
Chapter 1 

Introduction 
Chaos is either undesirable or desirable in various engineering problems. Many 

researchers have devoted themselves to finding new ways to control chaos more efficiently. 

Chaotic phenomena are quite useful in many applications such as fluid mixing [1], human 

brain dynamics [2], and heart beat regulation [3], information processing, etc. Therefore, 

making a periodic dynamical system chaotic, or preserving chaos of a chaotic dynamical 

system, is very meaningful and worthy to be investigated. 

Chaos synchronization has been applied in many fields such as secure communication 

[4,5], chemical and biological systems [6,7], etc. A lot of researchers have studied 

synchronization between two identical chaotic systems[10-16]. But up to now, the studies are 

mostly concentrated on complete synchronization. Hence a large number of researches have 

not been carried out for anticipated and lag synchronization which became an important part 

of this thesis.  

    The object studied of this thesis is brushless dc motor (BLDCM). The major advantage 

of BLDCM is the elimination of the physical contact between the brushes and the 

commutators. BLDCM has been widely applied in direct-drive applications such as robotics 

[8], aerospace [9], etc. In this thesis, (a) its synchronization by linear feedback control and 

adaptive control via a system variable, and global synchronization of three coupled chaotic 

systems with ring connection, (b) we investigate anticipated chaotic synchronization of 

BLDCM and lag chaotic synchronization and complete chaos synchronization of identical 

systems in different ways (c) chaos synchronization for fractional order motor system.  

      This thesis is organized as follows. Chapter 2 contains the dynamic equation of 

BLDCM. First, the system model is described. Second, the system equations are transformed 
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to a compact form. In Chapter 3, the synchronization of two identical chaotic systems is 

accomplished via control of a single variable, by a linear feedback controller and an adaptive 

controller, and the method of ring connection is applied for three BLDCM chaotic systems for 

synchronization. Numerical results are presented. In Chapter 4, two methods are investigated 

to achieve anticipated synchronization and complete synchronization. Three methods are used 

to achieve lag synchronization. In Chapter 5, chaos analysis, chaos control of fractional order 

system and synchronization for identical and different fractional order system are presented, 

and numerical results are shown.                      
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Chapter 2 

Regular and Chaotic Dynamics of 

Brushless DC Motor 
In this Chapter, the dynamic characteristics[18-19] of BLDCM are investigated. First, 

the dynamic system model is given. Second, the state equations are transformed to a compact 

form. Finally, we present the numerical analysis of periodic and chaotic behavior of BLDCM. 

2.1 Description of the System Model and Differential Equation of     

   Motion  

BLDCM is an electromechanical system. The physical model of BLDCM is shown in 

Fig. 2.1 [17]. 

where 

      : light transistor, 3,1Q

      : transistor, 9,4Q

   D : light diode, 

      : stator winding, 3,1L

      : light sensor. 3,1H

The equation of electrical dynamics can be described by [11-12] 
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where 
)(tI : the phase current vector, 
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      )(θL : the inductance matrix, 

      )(tV : the vector corresponding to the voltages across the phase windings, 

   R : the winding resistance matrix, 

 )(θMΛ : the flux linkage vector due to the presence of permanent magnets, 

      θ : the displacement variable, 

and the equation of mechanical dynamics can be describe by 

[ ])(),(1 tTT
Jdt

d
l−= θω Ι  (2.1.2) 

where 

   ω : the rotator angular velocity, 

J : the inertia of rotator, 

),( θIT : the electromagnetic torque, 

)(tTl : the external torques imposed on the rotator shaft. 

Accounting for viscous damping friction, the external torques can be described by 

Ll TbtT += ω)(  (2.1.3) 

where 

   b  : the viscous damping coefficient, 

 : the torque due to external load, cogging effect, coulomb friction, etc. LT

Up to now, Eq. (2.1.1) and Eq.(2.1.2) explicitly depend on θ . This is not expected, 

since the solutions are hard to obtain. Therefore, we transform the above equations to the 

rotating frame via Park’s transformation, and the explicit dependence on θ  can be 

eliminated. We can obtain 
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and the electromagnetic torque is described by 

])([),( dqqdqtdq iiLLikniiT −+=  (2.1.6) 

where 

 : the quadrature-axis and direct-axis current, dq ii ,

 : the quadrature-axis and direct-axis voltage, dq vv ,

 : the fictitious inductance on the quadrature-axis and direct-axis, dq LL ,

 R : winding resistance, 

 : number of permanent pole pairs, n

  et kk
2
3

= :  is the permanent-magnet flux constant. ek

 

2.2 Single Time Scale Representation of the Equations of    

   Motion 

In this section, we transform the system equations to a compact form, through an affine 

transformation and a single time scale transformation [20]. 

ςxΦx += ˆ  (2.2.1) 

 tt ˆτ=   (2.2.2) 

 

where 
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x : the m-dimensional state vector, 

Φ:  constant non-singular matrix, mm×

ς :  constant vector. 1×m

Transformation matrix has not to be a specified form, for our purposes and simplicity, we 

choose 
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Combining Eq.(2.2.1)-(2.2.3) and Eq.(2.1.2)-(2.1.6), we obtain the equations in compact 

forms. The numbers of parameters are greatly reduced. 
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Here we have to assert that Eq.(2.2.4) is nondimensionalized. In the Chapters below, a 

variety of different control inputs added on Eq.(2.2.4) are also nondimensionalized. However, 

if we transform them to the original forms, each control input is dimensional and has its 

practically physical meaning. 

In addition, BLDCM is an autonomous system. It means that the period of the system is 

not explicitly known, so different choice of Poincaré section would lead to different 

bifurcation diagram. In the Chapters below, adding control inputs changes the dynamics of the 

system, thus we have to modify the choice of Poincaré section. Modifying Poincaré section, 

we obtain almost the same bifurcation diagram. The only difference is the shift in  axis. 

Therefore, we just present the original bifurcation diagram. 

3x̂

At last, we present the numerical results. The parameters in numerical simulation are 

=1.125×10qL -3, =1.725×10dL -3, R =0.9, =4, =5, =-43.5, n qv dv J =5×10-6, 

=49.4×10tk -3, =22.6×10b -3, =0.1, LT ρ =60, =0.168, =20.66, qv̂ dv̂ δ =0.875, η =0.26, 

=0.53, and the initial condition is (0)= (0)= (0)=0.01. The phase portrait whose 

Poincaré section is plane 

LT̂ 1x̂ 2x̂ 3x̂

1 3x x  , bifurcation diagram, and Lyapunov exponents are shown in 

Fig. 2.2-2.4, respectively. It can be observed that the motion is period 1 for σ =4.05, period 2 

for σ =4.15, and period 4 for σ =4.21. For σ =4.55, the motion is chaotic. 
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Chapter 3 

 The Synchronization of Chaotic BLDCM System via 

Control of a Single Variable 
Two methods to achieve synchronization of chaotic BLDCM are presented[21]. The 

synchronization of two identical chaotic systems is accomplished via control of a single 

variable [21], by a linear feedback controller[22] and an adaptive controller[23-26]. 

Numerical results are presented. Chaos synchronization of three coupled chaos systems with 

ring connection is studied[27,28]. Chaos synchronizations are given by using unidirectional 

coupling or bidirectional coupling respectively.  

 

3.1 Synchronization by Linear Feedback Control via a Single 

Variable  
 

First, we add a controller in third equation of Eq. (2.2.4). Then the drive system and the 

response system are as follows:   
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Let 233222111 ,, xyexyexye −=−=−=  be the synchronization errors between the drive 

and response systems. Suppose that  is the upper bound of the absolute value of variables, 1M
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1x (since a chaotic system has bounded trajectories, constant  exists) then the two BLDCM 

systems will be synchronized under the control = =0, =

1M

1u 2u 3u 3egs−  as follows. 

From Eq. (3.1.1) and Eq. (3.1.2) error dynamics can be obtained:  
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 Choose the following Lyapunov function 

             2 2 2
1 2 3

1 1(
2

V e e e
η

= + + ≥) 0                         (3.1.4) 

Where η > 0. V is positive definite. The derivative of V along trajectories of Eq. (3.1.3) is 

1 1 2 2 3 3

2 2 2
1 2 3 1 3 1 2 3 1 2

1
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e e g e e e x e e e e

η
σδ σ ρ
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For sufficient small e=[ ]1 2 3
Te e e , the term of third degree of e can be neglected for judge 

stability, then  

2 2 2
1 2 3 1 3 1 2
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T

V e e g e e e M e e

P
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  The negative coefficient matrix for the quadratic form in right hand side of Eq. (3.1.6) is  

1

1

11 0 (
2
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)σρ
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η η
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Obviously, to ensure that the origin of error system Eq.(3.1.3) is asymptotically stable, the 

 9



matrix P should be positive definite, this is the case if and only if the following three 

inequalities hold： 

( )

( ) 2 2
1

0
( ) ( )

4
s

A
gB M

δ

δ σ δ σρ
η η

>

+
− + − > 0

 

According, if 
2 2 2

1( ) 4 4
4s

Mg ρη σ η ηδσ
ηδ

+ + −
> , then the matrix P is positive definite.  is 

negative definite, which implies that the origin of error system Eq. (3.1.3) is asymptotically 

stable for sufficiently small e. Therefore, the response Eq.(3.1.2) is synchronized with the 

drive Eq.(3.1.1). The numerical simulation result is shown in Fig.3.1.     

V�

 

3.2 Adaptive Control for Synchronization of BLDCM System  

First, we add a controller 3 ( )u 3g eσ= − +  in the third Eq. (2.2.4), the driver system and 

the response system are as follows: 
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Suppose that  is the upper bound of the absolute value of 1M 1x , (since a chaotic system has 

bounded trajectories, constant  exists) then the two systems will be synchronized under the 

control = =0, =  where 

1M

1u 2u 3u 3)( ega +− 2
3g e=�  as follows. 

The error dynamics is 
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Choose the following Lyapunov function ： 
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1 1 ( ) 0
2
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where  is constant, then the differentiation of V along trajectories of Eq.(3.2.3) is *g
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For sufficient small e=[ ]1 2 3
Te e e , the term of third degree of e can be neglected for judge 

stability, then 
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The negative coefficient matrix for the quadratic form in right hand side of Eq. (3.2.4) is  

1
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Obviously, to ensure that the origin of error system Eq.(3.2.3) is asymptotically stable, the 

matrix  should be positive definite, this is the case if and only if the following three 

inequalities hold： 

aP
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Accordingly, if 
2 2 2 2

* 1( ) 4 4
4

Mg δ ρη σ η η δσ
ηδ

+ + −
> , then the matrix  is positive definite,  

 is negative definite, which implies that the origin of error system Eq.(3.2.3) is 

asymptotically stable for sufficiently small e. Therefore, the response Eq.(3.2.2) is 

synchronized with the drive Eq.(3.2.1). The numerical simulation result is shown in Fig.3.2.     
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3.3 Global Synchronization of Three Coupled BLDCM Chaos 

Systems with Ring Connection 

In this section, chaos synchronization of three coupled chaos systems with ring 

connection[27-28] is studied. Chaos synchronizations are given by using unidirectional 

coupling or bidirectional coupling respectively. 

    

3.3.1 Chaos Synchronization of Three Chaotic Systems With 

     Unidirectional Coupling 

The three coupled BLDCM chaos systems by the unidirectional ring connection can be  

described as following. 
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2 2 1 3 12 2 2

3 1 3 1 2 13 3
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σ η
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                                    (3.3.2) 

And  
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1 1 2 3 3 31 1 1

2 2 1 3 32 2 2

3 1 3 1 2 33 3
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d

L

z v z z z z k y z
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z z z z z T k y z3 )

ρ

δ
σ η

= − − + + −

= − + + −

= − + − + −

�
�
�

                                     (3.3.3) 

Subtracting (3.3.1) and (3.3.2) from (3.3.2) and (3.3.3), respectively, we can obtain the 

following error dynamics system: 

1 11 12 1

2 21 22 2

e M M e
e

e M M e
⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

�
                                            (3.3.4) 

where 

 

1 11 12 13 1 1 2 2 3 3 2 21 22 23 1 1 2 2 3 3( , , ) ( , , ) , ( , , ) ( , , )e e e e y x y x y x e e e e z y z y z y= = − − − = = − − −T T T ,T

⎞
⎟

Let                                                                  

           .                                           (3.3.5)  11 12

21 22

M M
B

M M
⎛

= ⎜
⎝ ⎠

Choosing in which  1 2 3 4 5 6( , , , , , )G diag g g g g g g= 0, 1,2, 6.ig i> = …

Then Q B G GB Iε= + +T  is negative definite if and only if it satisfies 

                                         (3.3.6) ( 1) 0, 1, 2, , 6,i
i i i− ∆ > = …

where  represents the ith order sequential sub-determinant of matrix Q. The Eq.(3.3.6)  i∆

is applied from [27]. 

  Let 0.168, 20.66, 0.53, 4.55q d lv vV T σ= = = = and choose 11 12 131, 1, 0.5,k k k= = =  

21 22 23 31 32 331, 0.5, 1, 0.5, 2, 1,k k k k k k= = = = = = so that the inequality Eq.(3.3.5) can be held. 

The initial values of three coupled BLDCM systems are taken as  

.With the coupled parameters 

increase, the synchronization of three coupled BLDCM systems can be done more quickly. As 

we can see in Fig. 3-3 and Fig. 3.4 the synchronization occurs at time t = 3.5sec. when the   

coupled parameters is much larger

1 2 3(0) 5, (0) 6, (0)x x x= = =

1 2 3 1 2 320, (0) 6, (0) 6, (0) 9, (0) 0.5, 1, 1.5y y y z z z= = = = = =

11 124, 2,k k= = 13 21 22 23 31 32 332, 3, 1, 2, 2, 2, 1k k k k k k k= = = = = = = , 

with the same initial values , the synchronization occurs more quickly at time t = 1sec.We can 
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see in Fig.3.5 and Fig.3.6. 

 

3.3.2 Chaos Synchronization of Three Chaotic Systems With 

   Bidirectional Coupling 

The three coupled BLDCM chaos systems using the unidirectional ring connection  

can be described as following.  

1 1 2 3 3 11 1 1 1

2 2 1 3 12 2 2 2

3 1 3 1 2 13 3 3

( 2 )

( 2 )
( ) ( 2
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d
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3 )x x x x x T k x y z

ρ

δ
σ η
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= − + − + − + +

�
�
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                          (3.4.1)     

 

1 1 2 3 3 21 1 1 1

2 2 1 3 22 2 2 2

3 1 3 1 2 23 3 3

( 2 )

( 2 )
( ) ( 2

q

d

L

y v y y y y k y x z

y v y y y k y x z
y y y y y T k y x z3 )

ρ

δ
σ η

= − − + + − + +

= − + + − + +

= − + − + − + +

�
�
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And 

1 1 2 3 3 31 1 1 1

2 2 1 3 32 2 2 2

3 1 3 1 2 33 3 3

( 2 )

( 2 )
( ) ( 2

q

d

L

z v z z z z k z x y

z v z z z k z x y
z z z z z T k z x y3 )

ρ

δ
σ η

= − − + + − + +

= − + + − + +

= − + − + − + +

�
�
�

                             (3.4.3) 

  Subtracting Eq.(3.4.1) and Eq.(3.4.2) from Eq.(3.4.2) and Eq.(3.4.3), respectively, we 

can obtain the  

following error dynamics system: 

1 11 12 1

2 21 22 2

e A A e
e

e A A e
⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

�
                                     (3.4.4) 

where  

1 11 12 13 1 1 2 2 3 3 2 21 22 23 1 1 2 2 3 3( , , ) ( , , ) , ( , , ) ( , , ) ,e e e e y x y x y x e e e e z y z y z y= = − − − = = − − −T T T T     (3.4.5) 

 

Choose the positive definite symmetric constant matrix 1 2 3 4 5 6( , , , , , )G diag g g g g g g= , 

0, 1,2, 6.ig i> = … and any constant ε>0, then Q B G GB Iε= + +T  is negative definite  
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if and only if                                     (3.4.6) ( 1) 0, 1, 2, , 6,i
i i i− ∆ > = …

Where  represents the ith order sequential sub-determinant of matrix Q, where i∆

11 12

21 22

A A
B

A A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

We take 0.168, 20.66, 0.53, 4.55q d Lv v T σ= = = =  and choose .The initial values of three  

coupled BLDCM systems are taken as 1 2 3 1 2(0) 1, (0) 3, (0) 5, (0) 2, (0) 4x x x y y= = = = =

=

 

3 1 2 3, (0) 6, (0) 3, 6, 9y z z z= = = . Let ε>0 1, 1,2, ,6ig i= = … .The simulation can be seen in 

Figs. 3-7, Fig.3-8 and Fig3-9, Fig.3-10. One can notice that the synchronization among three 

BLDCM chaotic systems with ring connection can be realized when the coupled parameters 

 is very small, and the synchronization can be realized more quickly when the parameters 

are much larger. In Fig.3-7 and Fig. 3-8 the synchronization is realized at time t = 1.8sec 

when coupled parameters are chosen as 

ijk

11 12 13 21 22 23 310.5, 1, 0.7, 1, 0.5, 1, 0.7,k k k k k k k= = = = = = =  

32 331, 0.5k k= = . However, in Fig.3-9 and Fig. 3-10 the synchronization is realized at time t 

= 1.1sec when coupled parameters are chosen as 11 12 13 21 22 23 313, 2, 3, 2, 2, 2, 2,k k k k k k k= = = = = = = . 

32 333, 3k k= = . 
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Chapter 4 

Anticipated, Lag and Complete to BLDCM 

Synchronizations in Chaotic System 
The complete, lag and anticipated synchronization of two identical autonomous chaotic 

systems are discussed in this chapter. Three methods are studied for achievement of complete 

and lag synchronizations. Two method is studies for anticipated synchronization.    

 

4.1 Complete Synchronization of BLDCM System 

4.1.1 Utlizing Pecora and Corroll Method for Synchronization  

   Firstly, we use Pecora and Corroll method [29-31] of synchronization for identical 

systems. The master and slave systems are described as follows: 

                  
1 1 2 3 3

2 2 1 3

3 1 3 1 2( )

q

d
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x v x x x x

x v x x x
x x x x x T

ρ

δ
σ η
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= − +
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�
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                           (4.1.1) 

1 1 2 3 3
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y v y y y y

y v y y y
y y y y y T

ρ

δ
σ η

= − − +

= − +
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�
�
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                          (4.1.2) 

 

First, we use the variable 1x  in Eq. (4.1.1) to replace variable  in Eq. (4.1.2), then new  1y

slave system is described as follow. 

 

1 1 2 3 3

2 2 1 3

3 1 3 1 2( )

q

d

L

y v x y y y

y v y x y
y x y x y T

ρ

δ
σ η

= − − +

= − +
= − + −

�
�
�

                        (4.1.3) 
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Taking Eq. (4.1.1), Eq. (4.1.3) as a whole, the synchronization can be obtained by simulation 

which is shown in Fig. 4.1. Similarly, replacement of  by 3y 3x  can also obtain the 

synchronization of these two identical systems, as shown in Fig.4.2.            

Lastly, it is found that the replacement of  by 1 2y and y 1 2x and x  or  by 1 3y and y

1 3x and x  can also obtain the synchronization as shown in Fig.4.3, 4.4 which shows that the 

1 2,x x case has less time for the accomplishment of synchronization.  

4.1.2 Linear Coupling to Achieve Complete Synchronization 

  Using Eq. (4.1.1) as master and Eq. (4.1.2) with linear coupling as slave 

 
1 1 2 3 3 1 1 1

2 2 1 3 2 2 2

3 1 3 1 2 3 3

( )

( )
( ) (

q

d

L

y v y y y y K x y

y v y y y K x y
y y y y y T K x y3 )

ρ

δ
σ η

= − − + + −

= − + + −
= − + − + −

�
�
�

  . (4.1.4) 

where K =  is a coupling strength matrix, synchronization can be obtained with 

rather small coupling strengths 

1 2 3[ Tk k k ]

31 2K K K= = =1,as shown in Fig.4.5.     . 

  

4.2 Lag Synchronization of BLDCM System 

4.2.1 Utlizing Pecora and Corroll Method for Synchronization      

The master system and slave systems are described[32] by Eq. (4.1.1) and Eq. (4.1.2). 

First, we take variable )(1 τ−tx  in Eq. (4.1.1) to replace variable  in Eq. (4.1.2), then new 

slave system is  

1y

                         
1 1 2 3 3

2 2 1 3

3 1 3 1 2

( )

( )
( ( ) ) ( )

q

d

L

y v x t y y y

y v y x t y
y x t y x t y T

τ ρ

δ τ
σ τ η τ

= − − − +

= − + −
= − − + − −

�
�
�

          (4.2.1) 

Taking Eq. (4.1.1), Eq. (4.1.3) as a whole, the synchronization can be obtained by simulations 

which are shown in Fig.4.6~ 4.8. By simulation result, it is found that range of delay time τ is 
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unlimited.              

 Variable )(3 τ−tx in Eq. (4.1.1) is used to replace variable in Eq. (4.1.2), the simulation 

results are in Fig. 4.9~ 4.11 .The lag phenomenon is quite clear in Fig 4.9 and Fig.4.10. it is 

found that range of delay time τ is unlimited also.  

3y

Variables )(),( 21 ττ −− txtx  in Eq.(4.1.1) is used to replace variables in Eq. (4.1.2), 

the simulation results are in Fig.4.12 and Fig.4.13. It is found that range of delay time τ is 

unlimited also.    

1 2,y y

Variables )(),( 31 ττ −− txtx  in Eq.(4.1.1) is used to replace variables in Eq. (4.1.2), 

then simulation results are in Fig. 4.14 and Fig.4.15.  

1 3,y y

Lastly, it is found that the accomplishments of synchronization obtained by replacement of 

 by 1 ,y y2 21 ,x x or   by 1 ,y y3 31 ,x x  are faster than that obtained by replacement of 

single state, while the 1 2,x x  case is faster then 1 3,x x  case. 

4.2.2 Linear Coupling Method to Achieve Lag Synchronization 

We modify the coupling scheme proposed in for the dynamics of the master, ( )x t , and 

slave,  as: ( )y t

                                         (4.2.2) 
( ) ( ( )),
( ) ( ( )) [ ( ) ( )],
t f X t
t f Y t X t Y tτ

=

= + − −

X
Y K

�
�

where  is an arbitrary function and K is a coupling strength matrix and τ is time 

delay.  Using above method, simulation is made. Results are showed in Fig. 4.16~ 4.19. 

From simulation results, the range of time delay τ is 1 to 10, which has good performance. 

))(( tXf

 

4.3 Anticipated Synchronization of BLDCM 

The synchronization of chaotic systems in a unidirectional coupling configuration has 

attracted great interest due to its potential applications to secure communication systems [34]. 

Particular attention has been paid to the so-called anticipating synchronization regime [35], 
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where two identical chaotic systems can be synchronized by unidirectional delayed coupling 

in such a manner that the ‘‘slave’’ (the system with coupling) anticipates the ‘‘master’’ (the 

one without coupling). More specifically, the coupling scheme proposed in [33] for the 

dynamics of the master ( )x t  and slave  is the following: ( )y t

                       
( ) ( ( )),
( ) ( ( )) [ ( ) - ( - )],
t X t
t Y t X t Y t τ

=

= +

X F
Y F Κ

�
�                   (4.3.1) 

In last section we investigated lag synchronization. In this section the same method as 

subsection (4.2.2) is used for anticipated synchronization. For BLDCM system, the master 

and slave are as follows: 

                          
1 1 2 3 3

2 2 1 3

3 1 3 1 2( )

q

d

L

x v x x x x

x v x x x
x x x x x T

ρ

δ
σ η

= − − +

= − +
= − + −

�
�
�

                    (4.3.2) 

 

          (4.3.3) 

 

1 1 2 3 3 1 1 1

2 2 1 3 2 2 2

3 1 3 1 2 3 3 3

( ( ))

( ( ))
( ) ( (

q

d

L

y v y y y y K x y t

y v y y y K x y t
y y y y y T K x y t ))

ρ τ

δ τ
σ η τ

= − − + + − −

= − + + − −
= − + − + − −

�
�
�

 where x and y are vectors, F is a vector function, τ is a delay time, K is a coupling 

strength matrix. For appropriate values of the delay timeτand coupling strength K, the basic 

result is that ( ) ( )y t x t τ≈ + , i.e., the slave ‘‘anticipates’’ by an amountτthe output of the 

master. The simulation results are shown in Fig.4.20, 4.21.   

 

4-4 Using Active Control to Generalized Lag, Anticipated, and  

 Complete Synchronization in BLDCM Chaos System 

In this section, active control[37] is used to generalized lag, anticipated, and complete  
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Synchronization[36-42]. When generalized synchronization is accomplished, the response  

state y is a given function of the drive state x.We define a type of generalized (lag,  

anticipated, and complete) synchronization which is defined as the presence of certain  

relationship between the states of the drive and response systems, i.e., there exists a smooth  

vector function H such that y(t)=H(x(t-τ)) with Rτ ∈ , which includes generalized lag  

synchronizat ion (GLS, ( ) ( ( ))y t H x t withτ= − ,  Rτ +∈ )general ized ant ic ipated  

synchronization (GAS, ( ) ( ( ))y t H x t with Rτ τ −= − ∈ ), generalized complete  

synchronization GS(  with τ= 0).Finally, numerical results are presented. ( ) ( ( ))y t H x t=

4-4-1 Linear Vector function  
The drive and response system is as following. 
  

1 1 2 3

2 2 1 3

3 3 1 2

1 0
( ), 0 0 , ( )

0

q

d

L

x x x x v
x A x F x A F x x x v
x x x

ρ
δ

σ σ η

− −⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎢= + = − = +⎨ ⎬ ⎨ ⎬ ⎢ ⎥ ⎢
⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎢− −⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎣ ⎦

� �
� �
� � x T

+
⎥
⎥
⎥

) ,
, )

         (4.4.1) 

 

1 1

2 2

3 3

( ) ( , ),
y y
y B y G x U x y
y y

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= + +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

�
�
�

                                     

2 3 1

1 3 2

1 2 3

1 0 ( , )
0 0 , ( ) , ( , ) ( ,

0 (

q

d

L

y y v U x y
B G x y y v U x y U x y

y y T U x y

ρ
δ

σ σ η

− − +⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= − = + =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

             (4.4.2) 

 

Let the error states ( ) ( ) ( ( ))e t y t H x t τ= − − , where Rτ ∈ and ( ( ))H x t τ− = 1[ ( ( ))H x t ,τ−  

2 ( ( )), , ( ( ))]nH x t H x tτ− T… τ−  is a smooth vector function. According to reference [42], we 

can obtain the error dynamic system and choose controller U(x,y) as following:  

 

( ) ( ) ( ( )) ( ( ))
( ( ))[ ( ) ( ( )) ( , )

e t Ae t BH x t G y t
DH x t Ax t F x t U x y

τ τ
τ τ τ

= + − + −
+ − − + − +

�
                               (4.4.3) 
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( ( )) ( ( ))
( ( ))[ ( ) ( ( ))]

U e BH x t G y t
DH x t Ax t F x t

τ τ
τ τ τ

= ∆ − − − −
+ − − + −

                                      (4.4.4) 

We choose a linaer vector function ( ( ))H x t τ− as following and ( ( ))DH x t τ−  is the  

Jacobian matrix of ( ( ))H x t τ− . 

11 1 1

1 2 3 22 2 2

33 3 3

0 0 ( )
( , , ) 0 0 ( )

0 0 ( )

h x t
H x x x h x t c

h x t c

τ
τ
τ

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

c⎛ ⎞
⎜ ⎟+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

,
e

e

                               (4.4.5) 

Then the error dynamic system (4-4-3) becomes 

 

1 1 11 12 13 1

2 2 21 22 23 2

3 3 31 32 33 3

1
( )

e e
e B e e
e e

ρ
δ

σ σ

∆ − ∆ ∆ +⎧ ⎫ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ∆ = ∆ ∆ − ∆⎨ ⎬ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ − ∆ ∆ +⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�
�

                        (4.4.6) 

 Proper  can be obtain such that all eigenvalues of system (4.4.6) have negative  ij∆

real parts, that is to say, the system (4-4-6) is global asymptotically stable. First, we take the 

parameter in system(4.4.1) and (4.4.2) as 0.168, 20.66, 0.53, 4.55,q d Lv v T σ= = = = 60ρ =  

, 0.26η =  and choose a linear smooth vector function 1 2 3( ( )) [ 1, 1, 1]H x t x x xτ− = + + + T .Let 

11 12 13 21 223, 2, 3, 0, 30,∆ = − ∆ = − ∆ = ∆ = ∆ = − 23 31 322, 4.55,∆ = ∆ = − ∆ = 330, 30∆ = − ,and the 

initial values of system (4.4.1) and (4.4.2) as 1 20.01, 0.01x x= = 3, 0.01x = 1, 0.1, 2 5,yy = = −  

3 10y = − . The time constant τ=1 and τ=-1.5 are used in lag and anticipated synchronization 

respectively. Finally, the dynamics of generalized lag, anticipated and complete 

synchronization errors for the drive system (4.4.1) and the response system (4.4.2) are shown 

in Fig.4.22, Fig.4.23, Fig.4.24, Fig.4.25, Fig.4.26, Fig.4.27 and Fig.4.28.     

4-4-2 Nonlinear Vector function 

  The drive system and response system are also system(4.4.1) and (4.4.2). In this section, 

we choose nonlinear vector function ( ( ))H x t τ−  that is as following: 
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1 1

1 2 3 2 2

3 3

2 ( ) 0 0 ( )
( , , ) 0 2 ( ) 0 ( )

0 0 2 ( ) (

x t x t
H x x x x t x t

x t x t )

τ τ
τ τ

τ τ

− −⎛ ⎞
⎜= −⎜
⎜ ⎟− −⎝ ⎠

⎛ ⎞
⎟⎜ ⎟−⎟⎜ ⎟
⎜ ⎟
⎝ ⎠

                   (4.4.7) 

 

We can obtain the error dynamic system (4-4-6) from system(4-4-1) and system(4-4-2),  

then choose proper i j∆ such that all eigenvalues of system(4.4.6) have negative real parts, 

that is to say, the Eq.(4.4.6) is global asymptotically stable. We take the parameter in 

system(4.4.1) and (4.4.2) as 0.168, 20.66, 0.53, 4.55,q d Lv v T σ= = = = 60, 0.26ρ η= = .Let 

11 30,∆ = − 12 2∆ = 13 21, 3,∆ = ∆ 220, 30,= ∆ = − 23 31 32 332, 4.55, 0, 33∆ = ∆ = − ∆ = ∆ = − , and the 

initial values of system (4.4.1) and (4.4.2) as 1 2 310, 5, 7x x x= = = , and τ =0.5. 1 2, 21,y y=  

30,= 3 15y = . The time constant τ=0.5 and τ=-1 are used in lag and anticipated 

synchronization respectively. Finally the dynamics of generalized lag, anticipated and 

complete synchronization errors for the drive system (4.4.1) and the response system (4.4.2) 

are shown in Fig.4.29, Fig.4.30, Fig.4.31, Fig.4.32, Fig.4.33, Fig.4.34 and Fig.4.35.  

4-4-3 Using Nonlinear Vector function for generalized synchronization of 

BLDCM and Lorenz chaotic system  

In this section, we use nonlinear vector function ( ( ))H x t τ− and different chaotic systems 

for generalized synchronization. The drive system is system(4.4.1) and the response system is 

Lorenz system： 

 

1 1

2 2

3 3

0
( ) , 0 1 ,

0 0

y y a a
y B y G y U B c
y y

−⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎪ ⎪

b

⎢ ⎥= + + = −⎨ ⎬ ⎨ ⎬ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎢ ⎥−⎩ ⎭ ⎩ ⎭ ⎣ ⎦

�
�
�

 

1 3

1 2

0
( ) ,G y y y

y y

⎡ ⎤
⎢= −⎢
⎢ ⎥⎣ ⎦

⎥
⎥                                                       (4.4.8) 
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1

1 2 3 2

3

3 0 0 cos( ( ))
( , , ) 0 3 0 cos( ( ))

0 0 3 cos( ( ))

x t
H x x x x t

x t

τ
τ
τ

−⎛ ⎞⎛
⎜ ⎟⎜= ⎜ ⎟⎜
⎜ ⎟⎜ −⎝ ⎠⎝

⎞
⎟− ⎟
⎟
⎠

                                    (4.4.9) 

  We can obtain the error dynamic system (4.4.6) from system(4.4.1) and (4.4.8), then  

choose proper  such that all eigenvalues of system (4.4.6) have negative real parts,  i j∆

that is to say, the system (4.4.6) is global asymptotically stable. We take the parameter in  

system(4.4.1) and (4.4.8) as 0.168, 20.66, 0.53, 4.55, 60, 0.26,q d Lv v T σ ρ η= = = = = =  

10, 8 / 3,a b= = 28,c = Let  11 12 13 21 225, 2, 5, 28, 5,∆ = − ∆ = ∆ = ∆ = − ∆ = − 23 311, 0∆ = ∆ =

32 33, 0,∆ = ∆ = −5

y y= − = −

, and the initial values of system (4.4.1) and (4.4.2) as  1 2 315, 5, 30x x x=− = =

1 2, 5, 4, 3 5y = . The time constant τ=1 and τ=-0.2 are used in lag and anticipated 

synchronization respectively. Finally, the dynamics of generalized lag, anticipated and 

complete synchronization errors for the drive system (4.4.1) and the response system (4.4.2) 

are shown in Fig.4.34, Fig.4.35, Fig.4.36, Fig.4.37, Fig.4.38, Fig.4.39. 
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Chapter 5 

Chaos in Fractional Order BLDCM and Its Control and 

Synchronization 

 Brief description about fractional derivative and its approximation are presented[43-49]. 

Phase portraits and bifurcation diagram are studied to show the chaotic behaviors of fractional 

order BLDCM. It is shown that fractional order chaotic systems can also be controlled and 

synchronized[50]. 

 

5-1 Fractional derivative and its approximation  

  Riemann-Liouville definition is frequently used in the several definitions of fractional  

derivative [43], which is described as following. 

   

 10

( ) 1 ( )
( ) ( )

r m t

r m

d f t d f d
dt m r dt t

τ
r m τ

τ − +=
Γ − −∫                                      (5.1.1)           

 

where  is gamma function and (m rΓ − ) m1m r− ≤ < .According to definition of fraction of  

differ-integral, it dose not allow direct implementation of fractional operators by time-domain  

simulations. Fortunately, the basic engineering tool for analyzing linear systems, the Laplace 

transform, is still applicable and works as one would expect; 

 

{ }
11

1
0 0

( ) ( )( ) ,
r r km

r k
r r k

k t

d f t d f tL s L f t s for all r
dt dt

− −−

− −
= =

⎧ ⎫ ⎡ ⎤
= −⎨ ⎬ ⎢ ⎥

⎩ ⎭ ⎣ ⎦
∑  

      

where n is an integer such that n - 1 < r< n. Upon considering the initial conditions to be zero, 

this formula reduces to the more expected and comforting form as following 
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{( ) ( )
r

r
r

d f tL s L
dt

⎧ ⎫
=⎨ ⎬

⎩ ⎭
}f t                                                   (5.1.2) 

It has other efficient method that is to approximate fractional operators by using standard  

integer order operators to avoid this problem. In reference [43-50], an effective algorithm is 

developed to approximate fractional order transfer functions. Basically, the idea is to      

approximate the system behavior in the frequency domain. By using frequency domain 

techniques based on Bode diagrams, one can obtain a linear approximation of the fractional 

order integrator, the order of which depends on the desired bandwidth and discrepancy 

between the actual and the approximate magnitude Bode diagrams. This approximation 

approach was adopted in [43-50]. In Table 1 of [51], approximations for  with q 0.1–0.9 

in steps 0.1 are given, with errors of approximately 2 dB. We also use these approximations in 

the following simulations. 

1/ rs

 

5-2 The Chaos in Fractional Order BLDCM System 

   The fractional order BLDCM system is described as following: 

 

1
1 2 3 3

2
2 1 3

3
1 3 1 2( )

i

qr

j

dr

k

Lr

d x v x x x x
dt
d x v x x x
dt

d x x x x x
dt

ρ

δ

σ η

= − − +

= − +

= − + −T

                                           (5.2.1)  

 

  When i, j, k are the fractional numbers. When i=1,j=1,k=1, system (5-2-1) is the original  

one with integral order, which is chaotic when ( ), , , , , (0.168,20.66,q d Lv v Tδ σ η = 0.875,− 4.55,  

0.26, 0.53). The phase portraits are shown in Fig.5.1. 
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   When i=0.9,j=1,k=0.9 , the fractional order of system (5.2.1) is 2.8, which is still  

chaotic when ( ), , , , ,q d Lv v Tδ σ η =(0.168,20.66,-0.875,11,0.26,0.53).The phase portraits and  

bifurcation are shown in Fig.5.2 and Fig.5.3. 

   When i = 0.9 , j = 1, k = 1 , the fractional order of system (5.2.1) is 2.9, which is still  

chaotic when ( ), , , , ,q d Lv v Tδ σ η =(0.168,20.66,-0.875,7,0.26,0.53) . The phase portraits and  

bifurcation are shown in Fig.5.4 and Fig.5.5. 

  When i = 1,j = 0.9 and 1.1, k = 1 , the fractional order of system (5.2.1) is 2.9 and 3.1,  

which is still chaotic when = (0.168, 20.66, -0.875, 6,0.26,0.53) and ( , , , ,q d Lv v Tδ η ) σ =6  

and 9. The phase portraits and bifurcation are shown in Fig.5.6, Fig.5.7, Fig.5.8 and Fig.5.9. 

  When i = 1,j = 1, k = 0.3~1.1 , the fractional order of system (5.2.1) is 2.3,  

2.4,2.5,2.6,2.7,2.8,2.9,3.1 which is still chaotic when ( ), , , ,q d Lv v Tδ η = (0.168, 20.66, -0.875,  

0.2,0.26,0.53) and σ= 0.2,1.5, 1.5, 4, 6, 7.2, 3,9.The phase portraits and bifurcation are  

shown in Fig.5.10, Fig.5.11, Fig.5.12, Fig.5.13, Fig.5.14, Fig.5.15, Fig.5.16, Fig.5.17,  

Fig.5.18, Fig.5.19, Fig.5.20 , Fig.5.21,Fig.5.22 ,Fig.5.23, Fig.5.24 and Fig.5.25 . 

 

5-3 Control of fractional order system 

Chaos control attracts more and more attentions from various disciplines in science and 

engineering, and has been extensively investigated during last decade. In this section, we will 

introduce control of fraction order of chaos[50]. 

  The fractional order BLDCM system Eq.(5.2.1) in a compact from is as following: 

( )d X f x
dt

α

α =                                                            (5.3.1) 

where [ ]1 2 3, , TX x x x=  and α=i, j, k. Eq.(5.3.1) with a simple linear state feedback controller 

can be show as 
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( )d X f x u
dt

α

α = +                                                         (5.3.2)  

  Where u is a linear state feedback controller of the form as follow [43]. For simplicity, we 

assume  is a diagonal matrix. 1 2 3( , , )u diag k k k=

 

1

2

3

0 0
0 0 (
0 0

k
u k X

k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

)X−                                                  (5.3.3) 

where X  is the control target, and  are constant parameters which can easily 

obtained from standard stability analysis. In this part, it lets 

1 2 3, ,k k k

X  be equilibrium point of 

BLDCM system. Simulation results show that this controller can also stabilize the fractional 

order BLDCM system with order (i, j, k) = (0.9,1,1), (1,0.9,1), (1,1,0.9) and = 

(-15,-25,-30) are shown in Fig. 5.26, Fig. 5.27, Fig. 5.28, respectively. In these figures, the 

control signal is added at t=25sec. As we can see from three figure, the designed chaos 

controller can effectively control the fractional order BLDCM system to its equilibrium point. 

1 2 3, ,k k k

 

5-4 Synchronization for Identical Fractional Order Chaotic System  

In this section, we study the synchronization of identical fraction order chaotic system by 

feedback control method[50]. We will numerically investigate the topic here and present three 

cases. The driver system is described Eq.(5.2.1) and response system is as following: 

1
1 2 3 3 1 1 1

1
2 1 3 2 2 2

1
1 3 1 2 3 3 3

( )

( )

( ) (

i

qi

j

dj

k

Lk

d y v y y y y k y x
d t

d y v y y y k y x
d t

d y y y y y T k y x
d t

ρ

δ

σ η

= − − + + −

= − + + −

= − + − + − )

                                   (5.4.1) 

Where  are coupling parameters and 1 2 3, ,k k k ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), 

σ takes different values for different systems. In this part, three cases for synchronization are 
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presented.  

  Case 1. Order of the drive system is (i, j, k) =(0.9,1,1) and the response system 

is(i,j,k)=(0.9,1,1). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=8 

and  = (-5,0,0) The numerical result is shown in Fig. 5.29. 1 2 3, ,k k k

Case 2. Order of the drive system is (i, j, k) =(1,0.9,1) and the response system is (i,j,k)=(1, 

0.9,1). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=6 and 

 = (-4,0,0) The numerical result is shown in Fig. 5.30. 1 2 3, ,k k k

Case 3. Order of the drive system is (i, j, k) =(1,1,0.9) and the response system 

is(i,j,k)=(1,1,0.9). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=8 

and  = (-6,0,0) The numerical result is shown in Fig. 5.31. 1 2 3, ,k k k

 

5-5 Synchronization for Different Fractional Order Chaotic System  

  In this section, we study the synchronization of different fraction order chaotic system. The 

analysis of fractioal order ststem is by no means trivial. So, we will numerically investigate 

the topic here and present three cases. The driver system is described Eq(5.2.1) and response 

system is described Eq.(5.4.1). 

Where  are coupling parameters and 1 2 3, ,k k k ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875, 

0.26,0.53),σ takes different values for different systems. 

   Case 1. Order of the drive system is (i, j, k) =(1,1,1) and the response system is 

(i,j,k)=(1,1,0.9). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), 

σ=4.55 and ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=3, for response respectively. 

The numerical result is shown in Fig. 5.32. 

   Case 2. Order of the drive system is (i, j, k) =(1,1,1) and the response system is 
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(i,j,k)=(1,1,0.7). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), 

σ=4.55 and ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=6, for response respectively. 

The numerical result is shown in Fig. 5.33. 

   Case 3. Order of the drive system is (i, j, k) =(1,1,1) and the response system is 

(i,j,k)=(1,1,0.5). system parameters are ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), 

σ=4.55 and ( , , , , )q d Lv v Tδ η =(0.168,20.66,0.875,0.26,0.53), σ=1.5 , for response 

respectively. The numerical result is shown in Fig. 5.34 

From above numerical results, we can observe the system error which will increase as what 

order of system is to decrease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29



Chapter 6  Conclusions 

Brushless dc motor (BLDCM) is studied in this thesis. It is an autonomous third-order 

electromechanical system. Using different numerical analysis such as phase portrait、

bifurcation diagram and Lyapunov exponent, chaotic behavior are studied. 

  In Chapter 3, controlling for synchronization of chaotic BLDCM system is via a single 

variable. Two control approaches, linear feedback control and adaptive control, are used. We 

use the same method for synchronization of three identical chaotic systems with ring 

connection via unidirectional or bidirectional linear error feedback. Chaos synchronization 

can be realized as the coupled parameter is small, and it can be done more quickly as the 

coupled parameter become lager from numerical results.      

In Chapter 4, first, Pecora and Carroll method is applied to the complete and lag 

synchronization of BLDCM chaotic system, more number of state of response system  

replaced by states of drive system presents that, chaos synchronization can be done more 

quickly. Next, feedback control for complete and lag synchronization is applied in BLDCM 

chaotic system. As the coupled strength increases, error can quickly converge to zero, and 

range of time constant τcan be arbitrarily chosen. Using the same conception, anticipated 

synchronization can be achieved, but range of time constant has limitation. Third, the 

conception of generalized synchronization for identical and different chaotic system is 

achieved by linear and nonlinear vector function.           

  In Chapter 5, we found that chaos exists in the fractional order BLDCM system with less 

than 3. Adding linear feedback controller, controlling of fractional order BLDCM to its 

equilibrium point is achieved, and synchronization of identical and different fractional order 

chaotic system are also achieved. Error of synchronization for identical fractional order 

systems is smaller than that for different fractional order systems. 
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Fig.2.1 A schematic diagram of typical brushless dc motor 
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Fig. 2.2 Phase portrait for BLDCM. 

 

Fig. 2.3 Bifurcation diagram for BLDCM. 
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Fig. 2.4 Lyapunov exponents for BLDCM. 
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Fig 3.1 Time history of errors 
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Fig 3.2 Time history of errors 
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Fig. 3.3 Unidirectional coupling when the coupling parameters are  

11 12 13 21 22 23 31 32 331, 1, 0.5, 1, 0.5, 1, 0.5, 2, 1k k k k k k k k k= = = = = = = = =  with states x and y.  
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Fig. 3.4 Unidirectional coupling when the coupling parameter are 

 with states y and z. 11 12 13 21 22 23 31 32 331, 1, 0.5, 1, 0.5, 1, 0.5, 2, 1k k k k k k k k k= = = = = = = = =
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Fig. 3.5 Unidirectional coupling when the coupling parameter are  

11 12 13 21 22 23 31 32 334, 2, 2, 3, 1, 2, 2, 2, 1k k k k k k k k k= = = = = = = = =  with states x and y. 
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Fig. 3.6 Unidirectional coupling when the coupling parameters are 

11 12 13 21 22 23 31 32 334, 2, 2, 3, 1, 2, 2, 2, 1k k k k k k k k k= = = = = = = = =  with states y and z. 
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Fig. 3.7 bidirectional coupling when the coupling parameters are  

11 12 13 21 22 23 31 32 330.5, 1, 0.7, 1, 0.5, 1, 0.7, 1, 0.5k k k k k k k k k= = = = = = = = =  with states x and y. 
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Fig. 3.8 bidirectional coupling when the coupling parameters are  

11 12 13 21 22 23 31 32 330.5, 1, 0.7, 1, 0.5, 1, 0.7, 1, 0.5k k k k k k k k k= = = = = = = = =  with states y and z. 
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Fig. 3.9 Bidirectional coupling when the coupling parameter are  

11 12 13 21 22 23 31 32 333, 2, 3, 2, 2, 2, 2, 3, 3k k k k k k k k k= = = = = = = = =  with states x and y. 
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Fig. 3.10 Bidirectional coupling when the coupling parameters are 

11 12 13 21 22 23 31 32 333, 2, 3, 2, 2, 2, 2, 3, 3k k k k k k k k k= = = = = = = = =  with states y and z. 
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Fig 4.1 Complete synchronization of two BLDCM systems.  
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Fig 4.2 Complete synchronization of two BLDCM systems.  
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Fig 4.3 Complete synchronization of two BLDCM systems.  
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Fig 4.4 Complete synchronization of two BLDCM systems.  
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Fig 4.5 Complete synchronization of two BLDCM systems. 
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Fig 4.6 Time history of . 22 yandx
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Fig 4.7 Time history of . 33 yandx
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Fig. 4.8 Lag synchronization of two BLDCM systems. 
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Fig 4.9 Time history of . 11 yandx
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Fig-4.10 Time history of . 22 yandx
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Fig 4.11 Lag synchronization of two BLDCM systems. 
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Fig 4.12 Time history of . 33 yandx
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Fig 4.13 Lag Synchronization of two BLDCM systems. 

 44



0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

x2

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

y2

t

 

Fig 4.14 Time history of . 22 yandx
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Fig 4.15 Lag synchronization of two BLDCM systems. 
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Fig 4.16 Time history of . 11 yandx
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Fig 4.17 Time history of . 22 yandx
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Fig 4.18 Time history of 3 3x and y . 
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Fig 4.19 Lag synchronization of two BLDCM systems. 
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Fig 4.20 Time history of all state. 
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Fig 4.21 Anticipated synchronization of two BLDCM systems. 
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Fig. 4.22 Time history for 1 2 3 1 2 3, , 1, 1, 1y y y and x x x+ + + . 
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Fig. 4.23 Generalized complete synchronization error for e = . ( 1y x− + )
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Fig. 4.24 Time history for 1 2 3 1 2 3, , 1, 1, 1y y y and x x x+ + + . 
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Fig. 4.25 Generalized lag synchronization error for e= ( ) ( ( 0.5 1))y t x t− − + . 
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Fig. 4.26 Time history for 1 2 3 1 2 3, , 1, 1, 1y y y and x x x+ + + . 
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Fig. 4.27Generalized anticipated synchronization error for e= . ( ) ( ( 1.5) 1)y t x t− + +
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Fig. 4.28 Time history for . 2 2
1 2 3 1 2, , 2 , 2 , 2y y y and x x x2
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Fig. 4.29 Generalized complete synchronization error for e= . 2( ) (2 )y t x−
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Fig. 4.30 Time history for . 2 2 2
1 2 3 1 2 3, , 2 ( 0.5), 2 ( 0.5), 2 ( 0.5)y y y and x t x t x t− − −
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Fig. 4.31 Generalized lag synchronization error with e= . 2( ) (2 ( 0.5))y t x t− −
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Fig. 4.32 Time history for 2 2 2
1 2 3 1 2 3, , 2 ( 1), 2 ( 1), 2 ( 1)y y y and x t x t x t+ + + . 
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Fig. 4.33 Generalized anticipated synchronization error for e= . 2( ) (2 ( 1))y t x t− +
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Fig. 4.34 Time history for . 1 2 3 1 2 3, , 3cos( ),3cos( ),3cos( )y y y and x x x
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Fig. 4.35 Generalized complete synchronization error for e= . ( ) 3cos( )y t x−
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Fig. 4.36 Time history for 1 2 3 1 2 3, , 3cos( ( 1)),3cos( ( 1)),3cos( ( 1))y y y and x t x t x t− − − . 
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Fig. 4.37 Generalized lag synchronization error for e= ( ) 3cos( ( 1))y t x t− − . 
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Fig. 4.38 Time history for 1 2 3 1 2 3, , 3cos( ( 0.2)),3cos( ( 0.2)),3cos( ( 0.2))y y y and x t x t x t+ + + . 
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Fig. 4.39 Generalized anticipated synchronization error for e=y(t)-3cos(x(t+0.2)). 
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Fig. 5.1 phase portrait of BLDCM with (i, j, k) = (1,1,1) and 

( ), , , , ,q d LV V Tδ σ η =(0.168,20.66,-0.875,4.55,0.26,0.53). 
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Fig. 5.2 phase portrait of BLDCM with (i, j, k) = (0.9,1,0.9) and 

( ), , , , ,q d LV V Tδ σ η =(0.168,20.66,-0.875,11,0.26,0.53). 

 
Fig.5.3 Bifurcation diagram for BLDCM with order (i, j, k)=(0.9,1,0.9). 
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Fig. 5.4 phase portrait of BLDCM with (i, j, k) = (0.9,1,1) and 

=(0.168,20.66,-0.875,7,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.5 Bifurcation diagram for BLDCM with order (i, j, k)=(0.9,1,1). 
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Fig. 5.6 phase portrait of BLDCM with (i, j, k) = (1,0.9, 1) and 

=(0.168,20.66,-0.875,6,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.7 Bifurcation diagram for BLDCM with order (i, j, k)=(1,0.9,1). 
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Fig. 5.8 phase portrait of BLDCM with (i, j, k) = (1,1.1, 1) and 

=(0.168,20.66,-0.875,9,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.9 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1.1,1). 
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Fig. 5.10 phase portrait of BLDCM with (i, j, k) = (1,1, 0.3) and 

=(0.168,20.66,-0.875,0.2,0.26,0.53).( , , , , ,q d LV V Tδ σ η )

 
Fig.5.11 Bifurcation diagram for BLDCM with order (i, j, k)=(1,1,0.3). 
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Fig. 5.12 phase portrait of BLDCM with (i, j, k) = (1,1, 0.4) and 

=(0.168,20.66,-0.875,1.5,0.26,0.53).( , , , , ,q d LV V Tδ σ η )

 
Fig.5.13 Bifurcation diagram for BLDCM with order (i, j, k)=(1,1,0.4). 
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Fig. 5.14 phase portrait of BLDCM with (i, j, k) = (1,1, 0.5) and 

=(0.168,20.66,-0.875,1.5,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.15 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.5). 
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Fig. 5.16 phase portrait of BLDCM with (i, j, k) = (1,1, 0.6) and 

=(0.168,20.66,-0.875,4,0.26,0.53).( , , , , ,q d LV V Tδ σ η )

 
Fig.5.17 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.6). 
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Fig. 5.18 phase portrait of BLDCM with (i, j, k) = (1,1, 0.7) and 

=(0.168,20.66,-0.875,6,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.19 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.7). 
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Fig. 5.20 phase portrait of BLDCM with (i, j, k) = (1,1, 0.8) and 

=(0.168,20.66,-0.875,7.2,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.21 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.8). 
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Fig. 5.22 phase portrait of BLDCM with (i, j, k) = (1,1, 0.9) and 

=(0.168,20.66,-0.875,3,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.23 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,0.9). 
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Fig. 5.24 phase portrait of BLDCM with (i, j, k) = (1,1, 1.1) and 

=(0.168,20.66,-0.875,9,0.26,0.53). ( , , , , ,q d LV V Tδ σ η )

 
Fig.5.25 Bifurcation diagram for BLDCM with order (i, j, k) = (1,1,1.1). 
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Fig. 5.26. Time history of system state with fractional order (i, j, k)=(0.9,1,1). 

       The equilibrium point is 1 2 3( , , )x x x =(-3.1204,59.6748,-10.1125). 
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Fig. 5.27. Time history of system state with fractional order (i, j, k)=(1,0.9,1). 
       The equilibrium point is 1 2 3( , , )x x x =(0.04194,23.6112,-0.003464). 
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Fig. 5.28. Time history of system state with fractional order (i, j, k)=(1,1,0.9). 

       The equilibrium point is 1 2 3( , , )x x x =(-2.2492,59.8248,-14.0888). 
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Fig. 5.29 synchronization for fractional order (i, j, k)=(0.9,1,1) and σ=7.   
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Fig. 5.30 synchronization for fractional order (i, j, k)=(1,0.9,1) and σ=6. 
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Fig. 5.31 synchronization for fractional order (i, j, k)=(1,1,0.9) and σ=3. 
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Fig. 5.32. The fractional order BLDCM system with (i, j, k) = (1,1,1), σ=4.55 and 

(i, j, k) = (1,1,0.9), σ=3. 
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Fig. 5.33. The fractional order BLDCM system with (i, j, k) = (1,1,1), σ=4.55 and 

(i, j, k) = (1,1,0.7), σ=6. 
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Fig. 5.34. The fractional order BLDCM system with (i, j, k) = (1,1,1),σ=4.55 and 

(i, j, k) = (1,1,0.5), σ=1.5. 
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