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群試設計，距離正則圖，圖譜理論及它們的關連

ᏢғǺ໳േ୻ ЎדᏤ௲௤Ǻશࡰ

୯ ҥ Ҭ ೯ ε Ꮲ

ᔈ Ҕ ኧ Ꮲ س

ᄔा

群試設計Ԗ๱ᑔᔠ DNA ׇӈ的ᔈҔǶࣁӢᔈ൨פ群試設計಍΋܄
的ࡌᄬ，群試ޜ໔р౜ӧ߻Γ的ࣴزύǶ群試ޜ໔ࢂ΋ঁԖજୃׇ໣

ᅈىаΠచҹǺ؂΋ϡન΢БϡનᏤр的ୃׇη໣֡ڀচη܄Ƕך們

ว౜ӧЎ᝘ύς೏ుΕࣴز的൳Ֆ඲਱่ᄬΨࢂ群試ޜ໔，ӢԜӧӕ

΋ࢎᄬΠගٮΑ೚ӭ的群試設計ǶਥᏵ࣬ӕ的ཷך，ۺ們ΨёаճҔ

΋ঁ距離正則圖及ځ距離正則η圖ٰࡌᄬ群試ޜ໔，ӢԜך們ࣴزӵ

Ֆӧ๏ۓ距離正則圖ύࡌᄬр距離正則η圖ǶճҔԜ่݀ך們ှ،΋

ᜪ距離正則圖的ӸӧୢᚒǶ距離正則圖தа฻ဦ௃׎р౜ӧಔӝᏢ܈

ጕ܄жኧ࣬關ό฻Ԅύ，ӵӕך們ӧኧӈ的ᆉ൳ό฻Ԅύـ܌，฻ဦ

௃׎วғӧኧӈࢌڀᅿೕࡓ的ݩރǶԵቾ๏ۓ圖ჹᔈ的ᎃௗંତ的ന

ε੝ቻॶ，ך們ډפ΋٤ྗዴ的΢ࣚ，ၲډ΢ࣚ的圖Ψᅈى΋ᅿ੝ਸ

的ೕ܄ࡓǶ

關ᗖӷǺ群試ޜ໔，群試設計，Ԗજୃׇ໣，চη܄，൳Ֆ඲਱，

距離正則圖Ƕ
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Pooling Designs, Distance-regular Graphs,
Spectral Graph Theory and Their Links

StudentǺYu-Pei Huang AdvisorǺChih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

This dissertation contains three quite different subjects: posets, distance-regular graphs,
and spectral graph theory. Motivated by the constructions of pooling designs, we study
these three subjects through interesting links among them. A pooling space is a ranked
poset P such that the subposet w+ induced by the elements above w is atomic for each
element w of P . Pooling spaces were introduced in [Discrete Mathematics 282:163-169,
2004] for the purpose of giving a uniform way to construct pooling designs, which have
applications to the screening of DNA sequences. We find that a geometric lattice, a
well-studied structure in literature, is also a pooling space. This provides us many
classes of pooling designs, some old and some new. Following the same concept, the
poset constructed from a distance-regular graph with its distance-regular subgraphs is
also a pooling space. For a special class of distance-regular graphs, we show the exis-
tence of their distance-regular subgraphs with any given diameter. The nonexistence
of a class of distance-regular graphs follows from the line of study. Distance-regular
graphs appear often in some extremal class of combinatorial or linear algebraic in-
equalities. As we can see from the inequality of arithmetic and geometric means of
a sequence of positive real numbers, the equality occurs when the sequence has some
regular patterns. We consider the maximum eigenvalues of the adjacency matrices of
graphs and present sharp upper bounds of them. The graphs which attain the bounds
also satisfy a special kind of regularity.

Keywords: pooling spaces, pooling designs, ranked posets, atomic, geometric lattices,
distance-regular graphs.
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Chapter 1

Introduction

Group testing is a topic about strategies of experiment arrangements. The main

idea behind it is that when we want to find some relatively few abnormal items out

of a large set of items, testing items gathering together should be efficient with some

smart arrangements. In 1964, W. H. Kautz and R. C. Singleton [23] introduced the

now so-called disjunct matrices that are useful for us to deal with the group testing

problems. With the error-tolerance ability being considered, the concepts of bd-disjunct

matrices, a generalization of the original disjunct matrices, was introduced by A. G.

D’yachkov, V. V. Rykov, and A. M. Rachad in 1983 [11]. A binary matrix M is bd-

disjunct if for any b + 1 columns x, x1, x2, . . . , xb of M with x different to the others,

there exist d+ 1 rows such that x has values 1, and x1, x2, . . . , xb all have values 0 at

these d + 1 rows. In particular, a b0-disjunct matrix is also called a b-disjunct matrix

for short. A bd-disjunct matrix can be used to construct an error-tolerable design for

non-adaptive group testing, which has applications to the screening of DNA sequences,

and the corresponding decoding algorithm is efficient. See [9, 18] for details. Hence a

bd-disjunct matrix is also called a pooling design.

The constructions of bd-disjunct matrices were given by many authors, e.g. [29,

30, 32, 10]. These constructions use some properties of a ranked poset. In [19], the

name pooling spaces was given to describe these ranked posets (formal definition in

Section 3.1). Fix a pooling space P and positive integers r < k. Let M denote the

incidence matrix between the rank r elements and the rank k elements in P . It was

shown in [19] that M is bd-disjunct for b = r and d = 0. A binary matrix is fully bd-

disjunct if it is bd-disjunct but neither bd+1- nor (b+1)d-disjunct. Some fully bd-disjunct

matrices are given in [10].
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So far we know that the incidence relation between two levels in a pooling space

can help us to construct pooling designs. Roughly speaking, the supporting structure

behind the pooling space must be “good” enough. In particular, the poset of distance-

regular subgraphs in a given distance-regular graph (formal definition in Section 2.2),

ordered by the containment relation between subgraphs, forms a pooling space [40].

r rr rr rr r

Figure 1. A distance-regular graph with many distance-regular
subgraphs.

In Figure 1, the distance-regular subgraphs of this “cube” are the “points”, “edges”,

“faces”, and the “cube” itself. In general, the determination of distance-regular sub-

graphs may not be so obvious. With some restrictions on the intersection numbers of

a distance-regular graph, we introduce a systematical way in Chapter 4 that helps us

to construct distance-regular subgraphs of it. The results involved also help us to show

the nonexistence of a class of distance-regular graphs.

Distance-regular graphs appear often in some extremal class of combinatorial or

linear algebraic inequalities. For example it is well-known that the number of edges of

a graph of girth 5 and order n is at most n
√
n−1
2

, and its maximum number of edges is

attained when the graph is distance-regular [27, Theorem 4.2]. Sometimes other graphs

with certain regularity appear as extremal class. For example, the average degree of a

graph is at most the maximum eigenvalue of its adjacency matrix, and a regular graph

attains the maximum [5, Lemma 3.2.1]. As we can see from the inequality of arithmetic

and geometric means of a sequence of positive real numbers, extremal conditions for

inequalities occur when the sequence has some regular pattern. In the last chapter of

this dissertation, we consider the maximum eigenvalues of the adjacency matrices of

graphs, and present sharp upper bounds of them. The graphs attain the bound also

satisfy a special kind of regularity.
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Chapter 2

Preliminaries

In this chapter we review some definitions and basic concepts concerning graphs,

distance-regular graphs, posets, nonnegative matrices, and binomial coefficients.

2.1 Graphs

A graph Γ is an ordered pair (X,R) consisting of a finite vertex set X and an edge

set R where each element in R is a 2-element subset of X. Two vertices x, y ∈ X

are adjacent if {x, y} ∈ R and we use x ∼ y to denote that x, y are adjacent. A path

between vertices x and y in Γ is a sequence x0, x1, · · · , xℓ of distinct vertices where

x0 = x and xℓ = y, such that xi ∼ xi+1 for i = 0, 1, · · · , ℓ− 1. The length of a path is

the number of edges on it. The distance between x, y ∈ X is the length of the shortest

path between x and y and is denoted by ∂(x, y). The diameter D of Γ is defined as

D:=max{ ∂(x, y) | x, y ∈ X}. For a vertex x ∈ X and an integer 0 ≤ i ≤ D, set

Γi(x) := { z ∈ X | ∂(x, z) = i}. The valency of a vertex x ∈ X is the cardinality

of Γ1(x) and is denoted by dx. For the adjacency matrix A = (axy) of Γ, we mean a

binary square matrix of order |X| with rows and columns indexed by the vertices in

X, such that for any pair x, y ∈ X, axy = 1 iff x ∼ y.

A cycle of length ℓ, denoted by Cℓ, is a graph with ℓ vertices and ℓ edges whose

vertices can be placed around a circle so that two vertices are adjacent if and only if

they appear consequently along the cycle. The girth of a graph with a cycle is the

length of its shortest cycle.
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2.2 Distance-regular Graphs

A graph Γ = (X,R) is called regular (with valency k) if each vertex in X has valency

k. A graph Γ is said to be distance-regular whenever for all integers 0 ≤ h, i, j ≤ D,

and all vertices x, y ∈ X with ∂(x, y) = h, the number

phij = |Γi(x) ∩ Γj(y)|

is independent of x, y. The constants phij are known as the intersection numbers of Γ.

Suppose that Γ = (X,R) is a distance-regular graph with diameter D ≥ 3. For two

vertices x, y ∈ X, with ∂(x, y) = i, set

B(x, y) := Γ1(x) ∩ Γi+1(y),

C(x, y) := Γ1(x) ∩ Γi−1(y),

A(x, y) := Γ1(x) ∩ Γi(y).

Note that

|B(x, y)| = pi1 i+1,

|C(x, y)| = pi1 i−1,

|A(x, y)| = pi1 i

are independent of x, y. For convenience, set ci := pi1 i−1 for 1 ≤ i ≤ D, ai := pi1 i for

0 ≤ i ≤ D, bi := pi1 i+1 for 0 ≤ i ≤ D − 1 and put bD := 0, c0 := 0. Note that k := b0

is the valency of each vertex in Γ. It is immediate from the definition of phij that bi ̸= 0

for 0 ≤ i ≤ D − 1 and ci ̸= 0 for 1 ≤ i ≤ D. Moreover

k = ai + bi + ci for 0 ≤ i ≤ D. (2.2.1)

2.3 Posets

Let P denote a finite set. By a partial order on P, we mean a binary relation ≤ on

P such that

(i) x ≤ x for x ∈ P,

(ii) x ≤ y and y ≤ z =⇒ x ≤ z for x, y, z ∈ P,

4



(iii) x ≤ y and y ≤ x =⇒ x = y for x, y ∈ P.

By a partially ordered set (or poset, for short), we mean a pair (P,≤), where P is a

finite set, and where ≤ is a partial order on P. We may suppress reference to ≤, and

just write P instead of (P,≤) if no confusion occurs. Let P denote a poset with partial

order ≤, and let x and y denote any two elements in P. As usual, we write x < y

whenever x ≤ y and x ̸= y, and write x ̸< y whenever x < y is not true. We say that

y covers x whenever x < y, and there is no z ∈ P such that x < z < y. A sequence

x0, x1, . . . , xt of elements of P is said to be a direct chain of length t whenever xi covers

xi−1 for 1 ≤ i ≤ t. A poset can be described by a diagram in the plane in which the

elements are corresponding to dots, and y covers x whenever dot y is placed above dot

x with an edge connecting them. See Figure 2 for the diagram of the poset with five

elements {0, x, y, z, w}, and x, y cover 0; z, w cover both x and y. Note that 0, x, z is a

direct chain of length 2.

e
e e
e e

@
@@

�
��

������

HHHHHH

0

x y

z w

Figure 2. A poset.

Let P denote any finite poset, and let S denote any subset of P. Then there is a

unique partial order on S such that for all x, y ∈ S, x ≤ y in S if and only if x ≤ y in P.

This partial order is said to be induced from P. By a subposet of P, we mean a subset

of P, together with the partial order induced from P. An element x ∈ S is said to be

minimal (resp. maximal) in S whenever there is no y ∈ S such that y < x (resp. x < y).

Let min(S) (resp. max(S)) denote the set of all minimal (resp. maximal) elements in

P. Whenever min(P ) (resp. max(P )) consists of a single element, we denote it by 0

(resp. 1), and we say that P has the least element 0 (resp. the greatest element 1).

Throughout the remaining of the dissertation we assume that P is a poset with the

least element 0. By an atom in P, we mean an element in P that covers 0. We let AP

5



denote the set of atoms in P. By the interval [x, y], where x, y ∈ P with x ≤ y, we

mean the subposet

[x, y] := {z|z ∈ P, x ≤ z ≤ y}

of P.

By a rank function on P, we mean a function “rank” from P to the set of nonnegative

integers such that rank(0) = 0, and for all x, y ∈ P, y covers x implies rank(y) −

rank(x) = 1. Observe that the rank function is unique if it exists. P is said to be

ranked whenever P has a rank function. In this case, we set

rank(P ) := max{rank(x) | x ∈ P},

Pi := {x | x ∈ P, rank(x) = i},

and observe that P0 = {0}, P1 = AP . Also observe that P is ranked if and only if every

direct chain from 0 to x has the same length for any x ∈ P . Let P be a ranked poset

of rank n and fix two integers 1 ≤ r < k ≤ n. The incidence matrix M between Pr

and Pk is a |Pr| × |Pk| binary matrix with rows indexed by Pr and columns indexed by

Pk such that

Mxy :=

{
1, x ≤ y;
0, else

for x ∈ Pr, y ∈ Pk.

Let S be a subset of P. Fix z ∈ P. Then z is said to be an upper bound (resp.

lower bound) of S, if z ≥ x (resp. z ≤ x) for all x ∈ S. Suppose the subposet of upper

bounds (resp. lower bounds) of S has a unique minimal (resp. maximal) element. In

this case we call this element the least upper bound or join (resp. the greatest lower

bound or meet) of S. If S = {x1, x2, . . . , xt} we write x1 ∨ x2 ∨ · · · ∨ xt for the join

of S and x1 ∧ x2 ∧ · · · ∧ xt for the meet of S. P is said to be atomic whenever for

each nonzero element x of P, x is the join of atoms in the interval [0, x]. Suppose P is

atomic and x < y are two elements in P . Observe that the atoms in the interval [0, x]

is a proper subset of the atoms in the interval [0, y]. P is said to be a meet semi-lattice

(resp. join semi-lattice) whenever P is nonempty, and x ∧ y (resp. x ∨ y) exists for all

x, y ∈ P. A meet semi-lattice (resp. join semi-lattice) has a 0 (resp. 1). A meet and

join semi-lattice is called a lattice. Note that if a nonempty set S in a meet semi-lattice

has an upper bound then the join of S exists.
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Suppose P is a lattice. Then P is said to be upper semi-modular (resp. lower

semi-modular ) whenever for all x, y ∈ P,

y covers x ∧ y −→ x ∨ y covers x

(resp. x ∨ y covers x −→ y covers x ∧ y).

P is said to be modular whenever P is both upper semi-modular and lower semi-

modular.

Figure 3 is a diagram of an upper semi-modular lattice with 7 elements. This lattice

is not lower semi-modular since 1 = x ∨ y covers x but y does not cover 0 = x ∧ y.

e
e e

e e e
e

J
JJ



















J
JJ

J
JJ

�
�
��

@
@

@@

x y

0

1

Figure 3. An upper semi-modular lattice that is not lower semi-modular.

2.4 Nonnegative Matrices

Let A = (aij) be a square n×n matrix. We say that A is positive (resp. nonnegative)

if aij > 0 (resp. aij ≥ 0) for all i, j. We say that A is reducible if the indices 1, 2, · · · , n

can be divided into two disjoint nonempty sets i1, i2, · · · , iµ and j1, j2, · · · , jν where

µ + ν = n such that aiαjβ = 0 for α = 1, 2, · · · , µ and β = 1, 2, · · · ν. A square matrix

is called irreducible if it is not reducible. Simply consider the adjacent relation of a

graph and the definition of irreducible matrices, we have the following proposition.

Proposition 2.4.1. The adjacency matrix of a simple graph Γ is irreducible if and

only if Γ is connected.

The following theorem is a fundamental result of the study on matrix theory. It is

referred to as Perron-Frobenius Theorem [31, Chapter 2].
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Theorem 2.4.2. If B is a nonnegative irreducible n×n matrix with largest eigenvalue

ρ(B) and row-sums r1, r2, . . . , rn, then

ρ(B) ≤ max
1≤i≤n

ri,

with equality if and only if the row-sums of B are all equal.

2.5 Binomial Coefficients and Their q-analogue

For all nonnegative integers k and n, we define the binomial coefficients
(
n
k

)
as

follows.

Definition 2.5.1.

(
n

k

)
:=


0 if k > n,

1 if k = 0,

n!
k!(n−k)!

= n(n−1)···(n−k+1)
k(k−1)···1 otherwise.

A q-analogue of a known expression is a generalization of it involving a new param-

eter q such that as q → 1, the generalization returns to the original expression. The

equality

lim
q→1

1− qn

1− q
= n

suggests the q-analogue of n, known as the q-bracket or q-number of n, to be that

defined in the following definition.

Definition 2.5.2.

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

Having the q-analogue of n, we naturally define the q-factorial as follows.

Definition 2.5.3.

[n]q! := [1]q · [2]q · · · [n− 1]q · [n]q

=
1− q

1− q
· 1− q2

1− q
· · · 1− qn−1

1− q
· 1− qn

1− q

= 1 · (1 + q) · · · (1 + q + · · ·+ qn−2) · (1 + q + · · ·+ qn−1).
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From q-factorial, we also define the following q-binomial coefficients.

Definition 2.5.4. [
n

k

]
q

:=
[n]q!

[k]q![n− k]q!

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1).

In particular,
[
n
0

]
q
:= 1.

The q-binomial coefficients are also called Gaussian numbers or Gaussian coeffi-

cients. It is well known that
[
n
k

]
q

is just the number of k-dimensional subspaces of an

n-dimensional vector space over a finite field Fq [27, p. 291].
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Chapter 3

Construct Pooling Spaces from

Geometric Lattices

The name pooling space was given in [19] to describe a special class of ranked

posets which are employed to construct pooling designs. In this chapter, we clarify

a few things about the definition of pooling spaces. Then we find that a geometric

lattice, a well-studied structure in literature, is also a pooling space. This provides us

many classes of pooling designs. In particular we study the pooling designs constructed

from affine geometries and then find some of them meet the optimal bounds related to

a conjecture of Erdös, Frankl, and Füredi.

3.1 Pooling Spaces

Definition 3.1.1. Let P be a ranked poset. For any w ∈ P, define

w+ = {y ≥ w | y ∈ P}.

P is said to be a pooling space whenever w+ is atomic for each w ∈ P.

In particular a pooling space is atomic. It is immediate from the definition that if

P is a pooling space, then so is w+ for any w ∈ P.

The following theorem evolves the study of pooling spaces.

Theorem 3.1.2. [19, Corollary 3.2] Let P be a pooling space with rank D. Fix an

integer ℓ (1 ≤ ℓ ≤ D). Let M = M(D, ℓ) be the matrix over {0, 1} whose rows (resp.
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columns) are indexed by Pℓ (resp. PD) such that Muv = 1 iff u ≤ v. Then for each

integer b (1 ≤ b ≤ ℓ), M is bd-disjunct, where

d := min|
∪

[y, x] ∩ Pℓ| − 1

with the minimum taken over all pairs (x, T ) such that x ∈ PD, T ⊆ PD, x /∈ T ,

|T | ≤ b, and with the union taken over all y such that y ∈ Pb, y ≤ x, y � z for all

z ∈ T .

Lemma 3.1.3. Let P be a pooling space. Then each interval in P is atomic.

Proof. Let [x, y] be an interval in P and z ∈ [x, y] with z ̸= x. Suppose x ∈ Pi. Note

that the set of atoms contained in [x, z], no matter considered in x+ or in [x, y], is the

same set [x, z] ∩ Pi+1. Since z is the join of [x, z] ∩ Pi+1 in x+ by assumption, z is also

the join of [x, z] ∩ Pi+1 in [x, y].

Remark 3.1.4. The definition of pooling space was first given in [19]. However in

the abstract of that paper, it was stated in an alternative way that a pooling space

is a ranked poset with atomic intervals. The following example shows that this is not

correct.

Example 3.1.5. Let P = {0, x, y, z, w} and the partial order is defined as in Fig. 2

of Section 2.3. Then each interval in P is atomic. Since neither z nor w is the least

upper bound of x and y, P is not atomic. Observe that P is not a meet semi-lattice.

We now give a revised version.

Proposition 3.1.6. Let P be a ranked meet semi-lattice. Then P is a pooling space if

and only if each interval in P is atomic.

Proof. We have just proved the necessary condition in the previous lemma. To prove

the sufficient condition we fix an element w ∈ P and suppose w ∈ Ps for some integer

0 ≤ s ≤ rank(P ). We shall prove that w+ is atomic. To do this fix x ∈ w+ \ {w} and

we need to prove that x is the join of [w, x] ∩ Ps+1 in w+. By the assumption [w, x]

being atomic, x is the join of [w, x]∩Ps+1 in [w, x]. In particular, x is an upper bound
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of [w, x]∩ Ps+1. Since P is a meet semi-lattice, the upper bounds of [w, x]∩ Ps+1 have

a least element and denote it by y. Hence y ≤ x and clearly w ≤ y, so equivalently

y ∈ [w, x]. This forces x ≤ y, since x is the least upper bound and y is also an upper

bound of [w, x] ∩ Ps+1. Then we obtain x = y.

We give a poling space which is not a meet semi-lattice.

Example 3.1.7. Let P = {0, u, x, y, v, z, w} and let the partial order be defined as

in the Figure 4 below. Observe z = u ∨ x ∨ y and w = x ∨ y ∨ v. The remaining

properties of a pooling space hold trivially. Hence P is a pooling space. P is not a

meet semi-lattice since z ∧ w does not exist.

e e
e

e e
e e

@
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@

�
�
�

������

HHHHHH

0

x y

z w

u v

HHHHHH

������
�
�
�

@
@

@

Figure 4. A pooling space which is not a meet semi-lattice.

3.2 The Contractions of Graphs

Many examples of pooling spaces were given in [19]. They are related to the Ham-

ming matroids, the attenuated spaces, and six classical polar spaces. Among these

examples there is a common property: each interval is modular. In this section we will

construct pooling spaces without modular intervals. The construction in this section

also can be obtained as a consequence of our main theorem in the next section. We do

it earlier and repeatedly here for the purpose to give the readers a concrete impression

of a pooling space, and hope that one can find one’s own class of examples in the sequel.

Throughout the section let Γ denote a simple connected graph on n vertices.
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Definition 3.2.1. Let P = P (Γ) denote the set of partitions S of the vertex set V (Γ)

such that the subgraph induced by each block of S is connected. For S,Q ∈ P , define

S ≤ Q ⇐⇒ S is a refinement of Q.

The poset (P (Γ),≤) is called the poset of contractions of Γ.

Example 3.2.2. Let Γ denote a graph with the vertex set {x, y, z, w} and edge set

{xy, yz, zw, wx}, i.e. Γ is the 4-cycle C4. Then the poset P (Γ) is as in Figure 5. We

delete the single element blocks in the notation of a partition, e.g. the notation 0 is

used to denote the partition with four blocks {x}, {y}, {z}, {w} respectively, and xy

is used to denote the partition with three blocks {x, y}, {z}, {w} respectively. The

poset is a lattice, but not a modular lattice. This is because the join of xy zw and

yz wx is xyzw, which covers xy zw, but yz wx does not cover their meet 0. Observe

the subposet induced on xy+ is P (C3), the poset of contractions of a triangle.

e

ee e e
ee e ee e

e
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yzxy zw wx

xy zw xyz yzw zwx wxy yz wx

xyzw

Q
Q

Q
Q

Q
Q

Q
QQ

�
�
�

�
�
�
�

��

J
J

J
J

JJ













@
@

@
@@

������������������

�
�

�
��

@
@

@
@@

@
@

@
@@

Q
Q

Q
Q

Q
Q

QQ

��������������

���������

��������

PPPPPPPPPPPPPP

HHHHHHHHH

Figure 5. The poset P (C4) of contractions of C4.

Lemma 3.2.3. P (Γ) is a ranked poset of rank n − 1. The rank i elements are those

elements in P (Γ) with n− i blocks for 0 ≤ i ≤ n− 1.

Proof. For N ∈ P (Γ) with n−i blocks define the rank of N to be i, where 0 ≤ i ≤ n−1.

We claim that this is a rank function. Suppose that Q covers S and rank(S) = i. Since
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S is a proper refinement of Q, rank(Q) ≥ i+ 1 and there are two blocks in S that are

contained in the same block of Q. Let T be an element in P (Γ) that glues these two

blocks of S. Then S < T ≤ Q and rank(T ) = rank(S) + 1. This shows T = Q and

rank(Q) = i+ 1.

Proposition 3.2.4. P (Γ) is a pooling space of rank n− 1.

Proof. P (Γ) is ranked by previous lemma. From previous lemma and the definition,

each atom in P (Γ) contains n − 1 blocks, one block containing two adjacent vertices

and each of the remaining n − 2 blocks containing a single vertex. By identifying the

atoms with the edges of Γ we find that each element S ∈ P (Γ) is the join of those edges

contained in the induced subgraph of Γ corresponding to each block of S. This shows

that P (Γ) is atomic. More generally, for Q ∈ P (Γ), the subposet Q+ is also atomic.

This is because the subposet Q+ is isomorphic to the poset P (QΓ) of contractions of

QΓ, where QΓ is the graph with the vertex set Q, and for two distinct blocks x, y ∈ Q

x is adjacent to y whenever some vertex in x is adjacent to some vertex in y.

Remark 3.2.5. Let Γ = Kn denote the complete graph on n vertices. Then the

elements in P = P (Kn) are all the partitions of the vertex set of Kn. S(n, k) := |Pn−k|

is called the Stirling number of the second kind where k ≥ 1. It is well known that

S(n, k) can be solved by the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) for 1 ≤ k ≤ n− 1

with initial condition S(n, 0) := 0 for n ≥ 1, S(0, 0) := 1, and S(n, n) = 1 for n ≥ 1.

See [4, Section 8.2] for details.

By applying Proposition 3.2.4 and Remark 3.2.5 with the result in [19, Corollary 3.2]

we immediately have the following corollary.

Corollary 3.2.6. Let Γ denote a simple connected graph on n vertices and P = P (Γ).

Let C(Γ, k, r) denote the incidence matrix between Pr and Pk where 1 ≤ r < k ≤ n− 1.

Then C(Γ, k, r) is r-disjunct. In particular if Γ = Kn, then the matrix C(Γ, k, r) has

size S(n, n− r)× S(n, n− k).
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3.3 Geometric Lattices

The concept of geometric lattices can be described in very different ways. See [27,

Chapter 23] for details. For the purpose to derive our main result easily, we adopt the

definition that a geometric lattice is an upper semi-modular atomic lattice [27, Page

271]. We will show that a geometric lattice is a pooling space in this section. The

following lemma is immediate from the definition.

Lemma 3.3.1. Let P be an upper semi-modular lattice. Then the poset induced on

every interval of P is an upper semi-modular lattice.

Lemma 3.3.2. Let P be a geometric lattice. Then the poset induced on every interval

of P is a geometric lattice.

Proof. Let [x, y] denote an interval in P where x ∈ Pi. By previous lemma, it remains

to show [x, y] is atomic. Fix z ∈ [x, y] with z ̸= x. Suppose that w is the join of

Pi+1 ∩ [x, z], the atoms in [x, z]. Then w ≤ z. We are done if w = z, so assume

w < z. Then there exists an atom in a ∈ [0, z] \ [0, w]. Note that a ̸< x. By the

upper semi-modularity, a ∨ x ∈ Pi+1 ∩ [x, z] is an atom in [x, z], a contradiction to

a ∨ x ̸< w.

Lemma 3.3.3. An upper semi-modular lattice is ranked. In particular, a geometric

lattice is ranked.

Proof. Let P be an upper semi-modular lattice and suppose that P is not ranked.

Then there exists x ∈ P such that [x, 1] is not ranked, but for all atoms a of [x, 1],

[a, 1] is ranked. Pick an atom a ∈ [x, 1]. Let f be a rank function on [a, 1]. We extend

the function f to a function f ′ in [x, 1] by defining

f ′(y) :=

 f(y) + 1, if y ∈ [a, 1];

f(a ∨ y), else.

We shall prove f ′ is a rank function in [x, 1]. Suppose u, v ∈ [x, 1] and u covers v.

We need to show f ′(u) = f ′(v) + 1. This is clear if v ∈ [a, 1]. Assume v ̸∈ [a, 1].

Suppose u ∈ [a, 1]. Then u = a ∨ v and f ′(u) = f(a ∨ v) + 1 = f ′(v) + 1. Suppose
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u ̸∈ [a, 1]. Since u covers v = (a ∨ v) ∧ u, we have a ∨ u = (a ∨ v) ∨ u covers a ∨ v.

Then f ′(u) = f(a∨ u) = f(a∨ v) + 1 = f ′(v) + 1. This concludes that [x, 1] is ranked,

a contradiction.

Theorem 3.3.4. Let P be a geometric lattice. Then P is a pooling space.

Proof. P is ranked by Lemma 3.3.3. Since each interval of P is a geometry lattice by

Lemma 3.3.2, each interval is atomic. The theorem now follows from Proposition 3.1.6.

By applying Theorem 3.3.4 and Theorem 3.1.2 we immediately have the following

corollary.

Corollary 3.3.5. Let P be a geometric lattice with rank n. Let G(P, k, r) denote the

incidence matrix between Pr and Pk where 1 ≤ r < k ≤ n. Then G(P, k, r) is r-disjunct.

Many examples of geometry lattices are listed in Chapter 23 of [27]. These are

related to linear spaces, Steiner systems, affine geometries, projective geometries, and

contractions of graphs. More examples are given in [17]. In some cases the correspond-

ing results in Corollary 3.3.5 are not fully disjunct. The fully disjunct properties on

projective geometries were studied in [10].

3.4 Affine Geometries

In this section we study the fully disjunct properties of the binary matrices con-

structed from affine geometries. The idea is exactly the same as the study of projective

geometries in [10]. In fact this idea works for any geometric lattices with each inter-

val isomorphic to a projective geometry. For completeness of the dissertation, we still

provide the proof. Also there are some small computation mistakes in [10]. We will

point out these mistakes after Corollary 3.4.6. In the beginning, we give the definition

of affine geometries.

Definition 3.4.1. Let V denote an n-dimensional vector space over a finite field Fq,

where q is the number of elements in the field. Let P = P (V ) denote the poset with
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element set

P = {u+W | u ∈ V and W ⊆ V is a subspace} ∪ {∅},

where ∅ denote the empty set. The order is defined by inclusion. Note that P is a

geometric lattice of rank n + 1. P is called the affine geometry and is denoted by

AGn(Fq). The rank i elements in Pi are referred to as the affine (i− 1)-subspaces of V

for 1 ≤ i ≤ n+ 1. We say that the affine subspaces u+W and v +W are parallel for

vectors u, v ∈ V and subspace W ⊆ V.

We immediately have the following lemma.

Lemma 3.4.2. Let V denote an n-dimensional vector space over a finite field Fq. Let

u1, u2 ∈ V be elements and let W1,W2 ⊆ V be subspaces. Then u1 +W1 = u2 +W2 if

and only if W1 = W2 and u1 − u2 ∈ W1.

Lemma 3.4.3. Let V denote an n-dimensional vector space over a finite field Fq, and

A denote an affine k-subspace of V . Then the number of affine r-subspaces contained

in A is

qk−r

[
k

r

]
q

,

where r < k. These affine r-subspaces in A are partitioned into[
k

r

]
q

(3.4.1)

classes, each class consisting of qk−r parallel affine subspaces.

Proof. The parallel property defines an equivalent relation on the set of affine r-

subspaces in A. The number of equivalent classes is as in (3.4.1) and each equivalent

class consists of qk−r elements by Lemma 3.4.2.

Theorem 3.4.4. Let V denote an n-dimensional vector space over a finite field Fq.

Fix integers 1 ≤ r < k ≤ n and a positive integer b. Let A,A1, A2, . . . , Ab denote affine

k-subspaces of V with A ̸= Ai for 1 ≤ i ≤ b. Then there are at least

qk−r

[
k

r

]
q

− bqk−r−1

[
k − 1

r

]
q

(3.4.2)

affine r-subspaces contained in A and not contained in any of Ai for 1 ≤ i ≤ b.
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Proof. There are

qk−r

[
k

r

]
q

affine r-subspaces contained in A, some of them in some affine subspace A∩Ai for each

1 ≤ i ≤ b to be deducted. A ∩ Ai takes maximal coverage of these affine r-subspaces

when A ∩ Ai is an affine (k − 1)-subspace, and in this situation the number of these

affine r-subspaces is

q(k−1)−r

[
k − 1

r

]
q

.

Remark 3.4.5. For positive integers b ≤ q and k < n the number in (3.4.2) is optimal.

We choose Ai to an affine k-subspace with the meet with A corresponding to each of

the q parallel affine (k−1)-subspaces in A. Then (3.4.2) is exactly the number of affine

r-subspaces contained in A and not contained in any of Ai for 1 ≤ i ≤ b.

From Lemma 3.4.3, Theorem 3.4.4, and Remark 3.4.5 we have the following corol-

lary.

Corollary 3.4.6. Let P = AGn(Fq) and let Eq(n+1, k+1, r+1) denote the incidence

matrix between Pr+1 and Pk+1 where r < k. Let d = qk−r
[
k
r

]
q
− bqk−r−1

[
k−1
r

]
q
− 1. Then

Eq(n+ 1, k + 1, r + 1) is bd-disjunct with size

qn−r

[
n

r

]
q

× qn−k

[
n

k

]
q

,

where b is any positive integer less than q(qk − 1)

qk−r − 1
to ensure d ≥ 0 by (3.4.2). Moreover,

if k < n and b is a positive integer such that b ≤ q, if r > 0;

b ≤ q − 1, if r = 0,
(3.4.3)

then Eq(n+ 1, k + 1, r + 1) is not bd+1-disjunct.

The result in [10, Corollary 4.6] is similar to Corollary 3.4.6, but the former makes

a mistake for not separating the case r = 0 in (3.4.3) from r > 0. This mistake inherits

an earlier mistake in [10, Theorem 4.4], referring to the last line of its proof. The
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case r = 0 of (3.4.3) will be important in our following discussing. In view of (3.4.2)

b increases if and only if d decreases. We set r = 0 and b = q − 1 to be the largest

possible integer in Corollary 3.4.6 to obtain the following result.

Corollary 3.4.7. Eq(n+1, k+1, 1) is (q−1)q
k−1−1-disjunct, but not (q−1)q

k−1-disjunct,

with size qn × qn−k
[
n
k

]
q
.

We promised in the beginning of this chapter to give some matrices that meet

some optimal bound. These matrices are Eq(3, 2, 1), where q is a power of a prime.

We describe an optimal bound of an assumption below, and show the relation of this

assumption and the conjecture of Erdös, Frankl and Füredi [12] later.

Assumption: Any b-disjunct matrix of size s× t with s < t must have s ≥ (b+ 1)2.

We don’t know if the above assumption is true, but Eq(3, 2, 1) attains the equality

s = (b+1)2, since Eq(3, 2, 1) is a (q− 1)-disjunct matrix of size q2× (q2+ q) by Corol-

lary 3.4.7. In fact the above assumption is a consequence of the following conjecture

of Erdös, Frankl, and Füredi in [12]:

EFF Conjecture: Any b-disjunct matrix of size s× (b+ 1)2 must have s ≥ (b+ 1)2.

Also see [9, page 29] for the above conjecture. Suppose that EFF Conjecture is

true and suppose that the above assumption fails. Let M be a b-disjunct matrix of size

s × t with s < t, but s < (b + 1)2. If t ≥ (b + 1)2 then we obtain a b-disjunct matrix

of size s × (b + 1)2 by deleting any t − (b + 1)2 columns of M. This contradicts the

EFF Conjecture. Suppose t < (b + 1)2. Then we make a larger b-disjunct matrix by

taking the direct sum of M and the ((b + 1)2 − t) × ((b + 1)2 − t) identity matrix to

become a matrix of size ((b + 1)2 − t + s) × (b + 1)2. We also have a contradiction to

EFF Conjecture since (b+ 1)2 − t+ s < (b+ 1)2.

Note that Eq(3, 2, 1) has more columns than rows. In the similar construction of

disjunct matrices from a projective geometry of rank 3 [10], only square matrices can

be obtained.

The results in this chapter have been included in the following paper.

“H. Huang, Y. Huang, and C. Weng, More on pooling spaces, Discrete Mathematics,

308 (2008), 6330-6338.”
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Chapter 4

Distance-regular Subgraphs in a

Distance-regular Graph

Let Γ = (X,R) denote a distance-regular graph with diameter D. In this chapter,

for given 0 ≤ d ≤ D we present a systematical way to construct a distance-regular

subgraph of diameter d containing two given vertices of distance d in X. With some

previous work, this construction also helps us to build a criterion that rules out the

existence of some distance-regular graphs.

4.1 Strongly Closed Subgraphs

A sequence x, z, y of vertices of Γ is geodetic whenever

∂(x, z) + ∂(z, y) = ∂(x, y),

where ∂ is the distance function of Γ. A sequence x, z, y of vertices of Γ is weak-geodetic

whenever

∂(x, z) + ∂(z, y) ≤ ∂(x, y) + 1.

For a subset ∆ ⊆ X, ∆ is strongly closed if for any weak-geodetic sequence x, z, y of

Γ,

x, y ∈ ∆ =⇒ z ∈ ∆.

A subset ∆ of X is strongly closed with respect to a vertex x ∈ ∆ if

C(y, x) ⊆ ∆ and A(y, x) ⊆ ∆ for all y ∈ ∆. (4.1.1)
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Note that ∆ is strongly closed if and only if for any vertex x ∈ ∆, ∆ is strongly

closed with respect to x [44, Lemma 2.3]. Strongly closed subgraphs are called weak-

geodetically closed subgraphs in [44]. If a strongly closed subgraph ∆ of diameter d is

regular then it has valency ad+cd = b0−bd, where ad, cd, b0, bd are intersection numbers

of Γ. Furthermore ∆ is distance-regular with intersection numbers ai(∆) = ai(Γ) and

ci(∆) = ci(Γ) for 1 ≤ i ≤ d [44, Theorem 4.5].

4.2 D-bounded Property and Known Results

Definition 4.2.1. Γ is said to be d-bounded whenever for all x, y ∈ X with ∂(x, y) ≤ d,

there is a regular strongly closed subgraph of diameter ∂(x, y) which contains x and y.

Note that a (D − 1)-bounded distance-regular graph is clear to be D-bounded.

The properties of D-bounded distance-regular graphs were studied in [43], and these

properties were used in the classification of classical distance-regular graphs of negative

type [45].

We list a few results which will be used later in this chapter.

Theorem 4.2.2. ([44, Theorem 4.6]) Let Γ be a distance-regular graph with diameter

D ≥ 3. Let Ω be a regular subgraph of Γ with valency γ and set d := min{i | γ ≤ ci+ai}.

Then the following (i),(ii) are equivalent.

(i) Ω is strongly closed with respect to at least one vertex x ∈ Ω.

(ii) Ω is strongly closed with diameter d.

In this case γ = cd + ad.

The following Theorem is a combination of three previous results.

Theorem 4.2.3. Let Γ denote a distance-regular graph with diameter D ≥ 3. Suppose

that the intersection numbers a1, a2, c2 satisfy one of the following.

(i) [14, Theorem 2] a2 > a1 = 0, c2 > 1;

(ii) [44, Theorem 2] a1 ̸= 0, c2 > 1; or
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(iii) [38, Theorem 1.1] a2 > a1 ≥ c2 = 1.

Fix an integer 1 ≤ d ≤ D − 1 and suppose that Γ contains no parallelograms of any

lengths up to d+ 1. Then Γ is d-bounded.

We will deal with the complemental case “a1 = 0, a2 ̸= 0, and c2 = 1” in Theo-

rem 4.4.6.

4.3 The Shapes of Pentagons

Throughout this section, let Γ = (X,R) denote a distance-regular graph with di-

ameter D ≥ 3, and intersection numbers a1 = 0, a2 ̸= 0. Such graphs are also studied

in [14, 26, 33, 34, 35]. By a pentagon in Γ, we mean a 5-tuple u1u2u3u4u5 consisting

of distinct vertices in Γ such that ∂(ui, ui+1) = 1 for 1 ≤ i ≤ 4 and ∂(u5, u1) = 1.

Fix a vertex x ∈ X, a pentagon u1u2u3u4u5 has shape i1, i2, i3, i4, i5 with respect to

x if ij = ∂(x, uj) for 1 ≤ j ≤ 5. By a parallelogram of length d, we mean a 4-tuple

xyzw consisting of vertices of Γ such that ∂(x, y) = ∂(z, w) = 1, ∂(x,w) = d, and

∂(x, z) = ∂(y, w) = ∂(y, z) = d − 1. Note that any two vertices at distance 2 are

always contained in a pentagon since a2 ̸= 0, and two nonconsecutive vertices in a

pentagon of Γ have distance 2 since a1 = 0. In this section we give a few lemmas which

will be used in the next section.

Lemma 4.3.1. Let Γ be a distance-regular graph with diameter D ≥ 3. Suppose

a1 = 0, a2 ̸= 0, and Γ contains no parallelograms of lengths up to d + 1 for some

integer d ≥ 2. Let x be a vertex of Γ, and let u1u2u3u4u5 be a pentagon of Γ such that

∂(x, u1) = i− 1 and ∂(x, u3) = i+ 1 for 1 ≤ i ≤ d. Then the pentagon u1u2u3u4u5 has

shape i− 1, i, i+ 1, i+ 1, i with respect to x.

Proof. It suffices to prove ∂(x, u4) = i+ 1. We prove this by induction on i. The case

i = 1 holds otherwise ∂(x, u4) = 1 and ∂(x, u5) = 1 which contradicts the assumption

a1 = 0. Suppose i ≥ 2. Suppose to the contrary that ∂(x, u4) = i. We can choose

y ∈ C(x, u1). Thus ∂(y, u1) = i− 2 and ∂(y, u3) = i. By the induction hypothesis, the

pentagon u1u2u3u4u5 has shape i − 2, i − 1, i, i, i − 1 with respect to y. In particular,
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∂(y, u3) = ∂(y, u4) = i. Then xyu4u3 is a parallelogram of length i+1, a contradiction.

Other versions of Lemma 4.3.1 can be seen in [44, Lemma 6.9] and [38, Lemma 4.1]

under various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [14] under an additional

assumption c2 > 1, but this assumption is essentially not used in his proofs. For the

sake of completeness, we still provide the proofs.

Lemma 4.3.2. Fix an integer 1 ≤ d ≤ D − 1, and suppose Γ does not contain

parallelograms of lengths up to d + 1. Then for any two vertices z, z′ ∈ X such that

∂(x, z) ≤ d and z′ ∈ A(z, x), we have B(x, z) = B(x, z′).

Proof. By symmetry, it suffices to show B(x, z) ⊆ B(x, z′). Suppose there exists w ∈

B(x, z)\B(x, z′). Then ∂(w, z′) ̸= ∂(x, z)+1. Note that ∂(w, z′) ≤ ∂(w, x)+∂(x, z′) =

1 + ∂(x, z) and ∂(w, z′) ≥ ∂(w, z) − ∂(z, z′) = ∂(x, z). This implies ∂(w, z′) = ∂(x, z)

and wxz′z forms a parallelogram of length ∂(x, z) + 1, a contradiction.

Lemma 4.3.3. Fix integers 1 ≤ i ≤ d ≤ D − 1, and suppose Γ does not contain

parallelograms of any lengths up to d + 1. Let x be a vertex of Γ. Then there is no

pentagon of shape i, i, i, i, i+ 1 with respect to x.

Proof. Let u1u2u3u4u5 be a pentagon of shape i, i, i, i, i+1 with respect to x. We derive

a contradiction by induction on i. The case i = 1 is impossible since a1 = 0. Suppose

i ≥ 2. Note that B(x, u1) = B(x, u2) = B(x, u3) = B(x, u4) by Lemma 4.3.2. We shall

prove C(x, u1) = C(x, u2) = C(x, u3) = C(x, u4).

First we prove C(x, u1) = C(x, u2). It suffices to show C(x, u2) ⊆ C(x, u1) since

both sets have the same size ci. To the contrary suppose there exists v ∈ C(x, u2) −

C(x, u1). Note that v ∈ A(x, u1) as B(x, u1) = B(x, u2). Then B(u1, x) = B(u1, v) by

Lemma 4.3.2 and hence ∂(v, u5) = i + 1 since u5 ∈ B(u1, x). Now u2u1u5u4u3 has

shape i − 1, i, i + 1, i + 1, i with respect to v by Lemma 4.3.1, a contradiction since

v ̸∈ B(x, u4) = B(x, u2). This proves C(x, u2) ⊆ C(x, u1) as desired. By symmetry,

C(x, u3) = C(x, u4).
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It remains to show C(x, u2) ⊆ C(x, u4). To the contrary suppose there exists

u ∈ C(x, u2)−C(x, u4). Note that u ∈ A(x, u4) as B(x, u2) = B(x, u4). Then B(u4, x) =

B(u4, u) by Lemma 4.3.2 and hence ∂(u, u5) = i + 1 since u5 ∈ B(u4, x). Hence

u2u1u5u4u3 has shape i − 1, i, i + 1, i + 1, i with respect to u by Lemma 4.3.1, a con-

tradiction since u ̸∈ B(x, u4).

Pick a vertex v ∈ C(x, u1) = C(x, u2) = C(x, u3) = C(x, u4). Then u1u2u3u4u5 is

a pentagon of shape i− 1, i− 1, i− 1, i− 1, i with respect to v, a contradiction to the

inductive hypothesis.

Lemma 4.3.4. Fix integers 1 ≤ i ≤ d ≤ D − 1, and suppose Γ does not contain

parallelograms of any lengths up to d + 1. Let x be a vertex and u1u2u3u4u5 be a

pentagon of shape i, i − 1, i, i − 1, i or of shape i, i − 1, i, i − 1, i− 1 with respect to x.

Then B(x, u1) = B(x, u3).

Proof. It suffices to show B(x, u3) ⊆ B(x, u1) since both sets have the same size bi.

Pick u ∈ B(x, u3). Then ∂(u, u3) = i + 1. Since ∂(u3, u2) = 1 and ∂(x, u2) = i − 1,

then ∂(u, u2) = i and similarly ∂(u, u4) = i. Note that ∂(u, u1) ̸= i − 1, otherwise by

Lemma 4.3.1, the pentagon u1u2u3u4u5 has shape i− 1, i, i+ 1, i+ 1, i with respect to

u, a contradiction.

Suppose ∂(u, u1) = i for this moment. Then to avoid obtaining a pentagon

u5u4u3u2u1 of type i − 1, i, i + 1, i, i or a pentagon u4u5u1u2u3 of type i, i, i, i, i + 1

with respect to u we must have ∂(u, u5) = i + 1 by Lemma 4.3.1 and Lemma 4.3.3.

Then ∂(x, u5) = i by construction. Now u5u1xu is a parallelogram of length i + 1, a

contradiction.

Hence ∂(u, u1) = i+1 or equivalently u ∈ B(x, u1). This proves B(x, u3) ⊆ B(x, u1)

as desired.

The following lemma rules out a class of pentagons of certain shapes with respect

to a given vertex.

Lemma 4.3.5. Fix integers 1 ≤ i ≤ d ≤ D − 1, and suppose Γ does not contain

parallelograms of any lengths up to d+1. Let x be a vertex. Then there is no pentagon

of shape i, i, i, i+ 1, i+ 1 with respect to x.
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Proof. Suppose that u2u3u4u5u1 is a pentagon of shape i, i, i, i + 1, i + 1 with respect

to x. We derive a contradiction by induction on i. The case i = 1 is impossible since

a1 = 0. Suppose i ≥ 2. Pick v ∈ C(x, u2) and note that ∂(v, u1) = i by construction.

In particular v ̸∈ B(x, u2) and B(x, u2) = B(x, u3) = B(x, u4) by Lemma 4.3.2, so

v ∈ C(x, u4) ∪ A(x, u4). In fact v ∈ C(x, u4); otherwise ∂(v, u4) = i. By considering

the shape of the pentagon u2u1u5u4u3 with respect to v and applying Lemma 4.3.1, we

have that ∂(v, u5) = i. Hence xvu4u5 is a parallelogram of length i+1, a contradiction.

Thus ∂(v, u4) = i − 1, and by construction we now also have ∂(v, u5) = i. Note

that ∂(v, u3) = i; otherwise ∂(v, u3) = i − 1 and u2u3u4u5u1 is a pentagon of shape

i − 1, i − 1, i − 1, i, i with respect to v, a contradiction to the inductive hypothesis.

Now setting x = v in Lemma 4.3.4, we have B(v, u1) = B(v, u3), a contradiction since

x ∈ B(v, u1)−B(v, u3).

4.4 D-bounded Property and Nonexistence of Par-

allelograms

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. Fix an

integer 1 ≤ d ≤ D − 1. Throughout this section, we assume that Γ satisfies the

following conditions.

Assumption:

(i) The intersection numbers satisfy a1 = 0, a2 ̸= 0, c2 = 1, and

(ii) Γ contains no parallelograms of lengths up to d+ 1.

We shall prove the d-bounded property of Γ in this section. By the definition of strongly

closed subgraphs, the following proposition is easily seen.

Proposition 4.4.1. Suppose ∆ ⊆ X is a strongly closed subgraph of Γ and ux1vx2x3

or ux1x2vx3 is a pentagon in Γ. If u, v ∈ ∆, then x1, x2, x3 are all in ∆.

Proof. Since a1 = 0, it’s easily seen that ∂(u, v) = 2 and u, xi, v is weak-geodetic for

i = 1, 2, 3.
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We then give a definition.

Definition 4.4.2. For any vertex x ∈ X and any subset Π ⊆ X, define [x,Π] to be

the subgraph induced by the set

{v ∈ X | there exists y′ ∈ Π, such that the sequence x, v, y′ is geodetic }.

For any x, y ∈ X with ∂(x, y) = d, set

Πxy := {y′ ∈ Γd(x) | B(x, y) = B(x, y′)} (4.4.1)

and

∆(x, y) = [x,Πxy]. (4.4.2)

Note that ∆(x, y) contains x, y and Γd(x) ∩∆(x, y) = Πxy. We can also easily see

the following proposition.

Proposition 4.4.3. For x, y, z, w ∈ X and w ∈ ∆(x, y), if x, z, w is geodetic, then

z ∈ ∆(x, y).

Proof. Suppose ∂(x, y) = d, ∂(x,w) = i, and ∂(x, z) = j. Then ∂(z, w) = i − j.

By the construction of Definition 4.4.2, there exists y′ ∈ Π(x, y) such that x,w, y′ is

geodetic. Hence ∂(w, y′) = d − i. Note that ∂(z, y′) ≤ ∂(z, w) + ∂(w, y′) = d − j, and

∂(z, y′) ≥ ∂(x, y′) − ∂(x, z) = d − j. So ∂(z, y′) = d − j and thus x, z, y′ are geodetic.

Hence z ∈ ∆(x, y).

For any 1 ≤ j ≤ d, we define the following three kinds of conditions:

(Bj) For any vertices x, y ∈ X with ∂(x, y) = j, ∆(x, y) is regular strongly closed with

valency aj + cj.

(Wj) For any vertices x, y ∈ X with ∂(x, y) = j, ∆(x, y) is strongly closed with respect

to x.

(Rj) For any vertices x, y ∈ X with ∂(x, y) = j, the subgraph induced on ∆(x, y) is

regular with valency aj + cj
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By referring to Theorem 4.2.2, the statement (Bj) holds for all 1 ≤ j ≤ d is

equivalent to the combination of conditions that (Wj) and (Rj) hold for all 1 ≤ j ≤ d.

Our objective is to prove that (Bj) holds for 1 ≤ j ≤ d under the assumptions in

the beginning of this section. We use induction on j to achieve our objective. To

adequately proceed the induction process, the following two lemmas are required.

Lemma 4.4.4. Suppose (Wj), (Rj), and thus (Bj) hold in X for 1 ≤ j ≤ d− 1. For

any vertices x, y ∈ X with ∂(x, y) = d and for any vertex z ∈ ∆(x, y) ∩ Γi(x), where

1 ≤ i ≤ d, we have the following (i), (ii).

(i) A(z, x) ⊆ ∆(x, y).

(ii) For any vertex w ∈ Γi(x) ∩ Γ2(z) with B(x,w) = B(x, z), we have w ∈ ∆(x, y).

In particular (Wd) holds.

Proof. We prove (i), (ii) by induction on d − i. In the case i = d, z ∈ Π(x, y) and (i)

follows by Lemma 4.3.2, and (ii) follows from the construction of ∆(x, y) in Defini-

tion 4.4.2. Suppose i < d.

To prove (i) we note that if i = 1 then A(z, x) is an empty set as a1 = 0, clearly

contained in ∆(x, y). Hence we suppose 2 ≤ i < d in this case. We pick a vertex

v ∈ A(z, x) and show v ∈ ∆(x, y). Pick u ∈ ∆(x, y)∩Γi+1(x)∩Γ1(z). Note that (i), (ii)

hold if we use u to replace z by the inductive hypothesis. Let uu2u3vz be a pentagon

of Γ for some u2, u3 ∈ X. Note that uu2u3vz cannot have shape i+1, i, i− 1, i, i, shape

i+1, i+2, i+1, i, i by Lemma 4.3.1, cannot have shape i+1, i, i, i, i by Lemma 4.3.3, and

cannot have shape i+ 1, i+ 1, i, i, i by Lemma 4.3.5 with respect to x. Hence uu2u3vz

has shape i + 1, i + 1, i + 1, i, i or i + 1, i, i + 1, i, i with respect to x. In the first case

we have u2 ∈ A(u, x), u3 ∈ A(u2, x), and this implies u2, u3 ∈ ∆(x, y) by the inductive

hypothesis of (i). Then v ∈ ∆(x, y) by Proposition 4.4.3 since x, v, u3 is geodetic. In the

latter case we have B(x, u) = B(x, u3) by Lemma 4.3.4, and consequently u3 ∈ ∆(x, y)

by inductive hypothesis of (ii). Then v ∈ ∆(x, y) by Proposition 4.4.3 since x, v, u3 is

geodetic.
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To prove (ii) we first note that ∆(x, z) is a regular strongly closed subgraph of

diameter i by Theorem 4.2.2 (ii) and since (Bi) holds. Suppose to the contrary that

there exists w ∈ Γi(x)∩Γ2(z) with B(x,w) = B(x, z) such that w /∈ ∆(x, y). Note that

hence ∆(x, z) = ∆(x,w) by construction in Definition 4.4.2 since B(x,w) = B(x, z).

Let v2 be the unique vertex in C(w, z).

Claim 1. ∂(x, v2) = i− 1.

Proof of Claim 1. Let v2 be the vertex between w and z. Let zv2wv4v5 be a pentagon

for some v2, v4, v5 ∈ X. Since w ∈ ∆(x, z) = ∆(x,w), v2, v4, v5 ∈ ∆(x, z) by Proposi-

tion 4.4.1 and thus v2, v4, v5 ̸∈ Γi+1(x). If v2 ∈ A(z, x) then v2, w ∈ ∆(x, y) by (i), a

contradiction. Hence ∂(x, v2) = i− 1.

Let u be a vertex in ∆(x, y) ∩ Γi+1(x) ∩ Γ1(z), y3 ∈ A(u, v2), and y4 ∈ C(y3, v2).

Claim 2. The pentagon v2zuy3y4 has shape i − 1, i, i + 1, i + 1, i with respect to x.

Moreover the pentagon is contained in ∆(x, y).

Proof of Claim 2. The shape of the pentagon v2zuy3y4 is determined by Lemma 4.3.1.

Since y3 ∈ A(u, x), y3 ∈ ∆(x, y) by the inductive hypothesis of (i) since d− ∂(x, u) <

d− i.

Let w3 ∈ A(y4, w) and w4 ∈ C(w3, w).

Claim 3. The pentagon v2y4w3w4w has shape i− 1, i, i + 1, i + 1, i with respect to x

and {w3, w4} ∩ {y3, u} = ∅.

Proof of Claim 3. Note that ∆(x,w) = ∆(x, z) is strongly closed of diameter i since

Bi holds. Also note that v2 ∈ ∆(x, z). If ∂(x,w4) ≤ i then w4 ∈ ∆(x,w) and

this forces y4 ∈ ∆(x, z) by Proposition 4.4.1. For the same reason, we then have

y3 ∈ ∆(x, z) as z, y4 ∈ ∆(x, z). We have a contradiction since ∆(x, z) has diameter i

and ∂(x, y3) = i + 1 > i = diam ∆(x, z). Hence ∂(x,w4) = i + 1 and v2ww4w3y4 has

shape i− 1, i, i+ 1, i+ 1, i with respect to x by Lemma 4.3.1.

Hence by the inductive hypothesis of (i), if w3 ∈ ∆(x, y) then w4 ∈ ∆(x, y). Thus

if {w3, w4} ∩ {y3, u} ̸= ∅, then w4 ∈ ∆(x, y). Hence w ∈ ∆(x, y) by Proposition 4.4.3

since x,w,w4 is geodetic, a contradiction.
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The two pentagons v2zuy3y4 and v2y4w3w4w are shown in Figure 6.
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Figure 6. Two pentagons in the proof of Lemma 4.4.4(ii).

Claim 4. B(x, y3) ̸= B(x,w3).

Proof of Claim 4. Note that B(x, u) = B(x, y3) and B(x,w3) = B(x,w4) by Lemma 4.3.2.

If B(x, y3) = B(x,w3) then by the inductive hypothesis of (ii) we have w3 ∈ ∆(x, y).

We then have w4 ∈ ∆(x, y) by the inductive hypothesis of (i). Thus w ∈ ∆(x, y) by

Proposition 4.4.3, a contradiction.

Let p3 ∈ A(y3, w3) and p4 ∈ C(p3, w3).

Claim 5. The pentagon y4y3p3p4w3 has shape i, i+1, i+2, i+2, i+1 with respect to

x.

Proof of Claim 5. Since p3 is adjacent to y3, ∂(x, p3) = i, i + 1 or i + 2. Suppose

∂(x, p3) = i+1, then ∂(x, p4) ̸= i+2 by Lemma 4.3.1, ∂(x, p4) ̸= i+1 by Lemma 4.3.2,

and ∂(x, p4) ̸= i by Lemma 4.3.4, a contradiction. Suppose ∂(x, p3) = i, then ∂(x, p4) ̸=

i−1 by Lemma 4.3.1, ∂(x, p4) ̸= i by Lemma 4.3.4, and ∂(x, p4) ̸= i+1 by Lemma 4.3.4,

also a contradiction. Thus ∂(x, p3) = i + 2 and the pentagon y4y3p3p4w3 has shape

i, i+ 1, i+ 2, i+ 2, i+ 1 with respect to x by Lemma 4.3.1.

Now we have three pentagons and their shapes with respect to x as shown in Figure

7.
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Figure 7. Three pentagons in the proof of Lemma 4.4.4(ii).

Claim 6. B(x, y4) ̸= B(x, z) and thus B(x, y4)−B(x, z) ̸= ∅.

Proof of Claim 6. If B(x, y4) = B(x, z), then ∆(x, y4) = ∆(x, z), a strongly closed

subgraph of diameter i. Since y4, z ∈ ∆(x, z), we have y3 ∈ ∆(x, z) by Proposition 4.4.1

and ∂(x, y3) = i+1, which is a contradiction as before. The fact B(x, y4)−B(x, z) ̸= ∅

is easily seen since |B(x, y4)| = |B(x, z)| = bi.

Pick p ∈ B(x, y4)−B(x, z).

Claim 7. ∂(p, z) = i.

Proof of Claim 7. Note that ∂(p, y4) = i+1 under this assumption. Also note that for

this moment ∂(p, z) = i− 1 or i.

Suppose ∂(p, z) = i− 1. Then zv2y4y3u is a pentagon of shape i− 1, i, i+ 1, i+ 1, i

with respect to p by Lemma 4.3.1. Since p3 is adjacent to both y3 and ∂(x, p3) = i+2,

we have ∂(p, p3) = i+ 2 or i+ 1.

Next we show that ∂(p, p3) = i+2. If ∂(p, p3) = i+1 then xpy3p3 is a parallelogram

of length i+ 2 ≤ d+ 1, a contradiction. Thus ∂(p, p3) = i+ 2.

Next we show that ∂(p, w3) = i + 2. We know that ∂(p, w3) = i, i + 1 or i + 2.

Consider the shape of the pentagon y4y3p3p4w3 with respect to p. We have ∂(p, w3) ̸= i

by Lemma 4.3.1. If ∂(p, w3) = i + 1, then ∂(p, p4) ̸= i + 1 by Lemma 4.3.3, and
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∂(p, p4) ̸= i+2 by Lemma 4.3.5, a contradiction to the fact that p4 is adjacent to both

w3 and p3. Thus we have ∂(p, w3) = i+ 2.

We finally consider the shape of the pentagon v2y4w3w4w with respect to p and

get a contradiction. Consider the relative distance among x, p, v2, and y4, we have

∂(p, v2) = i. Hence v2y4w3w4w is a pentagon of shape i, i + 1, i + 2, i + 2, i + 1 with

respect to p by Lemma 4.3.1. That is p ∈ B(x,w), a contradiction to our assumptions

B(x, z) = B(x,w) and p ∈ B(x, y4)−B(x, z).

Claim 8. ∂(p, w) = i.

Proof of Claim 8. We know that ∂(p, w) = i − 1, i or i + 1 since p is adjacent to x

and ∂(x,w) = i. Suppose ∂(p, w) = i + 1, then p ∈ B(x,w) but p /∈ B(x, z) which is

a contradiction to our assumption that B(x,w) = B(x, z). Hence ∂(p, w) = i− 1 or i.

Most of the following arguments are similar as the ones in the previous Step 7.

Suppose ∂(p, w) = i − 1. First we have that the pentagon wv2y4w3w4 is of shape

i− 1, i, i+ 1, i+ 1, i with respect to p by Lemma 4.3.1.

Next we show that then ∂(p, p4) = i+ 2. To avoid xpw3p4 to be a parallelogram of

length i+ 2 ≤ d+ 1, we have ∂(p, p4) = i+ 2.

Then we show that ∂(p, y3) = i + 2. By applying Lemma 4.3.1, Lemma 4.3.3, and

Lemma 4.3.5 to the pentagon y4w3p4p3y3, we have that ∂(p, y3) = i+ 2.

We finally consider the shape of the pentagon v2y4y3uz with respect to p and get a

contradiction. Consequently v2y4y3uz is a pentagon of shape i, i + 1, i + 2, i + 2, i + 1

with respect to p by Lemma 4.3.1, which is a contradiction to ∂(p, z) = i.

Claim 9 ∂(p, u) = ∂(p, w4) = i+ 1.

Proof of Claim 9. Since ∂(p, z) = ∂(x, z) = i, we have p ∈ A(x, z) and thus B(z, x) =

B(z, p) by Lemma 4.3.2, in particular ∂(p, u) = i+ 1. Similarly, ∂(p, w4) = i+ 1.

Claim 10. ∂(p, y3) = i.

Proof of Claim 10. As p ̸∈ B(x, u) = B(x, y3), we have ∂(p, y3) = i or i + 1. We shall

prove ∂(p, y3) = i.

Suppose ∂(p, y3) = i + 1. We first show that ∂(p, p3) = i + 2. By applying

Lemma 4.3.2 we have B(y3, x) = B(y3, p). Then as p3 ∈ B(y3, x) = B(y3, p), ∂(p, p3) =
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i+ 2.

Next we show that ∂(p, w3) = i+2. Applying Lemma 4.3.3 and Lemma 4.3.5 to the

pentagon w3y4y3p3p4 and considering its shape with respect to p, we find ∂(p, w3) ̸=

i + 1. Applying Lemma 4.3.1 to the pentagon w3p4p3y3y4, we find ∂(p, w3) ̸= i. Thus

∂(p, w3) = i+ 2.

We finally get a contradiction that pxw4w3 is a parallelogram of length i+2 ≤ d+1.

Claim 11. ∂(p, w3) = i.

Proof of Claim 11. Similar as the arguments in the previous Step 10, as p ̸∈ B(x,w4) =

B(x,w3), we have ∂(p, w3) = i or i+1. Suppose ∂(p, w3) = i+1. Applying Lemma 4.3.1

to the pentagon y3p3p4w3y4, we then find ∂(p, p4) ̸= i + 2 and thus ∂(p, p4) = i + 1.

Then xpw3p4 us a parallelogram of length i+ 2 ≤ d+ 1, a contradiction.

We finally consider the shape of the pentagon p4w3y4y3p3 with respect to p to get a

final contradiction. Since ∂(x, p3) = i+2 and ∂(p, y3) = i, we have ∂(p, p3) = i+1 and

similarly ∂(p, p4) = i + 1. To sum up, the pentagon p4w3y4y3p3 has shape i + 1, i, i +

1, i, i+1 with respect to p. However, Lemma 4.3.4 now yields that B(p, p4) = B(p, y4),

which is a contradiction since x ∈ B(p, p4) and x ∈ C(p, y4). Consequently, w ∈ ∆(x, y)

and this completes the (ii) part of this lemma.

By (i) we have A(z, x) ⊆ ∆(x, y) and by Proposition 4.4.3 we also have C(z, x) ⊆

∆(x, y). Hence (Wd) holds by (4.1.1).

The following lemma proves (Rd) and hence completes the remaining of our goal.

Lemma 4.4.5. Suppose (Wj), (Rj), and thus (Bj) hold in X for 1 ≤ j ≤ d− 1. For

any vertices x, y ∈ X with ∂(x, y) = d, ∆(x, y) is regular with valency ad + cd.

Proof. Set ∆ = ∆(x, y). Clearly for any v ∈ ∆, the construction ensures us that

∂(x, v) ≤ d. Hence B(y′, x)∩∆ = ∅ for any y′ ∈ Πxy. Applying Lemma 4.4.4, we have

|Γ1(y
′)∩∆| = ad + cd for any y′ ∈ Πxy. Next we show |Γ1(x)∩∆| = ad + cd. Note that

y ∈ ∆ ∩ Γd(x) by construction of ∆. For any z ∈ C(x, y) ∪ A(x, y),

∂(x, z) + ∂(z, y) ≤ ∂(x, y) + 1.
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This implies z ∈ ∆ since ∆ is strongly closed with respect to x by Lemma 4.4.4. Hence

C(x, y) ∪A(x, y) ⊆ ∆. Suppose B(x, y) ∩∆ ̸= ∅. Choose t ∈ B(x, y) ∩∆. Then there

exists y′ ∈ Πxy such that t ∈ C(x, y′), a contradiction to B(x, y) = B(x, y′). Hence

B(x, y)∩∆ = ∅ and Γ1(x)∩∆ = C(x, y)∪A(x, y). This proves |Γ1(x)∩∆| = ad+ cd.

Since each vertex in ∆ appears in a sequence of vertices x = x0, x1, . . . , xd in ∆,

where ∂(x, xℓ) = ℓ, ∂(xℓ−1, xℓ) = 1 for 1 ≤ ℓ ≤ d, and xd ∈ Πxy, it suffices to show

|Γ1(xi) ∩∆| = ad + cd (4.4.3)

for 1 ≤ i ≤ d− 1. For each integer 1 ≤ i ≤ d, we show

|Γ1(xi−1) \∆| ≤ |Γ1(xi) \∆| (4.4.4)

by the 2-way counting of the number of the pairs (z, s) for z ∈ Γ1(xi−1) \ ∆, s ∈

Γ1(xi) \ ∆ and ∂(z, s) = 2. For a fixed s ∈ Γ1(xi) \ ∆, we have ∂(s, xi−1) = 2 since

a1 = 0. Hence such a z must be one of the a2 vertices in A(xi−1, s). The number of

such pairs (z, s) is thus at most |Γ1(xi) \∆|a2.

On the other hand, we show this number is |Γ1(xi−1) \ ∆|a2 exactly. Fix a z ∈

Γ1(xi−1) \ ∆. Note that ∂(x, z) = i by Lemma 4.4.4, and ∂(xi, z) = 2 since a1 = 0.

Pick any s ∈ A(xi, z). We shall prove s ̸∈ ∆. Suppose to the contrary s ∈ ∆ in

the below arguments and choose any w ∈ C(s, z). Note that ∂(x, s) ≤ i, otherwise

∂(x, s) = i+1 and the pentagon xi−1xiswz has shape i− 1, i, i+1, i+1, i with respect

to x by Lemma 4.3.1. Thus w ∈ A(s, x) and then w ∈ ∆ by Lemma 4.4.4(i). This

forces z ∈ ∆ by Proposition 4.4.3, a contradiction. We also have ∂(x,w) ≤ i by

considering the shape of the pentagon xi−1zwsxi with respect to x and Lemma 4.3.1.

If s ∈ A(xi, x), w ∈ A(s, x), and z ∈ A(w, x), then z ∈ ∆ by Lemma 4.4.4(i), a

contradiction. Hence ∂(x,w) ≤ i− 1 or ∂(x, s) ≤ i− 1. Applying Lemma 4.3.4 to the

pentagon xixi−1zws in the remaining cases we have B(x, z) = B(x, xi) and then z ∈ ∆

by Lemma 4.4.4(ii), a contradiction.

From the above counting, we have

|Γ1(xi−1) \∆|a2 ≤ |Γ1(xi) \∆|a2 (4.4.5)
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for 1 ≤ i ≤ d. Eliminating a2 from (4.4.5), we find (4.4.4) or equivalently

|Γ1(xi−1) ∩∆| ≥ |Γ1(xi) ∩∆| (4.4.6)

for 1 ≤ i ≤ d. We have shown previously |Γ1(x0)∩∆| = |Γ1(xd)∩∆| = ad + cd. Hence

(4.4.3) follows from (4.4.6).

Theorem 4.4.6. Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3,

and intersection numbers a1 = 0, a2 ̸= 0, and c2 = 1. Fix an integer 1 ≤ d ≤ D − 1

and suppose that Γ contains no parallelograms of any lengths up to d + 1. Then Γ is

d-bounded.

Proof. For 1 ≤ j ≤ d, we prove (Wj) and (Rj) by induction on j. Since a1 = 0,

there are no edges in Γ1(x) for any vertex x ∈ X. If d = 1 in Definition 4.4.2, then

Πxy = {y} since for any other y′ ∈ Γ1(x), y′ ∈ B(x, y) but y′ /∈ B(x, y′). Consequently

∆(x, y) = {x, y} is an edge; in particular ∆(x, y) is regular with valency 1 = a1 + c1

and is strongly closed with respect to x since a1 = 0. This proves (R1) and (W1). For

d ≥ 2, assume (Wj), (Rj) and thus (Bj) hold for 1 ≤ j ≤ d − 1. By Lemma 4.4.4

and Lemma 4.4.5, we have that (Wd), (Rd), and thus (Bd) hold. Then the proof is

completed.

Theorem 4.4.6 answers the problem proposed in [44, p. 299] and is a generalization

of [5, Lemma 4.3.13], [34]. Recall that Theorem 4.2.3 (i) was proved by A. Hiraki [14].

Indeed for the lemmas stated independently in Section 4.3 we are inspired by some

lemmas in [14].

Combining Theorem 4.2.3 and Theorem 4.4.6, the following characterization of d-

bounded distance-regular graphs is completed.

Theorem 4.4.7. Suppose Γ is a distance-regular graph with diameter D ≥ 3 and the

intersection number a2 ̸= 0. Fix an integer 2 ≤ d ≤ D − 1. Then the following two

conditions (i), (ii) are equivalent:

(i) Γ is d-bounded.
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(ii) Γ contains no parallelograms of any lengths up to d+ 1 and b1 > b2.

Proof. ((i) ⇒ (ii)) Suppose that Γ is d-bounded for d ≥ 2. Let Ω ⊆ ∆ be two regular

strongly closed subgraphs of diameters 1, 2 respectively. Since Ω and ∆ have different

valency b0−b1 and b0−b2 respectively by Theorem 4.2.2, we have b1 > b2. It is also easy

to see that Γ contains no parallelograms of any lengths up to d+ 1 [44, Lemma 6.5].

((ii) ⇒ (i)) Under the assumptions Theorem 4.4.7(ii) (hence b1 > b2) and a2 ̸= 0,

consider the following four cases.

(a) a1 = 0 and c2 > 1: This case follows from Theorem 4.2.3 (i).

(b) a1 = 0 and c2 = 1: This case follows from Theorem 4.4.6.

(c) a1 ̸= 0 and c2 > 1 : This case follows from Theorem 4.2.3 (ii).

(d) a1 ̸= 0 and c2 = 1 : Note that in this case a2 > a1 ≥ c2 = 1. Then this case

follows from Theorem 4.2.3 (iii).

Some applications of Theorem 4.4.7 were previously given in [14, 35]. We will give

a new application as Theorem 4.5.7 in the following section.

4.5 Classical Parameters

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. Γ is said to

have classical parameters (D, b, α, β) whenever the intersection numbers of Γ satisfy

ci =

[
i

1

]
b

(
1 + α

[
i− 1

1

]
b

)
for 0 ≤ i ≤ D, (4.5.1)

bi =

([
D

1

]
b

−
[
i

1

]
b

)(
β − α

[
i

1

]
b

)
for 0 ≤ i ≤ D, . (4.5.2)

Applying (2.2.1) with (4.5.1), (4.5.2), we have

ai =

[
i

1

]
b

(
β − 1 + α(

[
D

1

]
b

−
[
i

1

]
b

−
[
i− 1

1

]
b

)

)
(4.5.3)

=

[
i

1

]
b

(
a1 − α(

[
i

1

]
b

+

[
i− 1

1

]
b

− 1)

)
(4.5.4)
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for 1 ≤ i ≤ D.

Classical parameters were introduced in [5, Chapter 6]. Graphs with such param-

eters yield P - and Q-polynomial association schemes. Bannai and Ito proposed the

classification of such schemes in [1]. Suppose Γ has classical parameters (D, b, α, β)

and D ≥ 3. Then b is an integer, b ̸= 0, and b ̸= −1 [5, p. 195]. Two known classes

of distance-regular graphs with classical parameters (D, b, α, β) and b < −1 are the

dual polar graphs 2A2D−1(−b) and the Hermitian forms graphs Her−b(D) as listed in

[5, Table 6.1]. Here we use the notation in [5, page 274]. A.A. Ivanov and S.V. Sh-

pectorov show that if Γ has the same intersection numbers as the dual polar graph
2A2D−1(−b) then Γ is the dual polar graph 2A2D−1(−b) [20]. They also show that if Γ

does not contain parallelograms of length 2 and has the same intersection numbers as

the Hermitian forms graph Her−b(D) then Γ is the Hermitian forms graph Her−b(D)

[21, 22]. P. Terwilliger shows the following theorem.

Theorem 4.5.1. ([39, Theorem 2.12], [44, Lemma 7.3(ii)]) Let Γ denote a distance-

regular graph with classical parameters (D, b, α, β), b < −1, and D ≥ 3. Then Γ

contains no parallelograms of any lengths.

More general versions of Theorem 4.5.1 can be found in [42, 26, 33]. The following

is a by-product of Theorem 4.5.1.

Lemma 4.5.2. ([39, Theorem 2.11], [44, Lemma 7.3(ii)]) Let Γ denote a distance-

regular graph with classical parameters (D, b, α, β) and D ≥ 3. Suppose Γ contains no

parallelograms of lengths 2. Then Γ contains no parallelograms of any lengths.

By applying Theorem 4.5.1, the D-bounded property of Γ is proved by different

authors according to different assumptions [38, 44, 34, 14]. Recall that if Γ has inter-

section numbers b1 > b2 and a2 ̸= 0 then Γ is D-bounded as stated in Theorem 4.4.7.

A poset associated with a D-bounded distance-regular graph was constructed in

[43] and further studied in [45]. This produces the following two useful theorems.
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Theorem 4.5.3. ([43, Corollary 3.7, Theorem 4.2]) Let Γ denote a distance-regular

graph with classical parameters (D, b, α, β) and b < −1. Suppose that Γ is D-bounded

with D ≥ 4. Then

β = α
1 + bD

1− b
. (4.5.5)

Theorem 4.5.4. ([45, Lemma 10.2, Theorem 10.3]) Let Γ denote a distance-regular

graph with classical parameters (D, b, α, β) and b < −1. Suppose that Γ is D-bounded

with D ≥ 4, and Γ is neither the dual polar graph 2A2D−1(−b) nor the Hermitian forms

graph Her−b(D). Then

α = (b− 1)/2, β = −(1 + bD)/2, (4.5.6)

where −b is a power of an odd prime.

Recently, J. Guo and K. Wang investigated other posets associated with a D-

bounded distance-regular graph [13]. F. Vanhove shows that the existence of a (−b +

1)/2-ovoid in the dual polar graph 2A2D−1(−b) will imply the existence of Γ with

parameters as in (4.5.6) of Theorem 4.5.4 [41].

The following two lemmas have been obtained by applying Theorem 4.5.3.

Lemma 4.5.5. ([43, Corollary 6.4]) There is no distance-regular graph Γ with classical

parameters (D, b, α, β), D ≥ 4, c2 = 1, and a2 > a1 > 1.

Lemma 4.5.6. ([35, Theorem 2.2]) Let Γ denote a distance-regular graph with classical

parameters (D, b, α, β) and D ≥ 3. Assume the intersection numbers a1 = 0, a2 ̸= 0,

and c2 = 1. Then (b, α, β) = (−2,−2, ((−2)D+1 − 1)/3).

Theorem 4.5.7. There is no distance-regular graph with classical parameters (D, b, α, β) =

(D,−2,−2, ((−2)D+1 − 1)/3), where D ≥ 4.

Proof. Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) =

(D,−2,−2, ((−2)D+1 − 1)/3), where D ≥ 4. Then Γ contains no parallelograms of
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any lengths by Theorem 4.5.1. By (4.5.1), (4.5.3), we have c2 = 1 and a2 = 2 >

0 = a1. Hence Γ is D-bounded by Theorem 4.4.7 and since b1 > b2. By (4.5.5),

β = ((−2)D+1 − 2)/3), a contradiction.

Since Witt graph M23 [5, Table 6.1] is a distance-regular graph with classical pa-

rameters (D, b, α, β) with D = 3, b = −2, α = −2, and β = 5, the condition D ≥ 4 in

Theorem 4.5.7 can not be loosened to D ≥ 3. A consequence of Theorem 4.5.7 is the

following.

Corollary 4.5.8. Let Γ denote a distance-regular graph with classical parameters

(D, b, α, β), D ≥ 4, and c2 = 1. Then a2 = a1 and a1 ̸= 0.

Proof. First note that a2 < a1 is impossible since c2 = c1 = 1 and this implies b2 >

b1. Since c2 = 1, Γ contains no parallelograms of length 2 and then contains no

parallelograms of any lengths by Lemma 4.5.2. By Lemma 4.5.5, Lemma 4.5.6, and

Theorem 4.5.7, only the case a2 > a1 = 1 and the case a2 = a1 remain. For the first

case, H. Suzuki proves that Γ contains a regular strongly closed subgraph Ω of diameter

2 with a1(Ω) = 1 = c1(Ω) in [38]. Since the Friendship Theorem [46, Theorem 8.6.39]

rules out such Ω, there must be no such distance-regular graph Γ. For the latter case,

we have α = −b/(1 + b) since c2 = 1 and by (4.5.1). Applying this to (4.5.4) we find

the impossibility of a2 = a1 = 0 since b ̸= −1.

We close this chapter by proposing a few conjectures for further study. The next

step to work after Corollary 4.5.8 might be the following conjecture.

Conjecture 4.5.9. There is no distance-regular graph Γ with classical parameters

(D, b, α, β), D ≥ 4, and c2 = 1.

There is a mistake in [5, Proposition 6.1.2] which proves the above conjecture. This

mistake is corrected in [6].

Remark 4.5.10. (See [5, p. 194]) The Triality graph 3D4,2(q) is a distance-regular

graph with classical parameters (3,−q, q/(1− q), q2 + q), c2 = 1, and a1 = a2 = q − 1.
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Hence the assumption D ≥ 4 in Conjecture 4.5.9 is necessary. Note that the Triality

graph 3D4,2(q) is not 3-bounded by Theorem 4.4.7 since b1 = b2.

In [14] A. Hiraki assumes that D ≥ 3, a1 = 0, a2 ̸= 0, and c2 > 1 and shows that

Γ is either the Hermitian forms graph Her2(D) or α, β satisfy (4.5.6) with b = −3.

Hence the following conjecture is the first step to study the unknown case of (4.5.6).

Conjecture 4.5.11. There is no distance-regular graph with classical parameters

(D, b, α, β) = (3,−3,−2, 13).

The results in this chapter have been included in the following paper.

“Y. Huang, Y. Pan, and C. Weng, Nonexistence of a class of distance-regular graphs,

to appear.”
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Chapter 5

Spectral Radius and Average
2-Degree Sequence of a Graph

Let Γ=(X, R) be a connected graph and let A be the adjacency matrix of Γ. Since

A is a real symmetric matrix, the eigenvalues of A are all real numbers. We represent

the distinct eigenvalues of A with their corresponding multiplicities by an array as

follows:  θ0 θ1 · · · θD

m0 m1 · · · mD


where θ0 > θ1 > · · · > θD. Note m0+m1+ · · ·+mD = |X|. This array is said to be the

spectrum of Γ. The spectral radius ρ(Γ) of Γ is the largest eigenvalue of its adjacency

matrix. This parameter has been studied by many authors [2, 3, 15, 16, 24, 25, 28,

36, 37, 47] and can be used to induce some other bounds such as the upper bounds of

signless Laplacian eigenvalues [7, 8]. We shall give a sharp upper bound of the spectral

radius of a graph in terms of average 2-degree sequence of a graph.

5.1 Average 2-degree Sequence of a Graph

For x ∈ X, we define the average 2-degree Mx of x to be the average degree of the

neighbors of x. In other words, Mx =
∑

y∼x dy/dx, where dx is the degree of x. Label

the vertices of Γ by 1, 2, · · · , n such that M1 ≥ M2 ≥ · · · ≥ Mn. It’s trivial that a regular

graph of order n with valency k has average 2-degree sequence M1 = M2 = · · · = Mn =

k. A graph of order n with identical average 2-degree (i.e. M1 = M2 = · · · = Mn) is

called pseudo-regular in [47]. An interesting problem could be characterizing all the
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nonregular pseudo-regular graphs. We provide some examples of pseudo-regular graphs

that are not regular in the following Example 5.1.1.

Example 5.1.1. The following graphs are pseudo-regular but not regular.

u
u
u

u
u

u
u

u
u
u

u
u
u

u
u
u

Figure 8. A graph with Mi = 2. Figure 9. A graph with Mi = 3.
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Figure 10. Graphs with Mi = 3.

The graph in Figure 10 has a cycle Ck of k vertices, and shares each vertex of Ck

with a triangle K3.

5.2 Upper Bounds of Spectral Radii

By setting B = U−1AU , where U = diag (d1, d2, · · · , dn), the following fact is easily

seen from Theorem 2.4.2.

Theorem 5.2.1.

ρ(Γ) ≤ M1
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with equality if and only if Γ is pseudo-regular.

In 2011 [7, Theorem 2.1], Chen, Pan, and Zhang gave the following bound.

Theorem 5.2.2. Let a := max {di/dj | 1 ≤ i, j ≤ n}. Then

ρ(Γ) ≤
M2 − a+

√
(M2 + a)2 + 4a(M1 −M2)

2
,

with equality if and only if Γ is pseudo-regular.

We will show in Corollary 5.4.3 that Theorem 5.2.2 is indeed a generalization of

Theorem 5.2.1.

5.3 Main Result

The following Theorem is our main result which is a generalization of Theorem 5.2.2.

Theorem 5.3.1. For any b ≥ max {di/dj | i ∼ j} and 1 ≤ ℓ ≤ n,

ρ(Γ) ≤
Mℓ − b+

√
(Mℓ + b)2 + 4b

∑ℓ−1
i=1(Mi −Mℓ)

2
,

with equality if and only if Γ is pseudo-regular.

Proof. For each 1 ≤ i ≤ ℓ − 1, let xi ≥ 1 be a variable to be determined later. Let

U = diag(d1x1, . . . , dℓ−1xℓ−1, dℓ, . . . , dn) be a diagonal matrix of size n×n. Consider the

matrix B = U−1AU. Note that A and B have the same eigenvalues. Let r1, r2, . . . , rn

be the row-sums of B. Then for 1 ≤ i ≤ ℓ− 1 we have

ri =
ℓ−1∑
k=1

1

dixi

aikdkxk +
n∑

k=ℓ

1

dixi

aikdk

=
1

xi

ℓ−1∑
k=1

(xk − 1)aik
dk
di

+
1

xi

n∑
k=1

aik
dk
di

≤ b

xi

(
ℓ−1∑

k=1,k ̸=i

xk − (ℓ− 2)

)
+

1

xi

Mi, (5.3.1)
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since aikdk/di ≤ b. Similarly for ℓ ≤ j ≤ n we have

rj =
ℓ−1∑
k=1

xkajk
dk
dj

+
n∑

k=ℓ

ajk
dk
dj

=
ℓ−1∑
k=1

(xk − 1)ajk
dk
dj

+
n∑

k=1

ajk
dk
dj

≤ b

(
ℓ−1∑
k=1

xk − (ℓ− 1)

)
+Mℓ. (5.3.2)

Let

ϕℓ =
Mℓ − b+

√
(Mℓ + b)2 + 4b

∑ℓ−1
i=1(Mi −Mℓ)

2
.

For 1 ≤ i ≤ ℓ− 1 let

xi = 1 +
Mi −Mℓ

ϕℓ + b
≥ 1. (5.3.3)

Then for 1 ≤ i ≤ ℓ− 1 we have

ri ≤
b

xi

(
ℓ−1∑

k=1,k ̸=i

xk − (ℓ− 2)

)
+

1

xi

Mi

=
b
∑ℓ−1

k=1(Mk −Mℓ) + ϕℓMi + bMℓ

ϕℓ + b+Mi −Mℓ

=
1
4
[(Mℓ − b)2 + (Mℓ + b)2 + 4b

∑ℓ−1
k=1(Mk −Mℓ)− 2M2

ℓ − 2b2 + 4bMℓ] + ϕℓMi

ϕℓ + b+Mi −Mℓ

=
ϕ2
ℓ + ϕℓb− ϕℓMℓ + ϕℓMi

ϕℓ + b+Mi −Mℓ

= ϕℓ.

For ℓ ≤ j ≤ n we have

ri ≤ b

(
ℓ−1∑
k=1

xk − (ℓ− 1)

)
+Mℓ

=
b
∑ℓ−1

k=1(Mk −Mℓ) + ϕℓMℓ + bMℓ

ϕℓ + b

=

1
4
[4b
∑ℓ−1

k=1(Mk −Mℓ) + 2Mℓ

√
(Mℓ + b)2 + 4b

∑ℓ−1
k=1(Mk −Mℓ) + 2M2

ℓ + 2bMℓ]

ϕℓ + b

=
ϕ2
ℓ + ϕℓb

ϕℓ + b

= ϕℓ.

Hence by Theorem 2.4.2,

ρ(Γ) = ρ(B) ≤ max
1≤i≤n

{ri} ≤ ϕℓ.
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The first part of Theorem 5.3.1 follows.

Suppose M1 = M2 = · · · = Mn. Then ρ(Γ) = M1 = ϕℓ by Theorem 5.2.1. Hence

the equality in Theorem 5.3.1 follows.

To prove the necessary condition, suppose ρ(Γ) = ϕℓ. Applying Theorem 2.4.2

and the inequalities in (5.3.1) and (5.3.2), ϕℓ = ρ(Γ) ≤ max1≤i≤n ri ≤ ϕℓ. Hence

r1 = r2 = · · · = rn = ϕℓ, and the equalities in (5.3.1) and (5.3.2) hold. In particular,

b = aik
dk
di

(5.3.4)

for any 1 ≤ i ≤ n and 1 ≤ k ≤ ℓ − 1 with xk − 1 > 0, and Mℓ = Mn. We consider

three cases:

(i) Suppose M1 = Mℓ : Clearly M1 = Mn.

(ii) Mt−1 > Mt = Mℓ for some 3 ≤ t ≤ ℓ : Then xk > 1 for 1 ≤ k ≤ t − 1 by

(5.3.3). Hence by (5.3.4)

b = a12
d2
d1

= a21
d1
d2

= 1,

and di = n− 1 for all i = 1, 2, · · · , n. This implies Γ is regular, a contradiction.

(iii) M1 > M2 = Mℓ : Then x1 > 1 by (5.3.3). Hence by (5.3.4), b = ai1d1/di

for 2 ≤ i ≤ n. Hence d1 = n − 1 and d2 = d3 = · · · = dn = (n − 1)/b. Then

(n− 1)/b = M1 > M2 = Mn = (n− 1)/b− 1 + b. This implies b < 1, a contradiction.

This completes the proof of the theorem.

Note that Theorem 5.2.2 is a special case of Theorem 5.3.1 by taking b = a and

ℓ = 2. The proof of Theorem 1.4 is a subtle application of Perron-Frobenius Theorem.

This idea was previously employed in [28, 36]. Indeed, our proof is an edited version

of the proof of Theorem 1.7 in [28].
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5.4 The Shape of the Sequence ϕ1, ϕ2, . . . , ϕn

In this section, we investigate the lowest upper bound among the choices of b and

ℓ. Given a decreasing sequence M1 ≥ M2 ≥ · · · ≥ Mn of positive integers, consider the

functions

ϕℓ(x) =
Mℓ − x+

√
(Mℓ + x)2 + 4x

∑ℓ−1
i=1(Mi −Mℓ)

2

for x ∈ [1,∞). Note that ϕℓ(b) is the upper bound of ρ(Γ) in Theorem 5.3.1.

The following proposition shows that the smaller the b in Theorem 5.3.1 is, the

lower the upper bound of ρ(Γ) reaches.

Proposition 5.4.1. For any 1 ≤ ℓ ≤ n, ϕℓ(x) is increasing on [1,∞).

Proof. For convenience, let

S =
ℓ−1∑
i=1

(Mi −Mℓ).

To show that ϕℓ(x) is increasing on [1,∞), it is sufficient to show that the derivative

of ϕℓ(x) is nonnegative. This follows from the following equivalent steps.

ϕ′
ℓ(x) ≥ 0

⇔ −1 +
Mℓ + x+ 2S√
(Mℓ + x)2 + 4Sx

≥ 0

⇔ Mℓ + x+ 2S√
(Mℓ + x)2 + 4Sx

≥ 1

⇔ (Mℓ + x+ 2S)2 ≥ (Mℓ + x)2 + 4Sx

⇔ 4SMℓ + 4S2 ≥ 0.

Note that for 1 ≤ s ≤ n − 1, Ms = Ms+1 implies ϕs(x) = ϕs+1(x). We adopt

the same viewpoint as [28, Proposition 3.1] to describe when the bound gets improved

throughout the sequence ϕ1(x), ϕ2(x), . . . , ϕn(x) in the following proposition.
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Proposition 5.4.2. Suppose Ms > Ms+1 for some 1 ≤ s ≤ n − 1, and let the symbol

≽ denote > or =. Then

ϕs(x) ≽ ϕs+1(x) iff
s∑

i=1

Mi ≽ xs(s− 1).

Proof. Consider the following equivalent relations step by step.

ϕs(x) > ϕs+1(x)

⇔ Ms −Ms+1 +

√√√√(Ms + x)2 + 4x
s−1∑
i=1

(Mi −Ms)

>

√√√√(Ms+1 + x)2 + 4x
s∑

i=1

(Mi −Ms+1)

⇔

√√√√(Ms + x)2 + 4x
s−1∑
i=1

(Mi −Ms) > 2xs− (Ms + x)

⇔ (Ms + x)2 + 4x
s∑

i=1

(Mi −Ms) > 4x2s2 − 4xs(Ms + x) + (Ms + x)2

⇔
s∑

i=1

Mi > xs(s− 1),

where the third relation is obtained from the second by taking square on both sides,

simplifying it, and deleting the common term Ms − Ms+1. Note that even if 2xs −

(Ms + x) < 0 in the third relation, squaring both sides would be proper since then√
(Ms + x)2 + 4x

∑s−1
i=1 (Mi −Ms) ≥ |Ms + x| ≥ |2xs− (Ms + x)|. Similarly, note that

if
∑s

i=1Mi = xs(s− 1), then Ms ≤ xs and 2xs− (Ms + x) ≥ 0. Hence

ϕs(x) = ϕs+1(x) (5.4.1)

⇔

√√√√(Ms + x)2 + 4x
s−1∑
i=1

(Mi −Ms) = 2xs− (Ms + x)

⇔ (Ms + x)2 + 4x
s∑

i=1

(Mi −Ms) = 4x2s2 − 4xs(Ms + x) + (Ms + x)2

⇔
s∑

i=1

Mi = xs(s− 1).
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The following corollary shows that Theorem 5.2.2 is an improvement of Theo-

rem 5.2.1.

Corollary 5.4.3. For any x ∈ [1,∞), ϕ2(x) ≤ M1 with equality iff M2 = M1.

Proof. If M2 = M1 then ϕ2(x) = M2 ≤ M1. Suppose M2 < M1. Choose s = 1 and the

symbol ≽ to be > in Proposition 5.4.2,

M1 = ϕ1(x) > ϕ2(x).

Choosing b = max {di/dj | i ∼ j}, by Proposition 5.4.2 with s = 2 and x = b, if

M2 > M3 and M1 +M2 > 2b, then ϕ2(b) > ϕ3(b). This is a case when Theorem 5.3.1

is truly an improvement of Theorem 5.2.2.

Example 5.4.4. In the following graph, M1 = M2 = 4, M3 = 7/2, b = 4/3, ϕ1(b) =

ϕ2(b) = 4, ϕ3(b) + 3.762, and ρ(Γ) = 1 +
√
7 + 3.646.

u u

u u

u

Figure 11. A graph with ϕ2 > ϕ3.

Note that ϕ1(x) = M1 ≥ ϕ2(x) by Corollary 5.4.3, and for 2 ≤ t ≤ n−1,
∑t

i=1Mi <

xt(t−1) implies Mt < x(t−1), and hence
∑t+1

i=1 Mi < xt(t−1)+x(t−1) < xt(t+1). This

implies that the sequence ϕ1(x), ϕ2(x), . . . , ϕn(x) is composed by two parts. The first
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part is decreasing and the second part is increasing. In particular, if we choose x = M1,

M2 > M3, s = 2, and ≽ to be > in Proposition 5.4.2, then M1+M2 ≯ 2M1 = xs(s−1),

so ϕ2(M1) ≤ ϕ3(M1). Hence ϕ2(M1) is smallest among ϕ1(M1), ϕ2(M1), . . . , ϕn(M1).

The results in this chapter have been included in the following paper.

“Y. Huang and C. Weng, Spectral radius and average 2-degree sequence of a graph,

to appear.”
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