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Pooling Designs, Distance-regular Graphs,

Spectral Graph Theory and Their Links

Student : Yu-Pei Huang Advisor : Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

This dissertation contains three quite different-subjects: posets, distance-regular graphs,
and spectral graph theory.“Motivated by the constructions of pooling designs, we study
these three subjects through interesting links among them. A pooling space is a ranked
poset P such that the subposet w™ induced by the elements above w is atomic for each
element w of P. Pooling spaces were introduced in [Discrete Mathematics 282:163-169,
2004] for the purpose of giving a uniform way to construct pooling designs, which have
applications to the screening of DNA sequences. “We find that a geometric lattice, a
well-studied structure in literature,-is.also-a pooling space. This provides us many
classes of pooling designs, some old and some new. Following the same concept, the
poset constructed from a distance-regular graph with its distance-regular subgraphs is
also a pooling space. For a special class of distance-regular graphs, we show the exis-
tence of their distance-regular subgraphs with any given diameter. The nonexistence
of a class of distance-regular graphs follows from the line of study. Distance-regular
graphs appear often in some extremal class of combinatorial or linear algebraic in-
equalities. As we can see from the inequality of arithmetic and geometric means of
a sequence of positive real numbers, the equality occurs when the sequence has some
regular patterns. We consider the maximum eigenvalues of the adjacency matrices of
graphs and present sharp upper bounds of them. The graphs which attain the bounds

also satisfy a special kind of regularity.

Keywords: pooling spaces, pooling designs, ranked posets, atomic, geometric lattices,

distance-regular graphs.
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Chapter 1

Introduction

Group testing is a topic about strategies of experiment arrangements. The main
idea behind it is that when we want to find some relatively few abnormal items out
of a large set of items, testing items gathering together should be efficient with some
smart arrangements. In 1964, W. H. Kautz and R. C. Singleton [23] introduced the
now so-called disjunct matrices that are useful for us to deal with the group testing
problems. With the error-tolerance ability being considered, the concepts of b?-disjunct
matrices, a generalization of the-original disjunct. matrices, was introduced by A. G.
D’yachkov, V. V. Rykov, and A. M. Rachad in 1983 [11]. A binary matrix M is b%-
disjunct if for any b + 1 columns x, Z1, s, . . . ,xp of M with z different to the others,
there exist d + 1 rows such that z has values-1,-and z{,@, ..., 7, all have values 0 at
these d + 1 rows. In particular, a 0°-disjunct mastix is also called a b-disjunct matrix
for short. A be-disjunct matrix‘can-be used to construct an error-tolerable design for
non-adaptive group testing, which has applications to the screening of DNA sequences,
and the corresponding decoding algorithm is efficient. See [9, 18] for details. Hence a

bl-disjunct matrix is also called a pooling design.

The constructions of b-disjunct matrices were given by many authors, e.g. [29,
30, 32, 10]. These constructions use some properties of a ranked poset. In [19], the
name pooling spaces was given to describe these ranked posets (formal definition in
Section 3.1). Fix a pooling space P and positive integers r < k. Let M denote the
incidence matrix between the rank r elements and the rank k elements in P. It was
shown in [19] that M is b?-disjunct for b = r and d = 0. A binary matrix is fully b%-
disjunct if it is b%-disjunct but neither b¢*1- nor (b+1)?-disjunct. Some fully b¢-disjunct

matrices are given in [10].



So far we know that the incidence relation between two levels in a pooling space
can help us to construct pooling designs. Roughly speaking, the supporting structure
behind the pooling space must be “good” enough. In particular, the poset of distance-
regular subgraphs in a given distance-regular graph (formal definition in Section 2.2),

ordered by the containment relation between subgraphs, forms a pooling space [40].

Figure 1. A distance-regular graph with many distance-regular
subgraphs.

bR AN14

In Figure 1, the distance-regular subgraphs of this “cube” are the “points”; “edges”,
“faces”, and the “cube” itself. In general, the determination of distance-regular sub-
graphs may not be so obvious: With some restrictions on the intersection numbers of
a distance-regular graph, we introduce a systematical way in Chapter 4 that helps us
to construct distance-regular subgraphs-of it. The results involved also help us to show

the nonexistence of a class of distance-regular graphs.

Distance-regular graphs appear often insome extremal class of combinatorial or
linear algebraic inequalities. For example it is well-known that the number of edges of

a graph of girth 5 and order 7 is at most ”—V;*l

,and its maximum number of edges is
attained when the graph is distance-regular [27, Theorem 4.2]. Sometimes other graphs
with certain regularity appear as extremal class. For example, the average degree of a
graph is at most the maximum eigenvalue of its adjacency matrix, and a regular graph
attains the maximum [5, Lemma 3.2.1]. As we can see from the inequality of arithmetic
and geometric means of a sequence of positive real numbers, extremal conditions for
inequalities occur when the sequence has some regular pattern. In the last chapter of
this dissertation, we consider the maximum eigenvalues of the adjacency matrices of

graphs, and present sharp upper bounds of them. The graphs attain the bound also

satisfy a special kind of regularity.



Chapter 2

Preliminaries

In this chapter we review some definitions and basic concepts concerning graphs,

distance-regular graphs, posets, nonnegative matrices, and binomial coefficients.

2.1 Graphs

A graph T is an ordered pair (X, R) consisting of-a finite vertex set X and an edge
set R where each element in R is a 2-element subset of X. Two vertices x,y € X
are adjacent if {z,y} €'R and we use &~y to-denote that =,y are adjacent. A path
between vertices x and y<in I' is a sequence xg, 215+ ,x, of distinct vertices where
xo = = and zy = y, such that ‘x; ~a; 1 fori=0,1,--- /£ — 1. The length of a path is
the number of edges on it. The distance between z,y € X is the length of the shortest
path between = and y and is denoted by J(z,y). The diameter D of T' is defined as
D:=max{d(z,y) | z,y € X}. For a vertex + € X and an integer 0 < i < D, set
I'i(z) :={z € X | O(x,z) = i}. The valency of a vertex x € X is the cardinality
of I'1(x) and is denoted by d,. For the adjacency matriz A = (a,,) of I', we mean a
binary square matrix of order |X| with rows and columns indexed by the vertices in

X, such that for any pair z,y € X, a,, = 1iff z ~ y.

A cycle of length ¢, denoted by Cl, is a graph with ¢ vertices and ¢ edges whose
vertices can be placed around a circle so that two vertices are adjacent if and only if
they appear consequently along the cycle. The girth of a graph with a cycle is the
length of its shortest cycle.



2.2 Distance-regular Graphs

A graph I' = (X, R) is called reqular (with valency k) if each vertex in X has valency
k. A graph I' is said to be distance-reqular whenever for all integers 0 < h,i,7 < D,

and all vertices z,y € X with d(x,y) = h, the number
piy = [Li(z) NT5(y)|
is independent of x,y. The constants plhj are known as the intersection numbers of T'.

Suppose that I' = (X, R) is a distance-regular graph with diameter D > 3. For two
vertices x,y € X, with d(z,y) = i, set

B(x,y) = Ti(z) NTia(y),
C(z,y) = Ii(z)NTiZqi(y),
Az, y) =T (x) 2L (y).

Note that

|B(x,y)| " 4 pli i+1s

|C($,y)| - pzl 1—1

|A(:L",y)| == 18 B

are independent of x, y. For ¢onvenienceyset ¢ = p| , , for 1 <i < D, a; := p} , for
0<i<D, b :=p,;, for 0<i<D—1and put bp :=0, ¢p := 0. Note that k := by
is the valency of each vertex in I'. It is immediate from the definition of p?j that b; # 0

for0<i< D—1andc¢ #0for1<i<D. Moreover

k=a;+b;+c¢; for 0<i<D. (2.2.1)

2.3 Posets

Let P denote a finite set. By a partial order on P, we mean a binary relation < on

P such that

(i) <z for z€P,

i) r<yandy<z — <z for x,y,z € P,
(i) y and y y

4



(iii) r<yandy<z — x=y for z,y € P.

By a partially ordered set (or poset, for short), we mean a pair (P, <), where P is a
finite set, and where < is a partial order on P. We may suppress reference to <, and

just write P instead of (P, <) if no confusion occurs. Let P denote a poset with partial

order <, and let x and y denote any two elements in P. As usual, we write x < y
whenever x < y and x # y, and write x £ y whenever x < y is not true. We say that
y covers x whenever x < y, and there is no z € P such that x < z < y. A sequence
Xo, X1, ..., 2 of elements of P is said to be a direct chain of length t whenever x; covers
x;_1 for 1 <7 < t. A poset can be described by a diagram in the plane in which the
elements are corresponding to dots, and y covers x whenever dot y is placed above dot
x with an edge connecting them. See Figure 2 for the diagram of the poset with five
elements {0, z,y, z,w}, and z,y cover 0; z, w cover both x and y. Note that 0,x, z is a

direct chain of length 2.

Figure 2. A-poset.

Let P denote any finite poset, and let S denote any subset of P. Then there is a
unique partial order on S such that for all z,y € S, < yin S ifand only if z < y in P.
This partial order is said to be induced from P. By a subposet of P, we mean a subset
of P, together with the partial order induced from P. An element x € S is said to be
minimal (resp. mazimal) in S whenever there isno y € S such that y < x (resp. = < y).
Let min(.S) (resp. max(S)) denote the set of all minimal (resp. maximal) elements in
P. Whenever min(P) (resp. max(P)) consists of a single element, we denote it by 0

(resp. 1), and we say that P has the least element 0 (resp. the greatest element 1).

Throughout the remaining of the dissertation we assume that P is a poset with the

least element 0. By an atom in P, we mean an element in P that covers 0. We let Ap



denote the set of atoms in P. By the interval [z,y], where z,y € P with x < y, we
mean the subposet

[, y] = {2l € P <z <y}

of P.

By a rank function on P, we mean a function “rank” from P to the set of nonnegative
integers such that rank(0) = 0, and for all z,y € P, y covers x implies rank(y) —
rank(z) = 1. Observe that the rank function is unique if it exists. P is said to be

ranked whenever P has a rank function. In this case, we set
rank(P) := max{rank(z) | x € P},

P, :={z | x € P,rank(x) = i},

and observe that Py = {0}, P, = Ap. Also observe that P is ranked if and only if every
direct chain from 0 to x has the same-length for any © € P. Let P be a ranked poset
of rank n and fix two integers 1 < r < k- <.n. Thedncidence matriz M between P,
and Py is a | P.| x | P;| binary matrix with rows indexed by P, and columns indexed by

P, such that

M, ::{ gl for x € P,y € Py.

Let S be a subset of P. Fix/z & P, Then = is said to be an upper bound (resp.
lower bound) of S, if z > x (resp. z < x) for all x € S. Suppose the subposet of upper
bounds (resp. lower bounds) of S has a unique minimal (resp. maximal) element. In
this case we call this element the least upper bound or join (resp. the greatest lower
bound or meet) of S. If S = {xy,z9,...,2,} we write 1 V x5V ---V 2, for the join
of S and x1 A 2o A --- A x; for the meet of S. P is said to be atomic whenever for
each nonzero element z of P, x is the join of atoms in the interval [0, z]. Suppose P is
atomic and « < y are two elements in P. Observe that the atoms in the interval [0, z]
is a proper subset of the atoms in the interval [0, y]. P is said to be a meet semi-lattice
(resp. join semi-lattice) whenever P is nonempty, and x Ay (resp. z V y) exists for all
x,y € P. A meet semi-lattice (resp. join semi-lattice) has a 0 (resp. 1). A meet and
join semi-lattice is called a lattice. Note that if a nonempty set S in a meet semi-lattice

has an upper bound then the join of S exists.



Suppose P is a lattice. Then P is said to be upper semi-modular (resp. lower

semi-modular ) whenever for all z,y € P,

Yy covers T Ay — TV 1y covers x

resp. xVy covers x — covers * Ay).
Y Y )

P is said to be modular whenever P is both upper semi-modular and lower semi-

modular.

Figure 3 is a diagram of an upper semi-modular lattice with 7 elements. This lattice

is not lower semi-modular since 1 = x V y covers x but y does not cover 0 = = A y.

Figure 3. An upper semi-modular lattice that is not lower semi-modular.

2.4 Nonnegative Matrices

Let A = (a;;) be a square nxn matrix. We say that A is positive (resp. nonnegative)
if a;; > 0 (resp. a;; > 0) for all 7, j. We say that A is reducible if the indices 1,2,--- ,n
can be divided into two disjoint nonempty sets 7,49, ,7, and ji,j2, - ,J, where
p+v =mn such that a;,;, =0 fora =1,2,--- ;pand 8 =1,2,---v. A square matrix
is called #rreducible if it is not reducible. Simply consider the adjacent relation of a

graph and the definition of irreducible matrices, we have the following proposition.

Proposition 2.4.1. The adjacency matriz of a simple graph I is irreducible if and

only if I' is connected. O

The following theorem is a fundamental result of the study on matrix theory. It is

referred to as Perron-Frobenius Theorem [31, Chapter 2].



Theorem 2.4.2. If B is a nonnegative irreducible n x n matriz with largest eigenvalue

p(B) and row-sums ri,rs, ..., Ty, then

< .
p(B) < max y,

with equality if and only if the row-sums of B are all equal. ]

2.5 Binomial Coefficients and Their g-analogue

For all nonnegative integers k and n, we define the binomial coefficients (Z) as

follows.

Definition 2.5.1.

0 if k>n,
n\ '
k) o ﬁ 1 if k=0,
n! _n(n=1)-(n—k+1) .
| A= T i R(h—T) <1 otherwise.

A g-analogue of a known expression is a ' generalization of it involving a new param-

eter ¢ such that as ¢ —1, thelgeneralization.returns to the original expression. The

equality
1 _ n
lim :
g=1l-l=q

=\

suggests the g-analogue of n, known as the g-bracket or g-number of n, to be that

defined in the following definition.

Definition 2.5.2.

=14+q+¢+-+¢""
Having the g-analogue of n, we naturally define the g-factorial as follows.

Definition 2.5.3.

[n]q' = mq [Q]Q T [n - 1]q : [n]q
_l-q 1-¢ 1-¢"' 1-¢"
 1-q 1-—¢ 1-q¢ 1-—g¢

= 1'(1+q>"'(1—|—q—|—--.+qn72).(1+q_'____+qn*1).



From ¢-factorial, we also define the following g-binomial coefficients.

Definition 2.5.4.

(" =D(¢g" " =1)--- (" =1)
(" = D(¢* ' =1)--- (¢ —1).

In particular, [g]q = 1.

The ¢-binomial coefficients are also called Gaussian numbers or Gaussian coeffi-

cients. It is well known that [Z]q is just the number of k-dimensional subspaces of an

n-dimensional vector space over a finite field F, [27, p. 291].



Chapter 3

Construct Pooling Spaces from

Geometric Lattices

The name pooling space was given-in. [19] to describe a special class of ranked
posets which are employed to construet, pooling designs. In this chapter, we clarify
a few things about the definition-of pooling spaces.. Then we find that a geometric
lattice, a well-studied structure in literature; is also a pooling space. This provides us
many classes of pooling designs. In particular we study the pooling designs constructed
from affine geometries and then find some of them meet the optimal bounds related to

a conjecture of Erdos, Frankl, and Firedi.

3.1 Pooling Spaces

Definition 3.1.1. Let P be a ranked poset. For any w € P, define
wh={y>wlyeP}

P is said to be a pooling space whenever w™ is atomic for each w € P.

In particular a pooling space is atomic. It is immediate from the definition that if
P is a pooling space, then so is w* for any w € P.

The following theorem evolves the study of pooling spaces.

Theorem 3.1.2. [19, Corollary 3.2] Let P be a pooling space with rank D. Fiz an

integer ¢ (1 < € < D). Let M = M(D,¥) be the matriz over {0,1} whose rows (resp.

10



columns) are indexed by P, (resp. Pp) such that My, = 1 iff u < v. Then for each

integer b (1 < b < {), M is b®-disjunct, where
d = min| U[y,m] NP —1

with the minimum taken over all pairs (xz,T) such that x € Pp, T C Pp, x ¢ T,
IT| < b, and with the union taken over all y such that y € Py, y < x, y £ z for all

zeT. L]
Lemma 3.1.3. Let P be a pooling space. Then each interval in P is atomic.

Proof. Let [z,y] be an interval in P and z € [z,y| with z # x. Suppose = € P;. Note
that the set of atoms contained in [z, z], no matter considered in z* or in [z, 3], is the
same set [z, z] N Py 1. Since z is the join of [z, 2] N Py in 2™ by assumption, z is also

the join of [z, 2] N Piyy in [z, y]. O

Remark 3.1.4. The definition of pooling space was first given in [19]. However in
the abstract of that paper, it was stated in-an alternative way that a pooling space
is a ranked poset with ‘atomic intervals. The following example shows that this is not

correct.

Example 3.1.5. Let P = {0;z,4,2,w} andthe partial order is defined as in Fig. 2
of Section 2.3. Then each interval in P is atomic. Since neither z nor w is the least

upper bound of x and y, P is not atomic. Observe that P is not a meet semi-lattice.

We now give a revised version.

Proposition 3.1.6. Let P be a ranked meet semi-lattice. Then P is a pooling space if

and only if each interval in P is atomic.

Proof. We have just proved the necessary condition in the previous lemma. To prove
the sufficient condition we fix an element w € P and suppose w € P; for some integer
0 < s < rank(P). We shall prove that w™ is atomic. To do this fix z € w' \ {w} and
we need to prove that z is the join of [w,x] N Py in w™. By the assumption |w, z]

being atomic, z is the join of [w, x| N Py, in [w, z]. In particular, x is an upper bound

11



of [w,x] N Psyq. Since P is a meet semi-lattice, the upper bounds of [w, z] N Py, have
a least element and denote it by y. Hence y < x and clearly w < y, so equivalently
y € [w, z]. This forces < y, since z is the least upper bound and y is also an upper

bound of [w,z] N Ps;1. Then we obtain z = y. O

We give a poling space which is not a meet semi-lattice.

Example 3.1.7. Let P = {0,u,z,y,v,z,w} and let the partial order be defined as
in the Figure 4 below. Observe z = vV Vy and w = 2 Vy V v. The remaining
properties of a pooling space hold trivially. Hence P is a pooling space. P is not a

meet semi-lattice since z A w does not exist.

Figure 4..A pooling space which is not a meet semi-lattice.

3.2 The Contractions of Graphs

Many examples of pooling spaces were given in [19]. They are related to the Ham-
ming matroids, the attenuated spaces, and six classical polar spaces. Among these
examples there is a common property: each interval is modular. In this section we will
construct pooling spaces without modular intervals. The construction in this section
also can be obtained as a consequence of our main theorem in the next section. We do
it earlier and repeatedly here for the purpose to give the readers a concrete impression

of a pooling space, and hope that one can find one’s own class of examples in the sequel.

Throughout the section let I' denote a simple connected graph on n vertices.

12



Definition 3.2.1. Let P = P(I") denote the set of partitions S of the vertex set V/(I")

such that the subgraph induced by each block of S is connected. For S, Q) € P, define
S <@ <= S is a refinement of Q).

The poset (P(I"), <) is called the poset of contractions of I'.

Example 3.2.2. Let I' denote a graph with the vertex set {z,y,z,w} and edge set
{Ty,yz,zw,wz}, i.e. T is the 4-cycle Cy. Then the poset P(I') is as in Figure 5. We
delete the single element blocks in the notation of a partition, e.g. the notation 0 is
used to denote the partition with four blocks {z}, {y}, {z}, {w} respectively, and 7y
is used to denote the partition with three blocks {z,y}, {2}, {w} respectively. The
poset is a lattice, but not a modular lattice. This is because the join of Ty Zw and
Yz wr is Tyzw, which covers Ty zw, but. yz wx does not cover their meet 0. Observe

the subposet induced on Tyt is P(C3), the poset of ¢ontractions of a triangle.

Figure 5. The poset P(Cy) of contractions of Cj.

Lemma 3.2.3. P(I') is a ranked poset of rank n — 1. The rank i elements are those

elements in P(T') with n — i blocks for 0 <i <mn — 1.

Proof. For N € P(I") with n—i blocks define the rank of N to be i, where 0 < i < n—1.

We claim that this is a rank function. Suppose that @) covers S and rank(S) = ¢. Since

13



S is a proper refinement of @, rank(Q) > i + 1 and there are two blocks in S that are
contained in the same block of Q). Let T be an element in P(I") that glues these two
blocks of S. Then S < T < @ and rank(7") = rank(S) + 1. This shows 7' = @ and
rank(Q) =i+ 1. O

Proposition 3.2.4. P(T") is a pooling space of rank n — 1.

Proof. P(I') is ranked by previous lemma. From previous lemma and the definition,
each atom in P(I") contains n — 1 blocks, one block containing two adjacent vertices
and each of the remaining n — 2 blocks containing a single vertex. By identifying the
atoms with the edges of I" we find that each element S € P(I) is the join of those edges
contained in the induced subgraph of I' corresponding to each block of S. This shows
that P(I") is atomic. More generally, for @ € P(T"), the subposet Q7 is also atomic.
This is because the subposet Q% is isomorphic.torthe poset P(Qr) of contractions of
Qr, where Qr is the graph with the vertex set @, and for two distinct blocks x,y € @

x is adjacent to y whenever some vertex in« is adjacent to some vertex in . ]

Remark 3.2.5. Let I"' = K, denote the complete graph on n vertices. Then the
elements in P = P(K,,) are all the partitions of the vertex set of K,,. S(n, k) := |P,_g]|
is called the Stirling number of.the second kind where k > 1. It is well known that

S(n, k) can be solved by the recurrence relation
S(n,k)=Sn—-1,k—1)+kS(n—1,k) for1<k<n-1

with initial condition S(n,0) := 0 for n > 1, S(0,0) := 1, and S(n,n) =1 for n > 1.

See [4, Section 8.2] for details.

By applying Proposition 3.2.4 and Remark 3.2.5 with the result in [19, Corollary 3.2]

we immediately have the following corollary.

Corollary 3.2.6. Let I' denote a simple connected graph on n vertices and P = P(T").
Let C(I', k,r) denote the incidence matriz between P, and P, where 1 <r <k <n—1.
Then C(T, k,r) is r-disjunct. In particular if T = K, then the matriz C(T,k,r) has

size S(n,n—r) x S(n,n — k). O
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3.3 Geometric Lattices

The concept of geometric lattices can be described in very different ways. See [27,
Chapter 23] for details. For the purpose to derive our main result easily, we adopt the
definition that a geometric lattice is an upper semi-modular atomic lattice [27, Page
271]. We will show that a geometric lattice is a pooling space in this section. The

following lemma is immediate from the definition.

Lemma 3.3.1. Let P be an upper semi-modular lattice. Then the poset induced on

every interval of P is an upper semi-modular lattice. ]

Lemma 3.3.2. Let P be a geometric lattice. Then the poset induced on every interval

of P is a geometric lattice.

Proof. Let [x,y] denote an intervalin P where x € P,. By previous lemma, it remains
to show [z,y] is atomic. Fix z“€ [z,y] with 2+ . Suppose that w is the join of
Py N [z, 2], the atomss«n [z, z}.—Then w. < z.. We are done if w = z, so assume
w < z. Then there exists an atom in a €0;z] \[0,w]. Note that a £ x. By the
upper semi-modularity, a VvV z € Py Nz, 2] is an atom in [z, z], a contradiction to

aVzrLuw. m

Lemma 3.3.3. An upper semi-modular.lattice is ranked. In particular, a geometric

lattice is ranked.

Proof. Let P be an upper semi-modular lattice and suppose that P is not ranked.
Then there exists € P such that [z, 1] is not ranked, but for all atoms a of [z, 1],
[a, 1] is ranked. Pick an atom a € [z, 1]. Let f be a rank function on [a, 1]. We extend

the function f to a function f” in [z, 1] by defining

fly) +1, ify€la,1];

flaVy), else.

f'ly) =

We shall prove f’ is a rank function in [z, 1]. Suppose u,v € [z,1] and u covers v.
We need to show f'(u) = f'(v) + 1. This is clear if v € [a,1]. Assume v & [a,1].

Suppose u € [a,1]. Then v = a Vv and f'(u) = f(aVv)+1 = f'(v) + 1. Suppose
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u & [a,1]. Since u covers v = (a V v) A u, we have a V u = (a V v) V u covers a V v.
Then f'(u) = f(aVu) = f(aVv)+1= f(v)+ 1. This concludes that [z, 1] is ranked,

a contradiction. ]
Theorem 3.3.4. Let P be a geometric lattice. Then P is a pooling space.

Proof. P is ranked by Lemma 3.3.3. Since each interval of P is a geometry lattice by
Lemma 3.3.2, each interval is atomic. The theorem now follows from Proposition 3.1.6.

]

By applying Theorem 3.3.4 and Theorem 3.1.2 we immediately have the following

corollary.

Corollary 3.3.5. Let P be a geometric lattice with rank n. Let G(P,k,r) denote the
incidence matriz between P, and Py where’ Ll << k < n. Then G(P, k,r) is r-disjunct.

[]

Many examples of geometry lattices are listed in Chapter 23 of [27]. These are
related to linear spaces, Steiner systems, affine geometries, projective geometries, and
contractions of graphs. ‘More examples-are given in [17]. In some cases the correspond-
ing results in Corollary 3:3.5 are not fully disjuncts The fully disjunct properties on

projective geometries were studied in [10].

3.4 Affine Geometries

In this section we study the fully disjunct properties of the binary matrices con-
structed from affine geometries. The idea is exactly the same as the study of projective
geometries in [10]. In fact this idea works for any geometric lattices with each inter-
val isomorphic to a projective geometry. For completeness of the dissertation, we still
provide the proof. Also there are some small computation mistakes in [10]. We will
point out these mistakes after Corollary 3.4.6. In the beginning, we give the definition

of affine geometries.

Definition 3.4.1. Let V' denote an n-dimensional vector space over a finite field F,,

where ¢ is the number of elements in the field. Let P = P(V) denote the poset with
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element set
P={u+W |ueV and W CV is a subspace} U {0},

where () denote the empty set. The order is defined by inclusion. Note that P is a
geometric lattice of rank n 4+ 1. P is called the affine geometry and is denoted by
AG, (F,). The rank i elements in P; are referred to as the affine (i — 1)-subspaces of V'
for 1 <7 <mn-+ 1. We say that the affine subspaces u + W and v + W are parallel for

vectors u,v € V and subspace W C V.

We immediately have the following lemma.

Lemma 3.4.2. Let V denote an n-dimensional vector space over a finite field Fy,. Let
uy,us €V be elements and let Wi, Wy C V' be subspaces. Then u; + W1 = ug + Wy if
and only if Wi = Wy and uy — ug € Wi O

Lemma 3.4.3. Let V denote an n-dimensional vector space over a finite field F,, and

A denote an affine k-subspace of V-.. Then the number of affine r-subspaces contained

k
q'“""H7
Tq

where v < k. These affinea-subspaces in A are partitioned into

i (3.4.1)

i A is

r

classes, each class consisting of ¢*~" parallel affine subspaces.

Proof. The parallel property defines an equivalent relation on the set of affine r-
subspaces in A. The number of equivalent classes is as in (3.4.1) and each equivalent

class consists of ¢*~" elements by Lemma 3.4.2. [

Theorem 3.4.4. Let V' denote an n-dimensional vector space over a finite field Fy,.
Fix integers 1 < r < k <n and a positive integer b. Let A, A1, As, ..., Ay denote affine

k-subspaces of V. with A # A; for 1 <11 <b. Then there are at least

-1
¢ []1 — bg" ! {k ] (3.4.2)
"l "ol

affine r-subspaces contained in A and not contained in any of A; for 1 <1 <b.
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Proof. There are

affine r-subspaces contained in A, some of them in some affine subspace AN A; for each
1 <4 < b to be deducted. AN A; takes maximal coverage of these affine r-subspaces

when A N A; is an affine (k — 1)-subspace, and in this situation the number of these

q(k—l)—r |:k - 1:| )
r q

affine r-subspaces is

O

Remark 3.4.5. For positive integers b < g and & < n the number in (3.4.2) is optimal.
We choose A; to an affine k-subspace with the meet with A corresponding to each of
the ¢ parallel affine (k — 1)-subspaces in A, Then (3.4.2) is exactly the number of affine

r-subspaces contained in A and not-contained.in any of A; for 1 <i <b.

From Lemma 3.4.3, Theorem 3.4.4, and Remark 3.4.5 we have the following corol-

lary.

Corollary 3.4.6. Let P'= AG(F,) and let E,(n+1,k+1,r+1) denote the incidence

matriz between Pry1 and Pryy where v < ko Let-d =q"" mq —bgkrt [kil}q —1. Then

‘s T

E,(n+1,k+ 1,7+ 1) is b?-disjunctwith size

qn—r |ji| % qn—k {n}
r q k q,

q(q" —1)

where b is any positive integer less than — | to ensure d > 0 by (3.4.2). Moreover,
q -

if k <n and b is a positive integer such that

b < q, Zf?" > O;
(3.4.3)
b<q—-1 ifr=0,
then Ey(n+ 1,k + 1,7 + 1) is not b*'-disjunct. O

The result in [10, Corollary 4.6] is similar to Corollary 3.4.6, but the former makes
a mistake for not separating the case r = 0 in (3.4.3) from r > 0. This mistake inherits

an earlier mistake in [10, Theorem 4.4], referring to the last line of its proof. The
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case r = 0 of (3.4.3) will be important in our following discussing. In view of (3.4.2)
b increases if and only if d decreases. We set r = 0 and b = ¢ — 1 to be the largest

possible integer in Corollary 3.4.6 to obtain the following result.

Corollary 3.4.7. E,(n+1,k+1,1) is (g—1)7" ' ~'-disjunct, but not (q—1)4""" -disjunct,

; ; n n—k[n
with size q" X q [k]q. Il

We promised in the beginning of this chapter to give some matrices that meet
some optimal bound. These matrices are E,(3,2,1), where ¢ is a power of a prime.

We describe an optimal bound of an assumption below, and show the relation of this

assumption and the conjecture of Erdés, Frankl and Furedi [12] later.
Assumption: Any b-disjunct matrix of size s x ¢ with s < ¢ must have s > (b+ 1)

We don’t know if the above assumption is true, but E,(3,2, 1) attains the equality
s = (b+1)? since E,(3,2,1) ista (¢—=1)-disjunct matrix of size ¢* x (¢* + ¢) by Corol-
lary 3.4.7. In fact the abave assumption is-a-consequence of the following conjecture

of Erdos, Frankl, and Firedi in [12}:
EFF Conjecture: Any b-disjunct matrix of size s x (b+ 1)? must have s > (b+ 1)2.

Also see [9, page 29)for the above conjecture. Suppose that EFF Conjecture is
true and suppose that the above assumption fails: Tiet: M be a b-disjunct matrix of size
s X t with s < t, but s < (b+1)*, ¢ =>(b+ 1)? then we obtain a b-disjunct matrix
of size s x (b+ 1) by deleting any ¢ — (b + 1)? columns of M. This contradicts the
EFF Conjecture. Suppose ¢t < (b + 1)2. Then we make a larger b-disjunct matrix by
taking the direct sum of M and the ((b+ 1)? —t) x ((b+ 1)* — ¢) identity matrix to
become a matrix of size ((b+ 1) —t + s) x (b+ 1)% We also have a contradiction to

EFF Conjecture since (b+1)2 —t+s < (b+1)%

Note that F,(3,2,1) has more columns than rows. In the similar construction of
disjunct matrices from a projective geometry of rank 3 [10], only square matrices can

be obtained.

The results in this chapter have been included in the following paper.
“H. Huang, Y. Huang, and C. Weng, More on pooling spaces, Discrete Mathematics,
308 (2008), 6330-6338.”
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Chapter 4

Distance-regular Subgraphs in a

Distance-regular Graph

Let I' = (X, R) denote a distance-regular graph with diameter D. In this chapter,
for given 0 < d < D we present a systematical way-to construct a distance-regular
subgraph of diameter d_containing two_given vertices of distance d in X. With some
previous work, this construction also helps us to build & criterion that rules out the

existence of some distance-regular graphs.

4.1 Strongly Closed.Subgraphs

A sequence x, z, y of vertices of I is geodetic whenever
Oz, 2) +0(z,y) = 0(z,y),

where 0 is the distance function of I'. A sequence x, z, y of vertices of I' is weak-geodetic
whenever

Oz, z)+0(z,y) <I(z,y) + 1.
For a subset A C X, A is strongly closed if for any weak-geodetic sequence x, z, y of

r

Y

x, ye A=z € A.

A subset A of X is strongly closed with respect to a vertex x € A if
Cly,z) CA and A(y,z) CA for all y e A. (4.1.1)
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Note that A is strongly closed if and only if for any vertex x € A, A is strongly
closed with respect to = [44, Lemma 2.3]. Strongly closed subgraphs are called weak-
geodetically closed subgraphs in [44]. If a strongly closed subgraph A of diameter d is
regular then it has valency ag+cq = by — by, where agq, cq4, by, bg are intersection numbers
of I'. Furthermore A is distance-regular with intersection numbers a;(A) = a;(I') and

¢i(A) = ¢;(T) for 1 <i <d [44, Theorem 4.5].

4.2 D-bounded Property and Known Results

Definition 4.2.1. T is said to be d-bounded whenever for all z,y € X with d(z,y) < d,

there is a regular strongly closed subgraph of diameter d(x,y) which contains z and y.

Note that a (D — 1)-bounded distance-regular graph is clear to be D-bounded.
The properties of D-bounded distance-regular-graphs were studied in [43], and these
properties were used in the classification of classical distance-regular graphs of negative

type [45].
We list a few results which will beused later in this chapter.

Theorem 4.2.2. ([}4, Theorem 4.6]) Let T -be-a distance-reqular graph with diameter
D > 3. LetQ be a reqular subgraph-of I' withvalency~ and set d := min{i | v < ¢;+a;}.

Then the following (i), (ii) are equivalent.

(i) Q) is strongly closed with respect to at least one vertex x € Q.

(ii) Q is strongly closed with diameter d.
In this case v = cq+ aq. O]
The following Theorem is a combination of three previous results.

Theorem 4.2.3. Let I' denote a distance-reqular graph with diameter D > 3. Suppose

that the intersection numbers ay, as, co satisfy one of the following.
(i) [14, Theorem 2] ay > a; =0, ¢y > 1;

(ii) [44, Theorem 2] ay # 0, co > 1; or
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(1ii) [38, Theorem 1.1] as > a3 > co = 1.

Fiz an integer 1 < d < D — 1 and suppose that I' contains no parallelograms of any

lengths up to d+ 1. Then I is d-bounded. O

We will deal with the complemental case “a; = 0,as # 0, and ¢ = 17 in Theo-

rem 4.4.6.

4.3 The Shapes of Pentagons

Throughout this section, let I' = (X, R) denote a distance-regular graph with di-
ameter D > 3, and intersection numbers a; = 0, ay # 0. Such graphs are also studied
in [14, 26, 33, 34, 35]. By a pentagon in T', we mean a 5-tuple ujusugusus consisting
of distinct vertices in I' such that d(w;, wip) = 1 for 1 < i < 4 and I(us, u1) = 1.
Fix a vertex x € X, a pentagon wujusususus has shape i1,1s,13, 14,15 with respect to
x if i; = O(x,u;) for 1 < j < 5By a parallelogram of length d, we mean a 4-tuple
zyzw consisting of vertices of I' such that d(z,y) = d(z,w) = 1, 0(z,w) = d, and
d(z,z) = Oy, w) = Oy,z) = d — 1. Note that any two vertices at distance 2 are
always contained in a pentagon since as; # 0, and/two nonconsecutive vertices in a
pentagon of I' have distance 2 since a; = 0. In_this section we give a few lemmas which

will be used in the next section.

Lemma 4.3.1. Let I' be a distance-reqular graph with diameter D > 3. Suppose
a; = 0, ag # 0, and I' contains no parallelograms of lengths up to d + 1 for some
integer d > 2. Let x be a vertex of I', and let ujususuqus be a pentagon of I' such that
O(z,u1) =1—1 and (z,uz) =i+ 1 for 1 <i <d. Then the pentagon ujusugusus has

shape v — 1,4,1 4+ 1,7+ 1,7 with respect to x.

Proof. Tt suffices to prove d(x,uy) =i+ 1. We prove this by induction on i. The case
i = 1 holds otherwise d(z,us) = 1 and J(x,us) = 1 which contradicts the assumption
a; = 0. Suppose i > 2. Suppose to the contrary that d(z,us) = i. We can choose
y € C(x,uy). Thus O(y,u;) =1 — 2 and 9(y,us) = 7. By the induction hypothesis, the

pentagon uyusususus has shape ¢ — 2,4 — 1,4,4,7 — 1 with respect to y. In particular,
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Iy, uz) = d(y,us) = i. Then zyuyus is a parallelogram of length i+ 1, a contradiction.

]

Other versions of Lemma 4.3.1 can be seen in [44, Lemma 6.9] and [38, Lemma 4.1]

under various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [14] under an additional
assumption c; > 1, but this assumption is essentially not used in his proofs. For the

sake of completeness, we still provide the proofs.

Lemma 4.3.2. Fix an integer 1 < d < D — 1, and suppose I' does not contain
parallelograms of lengths up to d + 1. Then for any two vertices z,z" € X such that
d(z,2z) <d and 2’ € A(z,x), we have B(x,z) = B(x, 2.

Proof. By symmetry, it suffices to show B(z;%) C B(x,2’). Suppose there exists w €
B(z,z)\ B(z,2'). Then 0(wy2")# 0(z,z)+1. Note that d(w, 2’) < d(w,z)+0(x,2') =
1+ 9(z, z) and O(w, 2") 2> d(w, z)= 0(z,z") = d(x, ). This implies O(w, 2’) = d(z, 2)

and wxz'z forms a parallelogram of length 9(x; 2) 4 1, a-contradiction. 0

Lemma 4.3.3. Fix integers 1/ <4 < d < D — 1, and suppose I' does not contain

parallelograms of any lengths.upto d + 1. Let'x be a vertex of I'. Then there is no

a contradiction by induction on 7. The case ¢ = 1 is impossible since a; = 0. Suppose
i > 2. Note that B(z,u;) = B(z,us) = B(x,u3) = B(x,us) by Lemma 4.3.2. We shall
prove C(z,uy) = C(x,uy) = C(z,u3) = C(x,uy).

First we prove C(z,uy) = C(x,uz2). It suffices to show C(z,us) C C(x,uy) since
both sets have the same size ¢;. To the contrary suppose there exists v € C(x,us) —
C(z,u1). Note that v € A(z,u1) as B(x,u;) = B(z,uz). Then B(ui,z) = B(u,v) by
Lemma 4.3.2 and hence (v, us) = i + 1 since us € B(uy,x). Now usujususug has
shape © — 1,4,7 4+ 1,72 4+ 1,72 with respect to v by Lemma 4.3.1, a contradiction since
v & B(z,us) = B(x,ug). This proves C(z,uy) C C(z,u1) as desired. By symmetry,
C(z,uz) = C(x,uy).
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It remains to show C(x,uz) C C(x,u4). To the contrary suppose there exists
u € C(x,uy)—C(z,uy). Note that u € A(x,uy) as B(z,us) = B(x,uy). Then B(uy, ) =
B(uy,u) by Lemma 4.3.2 and hence O(u,us) = i + 1 since us € B(uy,z). Hence
usuusugusg has shape ¢ — 1,4,4 + 1,7 + 1,7 with respect to u by Lemma 4.3.1, a con-
tradiction since u € B(x, uy).

Pick a vertex v € C(z,u;) = C(z,uz) = C(z,u3) = C(x,us). Then uyuguzugus is
a pentagon of shape ¢+ — 1,2 — 1,7 — 1,7 — 1,7 with respect to v, a contradiction to the

inductive hypothesis. O

Lemma 4.3.4. Fizx integers 1 < i < d < D — 1, and suppose I' does not contain
parallelograms of any lengths up to d + 1. Let x be a vertex and ujusususus be a
pentagon of shape i,1 — 1,4,© — 1,1 or of shape 1,7 — 1,%,9 — 1,7 — 1 with respect to x.

Then B(xz,uy) = B(z,u3).

Proof. Tt suffices to show B(z;uz) C_B(z,uy) since both sets have the same size b;.
Pick u € B(z,u3). Then d(u, uz)= 7 + 1. Since O(uziue) = 1 and d(z,us) =i — 1,
then O(u,us) = i and similarly d(u,us) = 4. Note that d(u,u;) # i — 1, otherwise by
Lemma 4.3.1, the pentagon u;ususugus has shape ¢ — 1,9;¢ + 1,72 4 1,7 with respect to
u, a contradiction.

Suppose O(u,u;) = ¢ for this_moment. ~Then to avoid obtaining a pentagon
with respect to u we must have d(u,us) = i + 1 by Lemma 4.3.1 and Lemma 4.3.3.
Then O(x,us) = i by construction. Now usujzu is a parallelogram of length i + 1, a
contradiction.

Hence O(u,u;) = i+1 or equivalently u € B(x,u1). This proves B(z,u3) C B(z,u;)
as desired. 0

The following lemma rules out a class of pentagons of certain shapes with respect

to a given vertex.

Lemma 4.3.5. Fix integers 1 < i < d < D — 1, and suppose I' does not contain
parallelograms of any lengths up to d+ 1. Let x be a vertex. Then there is no pentagon

of shape i,1,1,1 4+ 1,7+ 1 with respect to x.
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Proof. Suppose that ususususu, is a pentagon of shape ,4,7,7 + 1,7 + 1 with respect
to x. We derive a contradiction by induction on ¢z. The case ¢ = 1 is impossible since
a; = 0. Suppose i > 2. Pick v € C(z,us) and note that d(v,u;) = i by construction.
In particular v ¢ B(x,us) and B(z,uy) = B(z,u3) = B(z,us) by Lemma 4.3.2, so
v € Clx,uy) UA(z,uy). In fact v € C(x,uy); otherwise d(v,uy) = i. By considering
the shape of the pentagon usuqususus with respect to v and applying Lemma 4.3.1, we
have that 0(v, us) = i. Hence xvugus is a parallelogram of length i+ 1, a contradiction.
Thus O(v,us) = i — 1, and by construction we now also have d(v,us) = i. Note
that (v, u3) = i; otherwise O(v,u3) = i — 1 and ugusususu; is a pentagon of shape
1 — 1,4 — 1,2 — 1,4,7 with respect to v, a contradiction to the inductive hypothesis.
Now setting z = v in Lemma 4.3.4, we have B(v,u;) = B(v,u3), a contradiction since

x € B(v,uy) — B(v,us). O

4.4 D-bounded Property and Nonexistence of Par-
allelograms

Let I' = (X, R) denote a distance-regular -graph/ with diameter D > 3. Fix an
integer 1 < d < D — 1. Throughout this section, we assume that I' satisfies the

following conditions.

Assumption:
(i) The intersection numbers satisfy a; = 0, ay # 0,2 = 1, and
(ii) ' contains no parallelograms of lengths up to d + 1.

We shall prove the d-bounded property of I" in this section. By the definition of strongly

closed subgraphs, the following proposition is easily seen.

Proposition 4.4.1. Suppose A C X is a strongly closed subgraph of I' and uxivrsxs

or urixavxs is a pentagon in I'. If u,v € A, then xq,x9, x3 are all in A.

Proof. Since a; = 0, it’s easily seen that d(u,v) = 2 and u,x;,v is weak-geodetic for

i=1,2,3. O
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We then give a definition.

Definition 4.4.2. For any vertex z € X and any subset II C X, define [z,II] to be

the subgraph induced by the set
{v € X | there exists 3/ € TI, such that the sequence z, v, is geodetic }.
For any z,y € X with d(z,y) = d, set
Iy = {y" € Lu(z) | B(z,y) = B(z,y)} (44.1)

and

A(z,y) = [z, 1L,,]. (4.4.2)

Note that A(z,y) contains z,y and I'y(z) N A(z,y) = II,,. We can also easily see

the following proposition.

Proposition 4.4.3. For x,y, z;w-€ X and w € Alz,y), if x,z,w is geodetic, then

z € Az, y).

Proof. Suppose O(z,y) = d, O(z,w)= "4, and O(z,z) = j. Then 0(z,w) = i — j.
By the construction of Definition4.4.2 “there exists 4" € II(z,y) such that z,w,y is
geodetic. Hence O(w,y’) = d # i Nete that-0(2,y") < d(z,w) + d(w,y') = d — j, and
0(z,y") > 0(x,y) —O(x,z) =d—j. S0 I(z,y') = d — j and thus z, z,y" are geodetic.
Hence z € A(z,y). O

For any 1 < j < d, we define the following three kinds of conditions:

(Bj) For any vertices x,y € X with d(x,y) = j, A(x,y) is regular strongly closed with

valency a; + ¢;.

(W) For any vertices z,y € X with 0(z,y) = j, A(z,y) is strongly closed with respect

to z.

(R;) For any vertices x,y € X with d(z,y) = j, the subgraph induced on A(z,y) is

regular with valency a; + ¢;
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By referring to Theorem 4.2.2, the statement (B;) holds for all 1 < j < d is
equivalent to the combination of conditions that (W) and (R;) hold for all 1 < j < d.
Our objective is to prove that (B;) holds for 1 < j < d under the assumptions in
the beginning of this section. We use induction on j to achieve our objective. To

adequately proceed the induction process, the following two lemmas are required.

Lemma 4.4.4. Suppose (W;), (R;), and thus (B;) hold in X for1 < j<d—1. For
any vertices x,y € X with 0(x,y) = d and for any vertex z € A(z,y) NTi(x), where

1 <i <d, we have the following (i), (ii).

(1) A(z,z) € Az, y).

(ii) For any vertex w € I';(x) N T9(2) with B(x,w) = B(x, z), we have w € A(x,y).
In particular (Wy) holds.

Proof. We prove (i), (ii) by induction on d — i. In thecase i = d, z € II(z,y) and (i)
follows by Lemma 4.3.2; and.(ii) follows from the construction of A(z,y) in Defini-

tion 4.4.2. Suppose © <.d.

To prove (i) we notesthat if 2 = 1 then A(z,z) is an empty set as a; = 0, clearly
contained in A(x,y). Henee we suppose 2 < i< d'in this case. We pick a vertex
v € A(z,x) and show v € A(zx,y). Pick uw € A(x,y) NT'i11(2) NI (2). Note that (i), (ii)
hold if we use u to replace z by the inductive hypothesis. Let uususvz be a pentagon
of I" for some uq, us € X. Note that uususvz cannot have shape i +1,1,7 — 1,4, ¢, shape
1+1,7+2,1+1,1,7 by Lemma 4.3.1, cannot have shape i+1,4,1,,7 by Lemma 4.3.3, and
cannot have shape i + 1,7+ 1,4,4,7 by Lemma 4.3.5 with respect to . Hence uusugvz
has shape i + 1,7+ 1,2+ 1,7,% or i + 1,4,7 + 1,%,7 with respect to z. In the first case
we have us € A(u,x), ug € A(ug,x), and this implies us, ug € A(z,y) by the inductive
hypothesis of (i). Then v € A(z,y) by Proposition 4.4.3 since z, v, uz is geodetic. In the
latter case we have B(z,u) = B(z,u3) by Lemma 4.3.4, and consequently us € A(z, y)
by inductive hypothesis of (ii). Then v € A(x,y) by Proposition 4.4.3 since z,v, ug is

geodetic.
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To prove (ii) we first note that A(x,z) is a regular strongly closed subgraph of
diameter ¢ by Theorem 4.2.2 (ii) and since (B;) holds. Suppose to the contrary that
there exists w € I';(z) NTy(z) with B(z,w) = B(x, z) such that w ¢ A(x,y). Note that

hence A(z, z) = A(z,w) by construction in Definition 4.4.2 since B(x,w) = B(z, 2).
Let vg be the unique vertex in C(w, z).

Claim 1. 0(z,vp) =i — 1.

Proof of Claim 1. Let vy be the vertex between w and 2. Let zvywwv,vs be a pentagon
for some vy, vy, v5 € X. Since w € A(x, z) = A(z,w), vg,vy4,v5 € Az, z) by Proposi-
tion 4.4.1 and thus ve,vy,v5 & [i1(x). If vy € A(z,x) then vy, w € A(x,y) by (i), a

contradiction. Hence 0(x,vy) =i — 1.
Let u be a vertex in A(z,y) NTip1(x) NT(2), ys € A(u,vs), and y4 € C(ys, va).

Claim 2. The pentagon vszuysys has shapei.—1y4,7 + 1,7 + 1,7 with respect to z.
Moreover the pentagon is.contained;in A(z, y).
Proof of Claim 2. The shape of the pentagon vszutys3yy isdetermined by Lemma 4.3.1.
Since y3 € A(u, ), y3 € A(z,y) by theinductive hypothesis of (i) since d — 9(z,u) <
d—1.

Let ws € A(ys, w) and wy € C (w3, w).

Claim 3. The pentagon voyswswsw has shape ¢ — 1,4,7 + 1,7 + 1,4 with respect to x
and {ws, ws} N {ys,u} = 0.
Proof of Claim 3. Note that A(x,w) = A(x, z) is strongly closed of diameter i since
B; holds. Also note that vo € A(z,z). If d(z,wy) < i then wy € A(z,w) and
this forces y, € A(z,z) by Proposition 4.4.1. For the same reason, we then have
ys € Az, z) as z,y4 € A(x, z). We have a contradiction since A(z, z) has diameter ¢
and d(z,y3) =i+ 1 > i = diam A(z,2). Hence d(z,wy) = i + 1 and vywwwsy, has
shape 1 — 1,7,7+ 1,7 4+ 1,7 with respect to z by Lemma 4.3.1.

Hence by the inductive hypothesis of (i), if wy € A(z,y) then wy € A(x,y). Thus
if {ws,ws} N{ys,u} # 0, then wy € A(z,y). Hence w € A(x,y) by Proposition 4.4.3

since x, w, wy is geodetic, a contradiction.
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The two pentagons vozuysys and voyswzw,w are shown in Figure 6.

distance to x

o ... 1—1 1 1+ 1
Wy
w
e vy s
z
U

Figure 6. Two pentagons in the proof of Lemma 4.4.4(ii).

Claim 4. B(x,ys3) # B(x,wy).

Proof of Claim 4. Note that B(z,u)= B(x,ys)and B(z;w;3) = B(x,ws) by Lemma 4.3.2.
If B(z,y3) = B(z,ws) then by the inductive hypothesis-of (ii) we have ws € A(z,y).
We then have wy € A(z,y) by the inductive hypothesis. of (i). Thus w € A(x,y) by

Proposition 4.4.3, a contradiction.
Let p3 € A(ys, ws) and py € C(ps,ws).

Claim 5. The pentagon y4y3pspsws has shape 4,7+ 1,7+ 2,7+ 2,7+ 1 with respect to
x.

Proof of Claim 5. Since ps3 is adjacent to ys, d(z,p3) = 4,7+ 1 or i + 2. Suppose
O(z,p3) = i+1, then O(x, py) # i+ 2 by Lemma 4.3.1, O(z, ps) # i+ 1 by Lemma 4.3.2,
and 0(z, ps) # i by Lemma 4.3.4, a contradiction. Suppose 0(x, p3) = i, then d(z, py) #
i—1by Lemma 4.3.1, d(x, ps) # i by Lemma 4.3.4, and 0(x, p;) # i+1 by Lemma 4.3.4,
also a contradiction. Thus O(x,ps) = i + 2 and the pentagon ysyspspsws has shape

1,7+ 1,44 2,1+ 2,7 + 1 with respect to z by Lemma 4.3.1.

Now we have three pentagons and their shapes with respect to x as shown in Figure
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Figure 7. Three pentagons in the proof of Lemma 4.4.4(ii).

Claim 6. B(x,y,) # B(z, z) and thus B(z,y,) = B(z, z) # 0.

Proof of Claim 6. 1f B(z,ys) =B, z), then A(x,ys) = A(x, z), a strongly closed
subgraph of diameter i. Since gy, 2 € A(x; 2),we havey; € A(z, z) by Proposition 4.4.1
and J(z,y3) = i+ 1, which is a contradiction as before. The fact B(x,ys) — B(x,2) # 0

is easily seen since |B(zyys)| = |B(&, 2)| =:b;:
Pick p € B(x,ys) — B(x,2).

Claim 7. 9(p, z) = 1.
Proof of Claim 7. Note that d(p,y4) = i+ 1 under this assumption. Also note that for
this moment d(p,z) =i — 1 or i.

Suppose O(p, z) =i — 1. Then zvyysysu is a pentagon of shape i — 1,44+ 1,0+ 1,4
with respect to p by Lemma 4.3.1. Since p3 is adjacent to both y3 and 9(z, p3) = i+ 2,
we have d(p,p3) =i+ 2 or i+ 1.

Next we show that d(p, p3) = i+2. If (p, p3) = i+ 1 then zpysps is a parallelogram
of length ¢ + 2 < d + 1, a contradiction. Thus d(p, p3) =i + 2.

Next we show that d(p,w3) = i + 2. We know that d(p,w3) = i,i + 1 or i + 2.
Consider the shape of the pentagon y,yspspsws with respect to p. We have 0(p, ws) # i
by Lemma 4.3.1. If d(p,ws) = ¢ + 1, then O(p,ps) # i + 1 by Lemma 4.3.3, and
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J(p,p4) # i+ 2 by Lemma 4.3.5, a contradiction to the fact that p, is adjacent to both
w3 and p3. Thus we have d(p, w3) =i + 2.

We finally consider the shape of the pentagon vy wswsw with respect to p and
get a contradiction. Consider the relative distance among =z, p,vs, and y,, we have
J(p,v2) = i. Hence voyswzw,aw is a pentagon of shape 4,7 + 1,7 + 2,7+ 2,7 + 1 with
respect to p by Lemma 4.3.1. That is p € B(x,w), a contradiction to our assumptions

B(x,z) = B(x,w) and p € B(z,y4) — B(x, 2).

Claim 8. 9d(p,w) = i.
Proof of Claim 8. We know that d(p,w) = i — 1,4 or ¢ + 1 since p is adjacent to z
and J(z,w) = i. Suppose d(p,w) =i+ 1, then p € B(x,w) but p ¢ B(x, z) which is
a contradiction to our assumption that B(x,w) = B(z, z). Hence d(p,w) =i — 1 or i.
Most of the following arguments aresimilar as the ones in the previous Step 7.

Suppose J(p,w) = i — L. First we have that the pentagon wuvsy,wswy is of shape
1—1,2,24+ 1,7 4+ 1,7 with respect-to p by Lemma 4.3.1.

Next we show that then@(p, ps) = i + 2. To-avoid zpwsp, to be a parallelogram of
length i +2 < d + 1, we have O(p, py) =i+ 2.

Then we show that d(p,ys) = ¢+ 2. By applying Lemma 4.3.1, Lemma 4.3.3, and
Lemma 4.3.5 to the pentagon yywspspsys, we havethat d(p,y3) =i + 2.

We finally consider the shape of the pentagon voy,4ysuz with respect to p and get a
contradiction. Consequently voysysuz is a pentagon of shape ¢,¢ + 1,0 + 2,1 + 2,7+ 1

with respect to p by Lemma 4.3.1, which is a contradiction to d(p, z) = i.

Claim 9 J(p,u) = d(p,ws) =i + 1.

Proof of Claim 9. Since O(p, z) = 0(z, z) = i, we have p € A(x, z) and thus B(z,z) =
B(z,p) by Lemma 4.3.2, in particular d(p,u) =i + 1. Similarly, O(p, ws) =i + 1.
Claim 10. 9(p,y3) = 1.

Proof of Claim 10. As p ¢ B(x,u) = B(x,ys3), we have d(p,y3) = i or i + 1. We shall

prove J(p, y3) = i.
Suppose d(p,y3) = i + 1. We first show that O(p,p3) = i + 2. By applying

Lemma 4.3.2 we have B(ys, z) = B(ys,p). Then as p3 € B(ys, z) = B(ys, p), O(p,p3) =
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1+ 2.

Next we show that 0(p, w3) = i+ 2. Applying Lemma 4.3.3 and Lemma 4.3.5 to the
pentagon wsysyspsps and considering its shape with respect to p, we find 9(p, w3) #
i+ 1. Applying Lemma 4.3.1 to the pentagon wspspsysys, we find 9(p, ws) # i. Thus
d(p,w3) =1+ 2.

We finally get a contradiction that prw,ws is a parallelogram of length i4+2 < d+1.

Claim 11. J(p, ws) = 1.

Proof of Claim 11. Similar as the arguments in the previous Step 10, as p € B(x,wy) =
B(x,ws), we have O(p, w3) =i or i+ 1. Suppose 9(p, ws) = i+ 1. Applying Lemma 4.3.1
to the pentagon yspspswsys, we then find d(p,py) # i + 2 and thus d(p,py) = i + 1.

Then zpwspy us a parallelogram of length ¢ + 2 < d + 1, a contradiction.

We finally consider the shape of the pentagon p,wsysysps with respect to p to get a
final contradiction. Since Q(a, p3) = i +2 and d(p,ys) = i, we have d(p,p3) = i+ 1 and
similarly d(p,ps) = @ + 1. To sumup, the pentagon pswsysysps has shape i + 1,4, +
1,4,i+ 1 with respect top. However, Lemma 4:3.4 now yields that B(p,ps) = B(p, y4),
which is a contradictionsince x € B(p, ps) and & € C(p, ys). Consequently, w € A(z,y)

and this completes the (ii) part of this lenima.

By (i) we have A(z,x) C A(x, y)-and-by Proposition 4.4.3 we also have C(z,z) C
A(z,y). Hence (Wy) holds by (4.1.1). O

The following lemma proves (R;) and hence completes the remaining of our goal.

Lemma 4.4.5. Suppose (W;), (R;), and thus (B;) hold in X for1 < j<d—1. For

any vertices x,y € X with 0(z,y) = d, A(z,y) is reqular with valency aq + cq.

Proof. Set A = A(x,y). Clearly for any v € A, the construction ensures us that
d(x,v) <d. Hence B(y',z) N A = () for any 3’ € II,,. Applying Lemma 4.4.4, we have
1 (y') NA| = aqg+ cq for any y' € II,,,. Next we show |I'1(x) NA| = a4+ c4. Note that

y € ANT4(x) by construction of A. For any z € C(x,y) U A(z,y),

ANz, z) +0(z,y) < I(z,y) + 1.
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This implies z € A since A is strongly closed with respect to x by Lemma 4.4.4. Hence
C(z,y) U A(x,y) € A. Suppose B(x,y) N A # (). Choose t € B(z,y) N A. Then there
exists iy € Il,, such that t € C(x,y’), a contradiction to B(x,y) = B(xz,y’). Hence
B(z,y) NA =0 and T'y(z) NA = C(x,y) U A(z,y). This proves |T'1(z) NA| = aq+ cq.
Since each vertex in A appears in a sequence of vertices © = xg, Z1,...,2q in A,

where 0(z, z¢) =, O(z4_1, ;) = 1 for 1 < ¢ < d, and z, € I1,,, it suffices to show
Ty () VAl = ag + cq (4.4.3)
for 1 <i < d— 1. For each integer 1 <1 < d, we show
ITi(zie1) \ Al < [Tu(:) \ A (4.4.4)

by the 2-way counting of the number of-the pairs (z,s) for z € T'1(z;-1) \ A, s €
[y(x;) \ A and J(z,s) = 2. For a fixed s € T'y(#;)"\ A, we have J(s,z;_1) = 2 since
a; = 0. Hence such a z must be-one of the ay vertices in A(x;_1,s). The number of

such pairs (z, s) is thus'at mest |{Fy(z;) \ Alas:

On the other hand, we show this number is |I';(z;~;) \ Alas exactly. Fix a z €
['y(x;—1) \ A. Note that d(x, 2) =4 by Lemma 4.44; and 0(x;,z) = 2 since a; = 0.
Pick any s € A(x;,z). We.shall prove s ¢ A Suppose to the contrary s € A in
the below arguments and choose any w € C'(s,z). Note that d(x,s) < i, otherwise
J(z,s) =i+ 1 and the pentagon z;_z;swz has shape i — 1,4,i+ 1,7+ 1,7 with respect
to « by Lemma 4.3.1. Thus w € A(s,z) and then w € A by Lemma 4.4.4(i). This
forces z € A by Proposition 4.4.3, a contradiction. We also have 9d(z,w) < i by
considering the shape of the pentagon x;_1zwsx; with respect to x and Lemma 4.3.1.
If s € A(zy,z), w € A(s,z), and z € A(w,z), then z € A by Lemma 4.4.4(i), a
contradiction. Hence 0(z,w) <i—1or d(z,s) <i— 1. Applying Lemma 4.3.4 to the
pentagon x;x;_1zws in the remaining cases we have B(z, z) = B(x,x;) and then z € A

by Lemma 4.4.4(ii), a contradiction.

From the above counting, we have

Iy (2im1) \ Alas < [Ti(z:) \ Alas (4.4.5)
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for 1 <4 < d. Eliminating as from (4.4.5), we find (4.4.4) or equivalently

for 1 <1i < d. We have shown previously |I'y(zg) NA| = |I'1(xz4) N A| = ag + ¢4. Hence

(4.4.3) follows from (4.4.6).

]

Theorem 4.4.6. Let I' = (X, R) denote a distance-reqular graph with diameter D > 3,
and intersection numbers a; = 0, as # 0, and ¢ = 1. Fiz an integer 1 < d < D — 1

and suppose that I' contains no parallelograms of any lengths up to d + 1. Then T" is
d-bounded.

Proof. For 1 < j < d, we prove (Wj) and (R;) by induction on j. Since a; = 0,
there are no edges in I'1(x) for any vertex x € Xo1If d = 1 in Definition 4.4.2, then
I, = {y} since for any other y~€Ti(#), v’ € B(x,y)but v’ ¢ B(z,y’). Consequently
A(z,y) = {z,y} is an edge;in particular A(«, y) is regular with valency 1 = a; + ¢
and is strongly closed with respect to @ since a; = 0. This proves (R;) and (W;). For
d > 2, assume (W;), (Ry) and thus (B;) hold for L'<.j < d — 1. By Lemma 4.44
and Lemma 4.4.5, we have'that (Wy), (R4), and thus (By) hold. Then the proof is

completed. O

Theorem 4.4.6 answers the problem proposed in [44, p. 299] and is a generalization
of [5, Lemma 4.3.13], [34]. Recall that Theorem 4.2.3 (i) was proved by A. Hiraki [14].
Indeed for the lemmas stated independently in Section 4.3 we are inspired by some
lemmas in [14].

Combining Theorem 4.2.3 and Theorem 4.4.6, the following characterization of d-

bounded distance-regular graphs is completed.

Theorem 4.4.7. Suppose ' is a distance-reqular graph with diameter D > 3 and the
intersection number ay # 0. Fiz an integer 2 < d < D — 1. Then the following two

conditions (i), (i) are equivalent:
(1) T is d-bounded.
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(i) T' contains no parallelograms of any lengths up to d + 1 and by > bs.

Proof. ((i) = (ii)) Suppose that I' is d-bounded for d > 2. Let  C A be two regular
strongly closed subgraphs of diameters 1,2 respectively. Since 2 and A have different
valency by — by and by — by respectively by Theorem 4.2.2, we have b; > by. It is also easy

to see that I' contains no parallelograms of any lengths up to d + 1 [44, Lemma 6.5].

((ii) = (i)) Under the assumptions Theorem 4.4.7(ii) (hence by > by) and ay # 0,

consider the following four cases.
(a) a3 =0 and ¢y > 1: This case follows from Theorem 4.2.3 (i).
(b) a; =0 and ¢y = 1: This case follows from Theorem 4.4.6.
(¢) ay # 0 and ¢ > 1 : This case follows from Theorem 4.2.3 (ii).

(d) a; # 0 and ¢ = 1 : Note that in this ease @, > a; > ¢ = 1. Then this case

follows from Theorém 4.2:3-(iii).

]

Some applications of Theorem 4:4:7 were previously given in [14, 35]. We will give

a new application as Theorem 4.5.7 in the following section.

4.5 Classical Parameters

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. I is said to

have classical parameters (D, b, cv, B) whenever the intersection numbers of I satisfy

¢ = KL(HQFTD for 0<i<D, (4.5.1)

- (D)) o
Applying (2.2.1) with (4.5.1), (4.5.2), we have

O e 1 e DR

e ) T e
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for1 <¢<D.

Classical parameters were introduced in [5, Chapter 6]. Graphs with such param-
eters yield P- and @)-polynomial association schemes. Bannai and Ito proposed the
classification of such schemes in [1]. Suppose I' has classical parameters (D, b, «, [3)
and D > 3. Then b is an integer, b # 0, and b # —1 [5, p. 195]. Two known classes
of distance-regular graphs with classical parameters (D,b,«, ) and b < —1 are the
dual polar graphs 24,p_1(—b) and the Hermitian forms graphs Her_,(D) as listed in
[5, Table 6.1]. Here we use the notation in [5, page 274]. A.A. Ivanov and S.V. Sh-
pectorov show that if I' has the same intersection numbers as the dual polar graph
2Asp_1(=D) then T is the dual polar graph ?A;p_;(—b) [20]. They also show that if T
does not contain parallelograms of length 2 and has the same intersection numbers as
the Hermitian forms graph Her_4(D)-then I’ is the Hermitian forms graph Her_,(D)

[21, 22]. P. Terwilliger shows the following theorem:

Theorem 4.5.1. ([39, Theorem-2.12]; [44; Lemima 7.3(ii)]) Let I' denote a distance-
reqular graph with classical parameters (D, b, o, 3), b'< —1, and D > 3. Then T

contains no parallelograms of any lengths. ]

More general versions of Theerem 4.5.1 canbe found in [42, 26, 33]. The following

is a by-product of Theorem 4.5.1.

Lemma 4.5.2. ([39, Theorem 2.11], [{4, Lemma 7.3(ii)]) Let T denote a distance-
reqular graph with classical parameters (D, b, «, 3) and D > 3. Suppose I contains no

parallelograms of lengths 2. Then I' contains no parallelograms of any lengths. Il

By applying Theorem 4.5.1, the D-bounded property of I' is proved by different
authors according to different assumptions [38, 44, 34, 14]. Recall that if I' has inter-

section numbers b; > by and as # 0 then I' is D-bounded as stated in Theorem 4.4.7.

A poset associated with a D-bounded distance-regular graph was constructed in

[43] and further studied in [45]. This produces the following two useful theorems.
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Theorem 4.5.3. ([43, Corollary 3.7, Theorem 4.2]) Let I' denote a distance-reqular
graph with classical parameters (D,b,«, 5) and b < —1. Suppose that T" is D-bounded

with D > 4. Then
1+ bP
«@ )
1—-5

(4.5.5)

]

Theorem 4.5.4. ([45, Lemma 10.2, Theorem 10.3]) Let I" denote a distance-reqular
graph with classical parameters (D,b,«, 5) and b < —1. Suppose that T" is D-bounded

with D > 4, and T is neither the dual polar graph ?>Asp_1(—b) nor the Hermitian forms
graph Her_y(D). Then

=(b-1)/2, p=-(1+b")/2, (4.5.6)

where —b is a power of an <odd prime. ]

Recently, J. Guo and K. Wang investigated other posets associated with a D-
bounded distance-regular graph [13]. F. Vanhove shows that the existence of a (—b+
1)/2-ovoid in the dual*polar graph 2Asp_1(=b) will imply the existence of T' with

parameters as in (4.5.6) of Theoren 4.5.4 [41}.

The following two lemmas have been-obtained by applying Theorem 4.5.3.

Lemma 4.5.5. ([43, Corollary 6.4]) There is no distance-reqular graph I with classical

parameters (D,b,a, B), D >4, co =1, and ay > ay > 1. O

Lemma 4.5.6. ([35, Theorem 2.2]) Let I" denote a distance-reqular graph with classical
parameters (D,b,a, B) and D > 3. Assume the intersection numbers a; = 0, ag # 0,

and co = 1. Then (b, a, B) = (=2, =2, ((=2)P* —1)/3). O

Theorem 4.5.7. There is no distance-reqular graph with classical parameters (D, b, o, B) =

(D, =2, -2, ((=2)P* — 1)/3), where D > 4.

Proof. Let T' denote a distance-regular graph with classical parameters (D, b, a, ) =

(D,—2,-2,((=2)P™ —1)/3), where D > 4. Then I' contains no parallelograms of
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any lengths by Theorem 4.5.1. By (4.5.1), (4.5.3), we have ¢ = 1 and ay = 2 >
0 = a;. Hence I' is D-bounded by Theorem 4.4.7 and since b; > by. By (4.5.5),
B = ((—2)PT! —2)/3), a contradiction. O

Since Witt graph Mas [5, Table 6.1] is a distance-regular graph with classical pa-
rameters (D, b, «, ) with D =3, b= —2, « = —2, and = 5, the condition D > 4 in
Theorem 4.5.7 can not be loosened to D > 3. A consequence of Theorem 4.5.7 is the

following.

Corollary 4.5.8. Let I' denote a distance-regular graph with classical parameters

(D,b,a, B), D >4, and co = 1. Then ay = a; and a; # 0.

Proof. First note that ay < a; is impossible since ¢ = ¢; = 1 and this implies by >
by. Since c; = 1, I'" contains mo- parallelograms. of length 2 and then contains no
parallelograms of any lengths by Lemmar4:5:2. By Llemma 4.5.5, Lemma 4.5.6, and
Theorem 4.5.7, only thewcase as-—>-a; = 1'and the casea, = a; remain. For the first
case, H. Suzuki proves that [" contains a regular strongly closed subgraph () of diameter
2 with a1(2) = 1 = ¢,(£2) in [38]. Since the Friendship Theorem [46, Theorem 8.6.39]
rules out such 2, there must be no such distance-regular graph I'. For the latter case,
we have a« = —b/(1 + b) since’ cg ="l.and. by (4:5.1). Applying this to (4.5.4) we find

the impossibility of a; = a; = 0 since b # —1. ]
We close this chapter by proposing a few conjectures for further study. The next
step to work after Corollary 4.5.8 might be the following conjecture.

Conjecture 4.5.9. There is no distance-regular graph I with classical parameters

(D,b,ar, ), D >4, and ¢ = 1.

There is a mistake in [5, Proposition 6.1.2] which proves the above conjecture. This

mistake is corrected in [6].

Remark 4.5.10. (See [5, p. 194]) The Triality graph 3D,3(q) is a distance-regular

graph with classical parameters (3, —q,q/(1 —q),¢* + q), co =1, and a; = ay = q — 1.
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Hence the assumption D > 4 in Conjecture 4.5.9 is necessary. Note that the Triality

graph 3Dy 5(q) is not 3-bounded by Theorem 4.4.7 since by = by.

In [14] A. Hiraki assumes that D > 3, a; = 0, as # 0, and ¢y > 1 and shows that
I' is either the Hermitian forms graph Hers(D) or «, 3 satisfy (4.5.6) with b = —3.

Hence the following conjecture is the first step to study the unknown case of (4.5.6).
Conjecture 4.5.11. There is no distance-reqular graph with classical parameters

(D,b,a, B) = (3,3, —2,13).

The results in this chapter have been included in the following paper.
“Y. Huang, Y. Pan, and C. Weng, Nonexistence of a class of distance-regular graphs,

to appear.”
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Chapter 5

Spectral Radius and Average
2-Degree Sequence of a Graph

Let '=(X, R) be a connected graph and let A be the adjacency matrix of I'. Since
A is a real symmetric matrix, the eigenvalues of A are all real numbers. We represent
the distinct eigenvalues of A withe their corresponding multiplicities by an array as

follows:
0510y -+ 0p

g - My mp
where 6y > 01 > --- > Op. Note mg+mq +---+mp = | X|. This array is said to be the
spectrum of T'. The spectral radiusp(I") of-T'-is-the largest eigenvalue of its adjacency
matrix. This parameter has been studied by many authors [2, 3, 15, 16, 24, 25, 28,
36, 37, 47] and can be used to induce some other bounds such as the upper bounds of
signless Laplacian eigenvalues [7, 8]. We shall give a sharp upper bound of the spectral

radius of a graph in terms of average 2-degree sequence of a graph.

5.1 Average 2-degree Sequence of a Graph

For z € X, we define the average 2-degree M, of x to be the average degree of the

neighbors of . In other words, M, =" _ d,/d,, where d, is the degree of z. Label

Y~z
the verticesof I'by 1,2, - - - , n such that M; > My > --- > M,,. It’s trivial that a regular
graph of order n with valency k has average 2-degree sequence My = My, =--- = M, =

k. A graph of order n with identical average 2-degree (i.e. My = My = --- = M,,) is

called pseudo-regular in [47]. An interesting problem could be characterizing all the
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nonregular pseudo-regular graphs. We provide some examples of pseudo-regular graphs

that are not regular in the following Example 5.1.1.

Example 5.1.1. The following graphs are pseudo-regular but not regular.

¢ \\.\y
°
Figure 8. A graph with M; = 2. Figure 9. A graph with M; = 3.

Figure 10. Graphswith M; = 3.

The graph in Figure 10 has a cycle C} of k vertices, and shares each vertex of Cj

with a triangle K.

5.2 Upper Bounds of Spectral Radii

By setting B = U1 AU, where U = diag (dy,ds, - - - , d,), the following fact is easily

seen from Theorem 2.4.2.

Theorem 5.2.1.



with equality if and only if I' is pseudo-regular. ]
In 2011 [7, Theorem 2.1, Chen, Pan, and Zhang gave the following bound.

Theorem 5.2.2. Let a := max {d;/d; | 1 <i,j <n}. Then

o) < My —a+ /(M +2a)2 + da(M; — Mz)’

with equality if and only if T is pseudo-regular. O]

We will show in Corollary 5.4.3 that Theorem 5.2.2 is indeed a generalization of

Theorem 5.2.1.

5.3 Main Result

The following Theorem is.our main result which is a generalization of Theorem 5.2.2.

Theorem 5.3.1. For any b > maz{d;/d;"| i ~j} andl <{<n,

) < M, —b+ \/(Mz 02+ 4bY (T (M; — M)
p = )
2

with equality if and only if L' is pseudo-regular.

Proof. For each 1 < ¢ < ¢ — 1, let x; >"1 be a variable to be determined later. Let
U = diag(dyz1,...,dp_ 124 1,dy, ..., d,) be a diagonal matrix of size n xn. Consider the
matrix B = U 'AU. Note that A and B have the same eigenvalues. Let ri,79,...,7,

be the row-sums of B. Then for 1 < i < /¢ — 1 we have

1
Ty = zd 1d
dﬂ?i&k Tk + E il‘iak k
k=1 k=¢
/-1 n
1 dy, 1 dy,
= — rr — Dajgp— + — E il —
X k:l( " ) kdi+$i 1 kdi

(5.3.1)

IA
| o
o~
M)I
=
ol
|
~
|
o
N——
+
—_
=

42



since a;dg/d; < b. Similarly for £ < j < n we have

/-1 dk n dk
T'j = Zl‘kajkz —+ ZCL]']CE

k=1 I k= J

/-1 n

d d
= D (@ —Dag—+ Y ap—
d; p d

k=1 ]

IA

Let

M, —b+ \/(Mg +0)2 + 40N (M — My)

Q¢ =

For1<i</¢—1let

=14+ —L>1 (5.3.3)

Then for 1 <4 < /¢ —1 we have

A 1
<= wm— -2 )=
r_xi< x — ( )>+xl

k=1 ki
bt (M — M) %y My+b M,
¢+ b+ M; — M,
_ 3l(My —0)? + (M + b)? + 4b S (M — My) = 2M7 — 2b% + 4bMy) + ¢ M;
P+ 0+ M; — M,

_ O7 + Pub — G My + o M;
G + b+ M; — M,

= ¢r.

For ¢ < j < n we have

/—1
T < (ka_(€_1)> —|—Mg
k=1

_ b Zi_:11<Mk — My) + oMy + bM,

Ge+b
LD (M — M) + 2My/ (Mo + )2 + 4TS (My, — My) + 2M7 + 260
N Q¢+ b
_ ¢7 + ¢eb
o+ b
= (bZ'

Hence by Theorem 2.4.2,

p(T) = p(B) < max{r;} < o.

1<i<n
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The first part of Theorem 5.3.1 follows.

Suppose My = My = --- = M,. Then p(I') = M; = ¢, by Theorem 5.2.1. Hence

the equality in Theorem 5.3.1 follows.

To prove the necessary condition, suppose p(I') = ¢,. Applying Theorem 2.4.2

and the inequalities in (5.3.1) and (5.3.2), ¢, = p(I') < maxj<i<, 7 < ¢p. Hence

=719 =--- =7, = ¢y, and the equalities in (5.3.1) and (5.3.2) hold. In particular,
d
b= aikf (5.3.4)

forany 1 <i<mand 1<k </¢—1withz,—1>0, and M, = M,. We consider

three cases:

(i) Suppose My = M, : Clearly My =M,

(ii) My_y > My, = My for some 3 < t.< €. Then'zy > 1for 1 <k <t—1hy

(5.3.3). Hence by (5.3.4)

dy d
b = —_— = —_— = 1
a12 4 a21 s )
and d; = n — 1 for all ¢ =1,2;---;n. This implies I'‘is regular, a contradiction.

(111) My > My = M, : Then z; > 1 by (533) Hence by (534), b = aﬂdl/di
for 2 < i <n. Henced, =n—1landdy, =d3 = --- = d, = (n—1)/b. Then
(n—1)/b= M, > My =M, = (n—1)/b—1+b. This implies b < 1, a contradiction.

This completes the proof of the theorem.

[
Note that Theorem 5.2.2 is a special case of Theorem 5.3.1 by taking b = a and
¢ = 2. The proof of Theorem 1.4 is a subtle application of Perron-Frobenius Theorem.

This idea was previously employed in [28, 36]. Indeed, our proof is an edited version

of the proof of Theorem 1.7 in [28].
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5.4 The Shape of the Sequence ¢, ¢, ..., 0,

In this section, we investigate the lowest upper bound among the choices of b and
{. Given a decreasing sequence M; > My > --- > M, of positive integers, consider the

functions

My — @+ (M, + 2)? + 42 2N (M, - My)

Po(z) = 5

for x € [1,00). Note that ¢,(b) is the upper bound of p(T') in Theorem 5.3.1.

The following proposition shows that the smaller the b in Theorem 5.3.1 is, the

lower the upper bound of p(I") reaches.
Proposition 5.4.1. For any 1 < { <n, ¢,(z) is increasing on [1,00).
Proof. For convenience, let -
S = z_: M= Mp):
To show that ¢,(x) is increasing on [ll,zolo), it is sufficient to show that the derivative

of ¢¢(x) is nonnegativesThis follows from the following equivalent steps.

@)= 0
M 2
o S Me T2 B2BRN
\/(Mg+$)2+45$
M,
o ¢ +ax+ 28 >
V(M + 2)? + 45z
& (My+ 2 +28)* > (My+z)* +4Sx
& 4SM, +45* > 0.

]

Note that for 1 < s < n —1, My = My, implies ¢s(x) = ¢sy1(z). We adopt
the same viewpoint as [28, Proposition 3.1] to describe when the bound gets improved

throughout the sequence ¢;(x), ¢a(x), ..., ¢,(z) in the following proposition.
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Proposition 5.4.2. Suppose My > M .1 for some 1 < s <n —1, and let the symbol

= denote > or =. Then

¢s(x) = Psi1(z) iff ZMZ = xs(s —1).

Proof. Consider the following equivalent relations step by step.

(bs(x) > ¢s+1 (LU)

s—1
& My — Mg+ | (M, +2)? +4x Z(Mi — M,)

i=1

> | (Mypr +2)2+ 42 (M; — Mgy

=1

s—1
& (M, + )2+ 42 Y (M; — M,) > 22s — (M, + x)

i=1

& (M +x)* + 4z Z(MZ — M,) > 4a”s* <das(M, + x) + (M, + x)*

=1
& ZM’ > xs(§ — 1),
i=1

where the third relation.is obtained from the second by taking square on both sides,
simplifying it, and deleting the common term-M, ~ M,,,. Note that even if 2xs —

(Mg 4+ x) < 0 in the third relation, squaring both sides would be proper since then

\/(]\4S + )2 4 4o S (M — M) 2 M, + | > 225 — (M, + x)|. Similarly, note that
if Y7 | M; = xs(s — 1), then M, < zs and 2zs — (M, + z) > 0. Hence

¢s(2) = Pst1(2) (5.4.1)

s—1
& (Mg + x)? + 4x Z(.MZ — M) =2xs — (M + x)

=1

& (M, +2)*+4x Z(MZ — M,) = 42°s® — das(M, + x) + (M, + x)*

=1

& ZMl =xs(s —1).
i=1

46



The following corollary shows that Theorem 5.2.2 is an improvement of Theo-

rem 5.2.1.
Corollary 5.4.3. For any x € [1,00), ¢a(x) < My with equality iff My = M.

Proof. 1f My = M, then ¢o(x) = My < M;. Suppose My < M;. Choose s =1 and the

symbol > to be > in Proposition 5.4.2,

M, = qbl(l‘) > ¢2($)
0

Choosing b = max {d;/d; | i ~ j}, by Proposition 5.4.2 with s = 2 and x = b, if
My > My and M; + My > 2b, then ¢o(b) > ¢3(b). This is a case when Theorem 5.3.1

is truly an improvement of Theorem5:2:2:

Example 5.4.4. In the following graph, M, = My =4, M3 =7/2, b = 4/3, ¢1(b) =
h2(b) = 4, ¢3(b) = 3.762,.and p(Fy= 1 + /7 = 3.646.

Figure 11. A graph with ¢o > ¢5.

Note that ¢y (z) = M; > ¢o(x) by Corollary 5.4.3, and for 2 <t <n—1,31_ M; <
xt(t—1) implies M; < x(t—1), and hence 3041 M; < at(t—1)+x(t—1) < xt(t+1). This

implies that the sequence ¢1(z), p2(z), ..., ¢,(x) is composed by two parts. The first
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part is decreasing and the second part is increasing. In particular, if we choose x = My,
My > Ms, s = 2, and > to be > in Proposition 5.4.2, then M; + My # 2M; = zs(s—1),

S0 ¢2(Mi) < ¢3(Mi). Hence ¢o(My) is smallest among ¢1 (M), p2(M), ..., ¢n(Mi).

The results in this chapter have been included in the following paper.
“Y. Huang and C. Weng, Spectral radius and average 2-degree sequence of a graph,

to appear.”
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