Chapter 1

Introduction

Chaos is either undesirable or desirable in various engineering problems. Many
researchers have devoted themselves to finding new ways to control chaos more efficiently.
Chaotic phenomena are quite useful in many applications such as fluid mixing [1], human
brain dynamics [2], and heart beat regulation [3], information processing, etc. Therefore,
making a periodic dynamical system chaotic, or preserving chaos of a chaotic dynamical

system, is very meaningful and worthy to be investigated.

Chaos synchronization has been applied in many fields such as secure communication
[4,5], chemical and biological systems [6,7], etc. A lot of researchers have studied
synchronization between two identical chaotic systems[10-16]. But up to now, the studies are
mostly concentrated on complete synchronization: Hence a large number of researches have
not been carried out for anticipated and lag synchronization which became an important part

of this thesis.

The object studied of this thesis is brushless dc motor (BLDCM). The major advantage
of BLDCM is the elimination of the physical contact between the brushes and the
commutators. BLDCM has been widely applied in direct-drive applications such as robotics
[8], aerospace [9], etc. In this thesis, (a) its synchronization by linear feedback control and
adaptive control via a system variable, and global synchronization of three coupled chaotic
systems with ring connection, (b) we investigate anticipated chaotic synchronization of
BLDCM and lag chaotic synchronization and complete chaos synchronization of identical

systems in different ways (c) chaos synchronization for fractional order motor system.

This thesis is organized as follows. Chapter 2 contains the dynamic equation of

BLDCM. First, the system model is described. Second, the system equations are transformed



to a compact form. In Chapter 3, the synchronization of two identical chaotic systems is
accomplished via control of a single variable, by a linear feedback controller and an adaptive
controller, and the method of ring connection is applied for three BLDCM chaotic systems for
synchronization. Numerical results are presented. In Chapter 4, two methods are investigated
to achieve anticipated synchronization and complete synchronization. Three methods are used
to achieve lag synchronization. In Chapter 5, chaos analysis, chaos control of fractional order
system and synchronization for identical and different fractional order system are presented,

and numerical results are shown.



Chapter 2
Regular and Chaotic Dynamics of

Brushless DC Motor

In this Chapter, the dynamic characteristics[18-19] of BLDCM are investigated. First,
the dynamic system model is given. Second, the state equations are transformed to a compact

form. Finally, we present the numerical analysis of periodic and chaotic behavior of BLDCM.

2.1 Description of the System Model and Differential Equation of

Motion

BLDCM is an electromechanical system. The physical model of BLDCM is shown in
Fig. 2.1 [17].

where

Q, ; : light transistor,

Q, , : transistor,

D : light diode,

L, , : stator winding,

H, ,: light sensor.

The equation of electrical dynamics can be described by [11-12]
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where
I(t) : the phase current vector,



L(@) : the inductance matrix,

V(1) : the vector corresponding to the voltages across the phase windings,

R : the winding resistance matrix,

A,, (0): the flux linkage vector due to the presence of permanent magnets,

@ : the displacement variable,

and the equation of mechanical dynamics can be describe by

d 1
aa)—j[T(I ,0) =T, (1)] (2.1.2)

where
@ : the rotator angular velocity,

J : the inertia of rotator,

T(1,6): the electromagnetic torque;
T, (t): the external torques imposed on the rotator shaft.

Accounting for viscous damping friction, the external torques can be described by
T =bo+T, (2.1.3)

where

b : the viscous damping coefficient,

T, : the torque due to external load, cogging effect, coulomb friction, etc.

Up to now, Eq. (2.1.1) and Eq.(2.1.2) explicitly depend on &. This is not expected,
since the solutions are hard to obtain. Therefore, we transform the above equations to the
rotating frame via Park’s transformation, and the explicit dependence on € can be
eliminated. We can obtain

d, 1

o L [-Ri, —na(L,i; +k)+V,] (2.1.4)

I, =



9; :Li[—Rid Lol +v,]

(2.1.5)
dt * L,
and the electromagnetic torque is described by
T(iq’id):n[ktiq +(L, _Lq)iqid] (2.1.6)

where

I 0 I, : the quadrature-axis and direct-axis current,
V,,V, : the quadrature-axis and direct-axis voltage,

Lq , L, : the fictitious inductance on the quadrature-axis and direct-axis,

R : winding resistance,

N : number of permanent polé pairs,

3 .
kt = Eke: ke is the permanent-magnet flux constant.

2.2 Single Time Scale Representation of the Equations of

Motion

In this section, we transform the system equations to a compact form, through an affine

transformation and a single time scale transformation [20].
X =®X +¢ (2.2.1)

(2.2.2)

where



X : the m-dimensional state vector,
®:mx M constant non-singular matrix,

¢ :mx1 constant vector.

Transformation matrix has not to be a specified form, for our purposes and simplicity, we

choose
o, 0 0 S
®P=10 o, 0], ¢=|g (2.2.3)
0 0 o S5
where
— &k, £+/5k? —4pSAbo? 1
o, = , 0,=00,, O, =—,
2 poA nt

Kk
S :O= G, =—p0, _L_t’ - :09
d

r=—, A=L,-L, d=-—-, p isafree parameter.
R L,

Combining Eq.(2.2.1)-(2.2.3) and Eq.(2.1.2)-(2.1.6), we obtain the equations in compact

forms. The numbers of parameters are greatly reduced.

) Xy (2.2.4)
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Here we have to assert that Eq.(2.2.4) is nondimensionalized. In the Chapters below, a
variety of different control inputs added on Eq.(2.2.4) are also nondimensionalized. However,
if we transform them to the original forms, each control input is dimensional and has its

practically physical meaning.

In addition, BLDCM is an autonomous system. It means that the period of the system is
not explicitly known, so different, choice 6f,Poincaré section would lead to different
bifurcation diagram. In the Chapters below, adding control inputs changes the dynamics of the

system, thus we have to modify~the choice of Poincaré section. Modifying Poincaré section,

we obtain almost the same bifurcation diagram. The only difference is the shift in X, axis.
Therefore, we just present the original bifurcation diagram.

At last, we present the numerical results. The parameters in numerical simulation are

L, =1.125x10%, L, =1.725x10°, R =09, n =4, v, =5 v, =435, J =5x10"

k =49.4x107, b=22.6><10'3, T, =0.1, =60, V_=0.168, V, A =20.66, O =0.875, 1=0.26,
t L IO q d 77

A

T,=0.53, and the initial condition is X, (0)=X, (0)=X,(0)=0.01. The phase portrait whose
Poincaré section is plane XX, , bifurcation diagram, and Lyapunov exponents are shown in

Fig. 2.2-2.4, respectively. It can be observed that the motion is period 1 for 0 =4.05, period 2

for 0=4.15, and period 4 for o=4.21. For o =4.55, the motion is chaotic.



Chapter 3
The Synchronization of Chaotic BLDCM System via

Control of a Single Variable
Two methods to achieve synchronization of chaotic BLDCM are presented[21]. The
synchronization of two identical chaotic systems is accomplished via control of a single
variable [21], by a linear feedback controller[22] and an adaptive controller[23-26].
Numerical results are presented. Chaos synchronization of three coupled chaos systems with
ring connection is studied[27,28]. Chaos synchronizations are given by using unidirectional

coupling or bidirectional coupling respectively.

3.1 Synchronization by Linear Feedback Control via a Single

Variable

First, we add a controller in third equationof Eq. (2.2.4). Then the drive system and the

response system are as follows:

X =V, =X = XX+ p X
X, =Vy =0 X, + XX, (3.1.1)
X3 =0 (X = X))+ X%~ T,

y1 :Vq Y=Y tpoY;
yzzvd_5y2+y1y3 (3.1.2)
Yi=o(Y,=Ys)+ny Yy, =T +U,

Let e, =y, —X,e, =Y, —X,,8, =Y, —X, be the synchronization errors between the drive
and response systems. Suppose that M, is the upper bound of the absolute value of variables,
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X, (since a chaotic system has bounded trajectories, constant M, exists) then the two BLDCM

systems will be synchronized under the control u,=u,=0, u,=-g.e, as follows.

From Eq. (3.1.1) and Eq. (3.1.2) error dynamics can be obtained:

e'1 =—€ + P&, +(X2X3 - y2y3)
é2 :_5e2+(y1y3_x1x3) (313)

&, =0(6 —€)+n(Y,Y, = XX%)— g€

Choose the following Lyapunov function
_ 1 > 1
V_E(e1 +e,+—e;)=0 (3.1.4)
n

Where 1 > 0. V is positive definite. The derivative of V along trajectories of Eq. (3.1.3) is

V =¢¢€ +e,6, +le3é3
(3.1.5)
2 » 1 2 o
=—€ —0€; —;(a +0,)e; + (,o+;)e1e3 +2X,6,e; + 6,6,

For sufficient small e=[e1 e, e ]T , the term of third degree of e can be neglected for judge

stability, then

V <—e’ - o€l —l(a+ g.)e +(p+g)|ele3|+2M1 XN
n n (3.1.6)

=—¢'Pe

The negative coefficient matrix for the quadratic form in right hand side of Eq. (3.1.6) is

i 1 o]
1 0 —5(p+;)

P= 0 5 -M,

1 1
P+ M, —(o+g)
L n n

|

Obviously, to ensure that the origin of error system Eq.(3.1.3) is asymptotically stable, the
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matrix P should be positive definite, this is the case if and only if the following three

inequalities hold :

(A) 6>0

(B) M_g(/ﬂ_g)z _|\/|12 >0
n

(pn+0)’ +4M/n’ —4ndo

, then the matrix P is positive definite. V is
4no

According, if g, >

negative definite, which implies that the origin of error system Eq. (3.1.3) is asymptotically
stable for sufficiently small e. Therefore, the response Eq.(3.1.2) is synchronized with the

drive Eq.(3.1.1). The numerical simulation result is shown in Fig.3.1.

3.2 Adaptive Control for.Synchronization of BLDCM System
First, we add a controller u, =-(o + g)e, -in the third Eq. (2.2.4), the driver system and
the response system are as follows:
X

L=V =X = XX

X, =Vy =0 X, + XX, (3.2.1)
X; =0 (X —X)+n XX, T,

Yi=Vy—Yi—YaYs t o Y;
yz =Vy -0 Yt %Y; (3.2.2)
Ys=o(y, =Y +n Yy, -T +U,

Suppose that M, is the upper bound of the absolute value of X, (since a chaotic system has
bounded trajectories, constant M, exists) then the two systems will be synchronized under the
control U=U,=0, U,=—(a+g)e, where g=¢; as follows.

The error dynamics is
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e'1 =—€ + P&, +(X2X3 - yzya)
€, =—06, +(¥,¥; —XX;) (3.2.3)
é3 :G(el_e3)+77(y1y2_Xlxz)_(6+g)e3

Choose the following Lyapunov function

f— * 2
vl e12+e22+le32+M >0 (3.2.4)
2 7 7

where g is constant, then the differentiation of V along trajectories of Eq.(3.2.3) is

V=g +ee,+—ee+—(9—-9 )9
e (3.2.5)

+o
Me@ +2X,6,€; + 6,6,

=—¢’ - €’ —l(a+ g )e; +
n
For sufficient small e=[e1 e, e ]T s the term of third.degree of e can be neglected for judge
stability, then

V <—e! -oe —l(a+ g )e; +M|ele3|+2M1 XN
n n (3.2.6)

_ T
=-e Pe

The negative coefficient matrix for the quadratic form in right hand side of Eq. (3.2.4) is

| 0 —~(pn+o) |
2n
P = 0 ) ~M,
—(p77+0') —Ml (O_+g_)
L 2 i

Obviously, to ensure that the origin of error system Eq.(3.2.3) is asymptotically stable, the

matrix P, should be positive definite, this is the case if and only if the following three

inequalities hold :
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(A) 6>0

* 2
(B) 5(0+%)—W—Mf >0

S(pn+0o) +4M/n’ —4n’so
4no

Accordingly, if g > , then the matrix P, is positive definite,

V is negative definite, which implies that the origin of error system Eq.(3.2.3) is

asymptotically stable for sufficiently small e. Therefore, the response Eq.(3.2.2) is

synchronized with the drive Eq.(3.2.1). The numerical simulation result is shown in Fig.3.2.

3.3 Global Synchronization of Three Coupled BLDCM Chaos

Systems with Ring Connection

In this section, chaos synchronization of ‘three coupled chaos systems with ring
connection[27-28] is studied. €haos synchronizations are given by using unidirectional

coupling or bidirectional coupling respectively.,

3.3.1 Chaos Synchronization of Three Chaotic Systems With

Unidirectional Coupling

The three coupled BLDCM chaos systems by the unidirectional ring connection can be
described as following.

X =Vq =X = XX+ p X+ K (2, - %)
Xy =Vg =0 X, + XX +Kpp (2, = X%,) 3.3.1)
Xy =0 (X = X;) + 17 %%, =T, +K;3(2; = %)

Y=V =Y = YaYs + oY+ K (X —Y))

Yo =Vg =0 Y, + Y, Y5 +Ku (X = Y)) (3.3.2)
Vs =0 (Y, =Y+ Yy, =T+ K (X = Y)

And
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Z, =Vy =L =45+ Pl +Ky, (Y, — 7))
2, =V, =02, +7,2,+K,(y, - Z,) (3.3.3)
2, =0(2,-2,)+n 7,2, =T +Ky(Y;—7)

Subtracting (3.3.1) and (3.3.2) from (3.3.2) and (3.3.3), respectively, we can obtain the

following error dynamics system:

e:(?‘J:LM“ M”j{elj (3.3.4)
ez M21 M22 eZ

where

T T T T
elz(ewelzaen) :(Y1_X1’y2_xzay3_x3) ,922(621,922,623) :(Zl_ylazz_Y2’Z3_Y3) >

Let

. M11 M12
B= . (3.3.5)
MZI MZZ

Choosing G =diag(9,,9,,9,,9,50;,0,)inwhich, g,>0,i=1,2,...6.

Then Q=B'G+GB+¢l is negative definite if and only if it satisfies
(-DLA, >0, i=1,2,...,6, (3.3.6)

where A, represents the ith order sequential sub-determinant of matrix Q. The Eq.(3.3.6)
is applied from [27].

Let v, =0.168,W, =20.66,T, =0.53,0 = 4.55and choose k, =1k, =1k, =0.5,
k,, =Lk,, =0.5,k,; =1Lk;, =0.5,k,, =2,K,, =1, s0 that the inequality Eq.(3.3.5) can be held.
The initial values of three coupled BLDCM systems are taken as X,(0) =5, X,(0) =6,%,(0) =
20,y,(0)=6,Y,(0)=6,y,(0)=9,2,(0)=0.5,z,=1,z, =1.5 .With the coupled parameters
increase, the synchronization of three coupled BLDCM systems can be done more quickly. As

we can see in Fig. 3-3 and Fig. 3.4 the synchronization occurs at time t = 3.5sec. when the
coupled parameters is much largerk, =4k, =2 k, =2,k,, =3,k,, =L k,, =2.k;, =2,k;,, =2,k,, =1,

with the same initial values , the synchronization occurs more quickly at time t = Isec.We can
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see in Fig.3.5 and Fig.3.6.

3.3.2 Chaos Synchronization of Three Chaotic Systems With

Bidirectional Coupling

The three coupled BLDCM chaos systems using the unidirectional ring connection
can be described as following.
X

| =V X XXX +K, (2% + Y, +2))

X, =V, — O X, + XX + K, (=2X, + Y, + 2,) (3.4.1)
X, =0 (X, = X;) + 17 XX, —TL+k13(_2X3+y3+Z3)

y] :Vq Y= Y.Y5tPY; +k21(_2y1 + X + z])
Y2 =Vq —5)/2 + V1Y +k22(_2y2 + X+ Zz) (3.4.2)
Vs =0(Y, = Y)+n VY, — T + K32 Y; + X5+ 25)

And

2, =V, — 2, - 2,2+ pZ; + Ky (522, £ X+Yp)
2, =Vy =02, + 2,2, + Ky, (=22, +%+ Y,) (3.4.3)
2, =0(2, = 2,)+1n 2,2, = T +Ky3 (=22, + %+ ;)

Subtracting Eq.(3.4.1) and Eq.(3.4.2) from Eq.(3.4.2) and Eq.(3.4.3), respectively, we
can obtain the

following error dynamics system:
é e
e':(}]:[p“ AZJ( ‘j (3.4.4)
e2 All A22 e2

€= (811,812,813)T :(y1 =X, Y= XY, _X3)Taez = (e21aezzaez3)T = (21 o 1 y3)Ta (345)

where

Choose the positive definite symmetric constant matrix G =diag(9,,9,,9;,09,,95.094) >

g, >0,i=1,2,...6.and any constant £>0, then Q = B'G+GB+¢l is negative definite
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ifand only if (=1)'A, >0, i=12,...,6, (3.4.6)

Where A, represents the ith order sequential sub-determinant of matrix Q, where

oA 4
Ay Ay

We take Vv, =0.168,v, =20.66,T =0.53,0 =4.55 and choose .The initial values of three
coupled BLDCM systems are taken as X,(0) =1,X,(0)=3,%,(0)=5,y,(0)=2,y,(0)=4
,Y;(0)=6,2,(0)=3,2,=6,2, =9 . Let >0 @, =1,i=1,2,...,6 . The simulation can be seen in

Figs. 3-7, Fig.3-8 and Fig3-9, Fig.3-10. One can notice that the synchronization among three

BLDCM chaotic systems with ring connection can be realized when the coupled parameters

ki is very small, and the synchronization can be realized more quickly when the parameters

are much larger. In Fig.3-7 and Fig: 3-8 theisynchronization is realized at time t = 1.8sec
when coupled parameters are chosen as K, =0.5,k, =Lk, =0.7,k, =1k,, =0.5,k,, =Lk, =0.7,
Ky, =1,k;; = 0.5 . However, in Fig.3-9 and Fig. 3-10'the synchronization is realized at time t
= 1.1sec when coupled parameters are chosenas k, =3k, =2k, =3k, =2,k, =2,k, =2k, =2,.

Ky =3,k =3.
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Chapter 4
Anticipated, Lag and Complete to BLDCM

Synchronizations in Chaotic System

The complete, lag and anticipated synchronization of two identical autonomous chaotic
systems are discussed in this chapter. Three methods are studied for achievement of complete

and lag synchronizations. Two method is studies for anticipated synchronization.

4.1 Complete Synchronization of BLDCM System

4.1.1 Utlizing Pecora and Corroll Method for Synchronization

Firstly, we use Pecora and Corroll method [29-31] of synchronization for identical
systems. The master and slave systems are described as follows:

X =V =X — XX 0%
X, = Vg — 0%yt X X, (4.1.1)

X, =0(X —X)+ XX =T,

y] :Vq Y=o Ys oY,
Yo =Vg =0 Y, +Y,Y; (4.1.2)
Ys=0(Y,=Y)+n Yy, - T,

First, we use the variable X, in Eq. (4.1.1) to replace variable y, in Eq. (4.1.2), then new

slave system is described as follow.

Yi :Vq =X =Y,Y5+PY,
Y =Vq =0 Y, +XY; (4.1.3)
Y3 :O-(Xl - y3)+77xly2 _TL
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Taking Eq. (4.1.1), Eq. (4.1.3) as a whole, the synchronization can be obtained by simulation

which is shown in Fig. 4.1. Similarly, replacement of y, by X, can also obtain the
synchronization of these two identical systems, as shown in Fig.4.2.

Lastly, it is found that the replacement of y,andy, by X and x, or y andy, by
X, and X, can also obtain the synchronization as shown in Fig.4.3, 4.4 which shows that the

X;, X, case has less time for the accomplishment of synchronization.
4.1.2 Linear Coupling to Achieve Complete Synchronization
Using Eq. (4.1.1) as master and Eq. (4.1.2) with linear coupling as slave

Yi=Vy=Yi—Y.Ys+ oY+ Ki(X —Vy)
Y, =Vg =0 Y, + VY + Ky(X% = Y,) . 4.1.4)
Yi=o(Y,—Y)+n Y, Y, =T +Ki(X—Y;)

where K =[k, k, k,]" is a coupling strengfh mattix, Synchronization can be obtained with

rather small coupling strengths K, = K, =K, =1,as shown in Fig.4.5.

4.2 Lag Synchronization of BLDCM System

4.2.1 Utlizing Pecora and Corroll Method for Synchronization

The master system and slave systems are described[32] by Eq. (4.1.1) and Eq. (4.1.2).
First, we take variable X, (t —7) in Eq. (4.1.1) to replace variable y, in Eq. (4.1.2), then new
slave system is

Y=V, =X (=)= .Y, + P Y,

Y, =Vq =0 Y, + X (t-17)Y; (4.2.1)
YV, =o(X(t-7)=y)+nXx{t-1)y,-T,

Taking Eq. (4.1.1), Eq. (4.1.3) as a whole, the synchronization can be obtained by simulations

which are shown in Fig.4.6~ 4.8. By simulation result, it is found that range of delay time 7 is
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unlimited.
Variable X;(t—7)in Eq. (4.1.1) is used to replace variable y, in Eq. (4.1.2), the simulation
results are in Fig. 4.9~ 4.11 .The lag phenomenon is quite clear in Fig 4.9 and Fig.4.10. it is

found that range of delay time 7 is unlimited also.
Variables X, (t —7),X,(t —7) in Eq.(4.1.1) is used to replace variables Y, ,Y,in Eq. (4.1.2),

the simulation results are in Fig.4.12 and Fig.4.13. It is found that range of delay time 7 1is
unlimited also.
Variables X, (t —7),X;(t—7) in Eq.(4.1.1) is used to replace variablesy,,y,in Eq. (4.1.2),
then simulation results are in Fig. 4.14 and Fig.4.15.
Lastly, it is found that the accomplishments of synchronization obtained by replacement of
Y, Y, by X.,Xxor VYy.,Y, by X ,X are faster than that obtained by replacement of
single state, while the X ,X, caseis fastenthen XX, case.
4.2.2 Linear Coupling Method to Achieve Lag Synchronization
We modify the coupling scheme proposed-in for the dynamics of the master, x(t), and
slave, y(t) as:

X(t) = f(X(t

. (O = F(X (), 42.2)
Y(t) = f(Y (1) +K[X({t-7)-Y(1)],

where f(X(t)) is an arbitrary function and K is a coupling strength matrix and 7 is time

delay. Using above method, simulation is made. Results are showed in Fig. 4.16~ 4.19.

From simulation results, the range of time delay t is 1 to 10, which has good performance.

4.3 Anticipated Synchronization of BLDCM

The synchronization of chaotic systems in a unidirectional coupling configuration has
attracted great interest due to its potential applications to secure communication systems [34].

Particular attention has been paid to the so-called anticipating synchronization regime [35],
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where two identical chaotic systems can be synchronized by unidirectional delayed coupling
in such a manner that the “‘slave’’ (the system with coupling) anticipates the ‘‘master’” (the
one without coupling). More specifically, the coupling scheme proposed in [33] for the
dynamics of the master Xx(t) and slave y(t) is the following:

X(t) =F(X (1)),

. 4.3.1)
Y()=F( 1)+ K[X({)-Y(t-7)],

In last section we investigated lag synchronization. In this section the same method as
subsection (4.2.2) is used for anticipated synchronization. For BLDCM system, the master
and slave are as follows:

X =V =X = XXy + P X
Xy = Vg =0 Xy + XX (4.3.2)

X, =X =Xs) + 77 X %, — T

Yi =V = Y5 Yo st o Yat KX -y, (t-1))
Y, =Vy =0V, £ VY F K, (6= Y, (t—17))
Vs =0y, = Y)Y, =T + K, (X -y, (t—17))

(4.3.3)

where x and y are vectors, F is a vector function, 7 is a delay time, K is a coupling
strength matrix. For appropriate values of the delay time  and coupling strength K, the basic

result is that y(t) = x(t+7), i.e., the slave ‘‘anticipates’’ by an amount 7 the output of the

master. The simulation results are shown in Fig.4.20, 4.21.

4-4 Using Active Control to Generalized Lag, Anticipated, and

Complete Synchronization in BLDCM Chaos System

In this section, active control[37] is used to generalized lag, anticipated, and complete

19



Synchronization[36-42]. When generalized synchronization is accomplished, the response
state y is a given function of the drive state x.We define a type of generalized (lag,
anticipated, and complete) synchronization which is defined as the presence of certain
relationship between the states of the drive and response systems, i.e., there exists a smooth
vector function H such that y(t)=H(x(t-t)) withz € R, which includes generalized lag
synchronization (GLS, y(t)=H(x(t—7))with, 7eR")generalized anticipated
synchronization (GAS, y(t)=H(X(t-7)) with r7e€R"), generalized complete

synchronization GS(y(t)=H(x(t)) with 7 = 0).Finally, numerical results are presented.

4-4-1 Linear Vector function
The drive and response system is as following.

X, X, -1 0 p —Xy X3 +V,

X, 0 =AX, r+F(X), A= 0 20 0 LFMX)=| XX, +V, 4.4.1)

Xy X, g 0 -0 nXxx,—T,

Y, Y,

Yo 1= B Y, +G(X)+U(X,Y),

Y3 Y
-1 0 P —Y,¥; +Vq Ul(Xa y)

B=0 -6 0|, GX)=| y,Y;+Vy |, UXy)=lU,(XY)]|, (4.4.2)

c 0 -o nyy,—T. U,(%,Y)

Let the error statese(t) = y(t)— H(Xx(t—7)), wherer € Rand H (x(t—17))=[H,(X(t-7)),
H,(x(t-7)),...,H, (X(t—7))]" is a smooth vector function. According to reference [42], we
can obtain the error dynamic system and choose controller U(x,y) as following:

é(t) = Ae(t)+ BH(Xx(t—7))+G(y(t—1))

(4.4.3)
+DH (X(t— 2)[AX(t— 7) + F(X(t— 7)) +U (X, Y)
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U = Ae—BH (x(t— 7)) - G(y(t - 7))

(4.4.4)
+DH (X(t —7)[AX(t — 7) + F (X(t = 7))]

We choose a linaer vector function H (X(t —7))as following and DH (x(t—7)) is the
Jacobian matrix of H(x(t—7)).

h, 0 0 x(t-17) c
H(X,X,X)=l 0 h, 0 || X({-7)|+|C, (4.4.5)
0 0 h,){xt-7)) (c

Then the error dynamic system (4-4-3) becomes

€ & A -1 Ay, As+p|l e
&, r=(B+A)e, [=| A, A,-06 A, e | (4.4.6)
& & Ay-o Ay Ay +0o |8

Proper A; can be obtain such that all eigenvalues of system (4.4.6) have negative

real parts, that is to say, the system (4-4-6) is_global asymptotically stable. First, we take the

parameter in system(4.4.1) and. (4.4.2)-as Var=10.168,v, =20.66,T =0.53,0 =4.55, p=60

,7=0.26 and choose a linear smooth vector function H (x(t — 7)) =[x, +1,X, +1,x, +1]" .Let
A,=-3,A,=-2,A,=3,A,,=0,A,=-30, A, =2,A,, =—4.55,A,, = 0,A,; =-30 ,and the
initial values of system (4.4.1) and (4.4.2) asx, =0.01,x, =0.01 ,x, =0.01,y, =0.1, y, =5,
Y, =—10. The time constant =1 and 1=-1.5 are used in lag and anticipated synchronization
respectively. Finally, the dynamics of generalized lag, anticipated and complete
synchronization errors for the drive system (4.4.1) and the response system (4.4.2) are shown
in Fig.4.22, Fig.4.23, Fig.4.24, Fig.4.25, Fig.4.26, Fig.4.27 and Fig.4.28.

4-4-2 Nonlinear Vector function

The drive system and response system are also system(4.4.1) and (4.4.2). In this section,

we choose nonlinear vector function H(x(t—7)) thatis as following:
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2X(t—-1), 0 0 X (t—1)
H(X,X,, %)= 0 2X(t—1), 0 X, (t—7) (4.4.7)
0 0 2X(t—7); )\ X, (t—7)

We can obtain the error dynamic system (4-4-6) from system(4-4-1) and system(4-4-2),

then choose proper A, ;such that all eigenvalues of system(4.4.6) have negative real parts,

that is to say, the Eq.(4.4.6) is global asymptotically stable. We take the parameter in
system(4.4.1) and (4.4.2) as v, =0.168,v, =20.66,T =0.53,0=4.55, p =60, =0.26 .Let
A,=-30,A,=2,A,=3,A,,=0,A,=-30,A,, =2,A,, =—4.55,A,, =0,A,; =33, and the
initial values of system (4.4.1) and (4.4.2) as X, =10,X, =5,X;, =7,and 7=0.5. ,y,=2LY,
=30, y, =15. The time constant 7=0.5 and 1=-1 are used in lag and anticipated
synchronization respectively. Finally the dynamics of generalized lag, anticipated and
complete synchronization errors forthe drive System (4.4.1) and the response system (4.4.2)
are shown in Fig.4.29, Fig.4.30, Fig.4:3 1, Fig:4.32, Fig.4.33, Fig.4.34 and Fig.4.35.

4-4-3 Using Nonlinear Vector function‘for generalized synchronization of

BLDCM and Lorenz chaotic system

In this section, we use nonlinear vector function H (X(t —7))and different chaotic systems

for generalized synchronization. The drive system is system(4.4.1) and the response system is

Lorenz system -

Yi Yi -a a 0

Y, r=Byy,;+G(y)+U, B=|c 0 -1},

Y5 Y 0 0 -b
0

G(Y)=|-VYs |- (4.4.8)
Yi¥a

22



3 0 0)fcos(x(t—1))
H(X,,X,,%)=[0 3 0| cos(X,(t—7)) (4.4.9)
0 0 3){cos(X,(t—1))

We can obtain the error dynamic system (4.4.6) from system(4.4.1) and (4.4.8), then

choose proper A;; such that all eigenvalues of system (4.4.6) have negative real parts,

that is to say, the system (4.4.6) is global asymptotically stable. We take the parameter in
system(4.4.1) and (4.4.8) as v, =0.168,v, =20.66,T, =0.53,0 =4.55, p =60,77 =0.26,
a=10,b=8/3,c=28,LetA,, =-5,A, =2,A, =5A, =-28,A,, =-5 A, =LA, =0

, A, =0,A,;, =5, and the initial values of system (4.4.1) and (4.4.2) as X =—15,X,=5,% =30

Y, =-5,Y, =—4, y, =5. The time constant =1 and 1=-0.2 are used in lag and anticipated

synchronization respectively. Finally, the dynamics of generalized lag, anticipated and
complete synchronization errors forthe drive System (4.4.1) and the response system (4.4.2)

are shown in Fig.4.34, Fig.4.35, Fig.4:36, Fig.4.37, Fig.4.38, Fig.4.39.
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Chapter 5
Chaos in Fractional Order BLDCM and Its Control and

Synchronization

Brief description about fractional derivative and its approximation are presented[43-49].
Phase portraits and bifurcation diagram are studied to show the chaotic behaviors of fractional
order BLDCM. It is shown that fractional order chaotic systems can also be controlled and

synchronized[50].

5-1 Fractional derivative and its approximation

Riemann-Liouville definition is frequently. used in the several definitions of fractional

derivative [43], which is describedas following:

d'fty 1 d’“jt( f(z) (5.1.1)

dt”  T(m—r)dt" ot —7) ™!

where I'(m—r) is gamma function and m—1<r <m.According to definition of fraction of
differ-integral, it dose not allow direct implementation of fractional operators by time-domain
simulations. Fortunately, the basic engineering tool for analyzing linear systems, the Laplace

transform, is still applicable and works as one would expect;
r m=1 r-1-k

L arol_ L{f®)}->s" d lfk(t) forall r,
dt’ pary dt™ o

where n is an integer such that n - 1 <r<n. Upon considering the initial conditions to be zero,

this formula reduces to the more expected and comforting form as following
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L{drd:r(t)}=srL{f(t)} (5.1.2)

It has other efficient method that is to approximate fractional operators by using standard

integer order operators to avoid this problem. In reference [43-50], an effective algorithm is
developed to approximate fractional order transfer functions. Basically, the idea is to
approximate the system behavior in the frequency domain. By using frequency domain
techniques based on Bode diagrams, one can obtain a linear approximation of the fractional
order integrator, the order of which depends on the desired bandwidth and discrepancy
between the actual and the approximate magnitude Bode diagrams. This approximation
approach was adopted in [43-50]. In Table 1 of [51], approximations for 1/s" with q 0.1-0.9
in steps 0.1 are given, with errors of'‘approximately2 dB. We also use these approximations in

the following simulations.

5-2 The Chaos in Fractional Order BLDCM System

The fractional order BLDCM system is described as following:

d'x,

VTN XX o,

dix

dtrz =Vyg =0 X, + XX (5.2.1)
dk

dtrB = U(X1 - X3)+77 X X, _TL

When i, j, k are the fractional numbers. When i=1,j=1,k=1, system (5-2-1) is the original

one with integral order, which is chaotic when (vq,vd ,0,0, 77,TL) =(0.168,20.66, —0.875,4.55,

0.26, 0.53). The phase portraits are shown in Fig.5.1.
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When i=0.9,j=1,k=0.9 , the fractional order of system (5.2.1) is 2.8, which is still
chaotic when (v,,V,,5,0.7.T, ) =(0.168,20.66,-0.875,11,0.26,0.53).The phase portraits and
bifurcation are shown in Fig.5.2 and Fig.5.3.

Wheni=0.9,j=1, k=1, the fractional order of system (5.2.1) is 2.9, which is still
chaotic when (v,,V,,5,0.7.T, ) =(0.168,20.66,-0.875,7.0.26,0.53) . The phase portraits and
bifurcation are shown in Fig.5.4 and Fig.5.5.

Wheni=1,j=0.9and 1.1, k=1, the fractional order of system (5.2.1) is 2.9 and 3.1,
which is still chaotic when (V,,Vy.8,7.T, )= (0.168,20.66, -0.875, 6,0.26,0.53) and & =6
and 9. The phase portraits and bifurcation are shown in Fig.5.6, Fig.5.7, Fig.5.8 and Fig.5.9.

Wheni=1,j=1,k=0.3~1.1, the fractional order of system (5.2.1) is 2.3,
2.4,2.5,2.6,2.7,2.8,2.9,3.1 which is still chaotic whén, (v,.V,.5.7.T, )= (0.168, 20.66, -0.875,
0.2,0.26,0.53)and 0=0.2,1.5, L.5,4, 6, 7.2,:3,9.The phase portraits and bifurcation are

shown in Fig.5.10, Fig.5.11, Fig.5.12, Fig.5.13, Fig.5.14, Fig.5.15, Fig.5.16, Fig.5.17,

Fig.5.18, Fig.5.19, Fig.5.20 , Fig.5.21,Fig.5.22 |Fig.5.23, Fig.5.24 and Fig.5.25 .

5-3 Control of fractional order system

Chaos control attracts more and more attentions from various disciplines in science and
engineering, and has been extensively investigated during last decade. In this section, we will
introduce control of fraction order of chaos[50].

The fractional order BLDCM system Eq.(5.2.1) in a compact from is as following:

d“X
dt”

= f(x) (5.3.1)
where X = [Xl, Xy, X, ]T and a=1, j, k. Eq.(5.3.1) with a simple linear state feedback controller

can be show as
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d*X
=f(X)+u 53.2
e (X) (5.3.2)

Where u is a linear state feedback controller of the form as follow [43]. For simplicity, we

assume U =diag(k,,k,,k;) is a diagonal matrix.

k, 0 0
u=|0 k, 0 |(X=X) (5.3.3)
0 0 Kk,

where X is the control target, and K k,,k, are constant parameters which can easily

obtained from standard stability analysis. In this part, it lets X be equilibrium point of
BLDCM system. Simulation results show that this controller can also stabilize the fractional
order BLDCM system with order (i, j, k) = (0.9,1,1), (1,0.9,1), (1,1,0.9) and Kk ,k,,k,=
(-15,-25,-30) are shown in Fig. 526, Figm5:27; Fig. 5.28, respectively. In these figures, the
control signal is added at t=25sec. As we-can see from three figure, the designed chaos

controller can effectively control the fractional'order BLDCM system to its equilibrium point.

5-4 Synchronization for Identical Fractional Order Chaotic System

In this section, we study the synchronization of identical fraction order chaotic system by
feedback control method[50]. We will numerically investigate the topic here and present three

cases. The driver system is described Eq.(5.2.1) and response system is as following:

di

d_i{:lzvq - _y2y3+py3+k1(y1 _Xl)

dJ'

dj);l =V =0 Y, +Y1Y5 +Ky (¥, = %) (5.4.1)
dy

d—ktlzo-(yl _y3)+77y1y2 _TL +k3(y3 _X3)

Where k;,k,,k; are coupling parameters and (v,,V,,5,7,T,)=(0.168,20.66,0.875,0.26,0.53),

o takes different values for different systems. In this part, three cases for synchronization are
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presented.

Case 1. Order of the drive system is (i, j, k) =(0.9,1,1) and the response system
1s(1,],k)=(0.9,1,1). system parameters are (Vg>Vg5 0,77, 1)) =(0.168,20.66,0.875,0.26,0.53), 6=8
and k,k,,k, =(-5,0,0) The numerical result is shown in Fig. 5.29.

Case 2. Order of the drive system is (i, j, k) =(1,0.9,1) and the response system is (i,j,k)=(1,
0.9,1). system parameters are (VgsVy50,77,T)) =(0.168,20.66,0.875,0.26,0.53), 6=6 and
k,K,,k; =(-4,0,0) The numerical result is shown in Fig. 5.30.

Case 3. Order of the drive system is (i, j, k) =(1,1,0.9) and the response system
1s(1,],k)=(1,1,0.9). system parameters are (Vg> V50,77, 1)) =(0.168,20.66,0.875,0.26,0.53), 6=8

and k,k,,k, =(-6,0,0) The numerical result is shown in Fig. 5.31.

5-5 Synchronization for Different Fractional Order Chaotic System

In this section, we study the synchronization of different fraction order chaotic system. The
analysis of fractioal order ststem is by no means trivial. So, we will numerically investigate
the topic here and present three cases. The driver system is described Eq(5.2.1) and response

system is described Eq.(5.4.1).

Where k;,k,,k; are coupling parameters and (v,,v,,5,7,T, ) =(0.168,20.66,0.875,

0.26,0.53),0 takes different values for different systems.

Case 1. Order of the drive system is (i, j, k) =(1,1,1) and the response system is

(1,j,k)=(1,1,0.9). system parameters are (Vy>Vy,0,1,T)) =(0.168,20.66,0.875,0.26,0.53),

0=4.55 and (Vy>Vy,0,1,T)) =(0.168,20.66,0.875,0.26,0.53), 6=3, for response respectively.

The numerical result is shown in Fig. 5.32.

Case 2. Order of the drive system is (i, j, k) =(1,1,1) and the response system is
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(1,J,k)=(1,1,0.7). system parameters are (V,,V,,d,7,T,)=(0.168,20.66,0.875,0.26,0.53),
6=4.55 and (VgsVy,0,7,T) =(0.168,20.66,0.875,0.26,0.53), 6=6, for response respectively.

The numerical result is shown in Fig. 5.33.

Case 3. Order of the drive system is (i, j, k) =(1,1,1) and the response system is

(1,J,k)=(1,1,0.5). system parameters are (V,,V,,5,7,T,)=(0.168,20.66,0.875,0.26,0.53),
6=4.55 and (VysVy50,7,T) =(0.168,20.66,0.875,0.26,0.53), 6=1.5 , for response

respectively. The numerical result is shown in Fig. 5.34
From above numerical results, we can observe the system error which will increase as what

order of system is to decrease.
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Chapter 6 Conclusions

Brushless dc motor (BLDCM) is studied in this thesis. It is an autonomous third-order
electromechanical system. Using different numerical analysis such as phase portrait ~
bifurcation diagram and Lyapunov exponent, chaotic behavior are studied.

In Chapter 3, controlling for synchronization of chaotic BLDCM system is via a single
variable. Two control approaches, linear feedback control and adaptive control, are used. We
use the same method for synchronization of three identical chaotic systems with ring
connection via unidirectional or bidirectional linear error feedback. Chaos synchronization
can be realized as the coupled parameter is small, and it can be done more quickly as the
coupled parameter become lager from numerical results.

In Chapter 4, first, Pecora and Carroll method is applied to the complete and lag
synchronization of BLDCM chaetic system; more number of state of response system
replaced by states of drive system presents: that, chdos synchronization can be done more
quickly. Next, feedback control for cemplete-and lag synchronization is applied in BLDCM
chaotic system. As the coupled strength inereases, error can quickly converge to zero, and
range of time constant 7 can be arbitrarily chosen. Using the same conception, anticipated
synchronization can be achieved, but range of time constant has limitation. Third, the
conception of generalized synchronization for identical and different chaotic system is
achieved by linear and nonlinear vector function.

In Chapter 5, we found that chaos exists in the fractional order BLDCM system with less
than 3. Adding linear feedback controller, controlling of fractional order BLDCM to its
equilibrium point is achieved, and synchronization of identical and different fractional order
chaotic system are also achieved. Error of synchronization for identical fractional order

systems is smaller than that for different fractional order systems.
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Fig 4:20 Time history.of all state.
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Fig. 5.1 phase portrait.of BLDCM with (i, j, k) = (1,1,1) and

(V,.Vy.0.0.7,T; ) =(0.168120:66,20.875,4.55,0.26,0.53).
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Fig. 5.14 phase portrait of BLDCM with (i, j, k) = (1,1, 0.5) and

(V,.Vy., 8,005 T, ) =(0.168,20.66,-0.875,1.5,0.26,0.53).
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Fig.5.15 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.5).
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Fig. 5.18 phase portrait of BLDCM with (i, j, k) = (1,1, 0.7) and

(Vy.Vy. dso T, ) =(0.168,20.66,-0.875,6,0.26,0.53).
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Fig.5.19 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.7).
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Fig. 5.20 phase portrait of BLDCM with (i, j, k) = (1,1, 0.8) and

(V,.Vy. 8,005 T, ) =(0.168,20.66,-0.875,7.2,0.26,0.53).
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Fig. 5.22 phase porttait of BLDCM with (i, j, k) = (1,1, 0.9) and

(Vy.Vy. G50 T, ) =(0.168,20.66,-0.875,3,0.26,0.53).

35

b : ]

k-

]

20 ' ;::_

Fig.5.23 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.9).
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Fig. 5.24 phase porttait of BLDCM with (i, j, k) = (1,1, 1.1) and

(V,.Vy. 0. 057, T ) =(0:168:20.66,-0.875,9,0.26,0.53).
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Fig.5.25 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,1.1).
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Fig. 5.27. Time history of system state with fractional order (i, j, k)=(1,0.9,1).
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