0 is a proportionality constant and P is an equivalent torque of the load.
Usually, the governor is geared directly to the output shaft such that its speed of rotation
1s proportional to the engine speed, i.e. 7 =n®. Changing time scale 7=Q t, Egs. (2.1.1)
and (2.1.3) can be written in nondimensional form

p+Co+sing=rw’singpcosp

w=kcosp—F (2.1.4)
where
2
k=L, in, r:n_l’
JQ, JQ, g

c- /. QJE
mQ, I

and the overdot denotes differentiation with respect to 7. Eq. (2.1.4) can be expressed as

three first order equations

P=y,
W =o'’ sin@cos @ —sin p=Cy, (2.1.5)
w=kcosp—F,

where i is the angular velocity.of the rod. Hence, the dynamics of the system of a

rotational machine with a fly-ball governor'is described by a three-dimensional autonomous
system.

The equilibria of the system can be found from Eq. (2.1.5) as p=[¢,, 0, @,] with

cos _F a)z—L
P B TE

Add slight disturbances X, Yy, z to the fixed point (arccos F/k, 0, vk/rF)
¢:¢0+X7 l//:ya a):a)o+2. (216)
Substitute Eq. (2.1.6) into Eq. (2.1.5), and expanding sin¢g, cos¢ as the Taylor series, it

becomes
X=Y,
y =—ax—Cy+bz+HOT, (2.1.7)
7 =—-0x+HOT,

where



AN ) 2 2
ke —F b:2\/rkF\k/2k F ,d:/—kz—Fz,

kF~
and the terms higher than one degree have not been written down. Let k> F >0, then
a>0, b>0 and d > 0. By the Lyapunov instability theorem, the origin is unstable.

In order to determine the chaos existing in a nonlinear system, the method of detecting
the chaos becomes very important. Here a Lyapunov exponent is used as a quantitative
measure of the chaotic motion of the system. The Lyapunov exponent may be used to
measure the sensitive dependence upon the initial conditions [1]. It is an index for chaotic
behavior. Different solutions of the dynamical system, such as fixed point, periodic motion,
quasi-periodic motion, and chaotic motion can be distinguished by it. The signs of
Lyapunov exponents provide a qualitative picture of the system dynamics. Positive values
of Lyapunov exponents indicate chaos, negative values of Lyapunov exponents indicate a
stable orbit. In three-dimensional space, the Lyapunov exponent spectra for a strange
attractor, a two-torus, a limit cycle and a fixed point are described by (+,0,—), (0,0,—), (0,
—, —)and (—,—,—), respectively.

In order to explore the chaos of the fly-ball governor system, three Lyapunov exponents
are calculated when the values of parameters*C, F ; r are given as 0.7, 1.942, 0.25 and
k 1is varied from 1.942 to 20. Fig. 2.1:2 illustrates the fact that some values of parameter k
will cause chaotic motion. When ‘one defines @ =X, ¢=Y, w=12, and uses the initial
conditions X(0)=0.02, y(0)=0.01, z(0)=0.03 at: (1) k=16, and (2) k =2.603, three
Lyapunov exponents are obtained, respectively,

A, =-0.008, 4,=-0.0127, 4, =-0.6792,
the motion of which converges to fixed point and

A, =0.1116, 4,=0.0, 4, =-0.8116
which means chaotic motion. In a dissipative system, the sum of all the Lyapunov
exponents is equivalent to the negative value of the coefficient of damping in the system.

Hence, the sum of the three Lyapunov exponents for the two cases (1) and (2) are —0.7.

Fig. 2.1.3(a)(b) shows the phase portraits and Poincaré map of the chaotic motion at
k=2.603.

2.2 Nonautonomous System



In the previous section, the load torque is assumed to be constant for the system.
Another condition can be considered. The load torque is now not constant but is represented
by a Fourier series consisting of a constant term and a series of harmonic terms. It is
reasonable that the load torque of an internal combustion engine repeats after every
complete working cycle. For simplicity, the form of the load torque is assumed to be
F +vsinwz,where F, VvV, @ are constants. Eq. (2.1.7) is rewritten in the form

X=Y,
y =—ax—Cy+bz+HOT, (2.2.1)

7 =-dx—-vsinwr+HOT,

where

a=———, b
kF

2 2 / [2_ 2
k F :2 I’kazk F , d: IkZ_FZ’ a—)=3 and V=05

Lyapunov exponents are adopted for distinguishing periodic, quasi-periodic, and chaotic
motions. If we choose C=0.7, r=0.25, F=1.942, the results is shown in Fig. 2.2.1.
Poincaré map is also adopted to dealswith:the nonautonomous system where Poincaré
section is prescribed as a.t @t=g/#F2n7 (g, =0) plane in four dimensional
space (X, X, z, @t). Assuming that the motion of the system starts at an initial time t=t,, the
points on the Poincaré section can be collected by a sampling of state variables at intervals
of the forcing period T=27/&. Some numerical simulation results for different k are
discussed below. The small circle in Fig. 2.2.2 for k=17.8 indicates that the system
motion is a stable harmonic motion of period 27/@ or period-1 motion. When k =14.5,
the system motion is a quasi-periodic motion and the map will form a continuous closed
orbit in the Poincaré section as shown in Fig. 2.2.3(a). If the Poincaré map appears as

neither a finite set of points nor a closed orbit, the motion may be chaotic. From Fig.

2.2.3(b), chaotic motion is seen ask = 5.13.



Chapter 3
Chaos Synchronization by Linear Feedback Control

and Adaptive Control

By Lyapunov stability theory and by using the coupling term, two dynamical systems
will be synchronized or generalized synchronized. In the synchronized systems, one is
called drive and another is called response. A lot of approaches have been proposed for the
synchronization of chaotic systems which include linear and nonlinear feedback control
[38-39], time-delay feedback control [40-42], adaptive control [43-45], and impulsive
control [46-48]. Chaos synchronization is discussed in this chapter. Two methods are

presented, the linear feedback control and the adaptive control.
3.1 Chaos Synchronization by, Liinear Feedback Control

Autonomous system is investigated in this section.From Eq. (2.1.7), the drive system is

shown as follows:

X=Y,
y =—ax—Cy+bz+HOT, (3.1.1)
2 =—dx+ HOT,

and the response system is shown as follows:
X'=y'+u,
y'=—-ax'-Cy'+bz'+u, + HOT, (3.1.2)
7' =-dx'+u, + HOT,

where a,b,C,d are the parameters, and U, U,,U, are the controllers. Let e, =X"—X,
e,=Y -y, € =2-7 be the synchronization errors between the drive and response

systems. System (3.1.1) and (3.1.2) can be synchronized under the control:
U=-9g,6, U, = 09 u,=-9,¢,,
where

(1-a)’
4C

b

a>0, >0, g, >



gz-&igf%—zyﬁﬁwa +Ledr - ayd)
are constants.
Proof. From (3.1.1) and (3.1.2), the error dynamics can be obtained as follows:
&, =e,—0,e,
e, =—ae, —Ce, +be, + HOT, (3.1.3)
é, =—de, —g,e, + HOT,

where e =x'-x, e, =y’ -y, € =2"-z. Choose the following Lyapunov function:

\Y; =%(aef +ae)+ ;)20 where «,f>0, then the differentiation of V along
trajectories of (3.1.3) is
V =aeg, +aeg, +pee, + HOT
=-ag,e; —aCe; — 9,6 +a(l-a)ee, +abe e, — fdee, + HOT
= —"Pe+HOT, (3.1.4)
where e=[ e, e, e, ]T.
By Lyapunov first approximation theorem; the tetfms higher than second degree in the

right-hand side of Eq. (3.1.4) do not influence-the sign of V  and can be neglected when all
the eigenvalues of coefficient matrix.of the right-hand side of Eq. (3.1.4) have negative real

parts. The coefficient matrix of the quadratic form in the right-hand side of Eq. (3.1.4) is

1 1
Lag-ay Lpd

ag, 205( ) 2ﬂ

1 1
P=|-——a(l-a) aC ——ab|.

2 2

1 54 b pg

2 2 * |

To ensure that the origin of error system (3.1.3) is asymptotically stable, the matrix P
should be positive definite, this is the case if and only if the following three inequalities
hold:

(@) ag,>0

() Cg,-4(1-2)*>0

(c) aBCg, gz+ aﬂbd(l a)——a gx——aﬂ(l a)’g, - ﬁZCd2>0.



Accordingly, if

(1-a)’
gx> 4C )
1 o B
——(=Db? ZCd*-(1-a)bd),
gz>4ch_(l_a)2(ﬂ 9x+a (1-a)bd)

then the matrix P is positive definite, the V is negative definite, which implies that the
origin of error system (3.1.3) is asymptotically stable. Therefore, the drive system (3.1.1) is
synchronized with response system (3.1.2).

In order to obtain the lower bound of ¢,, we need to determine the minimum function

a 1 a p
f(=)=————(=b’g, +Cd* - (1-a)bd),
(3 = aes —ay 5 %5 O —-abd)
Let £=7/,
F )2 f()) = (b’g. +2Cd” —(1—a)bd)
p- Ay ey iy |
1 Cd*
f'(y)=——(g,b*~ |
(= eg ey @05 )
2 Cd*
f'"(y)=———>0,
" ace, -0y
, Cd*
f'(r)=0, »= 90
2
When < = iz , the function f(g) will be at minimum.

In numerical simulation, the parameters area =0.594, b=0.5751, C=0.7, d=1.733.

The initial condition of drive and response systems are X(0)=0.02, y(0)=0.01,

2(0)=0.03, X'(0)=y'(0)=2'(0)=1, respectively. The lower bound of the feedback control

_ 2
coefficient ¢, = 1-a)

=0.05887. With this ¢,, the lower bound of g, =1.228. Now

we choose ¢, =0.059 and g, =1.23, the response system synchronizes with the drive

system as show in Fig. 3.1.



3.2 Chaos Synchronization by Adaptive Control

Autonomous system is investigated in this section. The drive system is shown as

follows:
X=Y,
y =—ax—Cy+bz+HOT, (3.2.1)
7 =—-0x+HOT,

and the response system is shown as follows:
X'=y'+u,
y'=—-ax'-Cy'+bz'+u, + HOT, (3.2.2)
7' =-dx'+u, + HOT,

where a,b,C,d are the parameters, and U, U,,U, are the controllers. Let e, =X"—X,

e,=Y -y, €=2"-7 be the synchronization errors between the drive and response
systems. System (3.2.1) and (3.2.2) can be synchronized under the control:

u=-9.6., U,=0, u,=-0,8e,
where

(1-a)

j, = Oe;, 0)=0, >
g, =08}, 9,(0)=0, g, >3]

)

s

g (ab’g, +-Cd* L1 La)bd), a>0, 6>0.
(04

o
4Cg, - (1-a)’
Proof. From (3.2.1) and (3.2.2), the error dynamics can be obtained as follows:

e'x = ey — 046
e, =—ae, —Ce, +be, + HOT, (3.2.3)
e, =—de,—g,e, + HOT,

where e =x'-x, e, =y’ -y, € =2"-z. Choose the following Lyapunov function:

1 1 . . .
V=E[(aef+ae§+e3+5(gz—gz)2]20 where o >0 and ¢, is a constant, then the

differentiation of V along trajectories of (3.2.3) is

2
z

/ 2 2 *
V=-a(e, —¢e)e, —aee, —aCe +abee, —dee, —g,e +(d,-9,)e
=-ag,e; —aCe; —g,e; +a(l-a)ee, +abee, —dee, + HOT

= —e"Pe+HOT, (3.2.4)

10



where e=| e, e, e, ]T.
By Lyapunov first approximation theorem, the terms higher than second degree in the
right-hand side of Eq. (3.2.4) do not influence the sign of V and can be neglected when all

the eigenvalues of coefficient matrix of the right-hand side of Eq. (3.2.4) have negative real

parts. The coefficient matrix of the quadratic form in the right-hand side of Eq. (3.2.4) is

1 1

——a(l-a) —=d

ag, 206( ) 5

1 1
P=|——a(l-a) aC ——ab|.

2 2

1 1 .

—d ——ab

2 2 %

To ensure that the origin of error system (3.2.3) is asymptotically stable, the matrix P

should be positive definite, this is the case if and only if the following three inequalities
hold:

(@) @9,>0

(b) Cg, —%(l—a)2 >0

1 1 1 1
Cg,0, +—abd(1-a)==a’b’g,~—ea(l-a)’g,——Cd*>>0.
(c) aCg,g, 40!( )4a 9x4( )gz4
Accordingly, if

(1-a)’
>
%~ e

9

*

g, (abzgx+lCd2—(1—a)bd),
a

>—
4Cg, —(1-a)’

then the matrix P is positive definite, the V is negative definite, which implies that the
origin of error system (3.2.3) is asymptotically stable. Therefore, the drive system (3.2.1) is
synchronization with response system (3.2.2).

In numerical simulation, the parameters are a=0.594, b=0.5751, C=0.7,

d =1.733 . The initial condition of drive and response systems are X(0)=0.02 ,
y(0)=0.01, z(0)=0.03, Xx'(0)=Yy'(0)=2'(0)=1, respectively. The lower bound of
(1-a)’

g, = =0.05887 . With this g, the lower bound of g,” =1.228. Now we choose

g, =0.059, g, =6e’, 0=1, the response system synchronizes with the drive system as

show in Fig. 3.2.
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Chapter 4
Hyperchaos Excited by Chaos for Rotational Machine System

with Centrifugal Governor

Pecora and Carroll in their pioneering paper [30] proposed a method (PC method) for
synchronization by replacing the corresponding state variables of the slave system by the
state variables of the master system. The difference of the method used in this chapter from
PC method lies in that we replace the exciting sinusoidal function of time in
nonautonomous chaotic system called excited system, by the chaotic states of variable of
another chaotic system called supply system. This research is a completely new field. There
appears two effects. First, hyperchaos occurs frequently and abundantly. Second, the

extended chaos, i.e. anticontrol of chaos, achieves, more chaos can be obtained.
4.1 Chaos Excited by Single Autonomous Chaos

Chaotic behavior is excited:by adding a chaotic-signal from chaos supply system to
chaos excited system. The autonomous system is chaos supply system:
X=Y,
Y =r(z+w,)’ sin(X+@,)cos(X+@,) —sin(x + ¢,) - Cy, (4.1.1)
z=kcos(X+¢,)—-F,

and the chaos excited system is:

X'=y'—v-f(t),
V' =1(z' +@,)’ sin(X' + @,) cos(X' + @, ) —sin(X' + ¢,) —Cy' —v-g(t), (4.1.2)
2'=kcos(X'+¢,)—F —v-h(t),
_ F , k
where C=0.7, r=025, F=1942, #=3.0, v=0.5, cosgooz? and o :—F.
r

The Lyapunov exponents are positive in the ranges 2<k <3.85, 4.66<k <5.4 for original
autonomous system and in the ranges 2<k <4.12, 4.77<k <6.31 for original nonautonomous
system as shown in Fig. 2.1.2 and Fig. 2.2.1 respectively. Hyperchaos is presented in

following three case,

12



(1) ft)=0, gt)=0, h(t)=0.

The Lyapunov exponents for system (4.1.2) for which f(t) =0.2x(t) is shown in Fig.
4.1.1. Three Lyapunov exponents are (+ ,+,—) which means hyperchaos, while input signal
f(t) is chaotic for k between 2~3.85 and 4.66~5.4 and is nonchaotic for values between
3.85~4.66 and greater then 5.4 reffering to Fig. 2.1.2. That means, even f(t) is nonchaotic,
hyperchaos is presented. Besides, range of chaos is extended. When f(t) =—-0.2x(t), the

Lyapunov exponents is shown in Fig. 4.1.2. Chaos phenomenon is extended from

6.31(referring to Fig. 2.2.1) to 11.39. When f(t)=0.2y(t), the Lyapunov exponents are
shown in Fig. 4.1.3. Hyperchaos is presented when 4.23<k <4.84. When f(t)=-0.2y(t),

the Lyapunov exponents are shown in Fig. 4.1.4. Hyperchaos is presented when 6<k <12.6.

When f(t) =-0.4y(t), the Lyapunov exponents are shown in Fig. 4.1.5. Hyperchaos is

presented when 10.15<k <13.3 and the chaos phenomena exist in broadest range k.,

2<k <13.5, without drop-off to regular motion. When f(t)=0.1z(t), the Lyapunov

exponents are shown in Fig. 4.1.6. Hyperchaos alternatively presents when 3.88<k <4.74.

The chaos presents when 2< k <712,

2) ft)=0, gt)=0, h(t)=0.
The Lyapunov exponents for system (4.1.2).for which g(t)=0.2x(t) is shown in Fig.

4.1.7. Chaos phenomena exist in broadest range k, 2<k <15, without decaying to regular

motion. When g(t)=-0.1x(t) , the Lyapunov exponents are shown in Fig. 4.1.8.
Hyperchaos is presented when 3.8<k <4.84. When ¢(t)=-0.2x(t) , the Lyapunov

exponents are shown in Fig. 4.1.9. Hyperchaos is presented when 4.2<k <4.84. When
g(t)=0.1y(t), the Lyapunov exponents are shown in Fig. 4.1.10. Hyperchaos is presented

when 4.04<k <4.84 and 5.68<k <8.14. When ¢(t)=0.2y(t), the Lyapunov exponents are

shown in Fig. 4.1.11. Hyperchaos is presented when 4.22<k <4.84 and 5.95<k <8.63. When
g(t) =0.4y(t), the Lyapunov exponents are shown in Fig. 4.1.12. Hyperchaos is presented

when 4.7<k <4.84 and 6.4<k <7.5. When ¢(t)=-0.05 z(t), the Lyapunov exponents are

shown in Fig. 4.1.13. Hyperchaos is presented when 3.97<k <4.29 and 4.62<k <4.82. When
g(t) =—0.1z(t), the Lyapunov exponents are shown in Fig. 4.1.14. Hyperchaos is presented

when 3.92<k <4.84.
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(3) f(H)=0, g®)=0, ht)=0.
The Lyapunov exponents for system (4.1.2) for which h(t) =0.2x(t) is shown in Fig.
4.1.15. Hyperchaos is presented when 5.45<k <6.4. When h(t)=-0.8y(t) ~ y(t), the

Lyapunov exponents are shown in Fig. 4.1.16. Hyperchaos is presented around 3.8~4.8

when h(t)=-0.8y(t)~—-0.2y(t) , while it is presented around 3.66~7 when
h(t)=0.2y(t) ~ y(t). When h(t)=0.2z(t), the Lyapunov exponents are shown in Fig.
4.1.17. Hyperchaos is presented when 5.83<k <7.6.

In all the above cases, extended chaos are obtained, see Table 1. From the above results,
it is impressive that when the excited system is excited by a single state of autonomous
chaotic system, hyperchaos occurs in most cases, while extended chaos occurs in all cases.

The results are summarized in Table 1.
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Table 1.

Autonomous Chaotic System.

Hyperchaos and Extended Chaos for Excited System by Single State of

Excited signal Range of k Range of k for
for hyperchaos | extended chaos
f(t)=0.2x(t) 5.84~6.17 2~9.02
6.47 ~8.49
f(t) =-0.2x(t) 2~11.39
f(t)=0.2y(t) 423 ~4.84 2~85
f(t)=-0.2y(t) 6~12.6 2~13.03
f(t)=-0.4y(t) 10.15 ~13.3 2~135
f(t)=0.1z(t) 3.88~4.74 2~7.12
g(t) =0.2x(t) 2~15
g(t) =-0.1x(t) 3.8~4.84 2~6.62
g(t) =—0.2x(t) 42 ~4.84 2~6.79
g(t) =0.1y(t) 4.04~ 4.84 2~9.82
5.68 ~ 8.14
g(t)=0.2y(t) 422 ~4.84 2~9.04
5.95~8.63
g(t)=0.4y(t) 4.7 ~4.84 2~9.36
6.4~7.5
g(t)=-0.05z(t) 3.97~4.29 2~11.9
4.62 ~4.82
g(t)=-0.1z(t) 3.92~4284 2~11.94
h(t) = 0.2x(t) 545~6.4 2~11.94
h(t) =0.2z(t) 583~7.6 2~10.08
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4.2 Chaos Excited by Single Nonautonomous Chaos

The nonautonomous system is chaos supply system:
X=Y,
Y =r1(z+®,)’ sin(X+¢@,) cos(X+¢,) —sin(x + ¢,) — Cy, 4.2.1)

z=kcos(X+¢,)—F —vsin(at),

and the chaos excited system is:

X'=y' —v-f(t),
V' =1(z' +®,)’ sin(X' +@,) cos(X' + @, ) —sin(X'+¢,) - Cy’ —v-g(t), (4.2.2)
2'=kcos(X'+¢,)—F —v-h(t),
_ F , k
where C=0.7, r=0.25, F=1942, ®#=3.0, v=0.5, cosgooz? and o :—F.
r

The parameter ranges of chaos are extended in following three cases,

(1) ft)=0, gt)=0, h(t)=0.
The Lyapunov exponents for system (4.2.2) for which f(t)=-0.2x(t) is shown in Fig.

4.2.1. The chaos is extended from 6.31(referring to Fig. 2.2.1) to 6.45. When
f(t)=0.4y(t) and -0.4 y(t), the Lyapunov exponents are shown in Fig. 4.2.2(a)(b). The

chaos is extended to k =10.68 and 10.86.respectively. When f(t)=0.1z(t), the Lyapunov

exponents are shown in Fig. 4.2.3. The chaos is extended to k =6.77.

(2) f(t)=0, g(t)=0, h(t)=0.

The Lyapunov exponents for system (4.2.2) for which g(t) =0.6y(t) is shown in Fig.
4.2.4. The chaos is extended to 7.69. When ¢(t)=-0.6y(t), the Lyapunov exponents are
shown in Fig. 4.2.5. The chaos is extended to k =7.92.

3) f®=0, gt)=0, h(t)=0.
The Lyapunov exponents for system (4.2.2) for which h(t) =-0.2x(t) is shown in Fig.

4.2.6. Hyperchaos alternatively  presents when 2.19< k <4.33. When
h(t)=-0.8y(t) ~ 0.8y(t) , no interesting result is obtained. When h(t)=0.2z(t), the

Lyapunov exponents are shown in Fig. 4.2.7. The chaos is extended to k =6.63.
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From the above results, it is noted that when the excited system is excited by a single
state of nonautonomous chaotic system, hyperchaos occurs in a few cases, while extended

chaos occurs in most cases. The results are summarized in Table 2.

Tabel 2. Hyperchaos and Extended Chaos for Excited System by Single State of

Nonautonomous Chaotic System.

Excited signal Range of k Range of k for

for hyperchaos | extended chaos
f(t) =-0.2x(1) 2~645
f(t)=0.4y(1) 2~10.68
f(t)=-0.4y() 2~10.86
f(t)=0.1z(t) 2~6.77
g(t)=0.6y() 2~17.69
g(t) =-0.6yt) 2~792
h(t) = —0.2x(t) 2.19~433 2~5.68
h(t) =0.2z(t) 2~6.63
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Chapter 5
Chaos, Its Control and Synchronization of Fractional Order

Chaotic System

In this Chapter, the chaotic behaviors of the fractional order autonomous and
nonautonomous nonlinear systems from that of rotational machine with centrifugal
governor are studied. By utilizing approximation approach of fractional operator, it is found
that chaos exists in the fractional order system with order less than 3. Phase portraits and
bifurcation diagrams assure existence of chaotic phenomena. Observation of the bifurcation
diagrams indicates behavior similar to that from the state space study in Chapter 2. By
utilizing the similar scheme as that for their integral order correspondence, chaos control

and chaos synchronizations are accomplished [35][49].
5.1 Review of Fractional Operator

The commonly used definition forigeneral-fractional derivative is the Riemann-Liouville
definition [50]. The Riemann-Liouville definition is given here:

q n
dif@® _ 1 d_r f(r)ﬁ 4
dt¢ I(n—q)dt" o (t—7)""

(5.1.1)

where I'(-) is the gamma function and n is an integer such that n—1<q<n. This

definition is different from the usual intuitive definition of derivative. Thus, it is necessary
to develop approximations to the fractional operators using the standard integral order
operators. Fortunately, the Laplace transform which is basic engineering tool for analyzing

linear systems is still applicable and works:

q n-1 g-1-k
L{dd:(t)} SIL{f(t)} - s" {%} ,forall q,
k=0 t=0

where n is an integer such that n—1<q<n. Upon considering the initial conditions to be

zero, this formula reduces to the more expected form
q
L{dd:q(t)}=sqL{f(t)}. (5.1.2)

Linear transfer function approximations of the fractional integrator[51] is adopted. Basically
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the idea is to approximate the system behavior based on frequency domain arguments. [52]
gives approximations for 1/ s with q=0.1-0.9 in steps of 0.1. These approximations

are used in the study that follows.
5.2 The Fractional Order Autonomous Chaotic System

The autonomous system is studied in this section. The standard derivative is replaced by

a fractional derivative as follows:

dt*

dvy 2 ; C 5.2.1

F—F(ZJra)o) sin(X —@,) cos(X— ¢, ) —sin(x—¢,) —Cy, (5.2.1)
q

diz
W:kcos(x—goo)—l:,

where @ is the fractional order, C=0.7, 1r=0.25, k=35, F=1942, cosg, :E

and a)o2 :%. Simulations are performed for Q=0:8,0.9,1.1,1.2. The simulation results

demonstrate that chaos indeed exist in-the fractional order autonomous system with order
less than 3. When = 0.9 and 1.1, chaotic attractors are found and the phase portraits are

shown in Fig. 5.2.1 and Fig. 5.2.2;"respectively. Bifurcation diagrams which assure
existence of chaotic are shown in Fig. 5.2.3 and Fig. 5.2.4. When = 0.8 and 1.2, no

chaotic behavior is found, which indicates that the lowest limit of the fractional order for
this system to be chaotic may be in the range 0.8<(q<0.9. Thus, the lowest order we found

for this system to yield chaos is 2.7.

5.2.1 Chaos Control

Here the issue of controlling the fractional order autonomous chaotic system to its
equilibrium is discussed. Simplifying the fractional order autonomous chaotic system (5.2.1)
in a compact vector form, we have

dX
dt*

= f(X) (5.2.2)

with X =[x,y,z]". With linear state feedback controller, Eq. (5.2.2) can be written as

d?X
dt*

= f(X)+u (5.2.3)
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where U is a linear state feedback controller and has the following form:

u=K(X-X)
where K =diag(k,k,,k,), X is the control target and k.,K,,k, are constant parameters.
Clearly, (0,0,0) is always an equilibrium point of system (5.2.1). In the following
simulation, we stabilize system (5.2.1) to this equilibrium point. Standard stability analysis
easily shows that with (k;,k,,k;)=(-1,0,-1), the equilibrium (0,0,0) of the controlled

integral order chaotic system is locally stable and is shown in Fig. 5.2.5. Simulation results
show that this controller can also stabilize the fractional order chaotic system to this

equilibrium. The trajectories of the controlled fractional order chaotic system with q=0.9
and ¢=1.1 are shown in Fig. 5.2.6 and Fig. 5.2.7, respectively. The control signal is added

at t=500s and 200s respectively. The designed chaos controller can effectively and fast

control the fractional order chaotic systems to its equilibrium point X = (0,0,0).

5.2.2 Chaos Synchronization ofithe Same Fractional Order systems

Here the issue of chaos synchronization of system+(5.2.1) is discussed.

Consider the drive-response synchronization scheme of autonomous chaotic systems

dX
reaili Y (5.2.4)
RV
dd:: = F(X)+U (5.2.5)

where ( is the fractional order. U is a linear state feedback controller and has the
following form:

u=K(X"=X)
where K =diag(k;,k,,k;), k,k,,k; are constant parameters. Define the error state as
e = X'— X, synchronization can be achieved when ||e(t)|| —0 as t—>wo.

Next, we numerically study the synchronization in two cases.

Casel. =09, K= diag(-10,-1).
Controller is added at t=300s, and response system is synchronized at t=341s as

shown in Fig. 5.2.8.
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Case2. g=1.1, K= diag(-1,0,-1).
Controller is added at t=300s, and response system is synchronized at t=315s as

shown in Fig. 5.2.9.

5.2.3 Chaos Synchronization of Different Fractional Order systems

Here the issue of chaos synchronization of different order systems is discussed.

Consider the drive-response synchronization scheme of autonomous chaotic systems

d*X

=100 (5.2.6)
dPX’ ,
= f(X)+u (5.2.7)

where  and p are different. U is a linear state feedback controller. As the method

utilized in last section, synchronization can be practically achieved.

Next, we numerically study the synchronization in two cases.

Case 1. =09, p=1.1, K= diag(=1000,-1000,—1000).
Controller is added at t=200s, and response system is practically synchronized as

shown in Fig. 5.2.10.

Case2. q=1.1, p=0.9, K= diag(-1000,-1000,-1000).
Controller is added at t=200s, and response system is practically synchronized as

shown in Fig. 5.2.11.

5.3 The Fractional Order Nonautonomous Chaotic System

The nonautonomous system is studied in this section. The standard derivative is

replaced by a fractional derivative as follows:

ax_
dt* 7

d'y 2 .

o = "2+ @) sin(X—gy)cos(x—g,) —sin(x —¢,) - Cy, (5.3.1)
q

%=kcos(x—g00)—|:—vsin5t,
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where  is the fractional order, C=0.7, r=025, k=28, F=1942, v=0.5,

®=3, cosg, 25 and a)g :%. Simulations are performed for =0.8,0.9,1.1,1.2. The

simulation results demonstrate that chaos indeed exist in the fractional order
nonautonomous system with order less than 3. When ¢ =0.9 and 1.1, chaotic attractors are
found and the phase portraits are shown in Fig. 5.3.1 and Fig. 5.3.2, respectively.
Bifurcation diagrams which assure existence of chaotic are shown in Fig. 5.3.3 and Fig.
5.3.4. When q=0.8and 1.2, no chaotic behavior is found, which indicates that the lowest
limit of the fractional order for this system to be chaotic is =0.8—0.9. Thus, the lowest

order we found for this system to yield chaos is 2.7.

5.3.1 Chaos Control

Here the issue of controlling the fractional order nonautonomous chaotic system to
periodic motion is discussed. Simplifying the fractional order nonautonomous chaotic
system (5.3.1) in a compact vector form, we have

d*X
dt*

= f(X)+g(t) (5.3.2)

with X =[x,y,z]". With linear state feedbackcontroller, Eq. (5.3.2) can be written as
d?X
dt*
where U is a linear state feedback controller and has the following form:

u=KX

= f(X)+g(t)+u (5.3.3)

where K =diag(k,,k,,k;), Kk.k,,k, are constant parameters. In the following simulation,
we control system (5.3.1) to period motion. With (k;,kK,,k;)=(-1,0,—1), the integral order

chaotic system can be controlled to periodic motion and is shown in Fig. 5.3.5. Simulation
results show that this controller can also control the fractional order chaotic system to
periodic motion. The trajectories of the controlled fractional order chaotic system with

q=0.9 and g=1.1 are shown in Fig. 5.3.6 and Fig. 5.3.7, respectively. The control signal

is added at t=40s. The designed chaos controller can effectively and fast control the

fractional order chaotic system to periodic motion.
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5.3.2 Chaos Synchronization of the Same Dractional Order Systems
Here the issue of chaos synchronization of system (5.3.1) is discussed. Synchronization

is achieved by linear feedback method.

Consider the drive-response synchronization scheme of two nonautonomous chaotic

systems
d?X
pre =f(X)+9() (5.3.4)
dix’ ,
e = f(X")+g(t)+u (5.3.5)

where ( is the fractional order. U is a linear state feedback controller and has the
following form:

u=K(X'=X)
where K =diag(k;,k,,k;), k,k,,k; are constant parameters. Define the error state as
e = X'— X, synchronization can be achieved when ||e(t)|| —0 as t>wo.

Next, we numerically study the§ynchronizatiofi-in two cases.

Case 1. 9=0.9, K= diag(-1,0,-1).
Controller is added at t=300s.and response system is synchronized at t=310s as

shown in Fig. 5.3.8.

Case2. g=1.1, K= diag(-1,0,-1).
Controller is added at t=300s .and response system is synchronized at t=320s as

shown in Fig. 5.3.9.

5.3.3 Chaos Synchronization of Different Fractional Order Systems

Here the issue of chaos synchronization of different order systems is discussed.

Consider the drive-response synchronization scheme of autonomous chaotic systems

dX

o= F00+g() (5.3.6)
dPX’ ,
== f(X)+g+u (5.3.7)

where  and p are different. U is a linear state feedback controller. As the method
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utilized in last section, synchronization can be practically achieved.

Next, we numerically study the synchronization in two cases.

Casel. =09, p=I1.1, K= diag(-1000,-1000,—-1000).
Controller is added at t=300s, and response system is synchronized as shown in Fig.

5.3.10.
Case2. q=1.1, p=09, K= diag(~1000,—1000,~1000).

Controller is added at t=300s, and response system is synchronized as shown in Fig.

5.3.11.
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Chapter 6

Conclusions

A lot of researches have shown that chaotic phenomena are observed in many physical
systems that possess nonlinearity. For the nonlinear system, the study of the types of system
behavior, the effects to the behavior caused by different signal, the behavior analysis of the
system, consist of the major tasks.

In this thesis, integral and fractional order rotational machine system with centrifugal
governor are investigated. By applying various numerical results, such as time history
analysis, phase portraits, bifurcation diagrams, the behavior of the chaotic motion are
presented. In Chapter 2, the governing equations of motion are formulated, Lyapunov
exponents are used to detect the chaos existing in the system.

In Chapter 3, linear feedback control, method and adaptive control method for chaos
synchronization are proposed by using. Lyapunov first approximation theorem and
asymptotical stability theorem. Numerical sitnulation:is provided to show the effectiveness
of our method. By using Lyapunov first approximation theorem, we can achieve the
synchronization of more complex-system such-as rotational machine system in this thesis.

In Chapter 4, we devotes to a new concept of hyperchaos and extended chaos driven by
states of chaotic system instead of driven by sinusoidal functions of time. Many interesting
results are obtained. If chaos is driven by the state of autonomous system, hyperchaos are
presented frequently. And the ranges of chaos are extended. If chaos is driven by the state of
nonautonomous system, its performance is less fruitful as that driven by the state of
autonomous system.

Fractional calculus is a 300-yerar-old mathematical topic. Although it has a long history,
the applications of fractional calculus to physics and engineering are just a recent focus of
interest. In Chapter 5, we study the chaotic behaviors in the fractional order autonomous
and nonautonomous nonlinear systems of rotational machine system with centrifugal
governor. It is shown that systems with total order less than three exhibit chaos as well as its
integeral order system. Phase portraits and bifurcation diagrams assure existence of chaotic
phenomena. By utilizing the similar scheme as that for their integral order correspondence,
chaos control and chaos synchronization are accomplished, in which chaos synchronizations

of different fractional order systems need large coupling strength to be synchronized.
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Fig. 2.1.1 Physical model of a rotational machine with a fly-ball governor system.
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Fig. 2.1.2 Three Lyapunov exponents for k between 1.942 and 20.
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Fig. 2.1.3 (a) Phase portrait (b) Poincaré map for k =2.603.
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Fig. 2.2.1 Three Lyapunov exponents for k between 1.942 and 20.
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Fig. 2.2.2 (a) Phase portrait (b) Poincaré map for k=17.8.
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Fig. 2.2.3 Projection of Poincaré map of: (a) quasi-periodic
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Fig. 5.2.1 Phase portrait of the fractional order autonomous system

with order q=0.9.
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Fig. 5.2.2 Phase portrait of the fractional order autonomous system

with order q=1.1.
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with order q=0.9.
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with order q=1.1.
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Fig. 5.2.9 Time history of errors of the fractional order autonomous system
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with order q=1.1and p=0.9.
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Fig. 5.3.1 Phase portrait of the fractional order nonautonomous system

with order q=0.9.
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Fig. 5.3.2 Phase portrait of the fractional order nonautonomous system

with order q=1.1.
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