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National Chiao Tung University

Abstract

This research aims to characterize the nonlinear rate dependent behavior of
graphite/epoxy composites using a micromechanical approach. For epoxy phase, it was
assumed to be following the elastic/viscoplastic behavior described by a three parameterts
viscoplasticity model; while the graphite fiber was assumed to be a transverse isotropic solid.
By performing compression tests on the epoxy resin at three different strain rates of 10, 107
and 1/s, the stress and strain relation of the epoxy resin was generated. Based on the
experimental data, the three parameter viscoplasticity model was developed. With the
ingredient properties, the mechanical behaviors of graphite/epoxy composites were
characterized using the micromechanical approach. There are two micromechanical models,
i.e. Generalized Method of Cell (GMC) and Square Fiber Model (SFM), were employed in

this study. In addition, two different fiber arrangements, i.e., square edge packing and square
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diagonal packing as well as the fiber shapes, i.e. square type and round type, were taken into
account. The finite element analysis with commercial code ANSYS was also adopted to
investigate the fiber arrangement effect and the fiber shape effect. It was indicated basically,
the mechanical behaviors were not affected appreciably by the fiber shape. On the contrary,
the fiber arrangements play an essential role on the mechanical behaviors. The square edge
packing demonstrates stiffer behaviors than the square diagonal packing. In order to verify
the model predictions, off-axis graphite/epoxy composite specimens were tested at strain rate
ranges from 10™/s to 550/s. Comparison of model predictions obtained from GMC and SFM
analysis with the experimental results revealed that the micromechanical approaches are
capable of predicting the nonlinear rate sensitivity of off-axis specimens although there are

still distinctions between the model and the experimental results.
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Chapter 1 Introduction

1.1 Research Motive

Composite materials, because of their high strength/weight ratio, have been
extensively used not only in aerospace industry but also in marine and automotive
industries. In some of the applications, high strain rate loading may be produced,
such as blast loading of a submarine hull and bird strike of an aircraft structure.
Thus characterizing and modeling the high strain rate responses of composite
materials is becoming an essential task for further applications. It is well known that
the polymeric materials exhibit nonlinear rate dependent behavior, which implies that
the polymeric composite will somehow exhibit the rate sensitivity if the associated
behavior is dominated by the matrix. In past decades, the nonlinear rate dependent
behavior of composites have been studied by many researchers who treated the
unidirectional composites as orthotropic homogeneous solids. This is so called
macro-mechanical analysis. However,—in-this macro-mechanical approach, the
mechanism of how the fiber and”the.matrix material affect the overall composite
nonlinearity can not be fully characterized. Therefore, a research from the
micromechanical viewpoint was proposed and used to investigate this phenomenon.
In the micromechanical approach, the fiber arrangement, the fiber shape, fiber
properties and matrix properties were taken into account and the effect of the

ingredients on the rate sensitivity of the composites were further examined.

1.2 Paper Review

Unidirectional fiber composite materials exhibit nonlinear rate dependent
behavior under off-axis loading. There are two points of view to discuss this
physical phenomenon, i.e. macromechanical and micromechanical mechanics, and all

published literatures originated from either of the two perspectives. Based on the

1



viewpoint of macromechanics, Sun and Chen [1] developed a single parameter yield
function under plane stress assumption and brought it into the flow rule with a power
law curve fitting effective stress — effective plastic strain relation to describe the
nonlinearity of fiber composites. This single parameter in the yield function was
chosen suitably so that all off-axis experimental data collapse into a single master
curve in the effective stress versus effective plastic strain domain. It is a fact that the
single parameter model has good agreements with experiments. Because of rate
independence in this model, some improvements were carried out. Gates and Sun [2]
combined the over stress model [3] with the single parameter model to predict the rate
dependent behavior of composites under loading (the over stress is positive) and
unloading (the over stress is zero) conditions. In order to use the over stress model,
a quasistatic stress - strain relation was set as a teference state, and when the strain
rate is higher, the corresponding relative effective stress was calculated by subtracting
the quasistatic effective stress fromithe current effective stress associated with the
same strain level. The relative “effective stress and effective plastic strain rate
relations obtained from the over stress model were then employed together with the
flow rule for characterizing the plastic deformation of composites subjected off-axis
loading. Yoon and Sun [4] used the same way as Gates and Sun [2] to investigate
the effects of variant strain rates on a monotonic tension process under off-axis
loading. The results were also compared with a modified Bodner and Partom’s
model [5]. Weeks and Sun [6] modeled off-axis composites using a mathematical
form similar to Johnson-Cook model [7] in conjunction with the single parameter
model. A quasistatic state was chosen as a reference state to get the corresponding
reference effective plastic strain rate and effective stress while the Johnson-Cook
model was working. Then, the effective stress and effective plastic strain rate

relation at high strain rate analyses could be obtained via this model and applied into
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flow rule to get corresponding plastic responses like the over stress model.
Thiruppukuzhi and Sun [8] directly introduced a rate dependent term into the effective
stress — effective plastic strain power law relation and proposed a three parameters
model for modeling the nonlinear rate dependent behavior of unidirectional fiber
composites. Since the power law equation is a convenient form to use, in this study,
the three parameters model was adopted as the viscoplasticity model to describe the
rate dependent nonlinearity of the matrix phase.

In order to investigate the nonlinear effect of matrix on the mechanical
behavior of fiber composites, a micromechanical approach is proposed by modeling
the composites as heterogeneous solids consisting of fiber and matrix phases.
Through the characteristics of repetition, a Representative Volume Element (RVE)
was selected to represent the whole composite materials. By analyzing the
mechanical behavior of the RVE, the overall.material responses of composites could
be determined. There are several mictomechanical models available for describing
the mechanical behaviors of composites,.i.e.,-Eshelby model [9], Mori-Tanaka model
[10,11], square fiber model [12] and generalized method of cells [13-15].  Eshelby [9]
introduced Eshelby’s tensor together with the equivalent principal concept to model a
homogeneous inclusion embedded in an infinite matrix. Basically, Eshelby model is
a dilute model because only one inclusion is considered. Mori and Tanaka [10]
extended Eshelby’s approach to establish a non-dilute model in which the stress and
strain states of the inclusion and the matrix were considered in an average sense.
Benveniste [11] gave alternative explanations of Eshelby model and Mori-Tanaka
model by introducing the strain concentration concept and obtained succinct formulas
for these two models. Commonly, the Eshelby model and Mori-Tanaka model were
mainly applied to characterize the stiffness of short fiber composites. However, they

could be extended to characterize the long fiber composites if the aspect ratio of the
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inclusion was assumed to be infinity [16] and the nonlinear behavior of composites
can be described if an incremental Mori-Tanaka mean field approach was adopted
[17]. Sun and Chen [12] proposed a “Square Fiber Model” constructed by a RVE
composed of one square fiber and two pure matrix regions. A 2-D plane stress
plastic potential modified from von Mises J, function was applied in conjunction with
the associated flow rule to describe the plastic strain of the matrix material, while the
fiber was regarded as an orthotropic elastic material. The entire stiffness matrix of
the composite was derived from some suitable constant stress and constant strain
assumptions between each subcell in the RVE. Therefore, we can obtain the total
strain increments due to a given stress history by using this model. Similar to this
way, Goldberg and Stouffer [18] suggested a four regions model with one square fiber
and three matrix regions. Not & plane stress ‘condition but both two transverse
directions have to be applied constant stress and strain assumptions in all subregions
to obtain the overall constitutive-equation.-—Ihe matrix phase was described using the
Bodner and Partom’s model [5] and the corrésponding deformation was solved by
using the Runge-Kutta method. Away from the forgoing theories, Aboudi [13, 14]
derived a four regions micro-mechanical model called “Method of Cells”, which is
very efficient in modeling the elastic and inelastic behavior of fiber-reinforced
unidirectional composites. Based on the displacement and traction continuity at the
interfaces of all subcells as well as the periodicity at the RVE, a stress - strain relation
was described in a matrix form to predict mechanical behavior of composite materials.
By extending the method of cells, Paley and Aboudi [15] proposed a scheme called
Generalized Method of Cells (GMC) which can deal with an undetermined numbers
of subcells. The weak point in GMC is that the more subcells you have, the more
CPU time is required. To enhance computational efficiency of GMC, Orozco [19]

took advantage of the sparse features of the strain concentration matrix. It is
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basically an improvement in the numerical processing. The sparse implementation
of GMC made it possible to solve the problems with complex micro-structures and
tiny refinements. Pindera and Bednarcyk [20] adopted a different manner to enhance
the computational efficiency of GMC. They expressed the displacement continuity
between the subcells in terms of stresses and then derived a modified formulation of
GMC. This formulation is regarded as the most efficient way in the employment of
GMC until now. The feature of the GMC is that which cells were fibers or matrices
were not indicated in advance. In other words, we can assign the cells with either
fibers or matrix after forward when the final constitutive equation was established.
In applications of the GMC, Orozco and Pindera [21] combined the GMC with an
available tangent plasticity matrix to analyze transverse mechanical behavior of
composites under different fiber arrangements and fiber shapes. A large number of
subcells were constructed in their.study to model the complex microstructures. It
showed that different fiber arrangements-and-fiber shapes lead to distinct constitutive
behavior. Ogihara et al. [22] characterized the nonlinear behavior of carbon/epoxy
unidirectional and angle-ply laminates. The GMC was applied first to obtain the
property of unidirectional fiber composites under off-axis loading. Together with the
laminate plate theory, the angle-ply laminates were calculated from the unidirectional
composites. Kawai et al. [23] investigated the AS4/PEEK composites under loading
and unloading conditions on the off-axis response at strain rate up to 0.01/min. The
PEEK matrix was described by Chaboche model and the composite was predicted
using GMC. The results showed good agreements with the experimental results for
AS4/PEEK composites. However, the strain rates in their investigation were not
high enough for engineering applications. Using finite element analysis, Zhu and
Sun [24] investigated the nonlinear behaviors of fiber composites by applying suitable

boundary conditions on a RVE selected properly with three different fiber
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arrangements. It was shown that the square diagonal packing array provides the best

prediction on the experimental results for all samples with various off-axis angles

1.3 Research Approach

In view of the forgoing, most of efforts were made on the nonlinear behaviors
of fiber composites. While very few studies concerning the rate effect on the
constitutive behaviors were reported. Therefore, this research aims to characterize
the nonlinear rate dependent behavior of graphite/epoxy composites. More
emphases will be placed on the combination effect of microstructure and strain rate.
As a result, a micromechanical model consisting of fiber and matrix phases together
with their respective constitutive relations will be employed for this analysis. It is
noted that the fiber phase was assumed as transverse isotropic elastic materials. For
matrix phase, the cylindrical specimens were.tested in compression on a MTS system
to characterize its rate dependent behavior.—-Based on the experimental results, the
three parameters model [8] was employed to describe the rate sensitivity of the matrix
material. With the matrix and fiber constitutive curves, the micromechanical models
will be implemented for modeling the nonlinearity of the fiber composites. It is
noted that there were two different micromechanical models utilized in this analysis,
i.e. Square Fiber Model (SFM) [12] and Generalized Method of Cells (GMC) [15].
The effect of the fiber arrangements and fiber shapes will be taken into account in the
micromechanical modeling together with the finite element method (FEM) and the
results will be compared to one another. In addition, the effect of thermal residual
stresses are also involved in the analysis. Finally, the square fiber embedded in the
RVE with square edge packing array was performed using SFM and GMC and has a
comparison to the experimental results obtained by testing off-axis graphite/epoxy

composites at strain rates from 10™/s to 550/s.
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Chapter 2 Polymer Modeling

Since material properties of the polymer, i.e. Young’s Modules, Poisson’s ratio,
and viscoplastic behavior, are required for modeling the behaviors of composites,
tensile and compression tests were performed to determine the corresponding
properties. The tensile test was performed to determine the Poisson’s ratio of the
polymer while the compression test was employed to determine the Young’s modulus
and the viscoplastic behavior of the polymer. Based on the experimental data of
compression test at 10'4, 10'2, 1/s strain rates, the model coefficients of three
parameters model [8] were determined and this model was applied to predict the Split
Hopkinson Pressure Bar (SHPB) results up to 650/s strain rate. Besides, the
coefficient of thermal expansion (CTE) of the polymer was measured to investigate

the thermal stress effects on the off*axis composites.

2.1 Experiments
2.1.1 Compression Test

The polymer (Bisphenol A) in the form of powder provided from Ad-group
Taiwan was filled into a pre-designed stainless mold for fabricating the cylindrical
specimens. In the beginning, the mold was putted into a vacuum oven and heated
from room temperature to 75°C within 50 minutes. During this process, the
polymer was changed from powder state to liquid state with very high viscosity and
its volume decreased due to gas disappearance, then, some powder was replenished
until the desired amount of polymer was reached. In the next 8 minutes, the
temperature was raised to 95°C and then kept for 130 minutes. At the same time,
the polymer was also degassing in the vacuum oven. After degassing for a period of
time, the polymer was overflowed on the mold easily and we should open the door of

the vacuum oven and scrape the polymer to retreat to cavities by using a thin plate.
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It was to be noted that this scraping process must be finished as soon as possible
(within 5 minutes) to avoid a large drop of oven temperature. After repeating the
degassing and scraping process 6 times within the 130 minute, the temperature was
held on 90°C for 30 minutes to perform the curing process and raised to 145°C
within 10 minutes and maintained 60 minutes to carry out the post curing process.
After the curing and post-curing processes, the specimens were removed from the
mold with care. In order to have parallel and smooth loading surfaces, all specimens
were polished using a polishing machine with 25.0p aluminum oxide powers.  After
polishing, the final dimensions for the specimens are 10 mm in height and 12mm in
diameter as shown in Fig. 2.1(a). To demonstrate the strain rate effect on the
polymer, compression tests were performed on the cylindrical specimens using
hydraulic MTS machine at three .different strain rates, 10'4, 102 and 1/s. Back to
back strain gages were adhered-on.the specimens for the strain measurement during
compression tests. Fig. 2.2 demonstrates.the-experimental setup for the compression
tests. The stress history was obtained from-the load cell and the associated strain
history was measured from the strain gages mounted on the specimens. During the
tests, both stress and strain signals were recorded by LabView together with PC
computer. All results of compression test were shown in Fig. 2.3 and the Young’s

modulus of the polymer was determined as 3.4 GPa.

2.1.2 Tensile Test

For measuring the Poisson’s ratio of the polymer, tensile tests were carried out
on the coupon specimens, with the dimensions as shown in Fig. 2.1(b), fabricated in
the same manner as described early excepted that the designed mode is different.
Two strain gages were mounted on the centers of the specimens. One was in the

axial direction and the other was in the lateral direction to measure the axial and



transverse strains, respectively. The tensile test was implemented on a hydraulic
MTS system at 10™¥/s strain rate and the result was shown in Fig. 2.4. According to

this result, the Poisson’s ratio of the polymer was evaluated as 0.37.

2.1.3 Measurement of Coefficient of Thermal Expansion

In the analysis of thermal residual stress effect, the coefficient of thermal
expansion (CTE) of the matrix was measured first. A simple method [25-27] has
been applied to finish this measurement in which the EA-06-062TT-120 strain gage
was chosen and the adhesive M-bond 610 was used for its high operation temperature.
The EA-06-062TT-120 strain gage has two pieces of electrical resistance on a unit,
one is an axial field and the other is transverse. Therefore, axial and transverse
deformations of a specimen can b¢ measured at the same time. Based on the strain
gage technique, when the gage was.subjected.to a biaxial strain field, as shown in Fig.

2.5, the following relation was found
%:Fasa +Fe, (2.1.1)

where
R = original gage resistance
F, = axial gage factor
F, = transverse gage factor
&, = axial strain field

g, = transverse strain field

Define the transverse sensitivity coefficient K as

K :% (2.1.2)

a

If the strain gage was mounted on a specimen with Poisson’s ratio v, and the

specimen was under a uniaxial loading, the strain fields can be represented as



& ==V, (2.1.3)

Substituting eqns (2.1.2) and (2.1.3) into eqn (2.1.1) yields

AR

. F(1-v,K)e, = Fe, (2.1.4)

where F, =F, (1-v,K) is the well-known gage factor and the measured strain can

be represented as

. _AR/R

a
Fg

(2.1.5)

Since eqn (2.1.4) can be applied only if the specimen was subjected to a
uniaxial stress field and the transverse strain field was due to the Poisson’s ratio effect
only, on the measurement of CTE, the matrix under thermal expansion was within a
biaxial strain field and eqn (2.1.4) can not be followed directly. Therefore, the

transverse sensitivity must be embraced to correct the gage results. With the

assistance of measured strains:atithe axial and transverse direction, ¢, and ¢,

the corrected strains ¢, and & are given by [25]

_ (1 B VOK) (gmx B Kgmy)

= 2.1.6

£, s (2.1.6)
(l—v K)(sm —Kamx)

8y = 0 I_KYZ (217)

It can be shown that in the current analysis, the strain of isotropic test material

with Poisson’s ratio equal to 0.37 under the same measured strain ¢, =g, will be

about 2 % error if the correction equations (2.1.6) and (2.1.7) are not applied. It’s a
slight effect so the correction hasn’t been done here.

It was noted that when the gage was mounted on a stress free specimen and
underwent temperature change, we can not say the gage signal was fully induced by
the specimen deformation but also affected by the thermal effect. To cancel the

thermal effect on the electrical resistance, a half-bridge circuit as shown in Fig. 2.6
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was applied [26]. There are two materials in the system, one is the test material and
the other is the reference material. The CTE of the test material is unknown but

known for the reference material. Since

g —¢
o, —o, =—>—7I 2.1.8
X T AT ( )
and
ap—y_RiRa (AR, AR, AR AR, 2.19)
(R;+R, LRy R, Ry R,

where a, is the CTE of the test material at measured direction, o, is the CTE of
the reference material, ¢, is the thermal strain from the test material and ¢, is the
thermal strain from the reference material. By means of eqns (2.1.8) and (2.1.9), the
thermal effect on the electrical resistance, can be eliminated skillfully and the CTE of
the test material can be determined.

The experimental system was placed i a programmable-control vacuum oven
where the test material is a 30%20x2. ' mm>thin plate and the reference material is a
titanium silicate material with very small'CTE (here we assume it is equal to zero).
A thermal couple was adhered on the reference material to record the history of
temperature change but not on the test material due to the limitation of specimen size.
Because of low heating and cooling rate (about 19 °C/hr and 22 °C/hr, respectively), it
can be assumed that the test and reference material possess the same temperature
during heating and cooling processes so the temperature signal of the reference
material can present the temperature of the test material, too. According to the final
result shown in Fig. 2.7, the CTE of the matrix is about 5.9x107°/°C from the

average of heating and cooling slopes.
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2.2 Visco-Plasticity Model

A viscoplasticity model can be derived based on the low strain rate
compression tests to describe the nonlinear rate dependent behavior of the epoxy
materials. The epoxy material was treated as an isotropic von Mises plastic material

and the J; plastic potential
1
P :g[(sn ~65,)" +(05 —033)" + (o35 _611)2]+0122 +0%+01 (2.2.1)

was employed to develop the viscoplasticity model. By using the associated flow

rule, the plastic strain rate is expressed as

&b = s (2.2.2)
J6;;
where A is a proportional factor.
Defining an effective stress G- as
G =4/3J, (2.2.3)
through the plastic work rate relation, i.e.
WP =o,éh =5eP =21, (2.2.4)

the effective plastic strain rate £” can be expressed explicitly as
- 21 2 2 27 3 2 2 )"
&P = _{_[ (é& _égz) + (égz _é3p3) + (é§3 _éﬂ) }Fz(ﬂaz +75 +70s ) } (2.2.5)

and the proportional factor A in eqn (2.2.2) was derived as
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(2.2.6)

where H,
H,=— 2.2.7)
£

is the rate dependent plastic modulus.

It is noted that for the J, material subjected to uniaxial loading, the effective

stress 1s equal to the axial stress and the effective plastic strain is the same as the axial

plastic strain &? obtained by subtracting the elastic part from the total measured

straine . As a result, the effective stress and effective plastic strain curves of the

epoxy can be obtained directly fromi-the experimentally determined axial stress and
axial plastic strain curves. Fig. 2.8 shows the. effective stress and effective plastic
strain curves measured at strain-rates of 10'4, 102 and:1/s.

Let the effective stress — effectiverplastic strain curves could be fitted

individually by a power law as
e’ = A(o)" (2.2.8)

and the results were also illustrated in Fig. 2.8. It was found that the power index n
in eqn (2.2.8) is constant for all strain rates. However, the amplitude A is a function
of strain rate. Again, assume that the amplitude A is a power law function of

effective plastic strain rate as [8]
A=y(2)" (2.2.9)

Then a viscoplasticity model can be expressed in the form

& =y(2)"G) (2.2.10)
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It is noted that the effective stress and effective plastic strain curves plotted in
Fig. 2.8 were produced for respective constant strain rates but not for constant
effective plastic strain rates as required in the viscoplasticity model. By subtracting
the elastic component from the total strain, the plastic strain component, and thus the
effective plastic strain, can be obtained. Fig. 2.9 shows the effective plastic
strain-time curves for epoxy specimens corresponding to strain rate of 10™s. It is
evident from Fig. 2.9 that the effective plastic strain rate is not constant over the entire
loading range. Nevertheless, it almost reaches a constant value beyond €” =0.25%.
Since the initial deformation of the stress-strain curve is mainly dominated by the
elastic response, in determining parameters ¥ and m in eqn (2.2.9), the data
corresponding to the initial portion for which the effective plastic strain is less than
0.25% was truncated. Fig. 2.10 shows amplitude A as a function of effective plastic
strain rate on the log-log scale for the epoxy material obtained from the compression
tests. The parameters y and myiare then determined from these plots as the
intercept and the slope, respectively.| Oncem and % are determined, this model can
be extrapolated to predict the material behavior at any strain rates. The values of the

parameters in the viscoplasticity-model forrepoxy are listed in Table 1.
With eqn (2.2.10), the rate dependent plastic modulus is expressed as

_ 1
VOO

(2.2.11)

According to the definition of the effective stress given in eqn (2.2.3), G was

derived as
- 1 . ) )
Cc= %(2511 — Oy _533)511 +(_511 +26,, _533)522 +(_ Gj; —Op +2533)533 (2.2.12)

+66,,6,; +60,36,5 + 66,6,

By substituting eqn (2.2.12) together with eqn (2.2.6) into eqn (2.2.2), the

plastic strain rate is written as
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& S12 SiS, $S; S8, SiSs SiS, ||Su
s _9 1 S S5Sy SSs iS¢ |/Sn (2.2.13)
| 4H3 symmetric Si  SiSs S,S¢||6x
i SSS |
i _ S J16n
where
1
Sl = 5(2(511 —GOp _633)
1
S, 25(—011 +20y _633)
; (2.2.14)
S, = E(_ Oy —0p t+ 2033)
S, =20,3
S5=20y;

In combination of the elastic partsythe-constitutive relation of epoxy material

at various strain rates was establishedias
{e)=[s"]{s) (2.2.15)
where
[s¥]=[s]+[s°] (2.2.16)

In eqn (2.2.16), [Se] represents the elastic compliance matrix of the epoxy

and [S"] denotes the plastic compliance matrix given in eqn (2.2.13). It is to be
noted that with eqn (2.2.15), the epoxy material properties at different loading rates
could be characterized from which, through a micromechanical analysis, the

mechanical behaviors of polymeric composites could also be generated. Inverting

eqn (2.2.15), we derived
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(o)=]c"]{e} 2.2.17)

where

[cv]=[sM]" (2.2.18)

The constitutive relation expressed in the form of eqn (2.2.17) was used in
chapter 4 as the matrix material properties for the generalized method of cells

micromechanical model.

2.3 Modeling of Split Hopkinson Pressure Bar Results

The stress and strain relations of polymer (Bisphenol A) under high strain rate
were found using the steel SHPB apparatus. . The-gas pressure of 100 psi was used to
push the steel striker bar and thé compression‘wave was generated in the steel incident
bar with 3 mm thickness copper pulse shaper-attached on the impact surface. The
compression wave signals were obtained-by a pair of diametrically opposite gages
mounted on the middle of the incident bar and the transmission bar. The
amplification factors of incident bar channel and transmission bar channel were both
set at 400. The excitation voltages of the Wheatstone bridge circuits were set at 5V.
However, the amplification factor of specimen gage signal was set at 25 and
excitation voltage was set at 3V. The sampling rate of oscilloscope was set at 10
MHz to record the voltage signals from Wheatstone bridge circuits and the final stress
- strain curve of the polymer was shown in Fig. 2.11 where the Young’s modulus was
determined as 3.9 GPa. With the assistance of given stress history from experiments
as shown in Fig. 2.12, the associated plastic strain rates can be estimated by eqn

(2.2.13) in which the effective stress was evaluated using eqn (2.2.3) and the effective
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plastic strain rate embedded in the plastic modulus H was determined through eqn

(2.2.5). Then, the total strain was constructed through the combination of elastic
strains and plastic strains. The prediction result was plotted together with MTS
results and shown in Fig. 2.13. Since the Young’s modulus of the polymer up to
650/s strain rate attains to 3.9 GPa greater than the MTS result 3.4 GPa, the polymer
somehow exists viscoelastic behavior but wasn’t considered in the three parameters
model. Therefore, there is a significant distinction between the prediction and

experimental results due to the effect of different elastic strain.
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Chapter 3 Square Fiber Model
In this chapter, the square fiber model (SFM) proposed by Sun and Chen [12]
for modeling the composite nonlinearity was reviewed. Since the typical square
fiber model was constructed based on the square edge packing array as shown in Fig.
3.1(a), it can not be applied to other fiber arrangements, like the square diagonal
packing array demonstrated in Fig. 3.1(b). As a result, a modified SFM was
developed to account for the RVE with various fiber arrangements. In addition, the

thermal stress effect was considered using SFM and will be discussed in chapter 6.

3.1 Square Fiber Model

Sun and Chen [12] proposed a representative volume element (RVE) as shown
in Fig. 3.2 for unidirectional compgsites. This RVE is so-called square edge packing
array (SEP) as shown in Fig. 3.1(a).. In this RVE; the round fiber is approximated by
a square one with a cross-section area equal.to, that of the circular one. It is noted
that because of geometric symmetry, only a quarter of the RVE is considered. This
RVE is composed of three subregions, AF, AM and B, in which AF stands for the
fiber; AM and B stand for the matrix. Subregions AF and AM were assembled into
Region A. The fiber subregion AF is considered to be a square cross-section with
the same cross section area of the original quarter circle. The coordinate system is
set up such that the fiber direction is parallel to the x;, axis. A plane stress
assumption prevails in the x, —x, plane such that the out of plane stress components
would vanish (6,53 =0,; =05; =0). In addition, the follow assumptions are also
made.
(a) The stress and strain states are uniform in all subregions.
(b) In region A, the stress and strain fields in AF and AM follow suitable constant

stress or constant strain assumptions, i.e.
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AF _ _AM _ _A
G, =0), =0j, (constant stress)
GZF = G?zM = G’;z (constant stress) (3.1.1)

eN =elM=¢) (constant strain)

(c) For combination of region A and B, the constant strain assumptions are made, i.e.

A_ B _
€11 =811 =&

85 =€y = £y (3.1.2)
T2 =V = Vi

Based on the micromechanics, the average stress and strain fields in the

subregion A are treated as

ol = m(jAFoﬁFquAMchdA ) (3.1.3)
a!.*:;( [ dAs | afi*MdA) (3.1.4)
U AF£AM VAR Ay

, and the average stress and strain fields in-the. RVE are given by

_ \ ( A B
o= jAcijdA+chijdA) (3.1.5)
& = [ ehda+] efda (3.1.6)

The explicit forms for eqns (3.1.3)-(3.1.6) expressed in terms of local stress and strain

with the assistance of eqns (3.1.1) and (3.1.2) are derived as

A _ . _AF AM
Gy; =ViOpp tV,0q

A _ AF AM
€y = Vi€ +V,E5 (3.1.7)

A _ . _AF AM
Yi2 = Vi¥12 T VoY1

and
_ A B
Gj; = Va0 + VROyy
_ A B
G,y = V505 + V0o, (3.1.8)
_ A B
Gjy = VA0, T VROyy
where
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h, h, h, h,
= VA = VB =
h, +h, h; +h, hy+h,

(3.1.9)

Vi

It is noted that v, and v,, represent the volume fraction of subregions AF

and AM with respective to the region A, and v, and vy indicate the volume
fraction of regions, A, B, respectively to the RVE. With eqns (3.1.1), (3.1.2), (3.1.7)
and (3.1.8), the relationships between the subregion stresses and strains and the RVE
stresses and strains were established. To derive the stress and strain relations of the
RVE, the corresponding fiber and matrix properties must be given in advance. The
fiber is considered to be an orthotropic elastic material. Therefore, in the region AF,

we have the incremental stress and strain relations

{de* }= |77 ]{ do?F (3.1.10)
where
, 1w -
o
[s]= _EVFIFZ % 0 (3.1.11)
1 2
(g, it
L 12_

While, the matrix phase is considered to be an elastic-plastic material and can
be characterized by the plasticity model mentioned in chapter 2. Since the square

fiber model is a 2-D plane stress model, the 2-D von Mises J; is given as

5, = %[(cﬁM)z +(oAM)? —GAMGAM +3(c{‘2M)2} (3.1.12)

Substituting J, into flow rule and following the same derivatives in chapter 2

with the assistance of power law relation given in eqn (2.2.8) leads to
{de™ = [s™]{ do™ ] (3.1.13)
which gives a relation between total strain increment and stress increment for all pure

matrix regions, i.e. AM and B, and the components of compliance matrix [SAM] in
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eqn (3.1.13) were
1

SAM — ot %An (EAM)“’3S;“MS?M
M

SAM — ghM — _}‘;—M + %An (GaM)"gpmgam

SAM _ gAM _ %An(EAM)n3SfMS?M

o (3.1.14)
SIM =42 An (M) PspMgam
EV 4
SAM _ gAM _ %An(aAM)“‘3s§Ms§M
1 _ n-3
i’ = o +9An (5" gpmgam
in which
S = 2ol - o)
AM 1 AM AM
s =§(2c22 AlgAs) (3.1.15)
S?’AM — Gi‘\zM

With the stresses and strains telations for subregions AF and AM (given in eqn
(3.1.10) and eqn (3.1.13), respectively), the constitutive relation of subregion A was

generated through eqns (3.1.1) and (3.1.7) and the explicit results are given by

defy | |Shy Sb SH |[doh
dedy v =S5, S5, Sh [{dod, (3.1.16)
inAz 821 Séz 826 dcg

where
Sﬁ = al/ElF
Sﬁ = S?l = az/ElF _sz/Ef
ngsélza3/Ef (3.1.17)
S/;z = V1(1/E§ _Vleaz/E1F)+ \F (bzszA1M + Sé\zM) h
S2 =St = —vias Vi B + v, (0,550 +530")
St =v1/Gl + v2 (b, + 520)

in which
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a; = (1 — Vb, )/Vl
a,==V,b, /v,

a3 == V2b3/V1

b =(VEISHY +v,)” G-118)
by =—v,(EFSAM + VE ) (v EFSAM 4+ v, )
by = —v,EFSIM(v,EFSAM 4+ v, )
Inverting eqn (3.1.16), we obtain
{do* }=[ c*|{der} (3.1.19)
where
[cr]=[st]" (3.1.20)

For the region B, since it is matrix materials, the compliance matrix is exactly
the same as that in eqn (3.1.13). Thus, the incremental stresses and strain relation is

expressed as

{ deBl=ls]{dc" | (3.1.21)

, and [SB] is the same as [SAM].
Inverting eqn (3.1.21), we obtain
{do®}=[C?]{de?} (3.122)
where
[ce]=[s?]" (3.1.23)
Again, with constitutive relation of region A and B (given by (3.1.19), and

(3.1.21)), through eqn (3.1.8) and eqns (3.1.2), the incremental stress and strain
relation of entire RVE was derived as
{do}=[C]{de} (3.1.24)
where
[C]=v,[c* [+ vg|c?] (3.1.25)
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With eqn (3.1.24), for a given loading history, the constitutive relation of the
composites can be generated by using the numerical iteration. At the beginning, the
overall stiffness matrix [C] of composites in eqn (3.1.24) was constructed with
initial stress states equal to zero. For a tiny stress increment, the corresponding
strain increment was calculated from eqn (3.1.24). The strain increments in RVE are
exactly the same as those in regions A and B based on the constant strain assumption
given in eqn (3.1.2), and the corresponding stress increments in the two regions were
evaluated with the assistance of the respective constitutive law given in eqns (3.1.19)

and (3.1.22). Since region B was pure matrix, its stress components was directly
substituted into eqn (3.1.14) to update the stiffness matrix [CB]. However, for
region A, there are two subregions, AM and AF enclosed. In order to update the

stiffness matrix [CA], the stréss components, in'.the subregion AM need to be

evaluated, since the compliance matrix [SAM] in/egn (3.1.13) is dependent on the

stress states. The incremental stress states dos,’ and dojy" in the subregion AM
can be evaluated directly from do’, and docj, in the region A based on the constant
stress assumption. Similarly, the incremental strain sate de]," was also obtained
from de], with constant strain assumption. Once the stress components do5" and
do and the strain component de}" were determined, the stress increment do™

could be derived through the first relation of eqn (3.1.13). With the stress
components in the subregion AM, the corresponding compliance [SAM] matrix in
eqn (3.1.13) was renewed. By combining the compliance [SAF] of subregion AF,
an updated stiffness matrix [CA] was obtained and thereafter, the new stiffness [C]

of the RVE was calculated which was employed to evaluate the strain increment in the

next step associated with other tiny stress increments. The detail program for the
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SFM combined with three parameters model was attached in the Appendix A.

3.2 Modified Square Fiber Model

Since the square fiber model (SFM) proposed by Sun and Chen [12] was
derived based on the square edge packing with a square fiber inside, it is difficult to
deal with the RVE with circular fiber together with different fiber arrangements by
using the SFM. To overcome this problem, a modified SFM was proposed in this
section by dividing the representative volume element (RVE) into numbers of
horizontal tiny subcells.  The constant stress (or constant strain) conditions applied
in the SFM (shown in the previous section) were again employed at each subcells in
the modified SFM. There are two fiber arrangements considered here, i.e. square
edge packing array and square.'diagonal packing array, which were illustrated

respectively in Fig. 3.1(a) and Fig..3.1(b).

3.2.1 Square Edge Packing Array

In the case of square edge packing array as shown in Fig. 3.3, the RVE
consists of a region A with a height h; equal to the radius r of the fiber and a pure
matrix region B with a height of h  whichis equalto /—r. Itis noted that/is the
length of the square RVE. There are two subregions AF and AM contained in the
region A. The region A was divided into N subcells horizontally from A; to A,and
the height of each subcell is h;/N. Thus, in each subregion A, consisting of AF,
and AM,, the stress and strain fields follow constant stress or constant strain

assumptions, i.e.

AE, _ __AM, _ A
Gp" =0, " =60,
AF“ —_— AM“ — An —
G," =Gy " =Gy n=123,..,N (3.2.1)
AE, _ _AM, _ _A
& =& " =gy



On the other hand, for the RVE, the following assumptions were applied,

Ay Ay _ _ AN _ B _

€1 =& = =8 =& =€y

A —e AN B

€2 —822 == 8y =8 =&y (3.2.2)
_ Ay _ AN _ B _

le =Y12 = =Y2 =VYn2=Yn2

Based on the micromechanics, the average stress and strain fields for each

subcell A, are defined as

A, _ 1 AF, AM,,

Gij = m( .[AFH Gij dA + J-AMH Gij dA ) (323)
Ay _ 1 AF, AM,

sij = m( J.AFn sij dA + J-AMn Sij dA ) (324)

and, for the RVE, they are given by

o, = “ cldA +Z N GUHdAj (3.2.5)

£ =;U DA + zj -"dAj (3.2.6)

Substituting eqns (3.2.1) and (3.2.2) into eqns'(3.2.3)-(3.2.6) yields

A AF, AF AM, AM,
o) =viro T FVETiG
A AF, . AF AM, .AM,
€y =VimEn" +vVinEy, n=123,.N (3.2.7)

A, _ . AE, AR AM,  AM
Yi2' =V YRV Yt

and

A, _A B B
(V "oy )+V O

Q
I
M=

=
0

(VA“ ooy )+ vPoh, (3.2.8)

Q
N

Il
M=

=
Il
—_

A, A B_B
(V "Gy )+V (o

Il
Mz

G2

=
l

where v*™ and v*“ represent the volume fraction of fiber and matrix phases
with respect to the subcell A,, and v® and v® denote the volume fraction of
subregion A, and subregion B with respect to entire RVE, respectively. Based on

. . . . . . A
geometric correlation given in Fig. 3.2, the volume fractions, v** and v® can be
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determined directly as

h
vin = f/N
h;+h
(3.2.9)
B hm
Vv =
h;+h

However, in order to evaluate the volume fraction, v*™ and v*» in the
subcell A, with convenience, the angle 0, was defined as the orientation of the ray
emanating from the fiber center to the intersection of the fiber circumference and the

n™ horizontal grid line. Thus, the corresponding volume fraction is written as

AF, _ rcos0, AM, _ AF
v = v =1-v

1 g (3.2.10)

where

0, = sin-‘% n=1223,..,N (3.2.11)
I

can be determined from the -geometric correlation given in Fig. 3.2. For the

sub-region A,, it has the same tonstitutive-relation-as shown in eqn (3.1.16) except

that the volume fractions v,and v, are replaced by v*™ and v*™» | respectively,
and also that in the sub-cell AM,, the compliance matrix becomes [SAM“ ] instead of

[SAM]. Therefore, the constitutive equation for subcell A, is expressed as

An An An An An

dey St St St || doy;
An — An An An An

deyy ¢ =S Sy Sy [Kdoyy (3.2.12)
An An An An An

dyi; Sei'  Se'  Sed ||doyy

where
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Sﬁn = a1/ElF

A A

St =Syr =a2/E1F_V1F2/E1F
S?é“ =S?1“ =a3/E;F

(3.2.13)
S8 = vA% (/B —vEa, /EF )+ v (b,S5M + S5 )
Sty = Shy =—vMa, v BN 4 v (b, M 4 SAM )
SéAé‘ =y /Gle +vAM (b3séAlM" + S?6M" )
in which
a, = (1 - VAM"bl)/VAFn
a, =— VAM“b2 /VAF“
ay;=— VAM“b3/VAF“
(3.2.14)

-1

by = (v EFSAM 4y M |
_ . AF, (pFQAM, F |(.,AF, oFQAM, AM, |
b, =—v (EIS12 +v12)(v E/S;i"+v )

-1
AF, AM AF, AM AM

where [SA“] is the compliancematrix.of subcell A,. It is to be noted that the

mathematical form of compliance matrix [SAM“] is-the same as that in eqn (3.1.13),

which was evaluated in terms of the current stress states of subcell AM,,
Again, for the region B, the constitutive equation is the same as eqn (3.1.21)

which was rewritten as
{de®}=[s®|{do"] (3.2.15)

With ingredient constitutive equations given in eqns (3.2.12) and (3.2.15)
together with eqns (3.2.2), (3.2.8), we derived the incremental form of overall
constitutive equation as

{do}=[C]{de} (3.2.16)

where
[c]=vA ] +vr[ et Joe v [ern ] v c?]

_Shon[en e[ ] (3.2.17)
n=I1
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3.2.2 Square Diagonal Packing Array

In addition to the square edge packing array for the fiber arrangement, there
are other fiber arrangements called the square diagonal packing (SDP) array which
will be discussed in this section. Fig. 3.1(b) shows the typical RVE for this fiber
arrangement. Because of symmetry, only one quarter of the RVE will be considered
in the analysis. In fact, due to different fiber fractions, there are three possible
situations to be accounted for the generation of the constitutive relations as shown in
Fig 3.4. It was found that the critical fiber volume fraction for SDP is 39.3 %.
Above this value, two quarter fibers will have interaction within the center region of
the RVE as shown in Fig. 3.4(c). It was noted that Fig. 3.4(d) shows the maximum
fiber volume fraction of SDP is 78.5 %. Since, in industrial applications of fiber
composites, the fiber volume fraction 1s around 60% which is greater than the critical
value, and thus we only consider the case with higher volume fractions. As shown
in Fig. 3.5, the RVE was separated into-three-partitions initially with two horizontal
lines. One was along the top of the left fiber'and the other was passing through the
bottom of the right fiber. Let us denote the center region as subregion B with a
height of hy which is equal to 2r—/, and the other two regions as subregion A with
the individual height ,h, , equal to /—r, where / is the length of the square RVE and
r is the radius of the fiber. Noted that there are two subregions, i.e., AF (fiber phase
of region A) and AM (matrix phase of region A) contained in the region A, and three
subregions, i.e., BFL (fiber phase in the left side of region B), BM (matrix phase of
region B) and BFR (fiber phase in the right side of region B), were included in the
region B. Subsequently, regions A and B were divided into N and M horizontal
subcells, represented by A, and B, respectively, such that totally there are 2N+M
subcells enclosed in the RVE. The height for each subcell A, in region A ish, /N,

while for subcell B, in region B, the height is hy/M. In order to determine the
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fiber volume fraction in the region An, the angle 6, as shown in Fig. 3.5, were

defined in the same manner as described in the previous section. In addition, for the

region B, two angles, i.c., ¢ and Oy , as shown in Fig. 3.5 were defined based on

the orientation of the ray starting from the fiber center to the intersection of the nth
grid line and the fiber circumference. It is noted that the two angles are not

independent but correlated by following the relation.

dp, =0, n=23,., M+l (3.2.18)

n

In addition, the corresponding angles can be expressed explicitly as

0, = gint (2= n=123,.,N
N (3.2.19)
1 Mh, +(n-1)hy n=123,..M
™

O, =sin

which determined from the geometric correlation shown in Fig. 3.5.

In addition, there are two areas covered by region A and both of the areas are the
same. Thus, only one area was taken into account'in the analysis. For each subcell
A,, subregions AF, and AM, would follow the constant stress and constant strain

assumptions, i.e.

AE,  _AM. _ _A
Gj," =0jp, " =0y

AF, AM A
Gzzn = 622 n= Gzzn n= 17273""’N (3'220)

AE, _ AM, _ A
et =g "t =g

Similarly, in each subcell B,, all subregions BFL,, BM, and BFR; obey

BFL, _ __BM, _ _BFR, _ B,
G, =0 =61, =0y,

=cy n=123.,M (3221

. _ _BM, _ _BFR,
Gy " =0y  =0p

_ BM, _ _BFR, _ B
€ " =& " =gy " =g

For the RVE, the following assumptions were applied,
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Al _JAy AN _ B By . _ Bm _

€ir =& ==& =& =&y = =8p =8

Ar _ Ay AN _ BBy . _ . Bm _

€ T &y = r= 8y T8y Ty =T8T =&y (3.2.22)
Ay _ Ay o _ AN _ B _ By _ . _ Bm _

Yiz =V12 = =Y12 =Y12 =Y12 = =Y12 = T2

The average stress and strain fields in subcells A,, B, and the RVE can be defined as

Ay _ 1 AF, AM,
o = AR T AM [ o5 dA+ ] ofthdA (3.2.23)
Ay _ 1 AF, AM,
& = AFE, + AM._ .[AFH &jj dA+J-AMn gj "dA (3.2.24)
Giljsn = ! ( j. G?FL“dA+I G?M“dA-i—J‘ G?FR“dA) (3.2.25)
BFL, + BM, +BFR \ /8L, ! BM, BFR,
ey = 1 U ey mdA+[ eMdA + | gg‘MR"dAj (3.2.26)
BFL, + BM_ +BFR, \ 7BFL, BM, BMR,
= ! 2N tndA 3 PrdA 3.2.2
Cii =X v ZJAH Gji +ZIBH Gjj (3.2.27)
2 A, +) B, N n=l
n=1 n=1
1 N A M B,
& = —% - 2ZjAn sirdA D jBn elndA (3.2.28)
2) A+ B n=l
n=1 n=1

Although there are two fiber phases BEL,; and BFR,, in each subcell B, it can
be demonstrated that these two isolated fiber phases can be treated as a whole one BF,
and the constant stress and constant strain conditions mentioned previously are still
remained. Thus, the fiber volume fraction in this region can be represented using
only one variable v"™ as shown in Fig. 3.6. By substituting eqns (3.2.20)-(3.2.22)

into eqns (3.2.23)-(3.2.28), the following equations were obtained.

A AF, _AF, AM, _AM
Glln :V nGlln +V ncll n

A AF, AF, AM_, _AM
ghy = VAT gl | yAMa gAM, (3.2.29)
yf\zn — VAFn ,Yi'\an + VAMnylAzMn
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B BF, _BF, BM, _BM
Oy =V "o +v o "

B BF, .BF, BM, .BM
€y =V "Ep" +V gy " (3.2.30)
F,

B, _ . BF, BF BM, BM
Y2 =V YRt VoYt

and
AL A & B, B
oy, =22V "o +ZV "o
n=1 n=1

N M
6y =2) vioy + ) viioy (3.2.31)
n=l n=1

S A, A, L \N.B, B
G, =2ZV "Gyt +ZV "Gy
n=1 n=1
in which

rcosf,
o

rcosfy +rcosdp
- !
n =M Bn =M

VAR AM, _1_ AR,

\'% -V

vBh

v =y Ph (3.2.32)

A

where v*™ and v*» represert the volume fraction of the fiber and matrix with
respect to subcell A, while vBh and vPM» denote the volume fraction of the fiber
and matrix respectively to subcell B,. And v*" and v® are the volume fraction
of subcell A, and B, with respect to the RVE.

Similar to square edge packing array, the constitutive equations of subcells A,
and B, were the same as eqn (3.2.12) except that the volume fraction were replaced
with eqn (3.2.32). Furthermore, the compliance matrix of the matrix phase was
evaluated according to individual stress states in each tiny step associated with the
loading history. Since the procedure for the formulation had been described in
previous section 3.2.1, the detail processes were not repeated here. As a result, the

constitutive equations of subcells A, and B, can be written as
{do* j=] c |{de | (3.2.33)
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and

{do® j=] P [{ de™ | (3.2.34)

where [CA“] and [CB“] are the stiffness matrix of regions A, and B,

respectively.
From eqn (3.2.31) together with eqns (3.2.22), (3.2.33), (3.2.34), the overall
constitutive equation can be represented by a incremental form,
{do }=[C ]{de} (3.2.35)

where

N M
[C]=2D v = ]+ZVB“ [ ] (3.2.36)
n=] n=l
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Chapter 4 Generalized Method of Cells

In order to realize the nonlinear rate dependent behavior, the micromechanical
approach was employed with the ingredient material properties in the analysis. In
chapter three, the square fiber model and modified square fiber model were proposed
to characterize the material properties of composites. While, in this chapter, the
generalized method of cells (GMC) proposed by Paley and Aboudi [15] will be
adopted for investigations. However, some interpretations and reorganizations on
the derivation of GMC will be conducted by the present author to easily extend the

GMC for modeling the nonlinear rate dependent behavior of composites.

4.1 Generalized Method of Cells (GMC)

The generalized method ef cells proposed by Paley and Aboudi [15] was
adopted for investigating the nenlinear behavior of composites. The corresponding
mechanical properties of the compesites.—can be derived from a repeating
microstructure of the composite so called a representative volume element (RVE).

In GMC, the RVE were divided into many rectangular subcells (By) with

B= L....,Np and y= L,...N,, and depending on the fiber arrangement, each subcell

indicates either fiber or matrix on the RVE. In Fig. 4.1, the fiber extends in the x,

direction and the area of each subcell is equal to Np/,. Assume that a local
coordinate system (xl,i(f),i(;’)) locate at the center of each subcell (see Fig. 4.2).

When the RVE deforms, the displacement rates 1) for each subcell was assumed

1

to be a linear expansion in terms of the distances from the center of the subcell, it is

ar) = W(Bv)(xl’ X,, X3 )+ i(zﬁ)(l)i(m) n i(;{)\i]i(m) i=1,2,3 (4.1.1)

i i

where v'vi(BV) is the displacement rate at the center of the subcell, which could be
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different from subcell to subcell. It is to be noted that this displacement function is

expressed in terms of the global coordinate system (Xi, X2, x3) [13]. In eqn (4.1.1),
d)fm), \pi(‘”) are variables rates which could be realized as a constant in each subcell.

Based on elasticity, the small strain rate tensor is written as

1(,. . ..
nf]BY) = E(alugm) + 8]1193“/)) L]= 19 29 3 (412)

where 0, =0/0x,, 0, :G/GX(ZB) and 0, =a/a§g“. Substituting eqn (4.1.1) into

eqn (4.1.2) and then using the average formula of micromechanics

(Bv) /2 hﬁ/z dx(
LR ) ol (13

we can obtain the average strain rates in any subcell (By) ,1.e

76 = L)

n
11 3
—=(By) _ (b(zﬁv)
0
2ﬁ§[357) L d)gﬁv) i \]'I(QBY) (4.1.4)
2ﬁ1(57) " \I'Igﬁv) +iv'vgBY)

2ﬁ1(§>v) _ d)gﬁv) 4 _V-V(ZBV)

Under deformation, the displacement rates should be continuous at the interfaces
between the internal subcells and between neighboring repeating RVE.  This leads to

the following relations

- (B) :
ui |X(ZB):hB/2 i |i2ﬁ):*hﬁ/2 (4.1.5)
- (B) — 87
ur iy o= Ui Y s o (4.1.6)
where [ and y are defined by

n +1, B<N
= {B P<N, (4.1.7)

1, B=Ng



and

+1, y<N
?={y < (4.1.8)

1 v=N,

Note that 6:1 for B=N; and y=1 for y=N, are employed to represent the

periodic boundary conditions. Instead of using the displacement continuity
conditions from point to point as given in (4.1.5), Paley and Aboudi imposed the

continuity condition on an average sense as

ly/z.(B) _()_ IV/Z'B _()
J"lv/zui V |§(2B):hﬁ/2 dxy” = .|‘_1Y/2ug 7 |§gﬁ):_hﬁ/2 dxy’ (4.1.9)
Using eqn (4.1.1), it follows that
. 1, . (a 1. .(a
W) +§hﬁ¢gﬁv) — wlP) _Ehﬁd,i(ﬁv) (4.1.10)

A similar relation obtained fromteqn (4.1.6), with the integration from —hg / 2 to
hg /2 with respect to igﬁ) was given by

. T ) L s
WgﬁY) +ElyW§BY) — WgBY)_E ?WEBY) (4.1.11)

Apparently, both eqns (4.1.10) and (4.1.11) represent the displacement continuity in

the interfaces between the subcells and all field quantities are originated from the

centerline x(zf’) of the subcell (By) and the centerline x(f’) of the subcell (ﬁy) as

shown in Fig. 4.2. These discrete field quantities can also be observed directly from

the interface rather than from the central line, which could be done simply by

introducing the location of the interface X(zl) between subcells (By) and (By) as

<) = ) _%hﬁ (4.1.12)
) x4 Ly (4.1.13)
V=x+hy 1.

Through a Taylor expansion of the field variables in eqn (4.1.10) with only linear
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terms kept, we have

. 1 o . : . (8 1 0 . (3
wi) —Ehﬁ(ax_zw@ —¢£“‘”J = wl) +Ehﬁ[—w(ﬁy) —<|>§‘”)j (4.1.14)

It 1s noted that all field variables in eqn (4.1.14) are evaluated at the interface X(ZI) .

The displacement continuity also implies the field variables of the v'vi(By) and v'vgﬁy)

expressed in terms of the position vectors on the interface should be the same as

wb1) = i ) (4.1.15)
Define
E0) = w(01) 1 £ 0) _ i (1) 4 £P) (4.1.16)
where
1 0 :
£®) L s (B (By) 4.1.17
! 2 B(@xz % b ( :

Therefore, eqn (4.1.14) can be expressed in-a-compact form as
F® =0 B=1...N, (4.1.18)

1

Similarly, eqn (4.1.11) provides the continuity relations

W_(BY) _lly[iw_(ﬁv) _\ijgﬁ‘/)j — W(ﬁi’) _,_%l?(axiwgﬁ‘?) _\i]i(ﬁi’)j (4.1.19)
3

and can be expressed in a compact form similar to eqn (4.1.18) as

(r) — —
G"=0 v=1L..N, (4.1.20)
where the following definitions have been employed
Gi(v) — Wi(BY) + gi(v) _ V'Vi(ﬁ?) + gi(?) (4.1.21)
(Y):_ll i'_(BY)_'_(ﬁv) 4.1.22
gi 2 y(ax3 Wi Vi ( o )
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From eqns (4.1.18) and (4.1.20), we obtain

> EP =0 (4.1.23)
p=l1
NY

GlW=0 (4.1.24)

=1

-

It can be shown from eqns (4.1.23) and (4.1.24) together with periodic boundary

conditions, i.e. eqns (4.1.7) and (4.1.8), that

Ng
>t =0 (4.1.25)
p=1
NV
g=0 (4.1.26)
y=1
Since
ifi(ﬁ) =0 (4.1.27)
0x,
and
9
HleWis 4.1.28
2x, g ( )

for all B and y (neglecting the high order terms), by taking partial derivatives of

eqns (4.1.18) and (4.1.20) with respect to x, and x;, respectively, we obtain

MGV (3 RN 1) (4.1.29)
0X, 0X,

and
9 gl = 96 (4.1.30)
8X3 ax}

Eqns (4.1.29) and (4.1.30) indicate that the state variables of the first order

differentiations of the functions v'vi(BV) and v'vgf’y) are also equal on the interface. In
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order to satisfy the eqns (4.1.29) and (4.1.30) together with eqn (4.1.15), we assumed

W) = v, (4.1.31)

1 1

This implies that the displacement rate components of the centers for each subcell are

the same and also equal to w;, .

Substitution of the definition of fi(B) and g(Y) given in eqns (4.1.17) and (4.1.22)

i

into eqns (4.1.25) and (4.1.26), respectively leads to

NB ) a

> hy ) = h——, (4.1.32)
p=1 2

N, 5

> Lyl = =V, (4.1.33)
y=1 3

Np N,
where h = Zhﬁ and /= Zly are the length and width of the RVE. So far, the

Bl 7=1
displacement continuity conditions lead to three equations (4.1.31), (4.1.32) and
(4.1.33), which will be applied in-the following derivation for establishing the strain
rate relations between entire RVE and all subcells. In the following, the global strain
will be expressed in the function of w., and then the local strain will be determined

through eqn (4.1.4) with expressions in terms of d)fﬁy) and \i/fﬁy).

As a result, with
eqns (4.1.32) and (4.1.33), the relation between the global strain rates and the local
strain rates can be established.
The average strain rate of entire RVE is defined as
LN N
My = —thﬁlyﬁigﬁv) (4.1.34)
h/ B=1y=1
For i=j=1, substituting the first relation in eqn (4.1.4) into eqn (4.1.34) and using
W

eqn (4.1.31), we obtain 7, = Z_

X1

For i=j=2, let us multiply eqn (4.1.32) by [,
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and perform a summation over y from I to N,. This mathematical operation

leads to
NB N,\/ A .
3 Syl 690 = i V2 (4.1.35)
10>
B=1y=1 2
Comparing eqn (4.1.35) with eqn (4.1.34) and using the second relation in eqn (4.1.4)

gives that ﬁzzz%. For i=1, j=2, multiplying eqn (4.1.32) by /, and
X

summing over 7y Yyields
Ng N, . :
33yl ) = i 2 (4.1.36)
ox
p=1y=1 2
Substituting the sixth relation in eqn (4.1.4) into eqn (4.1.34) and comparing with eqn

OW AW |

1
4.1.36), we obtainm, =—| —=
( ) N2 [8)(1 &x

5 ] The, other three average strain rate

components can be derived in the same.way. Thus; we can conclude the following

relation as

_ 1fow, ow,
== —L4+—= 4.1.37
i (ﬁx 0X; ] ( )
With eqn (4.1.37) together with eqn (4.1.4), it is possible to express the local variables,

d)ﬁﬁ“’) and ", and global state variables, W, in eqns (4.1.32) and (4.1.33) in terms

of local strain variables ﬁigBY) and global strain variable m;, respectively. For

strain variables m,, and M;; we set i=2 in eqn (4.1.32) and i=3 in eqn
(4.1.33). Apparently, with the assistance of eqn (4.1.37) and eqn (4.1.4), the
relations were given by

Np

> hy i) = i, y=1.N, (4.1.38)

Bl
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1Y) =y, B=1..Ng (4.1.39)

Np i (BY)
While, for strain variables, m,, and 7;;, we added Zhﬁ(awz ] to the both sides
=1

0X,
N, av'v(ﬁ‘{)
of eqn (4.1.32) and also included ZIY 63 to the both sides of eqn (4.1.33)
=1 X

Ny ow
with i=1. It is noted that on the right side, the two terms, Z:hB 82 and
p=l X

N .
Y l (awgﬁ‘{)
Y

P j can be simplified into h% and l%, respectively.  Thus, the
X

o 0X, )

following relation was obtained as

Np . k
Zhﬁ(d)gﬁv) + %‘:2J = 2hﬁ12 Y= 1""’Nv (4.1.40)
B=1 1

< ovv

zl{\ﬂmu#j:ﬂﬁn B:l,...,NB (4.1.41)
v=1 1

By comparing the left hand side of eqns (4.1.40) and (4.1.41) with eqn (4.1.4), we

obtain
Ng
h,n®) = hy =1,..,N 4.1.42
Z T2 M2 Y=L Ny (4.1.42)
B=1
NV
ly_l(EY) =y p=L...Ng (4.1.43)

1

=<
Il

For the calculation of components m,,, we let the subscript 1 and j in eqn (4.1.34)
equal to 1. It is noted that ﬁl({”) isequalto 0w, /0x, and can be directly factored
out from the summation at the right hand side of eqn (4.1.34). Therefore the

summation of the remaining terms would become a unity and the relation was derived

as
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q) =5, (4.1.44)

For the m,;, eqn (4.1.34) are used directly since it cannot be simplified further with
the aid of displacement continuity equations as the other components described before.

Itis

1 N Ny
Ty =— > > hyl ) (4.1.45)
It is noted that eqns (4.1.38), (4.1.39) together with eqns (4.1.42)-(4.1.45) indicates

the relation between the global strain rates and the local strain rates. We rewrite

eqns (4.1.38), (4.1.39) and (4.1.42)-(4.1.45) into a matrix form as
Acng=Iq (4.1.46)

1) =(12) —(NpN;)

where n, = {ﬁ( ), nv, - m } represent the collection of the engineering

strain rates for all subcells, and ﬁ={ﬁ”, Nys Mszs 2Nz, 2Mi3s Zﬁlz}

indicates the overall strain rates of the RVE. In addition, A; and J contain

geometry parameters of the subcells and the RVE, which are 2(NB + Nv)+ NgN, +1
by 6NgN, and Z(NB + NY)+ NgN, +1 by 6 matrices, respectively.

The displacement rate continuity conditions have been applied to establish the relation
between the global strain rate and local subcell strain rate so far. In the following,
the traction rate continuity conditions will be employed for the derivation. By using

the traction rate — stress rate relation
T, =7;n. (4.1.47)
and considering the normal vector shown in Fig. 4.3, we obtain the traction rate
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continuity conditions as

G (4.1.48)
and
o) = 7) (4.1.49)

where j=1,2,3, le,...,NB and y=1,..,N It can be shown that, due to the

v

symmetry of stress rate tensor and periodic boundary conditions, there are only

SNgN, - 2(NB + Ny)—l independent equations. These equations are

W=zl p=1N -l y=L.N, (4.1.50)
781 = z87) B=1..Ns y=L.,N, -1 (4.1.51)
W=zl BN y=LN, 4.1.52)
=) =TT NSy - N, -1 (4.1.53)
W)=zl Thpo1 NgSlL y=1.N, (4.1.54)
W=7l B=1.,N;, y=L.,N, -1 (4.1.55)

There are two methods to deal with eqns (4.1.50)-(4.1.55), i.e. a stress rate — total
strain rate relation and a stress rate — elastic strain rate relation. The former one for

each subcell is written as

?i(jﬁv) _ Ci\j’lg(ﬁv)ﬁlg?ﬁ (4.1.56)

In eqn (4.1.56), the stiffness matrix CY*®) contains both elastic and plastic

properties and the plastic part can be constructed using eqn (2.2.13). While, the
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relation for the other one is given by

E(BY) — Cgiﬁi)(ﬁlg?ﬁf) _ ﬁlfl(m)) (4.1.57)

ij

where ﬁlfl('”) represents the plastic strain rates of each subcell and the stiffness

matrix Ci(j[iyl) contains only elastic properties. The constitutive relation given in eqn

(4.1.56) was considered first by substituting the relation into eqns (4.1.50)-(4.1.55),

and then a matrix form based on the traction continuity is established as
AVin, =0 (4.1.58)
where 1, has been defined previouslyrand A\, is a 5NgN, — 2(NB + Ny)—l X

6N,N. matrix which involves=the components:of the tensor CYP(M). Combinin
B Ty p ijkl g

the displacement rate continuity conditions-in eqn (4.1.46) and the traction rate

continuity conditions in eqn (4.1.58), we obtain

AV, = K7 (4.1.59)

where the 6NN, x 6NgN, square matrix AVPis composed of

- AVP
AP ="M (4.1.60)
AG

and the 6N;N, x 6 matrix K is constructed by
0
K:L} (4.1.61)

Inverting eqn (4.1.59), the subcell strain rates collection matrix m_ can be expressed

as

n, =AM (4.1.62)
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where
AV =Rk (4.1.63)
Note that AY" is a 6 NN, x6 matrix which can be partitioned into NgN, entries

as follows and each one represents a 6 x 6 square matrix
AVP(] 1)

VP(12)
AV o] A , (4.1.64)
VP(NBNY)

A

If we want to find the strain rates in some specified subcell, a submatrix form of eqn

(4.1.62) by means of eqn (4.1.64) was used, i.e.

7l = AVPErg (4.1.65)
Substituting eqn (4.1.65) into equ’(4.1.56) yields

G e N (4.1.66)

The average stress rate of entire RVE follows

1 N Ny )
= = =(p

p=1v=1

Substituting eqn (4.1.66) into eqn (4.1.67), we obtain

T=BV'q (4.1.68)
where
1 Ng N,
B = h_IZZhBZYCVP(BY)AVP(B” (4.1.69)
p=1y=1

On the other hand, we can also used eqn (4.1.57) to derive the global stress and strain
relations. By substituting eqn (4.1.57) into traction continuity equations, eqns

(4.1.50)-(4.1.55), the traction continuity equations can be written in a matrix form as.
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Ayln,—n’)=0 (4.1.70)

1) p(12) . ﬁp(NBNV) } is a collection of plastic strain rates of

where n? :{ﬁp( , N,
all subcells and the matrix A,; is somehow related to the stiffness matrix Cgﬁ).

Combination of the traction continuity conditions in eqn (4.1.70) with the local strain

rate and global strain rate relation given in eqn (4.1.46) yields

An, —APn" =K7q (4.1.71)
where
A= EM} (4.1.72)
G
and
AP = [AOM} (4.1.73)

where K matrix is the same with eqn (4.1.61). Through eqn (4.1.71), m, can be

expressed as

N, =Af+A" (4.1.74)
where

A=A"K (4.1.75)
and

AP =AT'AT (4.1.76)

Similar to eqn (4.1.64), the matrices A and A" can be partitioned into NgN,

elements and each element consists of a 6x 6 square matrix, i.e.
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(12)
A= A: 4.1.77)
AL
AP(ll)
N AT (4.1.78)
- . 1.7
APONN,)

Therefore, eqn (4.1.74) can be rewritten to a subcell expression
) = AP 4+ APEP (4.1.79)
Substituting eqn (4.1.79) into eqn (4.1.57) yields
=(B1) _ C(Bv)(A(BY)ﬁ £ ATBP _ﬁP(Bv)) (4.1.80)
The stress rate — elastic strain ratérelationiis expected to be
=B H-7") (4.1.81)

Substituting eqn (4.1.80) into eqh (4.1.67) and comparing with the eqn (4.1.81), we

obtain
1 Np N,
B =— >3 hyl, CPIAP (4.1.82)
h/ pB=1y=1 !
and
N N,
WP =—B'S'S hyl €O (AP NP P60 )y (4.1.83)
B=1y=1

Here and now, there are two constitutive equations can be used to characterize
the nonlinear behavior of fiber composites. If a tangent modulus composed by
elastic and plastic parts can be found, eqn (4.1.68) could be employed in the analysis.

Otherwise, eqn (4.1.81) should be applied.
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The numerical procedures together with the numerical codes presented in
Appendix B were described based on the constitutive equation, eqn (4.1.68).
However, the other constitutive law, eqn (4.1.81), was not addressed here.

In the beginning, the overall strain rates 1 can be estimated with overall
stress rates T using eqn (4.1.68). It was noted that the overall stress rates T is

evaluated from the time derivative of the given overall stress history. , the total
strain rates ﬁ(ﬁ“’) and stress rates ") at some specified subcell (By) can be
evaluated through eqns (4.1.65) and (4.1.66), respectively, when the overall strain
rates 1 was calculated. Furthermore, the CV*®) matrices of the matrix regions

were updated through three parameters model using eqn (2.2.13), while for the
CV*®) matrices of the fiber phase,idue to linear elastic property, were not updated
with its current stress state. A“®9!matrices Were also updated while CVPer)
matrices changed and a new overall stiffness matrix -B""" for the next time step was
composed using eqn (4.1.69). “As a result, with generalized method of cells in
conjunction with the three parameters model for polymer, the constitutive behavior of
fiber composites at different strain rate can be predicted through a numerical iteration.
Furthermore, a typical four subcells RVE with square edge packing is shown in Fig.

4.4 and will be widely used in the later simulations.
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Chapter S Finite Element Analysis

In this chapter, two fiber arrangements, i.e. square edge packing (SEP) array
and square diagonal packing (SDP) array, were adopted to investigate the fiber
arrangement effects on nonlinear behavior of off-axis fiber composites by using the
commercial finite element program ANSYS. The procedure for finite element
analysis will be addressed in this section, and the associated results will be
demonstrated in chapter 6 together with the numerical results obtained from the
square fiber model and the generalized method of cells to investigate the fiber shape

and fiber arrangement effects.

5.1 Finite Element Approach

The methodology about. how to establish a finite element model for
unidirectional composites subjected to off-axis loadings was basically coming from
the paper published by Zhu and-Suni[24].—Fig: 5.1 shows a 3-D RVE for the square
diagonal packing (SDP) array employed. in the finite element analysis, and it is noted
that because of symmetry, only one quarter of the RVE was considered. The
associated meshes generated automatically from ANSYS mesh generator for the RVE
are shown in Figs. 5.2(a)-(b). The element type used in this study is solid 185.
Since the quantities, such as stress, strain and displacement, are independent of the
xj-axis, there is only one single layer of elements established in the fiber direction
[24]. It was noted that in Fig 5.1, all stresses were shown in the positive direction,
and the relation between the applied stresses in the loading coordinate system and
those in the material principle coordinate system is converted through the following

translation law
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G, =G, cos” 0
Gy =G, sin" 0 (5.1.1)

G,, =—0,sinBcosO
where o are the stresses in the material principle coordinate system, 6 is the

off-axis angle with respect to the loading direction and o, is the applied uniaxial
stress. In the FEM analysis, the fiber was assumed to be an orthotropic elastic
material with the material properties as shown in Table 2. While, the matrix is
assuming to be elastic-plastic obeying the J, flow rule. The assumed stress — strain
curve of the matrix shown in Fig. 5.3 was selected for FEM analysis. This
constitutive curve was imported into ANSYS through the commanding process,
“Main Menu” > “Preprocessor” > ‘“Material Props” > “Material Models” >
“Structural” > “Nonlinear” > fInelastic” > “Rate Independent” > “Isotropic
Hardening Plasticity” > “Mises-Plasticity’” > “Nonlinear”. Then, four coefficients of
a nonlinear potential function have ito"be determined to characterize the stress and
plastic strain curve. This function 13
c=k+Re?+R (1-¢*") (5.1.2)

where k is the yield stress, R, and R are parameters and their physical meanings
are shown in the ANSYS user manual [28]. Basically, only the variable b needs to
be evaluated by try-and-error manner and the others can be determined directly from
the given stress — plastic strain curve. The matrix properties were also listed in Table
2.

After material properties had been given, the boundary conditions were
applied on the RVE shown in Fig. 5.1 to satisfy the periodicity condition when the

material subjected to off-axis loading.

On x,=0 and x,=a faces
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u(O, X5, X3)—u(a, X5, X3) = constant
v(0,%,,%;) = v(a,x,,x;) (5.1.3)

W(O,Xz,x3)= w(a,x2,x3)
where u, v and w respectively to denote the displacements in the x;, x, and x;
direction. Furthermore, this equation leads x, =0 and x, =a faces to satisfy
periodic boundary conditions. Note that the first relation in eqn (5.1.3) makes it
possible for the RVE to undergo an extension in the x; direction but not to affects the
periodicity.

On x,=0 and x, =a faces
V(Xl,O, x3) =0
V(Xl, a, X3) = constant
(5.1.4)
w(a] ,0,X54 ) = w(az,O, X3) = constant
w(al,a, X3 ) = W(az, a, x3) = constant
where a; and a, represent any two different points with other two identical coordinates,
and the first and the second relations of eqn (5.1.4) describe geometric symmetry and

periodicity, respectively. Moreover, the‘third and the fourth relations of eqn (5.1.4)
were employed to keep all nodes on faces x, =0 0r x, =a with the same height x3
without relative motion. It was noted that the third and the forth relations in eqn
(5.1.4) were not applied in the current analysis since there was only single layer of
element existing in the RVE and these two relations can also be covered by the third

relation in eqn (5.1.3).

On x;=0 and x;=a faces

W(XI,X2,0)= 0

w(xl,xz,a)z constant

(5.1.5)
V(al, XZ,O) = V(az,xz,O) = constant
V(al,xz,a) = V(az,xz,a) = constant

which implies similar meanings as eqn (5.1.4) and the third and the forth relations in
eqn (5.1.5) are involved by the second relation in eqn (5.1.3). To avoid the rigid

body translation, an additional displacement constraint was imposed in the x;
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direction, i.e.
u(0,0,0)=0 (5.1.6)
In order to implement the boundary conditions, three ANSYS options “CP”,
“CE” and “D” were applied. “CP” option lets a set of nodes possess the same degree
of freedom. Therefore, the second and the third relations in eqn (5.1.3) and the
second relation in eqns (5.1.4) and (5.1.5) are established by using this command.
“CE” option lets the degree of freedoms of a set of nodes obey desired constraint

equations. The first relation in eqn (5.1.3) can be expanded as

u X1=O_u1 x1=a:u2 x1=0_u2 Xp=a e =Uy x]:O_uN X;=a (517)

where the subscript 1 to N denotes N sets of corresponding nodes with the same x;
and x3 coordinates respectively on x, =0 .and x, =a faces and eqn (5.1.7) can be

further decomposed as

Ul x,=0 =t X;=a = U lx,=0 U2 x, =a
u, X1=0—u2 x1=a=u3 x,20.7 U3|x,=a (5 1 8)
UN-1|x,=0 ~UN-1|x,=2a = UN|x,=0 7~ UN|x,=a

Obviously, there are N-1 independent constraint equations existing in the RVE
and can be built up using “CE” command. The latest option “D” can assign a fixed
displacement value on desired nodes, so the displacements equal to zero in the
boundary conditions can be carried out. After the boundary conditions were
appropriately defined, the stresses evaluated from eqn (5.1.1) at material principle
coordinate system were multiplied by the loading surface area to obtain external
forces. Shear forces on x, =0 and x, =a faces and all normal forces were
placed at single node on associated loading surface since the boundary conditions had

been appropriately defined. But the shear forces at x, =0 and x, =a must be
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distributed to every node through the element shape function provided by user manual
[29] to ensure the nodal force being consistent with the distributed loading. All
forces were divided into several tiny steps and implemented gradually by using the
following commands

“Main Menu” > “Solution” > “Analysis Type” > “Sol’n Controls”

By collecting element strains at each load step, the average strain of the RVE can be

evaluated by taking an average from all element strains, i.e.

(2]

1 M

=—>&V, (5.1.9)
Vi

where M is the total number of elements, € and ¢, are respectively to average

strain and element strain, and V and V, represent the volume of RVE and the

element volume, respectively.
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Chapter 6 Results and Discussion
In this chapter, thermal stress effect on off-axis fiber composites was
investigated by using square fiber model (SFM) and generalized method of cells
(GMC). Then, the fiber shape effect on square edge packing (SEP) array was
studied through GMC and modified SFM. Moreover, the investigation of fiber
arrangement effect was performed by using modified SFM, GMC, and finite element
method (FEM), respectively. Finally, the model predictions using SFM and GMC

were compared with the experimental results.

6.1 Thermal Stress Effect

During the curing process of polymeric composites, because of distinct
difference of coefficient of thermal’expansion (CTE) between the fiber and the matrix,
the thermal residual stresses usually were' generated-in the fiber and matrix. Based
on the thermal elasticity, the thermaliresidual.stiess in the fiber and the matrix can be
calculated in terms of Young’s modulus. (E); coefficient of thermal expansion (o),
and the area of the cross section (A ) as shown in Fig. 6.1. It is noted that for the
calculation of the thermal residual stress, the conventional fiber composite was
simplified as the solid containing fiber and matrix phases as shown in the Fig. 6.1(a).
Since during the curing process, the fiber and matrix interface are well bounded and
have to satisfy the displacement continuity in the x direction as shown in Fig 6.1(b),
from the thermal elasticity, the thermal residual stresses in the fiber and matrix can be

expressed as

G, = Em[amAT - ?)
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where AT is the temperature change in the cooling process, / is the specimen length
in the fiber direction, o is the displacement of the specimen when it attains to the
equilibrium position. E and o denote the Young’s modulus and coefficient of
thermal expansion of the specimen. The subscripts, i.e. m and f, in eqn (6.1.1)
represent matrix and fiber, respectively. In eqn (6.1.1), it was assumed that the stress
is free in the heating process and the thermal stress would be produced only in the
cooling process. Furthermore, during the cooling, there is no mechanical loading
applied, and the global stress states should be zero. Thus,

c,A,+0;A; =0 (6.1.2)
where Ar and Ay, are the cross section of the fiber and the matrix. With eqn (6.1.2),

the displacement & can be expressed as

5 B0 ArE 0, Ay JIAT 6.1.3)

The thermal residual stress could be estimated from eqns (6.1.1) and (6.1.3),
and then employed into square fiber model (SFM) and generalized method of cells

(GMC) to investigate the thermal stress effect on the mechanical behavior of off-axis

fiber composites. For GMC, a four subcell RVE with Ny =N, =2 as shown in Fig.

4.4 was adopted to perform this study while the RVE of SFM was demonstrated in Fig.
3.2. Here, we only consider the residual stress component in the fiber extension
direction, i.e. o;;. Thus, the thermal stress calculated from eqn (6.1.1) was imposed
as an initial stress state on all matrix regions of SFM and GMC. It was noted that in
the fiber region of SFM and GMC, it was assumed to be stress free initially. All

analyses were performed using the Matlab code of SFM and GMC listed in Appendix
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A and B respectively, and the initial stress value was implemented by using the sigam
and sigb for SFM and substress for GMC in the code. The associated matrix and
fiber properties employed in the simulation were listed in Tables 1 and 2, respectively,
and the fiber volume fraction used in the simulation was 60%. The numerical results
of the stress-strain curves for 30° and 90° specimens with the thermal stress
simulated by SFM and GMC were shown, respectively in Figs. 6.2(a)-(b) and Figs.
6.3(a)-(b). For comparison, the results without including the thermal stress were
also included in the Figures. It is interesting to note that the fiber composites with
thermal stress exhibit stiffer behaviors than those without thermal stress for all fiber
orientations as shown in Figs. 6.2-6.3. This result seems to be different from out
intuition. However, the reason is due to that the presence of thermal stress o,, in
the matrix phase would prevent'the plastic ‘deformation in the other directions
resulting in the small uniaxial=-strain when the composites is subjected to off-axis
loading. By taking 90° specimens:as-an-example (see Fig 6.2(b) and Fig. 6.3(b)),
apparently, it shows that the transverse deformation ¢,, for the composites with
thermal stress is less than that without thermal stress. Thus, it was suggested that the
off-axis composites would become stiffer if the thermal residual stresses is involved

in the analysis.

6.2 Discussion of Fiber Shape and Fiber Arrangement Effect
6.2.1 Fiber Shape Effect

Two fiber shapes (square fiber and round fiber) embedded in the square edge
packing (SEP) of RVE were discussed using the square fiber model (SFM) and
generalized method of cells (GMC). When the square shape fiber was considered,
the typical SFM and GMC shown in Fig. 3.2 and Fig.4.4 were adopted to perform the

simulations. On the other hand, the modified GMC [20] with 26x26 subcells as
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shown in Fig. 6.4 and the modified SFM model with 50 subcells in fibrous region A
as shown in Figs. 6.5 were employed to describe the RVEs containing the round fiber.
In the study, the fiber properties are given in Table 2 with fiber volume fraction 60 %
while the plastic properties of the matrix, with 3.4 GPa Young’s modulus and 0.37
Poisson’s ratio, were characterized using power law (see eqn 2.2.8) with
A=642x10"" and n=4.11. All simulation results were demonstrated in Figs.
6.6 (a)-(d). According to the results, it is found that, for all off-axis angles, the
round fiber and square fiber exhibit the similar results if the micromechanical models
applied are the same. Therefore, the round fiber can be replaced with the square
fiber for saving CPU cost since a large number of subcells are required for modeling

the RVE with round fiber.

6.2.2 Fiber Arrangement Effect

The stress - strain curves of ithe. off-axis composites with two different fiber
arrangements, i.e. square edge packing (SEP) and square diagonal packing (SDP),
were generated using finite element method (FEM) together with modified square
fiber model (SFM) and generalized method of cells (GMC). It is noted that to be
consistent with the all three models, i.e., FEM, modified SFM and GMC, the RVEs
with round fiber were taken into account, although lots of computation time is
required. The approach regarding the FEM analysis was discussed in chapter 5.
For GMC and SFM, the RVEs with the square edge packing were presented early in
Figs. 6.4 and 6.5, respectively. Nevertheless, for the square diagonal packing, the
RVE used for GMC was divided into 20x20 subcells as shown in Fig. 6.7 and the
RVE used for modified SFM was divided into three regions, i.e., two A regions and
one B region, as shown in Fig. 6.8 where thirty subcells is contained in region A and

twenty subcells were included in region B. The fiber properties were given in Table
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2 with 60 % volume fraction while the matrix was assumed to follow the constitutive
curve shown in Fig. 5.3 which was curve-fitted by a power law (eqn 2.2.8) with the
coefficients A =6.42x107"* and n=3.9. It is noted that the above ingredient
properties were the same as those used in the FEM analysis.

Figs. 6.9(a)-(d) demonstrates the stress and strain curves obtained from the
RVE with SEP and SDP fiber arrangement using modified SFM and GMC,
respectively. It was shown that the SEP fiber arrangement exhibits stiffer material
behavior the SDP arrangement for all off-axis angles. Moreover, at SDP fiber
arrangement, the constitutive behaviors calculated from GMC and modified SFM are
almost the same no matter the fiber orientation. However, for the SEP fiber
arrangement, when the fiber orientation is small, the results obtained from GMC and
modified SFM are similar, while at large fiber orientation, the GMC model provides
stiffer material properties than the modified SEM.. ' The numerical simulations of the
RVE with SEP and SDP fiber arrangements using FEM were illustrated in
Figs.6.10(a)-(d). In contrast to modified SEM' and GMC, there is no significant
difference found in the FEM analysis between SEP and SDP fiber array when the
off-axis angle is small. When the off-axis angle becomes larger, the corresponding
discrepancy is getting significant. The comparisons of the predictions using
modified SFM, GMC and FEM for the RVE with SEP or SDP fiber array were shown
in Figs. 6.11(a)-(h). It can be seen that no matter in SEP case or in SDP case, FEM

analysis always shows stiffer material properties rather than GMC and modified SFM.

6.3 Comparing with Experimental Data
In order to verify the accuracy of the constitutive behaviors of fiber
composites predicted using square fiber model (SFM) and generalized method of cells

(GMCO), off-axis composites with fiber orientations of 15, 30, 45 and 60 degrees were
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tested at strain rate ranges from 10 to 550/s. The experimental data of the PPG
graphite/epoxy composites can be found in the reference [30], and the associated
material properties of the HTA-12k graphite fiber and the epoxy were listed in Table 1
where the fiber was assumed to be transverse isotropic material [31]. It was noted
that in the fiber phase, since only E; was provided from the manufacture, the other
properties were evaluated by the trial-and-error method to accomplish the
experimental elastic constants of the off-axis composites, if possible. Moreover, the
fiber volume fraction of the PPG graphite/epoxy composites was also assumed to be
69% in order to satisfy the elastic deformation of the composites. Nevertheless, with
this fiber volume fraction together with ingredient properties, it was found that the
model predictions obtained either from SEP fiber array or SDP fiber array are softer
than the experimental data. In order to properly .characterize the experimental data,
the RVE with SEP was selected-in,the analysis, since-the RVE with SEP is stiffer than
that with SDP and closer to the c¢urtent-experimental data. From the forgoing
investigation, it was suggested that round fiber included in the RVE provide the
similar results to those obtained from the RVE with the square one. Thus, to
simplify the analytical process, the square fiber was selected and embedded in the
RVE for the micromechanical analysis. In addition, it should be mentioned that the
plastic deformation described by the FEM analysis is quite small as compared to the
experimental data such that it is not suitable for modeling the current material system.
In view of the forgoing, it was suggested the RVE with the square fiber in the square
edge packing was adopted in the present predictions. The model predictions based
on SFM and GMC were respectively shown in Figs. 6.12(a)-(d) and Figs. 6.13(a)-(d)
together with the experimental data. It was found that the stress and strain curves is
quite sensitive to the strain rates and moreover, as the strain rate increased, the

material becomes stiff. Comparison of the model predictions with the experimental
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data reveals that the micromechanical model together with the viscoplasticity model
for the matrix is capable of predicting the nonlinear rate dependent behaviors of
off-axis specimens at strain rate up to 550/s, although there is still discrepancy
between the experimental data and model predictions. Based on Figs 6.12 and 6.13,
it seems that the GMC model provides better predictions than the SFM when

compared to the experimental data of the current graphite/epoxy system.
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Chapter 7 Conclusion

The thermal stress effect, fiber shape effect and fiber arrangement effect on
nonlinear rate dependent behavior of fiber composites was investigated using square
fiber model, generalized method of cells and finite element analysis. It was shown
that with the presence of thermal residual stress, the fiber composites become stiffer
than those without thermal stress. Regarding the fiber arrangement effects, the RVE
with square edge packing (SEP) array is stiffer than that with square diagonal packing
(SDP). In addition, the RVEs containing either round fiber or square fiber result in
the similar material behavior of fiber composites.

In order to validate the model predictions, the experimental results of the
graphite/epoxy composites tested at various strain rates were employed for the
comparison. The model predictions were obtamed from the SFM and GMC analysis
on the RVE with SEP fiber -array containing the transverse isotropic fiber and
elastic-viscoplastic matrix. ~ The tviscoplastic behaviors of epoxy resin were
described using a three parameters viseoplasticity model written in the form of power
law. Comparing the model predictions and experimental data reveals that the GMC
is better than the SFM to predict the nonlinear rate sensitivity of off-axis specimens at
strain rate up to 550/s if the current material properties were applied. Comparison of
model predictions obtained from GMC and SFM analysis with the experimental
results revealed that the micromechanical approaches are capable of predicting the
nonlinear rate sensitivity of off-axis specimens although there are still distinctions

between the model and the experimental results.
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Appendix
A. A MATLAB Code for Square Fiber Model

Input Symbol List

Efl, Ef2, nuf12, Gf12, volf — Young’s modulus 1 (and 2), Poisson’s ratio ,shear
modulus and volume fraction of the fiber.
Em, num, Gm — Young’s modulus, Poisson’s ratio and shear modulus of the matrix.
pn, xi, pm — denote n, % and m in the three parameters model.
time — A matrix to store the total loading time. The Row represents different strain
rates while the column denotes various off-axis angles.
ratetype — An index to point what strain rate was in calculation.

angle, Nstep — off-axis angle and total steps of loop.

Matrix and Scalar Symbol List

saf — Fiber compliance matrix.

eSm — Matrix compliance matrix.

vl, v2 — Volume fraction of region AF and AM relative to region A.

Tsig, Teps — Transformation matrix relatively for stress and strain to translate
between loading coordinates :and material principle axis.

sigma, sigb — Current stress states in region AM and B, respectively.

Tstress, Tstrain — Overall stress'and strain.in the loading coordinate system.

depsam, depsaf — Total strain rates in region AM-and AF.

dpepsam, dpepsb — Plastic strain rates in region AM and B.

dsigaf, dsigam — Stress rate in region AF and AM.

t, sigrate — Current time and associated stress rate.

dsig, dsigl — Applied stress rate in the material principle axis and loading coordinate
system, respectively.

efsig, efeps — Effective stress and effective plastic strain rate.

pSm, sa, sb, ca, cb, c, s - [Sp], [SA], [SB], [CA], [CB], [C], [S]

deps, deps1 — Strain rate associated to applied stress rate in the material coordinate

system and loading coordinate system.

Note: Subroutine “‘stressrate(t,ratetype,angle/15)”, which involves stress rate —
time polynomial equation from curve-fitting of experimental data, have three input
parameters to output corresponding stress rate at each time increment. The

subroutine can be designed by users and was not demonstrated here.
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Code
% Square Fiber Model Combined with Three Parameters Model

clear all

% Material Properties

% Fiber

Ef 1=235000; % E11 of fiber

Ef2=18000; % E22 of fier

nuf12=0.2; % Poisson’s ratio 12 of fiber
Gf12=35000; % Shear modulus 12 of fiber

vol f=0.69; % fiber volume fraction

% Matrix

Em=3400; % Young’s modulus of the matrix
num=0.373; % Poisson’s ratio of the matrix

Gm=Em/ (2% (1+num)); % Shear modulus of the matrix

pn=5.62; % Coefficient n in the 3 parameters model
xi=1.23e-14; % Coefficient xi in the 3 parameters model
pm=—0.168; % Coefficient m inwthe 3 parameters model

o/
/0

% Loop & angle
time=[208 694 695 675 380;
1.83 7.25 10.9 6.9 4.54;
0.0323 0.0725 0.0981 0.08010.05;
5.1e-5 7.07e-5 7.84e-5 8.65e-5 6.4e-5];
ratetype=3;
angle=30; % Off-axis angle
if angle == 90
totime=time(ratetype,5);
else
totime=time(ratetype,angle/15);
end
%totime=time(ratetype,2);
Nstep=450; % Total time steps
dtime=totime/Nstep; % Associated time increment

rad=angle/180*pi;

0/
/0

saf=[1/Ef1 -nuf12/Ef1 O; —nufi12/Ef1 1/Ef2 0; 0 O 1/Gf12]; % fiber compliance matrix

eSm=[1/Em —num/Em 0; -num/Em 1/Em O; 0 0 1/Gm]; % matrix compliance matrix (elastic)
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vi=sart(volf); % volume fraction of AF with respective to region A

ve=1-v1; % volume fraction of AM with respective to region A

% Transformation matrix to translate stress
Tsig=[cos(rad)"2 sin(rad)”?2 2+cos(rad)*sin(rad);...
sin(rad)”2 cos(rad)”2 -2+cos(rad)*sin(rad);...

—-cos(rad)*sin(rad) cos(rad)*sin(rad) cos(rad)*2-sin(rad)"2];

% Transformation matrix to translate strain
Teps=[cos(rad)"2 sin(rad)*2 -cos(rad)*sin(rad);...
sin(rad)”2 cos(rad)”2 cos(rad)*sin(rad);...

2+~cos(rad)*sin(rad) —-2+cos(rad)*sin(rad) cos(rad)"2-sin(rad)"2];

% matrix pre-setup
sigam=zeros(3,1);
sigb=zeros(3,1);
Tstress=zeros(Nstepti,1);
Tstrain=zeros(Nstept1,1);
depsam=zeros(3,1);
depsaf=zeros(3,1);
dpepsam=zeros(3,1);
dpepsb=zeros(3,1);
depsb=zeros(3,1);
dsigaf=zeros(3,1);

dsigam=zeros(3,1);

% Main Loop
for n=1:Nstep;
t=nxdtime; % current time
sigrate=strainrate(t,ratetype,angle/15);
dsigi=[sigrate; 0; 0]; % x-y stress rate
Tstress(nt+1,1)=Tstress(n,1)+dsigi(1,1)*dtime; % Overall stress
dsig=Tsig*dsigl; % 1-2 stress rate
efeps=2/3*sart (3*(dpepsam(1)*2+dpepsam(2)"2+dpepsam(1)*dpepsam(2)+dpepsam(3)~2/
4));
ifn=-=
A=0;
else

A=xix(efeps) pm;
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end

s1=1/3*(2*sigam(1,1)-sigam(2,1));
s2=1/3x(-sigam(1,1)+2*sigam(2,1));
s3=2*sigam(3,1);
efsig=sart((sigam(1,1)+sigam(2,1))"2-3*(sigam(1,1)*sigam(2,1)-sigam(3,1)"2));
st=[2*(sigam(1,1)+sigam(2,1))-3*sigam(2, 1)
2x(sigam(1,1)+sigam(2,1))-3*sigam(1,1)
6xsigam(3,1)];
pSm=3/4*Axpn*efsig(pn-3)*[s1*st; s2xst; s3st];

sam=eSm+pSm;

% sm matrix

b1=(v1*Ef 1xsam(1, 1)+v2)"-1;

b2=-v1*(Ef 1xsam(1,2)+nuf 12)*(v1*Ef 1xsam(1, 1)+v2)"-1;
b3=-v1*Ef 1xsam(1,3)*(v1*Ef 1xsam(1,1)+v2)"~1;
al=(1-v2*b1)/v1;

a2=—-v2*b2/v1;

a3=-v2*b3/v1;

sa(1,1)=al/Ef1;

sa(1,2)=a2/Ef 1-nuf12/Ef1;

sa(1,3)=a3/Ef1

sa(2,1)=sa(1,2);
sa(2,2)=v1*(1/Ef2-nuf 12+xa2/Ef 1)+v2*(b2*sam(2, 1)+sam(2,2))
sa(2,3)=—vi1xa3*nuf12/Ef 1+v2*(b3*sam(2, 1)+sam(2,3));
sa(3,1)=sa(1,3);

sa(3,2)=sa(2,3);

sa(3,3)=v1/Gf 12+v2*(b3*sam(3, 1)+sam(3,3));

ca=inv(sa);

% CB matrix
efeps=2/3*sart (3*(dpepsb(1)"2+dpepsb(2)"2+dpepsb( 1)*dpepsb(2)+dpepsb(3)"2/4));
ifn=-=
A=0;
else
A=xi*(efeps)” pm;

end
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s1=1/3*(2*sigb(1,1)-sigh(2,1));

s2=1/3*(-sigb(1,1)+2*sigh(2,1));

s3=2*sigh(3,1);

efsig=sart((sigb(1,1)+sigb(2,1))"2-3*(sigb(1,1)*sigb(2,1)-sigh(3,1)"2));

st=[2*(sigb(1,1)+sigh(2,1))-3*sigb(2,1)
2*(sigb(1,1)+sigh(2,1))-3*sigb(1,1)
6xsigh(3,1)1;

pSm=3/4*Axpn*efsig(pn-3)*[s1*st; s2xst; s3*st];

sb=eSm+pSm;

cb=inv(sb);

c=vixcatv2*cb;

s=inv(c);

deps=s*dsig; % total strain rate
depsa=deps:; % total strain rate of region A
depsb=deps; % total strain rate of region B
dsiga=caxdepsa; % stress rate of region#A
dsigb=cb*depsb; % stress rate,of region.B
dsigaf(2:3,1)=dsiga(2:3,1);
dsigam(2:3,1)=dsiga(2:3,1);
depsaf (1,
dsigaf(1,
depsaf (2,
depsaf (3, 1)=saf(3,:)*dsigaf;
depsam( 1,
depsam(2,
depsam(3,

(1,

dsigam( 1

dpepsam=depsam—-Sm+dsigam;
dpepsb=depsb-Sm*dsigb;

deps1=Teps=*deps;

Tstrain(nt+1,1)=Tstrain(n, 1)+depsi(1,1)*dtime;
sigam=sigam+dsigam*dtime;
sigb=sigbtdsigb*dtime;

end
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B. A MATLAB Code for Generalized Method of Cells

Since some symbols in the GMC code are a repetition of those appearing in

the SFM code, only differences are listed. This code is addressed on four regions
RVE with fiber phase at =y =1.

Input Symbol List
h, 1 — The height and the width of the RVE.

Nb,Nr- N, N,

Nfiber — Denote how many subcells are occupied by the fiber phase.

regionf — A matrix to store what cells are occupied by fibers. The fibrous subcell
(By) must be translated to a re-defined fiber number by using the equation

N=(B-DN, +y and N was arranged in the regionf matrix.

Matrix and Scalar Symbol List

-1 =
bb, hh — The length of subcell b i and b 5 in the x, direction.
Y (5

hb, hr — Two matrix to store the:geometry informatiofi bb and hh.

Sm — Compliance matrix including plastic part.
AG, J, AVPM, AVP, K, AtVP, Bvp= A, Blay ], [a7] k], [A], B

substress — A matrix to store current stress state of all subcells.

sigma — A transition matrix to get current stress state for specified subcell from
substress matrix.

Cs — Stiffness matrix of all subcells.

Sf, Cf — Compliance matrix and stiffness matrix of the fiber.

eSm, eCm — Elastic compliance matrix and elastic stiffness matrix of the matrix.

index, index2 — Indexes to point out which subcell should be under calculation.

A

betahat, gamahat -  and 7.

subteps, subsigrate — Strain rate and stress rate of specified subcell.

subeeps, subeps — Elastic strain rate and plastic strain rate of specified subcell.

70



Code
clear all

% Material Properties (transverse isotropic fiber + isotropic matrix)

Ef 1=235000;
Ef2=18000;
Ef3=Ef2;
nuf12=0.2;
nuf13=0.2;
nuf23=0.25;

Gf 12=35000;
Gf13=Gf12;
Gf23=Ef2/(2x(1+nuf23));
Em=3400;
num=0.373;

Gm=Em/ (2*(1+num) ) ;

% Young’ s modulus
% Young’ s modulus
% Young’ s modulus
% Poisson’ s ratio
% Poisson’ s ratio
% Poisson’ s ratio
% Shear modulus 12
% Shear modulus 13
% Shear modulus 23
% Young’ s modulus

% Poisson’ s ratio

11
22
33
12
13
23
of
of
of
of

of

of the fiber
of the fiber
of the fiber
of the fiber
of the fiber
of the fiber
the fiber
the fiber
the fiber
the matrix

the matrix

% Shear modulus of the matrix

% Coefficients of 3 parameter model

pn=5.62;
Xi=1.23e-14;
pm=—0.168;

% Co&fficient.n .in the 3 parameters model

% Goefficient=xivin the 3 parameters model

%=Coefficient.m in the=3 parameters model

% region dimension & cell situation
% the length of the RVE

h=1;

I=1;

vol f=0.69;
Nb=2;

Nr=2;
bb=sart(volf);
hh=1-bb;
hb=[bb hh];
hr=hb;
Nfiber=1;

regionf=[1];

% Loop & angle
time=[208 694 695 675 380;

% the width of the RVE

% fiber volume fraction

1.83 7.25 10.9 6.9 4.54;
0.0323 0.0725 0.0981 0.0801 0.05;
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5.1e-5 7.07e-5 7.84e-5 8.65e-5 6.4e-5];
ratetype=3;
angle=60; % Off-axis angle
if angle == 90
totime=time(ratetype,5);
else

totime=time(ratetype,angle/15);

end
Nstep=500; % Total time steps
dtime=totime/Nstep; % Time increment

rad=angle/180*pi;

% matrix pre-setup

Sm=zeros(6,6);
AG=zeros(2* (Nb+Nr )+Nb*Nr+1,6+No*Nr ) ;
J=zeros(2+(NotNr )+Nb*Nr+1,6) ;
substress=zeros(6*Nb*Nr, 1) ;
deps=zeros(6,1);

AVPM=zer 0s (5*No*Nr =2+ (No+Nr ) =1 :6*Nb*Nr )
sigam=zeros(6,1);
Cs=zeros(6*Nb*Nr ,6) ;
Tstrain=zeros(Nstept1,1);
Tstress=zeros(Nstepti,1);
AVP=zeros(6*Nb*Nr ,6);

% compliance matrix of the fiber and the matrix

nuf21=Ef2+nuf 12/Ef1;

nuf31=Ef3*nuf13/Ef1;

nuf32=Ef3*nuf23/Ef2;

Sf=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nufi12/ef1 1/Ef2 -nuf32/Ef3 0 0 0;...
-nuf13/Ef1 —-nuf23/eEf2 1/Ef3000; 00 0 1/GF2300; 000 0 1/GF130; 0000 0
1/Gf12];

Cf=inv(Sf);

eSm=[1/Em —num/Em -num/Em 0 O O; -num/Em 1/Em —num/Em 0 0 O;
—num/Em -num/Em 1/Em 0 0 O; ...
0001/Gm00; 0000 1/Gm0; 00000 1/Gm];

eCm=inv(eSm);
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% initial Cs
for beta=1:Nb
for gama=1:Nr
index=(beta—1)*Nr+gama;
p1=6*(index-1)+1;
p2=6*(index-1)+6;
multi=1;
region=regionf-index;
for j=1:Nfiber
multi=multi*region(1,j);
end
if multi ~=20
Cs(p1:p2, :)=eCm;
else
Cs(p1:p2,:)=Cf;
end
end

end

% AG matrix

index=-5;

for i=1:Nb*Nr % 11 displi.secontinuity
index=index+6;
AG(i,index)=1;
J(i,1)=1;

end

for gama=1:Nr
for beta=1:Nb

index=(beta—1)*Nr+gama;
AG(Nb*Nr+gama, (index—1)*6+2)=hb(1,beta);
J(Nb*Nr+gama,2)=h;
AG(Nb*Nr+Nrtbeta, (index—1)*6+3)=hr (1,gama);
J(No*Nr+Nr+beta,3)=1;
AG(No*Nr+Nr+Nb+1, (index—1)*6+4)=hb(1,beta)*hr(1,gama)/2;
J(Nb*Nr+Nr+Nb+1,4)=h*1/2;
AG(Nb*Nr+Nr+Nb+1+beta, (index—1)*6+5)=hr (1,gama)/2;
J(Nb*Nr+Nr+No+1+beta,5)=1/2;
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AG(Nb*Nr+Nr+2xNb+1+gama, (index—1)*6+6)=hb(1,beta)/2;
J(No*Nr +Nr+2xNb+1+gama,6)=h/2;
end

end

% Tsig & Teps (Transformation Matrix)

Tsig=[cos(rad)"2 sin(rad)*2 0 0 0 2+cos(rad)*sin(rad);...
sin(rad)”™2 cos(rad)*2 0 0 0 —2*cos(rad)+*sin(rad);...
001000;...

0 0 0 cos(rad) -sin(rad) O;...
0 0 0 sin(rad) cos(rad) 0;...

—-cos(rad)*sin(rad) cos(rad)*sin(rad) 0 0 0 cos(rad)”2-sin(rad)"2];

Teps=[cos(rad)"2 sin(rad)*2 0 0 0 —cos(rad)*sin(rad);...
sin(rad)”™2 cos(rad)*2 0 0 0 cos(rad)*sin(rad);...
001000;...
0 0 0 cos(rad) sin(rad) O;...
0 00 -sin(rad) cos(rad) 0;%..
2xcos(rad)*sin(rad) -2+cos(rad)*sin(rad) 0 0-0 cos(rad)*2-sin(rad)"2];

% K matrix
K=[zeros(5*Nb*Nr-2x(Nb+Nr )-1,6); “J1;

% Main Loop
for i=1:Nstep
t=ixdtime;
sigrate=strainrate(t,ratetype,angle/15);
dsigt=[sigrate; 0; 0; 0; 0; 0];
dsig=Tsig*dsigl;
Tstress(i+1,1)=Tstress(i,1)+dsigi(1,1)*dtime;
count=0;
for beta=1:Nb—1 % construct AVPM matrix
for gama=1:Nr
betahat=betat1;
index=(beta—1)*Nr+gama-1;
index2=(betahat—1)*Nr+gama-1;
count=count+1;
for j=1:6
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AVPM(count ,6*index+tj)=Cs(6*index+2,]);
AVPM(count ,6*index2+j)=-Cs(6*index2+2,j);
end
count=count+1;
for j=1:6
AVPM(count ,6*index+j)=Cs(6*indext6,]);
AVPM(count ,6%index2+j)=-Cs(6*index2+6,j);
end
count=count+1;
for j=1:6
AVPM(count ,6*index+tj)=Cs(6xindex+4,]);
AVPM(count ,6*index2+j)=-Cs(6*index2+4,j);
end
end

end

for gama=1:Nr-1
for beta=1:Nb
gamahat=gamat1;
index=(beta—1)*Nr+gama=1;
index2=(beta-1)*Nr+gamahat=1;
count=count+1;
for j=1:6
AVPM(count ,6*index+j)=Cs(6*index+3,]j);
AVPM(count ,6%index2+j)=-Cs(6*index2+3,j);
end
count=count+1;
for j=1:6
AVPM(count ,6*indextj)=Cs(6*indext5,]);
AVPM(count ,6%index2+j)=-Cs(6*index2+5,j);
end
end

end

for gama=1:Nr-1
count=count+1;
beta=Nb;

gamahat=gamati;
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index=(beta—1)*Nr+gama-1;
index2=(beta-1)*Nr+gamahat-1;
for j=1:6
AVPM(count ,6*index+j)=Cs(6*index+4,]);
AVPM(count ,6*index2+j )=—Cs(6*index2+4,
end

end

AtVP=[AVPM; AG];
AVP=inv(AtVP)*K;
Bvp=zeros(6,6);

for beta=1:Nb
for gama=1:Nr

index=(beta-1)*Nr+gama;

)

p1=6*(index-1)+1;
p2=6*(index—1)+6;
Bvp=Bvp+hb(1,beta)*hr (1,'gama)*Cs(p.1 :p2

end

end

Bvp=Bvp/h/I;

deps=inv(Bvp)*dsig;

deps1=Teps=*deps;

i)

) *AVP(p1:p2,:);

Tstrain(i+1,1)=Tstrain(i,1)+depsi(1,1)*dtime;

for beta=1:Nb
for gama=1:Nr
index=(beta—1)*Nr+gama;
p1=6*(index-1)+1;
p2=6*(index-1)+6;
multi=1;
region=regionf-index;
for j=1:Nfiber
multi=multi*region(1,j);

end
if multi ~=20

subteps=AVP(p1:p2, : )xdeps;
subsigrate=Cs(p1:p2, : )*subteps;
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end

end

end

subeeps=eSm*subsigrate;

subeps=subteps—-subeeps;

efeps=2/3*sqrt(1/2((subeps(1,1)-subeps(2, 1)) 2+(subeps(2, 1)-subeps(3, 1
))"2+(subeps (3, 1)-subeps(1,1))"2)+3/4*(subeps(4, 1)"2+subeps(5, 1)"2+sube
ps(6,1)72));

substress(p1:p2, 1)=substress(p1:p2,1)+subsigratexdtime;
sigam=substress(p1:p2,1);
s1=1/3*(2*sigam(1,1)-sigam(2,1)-sigam(3,1));
s2=1/3*(-sigam(1, 1)+2*sigam(2,1)-sigam(3,1));
s3=1/3*(-sigam(1,1)-sigam(2, 1)+2*sigam(3,1));
s4=2xsigam(4, 1
sb=2*sigam(5, 1

(1,

)s

)s

s6=2*sigam(6,1);

efsig=sart((sigam(1,1)+sigam(2,1)+sigam(3,1))"2-3*(sigam(2,1)*sigam(3, 1

)-sigam(4,1)"2+sigam(1, 1)xsigam(3, 1)-sigam(5, 1)"2+sigam(1,1)*sigam(2, 1)

-sigam(6,1)"2));

A=xi*(efeps)” pm;

pSm=9/4*Axpn*efsigi(pn-8)*[s1; 82; s3; s4; s5; s6]*[s1; s2; s3; s4; s5;
s6]';

Sm=eSm+pSm;

Cs(p1:p2,:)=inv(Sm);

else

Cs(p1:p2,:)=Cf;

end
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Table 1. Material properties used in the micromechanical analysis where the matrix
properties were obtained from experiments and the fiber properties were determined
to fit the linear elastic of experimental data at all off-axis angles.

Fiber Matrix
E, (GPa) 235 3.4
E, (GPa) 18
G,, (GPa) 35
G, (GPa) 7.2
Vis 0.2 0.37
Vo3 0.25
V; (%) 69
a (1/°C) 5.9%107
n 5.62
x (MPa)™ 1.23x107
m ~0.168

Table 2. Material properties employed in the finite element analysis.

E, E, Gy, Gy, Vi Vo3 k R, R b

[ee}

(GPa) (GPa) (GPa) (GPa) (MPa)
Fiber 234 14 276 55 02 025
Matrix 3.4 0.3 35 2900 61.64 600
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Fig. 2.1 Dimensions of tensile and compression specimens. (a) Cylindrical

compression specimeh;-(b) Coupon tensile specimen.
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Fig. 2.2 Experimental setup for compression tests.
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Fig. 2.3 Compression test results of polymerat 10, 107 and 1/s strain rates.
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Fig. 2.4 Tensile test result to determine Poisson’s ratio of the polymer.

80



Tga

|

Fig. 2.5 Schematic for a strain gage subjected to a biaxial strain field.
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Fig. 2.6 A half-bridge circuit for measuring the coefficient of thermal expansion.
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Fig. 2.7 Thermal response:for the polymer.
160
140 -
: g AT 42614 (MPa)”
120f e )
: r A=2.95E-14 (MPa)
o a - ol

A=6.70E-14 (MPa)"

Effective Stress (MPa)
H O @ 8
o O O O

m 1/s

A 0.01/s

* 0.0001/s
----- 1/s curve-fitting

0.01/s curve-fitting
0.0001/s curve-fitting

0 0.005 0.01 0.015 0.02
Effective Plastic Strain

Fig. 2.8 Effective stress — effective plastic strain curves for polymer at three different

strain rates.
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Fig. 2.9 Effective plastic strain versus time curve for epoxy at strain rate of 10™/s.
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Fig. 2.10 Log-log plot for determining the parameters in the viscoplasticity model.
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Fig. 2.11 The stress — strain curve of the polymer from SHPB results.
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Fig. 2.12 The stress — time curve from SHPB test.
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Fig. 2.13 Prediction results of polymer at different strain rates by using three

parameters model.
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(a) (b)
Fig. 3.1 Demonstration of RVEs with various fiber arrangements. (a) Square edge

packing array. (b) Square diagonal packing array.

Fig. 3.2 Geometry of square fiber model [12].
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Fig. 3.3 Square edge packing array for modified square fiber model.

78.5%

(d)
Fig. 3.4 Fiber distribution of square diagonal packing array (SDP) based on the fiber
volume fraction. (a) Less than 39.3 %. (b) Equal to 39.3 %. (c) Greater than 39.3

%. (d) Attain to maximum fiber volume fraction 78.5 %.
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Fig. 3.6 Two fiber phases can be treated as a whole one if the constant stress or strain

assumptions in eqn (3.2.21) were applied.
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Fig. 4.1 The coordinate system and geometry information of the generalized method

of cells [15]-
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Fig. 4.2 Local coordinate systems of the generalized method of cells [15].
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Fig. 4.3 Normal vectors at the interfaces of subcells.
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Fig. 4.4 A four regions RVE employed in the GMC, in which B =7 =1 represents

the fiber phase.
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Fig. 5.1 3-D square diagonal packing array employed in ANSYS.

Fig. 5.2 (a) A finite element mesh generated by ANSYS.
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Fig. 5.3 An assumed stress—strain curve of the matrix.
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Fig. 6.1 (a) Simplified model for unidirectional fiber composites. (b) Evaluation of

thermal residual stress based on the displacement continuity in the x direction.
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Fig. 6.2(a) Thermal stress effect on the stress and strain curve of 30° fiber composite

obtained from the square fiber model.
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Fig. 6.3(a) Thermal stress effect on the stress and strain curve of 30° fiber composite

obtained from the generalized method of cells.
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Fig. 6.3(b) Thermal stress effect on the stress and strain curve of 90° fiber composite
obtained from the ge ized method of cells.

Fig. 6.4 The RVE with 26x26 subcells employed in the calculation of generalized
method of cells (square edge packing).
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Fig. 6.6(a) Fiber shape effects on the stress and strain curves of 15° fiber composites
using the generalized method of cells (GMC) and the square fiber model (SFM).
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Fig. 6.6(b) Fiber shape effects on the stress and strain curves of 30° fiber composites
using the generalized method of cellsi(GMC) and the square fiber model (SFM).
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Fig. 6.6(c) Fiber shape effects on the stress and strain curves of 45° fiber composites
using the generalized method of cells (GMC) and the square fiber model (SFM).

97



180

150f

Stress (MPa)
O
o

60
s Square Fiber (GMC)

30 ———— Round Fiber (GMC)
[ —v—— Square Fiber (SFM)
0 ——=a—— Round Fiber (SFM)
0 0.01 0.02 0.03
Strain

Fig. 6.6(d) Fiber shape effects on the stress and strain curves of 60° fiber composites

using the generalized method of ¢ M) and the square fiber model (SFM).

Fig. 6.7 The RVE with 20x20 subcells employed in the calculation of generalized

method of cells (square diagonal packing).
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Fig. 6.8 The RVE employed in the modified square fiber model (square diagonal
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Fig. 6.9(a) The effect of fiber arrangements on the stress and strain curves of 15° fiber
composites obtained from the SFM and GMC.
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Fig. 6.9(b) The effect of fiber arrangements on the stress and strain curves of 30° fiber
composites obtained from:the SFM and GMC.
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Fig. 6.9(c) The effect of fiber arrangements on the stress and strain curves of 45° fiber
composites obtained from the SFM and GMC.
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Fig. 6.9(d) The effect of fiber arrangements on the stress and strain curves of 60° fiber
composites obtained from:the SFM and GMC.
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Fig. 6.10(a) The effect of fiber arrangements on the stress and strain curves of 15°

fiber composites obtained from the FEM.
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Fig. 6.10(b) The effect of fiber arrangements on the stress and strain curves of 30°

fiber compositesiobtained from the FEM.
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Fig. 6.10(c) The effect of fiber arrangements on the stress and strain curves of 45°

fiber composites obtained from the FEM.
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Fig. 6.10(d) The effect of fiber arrangements on the stress and strain curves of 60°

fiber compositesiobtained from the FEM.

300¢

250f

N
o
o

(&)
o

Stress (MPa)
o
o

-
o
o

——e—— FEM (SEP)

' —»—— GMC (SEP)
: —=—— SFM(SEP)
0 |||||||||||
0 0.002 0.004 0.006 0.008
Strain

Fig. 6.11(a) Comparison of the stress and strain curves of 15° fiber composites with
square edge packing array obtained from FEM, SFM and GMC.
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Fig. 6.11(b) Comparison of the stress and strain curves of 30° fiber composites with

square edge packing array ebtained from FEM, SFM and GMC.
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Fig. 6.11(c) Comparison of the stress and strain curves of 45° fiber composites with

square edge packing array obtained from FEM, SFM and GMC.

104



2507
200}
[N
= 1505
7)) [
(2} B
£ 100§
n [
50: ——e—— FEM (SEP)
5 —+— GMC (SEP)
: ——a—— SFM (SEP)
0 |||||||||||
0 0.01 0.02 0.03 0.04
Strain

Fig. 6.11(d) Comparison of the stress and strain curves of 60° fiber composites with
square edge packing array ebtained from FEM, SFM and GMC.
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Fig. 6.11(e) Comparison of the stress and strain curves of 15° fiber composites with
square diagonal packing array obtained from FEM, SFM and GMC.
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Fig. 6.11(f) Comparison of the stress and strain curves of 30° fiber composites with
square diagonal packing array:obtained from FEM, SFM and GMC.
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Fig. 6.11(g) Comparison of the stress and strain curves of 45° fiber composites with
square diagonal packing array obtained from FEM, SFM and GMC.
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Fig. 6.11(h) Comparison of the stress and strain curves of 60° fiber composites with
square diagonal packing array:obtained from FEM, SFM and GMC.
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Fig. 6.12(a) Comparison of the experimental data with the model prediction obtained

from SFM for 15° fiber composites.
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Fig. 6.12(b) Comparison of the experimental data with the model prediction obtained
from SFM for30° fiber composites.
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Fig. 6.12(c) Comparison of the experimental data with the model prediction obtained

from SFM for 45° fiber composites.
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Fig. 6.12(d) Comparison of the experimental data with the model prediction obtained

from SFM for:60° fiber composites.
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Fig. 6.13(a) Comparison of the experimental data with the model prediction obtained
from GMC for 15° fiber composites.
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Fig. 6.13(b) Comparison of the experimental data with the model prediction obtained
from GMC for 30" fiber composites.
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Fig. 6.13(c) Comparison of the experimental data with the model prediction obtained
from GMC for 45° fiber composites.
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Fig. 6.13(d) Comparison of the experimental data with the model prediction obtained
from GMC for 60" fiber composites.
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