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ABSTRACT

In this thesis, synchronization by linear feedback control and adaptive control via a system
variable, and global synchronization of three coupled chaotic systems with ring connection
are achieved, and using conception of Pecoro and-Carroll for complete, lag and anticipated
synchronization are applied in BLDCM system:.. The generalized complete, lag and anticipated
synchronization is presented in.this thesis:—n- general, the chaotic behavior is found in
nonlinear autonomous systems with ‘order.3;-in this thesis, we presented that chaos exists in
the fractional order BLDCM system with order less than 3 and more than 3, and
synchronization for fractional order of identical and different chaotic system are also

achieved.
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