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An 1mplicit closest point method for solving
convection-diffusion equations on a moving surface

student : Narisawa Shinoki Advisors : Ming-Chih Lai

Department ( Institute ) of Applied Mathematics
National Chiao Tung University

ABSTRACT

We propose a numerical method to solving convection-diffusion equation on a
moving surface. We use the level set function to capture the deforming surface.
Based on the closest point method, we-extend the convection-diffusion equation
into a small neighborhood of the surface by closest point, and use Crank-Nicolson
scheme to solving the embedding PDE on the neighborhood of the surface.
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1 Introduction

Solving PDEs on a moving and deforming surface is important. There are many applica-
tions in fluid dynamics, material science, and the mathematics of images. For example, the
convection-diffusion equation on a moving surface can be used to describe the surfactant
which is convected by flow and diffused along the surface. It is important for the immiscible
fluids problem which has surfactant on the interface between different fluids. The surface
tension depends on the surfactant concentration, and it will effect the flow around the in-
terface and deform the interface. To solve this problem, we need to capture the deforming
surface. In the literature, there are some methods to capture a deforming surface, includ-
ing front-tracking method[12], volume-of-fluid .method[13], level set method[7], Arbitrary
Lagrange-Euler method[14],etc: For solving PDEs.ona moving surface, Xu et al. [7] devel-
oped a level set method te solve convection-diffusion equation on a moving surface. Dziuk

and Elliott [5] solved the same equation on evolving surface by finite element method.

In [1], the authors provided an embedding method to selve the surface PDEs on a surface
of fixed shape. The method extend the PDE from the surface to'R™ by closest points, and
solve the embedding PDE by finite difference method. Here we use the implicit closest point
method to solve the convection-diffusion equations on a deforming surface and use the level
set method to capture our surface. In section 2, we describe the mathematical formulation
for the problem. In section 3; we introduce the closest  point method and its analysis. In
section 4, we give the representation for moving surface by level set function. In section 5,

we develop the numerical algorithms in detail. In section 6, we present the numerical results.



2 Surfactant concentration equation

Consider a surface ¥(t), which is deformable and moves with the incompressible velocity u

as

X —u, xex), (1)

Let f denote the mass of the surfactant per unit area defined on the surface and the surfac-
tant remains on the surface and just convects and diffuses along the surface. Based on the
conservation of total mass, we obtain the convection-diffusion equation for the surfactant in

[8,9,10] given by

fot e Vol + (V. w)f = 500 ©)

where V, is surface gradient , V- is surface divergence ; A, is surface Laplacian and Pe, is
the Peclet number. The surface gradient is a operator which describes the changing rate of
function only along the tangent direction. Let n be normal vector of the surface. The surface

gradient operator cam:be written as
Vif=Vf—n(Vf- n).

The surface divergence represents the value of outward flow along the surface. The surface

divergence operator acting on v can be written as
Vi-v=V-v—n'-Vvin

and surface Laplace A, = V, -V,



3 The closest point method

In this section, we review the closest point method in [1]. The closest point method is a
simple embedding method for solving PDEs on the surfaces. The main idea is to construct a
embedding PDE on R? which is a normal extension of the surface PDE. The embedding PDE
involves only the standard Cartesian differential operators and same as surface PDE on the
surface, so that we can easily solve the embedding PDE by the finite difference schemes on
the regular grid points and approximate the solution of surface PDE by the solution which

we solve from embedding PDE.

In order to analyze the closest point method, we state the two fundamental properties for

the surface operator:

1. Suppose F is any funetion defined on R? that is constant along the normal direction
to the surface, then VF' - n-=-0-at the surface. From the definition of surface gradient,

we have
VF =V F
at the surface.

2. For any vector field vion R? that is tangent to 3, -and also tangent to all surface displaced
by a fixed distance from X (i.e., all surfaces defined aslevel-sets of the distance function

to X)), then at the surface

V-v=V, v

Details of the proof of property 2 can be found in appendix.

These are obvious statements. For the first property, a function which is constant in the
normal direction only varies along the surface. The second property says that a velocity field

which is directed along the surface can only spread out within the surface direction.

Consider a general prototype for a PDE describing some physical process on the surface

Y in the form

g—{(y) =Gy, f(y), Vf(y), Dsfly) VyeX (3)



For any x in space, let ¢p(z) denote the closest point to x in the surface X, that means
|z — ep(x)| = ing |z — y|. Figure 1 shows an example about relation of = and ¢p(z). Here we
ye

note that cp(z) is well-defined if x is in a sufficiently small neighborhood of a smooth surface.

Now, we define an embedding PDE on  which is the neighborhood of the surface by

closest point and replace surface operators by standard Cartesian operators, as

OF

&5 (2) = Glep(2), Flep(a)), VF(ep(@), AF (ep(w)) - Vo € Q. (4)

Since the vector x — ¢p(x) is normal to the surface ¥, the function F(cp(x)) is a constant

normal extension from the surface. If = € 3, the first property implies that
VF(cp(z)) = VF(ep(x))= VF(z))-

Moreover, V F(cp(z)) istalways tangent to thelevel-sets of the distance function, so applying

the second property at-the surface;we obtain
V- (VF(ep(x))) = Vs (VE(ep(x)) = V., (Vs (x)).

According to the two properties, the embedding PDE (4) is equal to the surface PDE (3) on
the surface. It means that, if F is a solution of embedding PDE", then the solution on the
surface also satisfies surface PDE. Based on this; the closest point method proceeds by the

following two steps:

1. Extend the solution off the surface to each grid node on the computational domain

around the surface.

Figure 1: x is any point in space and cp(x) is closest point in surface of x
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Figure 2: The function F' which we solved from-embedding PDE is defined on ’-” around of

surface, and we use F' to approximate surface function f, which is solution for surface PDE.

2. Compute the solution of the embedding PDE using standard finite differences scheme

on a Cartesian mesh of the computation domain.

At every time step, the solution of the surface PDE is approximated by the solution of the
embedding PDE at the grid points.on the computation domain. For example, we use the

forward Euler method to solve the heat equation on the surface
it = g At A f

We do not treat this surface equation directly. Instead, we assume F"(x) = f"(cp(x)) and

evolve the equation
Frl = " At - AF™

on the regular grid points around of surface, and use F"*! to approximate the solution fm*!

on the surface.



4 Level set representation

Following [6,7], we represent a moving surface %(¢) in R? by zero level set of the signed

distance function ¢(z,t) . That is

%(t) = {x: ¢(x,1) = 0} (5)
where ¢(x,t) defined by

—d(z,t) ifx e X(t)”
o(x,t) =4 0 if x € X(t)
d(z,t) ifzeX(t)*t

where d(z,t) = 1121{ : |z — y| is the distance function,, >(¢)~ and X(¢)" represent inside and
yex(t

outside of the surface, respectively. For example, consider a circle surface, the signed distance

function of the circle is ¢.= /22 + y? — 1.

However, it is difficult to give-an-explicit formula for the signed distance function of any
surface. As in [6], we reinitialize the level set function ¢y to the signed distance function ¢

by evolving the reinitialization equation

(6)

¢r + S(d0) (Vo = 1) =0
¢(X’ O) = 0o

where 7 is pseudo time and S(z).is the signed funetion taken as 1 in 3(¢)*, —1 in X(¢)~
and 0 on the surface. By evolving this equation, the function ¢ will be identically equal to
zero on X, and |V¢| will converge to 1 on the narrowband of the surface. That means the
level set function ¢(t) will converge to the signed distance function. Figure 3 shows the level
set function of an ellipse transformed to the signed distance function after reinitialization

precess.

By taking the time derivative of ¢(z,t) = 0, then we have the Hamilton-Jacobi equation

D¢ . B
=Gt u-Vo=0 (M)

where u is the surface velocity. Since the surface is represented by the zero level set of ¢(z, ),

we can move the surface by solving the equation (7) for a given initial condition ¢(z,0).
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Figure 3: The left figure is the level set of the function ¢y = % + % — 1 to represent an

ellipse. The right figure is level set of ¢ which is reinitialized of ¢q

5 Numerical method

Based on the closest point method {4,1], we use an implicit scheme to solve the embedding
PDE and interpolate the value onthe surface by degree-p Lagrange interpolation polynomials.
Given the surface funetion f", the signed distance function ¢” and the vector field u, we evolve

f" and ¢"™! by the following steps:

Stepl: Evolve the surface X (¢, 1) which represented by zero level set of ¢f" in velocity field

u. We solve the Hamilton-Jacobi equation (7) for one time step to move our sur-
face. For spatial discretization, we use the third-order upwind weighted essentially

non-oscillatory(WENO) scheme. [7] to discretize w- V¢". At each grid point (z;,y;)
(0 Vo) =u"Dydij +u Dy +v Dy dij +v DTy

where 2% = max(z,0) , = = min(z,0) and D} ¢, D ¢; are the one-sided divided
differences for the WENO scheme. In third-order WENO scheme [2], the approximation

to % on left-biased stencil {x;_o, z;_1, 2, Ti41} 18

1
Dy o = AL [(A+¢i71 +ATG) —w (AT g — 20T ¢y + AJF@A)}
where
. €+ (A+A_¢Z_1)2
= h
14272 it £+ (ATA=¢;)?



Step2:

where the notation At¢;, = ¢ip1 — ¢, A~ ¢; = ¢; — ¢;—1 are forward and backward
. . . . ¢ .
difference operators respectively. By symmetry, the approximation to 72 on right-

biased stencil {]Ii_l, Tiy Tiy1, .TH_Q} 18

1

D;¢; = AL (AT iy + AT ;) — wi (AT iy — 28T ¢ + At iy)]
where
e — 1 “wh = o + (ATA ¢ 11)?
T 1voer Y e+ (ATA$)?

For time discretization, we use the third-order total variation diminishing(TVD) Runge-
Kutta scheme in [11]. Consider the time dependent PDE

a9 _

We solve the levelset function-¢g at the (n+1)th step by

&1 = g HALH (67)
2= 30" + 161+ SLH (1)
6L+1 _ %(ﬁn + %¢2 + QTMH(QZ)Q)

We reinitialize the level ‘set function ¢ to the signed distance function ¢"*! by
evolving the reinitialization equation (6) with initial condition ¢J™'. For time dis-
cretization, we also use the third-order total variation diminishing(TVD) Runge-Kutta

scheme. For spatial discretization, following in [7] ,we use the spatial discretization for

S(¢po)(|Vo| — 1) like WENO scheme

+ 55V (@ )24 (bF)2 + (¢)? + (dF)2 — 1)

where s;; is numerical approximation to signed function of ¢j*" given by

®o
i = ——0
’ \/¢(2)+A£L'2

and notation a, b, ¢, d are one-sided divided differences for the WENO scheme as



Step3: In this step, we need to find the closest point cp(x), the computational domain €
and )y at time step t,.1. Since ¢ is the signed distance function, V¢ will be the unit
normal vector n at surface for each point at surface. So given any point x around of

the surface, the closest point cp(x) of & can be written as

cp(x) = — o(x)Vo(ep(x)).

Assume that the surface is sufficiently smooth and z is close to the surface, then we

have Vo(z) = Vo(cp(z)). So that, we can approximate the closest point ep(x) of = by

cp(x) = x — ¢(x)Vo(z).

Next, we try to find the computation domain £2; swhich we will solve the embedding on
this domain. Note that, the computation domain §2; should contain every grid point
which can appear, in the interpolation stencil for some point on surface ¥(¢,,.1), since we
use the solution‘of embedding PDE definéd on €2, to approximate the solution of surface
PDE on surface: In [1], the authors provided a way to approximate the computation

domain €2y by
O ={z" ]z = cp(x)] <A}
where the bandwidth A is given by

2=l (PR S

We write €2; as

Ql = {.73'1,332, "'7$m1}

Let Q5 be disjoint from €2; which contains every grid point which will be used in the

finite difference scheme as

QQ = {$m1+1,$m1+27 "'7xm1+m2}

Figure 4 shows an example of the two set 2; and 2y on a circle with the usage of

degree-4 Lagrange interpolation polynomials.
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Figure 4: Example of unit circle with degree-4 Lagrange interpolation polynomials. The grid
points in €2y denote e, and grid-point.in" )5 are denote o. Grid points x are closest point of

o, and the grid points in the square are interpolation stencil.of x

Step4: In this step, weruse implicit closest point method to solve-our problem. Consider the
embedding PDE which is defined on £2; for our convection-diffusion equation as

1

Fi(@) + W NF (ep(@)) B Ve i ep(a)) = 5,

AF(cp(x)) (8)
Let we denote the wvectors

F = [F(z1), F(z2)s. 5.F (Tm,)]
Fl = [F(cp(z1)), F(ep(a2))ymsd(cp(@in, )]
F; = [F(Cp<xm1+1))7 F(Cp($m1+2)), ...,F(Cp(l‘m1+m2))]

We discretize the differential operators of (8) by central difference. Since Vi -u =

V-u—(Ve)-Vu-Vo. , we can write formula (8) into a matrix form

0. F;
aF—K<m) (9)

where K is m; by m; + mo matrix.

From the closest point method, we let F™ be the normal extension from f™ of the

surface X(t,), that is F"(x;) = f"(¢p(z;)). By using the Crank-Nicolson scheme, we

10



Steph:

have
At | D At F*"
Iman+1 ——K in+1 [m1Fn + K 1“
2 F3 2 F;

=b (10)

where I,,,, is an m; by m; identity matrix. Note that, we approximate the value of f"*!
at any point in the surface by F™*!. Since cp(z;) is at the surface, we apply degree-p

Lagrange interpolation polynomials and then obtain for any index 1 < i < my + msq

(p+1)1
F" Y ep(x:)) = " (ep(zi)) Z L F ' ()

where z;_ in ; and [;_ is the Lagrange coefficient for F"*!(z;,). Rewrite it in a matrix

form

F*7L+1
( Lt ) = FFi! (11)
F;

where F is a mq -+ mo by m; extension matrix with the entries

Lis
eij = (i.e. j= igfor some L.<s< (p+ 1)%)
0 otherwise

if z; is in the interpolation stencil for ep(x;)

We let M = KE, and‘combine the two formulae (10),(11), we have
AF™ =p (12)

where

A=1, —%M

1 Y

is an my by m; matrix.

Once we solve ™! then we can approximate the value of f*™! at surface. By exam-
ining the spectra of M given in Figure.5(left), the matrix M has some eigenvalues with

positive real parts. From (9)(11), we have

0
EF MF,

11



these positive eigenvalues will cause the solution an exponential growth and lead to
instability. For example, Figure.6(left) shows the oscillatory results for heat equation
on a circle using the implicit closest point method with M. Theoretically, it should not
occur in our solution, because we have the diffusion term in our equation. So that, we

should stabilize the matrix M. Let
M =D+ (K —D)E

where D is diagonal matrix of K. That means the stabilized form of our system is

%F(fb’z’j) = - ﬁu (Fep(Tisrj) —F(ep(ziory), Flep(wij)) — Flep(wij-1)))
— (Vs u)F () (13)

+ —Pes(lA:B)Q (F(ep(xit15)) + Fep(wicig)) + F(ep(wijv1)) + Fep(xij—1))

=41 (35))
where the only change is that the diagonal entries. This modification will increase the
value of diagonal of the matrix: Note that, the system (13) also matches the surface

PDE at the surface, because cp(z) = z for any z on the surface. So we can solve F" 1!

by the system (13)-and use £ to interpolate the f**! at the surface X(t,11).

12
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Figure 5: Spectra of the M (left) and M (right) matrices. The matrix M and M are derived
from a heat equation on a unit circle in 2D with degree-4 Lagrange interpolation polynomial
and Ax = 0.1. Observe that M has eigenvalues in the right half plane, and all eigenvalues of

M have negative real parts
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Figure 6: Stable and unstable solutions of the heat equation on a unit circle embedded in

2D with Az = 0.1 and degree-4 interpolation
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6 Numerical results

In this section, the Peclet number Pe, is set to be 1, except that in the last example.

Example 1.

Consider the heat equation on a unit circle

ft = Asf

with the initial condition fo(x,y) = sinf + 2 defined on surface where 6 = sin™'( \/ngy?)
We know the surface Laplacian operator on the circle in polar coordinate is

1 02

Asf = __fv

r2 002

which implies that the function f(z,y,t) = e fsinf + 2 is the exact solution of heat equa-
tion with initial condition fy,. We-apply the implicit, closest point method to the problem
with degree-4 Lagrange interpolation polynomials; and the closest point of (z,y) is given by
\/(%. We use the. time step-size At = Az'= Ay and compute up to final time 7"= 1. In

Table 1, the errors at the final time T are computed on > with infinity-norm. The results

give the rate of convergence about second-order:

Example 2.

Consider an example in 3D. The heat equation on a unit sphere

ft = Asf

Table 1: Heat equation on a circle, At = Az, T =1

Az my Error conv.rate
0.1 440 1.0177e-003 -
0.05 888 2.5663e-004 1.987
0.025 1768 6.3506e-005 2.015
0.0125 3568 1.5900e-005 1.998
0.00625 7128 3.9784e-006 1.999

14



Table 2: At=Ax, T =1

Ax my Error conv.rate

0.1 11542 2.1502e-03 -

0.0 44110 5.3535e-04 2.005
0.025 174982 1.3365e-04 2.002
0.0125 698182 3.3403e-05 2.000

with initial condition fo(z,y, z) = xy defined on surface. The surface Laplacian operator on
sphere in spherical coordinate system is

1 0 of 1 0%
7’28111680( meae) * r251n2987¢2

Af =

with z = rsinf cos ¢, y = rsin@sin'g and z =+ cosf. Then the function f(x,vy,z) = e %y

is an exact solution of diffusion equation with initial condition f, on a unit sphere. The
. (z _ (zy,2) z)

closest point of (z,y, 2).is given by \/m in our method; and we compute up to final

time T' = 0.5 with time step-size-At= Axr = Ay = Az. The result is shown in Table 2. We

can observe that the rate of convergence is also second-order.

Example 3.

Following the Example 1, we also use the same initial function fo(x,y) = sinf + 2 on a unit

circle 3 where 6 = sin™*( \/%), and we give the velogity field
24y

(_y7 JI) )
VR

In the Figure 7, the velocity field u is always tangent to the surface X at any point in surface.

u =

The surface will rotate counterclockwisely but not change the shape itself. That means the
level set function which we use to represent the unit circle does not change, so we do not need
to solve the Hamilton-Jacobi equation (6) and (7) in our numerical process. We consider the

convection-diffusion equation on ¥ as
ft+u'vsf:Asf'

If we use the polar coordinates, the equation on the surface ¥ can be rewritten as

af  &f

Jet 00— 002"

15



15y

051

Figure 7: The black curve is unit circle and the green arrow is velocity field. The velocity is

given such that the surface rotates counterclockwisely

Table 3: convection-diffusion-equation on a unit circle; At = Ax, T =1

Az mq Error conv.rate
0.1 440 5.2753e-004 -
0.05 888 1.3152e-004 2.004
0.025 1768 3.2961e-005 1.996
0.0125 3568 8.2431e-006 2.000
0.00625 7128 2.0611e-006 2.000

Then the function f(z,y,t) = e 'sin (0 —t) + 2 is an exact solution of convection-diffusion
equation with initial condition f;. We use the time step-size At = Ax = Ay and the

numerical results at final time 7' = 1 are reported in Table 3.

Example 4.

In this example, we give a simple velocity field u = (1,0). The surface in the velocity field
will move along x-axis with unit speed. We solve the convection-diffusion equation with the

same initial function fy and initial surface as in Example 1. The function defined on surface

16



f(x,y,t) = e tsin(f) + 2, where 6(t) = sin_l(ﬁ) is an exact solution of
z—1)2+y

ft+u'vsf:Asf

with initial condition. In Table 4, we show the result with using signed distance function ¢

to represent the surface X(t) and exactly closest point at each time.

Figure 8: The moving surface and surfactant concentration at different time

time =0.0 time=0.3 time =06 time =1.0 5
ot == [Jtf- -—-—=——-— [Jt—= =—=—2—2 >— [J{—=—= =—=—»—» — o

v_.._ . e e e e .- e 3
& Y
ST = —— — — ] ::u}—s-— -1 —&—&u—&— -1 — e —n T . 1

-1 a 1 2 -1 1] 1 2 -1 1] 1 2 -1 a 1 2

Example 5.
In this example, we.consider the problem

fitu-Vift (Vs u)f = Asf <on X(t)

f(xaya 0) = fo(xvy) on Z(O)
& —q x € X(t)

Let velocity field
x
— (0.2

u ( ? 2)

be a shear flow, the surface in the flow will move and deform. The initial surface is given by
the zero level set of ¢(z,y,0) = /(22 +y?) — 1 which is a unit circle and the initial surfactant

concentration on the surface is fo(z,y) =sin(d) +2 =y + 2.

Table 4: At = Az, T =1

Az m Error conv.rate
0.05 888 3.3504e-003 -
0.025 1768 1.5642e-003 1.10
0.0125 3568 7.5500e-004 1.05
0.00625 7128 3.7079e-004 1.03

17



Consider the domain of level set function to be [—1.5,1.5] x [-2, 2]. Compute the problem up
to final time T = 1 with time step-size At = Az and take about 10 time steps to reinitialize
the level set in our numerical process in each time step. The errors and rates of convergence
are shown in Table 5. In this example, the total mass of surfactant on the surface is conserved,
and the volume (area) of the interior region enclosed by the moving surface is also conserved
since we use a divergence free velocity field. In [6], the total mass of surfactant f on the
surface can be written as
M = RMﬂXﬁ@%ﬂNV¢@Ndx

and the volume (area) of the interior region is

V:/nl—H(qﬁ(x)) dx.

where H is Heaviside function and §(¢) =H'(¢). We approximate the Heaviside function H
and delta function § by

0 if o< —=¢
H(p)=4¢ $+2+ LsinZ if —e<d<e
1 if e<o
0 if p<—¢
i) = %—1—21—5005”?‘# if —e<op<e
0 if e<o

with ¢ = 1.5Ax. Figure 9 shows the-relative errors for total mass of surfactant on the
surface and the area enclosed by the surface, respectively. The relative error for total mass of
surfactant is about 1072, and the relative error of the area is near 1075. The moving surface

and surfactant concentration on the surface at different times are shown in Figure 10.

Example 6.

In this example, we change the velocity field in Example 5 to

(¥*0) i y>0
u= .
(—y%,0) if y<O0

which is like a shear flow, and the initial condition for surfactant concentration and surface

are same as in Example 5. Consider the domain for level set function to be [—2, 2] x [—1.5, 1.5].
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Table 5: Error = || f — fref ||oo, At =Az, T =1

Ax my Error conv.rate
0.05 924 6.4168e-003 -
0.025 1850 3.0279e-003 1.08
0.0125 3714 1.3117e-003 1.21
0.00625 7436 4.3986e-004 1.58
0.003125 14844 - -

Figure 9: Relative error for total mass (left) and area (right) at each time
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We computed the solution up to final time 7" =1 with time step-size At = Az = Ay and take
about 20 time steps to reinitialize the level setin-ourmumerical process in each time step. In
order to make sure the stability of solving the HamiltonsJacobi equation (6), we choose the
time step-size At = %. The result is shown in Table 6 Figures 11 shows the relative errors
for total mass of surfactant on the surface and the area enclosed by the surface, respectively.
The error for total mass of surfactant is still around 1073, and that of the area enclosed
by surface is in the order of 107%. The moving surface and surfactant concentration on the

surface at different time are shown in Figure 12.

Table 6: Error = || f — fref [loo, At =22, T =1

Ax mq Error conv.rate
0.0125 4056 3.9977e-003 -
0.00625 8122 1.2875e-003 1.63
0.003125 16268 - -
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Example 7.

Figure 10: The moving surface and surfactant concentration at different time

time=0.0
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In this example, we construct.a surface PDE which has‘an exact solution with given initial

condition. Let f(z,y,t) =efry+ 2.and the velocity field u = (0, £), and we add a source

term g to the convection diffusion equation which is given by

Figure 12: The moving surface and surfactant concentration at different time
time = 1.0

time=0.0

time =073

g:ft+u'vsf+(vs'u)f_Asf

time=08&

72
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Table 7: At =Ax, T =1

Ax my Error conv.rate
0.05 924 3.6077e-003 -
0.025 1850 1.7042e-003 1.08
0.0125 3712 8.3113e-004 1.04
0.00625 7436 4.1031e-004 1.02

Consider the problem

ft+u'vsf+(vs'u)f:Asf+g on Z(t>

f(xayao) :fO(x7y) on Z<0)
& — x € X(t)
then f is an exact solution of thepreblem withinitial condition fo(z,y) = f(x,y,0). In our

numerical process, the enibedding PDE of the problem is
f(@) +u- Vf(ep()) + (Vs-u) f(ep(a)) = Af(epla)) + glep(@))
where ¢ is computeby
g=fitu- (VE=(Vf -nn)+(V..a)f = (Af —n-V(V/]) n)

and approximate n by V¢ where ¢ is signed distance function of the surface X(t). The
computational domain for level set function is a rectangle [=2,2] x [—1.5,1.5]. Compute the
solution up to final time 7T'=1 with.time step-size’ At = Ax = Ay, and take about 10 time
steps to reinitialize the level set in our numerical process in every time step. The numerical

result at final time T is shown in Table 7.

Example 8.

Consider a 3D example. Give a function f(z,y,z) = xyz defined on a unit sphere and the
velocity field u = (1,0,0) such that the surface in the flow will move along x-axis with unit
speed. Similar to previous example, we add a source term ¢ to the convection diffusion

equation to make the problem

ft+u'vsf:Asf+g on E(t)

f(xaya()) :fo(x,y) on E(O>

& —q x € X(t)
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Table 8: At =Azx, T =1

Ax my Error conv.rate

0.1 11542 9.9516e-03 -
0.05 44110 4.8172e-03 1.046
0.025 174982 2.3653e-03 1.026

having an exact solution with initial condition fo = f(x,y,2,0) = xyz. Since we know the

position of surface at any time step, we do not need to solve the equation about the level

set function. The closest point of (x,y,z) is given by —e=twr) 4 (40,0) at any time
V (@=t)?4y?+22

step in our process . We compute the solution up to final time 7" = 1 with time step-size

At = Az = Ay = Az, and the numerical result; at final time is shown in Table 8.

Example 9.

In this example, we are interested-in the effect of surfactant concentration on the surface
under the fixed veloecity field but with different Peclet numbers. We set the initial condition
fo(x,y, z) = 1, which.is constant function defined on the unit sphere, and the velocity field

u=(%,0,0). Consider the problem

ft+u'VSf+<vs'u)f: pLAsf on Z(t)

€s

f(x,y,z,()) :fg(l',y,Z) on 2(0)

& — x € X(t)

We use different values of Peclet number-in our numerical test. The result of surfactant
concentration on the surface at different times are shown in Figure 13,14 and 15, and Figure
16 shows the relative error for total mass of surfactant on the surface. We can observe that
the flow will move surfactant to the tip points of the surface, and the surfactant concentration

is decreasing since the surface area is increasing.
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Figure 13: Peclet number = 2
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Figure 14: Peclet number = 1
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Figure 16: Relative error for total mass at each time, plotted in scale of 1074
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7 Conclusion

In this paper, we apply an implicit closest point method to solve convection-diffusion equation
on the moving surface, and use level set function to capture the moving surface. In closest
point method, the way to find the closest point is important. Since we represent the surface
by signed distance function, we can easily find the closest point in our numerical method. In
the numerical test, our algorithm demonstrates good results for the rate of convergence and

error of total mass.

Appendix

We prove the fundamental property 2. Assume that the velocity field u is tangent to the
level-sets of the distance function, i.e., u-n = 0. By the definition of surface divergence
operator, we just need to show that-n’-Vu:n = 0. Take gradient on both sides of u-n = 0,

we have
0=Vu-n
= V(uiny + ugng)
— [ 2 (uiny +usmo) a%(ulnl + Usno) ]

8‘1 uy)ng ¥ ax(ug)nz a%(ul)nl + a%(uQ)m ]

(1

[
+ [ w12 (ny) + up 2=(na) ula%(nl) +uz3%(n2)
[ )

)
m o] )} m}[

=n'Vu+ u'Vn

Sosle

(Ul) %(Ul)
2
Oy

(Uz)

~—r
&lo&le
P
S
—_
~—
|

Then

(n-Vu)-n=—(u"-Vn) -n

an-n] —0

V?’Lg'n

because n; and ng only vary along tangent direction. Then we have
Viu=Vu—n'-Vu-n
= Vu
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