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中中中文文文摘摘摘要要要

非非非記記記憶憶憶型型型多多多重重重存存存取取取廣廣廣義義義衰衰衰減減減通通通道道道之之之衰衰衰減減減數數數

研究生：黃昱銘 指導教授：莫詩台方 博士

國立交通大學電信工程研究所碩士班

本篇論文中探討的是非同調多重存取廣義規律衰減通道的通道容量。其中傳送端的使

用者允許擁有任意數量的天線，但接收端僅允許擁有一條天線。在此通道中，所傳送的訊

號會遭遇相加高斯雜訊以及非記憶型廣義衰減的影響，也就是說，此衰減不被特定的機率

分布所限制，如雷利（Rayleigh）分布及萊斯（Rician）分布。雖然我們假設對於時間來說

為非記憶性，但我們允許對於空間上的記憶，也就是說，對於不同天線的衰減分布是相關

的。在傳送端使用者之間不允許相互合作通訊，因此各使用者假設在統計特性上獨立。

我們的研究是根據已知的單使用者廣義衰減通道的漸進通道容量，推廣到多使用者多重

存取的總通道容量，且允許傳送端使用者擁有多餘一條的天線數。我們知道在此通道下，

增加可使用功率對於通道容量的成長是極沒效率的，僅以雙對數形式增長，此外，在高訊

雜比時，漸進總通道容量中的第二項數值，我們稱之為衰減數。我們成功證明在此通道下

的衰減數與單使用者的衰減數相同。

此研究結論在考量三種功率限制下皆成立，分別為尖峰值功率限制，時間平均功率限

制，以及允許功率分享的時間平均功率限制。其中第三項限制是不實際的因為它代表我們

允許使用者分享功率卻不允許合作，但它有助於我們的推導且我們可證明結果皆一致。

我們的證明是基於互消息的對偶型上界與輸入信號的機率分布逃脫到無限的觀念，其精

神為當可用的功率趨近於無限大時，輸入信號必定會使用趨近於無限大的符號。



Abstract

The Fading Number of Multiple-Access

General Fading Channels

Student: Huang Yu-Ming Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering

National Chiao Tung University

In this thesis, the sum-rate capacity of a noncoherent, regular multiple-access general

fading channel is investigated, where each user has an arbitrary number of antennas and

the receiver has only one antenna. The transmitted signal is subject to additive Gaussian

noise and fading. The fading process is assumed to be general and memoryless, i.e., it is not

restricted to a specific distribution like Rayleigh or Rician fading. While it is memoryless

(i.e., independent and identically distributed IID) over time, spacial memory is allowed,

i.e., the fading affecting different antennas may be dependent. On the transmitter side

cooperation between users is not allowed, i.e., the users are assumed to be statistically

independent.

Based on known results about the capacity of a single-user fading channel, we derive the

exact expression for the asymptotic multiple-user sum-rate capacity. It is shown that the

capacity grows only double-logarithmically in the available power. Futhermore, the second

term of the high-SNR asymptotic expansion of the sum-rate capacity, the so-called fading

number, is derived exactly and shown to be identical to the fading number of the single-user

channel when all users apart from one is switched off at all times.

The result holds for three different power constraints. In a first scenario, each user must

satisfy its own strict peak-power constraint; in a second case, each user’s power is limited

by an average-power constarint; and in a third situation — somewhat unrealistically — it

is assumed that the users have a common power supply and can share power (even though

they still cannot cooperate on a signal basis).

The proof is based on a duality-based upper bound on mutual information and on the

concept of input distributions that escape to infinity, meaning that when the available power

tends to infinity, the input must use symbols that also tend to infinity.
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Introduction Chapter 1

Chapter 1

Introduction

1.1 Introduction & Background

Wireless communication channels encounter additive Gaussian noise and a phenomenon

called fading. The fading phenomenon impacts the signal amplitude (often destructively)

and is usually modeled as multiplicative noise. Due to this multiplicative noise, it is much

more difficult to design a good communication system for such channels, and hence fading

is a hot research topic. Usually channels with this fading phenomenon are called fading

channels.

In this thesis we investigate a multiple-access fading channel. We do not restrict our

models to any kind of fading processes. This means that the multiplicative noise process

can have any arbitrary random distribution, and the fading processes are allowed to be

dependent on each other.

Multiple-access indicates that several users utilize the channel at the same time. These

users are assumed to be statistically independent, which distinguishes the multiple-user

channel from the channel with a single user having multiple antennas. Common examples

of the multiple-access channel (MAC) are a group of mobile phones communicating with a

base station or a satellite receiver with several ground stations.

The work in this thesis focuses on the capacity analysis of the multiple-access fading

channel. The concept of channel capacity was initially introduced in Shannon’s famous

landmark paper “A Mathematical Theory of Communication” [1]. In this paper, Shannon

proved that for every communication channel there exists a theoretical maximum rate —

denoted capacity—that can be transmitted reliably, i.e., for every transmission rate below

capacity, the probability of making a decision error can be as small as one wishes. Therefore,

the capacity is fundamental for the understanding of the channel and also for the judgment

of efficiency for a designed system on a channel. However, capacity is defined in a single-user

system. To generalize it to a multiple-user situation, we consider the theoretically maximum

possible sum rate of all users. To be specific, we call this maximum possible sum rate the

sum-rate capacity, but simply use capacity exchangeably in both cases.

Though many systems and techniques have been developed for the wireless communica-
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1.1 Introduction & Background Chapter 1

tion channel, the channel capacity of a general fading channel is not yet known. Researchers

have been trying to solve this problem via various approaches. One common approach is to

analyze the channel based on the assumption that the receiver has perfect knowledge of the

channel state by estimating the channel state from training sequences. However, we cannot

ignore the bandwidth kept for these training sequences. Furthermore, we can never measure

the channel state perfectly even with a large amount of training data.

Another approach is to utilize joint estimation and detection: here we estimate the chan-

nel state by the received information data. No assumption of a particular estimation scheme

is then required. The only assumption is that both the transmitter and the receiver know

the channel characteristics (but not the realizations!). The capacity under this approach of

analysis is known as the noncoherent capacity.

So far, no exact expression for the noncoherent capacity of a fading channel is known. As

a function of the signal-to-noise ratio (SNR), the noncoherent capacity is only understood at

asymptotic high and low SNR. Lapidoth and Moser have derived in [2] [3] [4] the asymptotic

high-SNR capacity of general single-user fading channels. The asymptotic low-SNR capacity

of fading channel has also been derived in [5]. In this work we extend the result of the high-

SNR asymptotic capacity to the multiple-access channel. It is the generalization of the

result about the Rician fading MAC, which is given in [6].

The evaluation of noncoherent capacity involves an optimization problem. To derive the

exact expression either analytically or numerically is very difficult. One promising approach

is to derive upper and lower bounds to the capacity and try to make them close. Based on

[7], we know natural lower and upper bounds from the single-user multiple-input single-out

(MISO) channel and the multiple-user MISO channel. There the lower bound is the capacity

when only the user with best channel transmits, and the other users swithch off, and the

upper bound is the capacity under the assumption of all users are allowed to cooperate,

i.e., we view the multiple-access channel as a MISO channel. We also know that the upper

bound from the MISO channel is loose. The technique of deriving upper bounds of mutual

information is based on duality, a successful technique [8], [3] utilizing the dual expression

of the channel capacity where the maximization (of mutual information) over distributions

on the channel input alphabet is replaced with a minimization (of average relative entropy)

over distributions on the channel output alphabet. In [6] and [9], the fading number in

multiple-access Rician fading channel are derived, but the fading process is restricted to

Gaussian fading, which is far from a realistic assumption in an environment for countryside

or in places near the receiver, where not many obstacles between transmitter and receiver.

Hence, we have to loosen the assumption about the fading process, and that is the reason

why we insist on the general fading case.

The fading number is defined as the second term in the high-SNR asymptotic capacity

and is independent of SNR. It can be an indicator to get more insight about what is the

most efficient way to transmit in such fading channel models. As the main contribution in

this thesis, we obtain the fading number and asymptotic capacity of multiple-access general

fading channel, where users are allowed to have more than one antenna (each user can be

viewed as a MISO case individually, not SISO).

2



1.2 Notation Chapter 1

The structure of this thesis is as follows. In the remainder of this chapter, we will briefly

describe our notation. Next we will give the setup of the channel model in Chapter 2.

Furthermore, there is a discussion on power constraints in the end of this chapter. The

subsequent Chapter 3 gives some mathematical preliminaries about the sum-rate capacity,

the fading number and input distributions that escape to infinity. Moreover, we review the

previous results as the fundamental basis of this thesis and state some important preliminary

results as well. The main result and its derivation are shown in Chapter 4 and Chapter 5,

respectively. Finally we give a discussion and conclusion in Chapter 6.

1.2 Notation

For random quantities we use uppercase letters such as X to denote scalar random variables

and for their realizations we use lowercase letters like x. For random vectors we use bold-face

capitals, e.g., X and bold lower-case letters for their realization, e.g., x. Constant matrices

are denoted by upper-case letters but of a special font, e.g., H. For random matrices we yet

use another font, e.g., H. Scalars are typically denoted using Greek letters or lower-case

Roman letters.

Some exceptions that are widely used and therefore kept in their customary shape are:

• h(·) denotes the differential entropy.

• I(·; ·) denotes the mutual information functional.

Moreover, we use the capitals Q and W as the input probability distribution and the channel

law (distribution of the channel output conditioned on the channel input), and C exchange-

ably for the single-user capacity and the multiple-user sum-rate capacity. The energy per

symbol is denoted by E , and the signal-to-noise ratio SNR is denoted by snr. Also note

that we use log(·) to denote the natural logarithmic function.

Finally, the input vector of the i-th user is Xi with ni components, corresponding to

Hi of user i antenna. Sometimes we use a compact notation of an nT-vector X consisting

of all user’s vectors xi stacked on top of each other, i.e., we get a total vector X which is

expressed by

X =















X1

X2

...

Xm















, (1.1)

where Xi is ni-vector, i = 1, 2, . . .m, and nT = n1 + · · ·+ nm.

We also use X̂i to denote the normalized version of vector Xi to length 1, i.e.,

X̂1 !
X1

‖X1‖
. (1.2)
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1.2 Notation Chapter 1

As a warning, we would like to point out that

X̂ "=















X̂1

X̂2

...

X̂m















. (1.3)
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Chapter 2

Channel Model

In this chapter, we will introduce the channel model of the multiple-access general fading

channel. In Section 2.1, we give the mathematical formula and some assumptions of this

multiple-access channel. In Section 2.2, we will describe the special cases of the multiple-

access channel when the users both in the transmitter and the receiver side use one antenna

only. In Section 2.3, we discuss the power constraints.

2.1 The General Channel Model

In our analysis, we consider the noncoherent channel in the sense that both the transmitter

and the receiver do not know the channel state realization, but only have knowledge about

the channel characteristics, e.g., the distribution of the channel state.

We restrict ourselves to the memoryless case in our work. Distributions of the input and

the channel are independent and identically distributed (IID) at every time step. Therefore,

we will drop the time index.

We consider a channel as illustrated in Figure 2.1 with m users, each having ni transmit

antennas for i = 1, . . . ,m. The total number of transmit antennas is then

m
∑

i=1

ni = nT. (2.1)

We then assume the receiver with one antenna whose output Y ∈ C is given by

Y = HTx+ Z. (2.2)

Here x ∈ CnT denotes the input vector consisting of m subvectors of length ni for each

user; the random vector H ∈ C1×nT denotes the fading vector; the random variable Z ∈ C

denotes the additive noise.

We assume that the component of the fading H are dependent, but the additive noise

Z and the fading H are independent, and that both of them are of a joint law that does

not depend on the channel input x. The different users are assumed to have access to a

5
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common clock, resulting in the output at a discrete time. Note that different users are not

allowed to cooperate, i.e., for the input vector

X =







X1
...

Xm






, (2.3)

the subvectors Xi ∈ Cni denoting the input vectors of each user are statistically independent

Xi ⊥⊥ Xj , ∀ i "= j. (2.4)

We assume that the random variable Z is a spatially white, zero-mean, circularly symmetric

Gaussian noise, i.e., Z ∼ NC

(

0,σ2
)

for some σ2 > 0.

As for the fading vector H, the distribution is general, with the assumption of finite

power

E
[

‖H‖2
]

< ∞, (2.5)

and finite differential entropy

h(H) > −∞, (2.6)

the last assumption is usually denoted as regular fading.

2.2 A Simple Special Case of the Channel Model

For simplicity, we sometimes assume that each user and the receiver use only one antenna,

i.e., n1 = n2 = · · · = nm = 1, such that nT = m. This reduces (2.2) to the multiple-access

SISO case. Note that

Y = HTx+ Z, (2.7)

where x ∈ Cm denotes the input vector, with nT components xi in x are independent of

each other, but the components of H can be dependent, see Figure (2.2).

2.3 Discussion on Power Constraints

In the given setup we can consider several possible constraints on the power. We use E to

denote the maximum allowed total instantaneous power in the peak-power constraint, and

to denote the allowed total average power in the average-power constraint. For both cases

we get

snr !
E

σ2
. (2.8)

Note that the total power still must be split and distributed among all users. In our channel

model, we consider three different scenarios:

6



2.3 Discussion on Power Constraints Chapter 2

Figure 2.1: The memoryless multiple-access channel with multiple antennas at transmitter

side and one antenna at receiver side.

Figure 2.2: The memoryless multiple-access channel with only one antenna at transmitter

and receiver sides.

7



2.3 Discussion on Power Constraints Chapter 2

• Peak-Power Constraint: At every time-step, every user i is allowed to use a power

of at most κi

mE :

Pr
[

‖Xi‖
2 >

κi
m
E
]

= 0, (2.9)

for some fixed numbers κi > 0.

• Average-Power Constraint: Averaged over the length of a codeword, every user i

is allowed to use a power of at most κi

mE :

E
[

‖Xi‖
2
]

≤
κi
m
E , (2.10)

for some fixed numbers κi > 0.

• Power-Sharing Average-Power Constraint: Averaged over the length of a code-

word all users together are allowed to use a power of at most κ̄E :

E

[

m
∑

i=1

‖Xi‖
2

]

≤ κ̄E , (2.11)

for some fixed numbers κ̄ > 0.

Note that if κi = 1 for all i, we have the special case where all users have an equal power

available. Also note that in (2.9) and (2.10) we have normalized the power to the number

of user m. This might be strange from an engineering point of view; however, in regard

of our freedom to choose κi, it is irrelevant, and it simplifies our analysis because we can

esaily connect the power-sharing average-power constraint with the average of the constants

{κi}
m
i=1, i.e., if we define

κ̄ !
1

m

m
∑

i=1

κi, (2.12)

then the three constraints are in order of strictness: the peak-power constraint is the most

stringent of the three constraints in the sense of that if (2.9) is satisfied for all i = 1, . . . ,m,

then the other two constraints are also satisfied; and the average-power constraint is the

second most strigent in the sense that if (2.10) is satisfied for all i, then also the power-

sharing average-power constraint (2.11) is satisfied. In the remainder of this thesis we will

always assume that (2.12) holds.

For some comments about even more general types of power constraints, we refer to the

discussion in Chapter 6.

It is worth mentioning that the slackest constraint, i.e., the power-sharing average-power

constraint, implicitly allows a form of cooperation: while the users are still assumed to be

statistically independent, we do allow cooperation concerning power distribution. This is

not very realistic (it implies that our cellphones can share batteries), however, it helps

the derivation and it will turn out that the asymptotic sum-rate capacity is unchanged

irrespective of which constraint is assumed. Based on this, we can choose one of the power

constraint arbitrarily in our derivation, but not all of them in the same time.

8
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Chapter 3

Mathematical Preliminaries &

Previous Results

In this chapter we review some important concepts and some related previous results, includ-

ing some known result of the Rician fading MAC, for which case, the exact fading number

is already provided.

The channel model considered is (2.2). In Section 3.1 we review the channel capacity

and make a further generalization to the maximum possible sum rate of multiple users. In

Section 3.2 we introduce the fading number. In Section 3.3 we provide the concept of input

distributions that escape to infinity and a lemma which shows that under some conditions the

input distribution must escape to infinity. In Section 3.4 we extend the notion of escaping to

infinity to multiple users. In Section 3.5 we review a known bound of the sum-rate capacity

for our case. Finally, in Section 3.6 we get the exact value of the m-user SISO MAC Rician

fading number. The concepts we use in this chapter are mainly based on [2], [3], [6], and

[9].

3.1 The Channel Capacity

In this section we first review the definition of channel capacity provided by Shannon in

[1]. Further we give the definition of the maximum possible sum rate of the multiple-

access channel; it is basically identical to the channel capacity, but takes multiple users into

consideration.

Recall that in a discrete memoryless channel (DMC), the channel capacity is defined as

C ! max
QX

I(X;Y ), (3.1)

where the maximization is taken over all possible input distributions QX(·). When the

concept is generalized to the continuous case, i.e., the input and output take values in

continuous alphabet, a power constraint must be taken into consideration: for the peak

9



3.1 The Channel Capacity Chapter 3

power constraint (2.9)

C ! max
QX

Pr[|X|2≤E]=1

I(X;Y ), (3.2)

or for the average power constraint (2.10)

C ! max
QX

E[X2]≤E

I(X;Y ), (3.3)

where the maximization is taken over all the input distributions satisfying the constraint.

In the generalization to the memoryless multiple-user channel, we use C to denote the

maximum possible sum rate. The (sum-rate) capacity of the channel (2.2) is given by

C = sup
QX

I(X;Y ), (3.4)

where the supremum is taken over the set of all probability distributions on X for which

the m subvectors are independent and which satisfy the power constraint, i.e.,

Pr
[

‖Xi‖
2 >

κi
m
E
]

= 0, (3.5)

for a peak-power constraint, or

E
[

‖Xi‖
2
]

≤
κi
m
E , (3.6)

for an average-power constraint.

The most general concept of capacity in a multiple-access scenario is the capacity region.

The capacity region of the multiple-access channel is defined to be the closure of the set of

all achievable rate tuples. An example of a 2-user capacity region is provided in figure 3.3, it

is a common region for 2-user MAC. Speaking precisely, we have given three fixed numbers:

I1 ! I
(

X(1);Y
∣

∣X(2)
)

, (3.7)

I2 ! I
(

X(2);Y
∣

∣X(1)
)

, (3.8)

I3 ! I
(

X(1), X(2);Y
)

. (3.9)

These three numbers together with the constraints R(1) ≥ 0 and R
(2) ≥ 0 specify a pentagon

of achievable rate pairs:

R
(1) ≥ 0 R

(2) ≥ 0

R
(1) ≤ I1 R

(2) ≤ I2

R
(1) + R

(2) ≤ I3



















(3.10)
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If we consider Gaussian MAC, its capacity region is given by

R
(1) ≤ I1 = C

(

E
(1)

σ2

)

, (3.11)















































R
(2) ≤ I2 = C

(

E
(2)

σ2

)

, (3.12)

R
(1) + R

(2) ≤ I3 = C

(

E
(1) + E

(2)

σ2

)

, (3.13)

where

C(t) !
1

2
log(1 + t). (3.14)

In the case of m users with m > 2, the capacity region is a m-dimensional pentagon,

i.e., the m-user capacity region is given by the convex closure of all rate m-tuples.

R
(1)

R
(2)

I
(

X(1);Y
∣

∣X(2)
)

I
(

X(1);Y
)

I
(

X(2);Y
∣

∣X(1)
)

I
(

X(2);Y
)

Figure 3.3: An example of capacity region for 2-user MAC.

3.2 The Fading Number

In the asymptotic analysis of channel capacity at high SNR, it has been shown in [2], [3]

that at high SNR capacity grows only double-logarithmically in the SNR. This means that

at high power these channels become extremely power-inefficient because we have to square

the SNR to get an additional bit improvement in capacity. Furthermore, the difference

between channel capacity and log log SNR is bounded as the SNR tends to infinity, i.e.,

lim
E↑∞

{

C(E)− log log
E

σ2

}

< ∞. (3.15)

This bounded term is called the fading number. A precise definition of the fading number

is as follows.
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Definition 3.1. The fading number χ of a memoryless fading channel with fading matrix

H is defined as

χ(H) ! lim
E↑∞

{

C(E)− log log
E

σ2

}

. (3.16)

Whenever the limit in (3.16) exists and χ is finite, the expression of capacity is

C(E) = log log
E

σ2
+ χ+ o(1), (3.17)

where o(1) denote terms that tend to zero as the SNR tends to infinity. Thus, at high SNR

the channel capacity of a fading channel can be approximated by

C(E) ≈ log log
E

σ2
+ χ. (3.18)

Hence we can say that the fading number is the second term in the asymptotic expression

of the channel capacity at high SNR. Note that the approximation of capacity in (3.18) is

not always valid. In the low-SNR to medium-SNR regime, the capacity is dominated by

the o(1) term that cannot be neglected in that regime. In the analysis of the asymptotic

capacity, however, we are only concerned with the high-SNR regime and in particular when

the SNR tends to infinity. Thus, we usually use the approximation of (3.18) instead of the

intractable exact expression. Furthermore, we can even only consider the fading number

because the first term of the capacity is always the same.

The fading number also plays a role as a qualitative criterion for the communication

system. Since in the high-SNR regime the capacity is extremely power-inefficient, we should

avoid transmission in this severe regime. The fading number can provide a threshold of

how high the rate can be before entering the high-SNR regime, i.e., the fading number can

provide a certain threshold snr0 such that once the available SNR is above snr0, we are in

the log log snr dominated regime, and should not stick on this system. Instead we should

use other schemes, e.g., use more antennas in order to reach a higher transmission rate.

3.3 Escaping to Infinity

A sequence of input distributions parameterized by the allowed cost (in our case the cost of

fading channels is the available power or the SNR, respectively) is said to escape to infinity

if it assigns to every fixed compact set a probability that tends to zero as the allowed cost

tends to infinity. In other words this means that in the limit—when the allowed cost tends

to infinity—such a distribution does not use finite-cost symbols.

We give the definition of escaping to infinity for the fading channel under consideration

in this thesis; the definition for general channels can be found in [2], [3].

Definition 3.2. Let {QE}E≥0 be a family of input distributions for the memoryless fading

channel (2.2), where this family is parameterized by the available average power E such that

EQE

[

‖X‖2
]

≤ E , E ≥ 0. (3.19)

12
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Figure 3.4: The relationship between capacity and SNR in fading channel:

C(SNR) = log log SNR + χ+ o(1).

We say that the input distributions {QE}E≥0 escape to infinity if for every E0

lim
E↑∞

QE
(

‖X‖2 ≤ E0
)

= 0. (3.20)

This notion is of importance because the asymptotic capacity of fading channels can

only be achieved by input distributions that escape to infinity. As a matter of fact one can

show that to achieve a mutual information of only identical asymptotic growth rate as the

capacity, the input distribution must escape to infinity. The following lemma describes this

fact.

Lemma 3.3. Assume a single-user memoryless multiple-input multiple-output (MIMO) fad-

ing channel as given in (2.2) and let W (·|·) denote the corresponding conditional channel

law. Let {QE}E≥0 be a family of input distributions satisfying the power constraint (3.19)

and the condition

lim
E↑∞

I(QE ,W )

log log E
= 1. (3.21)

Then {QE}E≥0 escapes to infinity.

Proof. A proof can be found in [2], [3].

From the engineering point of view, this concept matches the intuition: as the available

power tends to infinity, the input should utilize the resource (available power) completely,

therefore any fixed symbol is not used in the limit.

13
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Remark 3.4. When computing the bounds of the fading number (which is part of the capac-

ity in the limit when E tends to infinity), we can therefore assume that for any fixed value

E0

Pr
(

‖X‖2 ≤ E0
)

= 0. (3.22)

3.4 Generalization of Escaping to Infinity to Multiple Users

The content in this section is mainly based on [6] and [10]. The following proposition is a

generalization of Lemma 3.3.

Proposition 3.5. Let {QE}E≥0 be a family of joint input distributions of the multiple-access

fading channel given in (2.2), where the family is parameterized by the available average

power E such that

EQE

[

‖X‖2
]

≤ E , E ≥ 0. (3.23)

Let W (·|·) be the channel law, and {QE} be such that

lim
E↑∞

I(QE ,W )

log log E
= 1. (3.24)

Then at least one user’s input distribution must escape to infinity, i.e., for any E0 > 0,

lim
E↑∞

QE

(

m
⋃

i=1

{

∥

∥Xi

∥

∥

2
≥

E0
m

}

)

= 1. (3.25)

The detailed proof of Proposition 3.5 is presented in [8].

3.5 An Upper Bound on the Sum-Rate Capacity and Fading

Number

Since the multiple-access channel is quite similar to the MISO channel, we find an upper

bound on the MISO capacity. This upper bound comes from the dual expression of the mu-

tual information by choosing the output distribution as a generalized Gamma distribution.

A detailed proof of this lemma can be found in [2] and [3].

Lemma 3.6. Consider a memoryless MISO fading channel with input x ∈ CnT and output

Y ∈ C such that

Y = HTx+ Z. (3.26)

Then the mutual information between input and output of the channel is upper-bounded as

follows:

I(X;Y ) ≤ −h(Y |X) + log π + α log β + logΓ

(

α,
ν

β

)

+ (1− α)E
[

log
(

|Y |2 + ν
)]

+
1

β
E
[

|Y |2
]

+
ν

β
, (3.27)
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where α,β > 0 and ν ≥ 0 are parameters that can be chosen freely, but must not depend on

X.

3.6 The Fading Number of Rician Fading SISO MAC

Theorem 3.7. Assume a SISO Rician fading multiple-access channel as defined in (2.7).

Then the sum-rate fading number is given by

χMAC = log
(

d2MAC

)

− Ei
(

−d2MAC

)

− 1, (3.28)

where

dMAC = max
{

|d1|, |d2|, . . . , |dm|
}

, (3.29)

and

Ei(−ξ) ! −

∫ ∞

ξ

e−t

t
dt, ξ > 0, (3.30)

This sum-rate MAC fading number holds in both cases when the peak-power constraint (2.9)

or the average-power constraint (2.10) is considered.

The result for the general m users is similar to the two-user case. The SISO MAC fading

number is exactly the same as the single-user SISO fading number. To achieve the fading

number, the input should only allow the user with the largest line-of-sight component to

transmit, and switch off all users with weaker |di|. If several users encounter channels with a

line-of-sight component of equal maximum magnitude, time-sharing among these users can

be used to achieve the fading number.

15



Main Result Chapter 4

Chapter 4

Main Result

In this chapter, the exact MAC general fading number is provided. In Section 4.1 we show

that the m-user sum-rate capacity is bounded between the single-user MISO capacity and

the MISO capacity. In Section 4.2 we find a known bound of the sum-rate capacity in our

case. The content in this section is mainly based on [4]. In Section 4.3, we get the exact

value of the m-user MAC general fading number.

4.1 Natural Upper and Lower Bounds

We consider the channel as in (2.2). Note that the difference between the MAC and the

MISO fading channel with nT transmit antennas and one receive antenna is that in the latter

all transmit antennas can cooperate, while in the former the antennas of different users are

assumed to be independent. Hence, it immediately follows from this that the MAC sum-rate

capacity can be upper-bounded by the MISO capacity:

CMAC(E) ≤ CMISO(E). (4.1)

On the other hand, the sum rate cannot be smaller than the single-user rate that can be

achieved if just the strongest user is switched on, the others are switched off, i.e.,

CMAC(E) ≥ max
1≤i≤m

CMISO,i(E). (4.2)

Based on (4.1), (4.2) and (3.16), we define the MAC fading number by

χMAC ! lim
E↑∞

{

CMAC(E)− log log
E

σ2

}

. (4.3)

From [3] we know that

χMISO = sup
‖x̂‖=1

{

log π + E
[

log |HTx̂|2
]

− h(|HTx̂|)
}

, (4.4)

therefore, from (4.1) we obtain

χMAC ≤ χMISO = sup
‖x̂‖=1

{

log π + E
[

log |HTx̂|2
]

− h(|HTx̂|)
}

. (4.5)
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On the other hand, from (4.2)

χMAC ≥ max
1≤i≤m

{

sup
‖x̂i‖=1

{

log πE
[

log ‖HT

i x̂i‖
2
]

− h
(

HT

i x̂i

)

}

}

(4.6)

= max
1≤i≤m

{

χMISO,i

}

. (4.7)

Finally, based on (4.5) and (4.7), we get the conclusion that

max
1≤i≤m

{

χMISO,i

}

≤ χMAC ≤ χMISO (4.8)

4.2 An Upper Bound on the Fading Number for Our Chan-

nels

We continue with Lemma 3.6. Consider a memoryless MISO fading channel, the mutual

information between input and output of the channel is upper-bounded as follows:

I(X;Y ) ≤ −h(Y |X) + log π + α log β + logΓ

(

α,
ν

β

)

+ (1− α)E
[

log
(

|Y |2 + ν
)]

+
1

β
E
[

|Y |2
]

+
ν

β
, (4.9)

where α,β > 0 and ν ≥ 0 are parameters that can be chosen freely, but must not depend

on X.

By choosing the parameters α,β and ν appropriately, (4.9) can be further simplified to

obtain an upper bound on the fading number of the general fading MAC:

Theorem 4.1. The fading number of an m-user general fading MAC as defined in (2.7)

and under the power-sharing average-power constraint (2.11) is upper-bounded as follows:

χMAC ≤ lim
E↑∞

sup
QX∈A

{

log π + E

[

log

(

|HTX|2

‖X‖2

)

]

− h

(

HTX

‖X‖

∣

∣

∣
X

)

}

, (4.10)

where

A !

{

QX

∣

∣

∣

∣

∣

Xi ⊥⊥ Xj , lim
E↑∞

QX

(

m
⋃

i=1

{

∥

∥Xi

∥

∥

2
≥

E0
m

}

)

= 1,

and power constraint (2.11) is satisfied

}

. (4.11)

4.3 The Fading Number of General Fading MAC

Theorem 4.2. Assume a general fading multiple-access channel with m users as defined in

(2.2). Then the sum-rate fading number is given by

χMAC = max
1≤i≤m

{

sup
‖x̂i‖=1

{

log πE
[

log ‖HT

i x̂i‖
2
]

− h
(

HT

i x̂i

)

}

}

(4.12)

= max
1≤i≤m

{

χMISO,i

}

. (4.13)
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This sum-rate MAC fading number holds in all cases when the peak-power constraint (2.9)

or the average-power constraint (2.10), or the power-sharing average-power constraint (2.11)

is considered.

The MAC fading number is exactly the same as the single-user MISO fading number.

To achieve the fading number, the input must only allow the user with the best channel to

transmit, and switch off all users with weaker channels. If several users encounter channels

with equal capacity, time-sharing among these users can be used to achieve the fading

number.

Corollary 4.3. If each user only has one antenna, the sum-rate fading number can be

simplified to

χMAC = max
1≤i≤m

{

log π + E
[

log |Hi|
2
]

− h(Hi)
}

(4.14)

= max
1≤i≤m

{

χSISO,i

}

. (4.15)

This also holds in all cases when the peak-power constraint (2.9) or the average-power

constraint (2.10), or power-sharing average-power constraint (2.11) is considered.
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Chapter 5

Derivation of Results

In this chapter, the derivations of the results shown in Chapter 4 are provided. Since

we already conclude the proof of Section 4.1, here we start from the proof of Section 4.2.

In Section 5.1, we find a upper bound of the fading number of m-user fading MAC. In

Section 5.2, the fading number of a general fading MAC is derived strongly relying on the

concepts provided in Section 3.4.

5.1 Derivation of Theorem 4.1

From [2] and [3] we know that to achieve the asymptotic sum-rate capacity, the input

distribution of at least one user must escape to infinity. Hence, we fix an arbitrary finite

E0 ≥ 0 and define an indicator random variable as follows:

E !

{

0 if ‖Xi‖2 ≤ E0 , i = 1, 2 . . .m,

1 otherwise .
(5.1)

Let

p ! Pr[E = 1] = Pr
[

‖Xi‖
2 ≥ E0

]

, (5.2)

where we know that from Proposition 3.5 that

lim
E↑∞

p = 1. (5.3)

We now bound as follows:

I(X;Y) ≤ I(X, E;Y) (5.4)

= I(E;Y) + I(X;Y|E) (5.5)

= H(E)−H(E|Y) + I(X;Y|E) (5.6)

≤ H(E) + I(X;Y|E) (5.7)

= Hb(p) + pI(X;Y|E = 1) + (1− p)I(X;Y|E = 0) (5.8)

≤ Hb(p) + I(X;Y|E = 1) + (1− p)C(E0), (5.9)
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where Hb(p) ! −p log p − (1 − p) log(1 − p) is the binary entropy function. Here, (5.4)

follows from adding an additional random variable to mutual information; the subsequent

two equalities follow from the chain rule and from the definition of mutual information

(notice that we use entropy and not differential entropy because E is a binary random

variable); in the subsequent inequality we rely on the nonnegativity of entropy; and the last

inequality follows from bounding p ≤ 1 and from upper-bounding the mutual information

term by the capacity C for the available power which, conditional on E = 0, is E0.

We remark that even though C(E0) is unknown, we know that it is finite and independent

of E so that from (5.2) we have

lim
E↑∞

{Hb(p) + (1− p)C(E0)} = 0. (5.10)

We continue with the second term of (5.9) as follows:

I(X;Y|E = 1) = I(X;HTX+ Z|E = 1) (5.11)

≤ I(X;HTX+ Z,Z|E = 1) (5.12)

= I(X;HTX,Z|E = 1) (5.13)

= I(X;HTX|E = 1) + I(X;Z|HTX, E = 1) (5.14)

= I(X;HTX|E = 1). (5.15)

Here, (5.12) follows from adding an additional random vector Z to the argument of the

mutual information; the subsequent equality from substracting the known vector Z from Y;

the subsequent two equality follow from the chain rule and the independence between the

noise and all other random quantities.

We next apply Lemma 3.6. Note that we need to condition everything on the event E

= 1:

I(X;HTX|E = 1) ≤ −h(HTX|X, E = 1) + log π + α log β + logΓ

(

α,
ν

β

)

+ (1− α)E
[

log
(

|HTX|2 + ν
)∣

∣E = 1
]

+
1

β
E
[

|HTX|2
∣

∣E = 1
]

+
ν

β
, (5.16)

where α,β > 0, and ν ≥ 0 can be chosen freely, but must not depend on X.

Next we assume 0 < α < 1, such that 1− α > 0. Then we define

εν ! sup
‖x‖2≥E0

{

E
[

log
(

|HTx|2 + ν
)]

− E
[

log |HTx|2
]

}

, (5.17)

such that

(1− α)E
[

log
(

|HTX|2 + ν
)∣

∣E = 1
]

= (1− α)E
[

log
(

|HTX|2 + ν
)

− log |HTX|2
∣

∣E = 1
]

+ (1− α)E
[

log |HTX|2
∣

∣E = 1
]

(5.18)
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≤ sup
‖x‖2≥E0

{

(1− α)E
[

log
(

|HTx|2 + ν
)

− log |HTx|2
]

+ (1− α)E
[

log |HTX|2
]

}

(5.19)

≤ (1− α)E
[

log |HTX|2
]

+ εν , (5.20)

where for the supremum we use that for E = 1, we know that‖x‖2 ≥ E0.

Finally, we bound

1

β
E
[

|HTX|2|E = 1
]

≤
1

β
E
[

‖H‖2
]

E
[

‖X‖2|E = 1
]

(5.21)

≤
1

β
E
[

‖H‖2
] E

p
, (5.22)

where (5.21) follows from Cauchy-Schwarz inequality.

Plugging (5.20), (5.22) into (5.14) and (5.16) then yields

I(X;Y|E = 1) ≤ −h(HTX|X, E = 1) + log π + α log β + logΓ

(

α,
ν

β

)

+ (1− α)E
[

log
(

|HTX|2
)

|E = 1
]

+ εν +
1

β
E
[

‖H‖2
] E

p
+

ν

β
(5.23)

= log π + E
[

log
(

|HTX|2
)

|E = 1
]

− h(HTX|X, E = 1)

+ α log β + logΓ

(

α,
ν

β

)

+ εν +
1

β
E
[

‖H‖2
] E

p
+

ν

β

− αE
[

log
(

|HTX|2
)

|E = 1
]

. (5.24)

We make the following choices on the free parameters α and β:

α ! α(E) =
ν

log E + log E[‖H‖2]
, (5.25)

β ! β(E) =
1

α
e

ν

α , (5.26)

and get

χMAC = lim
E↑∞

{

sup
QX∈A

I(X;Y)− log log E

}

(5.27)

≤ lim
E↑∞

{

sup
QX∈A

{

log π + E
[

log
(

|HTX|2
)

|E = 1
]

− h(HTX|X, E = 1)

+ α log β + logΓ

(

α,
ν

β

)

+ εν +
1

β
E
[

‖HT‖2
] E

p
+

ν

β

− α(log E +min
i

E
[

log ‖HT

i ‖
2
]

) +Hb(p) + (1− p)C(E0)

}

− log log E

}

(5.28)

= lim
E↑∞

{

sup
QX∈A

{

log π + E
[

log
(

|HTX|2
)]

− h(HTX|X)
}
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+ α log β + logΓ

(

α,
ν

β

)

+ εν +
1

β
E
[

‖HT‖2
] E

p
+

ν

β

− α

(

log E +min
i

{

E
[

log ‖HT

i ‖
2
]}

)

+Hb(p) + (1− p)C(E0)

− log log E

}

(5.29)

= lim
E↑∞

sup
QX∈A

{

log π + E
[

log
(

|HTX|2
)]

− h(HTX|X)
}

+ log(1− eν) + ν + εν − log ν (5.30)

= lim
E↑∞

sup
QX∈A

{

log π + E
[

log
(

|HTX|2
)]

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X

)

− E
[

log ‖X‖2
]

}

+ log(1− eν) + ν + εν − log ν (5.31)

= lim
E↑∞

sup
QX∈A

{

log π + E

[

log

(

|HTX|2

‖X‖2

)]

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X

)}

+ log(1− eν) + ν + εν − log ν. (5.32)

Here (5.27) follows from the Definition (3.1); in (5.29), based on Proposition 3.3, we drop

the condition E = 1 and incorporate into A; finally, we use (5.25) and (5.26) and rearrange

it to get (5.30).

Note that log(1− eν) + ν + εν − log ν tends to 0 as ν goes to 0, and since ν is arbitrary,

so we get the following upper bound:

χMAC ≤ lim
E↑∞

sup
QX∈A

{

log π + E

[

log

(

|HTX|2

‖X‖2

)]

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X

)}

, (5.33)

and the proof of Theorem 4.1 is concluded.

5.2 Derivation of Theorem 4.2 and Corollary 4.3

The proof consists of two parts. The first part is given already from (4.5), (4.6), and (4.8).

There it is shown that

max
1≤i≤m

{

χMISO,i

}

= max
1≤i≤m

{

sup
‖x̂i‖=1

{

log πE
[

log ‖HT

i x̂i‖
2
]

− h
(

HT

i x̂i

)

}

}

(5.34)

is a lower bound to χMAC. Note that this lower bound can be achieved by using an input

that satisfies the peak-power constraint (2.9).

The second part will be to prove that max1≤i≤m

{

χMISO,i

}

is also an upper bound to

χMAC. We will prove this under the assumption of an power-sharing average-power con-

straint (2.11). Since the peak-power constraint (2.9) and the average-power constraint (2.10)

are more stringent than (2.11), the result follows.

The proof of this upper bound relies strongly on Proposition 3.5. Note that the supre-

mum in (4.10) over all joint distributions such that at least one user’s input distribution

escapes to infinity.
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Continue with (5.33), where A is defined in (4.11), which is the set of joint input distri-

butions such that X are independent and the input distribution of at least one user escapes

to infinity when the available power E tends to infinity,

In the following we will focus on finding an upper bound on (5.33). First we assume x1

escapes to infinity, i.e.

lim
E↑∞

QE

(

∥

∥X1

∥

∥

2
≥

E0
m

)

= 1, (5.35)

and define

D ! {x1 : 0 ≤ ‖x1‖
2 ≤ a max

2≤i≤m
‖xi‖

2}, (5.36)

for a fixed a ≥ 1.

Then

lim
E↑∞

sup
QE∈A

{

log π + E

[

log

(

|HTX|2

‖X‖2

)

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X = x

)

]}

≤ log π + sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

{

E

[

log

(

|HTX|2

‖X‖2

)

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X = x

)

]}

(5.37)

≤ log π + sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈D

(

E

[

log

(

|HTx|2

‖X‖2

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm)

+ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈Dc

(

E

[

log

(

|HTx|2

‖X‖2

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm), (5.38)

where in the first inequality (5.37), we define A1 as the set of all input distributions of

the first user that escape to infinity, and take the supremum over all QX1
∈ A1. The last

inequality (5.38) then follows from splitting the inner integration into two parts and from

the fact that the supremum of a sum is always upper-bounded by the sum of the suprema.

To simplify our life, we define:

I1 ! sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈D

(

E

[

log

(

|HTx|2

‖X‖2

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm), (5.39)
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and

I2 ! sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈Dc

(

E

[

log

(

|HTx|2

‖X‖2

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm), (5.40)

such that equation (5.38) becomes

lim
E↑∞

sup
QE∈A

{

log π + E

[

log

(

|HTX|2

‖X‖2

)

− h

(

HTX

‖X‖

∣

∣

∣

∣

∣

X = x

)

]}

≤ log π + I1 + I2. (5.41)

Let us first look at I1:

I1 ≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈D

(

E

[

log

(

‖H1‖
2 ‖x1‖

2 + · · ·+ ‖Hm‖2 ‖xm‖2

‖x1‖
2 + · · ·+ ‖xm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

‖Hi‖ ‖Hj‖ ‖xi‖ ‖xj‖

‖x1‖
2 + · · ·+ ‖xm‖2

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm) (5.42)

≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈D

(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

− h

(

HTx

‖x‖

)

)

dQX1
(x1) · · · dQXm

(xm) (5.43)

≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈D

(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

+ η

)

dQX1
(x1) · · · dQXm

(xm) (5.44)

= sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x2

{(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

+ η

)

∫

x1∈D
dQX1

(x1)

}

dQX2
(x2) · · · dQXm

(xm) (5.45)
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≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

∫

xm

· · ·

∫

x2

sup
QX1

∈A1

{(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

+ η

)

∫

x1∈D
dQX1

(x1)

}

dQX2
(x2) · · · dQXm

(xm) (5.46)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

lim
E1↑∞

sup
QX1

∈A1

{(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

+ η

)

∫

x1∈D
dQX1

(x1)

}

dQX2
(x2) · · · dQXm

(xm) (5.47)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

lim
E1↑∞

sup
QX1

∈A1

{(

E

[

log

(

‖H1‖
2 + · · ·+ ‖Hm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

1

2
‖Hi‖‖Hj‖

)]

+ η

)

Pr

[

‖X1‖
2 ≤ a max

2≤i≤m
‖xi‖

2

]

}

dQX2
(x2) · · · dQXm

(xm)

(5.48)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

0 dQX2
(x2) · · · dQXm

(xm) (5.49)

= 0. (5.50)

Here in equation (5.42) follows by Cauchy-Schwarz inequality; since

‖xi‖
2

‖x1‖
2 + · · ·+ ‖xm‖2

≤ 1, ∀i, (5.51)

and by the inequality of arithmetic and geometric means,

‖xi‖ ‖xj‖

‖x1‖
2 + · · ·+ ‖xm‖2

≤
‖xi‖ ‖xj‖

‖xi‖
2 + ‖xj‖

2 ≤
1

2
, ∀i, j, (5.52)

equation (5.43) holds; in (5.44), −h(·) can be upper-bounded by a finite number η because

of the regular fading assumption (2.5); and we can take constants out from the integration

in (5.45); (5.46) follows by taking the supremum into the first integral which can only

enlarge the expression; in (5.47) we exchange limit and integration, which is allowed by

the Dominated Convergence Theorem in [7], we are allowed to swap limit and integration,
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because both E
[

‖Hi‖2
]

and η are finite; finally, (5.49) follows because QX1
escapes to

infinity.

Next, let us look at I2 in (5.41):

I2 ≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

{

∫

xm

· · ·

∫

x1∈Dc

E

[

log

(

|HT

1x1|
2

‖x1‖
2 + · · ·+ ‖xm‖2

+
‖H2‖

2 ‖x2‖
2 + · · ·+ ‖Hm‖2 ‖xm‖2

‖x1‖
2 + · · ·+ ‖xm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

‖Hi‖ ‖Hj‖ ‖xi‖ ‖xj‖

‖x1‖
2 + · · ·+ ‖xm‖2

)]

− h

(

HTx

‖x‖

)

dQX1
(x1) · · · dQXm

(xm)

}

, (5.53)

where we keep the term |HT

1x1|
2 unchanged, and bound the others by the Cauchy-Schwarz

inequality.

Moremore,

−h

(

HTx

‖x‖

)

= −h

(

HT

1x1 +HT

2x2 + · · ·+HT

mxm

‖x‖

)

(5.54)

= −h

(

HT

1x̂1
‖x1‖

‖x‖
+

m
∑

i=2

HT

i x̂i
‖xi‖

‖x‖

)

(5.55)

= − log
‖x1‖2

‖x‖2
− h

(

HT

1x̂1 +
m
∑

i=2

HT

i x̂i
‖xi‖

‖x1‖

)

(5.56)

= − log
‖x1‖2

‖x‖2
− h

















HT

















x̂1

x̂2
‖x2‖
‖x1‖

...

x̂m
‖xm‖
‖x1‖

































(5.57)

≤ − log
‖x1‖2

‖x‖2
− h















HT

1















x̂1

0

...

0





























+ ε (5.58)

= − log
‖x1‖2

‖x1‖2 + · · ·+ ‖xm‖2
− h

(

HT

1x1

‖x1‖

)

+ ε, (5.59)

where in (5.55) we define x̂ = x

‖x‖ ; (5.56) holds because h(cY ) = log |c|2+h(Y ) for c ∈ C; in

(5.57), we use the notation from Section 1.2; (5.58) follows because for every ε > 0 we can

choose a, which is the arbitrary fixed number defined in equation (5.36) big enough such

that the inequality holds. That is only hold if we get the continuity of h(HTx) in x for all
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x are finite and larger than 0, and the detailed proof of continuity is provided in Appendix

A.

Continuing with (5.53),

I2 ≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈Dc

(

E

[

log

(

|HT

1x1|
2

‖x1‖
2 + · · ·+ ‖xm‖2

+
‖H2‖

2 ‖x2‖
2 + · · ·+ ‖Hm‖2 ‖xm‖2

‖x1‖
2 + · · ·+ ‖xm‖2

+
m
∑

i=1

m
∑

j=1
i )=j

‖Hi‖ ‖Hj‖ ‖xi‖ ‖xj‖

‖x1‖
2 + · · ·+ ‖xm‖2

)

− log
‖x1‖2

‖x1‖
2 + · · ·+ ‖xm‖2

]

− h

(

HT

1x1

‖x1‖

)

+ ε

)

dQX1
(x1) · · · dQXm

(xm)

(5.60)

= sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈Dc

(

E

[

log

(

|HT

1x1|
2

‖x1‖2
+

∑m
k=2 ‖Hk‖2‖xk‖2

‖x1‖2

+

∑m
i=1

∑m
j=1
i )=j

‖Hi‖‖Hj‖‖xi‖‖xj‖

‖x1‖2

)]

− h

(

HT

1x1

‖x1‖

)

+ ε

)

dQX1
(x1) · · · dQXm

(xm)

(5.61)

≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

sup
QX1

∈A1

∫

xm

· · ·

∫

x1∈Dc

(

E

[

log

(

|HT

1x1|2

‖x1‖2
+

m
∑

k=2

1

a2
‖Hk‖

2

+
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h

(

HT

1x1

‖x1‖

)

+ ε

)

dQX1
(x1) · · · dQXm

(xm)

(5.62)

≤ sup
QXm

· · · sup
QX2

lim
E1↑∞

∫

xm

· · ·

∫

x2

(

sup
QX1

∈A1

∫

x1∈Dc

E

[

log

(

|HT

1x1|2

‖x1‖2
+

m
∑

k=2

1

a2
‖Hk‖

2

+
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h

(

HT

1x1

‖x1‖

)

dQX1
(x1) + ε

)

dQX2
(x2) · · · dQXm

(xm)
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(5.63)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

(

lim
E1↑∞

sup
QX1

∈A1

∫

x1∈Dc

E

[

log

(

|HT

1x1|2

‖x1‖2
+

m
∑

k=2

1

a2
‖Hk‖

2

+
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h

(

HT

1x1

‖x1‖

)

dQX1
(x1) + ε

)

dQX2
(x2) · · · dQXm

(xm).

(5.64)

Due to the definition of D in (5.36), ‖xi‖
2

‖x1‖
2 ≤ 1

a , ∀i "= 1 always holds when x1 ∈ D
c, we

get the equation (5.62); the subsequent inequality (5.63) follows by taking the supremum

into the first integral, which can only enlarge the expression; same as (5.47), since

sup
QX1

∈A1

∫

x1∈Dc

(

E[log(·)]− h

(

HT

1x1

‖x1‖

))

dQX1
(x1) ≤ E[log(·)]− h

(

HT

1x1

‖x1‖

)

, (5.65)

by the DCT in [7], it is allowed to exchange limit and integration because it can be upper

bounded by a finite value in equation (5.64).

Continuing with (5.64), we get

I2 ≤ sup
QXm

· · · sup
QX2

∫

xm

. . .

∫

x2

(

lim
E1↑∞

sup
QX1

∈A1

{

∫

x1∈Dc

(

E

[

log

(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2
‖Hk‖

2

+
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h
(

HT

1x̂1

)

+ ε

)

dQX1
(x1)

})

dQX2
(x2) · · · dQXm

(xm)

(5.66)

≤ sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

(

lim
E1↑∞

sup
QX1

∈A1

{

∫

x1∈Dc

dQX1
(x1) sup

‖x̂1‖=1

{

E

[

log

(

|HT

1x̂1|
2

+
m
∑

k=2

1

a2
‖Hk‖

2 +
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h
(

HT

1x̂1

)

}}

+ ε

)

dQX2
(x2) · · · dQXm

(xm) (5.67)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

(

lim
E1↑∞

sup
QX1

∈A1

{

Pr

[

‖X1‖ ≥ a max
2≤i≤m

‖xi‖

]

sup
‖x̂1‖=1

{

E

[

log
(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2
‖Hk‖

2 +
m
∑

j=2

2

a
‖H1‖‖Hj‖
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+
m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)

]

− h
(

HT

1x̂1

)

}}

+ ε

)

dQX2
(x2) · · · dQXm

(xm) (5.68)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

(

sup
‖x̂1‖=1

{

E

[

log
(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2
‖Hk‖

2 +
m
∑

j=2

2

a
‖H1‖‖Hj‖

+
m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)

]

− h
(

HT

1x̂1

)

}

+ ε

)

dQX2
(x2) · · · dQXm

(xm) (5.69)

= sup
QXm

· · · sup
QX2

∫

xm

· · ·

∫

x2

dQX2
(x2) · · · dQXm

(xm)

(

sup
‖x̂1‖=1

{

E

[

log

(

|HT

1x̂1|
2

+
m
∑

k=2

1

a2
‖Hk‖

2 +
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h
(

HT

1x̂1

)

}

+ ε

)

(5.70)

= sup
‖x̂1‖=1

{

E

[

log

(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2
‖Hk‖

2 +
m
∑

j=2

2

a
‖H1‖‖Hj‖+

m
∑

i=2

m
∑

j=2
i )=j

1

a2
‖Hi‖‖Hj‖

)]

− h
(

HT

1x̂1

)

}

+ ε (5.71)

≤ sup
‖x̂1‖=1

{

E
[

log ‖H1x̂1‖
2
]

− h
(

HT

1x̂1

)

}

+ 2ε. (5.72)

Here, in (5.66) we can take E
[

log
(

·
)]

−h
(

HT

1x̂1

)

out from the integration because they are

constant for x1; (5.69) holds since limE1↑∞ supQX1
∈A1

Pr[‖X1‖ ≥ ‖xi‖] = 1; similar to (5.66)

and (5.69), equation (5.70) and equation (5.71) follows from taking the constant out from

the integration and the whole remaining integration is exactly 1; finally, in (5.72), for any ε

we can choose a big enough, such that the inequality holds, the detailed proof is provided

in Appendix B.

Finally, plugging (5.49), (5.72) into (5.33) and (5.41) and note that ε is arbitrary, we

now have

χMAC|first user escapes = sup
‖x̂1‖=1

{

log π + E
[

log ‖H1x̂1‖
2
]

− h
(

HT

1x̂1

)

}

. (5.73)

Recall that we let X1 escapes to infinity in the beginning of the derivation. We can
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change this assumption to any Xi ,∀i = 1, 2, . . . ,m, so we get

χMAC = max
1≤i≤m

{

sup
‖x̂i‖=1

{

log π + E
[

log ‖HT

i x̂i‖
2
]

− h
(

HT

i x̂i

)

}

}

(5.74)

= max
1≤i≤m

{

χMISO,i

}

. (5.75)

If we consider the case of SISO MAC, i.e., each user has just one antenna, we get the

following result:

χMAC = max
1≤i≤m

{

log π + E
[

log |Hi|
2
]

− h(Hi)
}

(5.76)

= max
1≤i≤m

{

χSISO,i

}

. (5.77)

From the first part and the second part of proofs in Chapter 5.2, the whole proof of Theo-

rem 4.3 and Theorem 4.2 is concluded.
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Discussion and Conclusion

In this thesis, the fading number of the multiple-access general fading channel is provided

where each user is allowed to have more than one antenna. The result indicates that the

MAC fading number is exactly equivalent to the single-user MISO fading number. In the

special case that each user has only one antenna, the fading number is equivalent to the

single-user SISO fading number. In order to be able to achieve the fading number, we need

to reduce the multiple-user channel to a single-user channel. This single user must have the

best channel situation and use a input distribution that escapes to infinity.

A possible reason for this rather pessimistic result might be that cooperation among

users is not allowed. Therefore, the best strategy in the single-user MISO fading channel—

beam-forming among antennas on the transmitter side—can not be implemented. The users

interfere with each other and this causes the degression in performance, i.e., without coop-

eration between the users, signals transmitted from other users can only be interferences.

Actually, we got the similar results in [8] and [10], which are the SISO Rician fading MAC

without memory and with memory respectively, and now we extend to the general fading

(they are allowed to be dependent between each other) and each user has more than one

antenna, i.e., memoryless MISO general fading MAC.

In the analysis of the channel we have allowed for many different types of power con-

straints. We grouped them into three categories: an individual peak-power constraint for

each user, an individual average-power constraint for each user, and a combined power-

sharing average-power constraint among all users. The power-sharing constraint does not

make sense in a practical setup as it requires the users to share a commom battery, while

their signals still are restricted to be independent. However, the inclusion of this case helps

with the analysis. Moreover, it turns out that the pessimistic results described above even

hold if we allow for such power sharing.

Recall that it is shown in [7, Lemma 6] that a capacity-achieving input distribution can

be assumed to be circularly symmetric in the single-user fading channel. Also note that in

[7, Proposition 19] if at least one user uses circularly symmetric input, then the MAC fading

number is the same as the single user MISO fading number. From the results in this thesis,

we learn that the capacity-achieving input distribution reduces the MAC to a single-user
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channel.

The result shown in this thesis using the noncoherent capacity approach is obviously far

below that of assuming the perfectly known channel state. Since the users on the transmitter

side have no knowledge of the channel state, some techniques such as successive interference

canceling cannot be utilized. However, real systems operate at low SNR. This is a theoretical

result when SNR tends to infinity; in a practical situation, it is not necessary to reduce a

multiple-access channel to a single-user channel for designing a system.

Actually, we also get the asymptotic capacity region of the multiple-access general fading

channel at the same time. Because we need to reduce the multiple-user channel to the best

single-user channel if we want to achieve the fading number, the asymptotic capacity is only

one point in that region, not a line unless there are more than one user with best channels.

Figure (6.5) shows the asymptotic capacity region in the case of m = 2. We can see all the

possible rate pairs, and the asymptotic sum-rate capacity is a point in the figure, the value is

just equivalent to the capacity of the better channel. Figure (6.6) shows the special case that

both of the users have equivalent channel capacity, and we can get the asymptotic sum-rate

capacity by time-sharing, which is the reason why the asymptotic sum-rate capacity is a

line in such a special case.

R
(1)

R
(2)

C
(1)

C
(2)

Asymptotic sum-rate capacity

Figure 6.5: The capacity region of memoryless general fading MAC (2-user case).

In the case of m users with m > 2, as we mention in Section 3.1, the m-user capacity

region is given by the convex closure of all rate m-tuples.

Possible future work for the multiple-access general fading channel might be as follows:

• Considering the case with memory.

• Considering the case with side-information.

• Loosening the restriction that the receiver has only one antenna

• Deriving the nonasymptotic capacity.

The first two point might be easier. We need to modify the channel model, considering

the time index and the effects of feedback, to get the better capacity since both of memory
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R
(1)

R
(2)

C
(1)

C
(2)

Asymptotic sum-rate capacity

Figure 6.6: The capacity region of a special case: 2-user case with C
(1) = C

(2).

and side-information are helpful to our analysis. The difficulty in the third point is that

we need to consider the more troublesome MIMO case, not only SISO and MISO cases.

Finally, the last point is the hardest task since we do not know much about the o(1) term

in equation (3.17). All the asymptotic tricks is not suited to this problem anymore, i.e.,

we need to restart from the upper and lower bounds to the nonasymptotic capacity of the

fading channel.
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Derivation of Equation (5.58)

Equation (5.58) holds only if we can prove the continuity of h(HTx) in x for all x are finite

and larger than 0. Here note that we prove for a general case with H is a nT × nR fading

matrix.

Let the sequence xn converge to x, ‖x‖ > 0. It then follows that the sequence Hxn

converges weakly to Hx. To simplify the notation, we let W = Hx, such that the sequence

Wn converges weakly to W, i.e., Wn ⇒ W. Let the law of W be denoted by QW, the

law of Wn by QWn
, the law of a zero-mean Gaussian random variable NC

(

0,E
[

WW†
])

of convariance E
[

WW†
]

by QW,G, and the law of a zero-mean Gaussian random variable

NC

(

0,E
[

WnW
†
n

])

of convariance E
[

WnW
†
n

]

by QWn,G. Then we obtain from the lower

semi-continuity of relative entropy in [2] that

lim
n↑∞

D(QWn
‖QWn,G) ≥ D(QW‖QW,G). (A.1)

But

D(QWn
‖QWn,G) = log(πe)ν + log detE

[

WnW
†
n

]

− h(Wn), (A.2)

and

D(QW‖QW,G) = log(πe)ν + log detE
[

WW†
]

− h(W), (A.3)

Moreover, since E
[

WW†
]

and E
[

WnW
†
n

]

is continuous, and determinants are polynomials

of the corresponding matrix, we get log detE
[

WnW
†
n

]

−→ log detE
[

WW†
]

.

So we obtain

lim
n↑∞

h(Wn) ≤ h(W), (A.4)

i.e.,

lim
n↑∞

h(Hxn) ≤ h(Hx). (A.5)
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It therefore remains to prove the reverse inequality

lim
n↑∞

h(Hxn) ≥ h(Hx). (A.6)

Let Z̃ ∼ NC (0, InR
) be independent of H. By choosing σ small enough, the following

inequality holds:

h(H+ βσZ̃)− h(H) < ε, (A.7)

where β is an arbitrary number and is finite and larger than 0.

It now follows from (A.7) that for any xn, ‖xn‖ > 0,

h(Hxn + σZ̃)− h(Hxn) = I(Hxn + σZ̃; Z̃) (A.8)

= I

(

H
xn

‖xn‖
+

σ

‖xn‖
Z̃; Z̃

)

(A.9)

= I

(

(

H+
σ

‖xn‖
Z̃

) xn

‖xn‖
; Z̃

xn

‖xn‖

)

(A.10)

≤ I

(

H+
σ

‖xn‖
Z̃; Z̃

)

(A.11)

< ε, (A.12)

where the first inequality follows by the data processing theorem, because

Z̃
xn

‖xn‖
"−− Z̃ "−− H+

σ

‖xn‖
Z̃ "−−

(

H+
σ

‖xn‖
Z̃

) xn

‖xn‖
(A.13)

forms a Markov chain, and where the last inequality follows from (A.7) with β = 1
‖xn‖

.

By scaling properties of differential entropy, we are allowd to only consider the case that

x has unit length ‖x‖ = 1, i.e. x = x̂. It now follows from (A.12) that for ‖xn‖ > 0,

h(Hxn) > h(Hxn + σZ̃)− ε (A.14)

= h(Hx̂+H(xn − x̂) + σZ̃)− ε (A.15)

≥ h(Hx̂+H(xn − x̂) + σZ̃
∣

∣H(xn − x̂) + σZ̃)− ε (A.16)

= h(Hx̂
∣

∣H(xn − x̂) + σZ̃)− ε (A.17)

= h(Hx̂)− I(Hx̂;H(xn − x̂) + σZ̃)− ε, (A.18)

where the second inequality follows because conditioning cannot increase differential entropy.

Expanding the mutual information term we obtain:

I(Hx̂;H(xn − x̂) + σZ̃) = h(H(xn − x̂) + σZ̃)− h(H(xn − x̂) + σZ̃
∣

∣Hx̂) (A.19)

≤ nR log

(

E
[

‖H‖2F
]

nR
‖xn − x̂‖2 + σ2

)

− nR log σ2. (A.20)

Here the inequality can be derived as follows. Firstly, note that since Z̃ is Gaussian and

independent of H(xn − x̂), we have

h(H(xn − x̂) + σZ̃
∣

∣Hx̂) ≥ h(H(xn − x̂) + σZ̃
∣

∣Hx̂,H(xn − x̂)) (A.21)

= h(σZ̃) (A.22)

= nR log(πeσ2). (A.23)
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Secondly, note that because among all random vectors of a given expected squared norm,

differential entropy is maximized by the vector whose components are IID Gaussian. Hence,

we get

h(H(xn − x̂) + σZ̃) ≤ nR log





πeE
[

‖H(xn − x̂) + σZ̃‖2
]

nR



 (A.24)

= nR log

(

πe
(

E
[

‖H(xn − x̂)‖2
]

+ nRσ
2
)

nR

)

(A.25)

≤ nR log

(

πe

(

E
[

‖H‖2F
]

nR
‖xn − x̂‖2 + σ2

))

. (A.26)

Inequalities (A.18) and (A.20) combine to prove that

lim
n↑∞

h(Hxn) ≥ h(Hx)− ε, (A.27)

and since ε > 0 is arbitrary, (A.6) is proven, which combines with (A.5) to prove the

continuity of h(HTx) in x for all x with ‖x‖ > 0.
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Appendix B

Derivation of Equation (5.72)

First, let an be a monotonical increasing unbounded sequence with n ↑ ∞,

and define

fn(x̂1) ! E

[

log(|HT

1x̂1|
2 +

m
∑

k=2

1

a2n
‖Hk‖

2 +
m
∑

j=2

2

an
‖H1‖‖Hj‖

+
m
∑

i=2

m
∑

j=2
i )=j

1

a2n
‖Hi‖‖Hj‖)

]

− h(HT

1x̂1), (B.1)

f(x̂1) ! E
[

log |HT

1x̂1|
2
]

− h(HT

1x̂1), (B.2)

βn ! sup
‖x̂1‖=1

{

|fn(x̂1)− f(x̂1)|
}

. (B.3)

Plugging (B.1), (B.2) into (B.3), we get

βn = sup
‖x̂1‖=1

{∣

∣

∣

∣

∣

E

[

log

(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2n
‖Hk‖

2 +
m
∑

j=2

2

an
‖H1‖‖Hj‖

+
m
∑

i=2

m
∑

j=2
i )=j

1

a2n
‖Hi‖‖Hj‖

)]

− h(HT

1x̂1)

− E
[

log |HT

1x̂1|
2
]

+ h(HT

1x̂1)

∣

∣

∣

∣

∣

}

(B.4)

= sup
‖x̂1‖=1

{

E

[

log

(

|HT

1x̂1|
2 +

m
∑

k=2

1

a2n
‖Hk‖

2 +
m
∑

j=2

2

an
‖H1‖‖Hj‖

+
m
∑

i=2

m
∑

j=2
i )=j

1

a2n
‖Hi‖‖Hj‖

)

− log |HT

1x̂1|
2

]}

(B.5)

= sup
‖x̂1‖=1

{

E

[

log

(

1 +
1

a2n

∑m
k=2 ‖Hk‖2

|HT

1x̂1|2
+

2

an

∑m
j=2 ‖H1‖‖Hj‖

|HT

1x̂1|2
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+
1

a2n

∑m
i=2

∑m
j=2
i )=j

‖Hi‖‖Hj‖

|HT

1x̂1|2

)]}

(B.6)

≤ E

[

log

(

1 +
1

an
sup

‖x̂1‖=1

{

1

an

∑m
k=2 ‖Hk‖2

|HT

1x̂1|2
+ 2

∑m
j=2 ‖H1‖‖Hj‖

|HT

1x̂1|2

+
1

an

∑m
i=2

∑m
j=2
i )=j

‖Hi‖‖Hj‖

|HT

1x̂1|2

}]

(B.7)

≤ E

[

log

(

1 +
1

an
sup

‖x̂1‖=1

{

∑m
k=2 ‖Hk‖2

|HT

1x̂1|2
+ 2

∑m
j=2 ‖H1‖‖Hj‖

|HT

1x̂1|2

+

∑m
i=2

∑m
j=2
i )=j

‖Hi‖‖Hj‖

|HT

1x̂1|2

}]

, (B.8)

where (B.8) follows because 1
an

≤ 1.

Hence

lim
an↑∞

βn ≤ lim
an↑∞

E

[

log

(

1 +
1

an
sup

‖x̂1‖=1

(

∑m
k=2 ‖Hk‖2

|HT

1x̂1|2
+ 2

∑m
j=2 ‖H1‖‖Hj‖

|HT

1x̂1|2

+

∑m
i=2

∑m
j=2
i )=j

‖Hi‖‖Hj‖

|HT

1x̂1|2

)]

(B.9)

= E

[

lim
an↑∞

log

(

1 +
1

an
sup

‖x̂1‖=1

(

∑m
k=2 ‖Hk‖2

|HT

1x̂1|2
+ 2

∑m
j=2 ‖H1‖‖Hj‖

|HT

1x̂1|2

+

∑m
i=2

∑m
j=2
i )=j

‖Hi‖‖Hj‖

|HT

1x̂1|2

)]

(B.10)

= E[log(1)] (B.11)

= 0, (B.12)

where in (B.10) follows from DCT.

Since limn↑∞ an tends to infinity, this means that

E

[

log(|HT

1x̂1|
2 +

m
∑

k=2

1

a2n
‖Hk‖

2 +
m
∑

j=2

2

an
‖H1‖‖Hj‖

+
m
∑

i=2

m
∑

j=2
i )=j

1

a2n
‖Hi‖‖Hj‖)

]

− h(HT

1x̂1)

= E
[

log |HT

1x̂1|
2
]

− h(HT

1x̂1), (B.13)

so equation (5.72) holds.
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