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以微觀力學模式模擬複合材料 

與應變率有關之非線性行為 

學生：陳奎翰                      指導教授：蔡佳霖 

 

國立交通大學機械工程學系碩士班 

摘  要 

本研究目的在於以微觀力學模式描繪碳纖/環氧樹脂複合材料與應變

率有關之非線性行為。材料性質方面，將環氧樹脂假設為彈性黏塑性材料

並以㆔參數黏塑性模式描述之，纖維則假設為橫向等向性材料。藉由環氧

樹脂在 10-4、10-2以及 1/s ㆔種應變率之㆘的壓縮試驗，㆔參數模式所需的

係數可藉由實驗獲得的應力應變曲線來定義。伴隨著已知的碳纖與環氧樹

脂的材料性質，碳纖/環氧樹脂複合材料可藉由微觀力學模式進行模擬。在

此研究㆗，有兩個微觀力學模式被採用，分別是 Square Fiber Model 以及

Generalized Method of Cells。此外，兩種纖維排列方式（Square Edge Packing

與 Square Diagonal Packing）與兩種纖維形狀（圓形與正方形）被㆒併考量

並且與 ANSYS 所執行之有限元素法做㆒系列纖維排列與纖維形狀對材料

性質影響性的比較與探討。數值結果指出纖維形狀對偏軸複合材料機械性

質的影響並不明顯，然而，纖維的排列方式對此卻有顯著的影響性，而且

Square Edge Packing 相較於 Square Diagonal Packing 模擬出更硬的應力應變

曲線。 
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為了驗證微觀力學模式的準確性，偏軸的碳纖/樹脂複材試片在 10-4 到

550/s 的應變率之㆘做壓縮測試以獲得實驗值。由實驗值與模式預測的比較

結果可知，數值預測結果雖然與實驗有㆒定程度的差異，但結合㆔參數黏

塑性模式的微觀力學模式的確有能力描述與應變率有關的材料非線性行

為。 
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Abstract 
 

This research aims to characterize the nonlinear rate dependent behavior of 

graphite/epoxy composites using a micromechanical approach.  For epoxy phase, it was 

assumed to be following the elastic/viscoplastic behavior described by a three parameterts 

viscoplasticity model; while the graphite fiber was assumed to be a transverse isotropic solid.  

By performing compression tests on the epoxy resin at three different strain rates of 10-4, 10-2 

and 1/s, the stress and strain relation of the epoxy resin was generated.  Based on the 

experimental data, the three parameter viscoplasticity model was developed.  With the 

ingredient properties, the mechanical behaviors of graphite/epoxy composites were 

characterized using the micromechanical approach.  There are two micromechanical models, 

i.e. Generalized Method of Cell (GMC) and Square Fiber Model (SFM), were employed in 

this study.  In addition, two different fiber arrangements, i.e., square edge packing and square 



 iv 

diagonal packing as well as the fiber shapes, i.e. square type and round type, were taken into 

account.  The finite element analysis with commercial code ANSYS was also adopted to 

investigate the fiber arrangement effect and the fiber shape effect.  It was indicated basically, 

the mechanical behaviors were not affected appreciably by the fiber shape.  On the contrary, 

the fiber arrangements play an essential role on the mechanical behaviors.  The square edge 

packing demonstrates stiffer behaviors than the square diagonal packing.  In order to verify 

the model predictions, off-axis graphite/epoxy composite specimens were tested at strain rate 

ranges from 10-4/s to 550/s.  Comparison of model predictions obtained from GMC and SFM 

analysis with the experimental results revealed that the micromechanical approaches are 

capable of predicting the nonlinear rate sensitivity of off-axis specimens although there are 

still distinctions between the model and the experimental results. 
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Chapter 1  Introduction 

1.1 Research Motive 

Composite materials, because of their high strength/weight ratio, have been 

extensively used not only in aerospace industry but also in marine and automotive 

industries.  In some of the applications, high strain rate loading may be produced, 

such as blast loading of a submarine hull and bird strike of an aircraft structure.  

Thus characterizing and modeling the high strain rate responses of composite 

materials is becoming an essential task for further applications.  It is well known that 

the polymeric materials exhibit nonlinear rate dependent behavior, which implies that 

the polymeric composite will somehow exhibit the rate sensitivity if the associated 

behavior is dominated by the matrix.  In past decades, the nonlinear rate dependent 

behavior of composites have been studied by many researchers who treated the 

unidirectional composites as orthotropic homogeneous solids.  This is so called 

macro-mechanical analysis.  However, in this macro-mechanical approach, the 

mechanism of how the fiber and the matrix material affect the overall composite 

nonlinearity can not be fully characterized.  Therefore, a research from the 

micromechanical viewpoint was proposed and used to investigate this phenomenon.  

In the micromechanical approach, the fiber arrangement, the fiber shape, fiber 

properties and matrix properties were taken into account and the effect of the 

ingredients on the rate sensitivity of the composites were further examined. 

 

1.2 Paper Review 

Unidirectional fiber composite materials exhibit nonlinear rate dependent 

behavior under off-axis loading.  There are two points of view to discuss this 

physical phenomenon, i.e. macromechanical and micromechanical mechanics, and all 

published literatures originated from either of the two perspectives.  Based on the 
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viewpoint of macromechanics, Sun and Chen [1] developed a single parameter yield 

function under plane stress assumption and brought it into the flow rule with a power 

law curve fitting effective stress – effective plastic strain relation to describe the 

nonlinearity of fiber composites.  This single parameter in the yield function was 

chosen suitably so that all off-axis experimental data collapse into a single master 

curve in the effective stress versus effective plastic strain domain.  It is a fact that the 

single parameter model has good agreements with experiments.  Because of rate 

independence in this model, some improvements were carried out.  Gates and Sun [2] 

combined the over stress model [3] with the single parameter model to predict the rate 

dependent behavior of composites under loading (the over stress is positive) and 

unloading (the over stress is zero) conditions.  In order to use the over stress model, 

a quasistatic stress - strain relation was set as a reference state, and when the strain 

rate is higher, the corresponding relative effective stress was calculated by subtracting 

the quasistatic effective stress from the current effective stress associated with the 

same strain level.  The relative effective stress and effective plastic strain rate 

relations obtained from the over stress model were then employed together with the 

flow rule for characterizing the plastic deformation of composites subjected off-axis 

loading.  Yoon and Sun [4] used the same way as Gates and Sun [2] to investigate 

the effects of variant strain rates on a monotonic tension process under off-axis 

loading.  The results were also compared with a modified Bodner and Partom’s 

model [5].  Weeks and Sun [6] modeled off-axis composites using a mathematical 

form similar to Johnson-Cook model [7] in conjunction with the single parameter 

model.  A quasistatic state was chosen as a reference state to get the corresponding 

reference effective plastic strain rate and effective stress while the Johnson-Cook 

model was working.  Then, the effective stress and effective plastic strain rate 

relation at high strain rate analyses could be obtained via this model and applied into 
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flow rule to get corresponding plastic responses like the over stress model.  

Thiruppukuzhi and Sun [8] directly introduced a rate dependent term into the effective 

stress – effective plastic strain power law relation and proposed a three parameters 

model for modeling the nonlinear rate dependent behavior of unidirectional fiber 

composites.  Since the power law equation is a convenient form to use, in this study, 

the three parameters model was adopted as the viscoplasticity model to describe the 

rate dependent nonlinearity of the matrix phase. 

In order to investigate the nonlinear effect of matrix on the mechanical 

behavior of fiber composites, a micromechanical approach is proposed by modeling 

the composites as heterogeneous solids consisting of fiber and matrix phases.  

Through the characteristics of repetition, a Representative Volume Element (RVE) 

was selected to represent the whole composite materials.  By analyzing the 

mechanical behavior of the RVE, the overall material responses of composites could 

be determined.  There are several micromechanical models available for describing 

the mechanical behaviors of composites, i.e., Eshelby model [9], Mori-Tanaka model 

[10,11], square fiber model [12] and generalized method of cells [13-15].  Eshelby [9] 

introduced Eshelby’s tensor together with the equivalent principal concept to model a 

homogeneous inclusion embedded in an infinite matrix.  Basically, Eshelby model is 

a dilute model because only one inclusion is considered.  Mori and Tanaka [10] 

extended Eshelby’s approach to establish a non-dilute model in which the stress and 

strain states of the inclusion and the matrix were considered in an average sense.  

Benveniste [11] gave alternative explanations of Eshelby model and Mori-Tanaka 

model by introducing the strain concentration concept and obtained succinct formulas 

for these two models.  Commonly, the Eshelby model and Mori-Tanaka model were 

mainly applied to characterize the stiffness of short fiber composites.  However, they 

could be extended to characterize the long fiber composites if the aspect ratio of the 
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inclusion was assumed to be infinity [16] and the nonlinear behavior of composites 

can be described if an incremental Mori-Tanaka mean field approach was adopted 

[17].  Sun and Chen [12] proposed a “Square Fiber Model” constructed by a RVE 

composed of one square fiber and two pure matrix regions.  A 2-D plane stress 

plastic potential modified from von Mises J2 function was applied in conjunction with 

the associated flow rule to describe the plastic strain of the matrix material, while the 

fiber was regarded as an orthotropic elastic material.  The entire stiffness matrix of 

the composite was derived from some suitable constant stress and constant strain 

assumptions between each subcell in the RVE.  Therefore, we can obtain the total 

strain increments due to a given stress history by using this model.  Similar to this 

way, Goldberg and Stouffer [18] suggested a four regions model with one square fiber 

and three matrix regions.  Not a plane stress condition but both two transverse 

directions have to be applied constant stress and strain assumptions in all subregions 

to obtain the overall constitutive equation.  The matrix phase was described using the 

Bodner and Partom’s model [5] and the corresponding deformation was solved by 

using the Runge-Kutta method.  Away from the forgoing theories, Aboudi [13, 14] 

derived a four regions micro-mechanical model called “Method of Cells”, which is 

very efficient in modeling the elastic and inelastic behavior of fiber-reinforced 

unidirectional composites. Based on the displacement and traction continuity at the 

interfaces of all subcells as well as the periodicity at the RVE, a stress - strain relation 

was described in a matrix form to predict mechanical behavior of composite materials.  

By extending the method of cells, Paley and Aboudi [15] proposed a scheme called 

Generalized Method of Cells (GMC) which can deal with an undetermined numbers 

of subcells.  The weak point in GMC is that the more subcells you have, the more 

CPU time is required.  To enhance computational efficiency of GMC, Orozco [19] 

took advantage of the sparse features of the strain concentration matrix.  It is 
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basically an improvement in the numerical processing.  The sparse implementation 

of GMC made it possible to solve the problems with complex micro-structures and 

tiny refinements.  Pindera and Bednarcyk [20] adopted a different manner to enhance 

the computational efficiency of GMC.  They expressed the displacement continuity 

between the subcells in terms of stresses and then derived a modified formulation of 

GMC.  This formulation is regarded as the most efficient way in the employment of 

GMC until now.  The feature of the GMC is that which cells were fibers or matrices 

were not indicated in advance.  In other words, we can assign the cells with either 

fibers or matrix after forward when the final constitutive equation was established.  

In applications of the GMC, Orozco and Pindera [21] combined the GMC with an 

available tangent plasticity matrix to analyze transverse mechanical behavior of 

composites under different fiber arrangements and fiber shapes.  A large number of 

subcells were constructed in their study to model the complex microstructures.  It 

showed that different fiber arrangements and fiber shapes lead to distinct constitutive 

behavior.  Ogihara et al. [22] characterized the nonlinear behavior of carbon/epoxy 

unidirectional and angle-ply laminates.  The GMC was applied first to obtain the 

property of unidirectional fiber composites under off-axis loading.  Together with the 

laminate plate theory, the angle-ply laminates were calculated from the unidirectional 

composites.  Kawai et al. [23] investigated the AS4/PEEK composites under loading 

and unloading conditions on the off-axis response at strain rate up to 0.01/min.  The 

PEEK matrix was described by Chaboche model and the composite was predicted 

using GMC.  The results showed good agreements with the experimental results for 

AS4/PEEK composites.  However, the strain rates in their investigation were not 

high enough for engineering applications.  Using finite element analysis, Zhu and 

Sun [24] investigated the nonlinear behaviors of fiber composites by applying suitable 

boundary conditions on a RVE selected properly with three different fiber 
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arrangements.  It was shown that the square diagonal packing array provides the best 

prediction on the experimental results for all samples with various off-axis angles 

 

1.3 Research Approach 

In view of the forgoing, most of efforts were made on the nonlinear behaviors 

of fiber composites.  While very few studies concerning the rate effect on the 

constitutive behaviors were reported.  Therefore, this research aims to characterize 

the nonlinear rate dependent behavior of graphite/epoxy composites.  More 

emphases will be placed on the combination effect of microstructure and strain rate. 

As a result, a micromechanical model consisting of fiber and matrix phases together 

with their respective constitutive relations will be employed for this analysis.  It is 

noted that the fiber phase was assumed as transverse isotropic elastic materials.  For 

matrix phase, the cylindrical specimens were tested in compression on a MTS system 

to characterize its rate dependent behavior.  Based on the experimental results, the 

three parameters model [8] was employed to describe the rate sensitivity of the matrix 

material.  With the matrix and fiber constitutive curves, the micromechanical models 

will be implemented for modeling the nonlinearity of the fiber composites.  It is 

noted that there were two different micromechanical models utilized in this analysis, 

i.e. Square Fiber Model (SFM) [12] and Generalized Method of Cells (GMC) [15].  

The effect of the fiber arrangements and fiber shapes will be taken into account in the 

micromechanical modeling together with the finite element method (FEM) and the 

results will be compared to one another.  In addition, the effect of thermal residual 

stresses are also involved in the analysis.  Finally, the square fiber embedded in the 

RVE with square edge packing array was performed using SFM and GMC and has a 

comparison to the experimental results obtained by testing off-axis graphite/epoxy 

composites at strain rates from 10-4/s to 550/s. 
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Chapter 2  Polymer Modeling 

Since material properties of the polymer, i.e. Young’s Modules, Poisson’s ratio, 

and viscoplastic behavior, are required for modeling the behaviors of composites, 

tensile and compression tests were performed to determine the corresponding 

properties.  The tensile test was performed to determine the Poisson’s ratio of the 

polymer while the compression test was employed to determine the Young’s modulus 

and the viscoplastic behavior of the polymer.  Based on the experimental data of 

compression test at 10-4, 10-2, 1/s strain rates, the model coefficients of three 

parameters model [8] were determined and this model was applied to predict the Split 

Hopkinson Pressure Bar (SHPB) results up to 650/s strain rate.  Besides, the 

coefficient of thermal expansion (CTE) of the polymer was measured to investigate 

the thermal stress effects on the off-axis composites. 

 

2.1 Experiments 

2.1.1 Compression Test 

The polymer (Bisphenol A) in the form of powder provided from Ad-group 

Taiwan was filled into a pre-designed stainless mold for fabricating the cylindrical 

specimens.  In the beginning, the mold was putted into a vacuum oven and heated 

from room temperature to 75 Co  within 50 minutes.  During this process, the 

polymer was changed from powder state to liquid state with very high viscosity and 

its volume decreased due to gas disappearance, then, some powder was replenished 

until the desired amount of polymer was reached.  In the next 8 minutes, the 

temperature was raised to 95 Co  and then kept for 130 minutes.  At the same time, 

the polymer was also degassing in the vacuum oven.  After degassing for a period of 

time, the polymer was overflowed on the mold easily and we should open the door of 

the vacuum oven and scrape the polymer to retreat to cavities by using a thin plate.  
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It was to be noted that this scraping process must be finished as soon as possible 

(within 5 minutes) to avoid a large drop of oven temperature.  After repeating the 

degassing and scraping process 6 times within the 130 minute, the temperature was 

held on 90 Co  for 30 minutes to perform the curing process and raised to 145 Co  

within 10 minutes and maintained 60 minutes to carry out the post curing process.  

After the curing and post-curing processes, the specimens were removed from the 

mold with care.  In order to have parallel and smooth loading surfaces, all specimens 

were polished using a polishing machine with 25.0µ aluminum oxide powers.  After 

polishing, the final dimensions for the specimens are 10 mm in height and 12mm in 

diameter as shown in Fig. 2.1(a).  To demonstrate the strain rate effect on the 

polymer, compression tests were performed on the cylindrical specimens using 

hydraulic MTS machine at three different strain rates, 10-4, 10-2 and 1/s.  Back to 

back strain gages were adhered on the specimens for the strain measurement during 

compression tests.  Fig. 2.2 demonstrates the experimental setup for the compression 

tests.  The stress history was obtained from the load cell and the associated strain 

history was measured from the strain gages mounted on the specimens.  During the 

tests, both stress and strain signals were recorded by LabView together with PC 

computer.  All results of compression test were shown in Fig. 2.3 and the Young’s 

modulus of the polymer was determined as 3.4 GPa. 

 

2.1.2 Tensile Test 

For measuring the Poisson’s ratio of the polymer, tensile tests were carried out 

on the coupon specimens, with the dimensions as shown in Fig. 2.1(b), fabricated in 

the same manner as described early excepted that the designed mode is different.  

Two strain gages were mounted on the centers of the specimens.  One was in the 

axial direction and the other was in the lateral direction to measure the axial and 
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transverse strains, respectively.  The tensile test was implemented on a hydraulic 

MTS system at 10-4/s strain rate and the result was shown in Fig. 2.4.  According to 

this result, the Poisson’s ratio of the polymer was evaluated as 0.37. 

 

2.1.3 Measurement of Coefficient of Thermal Expansion 

In the analysis of thermal residual stress effect, the coefficient of thermal 

expansion (CTE) of the matrix was measured first.  A simple method [25-27] has 

been applied to finish this measurement in which the EA-06-062TT-120 strain gage 

was chosen and the adhesive M-bond 610 was used for its high operation temperature.  

The EA-06-062TT-120 strain gage has two pieces of electrical resistance on a unit, 

one is an axial field and the other is transverse.  Therefore, axial and transverse 

deformations of a specimen can be measured at the same time.  Based on the strain 

gage technique, when the gage was subjected to a biaxial strain field, as shown in Fig. 

2.5, the following relation was found 

ttaa FF
R
R

ε+ε=
∆                      (2.1.1) 

where 

R = original gage resistance 

aF = axial gage factor 

tF = transverse gage factor 

aε = axial strain field 

tε = transverse strain field 

Define the transverse sensitivity coefficient K as 

a

t

F
FK =                           (2.1.2) 

If the strain gage was mounted on a specimen with Poisson’s ratio 0ν  and the 

specimen was under a uniaxial loading, the strain fields can be represented as 
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a0t εν−=ε                         (2.1.3) 

Substituting eqns (2.1.2) and (2.1.3) into eqn (2.1.1) yields 

( ) aga0a F K1F
R
R

ε=εν−=
∆                   (2.1.4) 

where ( )K1FF 0ag ν−=  is the well-known gage factor and the measured strain can  

be represented as 

g
a F

RR∆
=ε                          (2.1.5) 

Since eqn (2.1.4) can be applied only if the specimen was subjected to a 

uniaxial stress field and the transverse strain field was due to the Poisson’s ratio effect 

only, on the measurement of CTE, the matrix under thermal expansion was within a 

biaxial strain field and eqn (2.1.4) can not be followed directly.  Therefore, the 

transverse sensitivity must be embraced to correct the gage results.  With the 

assistance of measured strains at the axial and transverse direction, mxε  and myε , 

the corrected strains xε  and yε  are given by [25] 

( ) ( )
2

mymx0
x K1

K K1
−

ε−εν−
=ε                   (2.1.6) 

( ) ( )
2

mxmy0
y K1

K K1
−

ε−εν−
=ε                   (2.1.7) 

It can be shown that in the current analysis, the strain of isotropic test material 

with Poisson’s ratio equal to 0.37 under the same measured strain mymx ε=ε  will be 

about 2 % error if the correction equations (2.1.6) and (2.1.7) are not applied.  It’s a 

slight effect so the correction hasn’t been done here. 

It was noted that when the gage was mounted on a stress free specimen and 

underwent temperature change, we can not say the gage signal was fully induced by 

the specimen deformation but also affected by the thermal effect.  To cancel the 

thermal effect on the electrical resistance, a half-bridge circuit as shown in Fig. 2.6 
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was applied [26].  There are two materials in the system, one is the test material and 

the other is the reference material.  The CTE of the test material is unknown but 

known for the reference material.  Since 

T
rx

rx ∆
ε−ε

=α−α                       (2.1.8) 

and 

( ) 






 ∆
−

∆
+

∆
−

∆
+

=∆
4

4

3

3

2

2

1

1
2

21

21

R
R

R
R

R
R

R
R

RR
RRVE            (2.1.9) 

where xα  is the CTE of the test material at measured direction, rα  is the CTE of 

the reference material, xε  is the thermal strain from the test material and rε  is the 

thermal strain from the reference material.  By means of eqns (2.1.8) and (2.1.9), the 

thermal effect on the electrical resistance can be eliminated skillfully and the CTE of 

the test material can be determined. 

The experimental system was placed in a programmable-control vacuum oven 

where the test material is a 22030 ××  mm3 thin plate and the reference material is a 

titanium silicate material with very small CTE (here we assume it is equal to zero).  

A thermal couple was adhered on the reference material to record the history of 

temperature change but not on the test material due to the limitation of specimen size.  

Because of low heating and cooling rate (about 19 0C/hr and 22 0C/hr, respectively), it 

can be assumed that the test and reference material possess the same temperature 

during heating and cooling processes so the temperature signal of the reference 

material can present the temperature of the test material, too.  According to the final 

result shown in Fig. 2.7, the CTE of the matrix is about C/109.5 5 o−×  from the 

average of heating and cooling slopes. 
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2.2 Visco-Plasticity Model 

A viscoplasticity model can be derived based on the low strain rate 

compression tests to describe the nonlinear rate dependent behavior of the epoxy 

materials.  The epoxy material was treated as an isotropic von Mises plastic material 

and the J2 plastic potential   

 

( ) ( ) ( )[ ] 2
13

2
23

2
12

2 
1133

2 
3322

2 
22112  

6
1J σ+σ+σ+σ−σ+σ−σ+σ−σ=     (2.2.1) 

 

was employed to develop the viscoplasticity model.  By using the associated flow 

rule, the plastic strain rate is expressed as 

 

ij

2p
ij

J
σ∂
∂

λ=ε &&             (2.2.2) 

 

where λ&  is a proportional factor. 

 

Defining an effective stress σ  as 

 

2J3=σ                         (2.2.3) 

 

through the plastic work rate relation, i.e. 

 

λ=εσ=εσ= &&&&
2

pp
ijij

p J2W                   (2.2.4) 

 

the effective plastic strain rate pε&  can be expressed explicitly as 

 

( ) ( ) ( )
21

2p
13

2p
23

2p
12

2 p
11

p
33

2 p
33

p
22

2 p
22

p
11

p  
4
3 

2
1

3
2







 





 γ+γ+γ+



 ε−ε+ε−ε+ε−ε=ε &&&&&&&&&&  (2.2.5) 

 

and the proportional factor λ&  in eqn (2.2.2) was derived as 

 



 13

σ
σ

=
σ
ε

=λ
p

p

H2
3

2
3 &&&                      (2.2.6) 

 

where Hp  

 

pp  
H

ε
σ

=
&

&
                         (2.2.7) 

 

is the rate dependent plastic modulus. 

 

It is noted that for the J2 material subjected to uniaxial loading, the effective 

stress is equal to the axial stress and the effective plastic strain is the same as the axial 

plastic strain p
xε  obtained by subtracting the elastic part from the total measured 

strain xε .  As a result, the effective stress and effective plastic strain curves of the 

epoxy can be obtained directly from the experimentally determined axial stress and 

axial plastic strain curves.  Fig. 2.8 shows the effective stress and effective plastic 

strain curves measured at strain rates of 10-4, 10-2 and 1/s. 

Let the effective stress – effective plastic strain curves could be fitted 

individually by a power law as 

 
np )(A σ=ε                        (2.2.8) 

 

and the results were also illustrated in Fig. 2.8.  It was found that the power index n 

in eqn (2.2.8) is constant for all strain rates.  However, the amplitude A is a function 

of strain rate.  Again, assume that the amplitude A is a power law function of 

effective plastic strain rate as [8] 

 

( )m p A εχ= &                        (2.2.9) 

 

Then a viscoplasticity model can be expressed in the form 

 

( ) ( )nm pp  σεχ=ε &                    (2.2.10) 
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It is noted that the effective stress and effective plastic strain curves plotted in 

Fig. 2.8 were produced for respective constant strain rates but not for constant 

effective plastic strain rates as required in the viscoplasticity model.  By subtracting 

the elastic component from the total strain, the plastic strain component, and thus the 

effective plastic strain, can be obtained.  Fig. 2.9 shows the effective plastic 

strain-time curves for epoxy specimens corresponding to strain rate of 10-4/s.  It is 

evident from Fig. 2.9 that the effective plastic strain rate is not constant over the entire 

loading range.  Nevertheless, it almost reaches a constant value beyond %25.0p =ε .  

Since the initial deformation of the stress-strain curve is mainly dominated by the 

elastic response, in determining parameters χ  and m in eqn (2.2.9), the data 

corresponding to the initial portion for which the effective plastic strain is less than 

0.25% was truncated.  Fig. 2.10 shows amplitude A as a function of effective plastic 

strain rate on the log-log scale for the epoxy material obtained from the compression 

tests.  The parameters χ  and m are then determined from these plots as the 

intercept and the slope, respectively.  Once m and χ  are determined, this model can 

be extrapolated to predict the material behavior at any strain rates.  The values of the 

parameters in the viscoplasticity model for epoxy are listed in Table 1. 

 

With eqn (2.2.10), the rate dependent plastic modulus is expressed as  

 

1nmpp )()(n
1H −σεχ

=
&

                      (2.2.11) 

 

According to the definition of the effective stress given in eqn (2.2.3), σ&  was 

derived as 

 

( ) ( ) ( )

121213132323

333322112233221111332211

666

 2 2 2
2
1

σσ+σσ+σσ+

σσ+σ−σ−+σσ−σ+σ−+σσ−σ−σ
σ

=σ

&&&

&&&&
  (2.2.12) 

 

By substituting eqn (2.2.12) together with eqn (2.2.6) into eqn (2.2.2), the 

plastic strain rate is written as 
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   (2.2.13) 

 

where 

 

( )

( )

( )
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3322113

3322112

3322111

2S
2S
2S

2
3
1S

2
3
1S

2
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σ+σ−σ−=

σ−σ+σ−=

σ−σ−σ=

               (2.2.14) 

 

In combination of the elastic parts, the constitutive relation of epoxy material 

at various strain rates was established as 

 

{ } [ ]{ }   S   M σ=ε &&                     (2.2.15) 

 

where 

 

[ ] [ ] [ ]peM S S S  +=                    (2.2.16) 

 

In eqn (2.2.16), [ ]eS  represents the elastic compliance matrix of the epoxy 

and [ ]pS  denotes the plastic compliance matrix given in eqn (2.2.13).  It is to be 

noted that with eqn (2.2.15), the epoxy material properties at different loading rates 

could be characterized from which, through a micromechanical analysis, the 

mechanical behaviors of polymeric composites could also be generated.  Inverting 

eqn (2.2.15), we derived  
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{ } [ ]{ }   C   M ε=σ &&                    (2.2.17) 

 

where  

[ ] [ ] 1 MM S C 
−

=                     (2.2.18) 

 

The constitutive relation expressed in the form of eqn (2.2.17) was used in 

chapter 4 as the matrix material properties for the generalized method of cells 

micromechanical model. 

 

2.3 Modeling of Split Hopkinson Pressure Bar Results 

The stress and strain relations of polymer (Bisphenol A) under high strain rate 

were found using the steel SHPB apparatus.  The gas pressure of 100 psi was used to 

push the steel striker bar and the compression wave was generated in the steel incident 

bar with 3 mm thickness copper pulse shaper attached on the impact surface.  The 

compression wave signals were obtained by a pair of diametrically opposite gages 

mounted on the middle of the incident bar and the transmission bar.  The 

amplification factors of incident bar channel and transmission bar channel were both 

set at 400.  The excitation voltages of the Wheatstone bridge circuits were set at 5V.  

However, the amplification factor of specimen gage signal was set at 25 and 

excitation voltage was set at 3V.  The sampling rate of oscilloscope was set at 10 

MHz to record the voltage signals from Wheatstone bridge circuits and the final stress 

- strain curve of the polymer was shown in Fig. 2.11 where the Young’s modulus was 

determined as 3.9 GPa.  With the assistance of given stress history from experiments 

as shown in Fig. 2.12, the associated plastic strain rates can be estimated by eqn 

(2.2.13) in which the effective stress was evaluated using eqn (2.2.3) and the effective 
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plastic strain rate embedded in the plastic modulus pH  was determined through eqn 

(2.2.5).  Then, the total strain was constructed through the combination of elastic 

strains and plastic strains.  The prediction result was plotted together with MTS 

results and shown in Fig. 2.13.  Since the Young’s modulus of the polymer up to 

650/s strain rate attains to 3.9 GPa greater than the MTS result 3.4 GPa, the polymer 

somehow exists viscoelastic behavior but wasn’t considered in the three parameters 

model.  Therefore, there is a significant distinction between the prediction and 

experimental results due to the effect of different elastic strain. 
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Chapter 3  Square Fiber Model 

In this chapter, the square fiber model (SFM) proposed by Sun and Chen [12] 

for modeling the composite nonlinearity was reviewed.  Since the typical square 

fiber model was constructed based on the square edge packing array as shown in Fig. 

3.1(a), it can not be applied to other fiber arrangements, like the square diagonal 

packing array demonstrated in Fig. 3.1(b).  As a result, a modified SFM was 

developed to account for the RVE with various fiber arrangements.  In addition, the 

thermal stress effect was considered using SFM and will be discussed in chapter 6. 

 

3.1 Square Fiber Model 

Sun and Chen [12] proposed a representative volume element (RVE) as shown 

in Fig. 3.2 for unidirectional composites.  This RVE is so-called square edge packing 

array (SEP) as shown in Fig. 3.1(a).  In this RVE, the round fiber is approximated by 

a square one with a cross-section area equal to that of the circular one.  It is noted 

that because of geometric symmetry, only a quarter of the RVE is considered.  This 

RVE is composed of three subregions, AF, AM and B, in which AF stands for the 

fiber; AM and B stand for the matrix.  Subregions AF and AM were assembled into 

Region A.  The fiber subregion AF is considered to be a square cross-section with 

the same cross section area of the original quarter circle.  The coordinate system is 

set up such that the fiber direction is parallel to the 1x  axis.  A plane stress 

assumption prevails in the 21 xx −  plane such that the out of plane stress components 

would vanish ( 0332313 =σ=σ=σ ).  In addition, the follow assumptions are also 

made. 

(a) The stress and strain states are uniform in all subregions. 

(b) In region A, the stress and strain fields in AF and AM follow suitable constant 

stress or constant strain assumptions, i.e. 
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               (3.1.1) 

(c) For combination of region A and B, the constant strain assumptions are made, i.e. 
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ε=ε=ε

ε=ε=ε

                       (3.1.2) 

Based on the micromechanics, the average stress and strain fields in the 

subregion A are treated as 

( )∫ ∫ σ+σ
+

=σ
AF AM 

AM
ij

AF
ij

A
ij  dAdA 

AMAF
1             (3.1.3) 

( )∫ ∫ ε+ε
+

=ε
AF AM 
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ij

AF
ij

A
ij  dAdA 

AMAF
1              (3.1.4) 

, and the average stress and strain fields in the RVE are given by 

( )∫∫ σ+σ
+

=σ
B 

B
ijA 

A
ijij  dAdA 

BA
1                 (3.1.5) 

( ) dAdA 
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1
B 

B
ijA 

A
ijij ∫∫ ε+ε

+
=ε                  (3.1.6) 

The explicit forms for eqns (3.1.3)-(3.1.6) expressed in terms of local stress and strain 

with the assistance of eqns (3.1.1) and (3.1.2) are derived as  
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where 
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It is noted that 1v  and 2v , represent the volume fraction of subregions AF 

and AM with respective to the region A, and Av  and Bv  indicate the volume 

fraction of regions, A, B, respectively to the RVE.  With eqns (3.1.1), (3.1.2), (3.1.7) 

and (3.1.8), the relationships between the subregion stresses and strains and the RVE 

stresses and strains were established.  To derive the stress and strain relations of the 

RVE, the corresponding fiber and matrix properties must be given in advance.  The 

fiber is considered to be an orthotropic elastic material.  Therefore, in the region AF, 

we have the incremental stress and strain relations 

{ } [ ]{ }AFAFAF d  S d σ=ε                    (3.1.10) 

where 
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While, the matrix phase is considered to be an elastic-plastic material and can 

be characterized by the plasticity model mentioned in chapter 2.  Since the square 

fiber model is a 2-D plane stress model, the 2-D von Mises J2 is given as 
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Substituting J2 into flow rule and following the same derivatives in chapter 2 

with the assistance of power law relation given in eqn (2.2.8) leads to 

 { } [ ]{ }AMAMAM d  S d σ=ε                   (3.1.13) 

which gives a relation between total strain increment and stress increment for all pure 

matrix regions, i.e. AM and B, and the components of compliance matrix [ ]AMS  in 
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eqn (3.1.13) were 
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With the stresses and strains relations for subregions AF and AM (given in eqn 

(3.1.10) and eqn (3.1.13), respectively), the constitutive relation of subregion A was 

generated through eqns (3.1.1) and (3.1.7) and the explicit results are given by  
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in which 
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Inverting eqn (3.1.16), we obtain 

{ } [ ]{ }AAA d  C d ε=σ                      (3.1.19) 

where 

[ ] [ ] 1 AA S C 
−

=                        (3.1.20) 

For the region B, since it is matrix materials, the compliance matrix is exactly 

the same as that in eqn (3.1.13).  Thus, the incremental stresses and strain relation is 

expressed as 

{ } [ ]{ }BBB d  S d σ=ε                      (3.1.21) 

, and [ ]BS  is the same as [ ]AMS . 

Inverting eqn (3.1.21), we obtain 

{ } [ ]{ }BBB d  C d ε=σ                      (3.1.22) 

where 

[ ] [ ] 1 BB S C 
−

=                        (3.1.23) 

Again, with constitutive relation of region A and B (given by (3.1.19), and 

(3.1.21)), through eqn (3.1.8) and eqns (3.1.2), the incremental stress and strain 

relation of entire RVE was derived as 

{ } [ ]{ } d   C  d ε=σ                       (3.1.24) 

where 

[ ] [ ] [ ]B
B

A
A C vC vC +=                    (3.1.25) 
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With eqn (3.1.24), for a given loading history, the constitutive relation of the 

composites can be generated by using the numerical iteration.  At the beginning, the 

overall stiffness matrix [ ]C  of composites in eqn (3.1.24) was constructed with 

initial stress states equal to zero.  For a tiny stress increment, the corresponding 

strain increment was calculated from eqn (3.1.24).  The strain increments in RVE are 

exactly the same as those in regions A and B based on the constant strain assumption 

given in eqn (3.1.2), and the corresponding stress increments in the two regions were 

evaluated with the assistance of the respective constitutive law given in eqns (3.1.19) 

and (3.1.22).  Since region B was pure matrix, its stress components was directly 

substituted into eqn (3.1.14) to update the stiffness matrix [ ]BC .  However, for 

region A, there are two subregions, AM and AF enclosed.  In order to update the 

stiffness matrix [ ]AC , the stress components in the subregion AM need to be 

evaluated, since the compliance matrix [ ]AMS  in eqn (3.1.13) is dependent on the 

stress states.  The incremental stress states AM
22dσ  and AM

12dσ  in the subregion AM 

can be evaluated directly from A
22dσ  and A

12dσ  in the region A based on the constant 

stress assumption.  Similarly, the incremental strain sate AM
11dε  was also obtained 

from A
11dε  with constant strain assumption.  Once the stress components AM

22dσ  and 

AM
12dσ  and the strain component AM

11dε  were determined, the stress increment AM
11dσ  

could be derived through the first relation of eqn (3.1.13).  With the stress 

components in the subregion AM, the corresponding compliance [ ]AMS  matrix in 

eqn (3.1.13) was renewed.  By combining the compliance [ ]AFS  of subregion AF, 

an updated stiffness matrix [ ]AC  was obtained and thereafter, the new stiffness [ ]C  

of the RVE was calculated which was employed to evaluate the strain increment in the 

next step associated with other tiny stress increments.  The detail program for the 
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SFM combined with three parameters model was attached in the Appendix A.   

 

3.2 Modified Square Fiber Model 

Since the square fiber model (SFM) proposed by Sun and Chen [12] was 

derived based on the square edge packing with a square fiber inside, it is difficult to 

deal with the RVE with circular fiber together with different fiber arrangements by 

using the SFM.  To overcome this problem, a modified SFM was proposed in this 

section by dividing the representative volume element (RVE) into numbers of 

horizontal tiny subcells.   The constant stress (or constant strain) conditions applied 

in the SFM (shown in the previous section) were again employed at each subcells in 

the modified SFM.  There are two fiber arrangements considered here, i.e. square 

edge packing array and square diagonal packing array, which were illustrated 

respectively in Fig. 3.1(a) and Fig. 3.1(b). 

   

3.2.1 Square Edge Packing Array 

In the case of square edge packing array as shown in Fig. 3.3, the RVE 

consists of a region A with a height fh  equal to the radius r of the fiber and a pure 

matrix region B with a height of mh  which is equal to r−l .  It is noted that l is the 

length of the square RVE.  There are two subregions AF and AM contained in the 

region A.  The region A was divided into N subcells horizontally from A1 to An and 

the height of each subcell is Nhf .  Thus, in each subregion An consisting of AFn 

and AMn, the stress and strain fields follow constant stress or constant strain 

assumptions, i.e. 
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On the other hand, for the RVE, the following assumptions were applied, 
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Based on the micromechanics, the average stress and strain fields for each 

subcell An are defined as 
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and, for the RVE, they are given by 
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Substituting eqns (3.2.1) and (3.2.2) into eqns (3.2.3)-(3.2.6) yields 

nnnnn

nnnnn

nnnnn

AM
12

AMAF
12

AFA
12

AM
22

AMAF
22

AFA
22

AM
11

AMAF
11

AFA
11

vv

1,2,3,...Nn      vv

vv

γ+γ=γ

=ε+ε=ε

σ+σ=σ

          (3.2.7) 

and 
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where nAFv  and nAMv  represent the volume fraction of fiber and matrix phases 

with respect to the subcell An, and nAv  and Bv  denote the volume fraction of 

subregion An and subregion B with respect to entire RVE, respectively.  Based on 

geometric correlation given in Fig. 3.2, the volume fractions, nAv  and Bv  can be 
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determined directly as  
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However, in order to evaluate the volume fraction, nAFv  and nAMv  in the 

subcell An with convenience, the angle nθ  was defined as the orientation of the ray 

emanating from the fiber center to the intersection of the fiber circumference and the 

nth horizontal grid line.  Thus, the corresponding volume fraction is written as   
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can be determined from the geometric correlation given in Fig. 3.2.  For the 

sub-region An, it has the same constitutive relation as shown in eqn (3.1.16) except 

that the volume fractions 1v and 2v  are replaced by nAFv  and nAMv , respectively, 

and also that in the sub-cell AMn, the compliance matrix becomes [ ]nAMS  instead of 

[ ]AMS .  Therefore, the constitutive equation for subcell An is expressed as 
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where 
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in which 
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where [ ]AnS   is the compliance matrix of subcell An.  It is to be noted that the 

mathematical form of compliance matrix [ ]nAMS  is the same as that in eqn (3.1.13), 

which was evaluated in terms of the current stress states of subcell AMn. 

Again, for the region B, the constitutive equation is the same as eqn (3.1.21) 

which was rewritten as 

{ } [ ]{ }BBB d  S d σ=ε                     (3.2.15) 

With ingredient constitutive equations given in eqns (3.2.12) and (3.2.15) 

together with eqns (3.2.2), (3.2.8), we derived the incremental form of overall 

constitutive equation as 

{ } [ ]{ } d   C  d ε=σ                      (3.2.16) 

where 
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3.2.2 Square Diagonal Packing Array 

In addition to the square edge packing array for the fiber arrangement, there 

are other fiber arrangements called the square diagonal packing (SDP) array which 

will be discussed in this section.  Fig. 3.1(b) shows the typical RVE for this fiber 

arrangement.  Because of symmetry, only one quarter of the RVE will be considered 

in the analysis.   In fact, due to different fiber fractions, there are three possible 

situations to be accounted for the generation of the constitutive relations as shown in 

Fig 3.4.  It was found that the critical fiber volume fraction for SDP is 39.3 %.  

Above this value, two quarter fibers will have interaction within the center region of 

the RVE as shown in Fig. 3.4(c).  It was noted that Fig. 3.4(d) shows the maximum 

fiber volume fraction of SDP is 78.5 %.  Since, in industrial applications of fiber 

composites, the fiber volume fraction is around 60% which is greater than the critical 

value, and thus we only consider the case with higher volume fractions.  As shown 

in Fig. 3.5, the RVE was separated into three partitions initially with two horizontal 

lines.  One was along the top of the left fiber and the other was passing through the 

bottom of the right fiber.  Let us denote the center region as subregion B with a 

height of Bh  which is equal to l−r2 , and the other two regions as subregion A with 

the individual height , Ah , equal to r−l , where l is the length of the square RVE and 

r is the radius of the fiber.  Noted that there are two subregions, i.e., AF (fiber phase 

of region A) and AM (matrix phase of region A) contained in the region A, and three 

subregions, i.e., BFL (fiber phase in the left side of region B), BM (matrix phase of 

region B) and BFR (fiber phase in the right side of region B), were included in the 

region B.  Subsequently, regions A and B were divided into N and M horizontal 

subcells, represented by An and Bn respectively, such that totally there are 2N+M 

subcells enclosed in the RVE.  The height for each subcell An in region A is NhA , 

while for subcell Bn in region B, the height is MhB .  In order to determine the 
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fiber volume fraction in the region An, the angle 
nAθ  as shown in Fig. 3.5, were 

defined in the same manner as described in the previous section.  In addition, for the 

region B, two angles, i.e., 
nBφ and 

nBθ , as shown in Fig. 3.5 were defined based on 

the orientation of the ray starting from the fiber center to the intersection of the nth 

grid line and the fiber circumference.  It is noted that the two angles are not 

independent but correlated by following the relation.   

1M2,3,...,n                    
2Mnn BB +=θ=φ

−+
         (3.2.18) 

In addition, the corresponding angles can be expressed explicitly as 
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which determined from the geometric correlation shown in Fig. 3.5. 

In addition, there are two areas covered by region A and both of the areas are the 

same.  Thus, only one area was taken into account in the analysis.  For each subcell 

An, subregions AFn and AMn would follow the constant stress and constant strain 

assumptions, i.e. 
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Similarly, in each subcell Bn, all subregions BFLn, BMn and BFRn obey 
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For the RVE, the following assumptions were applied, 
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The average stress and strain fields in subcells An, Bn and the RVE can be defined as 
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Although there are two fiber phases BFLn and BFRn in each subcell Bn, it can 

be demonstrated that these two isolated fiber phases can be treated as a whole one BFn 

and the constant stress and constant strain conditions mentioned previously are still 

remained.  Thus, the fiber volume fraction in this region can be represented using 

only one variable nBFv  as shown in Fig. 3.6.  By substituting eqns (3.2.20)-(3.2.22) 

into eqns (3.2.23)-(3.2.28), the following equations were obtained. 
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in which 
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      (3.2.32) 

 

where nAFv  and nAMv  represent the volume fraction of the fiber and matrix with 

respect to subcell An while nBFv  and nBMv  denote the volume fraction of the fiber 

and matrix respectively to subcell Bn.  And nAv  and nBv  are the volume fraction 

of subcell An and Bn with respect to the RVE.   

Similar to square edge packing array, the constitutive equations of subcells An 

and Bn were the same as eqn (3.2.12) except that the volume fraction were replaced 

with eqn (3.2.32).  Furthermore, the compliance matrix of the matrix phase was 

evaluated according to individual stress states in each tiny step associated with the 

loading history.  Since the procedure for the formulation had been described in 

previous section 3.2.1, the detail processes were not repeated here.  As a result, the 

constitutive equations of subcells An and Bn can be written as 

{ } [ ]{ }nnn AAA d  C d ε=σ                      (3.2.33) 
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and 

{ } [ ]{ }nnn BBB d  C d ε=σ                      (3.2.34) 

where [ ]nAC   and [ ]nBC   are the stiffness matrix of regions An and Bn, 

respectively. 

From eqn (3.2.31) together with eqns (3.2.22), (3.2.33), (3.2.34), the overall 

constitutive equation can be represented by a incremental form, 

{ } [ ]{ } d   C  d ε=σ                      (3.2.35) 

where 

[ ] [ ] [ ]∑ ∑
= =

+=
N

1n

M

1n

BBAA nnnn C vC v2C                (3.2.36) 
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Chapter 4  Generalized Method of Cells 

In order to realize the nonlinear rate dependent behavior, the micromechanical 

approach was employed with the ingredient material properties in the analysis.  In 

chapter three, the square fiber model and modified square fiber model were proposed 

to characterize the material properties of composites.  While, in this chapter, the 

generalized method of cells (GMC) proposed by Paley and Aboudi [15] will be 

adopted for investigations.  However, some interpretations and reorganizations on 

the derivation of GMC will be conducted by the present author to easily extend the 

GMC for modeling the nonlinear rate dependent behavior of composites. 

 

4.1 Generalized Method of Cells (GMC) 

The generalized method of cells proposed by Paley and Aboudi [15] was 

adopted for investigating the nonlinear behavior of composites.  The corresponding 

mechanical properties of the composites can be derived from a repeating 

microstructure of the composite so called a representative volume element (RVE).  

In GMC, the RVE were divided into many rectangular subcells ( )βγ  with 

β=β N,....,1  and γ=γ N,...,1 , and depending on the fiber arrangement, each subcell 

indicates either fiber or matrix on the RVE.  In Fig. 4.1, the fiber extends in the 1x  

direction and the area of each subcell is equal to γβlN .  Assume that a local 

coordinate system ( ) ( )( )γβ
321 x ,x ,x  locate at the center of each subcell (see Fig. 4.2).  

When the RVE deforms, the displacement rates ( )βγ
iu&  for each subcell was assumed 

to be a linear expansion in terms of the distances from the center of the subcell, it is 

( ) ( )( ) ( ) ( ) ( ) ( ) 3 ,2 ,1i           xxx ,x ,xwu i3i2321ii =ψ+φ+= βγγβγββγβγ &&&&      (4.1.1) 

where ( )βγ
iw&  is the displacement rate at the center of the subcell, which could be 
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different from subcell to subcell.  It is to be noted that this displacement function is 

expressed in terms of the global coordinate system (x1, x2, x3) [13].  In eqn (4.1.1), 

( )βγφi
& , ( )βγψi&  are variables rates which could be realized as a constant in each subcell.  

Based on elasticity, the small strain rate tensor is written as 

( ) ( ) ( )( ) 3 ,2 ,1j,i       uu
2
1

ijjiij =∂+∂=η βγβγβγ &&            (4.1.2) 

where 11 x∂∂=∂ , ( )β∂∂=∂ 22 x  and ( )γ∂∂=∂ 33 x .  Substituting eqn (4.1.1) into 

eqn (4.1.2) and then using the average formula of micromechanics 

( ) ( ) ( ) ( )∫ ∫
γ

γ

β

β− −

γββγ

γβ

βγ η=η
2l 

2l

2h 

2h 32ijij xdxd
h

1
l

             (4.1.3) 

we can obtain the average strain rates in any subcell ( )βγ , i.e. 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )βγβγβγ

βγβγβγ

βγβγβγ

βγβγ

βγβγ

βγβγ

∂
∂

+φ=η

∂
∂

+ψ=η
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ψ=η

φ=η

∂
∂

=η

2
1

112

3
1
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2323
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222

1
1

11

w
x

2

w
x

2

2

w
x

&&

&&

&&

&

&

&

                    (4.1.4) 

Under deformation, the displacement rates should be continuous at the interfaces 

between the internal subcells and between neighboring repeating RVE.  This leads to 

the following relations 

( )
( )

( )
( ) 2hx

ˆ
i2hxi

ˆ
ˆ

22
|u|u

β
β

β
β

−=

γβ
=

βγ = &&                   (4.1.5) 

( )
( )

( )
( ) 2x

ˆ
i2xi ˆ

ˆ
33

|u|u
γ

γ
γ

γ −=
γβ

=
βγ =

ll
&&                   (4.1.6) 

where β̂  and γ̂  are defined by 





=β
<β+β

=β
β

β

N        ,1
N   ,1ˆ                        (4.1.7) 
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and 





=γ
<γ+γ

=γ
γ

γ

N        ,1
N   ,1

ˆ                        (4.1.8) 

Note that 1ˆ =β  for β=β N  and 1ˆ =γ  for γ=γ N  are employed to represent the 

periodic boundary conditions.  Instead of using the displacement continuity 

conditions from point to point as given in (4.1.5), Paley and Aboudi imposed the 

continuity condition on an average sense as 

( )
( )

( ) ( )
( )

( )∫∫
γ

γ β
β

γ

γ β
β

−

γ

−=

γβ

−

γ
=

βγ =
2 

2 32hx

ˆ
i

2 

2 32hxi xd|uxd|u
ˆ

ˆ
22

l

l

l

l
&&         (4.1.9) 

Using eqn (4.1.1), it follows that 

( ) ( ) ( ) ( )γβ
β

γββγ
β

βγ φ−=φ+
ˆ

iˆ
ˆ

iii h
2
1wh

2
1w &&&&                 (4.1.10) 

A similar relation obtained from eqn (4.1.6) with the integration from 2hβ−  to 

2hβ  with respect to ( )β
2x  was given by 

( ) ( ) ( ) ( )γβ
γ

γββγ
γ

βγ ψ−=ψ+ ˆ
iˆ

ˆ
iii 2

1w
2
1w &&&& ll                 (4.1.11) 

Apparently, both eqns (4.1.10) and (4.1.11) represent the displacement continuity in 

the interfaces between the subcells and all field quantities are originated from the 

centerline ( )β
2x  of the subcell ( )βγ  and the centerline ( )β̂

2x  of the subcell ( )γβ̂  as 

shown in Fig. 4.2.  These discrete field quantities can also be observed directly from 

the interface rather than from the central line, which could be done simply by 

introducing the location of the interface ( )I
2x  between subcells ( )βγ  and ( )γβ̂  as 

( ) ( )
β

β −= h
2
1xx I

22                        (4.1.12) 

( ) ( )
β

β += ˆ
I

2
ˆ

2 h
2
1xx                        (4.1.13) 

Through a Taylor expansion of the field variables in eqn (4.1.10) with only linear 
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terms kept, we have 

( ) ( ) ( ) ( ) ( ) ( )








φ−

∂
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+=
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ˆ
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ˆ
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2
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x
h

2
1ww

x
h

2
1w &&&&&&      (4.1.14) 

It is noted that all field variables in eqn (4.1.14) are evaluated at the interface ( )I
2x .  

The displacement continuity also implies the field variables of the ( )βγ
iw&  and ( )γβ̂

iw&  

expressed in terms of the position vectors on the interface should be the same as  

( ) ( )γββγ =
ˆ

ii ww &&                       (4.1.15) 

Define 

( ) ( ) ( ) ( ) ( )βγβββγβ +−+=
ˆ

i
ˆ

iiii fwfwF &&                (4.1.16) 

where 
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−= βγβγ
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β
ii

2
i w

x
h

2
1f &&               (4.1.17) 

Therefore, eqn (4.1.14) can be expressed in a compact form as 

( )
β

β =β= N,...,1               0Fi                 (4.1.18) 

Similarly, eqn (4.1.11) provides the continuity relations 

( ) ( ) ( ) ( ) ( ) ( )








ψ−

∂
∂

+=







ψ−

∂
∂

− γβγβ
γ

γββγβγ
γ

βγ ˆ
i

ˆ
i

3
ˆ

ˆ
iii

3
i w

x2
1ww

x2
1w &&&&&& ll      (4.1.19) 

and can be expressed in a compact form similar to eqn (4.1.18) as 

( )
γ

γ =γ= N,...,1               0Gi                  (4.1.20) 

where the following definitions have been employed 

( ) ( ) ( ) ( ) ( )γγβγβγγ +−+= ˆ
i

ˆ
iiii gwgwG &&                    (4.1.21) 

( ) ( ) ( )








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∂
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−= βγβγ
γ

γ
ii

3
i w

x2
1g &&l                    (4.1.22) 



 37

From eqns (4.1.18) and (4.1.20), we obtain  

 ( )∑
β

=β

β =
N

1
i 0F                        (4.1.23) 

( )∑
γ

=γ

γ =
N

1
i 0G                        (4.1.24) 

It can be shown from eqns (4.1.23) and (4.1.24) together with periodic boundary 

conditions, i.e. eqns (4.1.7) and (4.1.8), that 

( )∑
β

=β

β =
N

1
i 0f                        (4.1.25) 

( )∑
γ

=γ

γ =
N

1
i 0g                        (4.1.26) 

Since  

( ) 0f
x i

2
=

∂
∂ β                        (4.1.27) 

and 

( ) 0g
x i

3
=

∂
∂ γ                        (4.1.28) 

for all β  and γ  (neglecting the high order terms), by taking partial derivatives of 

eqns (4.1.18) and (4.1.20) with respect to 2x  and 3x , respectively, we obtain 

 

( ) ( )γββγ

∂
∂

=
∂
∂ ˆ

i
2
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2

w
x

w
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&&                   (4.1.29) 

and 

( ) ( )γββγ

∂
∂

=
∂
∂ ˆ

i
3

i
3

w
x

w
x

&&                   (4.1.30) 

 

Eqns (4.1.29) and (4.1.30) indicate that the state variables of the first order 

differentiations of the functions ( )βγ
iw&  and ( )γβ̂

iw&  are also equal on the interface.  In 
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order to satisfy the eqns (4.1.29) and (4.1.30) together with eqn (4.1.15), we assumed   

( )
ii ww && =βγ                        (4.1.31) 

This implies that the displacement rate components of the centers for each subcell are 

the same and also equal to iw& .   

Substitution of the definition of ( )β
if  and ( )γ

ig  given in eqns (4.1.17) and (4.1.22) 

into eqns (4.1.25) and (4.1.26), respectively leads to 

( )
i

2

N

1
i w

x
hh &&
∂
∂

=φ∑
β

=β

βγ
β                   (4.1.32) 

( )
i

3

N

1
i w

x
&&

∂
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=ψ∑
γ

=γ

βγ
γ ll                    (4.1.33) 

where ∑
β

=β
β=

N

1
hh  and ∑

γ

=γ
γ=

N

1
ll  are the length and width of the RVE.  So far, the 

displacement continuity conditions lead to three equations (4.1.31), (4.1.32) and 

(4.1.33), which will be applied in the following derivation for establishing the strain 

rate relations between entire RVE and all subcells.  In the following, the global strain 

will be expressed in the function of iw& , and then the local strain will be determined 

through eqn (4.1.4) with expressions in terms of )(
i

)(
i   and βγβγ ψφ && .  As a result, with 

eqns (4.1.32) and (4.1.33), the relation between the global strain rates and the local 

strain rates can be established.  

The average strain rate of entire RVE is defined as 

( )∑∑
β γ

=β =γ

βγ
γβ η=η

N

1

N

1
ijij h

h
1 l
l

                  (4.1.34) 

For 1ji == , substituting the first relation in eqn (4.1.4) into eqn (4.1.34) and using 

eqn (4.1.31), we obtain 
1

1
11 x

w
∂
∂

=
&

η .  For 2ji == , let us multiply eqn (4.1.32) by γl  
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and perform a summation over γ  from 1 to γN .  This mathematical operation 

leads to 

( )∑∑
β γ

=β =γ

βγ
γβ ∂

∂
=φ

N

1

N

1 2

2
2 x

whh
&& ll                   (4.1.35) 

Comparing eqn (4.1.35) with eqn (4.1.34) and using the second relation in eqn (4.1.4) 

gives that 
2

2
22 x

w
∂
∂

=η
&

.  For 1i = , 2j = , multiplying eqn (4.1.32) by γl  and 

summing over γ  yields 
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whh
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Substituting the sixth relation in eqn (4.1.4) into eqn (4.1.34) and comparing with eqn 

(4.1.36), we obtain 







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=η
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.  The other three average strain rate 

components can be derived in the same way.  Thus, we can conclude the following 

relation as 
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                    (4.1.37) 

 

With eqn (4.1.37) together with eqn (4.1.4), it is possible to express the local variables, 

)(
i

)(
i   and βγβγ ψφ && , and global state variables, iw& , in eqns (4.1.32) and (4.1.33) in terms 

of local strain variables ( )βγηij  and global strain variable ijη , respectively.  For 

strain variables 22η  and 33η  we set 2i =  in eqn (4.1.32) and 3i =  in eqn 

(4.1.33).  Apparently, with the assistance of eqn (4.1.37) and eqn (4.1.4), the 

relations were given by  
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β =γη=η∑
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N,...,1          hh 22
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22              (4.1.38) 
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While, for strain variables, 12η  and 13η , we added ∑
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of eqn (4.1.32) and also included ∑
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∂ &l , respectively.   Thus, the 

following relation was obtained as 
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( )
β

=γ

βγ
γ =βη=








∂
∂

+ψ∑
γ

N,...,1          2
x
w

13

N

1 1

3
1 ll &
&             (4.1.41) 

By comparing the left hand side of eqns (4.1.40) and (4.1.41) with eqn (4.1.4), we 

obtain 

( )
γ

=β

βγ
β =γη=η∑

β

N,...,1          hh 12

N

1
12                    (4.1.42) 

( )
β

=γ

βγ
γ =βη=η∑

γ

N,...,1          13

N

1
13 ll                     (4.1.43) 

For the calculation of components 11η , we let the subscript i and j in eqn (4.1.34) 

equal to 1.  It is noted that ( )
1111 xw   toequal is ∂∂η βγ &  and can be directly factored 

out from the summation at the right hand side of eqn (4.1.34).  Therefore the 

summation of the remaining terms would become a unity and the relation was derived 

as  
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( )
1111 η=η βγ                         (4.1.44) 

 

For the 23η , eqn (4.1.34) are used directly since it cannot be simplified further with 

the aid of displacement continuity equations as the other components described before.  

It is 

( )∑∑
β γ

=β =γ

βγ
γβ η=η

N

1

N

1
2323 h

h
1 l
l

                   (4.1.45) 

It is noted that eqns (4.1.38), (4.1.39) together with eqns (4.1.42)-(4.1.45) indicates 

the relation between the global strain rates and the local strain rates.  We rewrite 

eqns (4.1.38), (4.1.39) and (4.1.42)-(4.1.45) into a matrix form as 

 

η=η JA sG                         (4.1.46) 

 

where ( ) ( ) ( ){ } ,, NN1211
s

γβηηη=η L  represent the collection of the engineering 

strain rates for all subcells, and { }211323332211 2,2,2,,, ηηηηηη=η  

indicates the overall strain rates of the RVE.  In addition, GA  and J  contain 

geometry parameters of the subcells and the RVE, which are ( ) 1NNNN2 +++ γβγβ  

by γβNN6  and ( ) 1NNNN2 +++ γβγβ  by 6 matrices, respectively.   

The displacement rate continuity conditions have been applied to establish the relation 

between the global strain rate and local subcell strain rate so far.  In the following, 

the traction rate continuity conditions will be employed for the derivation.  By using 

the traction rate – stress rate relation 

jiji nT τ=&                         (4.1.47) 

and considering the normal vector shown in Fig. 4.3, we obtain the traction rate 



 42

continuity conditions as 

( ) ( )γββγ τ=τ
ˆ
j2j2                        (4.1.48) 

and 

( ) ( )γββγ τ=τ ˆ
j3j3                        (4.1.49) 

where 3 ,2 ,1j = , β=β N,...,1  and γ=γ N,...,1 .  It can be shown that, due to the 

symmetry of stress rate tensor and periodic boundary conditions, there are only 

( ) 1NN2NN5 −+− γβγβ  independent equations.  These equations are 

( ) ( )
γβ

γββγ =γ−=βτ=τ N,...,1      ,1N,...,1          ˆ
2222          (4.1.50) 

( ) ( ) 1N,...,1      ,N,...,1          ˆ
3333 −=γ=βτ=τ γβ
γββγ          (4.1.51) 

( ) ( )
γβ

γββγ =γ−=βτ=τ N,...,1      ,1N,...,1          ˆ
2323          (4.1.52) 

( ) ( ) 1N,...,1      ,N          ˆ
3232 −=γ=βτ=τ γβ
γββγ             (4.1.53) 

( ) ( )
γβ

γββγ =γ−=βτ=τ N,...,1      ,1N,...,1          ˆ
2121          (4.1.54) 

( ) ( ) 1N,...,1      ,N,...,1          ˆ
3131 −=γ=βτ=τ γβ
γββγ          (4.1.55) 

 

There are two methods to deal with eqns (4.1.50)-(4.1.55), i.e. a stress rate – total 

strain rate relation and a stress rate – elastic strain rate relation.  The former one for 

each subcell is written as 

 

( ) ( ) ( )βγβγβγ η=τ kl
VP
ijklij C                     (4.1.56) 

 

In eqn (4.1.56), the stiffness matrix ( )βγVPC  contains both elastic and plastic 

properties and the plastic part can be constructed using eqn (2.2.13).  While, the 



 43

relation for the other one is given by  

 

( ) ( ) ( ) ( )( )βγβγβγβγ η−η=τ P
klklijklij C                 (4.1.57) 

 

where ( )βγηP
kl  represents the plastic strain rates of each subcell and the stiffness 

matrix ( )βγ
ijklC  contains only elastic properties.  The constitutive relation given in eqn 

(4.1.56) was considered first by substituting the relation into eqns (4.1.50)-(4.1.55), 

and then a matrix form based on the traction continuity is established as 

0A s
VP
M =η                       (4.1.58) 

where sη  has been defined previously and VP
MA  is a ( ) 1NN2NN5 −+− γβγβ  ×  

γβNN6  matrix which involves the components of the tensor ( )βγVP
ijklC .  Combining 

the displacement rate continuity conditions in eqn (4.1.46) and the traction rate 

continuity conditions in eqn (4.1.58), we obtain 

η=η KA~ s
VP                         (4.1.59) 

where the γβNN6  ×  γβNN6  square matrix VPA~ is composed of  









=

G

VP
MVP

A
A

A~                         (4.1.60) 

and the γβNN6  ×  6 matrix K  is constructed by 









=

J
0

K                            (4.1.61) 

Inverting eqn (4.1.59), the subcell strain rates collection matrix sη  can be expressed 

as 

η=η VP
s A                          (4.1.62) 
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where 

[ ] KA~A
1VPVP −

=                       (4.1.63) 

Note that VPA  is a 6 γβNN ×6 matrix which can be partitioned into γβNN  entries 

as follows and each one represents a 6×6 square matrix  

( )

( )





















=

γβ )NN(VP

12VP

11VP

VP

A

A
A

A
M

                     (4.1.64) 

If we want to find the strain rates in some specified subcell, a submatrix form of eqn 

(4.1.62) by means of eqn (4.1.64) was used, i.e. 

( ) ( )η=η βγβγ VPA                       (4.1.65) 

Substituting eqn (4.1.65) into eqn (4.1.56) yields 

( ) ( ) ( )η=τ βγβγβγ VPVP AC                  (4.1.66) 

The average stress rate of entire RVE follows 

( )∑∑
β γ

=β =γ

βγ
γβ τ=τ

N

1

N

1
ijij h

h
1 l
l

                  (4.1.67) 

Substituting eqn (4.1.66) into eqn (4.1.67), we obtain 

η=τ VP*B                            (4.1.68) 

where 

( ) ( )∑∑
β γ

=β =γ

βγβγ
γβ=

N

1

N

1

VPVPVP* ACh
h
1B l
l

              (4.1.69) 

 

On the other hand, we can also used eqn (4.1.57) to derive the global stress and strain 

relations. By substituting eqn (4.1.57) into traction continuity equations, eqns 

(4.1.50)-(4.1.55), the traction continuity equations can be written in a matrix form as. 
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( ) 0A P
ssM =η−η                      (4.1.70) 

 

where ( ) ( ) ( ){ } ,, NNp12p11pp
s

γβηηη=η L  is a collection of plastic strain rates of 

all subcells and the matrix MA  is somehow related to the stiffness matrix ( )βγ
ijklC .  

Combination of the traction continuity conditions in eqn (4.1.70) with the local strain 

rate and global strain rate relation given in eqn (4.1.46) yields 

 

η=η−η KA~A~ P
s

P
s                     (4.1.71) 

where 









=

G

M

A
A

A~                           (4.1.72) 

and 









=

0
A

A~ MP                          (4.1.73) 

where K  matrix is the same with eqn (4.1.61).  Through eqn (4.1.71), sη  can be 

expressed as 

P
s

P
s AA η+η=η                      (4.1.74) 

where 

KA~A 1−=                           (4.1.75) 

and 

P1P A~A~A −=                         (4.1.76) 

Similar to eqn (4.1.64), the matrices A  and PA  can be partitioned into γβNN  

elements and each element consists of a 6×6 square matrix, i.e. 
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( )

( )
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                          (4.1.77) 
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                        (4.1.78) 

Therefore, eqn (4.1.74) can be rewritten to a subcell expression 

( ) ( ) ( ) P
s

PAA η+η=η βγβγβγ                    (4.1.79) 

Substituting eqn (4.1.79) into eqn (4.1.57) yields 

( ) ( ) ( ) ( ) ( )( )βγβγβγβγβγ η−η+η=τ PP
s

PAAC             (4.1.80) 

The stress rate – elastic strain rate relation is expected to be 

( )P*B η−η=τ                        (4.1.81) 

Substituting eqn (4.1.80) into eqn (4.1.67) and comparing with the eqn (4.1.81), we 

obtain 

( ) ( )∑∑
β γ

=β =γ

βγβγ
γβ=

N

1

N

1

* ACh
h
1B l
l

                  (4.1.82) 

and 

( ) ( ) ( )( )∑∑
β γ

=β =γ

βγβγβγ
γβ

− η−η−=η
N

1

N

1

PP
s

P1*P hAChB ll          (4.1.83) 

Here and now, there are two constitutive equations can be used to characterize 

the nonlinear behavior of fiber composites.  If a tangent modulus composed by 

elastic and plastic parts can be found, eqn (4.1.68) could be employed in the analysis.  

Otherwise, eqn (4.1.81) should be applied. 

 



 47

The numerical procedures together with the numerical codes presented in 

Appendix B were described based on the constitutive equation, eqn (4.1.68).  

However, the other constitutive law, eqn (4.1.81), was not addressed here. 

In the beginning, the overall strain rates η  can be estimated with overall 

stress rates τ  using eqn (4.1.68).  It was noted that the overall stress rates τ  is 

evaluated from the time derivative of the given overall stress history.  , the total 

strain rates ( )βγη  and stress rates ( )βγτ  at some specified subcell ( )βγ  can be 

evaluated through eqns (4.1.65) and (4.1.66), respectively, when the overall strain 

rates η  was calculated.  Furthermore, the ( )βγVPC  matrices of the matrix regions 

were updated through three parameters model using eqn (2.2.13), while for the 

( )βγVPC  matrices of the fiber phase, due to linear elastic property, were not updated 

with its current stress state.  ( )βγVPA  matrices were also updated while ( )βγVPC  

matrices changed and a new overall stiffness matrix VP*B  for the next time step was 

composed using eqn (4.1.69).  As a result, with generalized method of cells in 

conjunction with the three parameters model for polymer, the constitutive behavior of 

fiber composites at different strain rate can be predicted through a numerical iteration.  

Furthermore, a typical four subcells RVE with square edge packing is shown in Fig. 

4.4 and will be widely used in the later simulations. 
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Chapter 5  Finite Element Analysis 

In this chapter, two fiber arrangements, i.e. square edge packing (SEP) array 

and square diagonal packing (SDP) array, were adopted to investigate the fiber 

arrangement effects on nonlinear behavior of off-axis fiber composites by using the 

commercial finite element program ANSYS.  The procedure for finite element 

analysis will be addressed in this section, and the associated results will be 

demonstrated in chapter 6 together with the numerical results obtained from the 

square fiber model and the generalized method of cells to investigate the fiber shape 

and fiber arrangement effects. 

 

5.1 Finite Element Approach 

The methodology about how to establish a finite element model for 

unidirectional composites subjected to off-axis loadings was basically coming from 

the paper published by Zhu and Sun [24].  Fig. 5.1 shows a 3-D RVE for the square 

diagonal packing (SDP) array employed in the finite element analysis, and it is noted 

that because of symmetry, only one quarter of the RVE was considered. The 

associated meshes generated automatically from ANSYS mesh generator for the RVE 

are shown in Figs. 5.2(a)-(b).  The element type used in this study is solid 185.  

Since the quantities, such as stress, strain and displacement, are independent of the 

x1-axis, there is only one single layer of elements established in the fiber direction 

[24].  It was noted that in Fig 5.1, all stresses were shown in the positive direction, 

and the relation between the applied stresses in the loading coordinate system and 

those in the material principle coordinate system is converted through the following 

translation law  
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θθσ−=σ
θσ=σ

θσ=σ

cossin
sin

cos

x12

2
x22

2
x11

                   (5.1.1) 

where ijσ  are the stresses in the material principle coordinate system, θ  is the 

off-axis angle with respect to the loading direction and xσ  is the applied uniaxial 

stress.  In the FEM analysis, the fiber was assumed to be an orthotropic elastic 

material with the material properties as shown in Table 2.  While, the matrix is 

assuming to be elastic-plastic obeying the J2 flow rule.  The assumed stress – strain 

curve of the matrix shown in Fig. 5.3 was selected for FEM analysis.  This 

constitutive curve was imported into ANSYS through the commanding process,  

“Main Menu” > “Preprocessor” > “Material Props” > “Material Models” > 

“Structural” > “Nonlinear” > “Inelastic” > “Rate Independent” > “Isotropic 

Hardening Plasticity” > “Mises Plasticity” > “Nonlinear”.  Then, four coefficients of 

a nonlinear potential function have to be determined to characterize the stress and 

plastic strain curve.  This function is 

)e1(RRk
pbp

0
ε−

∞ −+ε+=σ                 (5.1.2) 

where k is the yield stress, 0R  and ∞R  are parameters and their physical meanings 

are shown in the ANSYS user manual [28].  Basically, only the variable b needs to 

be evaluated by try-and-error manner and the others can be determined directly from 

the given stress – plastic strain curve.  The matrix properties were also listed in Table 

2. 

After material properties had been given, the boundary conditions were 

applied on the RVE shown in Fig. 5.1 to satisfy the periodicity condition when the 

material subjected to off-axis loading. 

On 0x1 =  and ax1 =  faces 
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( ) ( )
( ) ( )
( ) ( )3232

3232

3232

x,x,awx,x,0w
x,x,avx,x,0v

constantx,x,aux,x,0u

=
=

=−
             (5.1.3) 

where u, v and w respectively to denote the displacements in the x1, x2 and x3 

direction.  Furthermore, this equation leads 0x1 =  and ax1 =  faces to satisfy 

periodic boundary conditions.  Note that the first relation in eqn (5.1.3) makes it 

possible for the RVE to undergo an extension in the x1 direction but not to affects the 

periodicity. 

On 0x2 =  and ax2 =  faces 

( )
( )
( ) ( )
( ) ( ) constantx,a,awx,a,aw

constantx,0,awx,0,aw
constantx,a,xv
0x,0,xv

3231

3231

31

31

==
==

=
=

            (5.1.4) 

where a1 and a2 represent any two different points with other two identical coordinates, 

and the first and the second relations of eqn (5.1.4) describe geometric symmetry and 

periodicity, respectively.  Moreover, the third and the fourth relations of eqn (5.1.4) 

were employed to keep all nodes on faces 0x2 =  or ax2 =  with the same height x3 

without relative motion.  It was noted that the third and the forth relations in eqn 

(5.1.4) were not applied in the current analysis since there was only single layer of 

element existing in the RVE and these two relations can also be covered by the third 

relation in eqn (5.1.3). 

On 0x3 =  and ax3 =  faces 

( )
( )
( ) ( )
( ) ( ) constanta,x,ava,x,av

constant0,x,av0,x,av
constanta,x,xw
00,x,xw

2221

2221

21

21

==
==

=
=

             (5.1.5) 

which implies similar meanings as eqn (5.1.4) and the third and the forth relations in 

eqn (5.1.5) are involved by the second relation in eqn (5.1.3).  To avoid the rigid 

body translation, an additional displacement constraint was imposed in the x1 
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direction, i.e. 

( ) 00,0,0u =                        (5.1.6) 

In order to implement the boundary conditions, three ANSYS options “CP”, 

“CE” and “D” were applied.  “CP” option lets a set of nodes possess the same degree 

of freedom.  Therefore, the second and the third relations in eqn (5.1.3) and the 

second relation in eqns (5.1.4) and (5.1.5) are established by using this command.  

“CE” option lets the degree of freedoms of a set of nodes obey desired constraint 

equations.  The first relation in eqn (5.1.3) can be expanded as 

axN0xNax20x2ax10x1 111111
uu......uuuu ====== −==−=−       (5.1.7) 

where the subscript 1 to N denotes N sets of corresponding nodes with the same x2 

and x3 coordinates respectively on 0x1 =  and ax1 =  faces and eqn (5.1.7) can be 

further decomposed as 

axN0xNax1N0x1N

ax30x3ax20x2

ax20x2ax10x1

1111

1111

1111

uuuu

                       

uuuu

uuuu

===−=−

====

====

−=−

−=−

−=−

M
          (5.1.8) 

 

Obviously, there are N-1 independent constraint equations existing in the RVE 

and can be built up using “CE” command.  The latest option “D” can assign a fixed 

displacement value on desired nodes, so the displacements equal to zero in the 

boundary conditions can be carried out.  After the boundary conditions were 

appropriately defined, the stresses evaluated from eqn (5.1.1) at material principle 

coordinate system were multiplied by the loading surface area to obtain external 

forces.  Shear forces on 0x1 =  and ax2 =  faces and all normal forces were 

placed at single node on associated loading surface since the boundary conditions had 

been appropriately defined.  But the shear forces at 0x2 =  and ax2 =  must be 
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distributed to every node through the element shape function provided by user manual 

[29] to ensure the nodal force being consistent with the distributed loading.  All 

forces were divided into several tiny steps and implemented gradually by using the 

following commands 

“Main Menu” > “Solution” > “Analysis Type” > “Sol’n Controls” 

By collecting element strains at each load step, the average strain of the RVE can be 

evaluated by taking an average from all element strains, i.e. 

∑
=

ε=ε
M

1i
iiVV

1                        (5.1.9) 

where M is the total number of elements, ε  and iε  are respectively to average 

strain and element strain, and V  and iV  represent the volume of RVE and the 

element volume, respectively. 
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Chapter 6  Results and Discussion 

In this chapter, thermal stress effect on off-axis fiber composites was 

investigated by using square fiber model (SFM) and generalized method of cells 

(GMC).  Then, the fiber shape effect on square edge packing (SEP) array was 

studied through GMC and modified SFM.  Moreover, the investigation of fiber 

arrangement effect was performed by using modified SFM, GMC, and finite element 

method (FEM), respectively.  Finally, the model predictions using SFM and GMC 

were compared with the experimental results. 

 

6.1 Thermal Stress Effect 

During the curing process of polymeric composites, because of distinct 

difference of coefficient of thermal expansion (CTE) between the fiber and the matrix, 

the thermal residual stresses usually were generated in the fiber and matrix.  Based 

on the thermal elasticity, the thermal residual stress in the fiber and the matrix can be 

calculated in terms of Young’s modulus ( E ), coefficient of thermal expansion (α ), 

and the area of the cross section ( A ) as shown in Fig. 6.1.  It is noted that for the 

calculation of the thermal residual stress, the conventional fiber composite was 

simplified as the solid containing fiber and matrix phases as shown in the Fig. 6.1(a).  

Since during the curing process, the fiber and matrix interface are well bounded and 

have to satisfy the displacement continuity in the x direction as shown in Fig 6.1(b), 

from the thermal elasticity, the thermal residual stresses in the fiber and matrix can be 

expressed as 
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where T∆  is the temperature change in the cooling process, l is the specimen length 

in the fiber direction, δ  is the displacement of the specimen when it attains to the 

equilibrium position.  E and α  denote the Young’s modulus and coefficient of 

thermal expansion of the specimen.  The subscripts, i.e. m and f, in eqn (6.1.1) 

represent matrix and fiber, respectively.  In eqn (6.1.1), it was assumed that the stress 

is free in the heating process and the thermal stress would be produced only in the 

cooling process.  Furthermore, during the cooling, there is no mechanical loading 

applied, and the global stress states should be zero.  Thus, 

0AA ffmm =σ+σ                       (6.1.2) 

where Af  and Am are the cross section of the fiber and the matrix.  With eqn (6.1.2), 

the displacement δ  can be expressed as   

 

   ( )
ffff

mmmfff

AEAE
T AEAE

+
∆α+α

=δ
l                  (6.1.3) 

 

The thermal residual stress could be estimated from eqns (6.1.1) and (6.1.3), 

and then employed into square fiber model (SFM) and generalized method of cells 

(GMC) to investigate the thermal stress effect on the mechanical behavior of off-axis 

fiber composites.  For GMC, a four subcell RVE with 2NN r ==β  as shown in Fig. 

4.4 was adopted to perform this study while the RVE of SFM was demonstrated in Fig. 

3.2.  Here, we only consider the residual stress component in the fiber extension 

direction, i.e. 11σ .  Thus, the thermal stress calculated from eqn (6.1.1) was imposed 

as an initial stress state on all matrix regions of SFM and GMC.  It was noted that in 

the fiber region of SFM and GMC, it was assumed to be stress free initially.  All 

analyses were performed using the Matlab code of SFM and GMC listed in Appendix 
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A and B respectively, and the initial stress value was implemented by using the sigam 

and sigb for SFM and substress for GMC in the code.  The associated matrix and 

fiber properties employed in the simulation were listed in Tables 1 and 2, respectively, 

and the fiber volume fraction used in the simulation was 60%.  The numerical results 

of the stress-strain curves for o30  and o90  specimens with the thermal stress 

simulated by SFM and GMC were shown, respectively in Figs. 6.2(a)-(b) and Figs. 

6.3(a)-(b).  For comparison, the results without including the thermal stress were 

also included in the Figures.  It is interesting to note that the fiber composites with 

thermal stress exhibit stiffer behaviors than those without thermal stress for all fiber 

orientations as shown in Figs. 6.2-6.3.  This result seems to be different from out 

intuition.  However, the reason is due to that the presence of thermal stress 11σ  in 

the matrix phase would prevent the plastic deformation in the other directions 

resulting in the small uniaxial strain when the composites is subjected to off-axis 

loading.  By taking o90  specimens as an example (see Fig 6.2(b) and Fig. 6.3(b)), 

apparently, it shows that the transverse deformation 22ε  for the composites with 

thermal stress is less than that without thermal stress.  Thus, it was suggested that the 

off-axis composites would become stiffer if the thermal residual stresses is involved 

in the analysis. 

 

6.2 Discussion of Fiber Shape and Fiber Arrangement Effect 

6.2.1 Fiber Shape Effect 

Two fiber shapes (square fiber and round fiber) embedded in the square edge 

packing (SEP) of RVE were discussed using the square fiber model (SFM) and 

generalized method of cells (GMC).  When the square shape fiber was considered, 

the typical SFM and GMC shown in Fig. 3.2 and Fig.4.4 were adopted to perform the 

simulations.  On the other hand, the modified GMC [20] with 2626×  subcells as 
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shown in Fig. 6.4 and the modified SFM model with 50 subcells in fibrous region A 

as shown in Figs. 6.5 were employed to describe the RVEs containing the round fiber.  

In the study, the fiber properties are given in Table 2 with fiber volume fraction 60 % 

while the plastic properties of the matrix, with 3.4 GPa Young’s modulus and 0.37 

Poisson’s ratio, were characterized using power law (see eqn 2.2.8) with 

111042.6A −×=  and 11.4n = .  All simulation results were demonstrated in Figs. 

6.6 (a)-(d).  According to the results, it is found that, for all off-axis angles, the 

round fiber and square fiber exhibit the similar results if the micromechanical models 

applied are the same.  Therefore, the round fiber can be replaced with the square 

fiber for saving CPU cost since a large number of subcells are required for modeling 

the RVE with round fiber. 

 

6.2.2 Fiber Arrangement Effect 

The stress - strain curves of the off-axis composites with two different fiber 

arrangements, i.e. square edge packing (SEP) and square diagonal packing (SDP), 

were generated using finite element method (FEM) together with modified square 

fiber model (SFM) and generalized method of cells (GMC).  It is noted that to be 

consistent with the all three models, i.e., FEM, modified SFM and GMC, the RVEs 

with round fiber were taken into account, although lots of computation time is 

required.  The approach regarding the FEM analysis was discussed in chapter 5.  

For GMC and SFM, the RVEs with the square edge packing were presented early in 

Figs. 6.4 and 6.5, respectively.  Nevertheless, for the square diagonal packing, the 

RVE used for GMC was divided into 2020×  subcells as shown in Fig. 6.7 and the 

RVE used for modified SFM was divided into three regions, i.e., two A regions and 

one B region, as shown in Fig. 6.8 where thirty subcells is contained in region A and 

twenty subcells were included in region B.  The fiber properties were given in Table 
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2 with 60 % volume fraction while the matrix was assumed to follow the constitutive 

curve shown in Fig. 5.3 which was curve-fitted by a power law (eqn 2.2.8) with the 

coefficients 141042.6A −×=  and 9.3n = . It is noted that the above ingredient 

properties were the same as those used in the FEM analysis. 

Figs. 6.9(a)-(d) demonstrates the stress and strain curves obtained from the 

RVE with SEP and SDP fiber arrangement using modified SFM and GMC, 

respectively.  It was shown that the SEP fiber arrangement exhibits stiffer material 

behavior the SDP arrangement for all off-axis angles.  Moreover, at SDP fiber 

arrangement, the constitutive behaviors calculated from GMC and modified SFM are 

almost the same no matter the fiber orientation.  However, for the SEP fiber 

arrangement, when the fiber orientation is small, the results obtained from GMC and 

modified SFM are similar, while at large fiber orientation, the GMC model provides 

stiffer material properties than the modified SFM.  The numerical simulations of the 

RVE with SEP and SDP fiber arrangements using FEM were illustrated in 

Figs.6.10(a)-(d).  In contrast to modified SFM and GMC, there is no significant 

difference found in the FEM analysis between SEP and SDP fiber array when the 

off-axis angle is small. When the off-axis angle becomes larger, the corresponding 

discrepancy is getting significant.  The comparisons of the predictions using 

modified SFM, GMC and FEM for the RVE with SEP or SDP fiber array were shown 

in Figs. 6.11(a)-(h).  It can be seen that no matter in SEP case or in SDP case, FEM 

analysis always shows stiffer material properties rather than GMC and modified SFM.  

 

6.3 Comparing with Experimental Data 

In order to verify the accuracy of the constitutive behaviors of fiber 

composites predicted using square fiber model (SFM) and generalized method of cells 

(GMC), off-axis composites with fiber orientations of 15, 30, 45 and 60 degrees were 
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tested at strain rate ranges from 10-4 to 550/s.  The experimental data of the PPG 

graphite/epoxy composites can be found in the reference [30], and the associated 

material properties of the HTA-12k graphite fiber and the epoxy were listed in Table 1 

where the fiber was assumed to be transverse isotropic material [31].  It was noted 

that in the fiber phase, since only E1 was provided from the manufacture, the other 

properties were evaluated by the trial-and-error method to accomplish the 

experimental elastic constants of the off-axis composites, if possible.  Moreover, the 

fiber volume fraction of the PPG graphite/epoxy composites was also assumed to be 

69% in order to satisfy the elastic deformation of the composites.  Nevertheless, with 

this fiber volume fraction together with ingredient properties, it was found that the 

model predictions obtained either from SEP fiber array or SDP fiber array are softer 

than the experimental data.  In order to properly characterize the experimental data, 

the RVE with SEP was selected in the analysis, since the RVE with SEP is stiffer than 

that with SDP and closer to the current experimental data.  From the forgoing 

investigation, it was suggested that round fiber included in the RVE provide the 

similar results to those obtained from the RVE with the square one.  Thus, to 

simplify the analytical process, the square fiber was selected and embedded in the 

RVE for the micromechanical analysis.  In addition, it should be mentioned that the 

plastic deformation described by the FEM analysis is quite small as compared to the 

experimental data such that it is not suitable for modeling the current material system.  

In view of the forgoing, it was suggested the RVE with the square fiber in the square 

edge packing was adopted in the present predictions.  The model predictions based 

on SFM and GMC were respectively shown in Figs. 6.12(a)-(d) and Figs. 6.13(a)-(d) 

together with the experimental data.  It was found that the stress and strain curves is 

quite sensitive to the strain rates and moreover, as the strain rate increased, the 

material becomes stiff.  Comparison of the model predictions with the experimental 
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data reveals that the micromechanical model together with the viscoplasticity model 

for the matrix is capable of predicting the nonlinear rate dependent behaviors of 

off-axis specimens at strain rate up to 550/s, although there is still discrepancy 

between the experimental data and model predictions.  Based on Figs 6.12 and 6.13, 

it seems that the GMC model provides better predictions than the SFM when 

compared to the experimental data of the current graphite/epoxy system. 
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Chapter 7  Conclusion 

The thermal stress effect, fiber shape effect and fiber arrangement effect on 

nonlinear rate dependent behavior of fiber composites was investigated using square 

fiber model, generalized method of cells and finite element analysis.  It was shown 

that with the presence of thermal residual stress, the fiber composites become stiffer 

than those without thermal stress.  Regarding the fiber arrangement effects, the RVE 

with square edge packing (SEP) array is stiffer than that with square diagonal packing 

(SDP).  In addition, the RVEs containing either round fiber or square fiber result in 

the similar material behavior of fiber composites. 

In order to validate the model predictions, the experimental results of the 

graphite/epoxy composites tested at various strain rates were employed for the 

comparison.  The model predictions were obtained from the SFM and GMC analysis 

on the RVE with SEP fiber array containing the transverse isotropic fiber and 

elastic-viscoplastic matrix.  The viscoplastic behaviors of epoxy resin were 

described using a three parameters viscoplasticity model written in the form of power 

law.  Comparing the model predictions and experimental data reveals that the GMC 

is better than the SFM to predict the nonlinear rate sensitivity of off-axis specimens at 

strain rate up to 550/s if the current material properties were applied.  Comparison of 

model predictions obtained from GMC and SFM analysis with the experimental 

results revealed that the micromechanical approaches are capable of predicting the 

nonlinear rate sensitivity of off-axis specimens although there are still distinctions 

between the model and the experimental results. 
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Appendix 
A. A MATLAB Code for Square Fiber Model 
 

Input Symbol List 

Ef1, Ef2, nuf12, Gf12, volf – Young’s modulus 1 (and 2), Poisson’s ratio ,shear 
modulus and volume fraction of the fiber. 

Em, num, Gm – Young’s modulus, Poisson’s ratio and shear modulus of the matrix. 
pn, xi, pm – denote n, χ  and m in the three parameters model. 
time – A matrix to store the total loading time.  The Row represents different strain 

rates while the column denotes various off-axis angles. 
ratetype – An index to point what strain rate was in calculation. 
angle, Nstep – off-axis angle and total steps of loop. 

Matrix and Scalar Symbol List 

saf – Fiber compliance matrix. 
eSm – Matrix compliance matrix. 
v1, v2 – Volume fraction of region AF and AM relative to region A. 
Tsig, Teps – Transformation matrix relatively for stress and strain to translate 

between loading coordinates and material principle axis. 
sigma, sigb – Current stress states in region AM and B, respectively. 
Tstress, Tstrain – Overall stress and strain in the loading coordinate system. 
depsam, depsaf – Total strain rates in region AM and AF. 
dpepsam, dpepsb – Plastic strain rates in region AM and B. 
dsigaf, dsigam – Stress rate in region AF and AM. 
t, sigrate – Current time and associated stress rate. 
dsig, dsig1 – Applied stress rate in the material principle axis and loading coordinate 

system, respectively. 
efsig, efeps – Effective stress and effective plastic strain rate. 

pSm, sa, sb, ca, cb, c, s - [ ]pS , [ ]AS , [ ]BS , [ ]AC , [ ]BC , [ ]C , [ ]S  

deps, deps1 – Strain rate associated to applied stress rate in the material coordinate 
system and loading coordinate system. 

 

 
Note: Subroutine “stressrate(t,ratetype,angle/15)”, which involves stress rate – 

time polynomial equation from curve-fitting of experimental data, have three input 
parameters to output corresponding stress rate at each time increment.  The 
subroutine can be designed by users and was not demonstrated here. 
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Code 
% Square Fiber Model Combined with Three Parameters Model 

clear all 

%-----------------Material Properties--------------------- 

% Fiber 

Ef1=235000;    % E11 of fiber 

Ef2=18000;     % E22 of fier 

nuf12=0.2;     % Poisson’s ratio 12 of fiber 

Gf12=35000;    % Shear modulus 12 of fiber 

volf=0.69;     % fiber volume fraction 

% Matrix 

Em=3400;       % Young’s modulus of the matrix 

num=0.373;         % Poisson’s ratio of the matrix 

Gm=Em/(2*(1+num)); % Shear modulus of the matrix 

pn=5.62;   % Coefficient n in the 3 parameters model 

xi=1.23e-14;  % Coefficient xi in the 3 parameters model 

pm=-0.168;  % Coefficient m in the 3 parameters model 

%--------------------------------------------------------- 

% Loop & angle 

time=[208 694 695 675 380; 

     1.83 7.25 10.9 6.9 4.54;  

     0.0323 0.0725 0.0981 0.0801 0.05; 

     5.1e-5 7.07e-5 7.84e-5 8.65e-5 6.4e-5]; 

ratetype=3; 

angle=30;                        % Off-axis angle 

if angle == 90 

    totime=time(ratetype,5); 

else 

    totime=time(ratetype,angle/15); 

end 

%totime=time(ratetype,2); 

Nstep=450;                       % Total time steps 

dtime=totime/Nstep;              % Associated time increment 

rad=angle/180*pi; 

 

%--------------------------------------------------------- 

saf=[1/Ef1 -nuf12/Ef1 0; -nuf12/Ef1 1/Ef2 0; 0 0 1/Gf12]; % fiber compliance matrix 

eSm=[1/Em -num/Em 0; -num/Em 1/Em 0; 0 0 1/Gm]; % matrix compliance matrix (elastic) 
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v1=sqrt(volf);   % volume fraction of AF with respective to region A 

v2=1-v1;         % volume fraction of AM with respective to region A 

 

% Transformation matrix to translate stress 

Tsig=[cos(rad)^2 sin(rad)^2 2*cos(rad)*sin(rad);... 

      sin(rad)^2 cos(rad)^2 -2*cos(rad)*sin(rad);... 

      -cos(rad)*sin(rad) cos(rad)*sin(rad) cos(rad)^2-sin(rad)^2]; 

 

% Transformation matrix to translate strain 

Teps=[cos(rad)^2 sin(rad)^2 -cos(rad)*sin(rad);... 

      sin(rad)^2 cos(rad)^2 cos(rad)*sin(rad);... 

      2*cos(rad)*sin(rad) -2*cos(rad)*sin(rad) cos(rad)^2-sin(rad)^2]; 

 

% ---------------------matrix pre-setup------------------- 

sigam=zeros(3,1); 

sigb=zeros(3,1); 

Tstress=zeros(Nstep+1,1); 

Tstrain=zeros(Nstep+1,1); 

depsam=zeros(3,1); 

depsaf=zeros(3,1); 

dpepsam=zeros(3,1); 

dpepsb=zeros(3,1); 

depsb=zeros(3,1); 

dsigaf=zeros(3,1); 

dsigam=zeros(3,1); 

%-------------------------Main Loop----------------------- 

for n=1:Nstep; 

   t=n*dtime;                    % current time 

   sigrate=strainrate(t,ratetype,angle/15); 

   dsig1=[sigrate; 0; 0];        % x-y stress rate 

   Tstress(n+1,1)=Tstress(n,1)+dsig1(1,1)*dtime; % Overall stress 

   dsig=Tsig*dsig1;                              % 1-2 stress rate 

efeps=2/3*sqrt(3*(dpepsam(1)^2+dpepsam(2)^2+dpepsam(1)*dpepsam(2)+dpepsam(3)^2/

4));  

   if n = = 1 

       A=0; 

   else 

       A=xi*(efeps)^pm; 
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   end 

             

   s1=1/3*(2*sigam(1,1)-sigam(2,1));            

   s2=1/3*(-sigam(1,1)+2*sigam(2,1)); 

   s3=2*sigam(3,1); 

   efsig=sqrt((sigam(1,1)+sigam(2,1))^2-3*(sigam(1,1)*sigam(2,1)-sigam(3,1)^2));  

   st=[2*(sigam(1,1)+sigam(2,1))-3*sigam(2,1) 

2*(sigam(1,1)+sigam(2,1))-3*sigam(1,1)  

6*sigam(3,1)];    

   pSm=3/4*A*pn*efsig^(pn-3)*[s1*st; s2*st; s3*st]; 

   sam=eSm+pSm; 

             

   % sm matrix 

   b1=(v1*Ef1*sam(1,1)+v2)^-1;   

   b2=-v1*(Ef1*sam(1,2)+nuf12)*(v1*Ef1*sam(1,1)+v2)^-1; 

   b3=-v1*Ef1*sam(1,3)*(v1*Ef1*sam(1,1)+v2)^-1; 

   a1=(1-v2*b1)/v1; 

   a2=-v2*b2/v1; 

   a3=-v2*b3/v1; 

   sa(1,1)=a1/Ef1; 

   sa(1,2)=a2/Ef1-nuf12/Ef1; 

   sa(1,3)=a3/Ef1; 

   sa(2,1)=sa(1,2); 

   sa(2,2)=v1*(1/Ef2-nuf12*a2/Ef1)+v2*(b2*sam(2,1)+sam(2,2)); 

   sa(2,3)=-v1*a3*nuf12/Ef1+v2*(b3*sam(2,1)+sam(2,3)); 

   sa(3,1)=sa(1,3); 

   sa(3,2)=sa(2,3); 

   sa(3,3)=v1/Gf12+v2*(b3*sam(3,1)+sam(3,3)); 

   ca=inv(sa); 

       

   % CB matrix 

efeps=2/3*sqrt(3*(dpepsb(1)^2+dpepsb(2)^2+dpepsb(1)*dpepsb(2)+dpepsb(3)^2/4)); 

   if n = = 1 

       A=0; 

   else 

       A=xi*(efeps)^pm; 

   end 
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   s1=1/3*(2*sigb(1,1)-sigb(2,1));            

   s2=1/3*(-sigb(1,1)+2*sigb(2,1)); 

   s3=2*sigb(3,1); 

    efsig=sqrt((sigb(1,1)+sigb(2,1))^2-3*(sigb(1,1)*sigb(2,1)-sigb(3,1)^2));   

st=[2*(sigb(1,1)+sigb(2,1))-3*sigb(2,1)  

2*(sigb(1,1)+sigb(2,1))-3*sigb(1,1)  

6*sigb(3,1)];    

   pSm=3/4*A*pn*efsig^(pn-3)*[s1*st; s2*st; s3*st];    

   sb=eSm+pSm; 

   cb=inv(sb);  

   c=v1*ca+v2*cb; 

   s=inv(c); 

    

   deps=s*dsig;    % total strain rate 

   depsa=deps;     % total strain rate of region A 

   depsb=deps;     % total strain rate of region B 

   dsiga=ca*depsa; % stress rate of region A 

   dsigb=cb*depsb; % stress rate of region B 

   dsigaf(2:3,1)=dsiga(2:3,1);   

   dsigam(2:3,1)=dsiga(2:3,1);   

   depsaf(1,1)=depsa(1,1); 

   dsigaf(1,1)=depsaf(1,1)*Ef1+nuf12*dsigaf(2,1); 

   depsaf(2,1)=saf(2,:)*dsigaf; 

   depsaf(3,1)=saf(3,:)*dsigaf; 

   depsam(1,1)=depsa(1,1); 

   depsam(2,1)=(depsa(2,1)-v1*depsaf(2,1))/v2; 

   depsam(3,1)=(depsa(3,1)-v1*depsaf(3,1))/v2; 

   dsigam(1,1)=(dsiga(1,1)-v1*dsigaf(1,1))/v2; 

    

   dpepsam=depsam-Sm*dsigam; 

   dpepsb=depsb-Sm*dsigb; 

   deps1=Teps*deps; 

   Tstrain(n+1,1)=Tstrain(n,1)+deps1(1,1)*dtime; 

   sigam=sigam+dsigam*dtime; 

   sigb=sigb+dsigb*dtime;  

end 
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B. A MATLAB Code for Generalized Method of Cells 
 

Since some symbols in the GMC code are a repetition of those appearing in 
the SFM code, only differences are listed.  This code is addressed on four regions 
RVE with fiber phase at 1=γ=β . 
 

Input Symbol List 

h, l – The height and the width of the RVE. 

Nb, Nr - βN , γN  

Nfiber – Denote how many subcells are occupied by the fiber phase. 
regionf – A matrix to store what cells are occupied by fibers.  The fibrous subcell 

)(βγ  must be translated to a re-defined fiber number by using the equation 

γ+−β= γN)1(N  and N was arranged in the regionf matrix. 

Matrix and Scalar Symbol List 

bb, hh – The length of subcell 
1
1

=γ
=β

and 
2
1

=γ
=β

in the x2 direction. 

hb, hr – Two matrix to store the geometry information bb and hh. 
Sm – Compliance matrix including plastic part. 

AG, J, AVPM, AVP, K, AtVP, Bvp - [ ]GA , [ ]J , [ ]VP
MA , [ ]VPA , [ ]K , [ ]VPA~ , VP*B  

substress – A matrix to store current stress state of all subcells. 
sigma – A transition matrix to get current stress state for specified subcell from 

substress matrix. 
Cs – Stiffness matrix of all subcells. 
Sf, Cf – Compliance matrix and stiffness matrix of the fiber. 
eSm, eCm – Elastic compliance matrix and elastic stiffness matrix of the matrix. 
index, index2 – Indexes to point out which subcell should be under calculation. 

betahat, gamahat - β̂  and γ̂ . 

subteps, subsigrate – Strain rate and stress rate of specified subcell. 
subeeps, subeps – Elastic strain rate and plastic strain rate of specified subcell. 
 

 
 
 
 



 71

Code 
clear all 

% Material Properties (transverse isotropic fiber + isotropic matrix) 

Ef1=235000;     % Young’s modulus 11 of the fiber 

Ef2=18000;     % Young’s modulus 22 of the fiber 

Ef3=Ef2;      % Young’s modulus 33 of the fiber 

nuf12=0.2;      % Poisson’s ratio 12 of the fiber 

nuf13=0.2;     % Poisson’s ratio 13 of the fiber 

nuf23=0.25;     % Poisson’s ratio 23 of the fiber 

Gf12=35000;    % Shear modulus 12 of the fiber 

Gf13=Gf12;     % Shear modulus 13 of the fiber 

Gf23=Ef2/(2*(1+nuf23));  % Shear modulus 23 of the fiber 

Em=3400;          % Young’s modulus of the matrix 

num=0.373;       % Poisson’s ratio of the matrix 

Gm=Em/(2*(1+num));    % Shear modulus of the matrix 

 

% Coefficients of 3 parameter model 

pn=5.62;      % Coefficient n in the 3 parameters model 

xi=1.23e-14;     % Coefficient xi in the 3 parameters model 

pm=-0.168;     % Coefficient m in the 3 parameters model 

 

% region dimension & cell situation 

h=1;      % the length of the RVE 

l=1;      % the width of the RVE 

volf=0.69;     % fiber volume fraction 

Nb=2; 

Nr=2; 

bb=sqrt(volf); 

hh=1-bb; 

hb=[bb hh]; 

hr=hb; 

Nfiber=1; 

regionf=[1]; 

 

% Loop & angle 

time=[208 694 695 675 380;  

     1.83 7.25 10.9 6.9 4.54;  

     0.0323 0.0725 0.0981 0.0801 0.05; 
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     5.1e-5 7.07e-5 7.84e-5 8.65e-5 6.4e-5]; 

ratetype=3; 

angle=60;         % Off-axis angle 

if angle == 90 

    totime=time(ratetype,5); 

else 

    totime=time(ratetype,angle/15); 

end 

Nstep=500;         % Total time steps 

dtime=totime/Nstep;       % Time increment 

rad=angle/180*pi; 

 

% matrix pre-setup 

Sm=zeros(6,6); 

AG=zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr); 

J=zeros(2*(Nb+Nr)+Nb*Nr+1,6); 

substress=zeros(6*Nb*Nr,1); 

deps=zeros(6,1); 

AVPM=zeros(5*Nb*Nr-2*(Nb+Nr)-1,6*Nb*Nr); 

sigam=zeros(6,1); 

Cs=zeros(6*Nb*Nr,6); 

Tstrain=zeros(Nstep+1,1); 

Tstress=zeros(Nstep+1,1); 

AVP=zeros(6*Nb*Nr,6); 

 

% compliance matrix of the fiber and the matrix 

nuf21=Ef2*nuf12/Ef1; 

nuf31=Ef3*nuf13/Ef1; 

nuf32=Ef3*nuf23/Ef2; 

Sf=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;... 

    -nuf13/Ef1 -nuf23/Ef2 1/Ef3 0 0 0; 0 0 0 1/Gf23 0 0; 0 0 0 0 1/Gf13 0; 0 0 0 0 0 

1/Gf12]; 

Cf=inv(Sf); 

 

eSm=[1/Em -num/Em -num/Em 0 0 0; -num/Em 1/Em -num/Em 0 0 0;  

-num/Em -num/Em 1/Em 0 0 0; ... 

      0 0 0 1/Gm 0 0; 0 0 0 0 1/Gm 0; 0 0 0 0 0 1/Gm]; 

eCm=inv(eSm); 
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% initial Cs 

for beta=1:Nb 

   for gama=1:Nr 

      index=(beta-1)*Nr+gama; 

      p1=6*(index-1)+1; 

      p2=6*(index-1)+6; 

      multi=1; 

      region=regionf-index; 

      for j=1:Nfiber 

         multi=multi*region(1,j); 

      end   

      if multi ~= 0 

         Cs(p1:p2,:)=eCm; 

      else 

         Cs(p1:p2,:)=Cf; 

      end       

   end 

end 

 

% AG matrix 

index=-5; 

for i=1:Nb*Nr    % 11 displ. continuity 

   index=index+6; 

   AG(i,index)=1; 

   J(i,1)=1; 

end 

 

for gama=1:Nr     

   for beta=1:Nb 

      index=(beta-1)*Nr+gama; 

      AG(Nb*Nr+gama,(index-1)*6+2)=hb(1,beta); 

      J(Nb*Nr+gama,2)=h;    

      AG(Nb*Nr+Nr+beta,(index-1)*6+3)=hr(1,gama); 

      J(Nb*Nr+Nr+beta,3)=l;    

      AG(Nb*Nr+Nr+Nb+1,(index-1)*6+4)=hb(1,beta)*hr(1,gama)/2; 

      J(Nb*Nr+Nr+Nb+1,4)=h*l/2; 

      AG(Nb*Nr+Nr+Nb+1+beta,(index-1)*6+5)=hr(1,gama)/2; 

      J(Nb*Nr+Nr+Nb+1+beta,5)=l/2; 



 74

      AG(Nb*Nr+Nr+2*Nb+1+gama,(index-1)*6+6)=hb(1,beta)/2; 

      J(Nb*Nr+Nr+2*Nb+1+gama,6)=h/2; 

   end 

end 

 

% Tsig & Teps (Transformation Matrix) 

Tsig=[cos(rad)^2 sin(rad)^2 0 0 0 2*cos(rad)*sin(rad);... 

      sin(rad)^2 cos(rad)^2 0 0 0 -2*cos(rad)*sin(rad);... 

      0 0 1 0 0 0;... 

      0 0 0 cos(rad) -sin(rad) 0;... 

      0 0 0 sin(rad) cos(rad) 0;... 

      -cos(rad)*sin(rad) cos(rad)*sin(rad) 0 0 0 cos(rad)^2-sin(rad)^2]; 

 

Teps=[cos(rad)^2 sin(rad)^2 0 0 0 -cos(rad)*sin(rad);... 

      sin(rad)^2 cos(rad)^2 0 0 0 cos(rad)*sin(rad);... 

      0 0 1 0 0 0;... 

      0 0 0 cos(rad) sin(rad) 0;... 

      0 0 0 -sin(rad) cos(rad) 0;... 

      2*cos(rad)*sin(rad) -2*cos(rad)*sin(rad) 0 0 0 cos(rad)^2-sin(rad)^2]; 

 

% K matrix 

K=[zeros(5*Nb*Nr-2*(Nb+Nr)-1,6); J]; 

 

% Main Loop 

for i=1:Nstep 

   t=i*dtime; 

   sigrate=strainrate(t,ratetype,angle/15); 

   dsig1=[sigrate; 0; 0; 0; 0; 0]; 

   dsig=Tsig*dsig1; 

   Tstress(i+1,1)=Tstress(i,1)+dsig1(1,1)*dtime;  

   count=0; 

   for beta=1:Nb-1 % construct AVPM matrix 

      for gama=1:Nr 

         betahat=beta+1; 

         index=(beta-1)*Nr+gama-1; 

         index2=(betahat-1)*Nr+gama-1; 

         count=count+1; 

         for j=1:6 
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            AVPM(count,6*index+j)=Cs(6*index+2,j);  

            AVPM(count,6*index2+j)=-Cs(6*index2+2,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+6,j);  

            AVPM(count,6*index2+j)=-Cs(6*index2+6,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+4,j);  

            AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

         end 

      end 

   end 

    

   for gama=1:Nr-1  

      for beta=1:Nb 

         gamahat=gama+1; 

         index=(beta-1)*Nr+gama-1; 

         index2=(beta-1)*Nr+gamahat-1; 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+3,j);  

            AVPM(count,6*index2+j)=-Cs(6*index2+3,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+5,j);  

            AVPM(count,6*index2+j)=-Cs(6*index2+5,j); 

         end 

      end 

   end 

    

   for gama=1:Nr-1 

      count=count+1; 

      beta=Nb; 

      gamahat=gama+1; 
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      index=(beta-1)*Nr+gama-1; 

      index2=(beta-1)*Nr+gamahat-1; 

      for j=1:6 

         AVPM(count,6*index+j)=Cs(6*index+4,j);  

         AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

      end 

   end 

    

   AtVP=[AVPM; AG]; 

   AVP=inv(AtVP)*K; 

   Bvp=zeros(6,6);  

    

   for beta=1:Nb 

      for gama=1:Nr 

         index=(beta-1)*Nr+gama; 

         p1=6*(index-1)+1; 

         p2=6*(index-1)+6; 

         Bvp=Bvp+hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*AVP(p1:p2,:); 

      end 

   end 

   Bvp=Bvp/h/l; 

   deps=inv(Bvp)*dsig;  

   deps1=Teps*deps; 

   Tstrain(i+1,1)=Tstrain(i,1)+deps1(1,1)*dtime;   

   for beta=1:Nb 

      for gama=1:Nr 

         index=(beta-1)*Nr+gama; 

         p1=6*(index-1)+1; 

         p2=6*(index-1)+6; 

         multi=1; 

         region=regionf-index; 

         for j=1:Nfiber 

            multi=multi*region(1,j); 

         end   

          

         if multi ~= 0 

            subteps=AVP(p1:p2,:)*deps;  

            subsigrate=Cs(p1:p2,:)*subteps; 
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            subeeps=eSm*subsigrate; 

            subeps=subteps-subeeps; 

            

efeps=2/3*sqrt(1/2*((subeps(1,1)-subeps(2,1))^2+(subeps(2,1)-subeps(3,1

))^2+(subeps(3,1)-subeps(1,1))^2)+3/4*(subeps(4,1)^2+subeps(5,1)^2+sube

ps(6,1)^2)); 

                

            substress(p1:p2,1)=substress(p1:p2,1)+subsigrate*dtime; 

            sigam=substress(p1:p2,1); 

            s1=1/3*(2*sigam(1,1)-sigam(2,1)-sigam(3,1));            

            s2=1/3*(-sigam(1,1)+2*sigam(2,1)-sigam(3,1)); 

            s3=1/3*(-sigam(1,1)-sigam(2,1)+2*sigam(3,1)); 

            s4=2*sigam(4,1); 

            s5=2*sigam(5,1); 

            s6=2*sigam(6,1); 

efsig=sqrt((sigam(1,1)+sigam(2,1)+sigam(3,1))^2-3*(sigam(2,1)*sigam(3,1

)-sigam(4,1)^2+sigam(1,1)*sigam(3,1)-sigam(5,1)^2+sigam(1,1)*sigam(2,1)

-sigam(6,1)^2)); 

            A=xi*(efeps)^pm; 

            pSm=9/4*A*pn*efsig^(pn-3)*[s1; s2; s3; s4; s5; s6]*[s1; s2; s3; s4; s5; 

s6]'; 

            Sm=eSm+pSm; 

            Cs(p1:p2,:)=inv(Sm); 

         else 

            Cs(p1:p2,:)=Cf; 

         end       

      end 

   end    

end 
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Table 1. Material properties used in the micromechanical analysis where the matrix 
properties were obtained from experiments and the fiber properties were determined 
to fit the linear elastic of experimental data at all off-axis angles. 
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Table 2. Material properties employed in the finite element analysis. 
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(a)                         (b) 

Fig. 2.1 Dimensions of tensile and compression specimens. (a) Cylindrical 

compression specimen. (b) Coupon tensile specimen. 
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Fig. 2.2 Experimental setup for compression tests. 
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Fig. 2.3 Compression test results of polymer at 10-4, 10-2 and 1/s strain rates. 
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Fig. 2.4 Tensile test result to determine Poisson’s ratio of the polymer. 
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Fig. 2.5 Schematic for a strain gage subjected to a biaxial strain field. 
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Fig. 2.6 A half-bridge circuit for measuring the coefficient of thermal expansion. 
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Fig. 2.7 Thermal response for the polymer. 
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Fig. 2.8 Effective stress – effective plastic strain curves for polymer at three different 

strain rates. 
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Fig. 2.9 Effective plastic strain versus time curve for epoxy at strain rate of 10-4/s. 
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Fig. 2.10 Log-log plot for determining the parameters in the viscoplasticity model. 
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Fig. 2.11 The stress – strain curve of the polymer from SHPB results. 
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Fig. 2.12 The stress – time curve from SHPB test. 
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Fig. 2.13 Prediction results of polymer at different strain rates by using three 

parameters model. 
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(a) (b) 

Fig. 3.1 Demonstration of RVEs with various fiber arrangements. (a) Square edge 

packing array. (b) Square diagonal packing array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Geometry of square fiber model [12]. 
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Fig. 3.3 Square edge packing array for modified square fiber model. 
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Fig. 3.4 Fiber distribution of square diagonal packing array (SDP) based on the fiber 

volume fraction. (a) Less than 39.3 %. (b) Equal to 39.3 %. (c) Greater than 39.3 

%. (d) Attain to maximum fiber volume fraction 78.5 %. 
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Fig. 3.5 Square diagonal packing array for modified square fiber model. 
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Fig. 3.6 Two fiber phases can be treated as a whole one if the constant stress or strain 

assumptions in eqn (3.2.21) were applied. 
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Fig. 4.1 The coordinate system and geometry information of the generalized method 

of cells [15]. 

 

 

( )β̂
2x

( )γ
3x

( )γ
3x

( )β
2x

γl

βh

β̂
h

( )β
2x

( )β̂
2x

( )Ix2

3x
1x

2x

( )β̂
2x

( )γ̂
3x

( )β
2x

( )γ̂
3x

γ̂l

( )β̂
2x

( )γ
3x

( )γ
3x

( )β
2x

γl

βh

β̂
h

( )β
2x

( )β̂
2x

( )Ix2

3x
1x

2x

( )β̂
2x

( )γ̂
3x

( )β
2x

( )γ̂
3x

γ̂l

( )β̂
2x

( )γ
3x

( )γ
3x

( )β
2x

γl

βh

β̂
h

( )β
2x

( )β̂
2x

( )Ix2

3x
1x

2x

( )β̂
2x

( )γ̂
3x

( )β
2x

( )γ̂
3x

γ̂l

 
Fig. 4.2 Local coordinate systems of the generalized method of cells [15]. 
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Fig. 4.3 Normal vectors at the interfaces of subcells. 
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Fig. 4.4 A four regions RVE employed in the GMC, in which 1=γ=β  represents 

the fiber phase. 
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Fig. 5.1 3-D square diagonal packing array employed in ANSYS. 

 
 
 

 

Fig. 5.2 (a) A finite element mesh generated by ANSYS. 
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Fig. 5.2 (b) A full view of finite element mesh. 
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Fig. 5.3 An assumed stress–strain curve of the matrix. 
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Fig. 6.1 (a) Simplified model for unidirectional fiber composites. (b) Evaluation of 
thermal residual stress based on the displacement continuity in the x direction. 
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Fig. 6.2(a) Thermal stress effect on the stress and strain curve of 300 fiber composite 

obtained from the square fiber model. 
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Fig. 6.2(b) Thermal stress effect on the stress and strain curve of 900 fiber composite 

obtained from the square fiber model. 
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Fig. 6.3(a) Thermal stress effect on the stress and strain curve of 300 fiber composite 

obtained from the generalized method of cells. 
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Fig. 6.3(b) Thermal stress effect on the stress and strain curve of 900 fiber composite 

obtained from the generalized method of cells. 
 
 

 

Fig. 6.4 The RVE with 2626×  subcells employed in the calculation of generalized 
method of cells (square edge packing). 
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Fig. 6.5 The RVE with 50 subcells in fibrous region employed in the modified square 

fiber model (square edge packing). 
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Fig. 6.6(a) Fiber shape effects on the stress and strain curves of 150 fiber composites 

using the generalized method of cells (GMC) and the square fiber model (SFM). 
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Fig. 6.6(b) Fiber shape effects on the stress and strain curves of 300 fiber composites 

using the generalized method of cells (GMC) and the square fiber model (SFM). 
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Fig. 6.6(c) Fiber shape effects on the stress and strain curves of 450 fiber composites 

using the generalized method of cells (GMC) and the square fiber model (SFM). 
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Fig. 6.6(d) Fiber shape effects on the stress and strain curves of 600 fiber composites 

using the generalized method of cells (GMC) and the square fiber model (SFM). 
 
 

 

Fig. 6.7 The RVE with 2020×  subcells employed in the calculation of generalized 
method of cells (square diagonal packing). 
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Fig. 6.8 The RVE employed in the modified square fiber model (square diagonal 

packing). 
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Fig. 6.9(a) The effect of fiber arrangements on the stress and strain curves of 150 fiber 

composites obtained from the SFM and GMC. 
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Fig. 6.9(b) The effect of fiber arrangements on the stress and strain curves of 300 fiber 

composites obtained from the SFM and GMC. 
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Fig. 6.9(c) The effect of fiber arrangements on the stress and strain curves of 450 fiber 

composites obtained from the SFM and GMC. 
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Fig. 6.9(d) The effect of fiber arrangements on the stress and strain curves of 600 fiber 

composites obtained from the SFM and GMC. 
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Fig. 6.10(a) The effect of fiber arrangements on the stress and strain curves of 150 

fiber composites obtained from the FEM. 
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Fig. 6.10(b) The effect of fiber arrangements on the stress and strain curves of 300 

fiber composites obtained from the FEM. 
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Fig. 6.10(c) The effect of fiber arrangements on the stress and strain curves of 450 

fiber composites obtained from the FEM. 
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Fig. 6.10(d) The effect of fiber arrangements on the stress and strain curves of 600 

fiber composites obtained from the FEM. 
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Fig. 6.11(a) Comparison of the stress and strain curves of 150 fiber composites with 

square edge packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(b) Comparison of the stress and strain curves of 300 fiber composites with 

square edge packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(c) Comparison of the stress and strain curves of 450 fiber composites with 

square edge packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(d) Comparison of the stress and strain curves of 600 fiber composites with 

square edge packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(e) Comparison of the stress and strain curves of 150 fiber composites with 

square diagonal packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(f) Comparison of the stress and strain curves of 300 fiber composites with 

square diagonal packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(g) Comparison of the stress and strain curves of 450 fiber composites with 

square diagonal packing array obtained from FEM, SFM and GMC. 
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Fig. 6.11(h) Comparison of the stress and strain curves of 600 fiber composites with 

square diagonal packing array obtained from FEM, SFM and GMC. 
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Fig. 6.12(a) Comparison of the experimental data with the model prediction obtained 

from SFM for 150 fiber composites. 
 



 108

Strain

St
re
ss
(M
Pa
)

0 0.01 0.02 0.03
0

50

100

150

200

250

300

350

450/s (Exp)
1/s (Exp)
10-2/s (Exp)
10-4/s (Exp)
450/s (SFM)
1/s (SFM)
10-2/s (SFM)
10-4/s (SFM)

θ = 30ο

 
Fig. 6.12(b) Comparison of the experimental data with the model prediction obtained 

from SFM for 300 fiber composites. 
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Fig. 6.12(c) Comparison of the experimental data with the model prediction obtained 

from SFM for 450 fiber composites. 
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Fig. 6.12(d) Comparison of the experimental data with the model prediction obtained 

from SFM for 600 fiber composites. 
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Fig. 6.13(a) Comparison of the experimental data with the model prediction obtained 

from GMC for 150 fiber composites. 
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Fig. 6.13(b) Comparison of the experimental data with the model prediction obtained 

from GMC for 300 fiber composites. 
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Fig. 6.13(c) Comparison of the experimental data with the model prediction obtained 

from GMC for 450 fiber composites. 
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Fig. 6.13(d) Comparison of the experimental data with the model prediction obtained 

from GMC for 600 fiber composites. 


