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摘 要       

 

本篇論文研究整數階與分數階帶離心式調速器之旋轉機器系統的渾沌同步與渾沌

激發之超渾沌。透過數值分析，如相圖，分叉圖，和Lyapunov指數，可以觀察到週期與

渾沌運動。利用線性回饋控制與適應性控制，使得整數階系統達成渾沌同步。接著,提

出一個新的概念：透過渾沌系統之狀態驅動的渾沌取代透過正弦時間函數驅動的渾沌。

此研究乃一個完全新的領域，觀察到超渾沌與廣範圍的渾沌。最後，發現分數階系統的

階數少於或多於原系統的狀態數目時皆存在渾沌現象。利用類似於用在整數階系統的方

法，系統可以達成渾沌控制與渾沌同步。 
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ABSTRACT 
 

Chaos synchronization and chaos-excited hyperchaos, for integral and fractional order 

rotational machine system with centrifugal governor are studied in this thesis. By applying 

numerical analysis such as phase portrait, bifurcation diagram and Lyapunov exponent, 

periodic and chaotic motions are observed. Chaos synchronization for integral order system is 

accomplished by employing both linear feedback control and adaptive control based on 

Lyapunov first approximation theorem and asymptotical stability theorem. Then a new 

concept of chaos driven by states of chaotic system instead of driven by sinusoidal time 

function is put forward. This research is a completely new field, hyperchaos and broader 

ranges of chaos are obtained. Finally, it is found that chaos exists in the fractional order 

system with order less and more than number of states of the system. By utilizing the similar 

scheme as that for their integral order correspondence, chaos control and chaos 

synchronization are accomplished. 
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Chapter 1 

Introduction 

 
It goes without doubt that chaos synchronization has been the important issues in the 

recent years [1-9]. A lot of researches have shown that chaotic phenomena are observed in 

many physical systems that possess nonlinearity [10-12]. Chaotic motions also occur in 

many nonlinear control systems [13-14]. Chaotic phenomena are quite useful in many 

applications such as human brain [15-16], optical communication [17-20], heart rate 

variability [21-22], etc. Chaos synchronization has been applied in many fields such as 

secure communication [23-28], chemical and biological systems, etc. 

Most of physical systems in nature are nonlinear and can be described by the nonlinear 

equations of motion which in general can not be linearized. Hence the studies of nonlinear 

systems spread quickly today. For the nonlinear system, the study of the types of system 

behavior, the effects to the behavior caused by different parameters and initial conditions, 

the behavior analysis of the system, consist of the major tasks. Besides, we are also 

interested in the understanding of the complicated phenomena arose from nonlinearity. The 

central characteristics are that a process like randomization happens in the deterministic 

system and small differences in the system parameters or initial conditions produce great 

ones in the final phenomena. The unpredictable and irregular motions of many nonlinear 

systems have been labeled “chaotic”. By applying various numerical results, such as 

bifurcation, phase portraits, time history analysis, the behavior of the chaotic motion are 

presented. In Chapter 2, the governing equations of motion will be formulated, Lyapunov 

exponents will be used to detect the chaos existing in the system. 

By Lyapunov stability theory and by using the coupling term, two dynamical systems 

will be synchronized or generalized synchronized. In the synchronized systems, one is 

called drive and another is called response. A lot of approaches have been proposed for the 

synchronization of chaotic systems which include linear and nonlinear feedback control, 

time-delay feedback control, adaptive control, and impulsive control. In Chapter 3, by 

employing both linear feedback control and adaptive control based on Lyapunov first 

approximation theorem [29] and asymptotical stability theorem, chaos synchronizations are 

accomplished. 

Pecora and Carroll in their pioneering paper [30] proposed a method (PC method) for 
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synchronization by replacing the corresponding state variables of the slave system by the 

state variables of the master system. The difference of our method from PC method lies in 

that our autonomous and nonautonomous systems are all chaotic systems. PC method 

devotes to the chaos synchronization of the identical systems, while Chapter 4 devotes to a 

new concept of chaos driven by states of chaotic system instead of driven by sinusoidal 

function of time. This research is a completely new field, and some interesting results are 

obtained. 

Fractional calculus is a 300-year-old mathematical topic. Although it has a long history, 

the applications of fractional calculus to physics and engineering are just a recent focus of 

interest [31]. Many systems are known to display fractional order dynamics, such as 

viscoelastic systems [32], dielectric polarization, electrode–electrolyte polarization, and 

electromagnetic waves. More recently, there is a new trend to investigate the control and 

dynamics of fractional order dynamical systems [33-35]. In [34], it is shown that 

nonautonomous Duffing systems of order less than 2 can still behave in a chaotic manner. In 

[35], chaos synchronization of fractional order chaotic systems are studied. In [36], the 

author presents a broad review of existing models of fractional kinetics and their connection 

to dynamical models, phase space topology, and other characteristics of chaos. In Chapter 5, 

we study the chaotic behaviors in the fractional order autonomous and nonautonomous 

nonlinear systems of rotational machine with centrifugal governor. By utilizing 

approximation approach of fractional operator, it is shown that systems with total order less 

than three exhibit chaos as well as other nonlinear behavior. Bifurcation diagrams assure 

existence of chaotic phenomena. By utilizing the similar scheme as that for their integral 

order correspondence, chaos control and chaos synchronization are accomplished. 
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Chapter 2 

Regular and Chaotic Dynamics of Rotational Machine System 

with Centrifugal Governor 

 
2.1 Autonomous System 
 

The rotational machine system with centrifugal governor is shown in Fig. 2.1.1. Some 

basic assumptions for the system are 

1. the mass of the sleeve and the rods is neglected; 

2. viscous damping in the rod bearing of the fly-ball is presented by damping constant 

β . 

 

From Fig. 2.1.1, the kinetic and potential energies of the system are written as follows: 

( )2 2 2 2 2 2 2 2 2 212 sin sin
2

T m l l ml ml ,η ϕ ϕ η ϕ ϕ⎡ ⎤= × + = +⎢ ⎥⎣ ⎦
& &  

2 cosV mgl ϕ= −  

where l , , m ϕ  and η  represent the length of the rod, the mass of the fly-ball, the angle 

between the rotational axis and the rod, and the angular velocity of the governor, 

respectively. It is easy to obtain the Lagrangian 
2 2 2 2 2sin 2 cos .L T V ml ml mglη ϕ ϕ= − = + +& ϕ  

Using the Lagrange equation, the equation of motion is derived 

2sin sin cos .g
m l
βϕ ϕ ϕ η ϕ+ + =&& & ϕ                                      (2.1.1) 

The net torque is the difference between the torque  produced by the engine and the load 

torque , which is available for angular acceleration. That is, 

Q

LQ

L
dJ Q
dt

Qω
= −                                                     (2.1.2) 

where  is the moment of inertia of the machine. As the angle J ϕ  varies, the position of 

the control valve which admits the fuel is also varied. Their relation is presented by 

Refs.[37], so Eq. (2.1.2) is written in the form  
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cosJ Pω γ ϕ=& −                                                   (2.1.3) 

where 0γ >  is a proportionality constant and  is an equivalent torque of the load. P

Usually, the governor is geared directly to the output shaft such that its speed of rotation 

is proportional to the engine speed, i.e. nη ω= . Changing time scale ntτ = Ω , Eqs. (2.1.1) 

and (2.1.3) can be written in nondimensional form 
2sin sin cosC rϕ ϕ ϕ ω ϕ+ + =&& & ϕ

F

 

coskω ϕ= −&                                                     (2.1.4) 

where 

n

k
J
γ

=
Ω

, 
n

PF
J

=
Ω

, 
2n lr
g

= , 

n

C
m
β

=
Ω

, n
g
l

Ω =  

and the overdot denotes differentiation with respect to τ . Eq. (2.1.4) can be expressed as 

three first order equations 

2

,
sin cos sin ,

cos ,
r
k F

ϕ ψ

Cψ ω ϕ ϕ ϕ ψ
ω ϕ

=⎧
⎪ = −⎨
⎪ = −⎩

&

&

&

−                                      (2.1.5) 

where ψ  is the angular velocity of the rod. Hence, the dynamics of the system of a 

rotational machine with a fly-ball governor is described by a three-dimensional autonomous 

system. 

The equilibria of the system can be found from Eq. (2.1.5) as 0=[ , 0, ]0ϕ ωp  with 

0cos F
k

ϕ = , 2
0

k
rF

ω = . 

Add slight disturbances , ,  to the fixed point ( arcco , 0, x y z s /F k /k rF ) 

0 xϕ ϕ= + , yψ = , 0 zω ω= + .                                 (2.1.6) 

Substitute Eq. (2.1.6) into Eq. (2.1.5), and expanding sinϕ , cosϕ  as the Taylor series, it 

becomes 

,
HOT,

HOT,

x y
y ax Cy bz
z dx

=⎧
⎪ = − − + +⎨
⎪ = − +⎩

&

&

&

                                          (2.1.7) 

where  
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kF
Fka

22 −
= , 2

222
k

FkrkFb −
= , 22 Fkd −= , 

and the terms higher than one degree have not been written down. Let , then 

,  and . By the Lyapunov instability theorem, the origin is unstable. 

0k F> >

0a > 0b > 0d >

In order to determine the chaos existing in a nonlinear system, the method of detecting 

the chaos becomes very important. Here a Lyapunov exponent is used as a quantitative 

measure of the chaotic motion of the system. The Lyapunov exponent may be used to 

measure the sensitive dependence upon the initial conditions [1]. It is an index for chaotic 

behavior. Different solutions of the dynamical system, such as fixed point, periodic motion, 

quasi-periodic motion, and chaotic motion can be distinguished by it. The signs of 

Lyapunov exponents provide a qualitative picture of the system dynamics. Positive values 

of Lyapunov exponents indicate chaos, negative values of Lyapunov exponents indicate a 

stable orbit. In three-dimensional space, the Lyapunov exponent spectra for a strange 

attractor, a two-torus, a limit cycle and a fixed point are described by (＋,0,－), (0,0,－), (0,

－, －) and (－,－,－), respectively. 

In order to explore the chaos of the fly-ball governor system, three Lyapunov exponents 

are calculated when the values of parameters , C F , r  are given as 0.7, 1.942, 0.25 and 

 is varied from 1.942 to 20. Fig. 2.1.2 illustrates the fact that some values of parameter  

will cause chaotic motion. When one defines 

k k

x=ϕ , y=ϕ& , z=ω , and uses the initial 

conditions , , (0) 0.02x = (0) 0.01y = (0) 0.03z =  at: (1) 16k = , and (2) , three 

Lyapunov exponents are obtained, respectively, 

2.603k =

008.01 −=λ , 0127.02 −=λ , 6792.03 −=λ , 

the motion of which converges to fixed point and 

1116.01 =λ , 0.02 =λ , 8116.03 −=λ  

which means chaotic motion. In a dissipative system, the sum of all the Lyapunov 

exponents is equivalent to the negative value of the coefficient of damping in the system. 

Hence, the sum of the three Lyapunov exponents for the two cases (1) and (2) are －0.7. 

Fig. 2.1.3(a)(b) shows the phase portraits and Poincaré map of the chaotic motion at 

. 2.603k =

 

2.2 Nonautonomous System 
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In the previous section, the load torque is assumed to be constant for the system. 

Another condition can be considered. The load torque is now not constant but is represented 

by a Fourier series consisting of a constant term and a series of harmonic terms. It is 

reasonable that the load torque of an internal combustion engine repeats after every 

complete working cycle. For simplicity, the form of the load torque is assumed to be 

sinF v ωτ+ , where , , F v ω  are constants. Eq. (2.1.7) is rewritten in the form 

,
HOT,

sin HOT,

x y
y ax Cy bz
z dx ν ωτ

=⎧
⎪ = − − + +⎨
⎪ = − − +⎩

&

&

&

                                           (2.2.1) 

where  

kF
Fka

22 −
= , 2

222
k

FkrkFb −
= , 22 Fkd −= , 3ω =  and 0.5ν = . 

Lyapunov exponents are adopted for distinguishing periodic, quasi-periodic, and chaotic 

motions. If we choose , 0.7C = 0.25r = , 1.942F = , the results is shown in Fig. 2.2.1. 

Poincaré map is also adopted to deal with the nonautonomous system where Poincaré 

section is prescribed as a 0 02 ( 0t n )ω φ π φ= + = plane in four dimensional 

space ( , , , )x x z tω& . Assuming that the motion of the system starts at an initial time , the 

points on the Poincaré section can be collected by a sampling of state variables at intervals 

of the forcing period 

0t=t

T= 2π ω . Some numerical simulation results for different  are 

discussed below. The small circle in Fig. 2.2.2 for 

k

17.8k =  indicates that the system 

motion is a stable harmonic motion of period 2π ω  or period-1 motion. When 14.5k = , 

the system motion is a quasi-periodic motion and the map will form a continuous closed 

orbit in the Poincaré section as shown in Fig. 2.2.3(a). If the Poincaré map appears as 

neither a finite set of points nor a closed orbit, the motion may be chaotic. From Fig. 

2.2.3(b), chaotic motion is seen as 5.13k = . 
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Chapter 3 

Chaos Synchronization by Linear Feedback Control  

and Adaptive Control 

 
By Lyapunov stability theory and by using the coupling term, two dynamical systems 

will be synchronized or generalized synchronized. In the synchronized systems, one is 

called drive and another is called response. A lot of approaches have been proposed for the 

synchronization of chaotic systems which include linear and nonlinear feedback control 

[38-39], time-delay feedback control [40-42], adaptive control [43-45], and impulsive 

control [46-48]. Chaos synchronization is discussed in this chapter. Two methods are 

presented, the linear feedback control and the adaptive control. 

 

3.1 Chaos Synchronization by Linear Feedback Control 
 

Autonomous system is investigated in this section. From Eq. (2.1.7), the drive system is 

shown as follows: 

,
HOT,

HOT,

x y
y ax Cy bz
z dx

=⎧
⎪ = − − + +⎨
⎪ = − +⎩

&

&

&

                                          (3.1.1) 

and the response system is shown as follows: 

1

2

3

,
HOT,

HOT,

x y u
y ax Cy bz u
z dx u

′ ′= +⎧
⎪ ′ ′ ′ ′= − − + + +⎨
⎪ ′ ′= − + +⎩

&

&

&

                                     (3.1.2) 

where  are the parameters, and  are the controllers. Let , , ,a b C d 1 2 3, ,u u u xe x x′= − , 

, ye y′= − y zze z′= −  be the synchronization errors between the drive and response 

systems. System (3.1.1) and (3.1.2) can be synchronized under the control: 

1 x xu g= − e e, , ,  2 0u = 3 z zu g= −

where  

0α > , 0β > , 
2(1 )

4x
ag
C
−

> , 
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2 2
2

1 ( (1
4 (1 )z x

x

g b g Cd
Cg a

) )a bdα β
β α

> +
− −

− −

x y z

  

are constants. 

Proof. From (3.1.1) and (3.1.2), the error dynamics can be obtained as follows: 

,

HOT,

HOT,

x y x x

y x y z

z x z z

e e g e

e ae Ce be

e de g e

= −⎧
⎪ = − − + +⎨
⎪ = − − +⎩

&

&

&

                                        (3.1.3) 

where , , xe x′= − ye y′= − ze z′= − . Choose the following Lyapunov function: 

2 2 21 ( )
2 x y zV e e eα α β= + + 0≥ 0 where ,α β > , then the differentiation of V  along 

trajectories of (3.1.3) is 

HOTx x y y z zV e e e e e eα α β= + + +& & & &  

2 2 2 (1 ) HOTx x y z z x y y z x zg e Ce g e a e e be e de eα α β α α β= − − − + − + − +  

HOTPΤ= − +e e ,                                                 (3.1.4) 

where . x y ze e e
Τ

⎡ ⎤= ⎣ ⎦e

By Lyapunov first approximation theorem, the terms higher than second degree in the 

right-hand side of Eq. (3.1.4) do not influence the sign of  and can be neglected when all 

the eigenvalues of coefficient matrix of the right-hand side of Eq. (3.1.4) have negative real 

parts. The coefficient matrix of the quadratic form in the right-hand side of Eq. (3.1.4) is 

V&

1 1(1 )
2 2

1 1(1 )
2 2

1 1
2 2

x

z

g a

P a C

d b

α α d

b

g

β

α α α

β α

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

β

. 

To ensure that the origin of error system (3.1.3) is asymptotically stable, the matrix  

should be positive definite, this is the case if and only if the following three inequalities 

hold: 

P

(a) 0xgα >  

(b) 21 (1 ) 0
4xCg a− − >  

(c) 2 2 2 2 21 1 1 1(1 ) (1 ) 0
4 4 4 4x z x zCg g bd a b g a g Cdαβ αβ α αβ β+ − − − − − > . 
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Accordingly, if  
2(1 )

4x
ag
C
−

> , 

2 2
2

1 ( (1
4 (1 )z x

x

g b g Cd
Cg a

) )a bdα β
β α

> +
− −

− − ,  

then the matrix  is positive definite, the  is negative definite, which implies that the 

origin of error system (3.1.3) is asymptotically stable. Therefore, the drive system (3.1.1) is 

synchronized with response system (3.1.2). 

P V&

In order to obtain the lower bound of , we need to determine the minimum function zg

2 2
2

1( ) ( (1 ) )
4 (1 ) x

x

f b g Cd a bd
Cg a

α α β
β β α

= +
− −

− − , 

Let α γ
β
= , 

2 2
2

1 1( ) ( ) ( (1 ) )
4 (1 ) x

x

f f b g Cd
Cg a

a bdα γ γ
β γ

= = + − −
− −

, 

2
2

2 2

1( ) ( )
4 (1 ) x

x

Cdf g
Cg a

γ b
γ

′ = −
− −

, 

2

3 2

2( ) 0
4 (1 )x

Cdf
Cg a

γ
γ

′′ = >
− −

, 

1( ) 0f γ′ = ,  
2

1 2
x

Cd
g b

γ = . 

When 
2

2
x

Cd
g b

α
β
= , the function ( )f α

β
 will be at minimum. 

In numerical simulation, the parameters are 0.594a = , 0.5751b = , , 0.7C = 1.733d = . 

The initial condition of drive and response systems are , (0) 0.02x = (0) 0.01y = , 

, (0) 0.03z = (0) (0) (0) 1x y z′ ′ ′= = = , respectively. The lower bound of the feedback control 

coefficient 
2(1 ) 0.05887

4x
ag
C
−

= = . With this , the lower bound of . Now 

we choose  and , the response system synchronizes with the drive 

system as show in Fig. 3.1. 

xg 1.228zg =

0.059xg = 1.23zg =
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3.2 Chaos Synchronization by Adaptive Control 
 

Autonomous system is investigated in this section. The drive system is shown as 

follows: 

,
HOT,

HOT,

x y
y ax Cy bz
z dx

=⎧
⎪ = − − + +⎨
⎪ = − +⎩

&

&

&

                                           (3.2.1) 

and the response system is shown as follows: 

1

2

3

,
HOT,

HOT,

x y u
y ax Cy bz u
z dx u

′ ′= +⎧
⎪ ′ ′ ′ ′= − − + + +⎨
⎪ ′ ′= − + +⎩

&

&

&

                                      (3.2.2) 

where  are the parameters, and  are the controllers. Let , , ,a b C d 1 2 3, ,u u u xe x x′= − , 

, ye y′= − y zze z′= −  be the synchronization errors between the drive and response 

systems. System (3.2.1) and (3.2.2) can be synchronized under the control: 

1 x xu g= − e e, , ,  2 0u = 3 z zu g= −

where  

2
z zg eθ=& , , (0) 0zg =

2(1 )
4x

ag
C
−

> , 

* 2 2
2

1 1( (1 ) )a bd−
4 (1 )z x

x

g b g Cd
Cg a

α
α

> + −
− −

0, , 0θ > . α >

Proof. From (3.2.1) and (3.2.2), the error dynamics can be obtained as follows: 

,

HOT,

HOT,

x y x x

y x y z

z x z z

e e g e

e ae Ce be

e de g e

= −⎧
⎪

= − − + +⎨
⎪ = − − +⎩

&

&

&

                                        (3.2.3) 

where , , xe x′= − x y zye y′= − ze z′= − . Choose the following Lyapunov function: 

2 2 2 * 21 1[( ( ) ] 0
2 x y z z zV e e e g gα α

θ
= + + + − ≥  where 0α >  and  is a constant, then the 

differentiation of  along trajectories of (3.2.3) is 

*
zg

V
2 2( ) ( )y x x x y y y z x z z z z zV e e e ae e Ce be e de e g e g g eα α α= − − − − + − − + −& * 2

z  

2 2 * 2 (1 ) HOTx x y z z x y y z x zg e Ce g e a e e be e de eα α α α= − − − + − + − +  

HOTPΤ= − +e e ,                                                 (3.2.4) 
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where . x y ze e e
Τ

⎡ ⎤= ⎣ ⎦e

By Lyapunov first approximation theorem, the terms higher than second degree in the 

right-hand side of Eq. (3.2.4) do not influence the sign of  and can be neglected when all 

the eigenvalues of coefficient matrix of the right-hand side of Eq. (3.2.4) have negative real 

parts. The coefficient matrix of the quadratic form in the right-hand side of Eq. (3.2.4) is 

V&

*

1 1(1 )
2 2

1 1(1 )
2 2

1 1
2 2

x

z

g a

P a C

d b

α α d

b

g

α α α

α

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

. 

To ensure that the origin of error system (3.2.3) is asymptotically stable, the matrix  

should be positive definite, this is the case if and only if the following three inequalities 

hold: 

P

(a) 0xgα >  

(b) 21 (1 ) 0
4xCg a− − >  

(c) 2 2 2 21 1 1 1(1 ) (1 ) 0
4 4 4 4x z x zCg g bd a b g a g Cdα α α α+ − − − − − > . 

Accordingly, if  
2(1 )

4x
ag
C
−

> , 

* 2 2
2

1 1( (1
4 (1 )z x

x

g b g Cd
Cg a

α
α

> + −
− −

) )a bd− ,  

then the matrix  is positive definite, the  is negative definite, which implies that the 

origin of error system (3.2.3) is asymptotically stable. Therefore, the drive system (3.2.1) is 

synchronization with response system (3.2.2). 

P V&

In numerical simulation, the parameters are 0.594a = , , 0.5751b = 0.7C = , 

. The initial condition of drive and response systems are , 

, 

1.733d = (0) 0.02x =

(0) 0.01y = (0) 0.03z = , (0) (0) (0) 1x y z′ ′ ′= = = , respectively. The lower bound of 

2(1 ) 0.05887
4x

ag
C
−

= = . With this , the lower bound of . Now we choose 

, 

xg * 1.228zg =

0.059xg = 2
z zg eθ=& , 1θ = , the response system synchronizes with the drive system as 

show in Fig. 3.2. 
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Chapter 4 

Hyperchaos Excited by Chaos for Rotational Machine System 

with Centrifugal Governor 

 
Pecora and Carroll in their pioneering paper [30] proposed a method (PC method) for 

synchronization by replacing the corresponding state variables of the slave system by the 

state variables of the master system. The difference of the method used in this chapter from 

PC method lies in that we replace the exciting sinusoidal function of time in 

nonautonomous chaotic system called excited system, by the chaotic states of variable of 

another chaotic system called supply system. This research is a completely new field. There 

appears two effects. First, hyperchaos occurs frequently and abundantly. Second, the 

extended chaos, i.e. anticontrol of chaos, achieves, more chaos can be obtained. 

 

4.1 Chaos Excited by Single Autonomous Chaos 
 

Chaotic behavior is excited by adding a chaotic signal from chaos supply system to 

chaos excited system. The autonomous system is chaos supply system: 

2
0 0 0 0

0

,
( ) sin( )cos( ) sin( ) ,
cos( ) ,

x y
y r z x x x Cy
z k x F

ω ϕ ϕ ϕ
ϕ

=⎧
⎪ = + + + − + −⎨
⎪ = + −⎩

&

&

&

                   (4.1.1) 

and the chaos excited system is: 

2
0 0 0 0

0

( ),
( ) sin( ) cos( ) sin( ) ( ),
cos( ) ( ),

x y v f t
y r z x x x Cy v g t
z k x F v h t

ω ϕ ϕ ϕ
ϕ

′ ′= − ⋅⎧
⎪ ′ ′ ′ ′ ′ ′= + + + − + − − ⋅⎨
⎪ ′ ′= + − − ⋅⎩

&

&

&

          (4.1.2) 

where , 0.7C = 0.25r = , , 1.942F = 3.0ω = , 0.5ν = , 0cos F
k

ϕ =  and 2
0

k
rF

ω = . 

The Lyapunov exponents are positive in the ranges 2< k <3.85, 4.66< <5.4 for original 

autonomous system and in the ranges 2< <4.12, 4.77< <6.31 for original nonautonomous 

system as shown in Fig. 2.1.2 and Fig. 2.2.1 respectively. Hyperchaos is presented in 

following three case, 

k

k k
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(1) , ( ) 0f t ≠ ( ) 0g t = , . ( ) 0h t =

The Lyapunov exponents for system (4.1.2) for which ( ) 0.2 ( )f t x t=  is shown in Fig. 

4.1.1. Three Lyapunov exponents are (＋,+,－) which means hyperchaos, while input signal 

( )f t  is chaotic for  between 2~3.85 and 4.66~5.4 and is nonchaotic for values between 

3.85~4.66 and greater then 5.4 reffering to Fig. 2.1.2. That means, even 

k

( )f t  is nonchaotic, 

hyperchaos is presented. Besides, range of chaos is extended. When ( ) 0.2 ( )f t x= − t , the 

Lyapunov exponents is shown in Fig. 4.1.2. Chaos phenomenon is extended from 

6.31(referring to Fig. 2.2.1) to 11.39. When ( ) 0.2 ( )f t y t= , the Lyapunov exponents are 

shown in Fig. 4.1.3. Hyperchaos is presented when 4.23< <4.84. When k ( ) 0.2 ( )f t y= − t , 

the Lyapunov exponents are shown in Fig. 4.1.4. Hyperchaos is presented when 6< <12.6. 

When 

k

( ) 0.4 ( )f t = − y t , the Lyapunov exponents are shown in Fig. 4.1.5. Hyperchaos is 

presented when 10.15< <13.3 and the chaos phenomena exist in broadest range , 

2< <13.5, without drop-off to regular motion. When 

k k

k ( ) 0.1 ( )f t z t= , the Lyapunov 

exponents are shown in Fig. 4.1.6. Hyperchaos alternatively presents when 3.88< <4.74. 

The chaos presents when 2< <7.12. 

k

k

 

(2) , ( ) 0f t = ( ) 0g t ≠ , . ( ) 0h t =

The Lyapunov exponents for system (4.1.2) for which ( ) 0.2 ( )g t x t=  is shown in Fig. 

4.1.7. Chaos phenomena exist in broadest range , 2< <15, without decaying to regular 

motion. When , the Lyapunov exponents are shown in Fig. 4.1.8. 

Hyperchaos is presented when 3.8< <4.84. When 

k k

( ) 0.1 ( )g t x t= −

k ( ) 0.2 ( )g t x t= − , the Lyapunov 

exponents are shown in Fig. 4.1.9. Hyperchaos is presented when 4.2< <4.84. When 

, the Lyapunov exponents are shown in Fig. 4.1.10. Hyperchaos is presented 

when 4.04< <4.84 and 5.68< k <8.14. When 

k

( ) 0.1 ( )g t y t=

k ( ) 0.2 ( )g t y t= , the Lyapunov exponents are 

shown in Fig. 4.1.11. Hyperchaos is presented when 4.22< <4.84 and 5.95< <8.63. When 

, the Lyapunov exponents are shown in Fig. 4.1.12. Hyperchaos is presented 

when 4.7< <4.84 and 6.4< <7.5. When 

k k

( ) 0.4 ( )g t y t=

k k ( ) 0.05 ( )g t z t= − , the Lyapunov exponents are 

shown in Fig. 4.1.13. Hyperchaos is presented when 3.97< <4.29 and 4.62< <4.82. When 

, the Lyapunov exponents are shown in Fig. 4.1.14. Hyperchaos is presented 

when 3.92< <4.84. 

k k

( ) 0.1 ( )g t z t= −

k
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(3) , ( ) 0f t = ( ) 0g t = , . ( ) 0h t ≠

The Lyapunov exponents for system (4.1.2) for which ( ) 0.2 ( )h t x t=  is shown in Fig. 

4.1.15. Hyperchaos is presented when 5.45< <6.4. When , the 

Lyapunov exponents are shown in Fig. 4.1.16. Hyperchaos is presented around 3.8~4.8 

when , while it is presented around 3.66~7 when 

. When 

k ( ) 0.8 ( ) ~ ( )h t y t y t= −

( ) 0.8 ( ) ~ 0.2 ( )h t y t y t= − −

( ) 0.2 ( ) ~ ( )h t y t y t= ( ) 0.2 ( )h t z t= , the Lyapunov exponents are shown in Fig. 

4.1.17. Hyperchaos is presented when 5.83< k <7.6. 

 

In all the above cases, extended chaos are obtained, see Table 1. From the above results, 

it is impressive that when the excited system is excited by a single state of autonomous 

chaotic system, hyperchaos occurs in most cases, while extended chaos occurs in all cases. 

The results are summarized in Table 1. 
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Table 1.  Hyperchaos and Extended Chaos for Excited System by Single State of 

Autonomous Chaotic System. 

 

Excited signal Range of   

for hyperchaos 

k Range of  for  

extended chaos 

k

( ) 0.2 ( )f t x= t  5.84 ~ 6.17 

6.47 ~ 8.49 

2 ~9.02 

( ) 0.2 ( )f t x= − t   2 ~ 11.39 

( ) 0.2 ( )f t y= t  4.23 ~ 4.84 2 ~ 8.5 

( ) 0.2 ( )f t y= − t  6 ~ 12.6 2 ~ 13.03 

( ) 0.4 ( )f t y= − t  10.15 ~13.3 2 ~ 13.5 

( ) 0.1 ( )f t z= t  3.88 ~ 4.74 2 ~ 7.12 

( ) 0.2 ( )g t x t=   2 ~ 15 

( ) 0.1 ( )g t x t= −  3.8 ~ 4.84 2 ~ 6.62 

( ) 0.2 ( )g t x t= −  4.2 ~ 4.84 2 ~ 6.79 

( ) 0.1 ( )g t y t=  4.04 ~ 4.84 

5.68 ~ 8.14 

2 ~ 9.82 

( ) 0.2 ( )g t y t=  4.22 ~ 4.84 

5.95 ~ 8.63 

2 ~ 9.04 

( ) 0.4 ( )g t y t=  4.7 ~ 4.84 

6.4 ~ 7.5 

2~9.36 

( ) 0.05 ( )g t z t= −  3.97 ~ 4.29 

4.62 ~ 4.82 

2 ~ 11.9 

( ) 0.1 ( )g t z t= −  3.92 ~ 4.84 2 ~ 11.94 

( ) 0.2 ( )h t x t=  5.45 ~ 6.4 2 ~11.94 

( ) 0.2 ( )h t z t=  5.83 ~ 7.6 2~ 10.08 
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4.2 Chaos Excited by Single Nonautonomous Chaos 
 

The nonautonomous system is chaos supply system: 

2
0 0 0 0

0

,
( ) sin( ) cos( ) sin( ) ,
cos( ) sin( ),

x y
y r z x x x Cy
z k x F v t

ω ϕ ϕ ϕ
ϕ ω

=⎧
⎪ = + + + − + −⎨
⎪ = + − −⎩

&

&

&

                   (4.2.1) 

and the chaos excited system is: 

2
0 0 0 0

0

( ),
( ) sin( ) cos( ) sin( ) ( ) ,
cos( ) ( ),

x y v f t
y r z x x x Cy v g t
z k x F v h t

ω ϕ ϕ ϕ
ϕ

′ ′= − ⋅⎧
⎪ ′ ′ ′ ′ ′ ′= + + + − + − − ⋅⎨
⎪ ′ ′= + − − ⋅⎩

&

&

&

         (4.2.2) 

where , 0.7C = 0.25r = , , 1.942F = 3.0ω = , 0.5ν = , 0cos F
k

ϕ =  and 2
0

k
rF

ω = . 

The parameter ranges of chaos are extended in following three cases, 

 

(1) , ( ) 0f t ≠ ( ) 0g t = , . ( ) 0h t =

The Lyapunov exponents for system (4.2.2) for which ( ) 0.2 ( )f t x t= −  is shown in Fig. 

4.2.1. The chaos is extended from 6.31(referring to Fig. 2.2.1) to 6.45. When 

( )f t = 0.4  and -0.4 , the Lyapunov exponents are shown in Fig. 4.2.2(a)(b). The 

chaos is extended to 10.68 and 10.86 respectively. When 

( )y t ( )y t

k = ( ) 0.1 ( )f t z t= , the Lyapunov 

exponents are shown in Fig. 4.2.3. The chaos is extended to 6.77k = . 

 

(2) , ( ) 0f t = ( ) 0g t ≠ , . ( ) 0h t =

The Lyapunov exponents for system (4.2.2) for which ( ) 0.6 ( )g t y t=  is shown in Fig. 

4.2.4. The chaos is extended to 7.69. When ( ) 0.6 ( )g t y t= − , the Lyapunov exponents are 

shown in Fig. 4.2.5. The chaos is extended to 7.92k = . 

 

(3) , ( ) 0f t = ( ) 0g t = , . ( ) 0h t ≠

The Lyapunov exponents for system (4.2.2) for which ( ) 0.2 ( )h t x t= −  is shown in Fig. 

4.2.6. Hyperchaos alternatively presents when 2.19< <4.33. When 

, no interesting result is obtained. When , the 

Lyapunov exponents are shown in Fig. 4.2.7. The chaos is extended to . 

k

( ) 0.8 ( ) ~ 0.8 ( )h t y t y t= − ( ) 0.2 ( )h t z t=

6.63k =
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From the above results, it is noted that when the excited system is excited by a single 

state of nonautonomous chaotic system, hyperchaos occurs in a few cases, while extended 

chaos occurs in most cases. The results are summarized in Table 2. 

 

Tabel 2.  Hyperchaos and Extended Chaos for Excited System by Single State of 

Nonautonomous Chaotic System. 

 

Excited signal Range of  

for hyperchaos

k Range of  for  

extended chaos 

k

( ) 0.2 ( )f t x= − t   2 ~ 6.45 

( ) 0.4 ( )f t y= t   2 ~ 10.68 

( ) 0.4 ( )f t y= − t   2 ~10.86 

( ) 0.1 ( )f t z= t   2 ~ 6.77 

( ) 0.6 ( )g t y t=   2 ~ 7.69 

( ) 0.6 ( )g t y t= −   2 ~ 7.92 

( ) 0.2 ( )h t x t= −  2.19 ~ 4.33 2 ~ 5.68 

( ) 0.2 ( )h t z t=   2 ~ 6.63 
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Chapter 5 

Chaos, Its Control and Synchronization of Fractional Order 

Chaotic System 

 
In this Chapter, the chaotic behaviors of the fractional order autonomous and 

nonautonomous nonlinear systems from that of rotational machine with centrifugal 

governor are studied. By utilizing approximation approach of fractional operator, it is found 

that chaos exists in the fractional order system with order less than 3. Phase portraits and 

bifurcation diagrams assure existence of chaotic phenomena. Observation of the bifurcation 

diagrams indicates behavior similar to that from the state space study in Chapter 2. By 

utilizing the similar scheme as that for their integral order correspondence, chaos control 

and chaos synchronizations are accomplished [35][49]. 

 

5.1 Review of Fractional Operator 
 

The commonly used definition for general fractional derivative is the Riemann-Liouville 

definition [50]. The Riemann-Liouville definition is given here: 

10

( ) 1 ( )
( ) ( )

q n t

q n

d f t d f d
dt n q dt t

τ
q n τ

τ − +=
Γ − −∫                                   (5.1.1) 

where  is the gamma function and n is an integer such that . This 

definition is different from the usual intuitive definition of derivative. Thus, it is necessary 

to develop approximations to the fractional operators using the standard integral order 

operators. Fortunately, the Laplace transform which is basic engineering tool for analyzing 

linear systems is still applicable and works: 

( )Γ ⋅ 1n q− ≤ < n

{ }
11

1
0 0

( ) ( )( )
q qn

q k
q q

k

k t

d f t d f tL s L f t s
dt dt

− −−

− −
=

k
=

⎧ ⎫ ⎡ ⎤
= −⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
∑ q

n

, for all , 

where n is an integer such that 1n q− ≤ < . Upon considering the initial conditions to be 

zero, this formula reduces to the more expected form 

{( ) ( )
q

q
q

d f tL s L
dt

⎧ ⎫
=⎨ ⎬

⎩ ⎭
}f t .                                            (5.1.2) 

Linear transfer function approximations of the fractional integrator[51] is adopted. Basically 
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the idea is to approximate the system behavior based on frequency domain arguments. [52] 

gives approximations for 1 qs  with 0.1 0.9q = −  in steps of 0.1. These approximations 

are used in the study that follows. 

 

5.2 The Fractional Order Autonomous Chaotic System 
 

The autonomous system is studied in this section. The standard derivative is replaced by 

a fractional derivative as follows: 

2
0 0 0 0

0

( ) sin( ) cos( ) sin( ) ,

cos( ) ,

q

q

q

q

q

q

d x y
dt
d y r z x x x Cy
dt
d z k x F
dt

ω ϕ ϕ ϕ

ϕ

⎧
=⎪

⎪
⎪

= + − − − − −⎨
⎪
⎪

= − −⎪
⎩

                 (5.2.1) 

where  is the fractional order, q 0.7C = , 0.25r = , 3.5k = , , 1.942F = 0cos F
k

ϕ =  

and 2
0

k
rF

ω = . Simulations are performed for 0.8,0.9,1.1,1.2q = . The simulation results 

demonstrate that chaos indeed exist in the fractional order autonomous system with order 
less than 3. When = 0.9 and 1.1, chaotic attractors are found and the phase portraits are 
shown in Fig. 5.2.1 and Fig. 5.2.2, respectively. Bifurcation diagrams which assure 
existence of chaotic are shown in Fig. 5.2.3 and Fig. 5.2.4. When = 0.8 and 1.2, no 
chaotic behavior is found, which indicates that the lowest limit of the fractional order for 
this system to be chaotic may be in the range 0.8< <0.9. Thus, the lowest order we found 
for this system to yield chaos is 2.7. 

q

q

q

 

5.2.1 Chaos Control  
Here the issue of controlling the fractional order autonomous chaotic system to its 

equilibrium is discussed. Simplifying the fractional order autonomous chaotic system (5.2.1) 

in a compact vector form, we have 

( )
q

q

d X f X
dt

=                                                      (5.2.2) 

with T[ , , ]X x y z= . With linear state feedback controller, Eq. (5.2.2) can be written as 

( )
q

q

d X f X u
dt

= +                                                   (5.2.3) 

 19



where  is a linear state feedback controller and has the following form: u

( )u K X X= −  

where =diag , K 1 2 3( , , )k k k X  is the control target and  are constant parameters. 

Clearly,  is always an equilibrium point of system (5.2.1). In the following 

simulation, we stabilize system (5.2.1) to this equilibrium point. Standard stability analysis 

easily shows that with 

1 2 3, ,k k k

(0,0,0)

1 2 3( , , ) ( 1,0, 1)k k k = − − , the equilibrium  of the controlled 

integral order chaotic system is locally stable and is shown in Fig. 5.2.5. Simulation results 

show that this controller can also stabilize the fractional order chaotic system to this 

equilibrium. The trajectories of the controlled fractional order chaotic system with 

(0,0,0)

0.9q =  

and  are shown in Fig. 5.2.6 and Fig. 5.2.7, respectively. The control signal is added 

at  respectively. The designed chaos controller can effectively and fast 

control the fractional order chaotic systems to its equilibrium point 

1.1q =

500 200t s and= s

(0,0,0)X = . 

 

5.2.2 Chaos Synchronization of the Same Fractional Order systems  
Here the issue of chaos synchronization of system (5.2.1) is discussed. 

Consider the drive-response synchronization scheme of autonomous chaotic systems 

( )
q

q

d X f X
dt

=                                                      (5.2.4) 

( )
q

q

d X f X
dt

′
′= u+                                                  (5.2.5) 

where  is the fractional order.  is a linear state feedback controller and has the 

following form: 

q u

( )u K X X′= −  

where diag ,  are constant parameters. Define the error state as 

, synchronization can be achieved when 

K = 1 2 3( , , )k k k 1 2 3, ,k k k

e X X′= − ( ) 0e t →  as t . →∞

Next, we numerically study the synchronization in two cases. 

 

Case 1. ,  diag ( 1 . 0.9q = K = ,0, 1)− −

Controller is added at , and response system is synchronized at  as 

shown in Fig. 5.2.8. 

300t = s 341t s=
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Case 2. ,  diag ( 1 . 1.1q = K = ,0, 1)− −

Controller is added at , and response system is synchronized at  as 

shown in Fig. 5.2.9. 

300t = s 315t s=

 

5.2.3 Chaos Synchronization of Different Fractional Order systems 
Here the issue of chaos synchronization of different order systems is discussed. 

Consider the drive-response synchronization scheme of autonomous chaotic systems 

( )
q

q

d X f X
dt

=                                                      (5.2.6) 

( )
p

p

d X f X
dt

′
′= u+                                                  (5.2.7) 

where  and q p  are different. u  is a linear state feedback controller. As the method 

utilized in last section, synchronization can be practically achieved. 

Next, we numerically study the synchronization in two cases. 

 

Case 1. , ,  diag0.9q = 1.1p = K = ( 1000, 1000, 1000)− − − . 

Controller is added at , and response system is practically synchronized as 

shown in Fig. 5.2.10. 

200t = s

 

Case 2. , 1.1q = 0.9p = ,  diagK = ( 1000, 1000, 1000)− − − . 

Controller is added at , and response system is practically synchronized as 

shown in Fig. 5.2.11. 

200t = s

 

5.3 The Fractional Order Nonautonomous Chaotic System 
 

The nonautonomous system is studied in this section. The standard derivative is 

replaced by a fractional derivative as follows: 

2
0 0 0 0

0

,

( ) sin( ) cos( ) sin( ) ,

cos( ) sin ,

q

q

q

q

q

q

d x y
dt
d y r z x x x Cy
dt
d z k x F t
dt

ω ϕ ϕ ϕ

ϕ ν ω

⎧
=⎪

⎪
⎪

= + − − − − −⎨
⎪
⎪

= − − −⎪
⎩

                 (5.3.1) 
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where  is the fractional order, q 0.7C = , 0.25r = , 2.8k = , , 1.942F = 0.5ν = , 

3ω = , 0cos F
k

ϕ =  and 2
0

k
rF

ω = . Simulations are performed for . The 

simulation results demonstrate that chaos indeed exist in the fractional order 

nonautonomous system with order less than 3. When 

0.8,0.9,1.1,1.2q =

0.9 1.1q and= , chaotic attractors are 

found and the phase portraits are shown in Fig. 5.3.1 and Fig. 5.3.2, respectively. 

Bifurcation diagrams which assure existence of chaotic are shown in Fig. 5.3.3 and Fig. 

5.3.4. When , no chaotic behavior is found, which indicates that the lowest 

limit of the fractional order for this system to be chaotic is 

0.8 1.2q and=

0.8 0.9q = − . Thus, the lowest 

order we found for this system to yield chaos is 2.7. 

 

5.3.1 Chaos Control  
Here the issue of controlling the fractional order nonautonomous chaotic system to 

periodic motion is discussed. Simplifying the fractional order nonautonomous chaotic 

system (5.3.1) in a compact vector form, we have 

( ) ( )
q

q

d X f X g t
dt

= +                                                 (5.3.2) 

with T[ , , ]X x y z= . With linear state feedback controller, Eq. (5.3.2) can be written as 

( ) ( )
q

q

d X f X g t
dt

= + + u                                              (5.3.3) 

where  is a linear state feedback controller and has the following form: u

u KX=  

where diag ,  are constant parameters. In the following simulation, 

we control system (5.3.1) to period motion. With 

K = 1 2 3( , , )k k k 1 2 3, ,k k k

1 2 3( , , ) ( 1,0, 1)k k k = − − , the integral order 

chaotic system can be controlled to periodic motion and is shown in Fig. 5.3.5. Simulation 

results show that this controller can also control the fractional order chaotic system to 

periodic motion. The trajectories of the controlled fractional order chaotic system with 

 and  are shown in Fig. 5.3.6 and Fig. 5.3.7, respectively. The control signal 

is added at . The designed chaos controller can effectively and fast control the 

fractional order chaotic system to periodic motion. 

0.9q = 1.1q =

40t = s
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5.3.2 Chaos Synchronization of the Same Dractional Order Systems 
Here the issue of chaos synchronization of system (5.3.1) is discussed. Synchronization 

is achieved by linear feedback method. 

Consider the drive-response synchronization scheme of two nonautonomous chaotic 

systems 

( ) ( )
q

q

d X f X g t
dt

= +                                                 (5.3.4) 

( ) ( )
q

q

d X f X g t
dt

′
′= + u+                                             (5.3.5) 

where  is the fractional order.  is a linear state feedback controller and has the 

following form: 

q u

( )u K X X′= −  

where diag ,  are constant parameters. Define the error state as 

, synchronization can be achieved when 

K = 1 2 3( , , )k k k 1 2 3, ,k k k

e X X′= − ( ) 0e t →  as t . →∞

Next, we numerically study the synchronization in two cases. 

 

Case 1. ,  diag ( 1 . 0.9q = K = ,0, 1)− −

Controller is added at .and response system is synchronized at  as 

shown in Fig. 5.3.8. 

300t = s

s

310t s=

 

Case 2. ,  diag ( 1 . 1.1q = K = ,0, 1)− −

Controller is added at .and response system is synchronized at  as 

shown in Fig. 5.3.9. 

300t = 320t s=

 

5.3.3 Chaos Synchronization of Different Fractional Order Systems 
Here the issue of chaos synchronization of different order systems is discussed. 

Consider the drive-response synchronization scheme of autonomous chaotic systems 

( ) ( )
q

q

d X f X g t
dt

= +                                                 (5.3.6) 

( ) ( )
p

p

d X f X g t
dt

′
′= + u+                                             (5.3.7) 

where  and q p  are different. u  is a linear state feedback controller. As the method 
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utilized in last section, synchronization can be practically achieved. 

Next, we numerically study the synchronization in two cases. 

 

Case 1. , ,  diag0.9q = 1.1p = K = ( 1000, 1000, 1000)− − − . 

Controller is added at , and response system is synchronized as shown in Fig. 

5.3.10. 

300t = s

 

Case 2. , 1.1q = 0.9p = ,  diagK = ( 1000, 1000, 1000)− − − . 

Controller is added at , and response system is synchronized as shown in Fig. 

5.3.11. 

300t = s
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Chapter 6 

Conclusions 

 
A lot of researches have shown that chaotic phenomena are observed in many physical 

systems that possess nonlinearity. For the nonlinear system, the study of the types of system 

behavior, the effects to the behavior caused by different signal, the behavior analysis of the 

system, consist of the major tasks.  

In this thesis, integral and fractional order rotational machine system with centrifugal 

governor are investigated. By applying various numerical results, such as time history 

analysis, phase portraits, bifurcation diagrams, the behavior of the chaotic motion are 

presented. In Chapter 2, the governing equations of motion are formulated, Lyapunov 

exponents are used to detect the chaos existing in the system. 

In Chapter 3, linear feedback control method and adaptive control method for chaos 

synchronization are proposed by using Lyapunov first approximation theorem and 

asymptotical stability theorem. Numerical simulation is provided to show the effectiveness 

of our method. By using Lyapunov first approximation theorem, we can achieve the 

synchronization of more complex system such as rotational machine system in this thesis. 

In Chapter 4, we devotes to a new concept of hyperchaos and extended chaos driven by 

states of chaotic system instead of driven by sinusoidal functions of time. Many interesting 

results are obtained. If chaos is driven by the state of autonomous system, hyperchaos are 

presented frequently. And the ranges of chaos are extended. If chaos is driven by the state of 

nonautonomous system, its performance is less fruitful as that driven by the state of 

autonomous system. 

Fractional calculus is a 300-yerar-old mathematical topic. Although it has a long history, 

the applications of fractional calculus to physics and engineering are just a recent focus of 

interest. In Chapter 5, we study the chaotic behaviors in the fractional order autonomous 

and nonautonomous nonlinear systems of rotational machine system with centrifugal 

governor. It is shown that systems with total order less than three exhibit chaos as well as its 

integeral order system. Phase portraits and bifurcation diagrams assure existence of chaotic 

phenomena. By utilizing the similar scheme as that for their integral order correspondence, 

chaos control and chaos synchronization are accomplished, in which chaos synchronizations 

of different fractional order systems need large coupling strength to be synchronized.
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Fig. 2.1.1  Physical model of a rotational machine with a fly-ball governor system. 
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Fig. 2.1.2  Three Lyapunov exponents for  between 1.942 and 20. k
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Fig. 2.1.3  (a) Phase portrait  (b) Poincaré map for . 2.603k =
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Fig. 2.2.1  Three Lyapunov exponents for  between 1.942 and 20. k
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Fig. 2.2.2  (a) Phase portrait  (b) Poincaré map for . 17.8k =
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Fig. 2.2.3  Projection of Poincaré map of: (a) quasi-periodic  

(b) chaotic motion on x y−  plane. 
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Fig. 3.1  Time history of errors for 0.059xg = , 1.23zg = . 
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Fig. 3.2  Time history of errors for 0.059xg = , 1θ = . 
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Fig. 4.1.1  Three Lyapunov exponents for k between 2 and 10, ( ) 0.2f t x= . 
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Fig. 4.1.2  Three Lyapunov exponents for k between 2 and 15, ( ) 0.2f t x= − . 
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Fig. 4.1.3  Three Lyapunov exponents for k between 2 and 10, ( ) 0.2f t y= . 
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Fig. 4.1.4  Three Lyapunov exponents for k between 2 and 15, ( ) 0.2f t y= − . 
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Fig. 4.1.5  Three Lyapunov exponents for k between 2 and 15, ( ) 0.4f t y= − . 
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Fig. 4.1.6  (a) Three Lyapunov exponents for k between 2 and 10, ( ) 0.1f t z= . 
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Fig. 4.1.6.  (b) Locally enlarged figure for (a). 
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Fig. 4.1.7  Three Lyapunov exponents for k between 2 and 15, . ( ) 0.2g t x=
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Fig. 4.1.8  Three Lyapunov exponents for k between 2 and 10, . ( ) 0.1g t x= −
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Fig. 4.1.9  Three Lyapunov exponents for k between 2 and 8, . ( ) 0.2g t x= −
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Fig. 4.1.10  Three Lyapunov exponents for k between 2 and 10, . ( ) 0.1g t y=
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Fig. 4.1.11  Three Lyapunov exponents for k between 2 and 10, . ( ) 0.2g t y=
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Fig. 4.1.12.  Three Lyapunov exponents for k between 2 and 10, . ( ) 0.4g t y=

 39



2 3 4 5 6 7 8 9 10 11 12
-1.5

-1

-0.5

0

0.5

1

k

Ly
ap

un
ov

 e
xp

on
en

ts

 

Fig. 4.1.13  Three Lyapunov exponents for k between 2 and 12, . ( ) 0.05g t z= −
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Fig. 4.1.14  Three Lyapunov exponents for k between 2 and 12, . ( ) 0.1g t z= −
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Fig. 4.1.15  Three Lyapunov exponents for k between 2 and 12, . ( ) 0.2h t x=
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Fig. 4.1.16  Three Lyapunov exponents for k between 2 and 10, . ( ) 0.8 ( ) ~ 1 ( )h t y t y t= −
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Fig. 4.1.17  Three Lyapunov exponents for k between 2 and 12, . ( ) 0.2h t z=
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Fig. 4.2.1  Three Lyapunov exponents for k between 2 and 10, ( ) 0.2f t x= − . 
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Fig. 4.2.2  (a) Three Lyapunov exponents for k between 2 and 15, ( ) 0.4f t y= . 
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Fig. 4.2.2  (b) Three Lyapunov exponents for k between 2 and 15, ( ) 0.4f t y= − . 
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Fig. 4.2.3  Three Lyapunov exponents for k between 2 and 8, ( ) 0.1f t z= . 
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Fig. 4.2.4  Three Lyapunov exponents for k between 2 and 10 . ( ) 0.6g t y=
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Fig. 4.2.5  Three Lyapunov exponents for k between 2 and 10 . ( ) 0.6g t y= −
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Fig. 4.2.6  (a) Three Lyapunov exponents for k between 2 and 6.5 . ( ) 0.2h t x= −
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Fig. 4.2.6  (b) Locally enlarged figure for (a). 
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Fig. 4.2.7  (a) Three Lyapunov exponents for k between 2 and 8 . ( ) 0.2h t z=
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Fig. 5.2.1  Phase portrait of the fractional order autonomous system  

with order = 0.9. q
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Fig. 5.2.2  Phase portrait of the fractional order autonomous system  

with order = 1.1. q
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Fig. 5.2.3  Bifurcation diagram of the fractional order autonomous system  

with order = 0.9.q
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Fig. 5.2.4  Bifurcation diagram of the fractional order autonomous system  

with order = 1.1.q
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Fig. 5.2.5  Time history of the state variables of the controlled integral  

order autonomous system with order = 1. q
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Fig. 5.2.6  Time history of the state variables of the controlled fractional order autonomous 

system with order = 0.9. q
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Fig. 5.2.7  Time history of the state variables of the controlled fractional order  

autonomous system with order = 1.1. q
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Fig. 5.2.8  Time history of errors of the fractional order autonomous system  

with order = 0.9. q
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Fig. 5.2.9  Time history of errors of the fractional order autonomous system  

with order = 1.1. q
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Fig. 5.2.10  Time history of errors of different fractional order autonomous systems  

with order = 0.9 and q p = 1.1. 
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Fig. 5.2.11  Time history of errors of different fractional order autonomous systems  

with order = 1.1 and q p = 0.9. 
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Fig. 5.3.1  Phase portrait of the fractional order nonautonomous system  

with order = 0.9. q
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Fig. 5.3.2  Phase portrait of the fractional order nonautonomous system  

with order = 1.1. q

 63



 

 

 

 

 

 

 

 
 

 

Fig. 5.3.3  Bifurcation diagram of the fractional order nonautonomous system  

with order = 0.9. q
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Fig. 5.3.4  Bifurcation diagram of the fractional order nonautonomous system  

with order = 1.1. q
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Fig. 5.3.5  Time history of the state variables of the controlled integral order  

nonautonomous system with order = 1.q
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Fig. 5.3.6  Time history of the state variables of the controlled fractional order  

nonautonomous system with order = 0.9.q
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Fig. 5.3.7  Time history of the state variables of the controlled fractional order 

nonautonomous system with order = 1.1.q
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Fig. 5.3.8  Time history of errors of the fractional order nonautonomous system  

with order = 0.9. q

 69



 

 

 

 

 

 

 

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

t

ex

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

t

ey

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

t

ez

 
 

 

 

Fig. 5.3.9  Time history of errors of the fractional order nonautonomous system  

with order = 1.1. q

 70



 

 

 

 

 

 

 

0 50 100 150 200 250 300
-4

-2

0

2

4

t

ex

0 50 100 150 200 250 300
-2

-1

0

1

2

t

ey

0 50 100 150 200 250 300
-10

-5

0

5

t

ez

 
 

 

 

Fig. 5.3.10  Time history of errors of different fractional order nonautonomous systems  

with order = 0.9 and q p = 1.1. 
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Fig. 5.3.11  Time history of errors of different fractional order nonautonomous systems  

with order = 1.1 and q p = 0.9. 
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