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摘 要       
 
 

本文提出一個數值計算方法去求解變動曲面上的對流擴散方程。利

用水平集函數捕捉變動曲面。根據最近點方法，利用最近點將對流擴

散方程延拓到曲面附近的小區域，並且在這小區域上用 Crank-Nichoson
方法求解嵌入方程。 
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ABSTRACT 

We propose a numerical method to solving convection-diffusion equation on a 
moving surface. We use the level set function to capture the deforming surface. 
Based on the closest point method, we extend the convection-diffusion equation 
into a small neighborhood of the surface by closest point, and use Crank-Nicolson 
scheme to solving the embedding PDE on the neighborhood of the surface. 
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1 Introduction

Solving PDEs on a moving and deforming surface is important. There are many applica-

tions in fluid dynamics, material science, and the mathematics of images. For example, the

convection-diffusion equation on a moving surface can be used to describe the surfactant

which is convected by flow and diffused along the surface. It is important for the immiscible

fluids problem which has surfactant on the interface between different fluids. The surface

tension depends on the surfactant concentration, and it will effect the flow around the in-

terface and deform the interface. To solve this problem, we need to capture the deforming

surface. In the literature, there are some methods to capture a deforming surface, includ-

ing front-tracking method[12], volume-of-fluid method[13], level set method[7], Arbitrary

Lagrange-Euler method[14],etc. For solving PDEs on a moving surface, Xu et al. [7] devel-

oped a level set method to solve convection-diffusion equation on a moving surface. Dziuk

and Elliott [5] solved the same equation on evolving surface by finite element method.

In [1], the authors provided an embedding method to solve the surface PDEs on a surface

of fixed shape. The method extend the PDE from the surface to Rn by closest points, and

solve the embedding PDE by finite difference method. Here we use the implicit closest point

method to solve the convection-diffusion equations on a deforming surface and use the level

set method to capture our surface. In section 2, we describe the mathematical formulation

for the problem. In section 3, we introduce the closest point method and its analysis. In

section 4, we give the representation for moving surface by level set function. In section 5,

we develop the numerical algorithms in detail. In section 6, we present the numerical results.
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2 Surfactant concentration equation

Consider a surface Σ(t), which is deformable and moves with the incompressible velocity u

as

dx

dt
= u , x ∈ Σ(t), (1)

Let f denote the mass of the surfactant per unit area defined on the surface and the surfac-

tant remains on the surface and just convects and diffuses along the surface. Based on the

conservation of total mass, we obtain the convection-diffusion equation for the surfactant in

[8,9,10] given by

ft + u · ∇sf + (∇s · u)f =
1

Pes
△sf (2)

where ∇s is surface gradient , ∇s· is surface divergence , △s is surface Laplacian and Pes is

the Peclet number. The surface gradient is a operator which describes the changing rate of

function only along the tangent direction. Let n be normal vector of the surface. The surface

gradient operator can be written as

∇sf = ∇f − n(∇f · n).

The surface divergence represents the value of outward flow along the surface. The surface

divergence operator acting on v can be written as

∇s · v = ∇ · v − nt · ∇v · n

and surface Laplace ∆s = ∇s · ∇s
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3 The closest point method

In this section, we review the closest point method in [1]. The closest point method is a

simple embedding method for solving PDEs on the surfaces. The main idea is to construct a

embedding PDE on Rd which is a normal extension of the surface PDE. The embedding PDE

involves only the standard Cartesian differential operators and same as surface PDE on the

surface, so that we can easily solve the embedding PDE by the finite difference schemes on

the regular grid points and approximate the solution of surface PDE by the solution which

we solve from embedding PDE.

In order to analyze the closest point method, we state the two fundamental properties for

the surface operator:

1. Suppose F is any function defined on Rd that is constant along the normal direction

to the surface, then ∇F ·n = 0 at the surface. From the definition of surface gradient,

we have

∇F = ∇sF

at the surface.

2. For any vector field v on Rd that is tangent to Σ, and also tangent to all surface displaced

by a fixed distance from Σ(i.e., all surfaces defined as level-sets of the distance function

to Σ), then at the surface

∇ · v = ∇s · v

Details of the proof of property 2 can be found in appendix.

These are obvious statements. For the first property, a function which is constant in the

normal direction only varies along the surface. The second property says that a velocity field

which is directed along the surface can only spread out within the surface direction.

Consider a general prototype for a PDE describing some physical process on the surface

Σ in the form

∂f

∂t
(y) = G(y, f(y),∇sf(y),△sf(y)) ∀y ∈ Σ. (3)
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For any x in space, let cp(x) denote the closest point to x in the surface Σ, that means

|x− cp(x)| = inf
y∈Σ

|x− y|. Figure 1 shows an example about relation of x and cp(x). Here we

note that cp(x) is well-defined if x is in a sufficiently small neighborhood of a smooth surface.

Now, we define an embedding PDE on Ω which is the neighborhood of the surface by

closest point and replace surface operators by standard Cartesian operators, as

∂F

∂t
(x) = G(cp(x), F (cp(x)),∇F (cp(x)),△F (cp(x))) ∀x ∈ Ω. (4)

Since the vector x − cp(x) is normal to the surface Σ, the function F (cp(x)) is a constant

normal extension from the surface. If x ∈ Σ, the first property implies that

∇F (cp(x)) = ∇sF (cp(x)) = ∇sF (x)).

Moreover, ∇F (cp(x)) is always tangent to the level-sets of the distance function, so applying

the second property at the surface, we obtain

∇ · (∇F (cp(x))) = ∇s · (∇F (cp(x)) = ∇s · (∇sF (x)).

According to the two properties, the embedding PDE (4) is equal to the surface PDE (3) on

the surface. It means that, if F is a solution of embedding PDE , then the solution on the

surface also satisfies surface PDE. Based on this, the closest point method proceeds by the

following two steps:

1. Extend the solution off the surface to each grid node on the computational domain

around the surface.

Figure 1: x is any point in space and cp(x) is closest point in surface of x
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Figure 2: The function F which we solved from embedding PDE is defined on ’·’ around of

surface, and we use F to approximate surface function f , which is solution for surface PDE.

2. Compute the solution of the embedding PDE using standard finite differences scheme

on a Cartesian mesh of the computation domain.

At every time step, the solution of the surface PDE is approximated by the solution of the

embedding PDE at the grid points on the computation domain. For example, we use the

forward Euler method to solve the heat equation on the surface

fn+1 = fn +∆t · △sf
n.

We do not treat this surface equation directly. Instead, we assume F n(x) = fn(cp(x)) and

evolve the equation

F n+1 = F n +∆t · △F n

on the regular grid points around of surface, and use F n+1 to approximate the solution fn+1

on the surface.
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4 Level set representation

Following [6,7], we represent a moving surface Σ(t) in Rd by zero level set of the signed

distance function ϕ(x, t) . That is

Σ(t) = {x : ϕ(x, t) = 0} (5)

where ϕ(x, t) defined by

ϕ(x, t) =


−d(x, t) if x ∈ Σ(t)−

0 if x ∈ Σ(t)

d(x, t) if x ∈ Σ(t)+

where d(x, t) = inf
y∈Σ(t)

|x− y| is the distance function , Σ(t)− and Σ(t)+ represent inside and

outside of the surface, respectively. For example, consider a circle surface, the signed distance

function of the circle is ϕ =
√

x2 + y2 − 1.

However, it is difficult to give an explicit formula for the signed distance function of any

surface. As in [6], we reinitialize the level set function ϕ0 to the signed distance function ϕ

by evolving the reinitialization equation{
ϕτ + S(ϕ0)(|∇ϕ| − 1) = 0

ϕ(x, 0) = ϕ0

(6)

where τ is pseudo time and S(x) is the signed function taken as 1 in Σ(t)+, −1 in Σ(t)−

and 0 on the surface. By evolving this equation, the function ϕ will be identically equal to

zero on Σ, and |∇ϕ| will converge to 1 on the narrowband of the surface. That means the

level set function ϕ(t) will converge to the signed distance function. Figure 3 shows the level

set function of an ellipse transformed to the signed distance function after reinitialization

precess.

By taking the time derivative of ϕ(x, t) = 0, then we have the Hamilton-Jacobi equation

Dϕ

Dt
= ϕt + u · ∇ϕ = 0 (7)

where u is the surface velocity. Since the surface is represented by the zero level set of ϕ(x, t),

we can move the surface by solving the equation (7) for a given initial condition ϕ(x, 0).
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Figure 3: The left figure is the level set of the function ϕ0 =
x2

(1.2)2
+ y2

(0.8)2
− 1 to represent an

ellipse. The right figure is level set of ϕ which is reinitialized of ϕ0

5 Numerical method

Based on the closest point method [4,1], we use an implicit scheme to solve the embedding

PDE and interpolate the value on the surface by degree-p Lagrange interpolation polynomials.

Given the surface function fn, the signed distance function ϕn and the vector field u, we evolve

fn+1 and ϕn+1 by the following steps:

Step1: Evolve the surface Σ(tn+1) which represented by zero level set of ϕn+1
0 in velocity field

u. We solve the Hamilton-Jacobi equation (7) for one time step to move our sur-

face. For spatial discretization, we use the third-order upwind weighted essentially

non-oscillatory(WENO) scheme [7] to discretize u · ∇ϕn. At each grid point (xi, yj)

(u · ∇ϕ)ij = u+D−
x ϕij + u−D+

x ϕij + v+D−
y ϕij + v−D+yϕij

where x+ = max(x, 0) , x− = min(x, 0) and D±
x ϕij, D

±
y ϕij are the one-sided divided

differences for the WENO scheme. In third-order WENO scheme [2], the approximation

to ∂ϕ
∂x

on left-biased stencil {xi−2, xi−1, xi, xi+1} is

D−
x ϕi =

1

2∆x

[
(∆+ϕi−1 +∆+ϕi)− ω−(∆

+ϕi−2 − 2∆+ϕi−1 +∆+ϕi−1)
]

where

ω− =
1

1 + 2r2
with r =

ε+ (∆+∆−ϕi−1)
2

ε+ (∆+∆−ϕi)2
.
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where the notation ∆+ϕi = ϕi+1 − ϕi, ∆
−ϕi = ϕi − ϕi−1 are forward and backward

difference operators respectively. By symmetry, the approximation to ∂ϕ
∂x

on right-

biased stencil {xi−1, xi, xi+1, xi+2} is

D+
x ϕi =

1

2∆x

[
(∆+ϕi−1 +∆+ϕi)− ω+(∆

+ϕi+1 − 2∆+ϕi +∆+ϕi−1)
]

where

ω+ =
1

1 + 2r2
with r =

ε+ (∆+∆−ϕi+1)
2

ε+ (∆+∆−ϕi)2
.

For time discretization, we use the third-order total variation diminishing(TVD) Runge-

Kutta scheme in [11]. Consider the time dependent PDE

dϕ

dt
= H(ϕ),

We solve the level set function ϕ0 at the (n+1)th step by
ϕ1 = ϕn +∆tH(ϕn)

ϕ2 =
3
4
ϕn + 1

4
ϕ1 +

∆t
4
H(ϕ1)

ϕn+1
0 = 1

3
ϕn + 2

3
ϕ2 +

2∆t
3
H(ϕ2)

Step2: We reinitialize the level set function ϕn+1
0 to the signed distance function ϕn+1 by

evolving the reinitialization equation (6) with initial condition ϕn+1
0 . For time dis-

cretization, we also use the third-order total variation diminishing(TVD) Runge-Kutta

scheme. For spatial discretization, following in [7] ,we use the spatial discretization for

S(ϕ0)(|∇ϕ| − 1) like WENO scheme

S(ϕ0)(|∇ϕ| − 1)ij = s+ij(
√

(a+)2 + (b−)2 + (c+)2 + (d−)2 − 1)

+ s−ij(
√
(a−)2 + (b+)2 + (c−)2 + (d+)2 − 1)

where sij is numerical approximation to signed function of ϕn+1
0 given by

sij =
ϕ0√

ϕ2
0 +∆x2

and notation a, b, c, d are one-sided divided differences for the WENO scheme as

a = D−
x ϕij , b = D+

x ϕij , c = D−
y ϕij , d = D+

y ϕij

8



Step3: In this step, we need to find the closest point cp(x), the computational domain Ω1

and Ω2 at time step tn+1. Since ϕ is the signed distance function, ∇ϕ will be the unit

normal vector n at surface for each point at surface. So given any point x around of

the surface, the closest point cp(x) of x can be written as

cp(x) = x− ϕ(x)∇ϕ(cp(x)).

Assume that the surface is sufficiently smooth and x is close to the surface, then we

have ∇ϕ(x) = ∇ϕ(cp(x)). So that, we can approximate the closest point cp(x) of x by

cp(x) = x− ϕ(x)∇ϕ(x).

Next, we try to find the computation domain Ω1 which we will solve the embedding on

this domain. Note that, the computation domain Ω1 should contain every grid point

which can appear in the interpolation stencil for some point on surface Σ(tn+1), since we

use the solution of embedding PDE defined on Ω1 to approximate the solution of surface

PDE on surface. In [1], the authors provided a way to approximate the computation

domain Ω1 by

Ω1 = {x : |x− cp(x)| ≤ λ}

where the bandwidth λ is given by

λ =

√
(d− 1)

(
p+ 1

2

)2

+

(
1 +

p+ 1

2

)2

∆x.

We write Ω1 as

Ω1 = {x1, x2, ..., xm1}

Let Ω2 be disjoint from Ω1 which contains every grid point which will be used in the

finite difference scheme as

Ω2 = {xm1+1, xm1+2, ..., xm1+m2}

Figure 4 shows an example of the two set Ω1 and Ω2 on a circle with the usage of

degree-4 Lagrange interpolation polynomials.
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Figure 4: Example of unit circle with degree-4 Lagrange interpolation polynomials. The grid

points in Ω1 denote •, and grid point in Ω2 are denote ◦. Grid points × are closest point of

⋄, and the grid points in the square are interpolation stencil of ×

Step4: In this step, we use implicit closest point method to solve our problem. Consider the

embedding PDE which is defined on Ω1 for our convection-diffusion equation as

Ft(x) + u · ∇F (cp(x)) + (∇s · u)F (cp(x)) =
1

Pes
△F (cp(x)) (8)

Let we denote the vectors

F = [F (x1), F (x2), ..., F (xm1)]

F∗
1 = [F (cp(x1)), F (cp(x2)), ..., F (cp(xm1))]

F∗
2 = [F (cp(xm1+1)), F (cp(xm1+2)), ..., F (cp(xm1+m2))]

We discretize the differential operators of (8) by central difference. Since ∇s · u =

∇ · u− (∇ϕ)t · ∇u · ∇ϕ. , we can write formula (8) into a matrix form

∂

∂t
F = K

(
F∗

1

F∗
2

)
(9)

where K is m1 by m1 +m2 matrix.

From the closest point method, we let F n be the normal extension from fn of the

surface Σ(tn), that is F n(xi) = fn(cp(xi)). By using the Crank-Nicolson scheme, we

10



have

Im1F
n+1 − ∆t

2
K

(
F∗n+1

1

F∗n+1

2

)
= Im1F

n +
∆t

2
K

(
F∗n

1

F∗n
2

)
= b (10)

where Im1 is an m1 by m1 identity matrix. Note that, we approximate the value of fn+1

at any point in the surface by F n+1. Since cp(xi) is at the surface, we apply degree-p

Lagrange interpolation polynomials and then obtain for any index 1 ≤ i ≤ m1 +m2

F n+1(cp(xi)) = fn+1(cp(xi)) =

(p+1)d∑
s=1

lisF
n+1(xis)

where xis in Ω1 and lis is the Lagrange coefficient for F n+1(xis). Rewrite it in a matrix

form (
F∗n+1

1

F∗n+1

2

)
= EFn+1 (11)

where E is a m1 +m2 by m1 extension matrix with the entries

eij =


lis if xj is in the interpolation stencil for cp(xi)

( i.e. j = is for some 1 ≤ s ≤ (p+ 1)d )

0 otherwise

We let M = KE, and combine the two formulae (10),(11), we have

AF n+1 = b (12)

where

A = Im1 −
∆t

2
M,

is an m1 by m1 matrix.

Step5: Once we solve F n+1, then we can approximate the value of fn+1 at surface. By exam-

ining the spectra of M given in Figure.5(left), the matrix M has some eigenvalues with

positive real parts. From (9)(11), we have

∂

∂t
F = MF,

11



these positive eigenvalues will cause the solution an exponential growth and lead to

instability. For example, Figure.6(left) shows the oscillatory results for heat equation

on a circle using the implicit closest point method with M . Theoretically, it should not

occur in our solution, because we have the diffusion term in our equation. So that, we

should stabilize the matrix M . Let

M̃ = D + (K −D)E

where D is diagonal matrix of K. That means the stabilized form of our system is

∂

∂t
F (xij) =− 1

2∆x
u · (F (cp(xi+1,j))− F (cp(xi−1,j)), F (cp(xi,j+1))− F (cp(xi,j−1)))

− (∇s · u)F (xi,j) (13)

+
1

Pes(∆x)2
(F (cp(xi+1,j)) + F (cp(xi−1,j)) + F (cp(xi,j+1)) + F (cp(xi,j−1))

−4F (xi,j))

where the only change is that the diagonal entries. This modification will increase the

value of diagonal of the matrix. Note that, the system (13) also matches the surface

PDE at the surface, because cp(x) = x for any x on the surface. So we can solve F n+1

by the system (13) and use F n+1 to interpolate the fn+1 at the surface Σ(tn+1).

12
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Figure 5: Spectra of the M (left) and M̃ (right) matrices. The matrix M and M̃ are derived

from a heat equation on a unit circle in 2D with degree-4 Lagrange interpolation polynomial

and ∆x = 0.1. Observe that M has eigenvalues in the right half plane, and all eigenvalues of

M̃ have negative real parts
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Figure 6: Stable and unstable solutions of the heat equation on a unit circle embedded in

2D with ∆x = 0.1 and degree-4 interpolation
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6 Numerical results

In this section, the Peclet number Pes is set to be 1, except that in the last example.

Example 1.

Consider the heat equation on a unit circle

ft = △sf

with the initial condition f0(x, y) = sin θ + 2 defined on surface where θ = sin−1( y√
x2+y2

).

We know the surface Laplacian operator on the circle in polar coordinate is

△sf =
1

r2
∂2f

∂θ2
,

which implies that the function f(x, y, t) = e−t sin θ + 2 is the exact solution of heat equa-

tion with initial condition f0. We apply the implicit closest point method to the problem

with degree-4 Lagrange interpolation polynomials, and the closest point of (x, y) is given by
(x,y)√
x2+y2

. We use the time step-size ∆t = ∆x = ∆y and compute up to final time T = 1. In

Table 1, the errors at the final time T are computed on Σ with infinity-norm. The results

give the rate of convergence about second-order.

Example 2.

Consider an example in 3D. The heat equation on a unit sphere

ft = △sf

Table 1: Heat equation on a circle, ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.1 440 1.0177e-003 -

0.05 888 2.5663e-004 1.987

0.025 1768 6.3506e-005 2.015

0.0125 3568 1.5900e-005 1.998

0.00625 7128 3.9784e-006 1.999
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Table 2: ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.1 11542 2.1502e-03 -

0.0 44110 5.3535e-04 2.005

0.025 174982 1.3365e-04 2.002

0.0125 698182 3.3403e-05 2.000

with initial condition f0(x, y, z) = xy defined on surface. The surface Laplacian operator on

sphere in spherical coordinate system is

△sf =
1

r2 sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

r2 sin2 θ

∂2f

∂ϕ2

with x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ. Then the function f(x, y, z) = e−6txy

is an exact solution of diffusion equation with initial condition f0 on a unit sphere. The

closest point of (x, y, z) is given by (x,y,z)√
x2+y2+z2

in our method, and we compute up to final

time T = 0.5 with time step-size ∆t = ∆x = ∆y = ∆z. The result is shown in Table 2. We

can observe that the rate of convergence is also second-order.

Example 3.

Following the Example 1, we also use the same initial function f0(x, y) = sin θ + 2 on a unit

circle Σ where θ = sin−1( y√
x2+y2

), and we give the velocity field

u =
(−y, x)√
x2 + y2

.

In the Figure 7, the velocity field u is always tangent to the surface Σ at any point in surface.

The surface will rotate counterclockwisely but not change the shape itself. That means the

level set function which we use to represent the unit circle does not change, so we do not need

to solve the Hamilton-Jacobi equation (6) and (7) in our numerical process. We consider the

convection-diffusion equation on Σ as

ft + u · ∇sf = △sf.

If we use the polar coordinates, the equation on the surface Σ can be rewritten as

ft +
∂f

∂θ
=

∂2f

∂θ2
.
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Figure 7: The black curve is unit circle and the green arrow is velocity field. The velocity is

given such that the surface rotates counterclockwisely

Table 3: convection diffusion equation on a unit circle, ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.1 440 5.2753e-004 -

0.05 888 1.3152e-004 2.004

0.025 1768 3.2961e-005 1.996

0.0125 3568 8.2431e-006 2.000

0.00625 7128 2.0611e-006 2.000

Then the function f(x, y, t) = e−t sin (θ − t) + 2 is an exact solution of convection-diffusion

equation with initial condition f0. We use the time step-size ∆t = ∆x = ∆y and the

numerical results at final time T = 1 are reported in Table 3.

Example 4.

In this example, we give a simple velocity field u = (1, 0). The surface in the velocity field

will move along x-axis with unit speed. We solve the convection-diffusion equation with the

same initial function f0 and initial surface as in Example 1. The function defined on surface

16



f(x, y, t) = e−t sin(θ) + 2, where θ(t) = sin−1( y√
(x−t)2+y2

) is an exact solution of

ft + u · ∇sf = △sf

with initial condition. In Table 4, we show the result with using signed distance function ϕ

to represent the surface Σ(t) and exactly closest point at each time.

Figure 8: The moving surface and surfactant concentration at different time

Example 5.

In this example, we consider the problem
ft + u · ∇sf + (∇s · u)f = △sf on Σ(t)

f(x, y, 0) = f0(x, y) on Σ(0)
dx
dt

= u x ∈ Σ(t)

Let velocity field

u = (0,
x

2
)

be a shear flow, the surface in the flow will move and deform. The initial surface is given by

the zero level set of ϕ(x, y, 0) =
√

(x2+y2)−1 which is a unit circle and the initial surfactant

concentration on the surface is f0(x, y) = sin(θ) + 2 = y + 2.

Table 4: ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.05 888 3.3504e-003 -

0.025 1768 1.5642e-003 1.10

0.0125 3568 7.5500e-004 1.05

0.00625 7128 3.7079e-004 1.03
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Consider the domain of level set function to be [−1.5, 1.5]× [−2, 2]. Compute the problem up

to final time T = 1 with time step-size ∆t = ∆x and take about 10 time steps to reinitialize

the level set in our numerical process in each time step. The errors and rates of convergence

are shown in Table 5. In this example, the total mass of surfactant on the surface is conserved,

and the volume (area) of the interior region enclosed by the moving surface is also conserved

since we use a divergence free velocity field. In [6], the total mass of surfactant f on the

surface can be written as

M =

∫
Rn

f(x)δ(ϕ(x))|∇ϕ(x)| dx,

and the volume (area) of the interior region is

V =

∫
Rn

1−H(ϕ(x)) dx.

where H is Heaviside function and δ(ϕ) = H ′(ϕ). We approximate the Heaviside function H

and delta function δ by

H(ϕ) =


0 if ϕ < −ε
1
2
+ ϕ

ε
+ 1

2π
sin πϕ

ε
if − ε ≤ ϕ ≤ ε

1 if ε ≤ ϕ

δ(ϕ) =


0 if ϕ < −ε
1
2ε

+ 1
2ε
cos πϕ

ε
if − ε ≤ ϕ ≤ ε

0 if ε ≤ ϕ

with ε = 1.5∆x. Figure 9 shows the relative errors for total mass of surfactant on the

surface and the area enclosed by the surface, respectively. The relative error for total mass of

surfactant is about 10−3, and the relative error of the area is near 10−6. The moving surface

and surfactant concentration on the surface at different times are shown in Figure 10.

Example 6.

In this example, we change the velocity field in Example 5 to

u =

{
(y2, 0) if y ≥ 0

(−y2, 0) if y < 0

which is like a shear flow, and the initial condition for surfactant concentration and surface

are same as in Example 5. Consider the domain for level set function to be [−2, 2]×[−1.5, 1.5].

18



Table 5: Error = ∥ f − fref ∥∞, ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.05 924 6.4168e-003 -

0.025 1850 3.0279e-003 1.08

0.0125 3714 1.3117e-003 1.21

0.00625 7436 4.3986e-004 1.58

0.003125 14844 - -

Figure 9: Relative error for total mass (left) and area (right) at each time
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We computed the solution up to final time T = 1 with time step-size ∆t = ∆x = ∆y and take

about 20 time steps to reinitialize the level set in our numerical process in each time step. In

order to make sure the stability of solving the Hamilton-Jacobi equation (6), we choose the

time step-size ∆t = ∆x
4
. The result is shown in Table 6 Figures 11 shows the relative errors

for total mass of surfactant on the surface and the area enclosed by the surface, respectively.

The error for total mass of surfactant is still around 10−3, and that of the area enclosed

by surface is in the order of 10−6. The moving surface and surfactant concentration on the

surface at different time are shown in Figure 12.

Table 6: Error = ∥ f − fref ∥∞, ∆t = ∆x
4
, T = 1

∆x m1 Error conv.rate

0.0125 4056 3.9977e-003 -

0.00625 8122 1.2875e-003 1.63

0.003125 16268 - -
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Figure 10: The moving surface and surfactant concentration at different time

Figure 11: Relative error for total mass (left) and area (right) at each time
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Example 7.

In this example, we construct a surface PDE which has an exact solution with given initial

condition. Let f(x, y, t) = e−txy + 2 and the velocity field u = (0, x
2
), and we add a source

term g to the convection diffusion equation which is given by

g = ft + u · ∇sf + (∇s · u)f −△sf

Figure 12: The moving surface and surfactant concentration at different time
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Table 7: ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.05 924 3.6077e-003 -

0.025 1850 1.7042e-003 1.08

0.0125 3712 8.3113e-004 1.04

0.00625 7436 4.1031e-004 1.02

Consider the problem
ft + u · ∇sf + (∇s · u)f = △sf + g on Σ(t)

f(x, y, 0) = f0(x, y) on Σ(0)
dx
dt

= u x ∈ Σ(t)

then f is an exact solution of the problem with initial condition f0(x, y) = f(x, y, 0). In our

numerical process, the embedding PDE of the problem is

ft(x) + u · ∇f(cp(x)) + (∇s · u)f(cp(x)) = △f(cp(x)) + g(cp(x))

where g is compute by

g =ft + u · (∇f − (∇f · n)n) + (∇s · u)f − (△f − n · ∇(∇f) · n)

and approximate n by ∇ϕ where ϕ is signed distance function of the surface Σ(t). The

computational domain for level set function is a rectangle [−2, 2]× [−1.5, 1.5]. Compute the

solution up to final time T = 1 with time step-size ∆t = ∆x = ∆y, and take about 10 time

steps to reinitialize the level set in our numerical process in every time step. The numerical

result at final time T is shown in Table 7.

Example 8.

Consider a 3D example. Give a function f(x, y, z) = xyz defined on a unit sphere and the

velocity field u = (1, 0, 0) such that the surface in the flow will move along x-axis with unit

speed. Similar to previous example, we add a source term g to the convection diffusion

equation to make the problem
ft + u · ∇sf = △sf + g on Σ(t)

f(x, y, 0) = f0(x, y) on Σ(0)
dx
dt

= u x ∈ Σ(t)
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Table 8: ∆t = ∆x, T = 1

∆x m1 Error conv.rate

0.1 11542 9.9516e-03 -

0.05 44110 4.8172e-03 1.046

0.025 174982 2.3653e-03 1.026

having an exact solution with initial condition f0 = f(x, y, z, 0) = xyz. Since we know the

position of surface at any time step, we do not need to solve the equation about the level

set function. The closest point of (x, y, z) is given by (x−t,y,z)√
(x−t)2+y2+z2

+ (t, 0, 0) at any time

step in our process . We compute the solution up to final time T = 1 with time step-size

∆t = ∆x = ∆y = ∆z, and the numerical result at final time is shown in Table 8.

Example 9.

In this example, we are interested in the effect of surfactant concentration on the surface

under the fixed velocity field but with different Peclet numbers. We set the initial condition

f0(x, y, z) = 1, which is constant function defined on the unit sphere, and the velocity field

u = (y
2
, 0, 0). Consider the problem
ft + u · ∇sf + (∇s · u)f = 1

Pes
△sf on Σ(t)

f(x, y, z, 0) = f0(x, y, z) on Σ(0)
dx
dt

= u x ∈ Σ(t)

We use different values of Peclet number in our numerical test. The result of surfactant

concentration on the surface at different times are shown in Figure 13,14 and 15, and Figure

16 shows the relative error for total mass of surfactant on the surface. We can observe that

the flow will move surfactant to the tip points of the surface, and the surfactant concentration

is decreasing since the surface area is increasing.
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Figure 13: Peclet number = 2

Figure 14: Peclet number = 1

Figure 15: Peclet number = 0.5

Figure 16: Relative error for total mass at each time, plotted in scale of 10−4
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7 Conclusion

In this paper, we apply an implicit closest point method to solve convection-diffusion equation

on the moving surface, and use level set function to capture the moving surface. In closest

point method, the way to find the closest point is important. Since we represent the surface

by signed distance function, we can easily find the closest point in our numerical method. In

the numerical test, our algorithm demonstrates good results for the rate of convergence and

error of total mass.

Appendix

We prove the fundamental property 2. Assume that the velocity field u is tangent to the

level-sets of the distance function, i.e., u · n = 0. By the definition of surface divergence

operator, we just need to show that nt · ∇u ·n = 0. Take gradient on both sides of u ·n = 0,

we have

0 = ∇u · n

= ∇(u1n1 + u2n2)

=
[

∂
∂x
(u1n1 + u2n2)

∂
∂y
(u1n1 + u2n2)

]
=
[

∂
∂x
(u1)n1 +

∂
∂x
(u2)n2

∂
∂y
(u1)n1 +

∂
∂y
(u2)n2

]
+
[
u1

∂
∂x
(n1) + u2

∂
∂x
(n2) u1

∂
∂y
(n1) + u2

∂
∂y
(n2)

]
=
[
n1 n2

] [ ∂
∂x
(u1)

∂
∂y
(u1)

∂
∂x
(u2)

∂
∂y
(u2)

]
+
[
u1 u2

] [ ∂
∂x
(n1)

∂
∂y
(n1)

∂
∂x
(n2)

∂
∂y
(n2)

]
= nt∇u+ ut∇n

Then

(nt · ∇u) · n = −(ut · ∇n) · n

= −ut

[
∇n1 · n
∇n2 · n

]
= 0

because n1 and n2 only vary along tangent direction. Then we have

∇su = ∇u− nt · ∇u · n

= ∇u
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