Chaos Synchronization and Chaos Control for Integral and Fractional Order Motor System

Student : Guo-Hua-Lin

Advisor : Zheng-Ming-Ge

ABSTRACT

In this thesis, synchronization by linear feedback control and adaptive control via a system variable, and global synchronization of three coupled chaotic systems with ring connection are achieved, and using conception of Pecoro and Carroll for complete, lag and anticipated synchronization are applied in BLDCM system. The generalized complete, lag and anticipated synchronization is presented in this thesis. In general, the chaotic behavior is found in nonlinear autonomous systems with order 3, in this thesis, we presented that chaos exists in the fractional order BLDCM system with order less than 3 and more than 3, and synchronization for fractional order of identical and different chaotic system are also achieved.

誌謝

此篇論文及碩士學業之完成,首先感謝指導教授 戈正銘老師的耐心教授及諄諄教 誨。老師對教育的熱情與學問傳續的努力皆是我最敬佩的,此外老師的樂觀的處世態 度,更是我效法的楷模。

在兩年的碩士光陰,很感謝我的兩位同學,莊為任與楊坤偉,感謝他們在我研究陷入 困難時的予以幫忙、協助,感謝李青一、鄭普建、陳炎生等諸位學長的熱心指導。

感謝我的大哥,大姐,二姐與小弟的支持,讓我毫無顧慮之下來完成學業。

Contents

ABSTRAC'	Т	i
ACKNOWI	LEDGEMENT	ii
CONTENT LIST OF FI	S GURES	111 V
Chapter 1	Introduction	1
Chapter 2	Decular and Chaotic Dynamics of Dwychless DC Mater	3
2 1	Autonomous Systems	3
2.1	Autonomous Systems	5
2.2	Single Time Scale Representation of the Equations of Motion	5
Chapter 3	The Synchronization of Chaotic BLDCM System via	8
	Control of a Single Variable	0
3.1	Synchronization by Linear Feedback Control via a Single Variable	8
3.2	Adaptive Control for Synchronization of BLDCM System	10
3.3	Global Synchronization of Three Coupled BLDCM Chaos Systems	12
	with Ring Connection	
	3.3.1 Chaos Synchronization of Three Chaotic Systems	12
	with Unidirectional Coupling	
	3.3.2 Chaos Synchronization of Three Chaotic Systems	14
	with Bidirectional Coupling	
Chapter 4	Anticipated, Lag and Complete to BLDCM Synchronizations in	16
	Chaotic System	
4.1	Complete Synchronization of BLDCM System	16
	4.1.1 Utilizing Pecora and Corroll Method for Synchronization	16
	4.1.2 Other Method to Achieve Complete Synchronization	17
4.2	Lag Synchronization of BLDCM System	17
	4.2.1 Utilizing Pecora and Corroll Method for Synchronization	17
	4.2.2 Other Method to Achieve Lag Synchronization	18
4.3	Anticipated Synchronization of BLDCM	19
4.4	Using Active Control to Generalized Lag, Anticipated,	20

	and Co	mplete Synchronization in BLDCM Chaos System	
	4.4.1	Linear Vector function	20
	4.4.2	Nonlinear Vector function	22
	4.4.3	Using Nonlinear Vector function for generalized	22
		synchronization of BLDCM and Lorenz chaotic system	
Chapter 5	Chaos i	in Fractional Order BLDCM and Its Control	24
5.1	Fractio	onal Derivative and Its Approximation	24
5.2	The Ch	aos in Fractional Order BLDCM System	25
5.3	Contro	l of Fractional Order System	26
5.4	Synchr	onization for Identical Fractional Order Chaotic System	27
5.5	Synchr	onization for Different Fractional Order Chaotic System	28
Chapter 6	Conclu	sions	30
References		E ESA	75

LIST OF FIGURE

Figure 2.1	A schematic diagram of typical brushless dc motor	31
Figure 2.2	Phase portrait for BLDCM.	32
Figure 2.3	Bifurcation diagram for BLDCM.	32
Figure 2.4	Lyapunov exponents for BLDCM.	33
Figure 3.1	Time history of errors.	33
Figure 3.2	Time history of errors.	34
Figure 3.3	Unidirectional coupling when the coupling parameters are	34
	$k_{11} = 1, k_{12} = 1, k_{13} = 0.5, k_{21} = 1, k_{22} = 0.5, k_{23} = 1, k_{31} = 0.5, k_{32} = 2, k_{33} = 1$ with	
	states x and y.	
Figure 3.4	Unidirectional coupling when the coupling parameter are	35
	$k_{11} = 1, k_{12} = 1, k_{13} = 0.5, k_{21} = 1, k_{22} = 0.5, k_{23} = 1, k_{31} = 0.5, k_{32} = 2, k_{33} = 1$ with	
	states y and z.	
Figure 3.5	Unidirectional coupling when the coupling parameter are	35
C	$k_{11} = 4, k_{12} = 2, k_{13} = 2, k_{21} = 3, k_{22} = 1, k_{23} = 2, k_{31} = 2, k_{32} = 2, k_{33} = 1$ with	
	1896	
	states x and y.	
Figure 3.6	Unidirectional coupling when the coupling parameters are	36
	$k_{11} = 4, k_{12} = 2, k_{13} = 2, k_{21} = 3, k_{22} = 1, k_{23} = 2, k_{31} = 2, k_{32} = 2, k_{33} = 1$ with	
	states y and z.	
Figure 3.7	Bidirectional coupling when the coupling parameters are	36
	$k_{11} = 0.5, k_{12} = 1, k_{13} = 0.7, k_{21} = 1, k_{22} = 0.5, k_{23} = 1, k_{31} = 0.7, k_{32} = 1, k_{33} = 0.5$ with	
	states x and y.	
Figure 3.8	Bidirectional coupling when the coupling parameters are	37
	$k_{11} = 0.5, k_{12} = 1, k_{13} = 0.7, k_{21} = 1, k_{22} = 0.5, k_{23} = 1, k_{31} = 0.7, k_{32} = 1, k_{33} = 0.5$ with	
	states y and z.	
Figure 3.9	Bidirectional coupling when the coupling parameter are	37
	$k_{11} = 3, k_{12} = 2, k_{13} = 3, k_{21} = 2, k_{22} = 2, k_{23} = 2, k_{31} = 2, k_{32} = 3, k_{33} = 3$ with	
	states x and y.	
Figure 3.10	Bidirectional coupling when the coupling parameters are	38

	$k_{11} = 3, k_{12} = 2, k_{13} = 3, k_{21} = 2, k_{22} = 2, k_{23} = 2, k_{31} = 2, k_{32} = 3, k_{33} = 3$	
	with states y and z.	
Figure 4.1	Complete synchronization.	38
Figure 4.2	Complete synchronization.	39
Figure 4.3	Complete synchronization.	39
Figure 4.4	Complete synchronization.	40
Figure 4.5	Complete synchronization.	40
Figure 4.6	Time history of x_2 and y_2 .	41
Figure 4.7	Time history of x_3 and y_3 .	41
Figure 4.8	Lag synchronization.	42
Figure 4.9	Time history of x_1 and y_1 .	42
Figure 4.10	Time history of x_2 and y_2 .	43
Figure 4.11	Lag synchronization.	43
Figure 4.12	Time history of x_3 and y_3 .	44
Figure 4.13	Lag Synchronization.	44
Figure 4.14	Time history of x_2 and y_2 .	45
Figure 4.15	Lag synchronization.	45
Figure 4.16	Time history of x_1 and y_1 .	46
Figure 4.17	Time history of x_2 and y_2 .	46
Figure 4.18	Time history of x_3 and y_3 .	47
Figure 4.19	Lag synchronization.	47
Figure 4.20	Time history of all state.	48
Figure 4.21	Anticipated synchronization.	48
Figure 4.22	Time history for y_1, y_2, y_3 and $x_1 + 1, x_2 + 1, x_3 + 1$.	49

Figure 4.23	Generalized complete synchronization error for	49
	$\mathbf{e} = y - (x+1) .$	
Figure 4.24	Time history for y_1, y_2, y_3 and $x_1 + 1, x_2 + 1, x_3 + 1$.	50
Figure 4.25	Generalized lag synchronization error for	50
	e = y(t) - (x(t - 0.5 + 1)).	
Figure 4.26	Time history for y_1, y_2, y_3 and $x_1 + 1, x_2 + 1, x_3 + 1$.	51
Figure 4.27	Generalized anticipated synchronization error for	51
	e = y(t) - (x(t+1.5)+1).	
Figure 4.28	Time history for y_1, y_2, y_3 and $2x_{1}^2, 2x_{2}^2, 2x_{3}^2$.	52
Figure 4.29	Generalized complete synchronization error for	52
Figure 4.30	e= $y(t) - (2x^2)$. Time history for y_1, y_2, y_3 and $2x_1^2(t-0.5), 2x_2^2(t-0.5), 2x_3^2(t-0.5)$.	53
Figure 4.31	Generalized lag synchronization error with $e=y(t)-(2x^2(t-0.5))$.	53
Figure 4.32	Time history for y_1, y_2, y_3 and $2x_1^2(t+1), 2x_2^2(t+1), 2x_3^2(t+1)$.	54
Figure 4.33	Generalized anticipated synchronization error for $e=y(t)-(2x^2(t+1))$.	54
Figure 4.34	Time history for y_1, y_2, y_3 and $3\cos(x_1), 3\cos(x_2), 3\cos(x_3)$.	55
Figure 4.35	Generalized complete synchronization error for $e=y(t)-3\cos(x)$.	55
Figure 4.36	Time history for y_1, y_2, y_3 and $3\cos(x_1(t-1)), 3\cos(x_2(t-1)), 3\cos(x_3(t-1))$.	56
Figure 4.37	Generalized lag synchronization error for $e = y(t) - 3\cos(x(t-1))$.	56

Figure 4.38	Time history	57
	for y_1, y_2, y_3 and $3\cos(x_1(t+0.2)), 3\cos(x_2(t+0.2)), 3\cos(x_3(t+0.2))$.	
Figure 4.39	Generalized anticipated synchronization error	57
	for $e=y(t)-3cos(x(t+0.2))$.	
Figure 5.1	Phase portrait of BLDCM with (i, j, k) = (1,1,1) and	58
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 4.55, 0.26, 0.53).$	
Figure 5.2	Phase portrait of BLDCM with (i, j, k) = (0.9,1,0.9) and	59
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 11, 0.26, 0.53).$	
Figure 5.3	Bifurcation diagram for BLDCM with order (i, j, k)=(0.9,1,1).	59
Figure 5.4	Phase portrait of BLDCM with (i, j, k) = (0.9,1,1) and	60
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 7, 0.26, 0.53).$	
Figure 5.5	Bifurcation diagram for BLDCM with order (i, j, k)=(0.9,1,1).	60
Figure 5.6	Phase portrait of BLDCM with (i, j, k) = (1,0.9, 1) and	61
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 6, 0.26, 0.53).$	
Figure 5.7	Bifurcation diagram for BLDCM with order (i, j, k)=(1,0.9,1).	61
Figure 5.8	Phase portrait of BLDCM with (i, j, k) = (1,1.1, 1) and	62
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 9, 0.26, 0.53).$	
Figure 5.9	Bifurcation diagram for BLDCM with order (i, j, k) = (1,1.1,1).	62
Figure 5.10	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.3)	63
	and $(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 0.2, 0.26, 0.53).$	
Figure 5.11	Bifurcation diagram for BLDCM with order (i, j, k)=(1,1,0.3).	63
Figure 5.12	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.4) and	64
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 1.5, 0.26, 0.53).$	
Figure 5.13	Bifurcation diagram for BLDCM with order (i, j, k)=(1,1,0.4).	64
Figure 5.14	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.5) and	65

$$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 1.5, 0.26, 0.53).$$

Figure 5.15	Bifurcation diagram for BLDCM with order $(i, j, k) = (1,1,0.5)$.	65
Figure 5.16	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.6) and	66
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 4, 0.26, 0.53).$	
Figure 5.17	Bifurcation diagram for BLDCM with order $(i, j, k) = (1,1,0.6)$.	66
Figure 5.18	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.7) and	67
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 6, 0.26, 0.53).$	
Figure 5.19	Bifurcation diagram for BLDCM with order $(i, j, k) = (1,1,0.7)$.	67
Figure 5.20	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.8) and	68
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 7.2, 0.26, 0.53).$	
Figure 5.21	Bifurcation diagram for BLDCM with order $(i, j, k) = (1,1,0.8)$.	68
Figure 5.22	Phase portrait of BLDCM with (i, j, k) = (1,1, 0.9) and	69
	$(v_q, v_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 3, 0.26, 0.53).$	
Figure 5.23	Bifurcation diagram for BLDCM with order $(i, j, k) = (1,1,0.9)$.	69
Figure 5.24	Time history of system state with fractional order (i, j,	70
	k)=(0.9,1,1)	
	The equilibrium point is	
	$(x_1, x_2, x_3) = (-3.1204, 59.6748, -10.1125).$	
Figure 5.25	Time history of system state with fractional order (i, j,	70
	k)=(1,0.9,1)	
	The equilibrium point	
	$is(x_1, x_2, x_3) = (0.04194, 23.6112, -0.003464).$	
Figure 5.26	Fig. 5-24 Phase portrait of BLDCM with (i, j, k) = (1,1, 1.1) and	71
	$(V_q, V_d, \delta, \sigma, \eta, T_L) = (0.168, 20.66, -0.875, 9, 0.26, 0.53).$	
Figure 5.27	Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,1.1).	71
Figure 5.28	Time history of system state with fractional order	72
	(i, j, k)=(1,1,0.9)The equilibrium point is	

 $(x_1, x_2, x_3) = (-2.2492, 59.8248, -14.0888).$

Figure 5.29	Synchronization for fractional order (i, j, k)=(0.9,1,1) and $\sigma = 7$.	72
Figure 5.30	Synchronization for fractional order (i, j, k)=(1,0.9,1) and $\sigma = 6$.	73
Figure 5.31	Synchronization for fractional order (i, j, k)=(1,1,0.9) and $\sigma = 3$.	73
Figure 5.32	The fractional order BLDCM system with (i, j, k) = (1,1,1), $\sigma = 4.55$. and (i, j, k) = (1,1,0.9), $\sigma = 3$.	74
Figure 5.33	The fractional order BLDCM system with (i, j, k) = (1,1,1), $\sigma = 4.55$ and (i, j, k) = (1,1,0.7), $\sigma = 6$.	74
Figure 5.34	The fractional order BLDCM system with (i, j, k) = (1,1,1), $\sigma = 4.55$ and (i, j, k) = (1,1,0.5), $\sigma = 1.5$.	75

