
Chapter 1 

Introduction 
 

Touch-screen based mobile devices with high-resolution image display features have 

become popular. In particular, large-size screen has become a trend in mobile device design. 

For example, HTC launched 4.7-inch smartphone HTC One to replace 4.3-inch HTC One 

SC in 2013 [1], and Samsung also released 4.8-inch smartphone GALAXY S III to replace 

4.3-inch GALAXY S II in 2012 [2]. Convenience provided by these features encourages 

implementation of applications such as web albums (e.g., Facebook) in mobile devices. 

Web albums allow a user to publish photo albums on the web and view albums of other 

users. Through broadband mobile telecom, users can enjoy watching contents of web 

albums at any place in real time. 

1.1   Implementation of CloudPocket 

We have implemented a mobile web album system called CloudPocket which has been  

published in App Store (see Figure 1.1). CloudPocket consists of an application server 

installed in Industrial Technology Research Institute's (ITRI) BuddySquare System (a 

mobile service platform) and a mobile client [3]. The application server is implemented by 

using the JAVA language, which runs on the HP Proliant DL380 G7 Server with the Linux 

operating system. The mobile client is written in Objective-C language running the iOS 

5.0.1 with Apple iPhone 4.  
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Figure 1.1: CloudPocket in App Store 

 

A User Equipment (UE; Figure 1.2 (a)) downloads CloudPocket App (Figure 1.2 (b)) 

from App Store (Figure 1.2 (c)). When the UE executes CloudPocket mobile client for the 

first time, CloudPocket requests the UE to execute BuddySquare registration (Figure 1.2 

(d)). Through the application programming interface service of BuddySquare System (API; 

Figure 1.2 (e)), the UE registers through authentication, authorization, and accounting 

service (AAA; Figure 1.2 (f)). If the registration is successful, the BuddySquare System 

creates free storage (Figure 1.2 (g)) for the user’s web album at the application server 

(Figure 1.2 (h)) to store images uploaded by the UE.  
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(d) BuddySquare System

(c) App Store

(f) AAA
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(h) Application Server

(e) API

(i) Other Services

(g) Storage

 

Figure 1.2: The Architecture of CloudPocket 

 

Figure 1.3 shows the user interface of the CloudPocket mobile client. The manager 

window (Figure 1.3 (a)) is popped up after the CloudPocket client application is executed. 

This window contains Local, Cloud, and Cloud Group Managers. If the user selects the 

Cloud Group Manager item (Figure 1.3 (1)), the window shows the group list (Figure 1.3 

(b)) which the user had joined. After the user has selected a group (Figure 1.3 (2)), the 

window shows the file list of the group (Figure 1.3 (c)). The client also offers the 

following commands: move, delete, zip to edit (or manipulate) the images (Figure 1.3 (3)). 

Each item in the file list represents an image with its attributes (Figure 1.3 (4) e.g., size 

and owner). After the user has selected an item (Figure 1.3 (5)), the window is popped up 

to show the content of the image (Figure 1.3 (d)). In the viewing window, the user can flip 

this image (Figure 1.3 (6)) to access the next image (Figure 1.3 (e)). 
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The above implementation was one of the award winners among more than 100 

candidates in the 2012 Mobile App Competition of Ministry of Economic Affairs, Executive 

Yuan, Taiwan. 

 

 

(a) Manager Window              (b) Group List 

 

(c) File List             (d) Viewing an Image     (e) Viewing the Next Image 

Figure 1.3: The User Interface of CloudPocket Mobile Client 
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1.2   Organization 

User experience on CloudPocket indicates that many users access several images in 

sequential order (e.g., flipping the photos in facebook), and then jump forward to access an 

out-of the-sequential-order image (Note that jump backward does not involve accessing to 

the server). Therefore, it is essential to enhance user experience in sequential web album 

access. We note that “sequential access of images” does not mean that the received images 

are manipulated sequentially. When the user receives image 𝑖𝑖 , she/he may zoom or 

comment on some images 𝑗𝑗 ≤ 𝑖𝑖, and then moves on to access image 𝑖𝑖 + 1. One important 

issue is to reduce the waiting time for accessing images. A solution is prefetching that has 

been deployed by web browser plugins on laptops [4,5]. To speed up wireless transmission 

for images, data compression has also been proposed. With the improvement of the CPU 

computing power, mobile devices can simultaneously execute prefetching and compression 

of images. 

      

From the network aspect, prefetching may waste resources if the prefetched images  

are not used (i.e., photos are not viewed by the users). To balance against the network 

bandwidth consumption and the user experience (i.e., the waiting time), this thesis proposes 

a combined prefetching and compression method for mobile web albums access. Then we 

develop analytic and simulation models to study the performance of this mechanism.  

 

This thesis addresses the issue of prefetching performance for mobile web album 

access. The rest of this thesis is organized as follows. Chapter 2 describes the prefetching 

mechanism. Chapter 3-4 propose an analytic model to study the performance of prefetching. 

Chapter 5 investigates prefetching by numerical examples, and the conclusions are given in 

Chapter 6. 
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Chapter 2 

The Prefetching Mechanism 
 

This chapter uses CloudPocket as an example to describe the image prefetching 

mechanism on mobile devices. As illustrated in Figure 2.1, CloudPocket can be 

implemented in a 3G environment (WCDMA) that consists of a mobile core network 

(Figure 2.1 (a)) and based stations (Figure 2.1 (b)). Alternatively, it can be implemented in a 

Wi-Fi environment with Wi-Fi routers (Figure 2.1 (c)). Like other web album applications, 

CloudPocket follows the client-server model where the UE (Figure 2.1 (d)) is the client that 

accesses the images from CloudPocket in the server (Figure 2.1 (e)) through the Internet 

(Figure 2.1 (f)). In Figure 2.1, the UE communicates with CloudPocket via the ftp protocol. 

The communication path is established between UE and the server through (e)-(f)-(a)-(b)-(d) 

for 3G service or (e)-(f)-(c)-(d) for Wi-Fi service. 
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Figure 2.1: A Simplified Architecture for Wireless Applications 

 

Our album prefetching mechanism follows the TCP-like sliding window protocol [6] 

with an image buffer of size 𝑁𝑁 implemented in the UE, where the buffer size is the 

window size. We also utilize ZipArchive for compression [7]. The images published in 

CloudPocket are compressed in advance. The server repeats transmitting compressed 

images to the UE until the image buffer of the UE is filled. Upon receipt of an image, the 

UE decompresses and stores it in the buffer. After an image is accessed by the user, it is 

removed or stored in other memory space of the UE, and the buffer can accommodate the 

next prefetched image. If all images in the buffer are viewed and the user attempts to view 

the next images, then the user must wait until these images are fetched. The prefetching 

mechanism can be evaluated by three measures. 

 

 

(d) UE

  (c) Wi-Fi Router

(e) Application Server

(f) Internet

(b) Base Station

(a) Mobile 
Core Network
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• 𝐸𝐸[𝑛𝑛]: the expected number of the images that the user can continue to access without 

waiting 

• 𝐸𝐸[𝑤𝑤]: the expected waiting time that the user has to wait for the arrival of the next 

image (excluding the initial waiting for the first image) 

• 𝐸𝐸[𝑛𝑛∗]: the number of wasted transmitted images 

 

When a user stops viewing, let 𝑛𝑛∗ be the number of the prefetched images in the  

buffer that are not viewed by the user. These images are considered wasted. Prefetching of 

these images consumes extra network resources (especially the wireless bandwidth). We can 

quickly investigate the 𝐸𝐸[𝑛𝑛∗] performance through a worst case study. In the steady state, 

if the buffer of the UE is full, then from the view of the random process, the number of 

wasted image is N−1
2

. Since the buffer may not be full when the user stops viewing, we have 

𝐸𝐸[𝑛𝑛∗] ≤ N−1
2

. 

 

Both 𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤] are considered as output measures for the user experience. The 

user experience of prefetching is good if 𝐸𝐸[𝑛𝑛] is large and 𝐸𝐸[𝑤𝑤] is small, which are 

affected by three factors: the image transmission delay τ𝑇𝑇, the image viewing time τ𝑉𝑉, and 

the size 𝑁𝑁 of the buffer. One of the following three cases may occur. 

 

Case I: When τ𝑉𝑉 ≫ τ𝑇𝑇 , the user only waits for transmission of the first image, the 

subsequent images can be viewed without waiting. In this case, the optimal buffer size is 

𝑁𝑁 = 2 because the user never waits for the arrival of the next image. Also, since only one 

image is prefetched, at most one image is wasted (i.e., not viewed). 
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Case II: When τ𝑇𝑇 ≫ 𝜏𝜏𝑉𝑉, the user always waits for transmission of the next image. In this 

case, prefetching does not work. 

Case III: The intervals τ𝑇𝑇 and τ𝑉𝑉 are of the same order of magnitude, the prefetching 

mechanism may effective with an appropriate image buffer size 𝑁𝑁.  

 

In Case III, selection of 𝑁𝑁 is important to balance against 𝐸𝐸[𝑛𝑛], 𝐸𝐸[𝑤𝑤] and 𝐸𝐸[𝑛𝑛∗]. 

When 𝑁𝑁 = 1, there is no prefetching. In the prefetching mode, the larger the 𝑁𝑁, the better 

the 𝐸𝐸[𝑛𝑛] and the 𝐸𝐸[𝑤𝑤]. On the other hand, if 𝑁𝑁 is too large, many images may be 

prefetched without being viewed (i.e., 𝐸𝐸[𝑛𝑛∗] is large), and the valuable network resources 

for transmission are wasted. The maximum transmission resources wasted is 𝑛𝑛∗ = 𝑁𝑁 − 1 

images, when the prefetching time is much faster than the viewing time. On the average, 

𝐸𝐸[𝑛𝑛∗] ≤ N−1
2

. Therefore, it is essential to select an appropriate 𝑁𝑁 value to balance against 

the user experience (𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤]) and network consumption (𝐸𝐸[𝑛𝑛∗]). 
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Chapter 3 

An Analytic Model for Prefetching 

with 𝐍𝐍 = 𝟐𝟐 
 

From the viewpoint of the service provider, it is important to invest network resources 

to enhance user experience. In service planning (i.e., to set up the 𝑁𝑁 parameter), we 

typically ask the following question: “If we want to engineer the service at 𝐸𝐸[𝑛𝑛] < 𝑥𝑥 and 

𝐸𝐸[𝑤𝑤] < 𝑦𝑦, what is the smallest 𝑁𝑁 value ?” Then the service is engineered at the selected 

buffer size 𝑁𝑁 if N is reasonably small but suffices to achieve the user experience we 

expect. Therefore, it is important to conduct accurate derivation of 𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤] as 

functions of 𝑁𝑁. This chapter proposes an analytic model for prefetching with 𝑁𝑁 = 2. 

Figure 3.1 illustrates a timing diagram that describes the prefetching mechanism. 
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Figure 3.1: Timing Diagram for Prefetching with 𝑁𝑁 = 2 

 

In this figure, the symbol “  ” represents that the server starts to transmit an image, 

the symbol “  ” represents that the user starts to view a received image. At 𝑡𝑡0, the UE 

starts prefetching by sending an image access request (𝑟𝑟𝑟𝑟𝑟𝑟1 in Figure 3.1) to ask the server 

to transmit the first image. Upon receipt of 𝑟𝑟𝑟𝑟𝑟𝑟1, the server transmits the image. At 𝑡𝑡1, the 

image arrives at the UE. The UE sends a continue-to-prefetch acknowledgement (𝑎𝑎𝑎𝑎𝑎𝑎1(𝑎𝑎) 

in Figure 3.1) to inform the server to transmit the next image. The user views the first image 

in period [𝑡𝑡1, 𝑡𝑡3]. At 𝑡𝑡2, the UE receives the second image. Since the user is still viewing 

othe first image, the buffer is full. The UE sends a suspend-prefetching acknowledgement 

𝑎𝑎𝑎𝑎𝑎𝑎2(𝑠𝑠) to inform the server to suspend image transmission. At 𝑡𝑡3, the user continues to 

view the second image, and the first image is deleted or stored in other memory space of the 

UE, and the buffer can accommodate the next prefetched image. The UE sends an image 

access request 𝑟𝑟𝑟𝑟𝑟𝑟2 to inform the server to transmit the next image. At 𝑡𝑡4, the UE receives 

the third image. Since the user is still viewing the second image, the buffer is full. The UE 

sends a suspend-prefetching acknowledgement 𝑎𝑎𝑎𝑎𝑎𝑎3(𝑠𝑠) to suspend transmission. At 𝑡𝑡5, 
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the user continues to view the third image, and the buffer storage for the second image is 

released. The UE sends the image access request 𝑟𝑟𝑟𝑟𝑟𝑟3 to prefetch the next image. At 𝑡𝑡6, 

all images in the buffer are viewed and the user attempts to view the next image which has 

not been received. This image arrives at 𝑡𝑡7, and the user must wait for the period [𝑡𝑡6, 𝑡𝑡7] 

before she/he can view the next image. Let 𝑛𝑛  be the number of images that are 

consecutively viewed without waiting. In this example, 𝑛𝑛 = 3 in [𝑡𝑡0, 𝑡𝑡7]. Then the user has 

to wait for the 4th image that will arrive at time 𝑡𝑡7. Let 𝑤𝑤 be the waiting time. In Figure 

3.1 𝑤𝑤 = 𝑡𝑡7 − 𝑡𝑡6 for the 4th image. Let 𝜏𝜏𝑇𝑇,𝑖𝑖 be the transmission delay for image 𝑖𝑖. In 

Figure 3.1, 𝜏𝜏𝑇𝑇,2 = 𝑡𝑡2 − 𝑡𝑡1 for the second image. Let 𝜏𝜏𝑉𝑉,𝑖𝑖 be the viewing time for image 𝑖𝑖. 

In Figure 3.1, 𝜏𝜏𝑉𝑉,2 = 𝑡𝑡5 − 𝑡𝑡3 for the second image. 

 

To derive 𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤], we define 𝑝𝑝(𝑛𝑛), the probability that after the user has 

received the first image (i.e., after 𝑡𝑡1 in Figure 3.1), she/he can continue to view exactly 

𝑛𝑛 − 1 subsequent images without waiting (and then waits for the arrival of the 𝑛𝑛th 

subsequent image). In this chapter, we describe an analytic model for deriving 𝑝𝑝(𝑛𝑛), 𝐸𝐸[𝑛𝑛] 

and 𝐸𝐸[𝑤𝑤] under 𝑁𝑁 = 2. In this scenario, whether the user has to wait for the arrival of the 

(𝑖𝑖 + 1)th image only depends on the relationship of 𝜏𝜏𝑉𝑉,𝑖𝑖 for viewing the 𝑖𝑖th image and 

𝜏𝜏𝑇𝑇,𝑖𝑖+1 for transmitting the (𝑖𝑖 + 1)th image. If we assume that 𝜏𝜏𝑇𝑇,𝑖𝑖  and 𝜏𝜏𝑉𝑉,𝑖𝑖  are both 

𝑖𝑖. 𝑖𝑖.𝑑𝑑. random variables, then the notation can be simplified as 𝜏𝜏𝑇𝑇 and 𝜏𝜏𝑉𝑉 respectively, 

and Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉] is the probability that the user has to wait for the arrival of the next image. 

Therefore, 𝑝𝑝(𝑛𝑛) can be expressed as 

 

𝑝𝑝(𝑛𝑛) = (1 − Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉])n−1(Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉]) (3.1) 
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In (3.1), the term (1 − Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉])n−1 means that the user can continuously view 𝑛𝑛 

images without waiting (including the first image, which was viewed at 𝑡𝑡1 in Figure 3.1).  

If 𝜏𝜏𝑇𝑇 is an Erlang random variable with the shape parameter 𝑎𝑎, the rate parameter 𝜇𝜇, and 

the mean 𝑎𝑎/𝜇𝜇, then its density function is 

 

𝑓𝑓𝑇𝑇(𝜏𝜏𝑇𝑇) =
𝜇𝜇𝑘𝑘𝜏𝜏𝑇𝑇𝑘𝑘−1𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇

(𝑎𝑎 − 1)!
     for 𝑎𝑎 ≥ 1 (3.2) 

 
From (3.2) and assume that 𝜏𝜏𝑉𝑉 has an arbitrary density function 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉), we have 
 

                        Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉] = � � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)𝑓𝑓𝑇𝑇(𝜏𝜏𝑇𝑇)𝑑𝑑𝜏𝜏𝑇𝑇𝑑𝑑𝜏𝜏𝑉𝑉
∞

𝜇𝜇𝑇𝑇=𝜇𝜇𝑉𝑉

∞

𝜇𝜇𝑉𝑉=0
 

                                                = � � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉) �
𝜇𝜇𝑘𝑘𝜏𝜏𝑇𝑇𝑘𝑘−1𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇

(𝑎𝑎 − 1)!
� 𝑑𝑑𝜏𝜏𝑇𝑇𝑑𝑑𝜏𝜏𝑉𝑉

∞

𝜇𝜇𝑇𝑇=𝜇𝜇𝑉𝑉

∞

𝜇𝜇𝑉𝑉=0
 

                                                = � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉) � �
(𝜇𝜇𝜏𝜏𝑉𝑉)𝑚𝑚

𝑚𝑚!
� 𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉𝑑𝑑𝜏𝜏𝑉𝑉

𝑘𝑘−1

𝑚𝑚=0

∞

𝜇𝜇𝑉𝑉=0
 

                                                = � �
𝜇𝜇𝑚𝑚

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

� 𝜏𝜏𝑉𝑉𝑚𝑚𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉𝑑𝑑𝜏𝜏𝑉𝑉
∞

𝜇𝜇𝑉𝑉=0
 

                   =  � �
𝜇𝜇𝑚𝑚

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

�
(−1)𝑚𝑚𝑑𝑑𝑚𝑚𝑓𝑓𝑣𝑣∗(𝑠𝑠)

𝑑𝑑𝑠𝑠𝑚𝑚
�
𝑠𝑠=𝜇𝜇

� 

 

 

 

 

 

(3.3) 

 

We consider Erlang 𝜏𝜏𝑉𝑉  distribution because any distribution can be represented by a 

mixture of Erlang distribution [8]. If 𝜏𝜏𝑉𝑉 is a Gamma random variable with the density 

function 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉), the mean 1/𝜆𝜆, the variance 𝑉𝑉𝑉𝑉, then its Laplace transform is 

 

𝑓𝑓𝑉𝑉∗(s) = �
1

𝑉𝑉𝑉𝑉𝑠𝑠𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2 (3.4) 

 
and 
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𝑑𝑑𝑚𝑚𝑓𝑓𝑣𝑣∗(𝑠𝑠)
𝑑𝑑𝑠𝑠𝑚𝑚

= (−𝑉𝑉𝑉𝑉𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝑠𝑠𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

��
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑙𝑙 − 1�

𝑚𝑚

𝑙𝑙=1

 (3.5) 

 

Note that the Gamma distribution can be used to describe a random variable with a large 

range of variance. That is, a Gamma random variable 𝜏𝜏𝑉𝑉 is appropriate to represent users 

with both regular and irregular viewing behaviors [9,10]. Substitute (3.5) into (3.3) to yield 

 

Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉] = � �
(−𝜇𝜇)𝑚𝑚

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

�(−𝑉𝑉𝑉𝑉𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

��
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑙𝑙 − 1�

𝑚𝑚

𝑙𝑙=1

� 

                         = � �
𝜇𝜇𝑚𝑚

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

(𝑉𝑉𝑉𝑉𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

��
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑙𝑙 − 1�

𝑚𝑚

𝑙𝑙=1

 

                         = � �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑚𝑚 − 1
𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=0

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

 

 

 

 

(3.6) 

 
From (3.1) and (3.6), 𝑝𝑝(𝑛𝑛) is expressed as  
 

𝑝𝑝(𝑛𝑛) =  �1 − �� �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑚𝑚 − 1
𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=0

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

��

𝑛𝑛−1

 

                   ×   �� �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑚𝑚 − 1
𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=0

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

�  

 

 

(3.7) 
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From (3.7), 𝐸𝐸[𝑛𝑛] can be expressed as 
 

                                            𝐸𝐸[𝑛𝑛] = �𝑛𝑛 × 𝑝𝑝(𝑛𝑛)
∞

𝑛𝑛=1

 

                                                      =
1

Pr[𝜏𝜏𝑇𝑇 > 𝜏𝜏𝑉𝑉] 

                              = �� �
𝜇𝜇𝑚𝑚

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

�
(−1)𝑚𝑚𝑑𝑑𝑚𝑚𝑓𝑓𝑣𝑣∗(𝑠𝑠)

𝑑𝑑𝑠𝑠𝑚𝑚
�
𝑠𝑠=𝜇𝜇

��

−1

 

 

 

 

(3.8) 

 
For Gamma random variable 𝜏𝜏𝑉𝑉, (3.8) is rewritten as 
 

𝐸𝐸[𝑛𝑛] = �� �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑚𝑚 − 1
𝑚𝑚

�
𝑘𝑘−1

𝑚𝑚=0

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

�

−1

 (3.9) 

 
Since 𝑤𝑤 = max  (0, 𝜏𝜏𝑇𝑇 − 𝜏𝜏𝑉𝑉), 𝐸𝐸[𝑤𝑤] is expressed as 
 

𝐸𝐸[𝑤𝑤] = � � (𝜏𝜏𝑇𝑇 − 𝜏𝜏𝑉𝑉)𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)𝑓𝑓𝑇𝑇(𝜏𝜏𝑇𝑇)𝑑𝑑𝜏𝜏𝑇𝑇𝑑𝑑𝜏𝜏𝑉𝑉
∞

𝜇𝜇𝑇𝑇=𝜇𝜇𝑉𝑉

∞

𝜇𝜇𝑉𝑉=0
 

           = � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)� (𝜏𝜏𝑇𝑇 − 𝜏𝜏𝑉𝑉) �
𝜇𝜇𝑘𝑘𝜏𝜏𝑇𝑇𝑘𝑘−1𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇

(𝑎𝑎 − 1)!
� 𝑑𝑑𝜏𝜏𝑇𝑇𝑑𝑑𝜏𝜏𝑉𝑉

∞

𝜇𝜇𝑇𝑇=𝜇𝜇𝑉𝑉

∞

𝜇𝜇𝑉𝑉=0
 

           = � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)� ��
𝜇𝜇𝑘𝑘𝜏𝜏𝑇𝑇𝑘𝑘𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇

(𝑎𝑎 − 1)!
� − 𝜏𝜏𝑉𝑉 �

𝜇𝜇𝑘𝑘𝜏𝜏𝑇𝑇𝑘𝑘−1𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇
(𝑎𝑎 − 1)!

�� 𝑑𝑑𝜏𝜏𝑇𝑇𝑑𝑑𝜏𝜏𝑉𝑉
∞

𝜇𝜇𝑇𝑇=𝜇𝜇𝑉𝑉

∞

𝜇𝜇𝑉𝑉=0
 

           = � 𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)
∞

𝜇𝜇𝑉𝑉=0
��
𝑎𝑎
𝜇𝜇
� � �

(𝜇𝜇𝜏𝜏𝑉𝑉)𝑚𝑚

𝑚𝑚!
� 𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉

𝑘𝑘

𝑚𝑚=0

− 𝜏𝜏𝑉𝑉 � �
(𝜇𝜇𝜏𝜏𝑉𝑉)𝑚𝑚

𝑚𝑚!
� 𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉

𝑘𝑘−1

𝑚𝑚=0

� 𝑑𝑑𝜏𝜏𝑉𝑉 

           = � ��
𝑎𝑎
𝜇𝜇
� � �

𝜇𝜇𝑚𝑚

𝑚𝑚!�
𝜏𝜏𝑉𝑉𝑚𝑚𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉

𝑘𝑘

𝑚𝑚=0

− � �
𝜇𝜇𝑚𝑚

𝑚𝑚!�
𝜏𝜏𝑉𝑉𝑚𝑚+1𝑓𝑓𝑉𝑉(𝜏𝜏𝑉𝑉)𝑟𝑟−𝜇𝜇𝜇𝜇𝑉𝑉

𝑘𝑘−1

𝑚𝑚=0

�
∞

𝜇𝜇𝑉𝑉=0
𝑑𝑑𝜏𝜏𝑉𝑉 

            = �
𝑎𝑎
𝜇𝜇
� � �

𝜇𝜇𝑚𝑚

𝑚𝑚!
�

𝑘𝑘

𝑚𝑚=0

�
(−1)𝑚𝑚𝑑𝑑𝑚𝑚𝑓𝑓𝑣𝑣∗(𝑠𝑠)

𝑑𝑑𝑠𝑠𝑚𝑚
�
𝑠𝑠=𝜇𝜇

� − �
1
𝜇𝜇
� � �

𝜇𝜇𝑚𝑚+1

𝑚𝑚!
�

𝑘𝑘−1

𝑚𝑚=0

�
(−1)𝑚𝑚+1𝑑𝑑𝑚𝑚+1𝑓𝑓𝑣𝑣∗(𝑠𝑠)

𝑑𝑑𝑠𝑠𝑚𝑚+1 �
𝑠𝑠=𝜇𝜇

� 

 

 

 

 

 

(3.10) 
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For Gamma random variable τV, we have 
 

𝐸𝐸[𝑤𝑤]  = �
𝑎𝑎
𝜇𝜇
� � ��

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚

𝑚𝑚!
� �

1
𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1

�
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+𝑚𝑚

��
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑙𝑙 − 1�

𝑚𝑚

𝑙𝑙=1

�
𝑘𝑘

𝑚𝑚=0

 

            −�
1
𝜇𝜇
� � ��

(𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚+1

𝑚𝑚!
� �

1
𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1

�
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+𝑚𝑚+1

� �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑙𝑙 − 1�

𝑚𝑚+1

𝑙𝑙=1

�
𝑘𝑘−1

𝑚𝑚=0

 

            = �
𝑎𝑎
𝜇𝜇
� �

⎣
⎢
⎢
⎢
⎡
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+ 𝑚𝑚 − 1
𝑚𝑚

� (𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚 �
1

𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1
�

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚

⎦
⎥
⎥
⎥
⎤𝑘𝑘

𝑚𝑚=0

 

            −�
1
𝜇𝜇
� � ��

1
𝑉𝑉𝑉𝑉𝜆𝜆2

+𝑚𝑚 − 1
𝑚𝑚

� (𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆)𝑚𝑚+1 �
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+ 𝑚𝑚��

1
𝑉𝑉𝑉𝑉𝜇𝜇𝜆𝜆 + 1

�
1

𝑉𝑉𝑉𝑉𝜆𝜆2
+𝑚𝑚+1

�
𝑘𝑘−1

𝑚𝑚=0

 

 

 

 

 

 

(3.11) 
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Chapter 4 

An Analytic Model for Prefetching 

with 𝐍𝐍 → ∞ 
 

This chapter derives 𝑝𝑝(𝑛𝑛) when 𝑁𝑁 → ∞ where 𝜏𝜏𝑉𝑉,𝑖𝑖  and 𝜏𝜏𝑇𝑇,𝑖𝑖  are Exponentially 

distributed. In this scenario, the server always repeats transmitting images to the UE. 

 Let  𝑇𝑇𝑉𝑉,𝑖𝑖 = �𝜏𝜏𝑉𝑉,𝑗𝑗

𝑖𝑖

𝑗𝑗=1

 be the sum of the viewing times for the first 𝑖𝑖 images  (𝑖𝑖 ≥ 1). Let 

 𝑇𝑇𝑇𝑇,𝑖𝑖 = �𝜏𝜏𝑇𝑇,𝑗𝑗

𝑖𝑖

𝑗𝑗=2

 be the sum of the transmission delays of the second image to the 𝑖𝑖th 

image (𝑖𝑖 ≥ 2). It is clear that if the user can continue to view 𝑖𝑖 images without waiting, 

the sum 𝑇𝑇𝑉𝑉,𝑖𝑖−1 of image viewing times from the first image to the (𝑖𝑖 − 1)th image must be 

larger than the sum 𝑇𝑇𝑇𝑇,𝑖𝑖 of image transmission delays from the second image to the 𝑖𝑖th 

image; that is, for 𝑖𝑖 ≥ 2 

 

�𝜏𝜏𝑉𝑉,𝑗𝑗 ≥
𝑖𝑖−1

𝑗𝑗=1

�𝜏𝜏𝑇𝑇,𝑗𝑗

𝑖𝑖

𝑗𝑗=2

 (4.1) 

 

For 𝑖𝑖 ≥ 2, let 𝑇𝑇𝑖𝑖 be the period between when the 𝑖𝑖th image is prefetched and when the 

(𝑖𝑖 − 1)th image is completely viewed under the condition that the user has viewed the first 

𝑖𝑖 − 1 images without waiting. In other words, 
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 𝑇𝑇𝑖𝑖 =  𝑇𝑇𝑉𝑉,𝑖𝑖−1 −  𝑇𝑇𝑇𝑇,𝑖𝑖    where  𝑇𝑇𝑉𝑉,𝑗𝑗−1 ≥  𝑇𝑇𝑇𝑇,𝑗𝑗   for  2 ≤ 𝑗𝑗 ≤ 𝑖𝑖  (4.2) 

 

Therefore Pr[𝑇𝑇𝑖𝑖 ≥ 0] is the probability that the user can view 𝑖𝑖 or more images without 

waiting. Then 𝑝𝑝(𝑛𝑛) can be expressed as 

 

𝑝𝑝(𝑛𝑛) = �1 − Pr[𝑇𝑇𝑛𝑛+1 ≥ 0]                  , for 𝑛𝑛 = 1
Pr[𝑇𝑇𝑛𝑛 ≥ 0] − Pr[𝑇𝑇𝑛𝑛+1 ≥ 0] , for 𝑛𝑛 ≥ 2 (4.3) 

 

We derive Pr[𝑇𝑇𝑖𝑖 ≥ 0] assuming that both 𝜏𝜏𝑉𝑉,𝑖𝑖−1 and 𝜏𝜏𝑇𝑇,𝑖𝑖 are Exponentially distributed 

with the mean 1/𝜆𝜆 and the mean 1/𝜇𝜇, respectively. Consider 𝑖𝑖 = 2. The relationship 

among 𝜏𝜏𝑉𝑉,1, 𝜏𝜏𝑇𝑇,2, and 𝑇𝑇2 in (4.2) can be re-arranged as 

 

𝜏𝜏𝑉𝑉,1 = 𝜏𝜏𝑇𝑇,2 + 𝑇𝑇2 (4.4) 

 
Let 𝑓𝑓𝑖𝑖(𝑇𝑇𝑖𝑖) be the density function of 𝑇𝑇𝑖𝑖. From (4.4), 𝑓𝑓2(𝑇𝑇2) is derived as  
 

𝑓𝑓2(𝑇𝑇2) = � 𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,2+𝑇𝑇2�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,2
∞

𝜇𝜇𝑇𝑇,2=0
𝑑𝑑𝜏𝜏𝑇𝑇,2 

                                             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

� 𝑟𝑟−𝜆𝜆𝑇𝑇2 

 

(4.5) 

 

From (4.3) and (4.5), Pr[𝑇𝑇2 ≥ 0] =
µ

λ + µ
 and 

 

𝑝𝑝(1) = 1 − Pr[𝑇𝑇2 ≥ 0] =
𝜆𝜆

𝜆𝜆 + 𝜇𝜇
  (4.6) 

 

Consider 𝑖𝑖 = 3. From (4.2) and (4.4), we have 

 

𝜏𝜏𝑉𝑉,2 = 𝜏𝜏𝑇𝑇,3 − 𝑇𝑇2 + 𝑇𝑇3 (4.7) 
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From (4.7), we derive 𝑓𝑓3(𝑇𝑇3) in two cases. 

Case A: For 𝑇𝑇2 < 𝑇𝑇3, 𝑓𝑓3(𝑇𝑇3) can be represented as 𝑓𝑓3𝐴𝐴(𝑇𝑇3) where 
 

𝑓𝑓3𝐴𝐴(𝑇𝑇3) = � � 𝑓𝑓2(𝑇𝑇2)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,3−𝑇𝑇2+𝑇𝑇3�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,3𝑑𝑑𝑇𝑇2𝑑𝑑𝜏𝜏𝑇𝑇,3

𝑇𝑇3

𝑇𝑇2=0

∞

𝜇𝜇𝑇𝑇,3=0
 

                             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
2

𝑟𝑟−𝜆𝜆𝑇𝑇3𝑇𝑇3 

 

(4.8) 

 
Case B: For 𝑇𝑇3 ≤ 𝑇𝑇2, 𝑓𝑓3(𝑇𝑇3) can be represented as 𝑓𝑓3𝐵𝐵(𝑇𝑇3) where 
 

𝑓𝑓3𝐵𝐵(𝑇𝑇3) = � � 𝑓𝑓2(𝑇𝑇2)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,3−𝑇𝑇2+𝑇𝑇3�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,3
∞

𝜇𝜇𝑇𝑇,3=𝑇𝑇2−𝑇𝑇3

∞

𝑇𝑇2=𝑇𝑇3
𝑑𝑑𝜏𝜏𝑇𝑇,3𝑑𝑑𝑇𝑇2 

                        = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
2

𝑟𝑟−𝜆𝜆𝑇𝑇3 �
1

𝜆𝜆 + 𝜇𝜇
� 

 

(4.9) 

 
From (4.8) and (4.9), 𝑓𝑓3(𝑇𝑇3) can be expressed as 
 

𝑓𝑓3(𝑇𝑇3) = 𝑓𝑓3𝐴𝐴(𝑇𝑇3) + 𝑓𝑓3𝐵𝐵(𝑇𝑇3) = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
2

𝑟𝑟−𝜆𝜆𝑇𝑇3 �𝑇𝑇3 +
1

𝜆𝜆 + 𝜇𝜇
� (4.10) 

 

From (4.3), (4.6), and (4.10), Pr[𝑇𝑇3 ≥ 0] = �
𝜇𝜇2

(𝜆𝜆 + 𝜇𝜇)3
� (2𝜆𝜆 + 𝜇𝜇) and 

 

𝑝𝑝(2) = Pr[𝑇𝑇2 ≥ 0] − Pr[𝑇𝑇3 ≥ 0] 

                                                   =
µ

𝜆𝜆 + 𝜇𝜇
− �

𝜇𝜇2

(𝜆𝜆 + 𝜇𝜇)3
� (2𝜆𝜆 + 𝜇𝜇) 

                                                   =
𝜆𝜆2𝜇𝜇

(𝜆𝜆 + 𝜇𝜇)3
 

 

 

(4.11) 

 

Consider 𝑖𝑖 = 4. From (4.2) and (4.7), we have 

 

𝜏𝜏𝑉𝑉,3 = 𝜏𝜏𝑇𝑇,4 − 𝑇𝑇3 + 𝑇𝑇4 (4.12) 

 

From (4.12), we derive 𝑓𝑓4(𝑇𝑇4) in two cases. 

Case A: For 𝑇𝑇3 < 𝑇𝑇4, 𝑓𝑓4(𝑇𝑇4) can be represented as 𝑓𝑓4𝐴𝐴(𝑇𝑇4) where 
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𝑓𝑓4𝐴𝐴(𝑇𝑇4) = � � 𝑓𝑓3(𝑇𝑇3)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,4−𝑇𝑇3+𝑇𝑇4�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,4𝑑𝑑𝑇𝑇3𝑑𝑑𝜏𝜏𝑇𝑇,4

𝑇𝑇4

𝑇𝑇3=0

∞

𝜇𝜇𝑇𝑇,4=0
 

                             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
3

𝑟𝑟−𝜆𝜆𝑇𝑇4 �
𝑇𝑇42

2
+

𝑇𝑇4
𝜆𝜆 + 𝜇𝜇

� 

 

(4.13) 

 

Case B: For 𝑇𝑇4 ≤ 𝑇𝑇3, 𝑓𝑓4(𝑇𝑇4) can be represented by 𝑓𝑓4𝐵𝐵(𝑇𝑇4) where 

 

𝑓𝑓4𝐵𝐵(𝑇𝑇4) = � � 𝑓𝑓3(𝑇𝑇3)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,4−𝑇𝑇3+𝑇𝑇4�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,4
∞

𝜇𝜇𝑇𝑇,4=𝑇𝑇3−𝑇𝑇4

∞

𝑇𝑇3=𝑇𝑇4
𝑑𝑑𝜏𝜏𝑇𝑇,4𝑑𝑑𝑇𝑇3 

                        = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
3

𝑟𝑟−𝜆𝜆𝑇𝑇4 �
𝑇𝑇4

𝜆𝜆 + 𝜇𝜇
+

2
(𝜆𝜆 + 𝜇𝜇)2� 

 

(4.14) 

 
From (4.13) and (4.14), 𝑓𝑓4(𝑇𝑇4) can be expressed as 
 

𝑓𝑓4(𝑇𝑇4) = 𝑓𝑓4𝐴𝐴(𝑇𝑇4) + 𝑓𝑓4𝐵𝐵(𝑇𝑇4) = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
3

𝑟𝑟−𝜆𝜆𝑇𝑇4 �
𝑇𝑇42

2
+

2𝑇𝑇4
𝜆𝜆 + 𝜇𝜇

+
2

(𝜆𝜆 + 𝜇𝜇)2� 
(4.15) 

 

From (4.3), (4.11)and (4.15), Pr[𝑇𝑇4 ≥ 0] = �
𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)5
� (5𝜆𝜆2 + 4𝜆𝜆𝜇𝜇 + 𝜇𝜇2) and 

 

𝑝𝑝(3) = Pr[𝑇𝑇3 ≥ 0] − Pr[𝑇𝑇4 ≥ 0] 

          = �
𝜇𝜇2(2𝜆𝜆 + 𝜇𝜇)

(𝜆𝜆 + 𝜇𝜇)3
� − �

𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)5
� (5𝜆𝜆2 + 4𝜆𝜆𝜇𝜇 + 𝜇𝜇2) 

          =
𝜇𝜇

𝜆𝜆 + 𝜇𝜇
− �

𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)5�
(5𝜆𝜆2 + 4𝜆𝜆𝜇𝜇 + 𝜇𝜇2) − 𝑝𝑝(2) 

          = �
𝜇𝜇

(𝜆𝜆 + 𝜇𝜇)5�
[(𝜆𝜆 + 𝜇𝜇)4 − 5𝜆𝜆2𝜇𝜇2 − 4𝜆𝜆𝜇𝜇3 − 𝜇𝜇4] − 𝑝𝑝(2) 

          = �
𝜇𝜇

(𝜆𝜆 + 𝜇𝜇)5�
[𝜆𝜆4 + 4𝜆𝜆3𝜇𝜇 + 𝜆𝜆2𝜇𝜇2] −

𝜆𝜆2𝜇𝜇
(𝜆𝜆 + 𝜇𝜇)3

 

          =
2𝜆𝜆3𝜇𝜇2

(𝜆𝜆 + 𝜇𝜇)5
 

 

 

 

 

 

(4.16) 
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Consider 𝑖𝑖 = 5. From (4.2) and (4.12), we have 
 

𝜏𝜏𝑉𝑉,4 = 𝜏𝜏𝑇𝑇,5 − 𝑇𝑇4 + 𝑇𝑇5 (4.17) 

 

From (4.17), we derive 𝑓𝑓5(𝑇𝑇5) in two cases. 

Case A: For 𝑇𝑇4 < 𝑇𝑇5, 𝑓𝑓5(𝑇𝑇5) can be represented as 𝑓𝑓5𝐴𝐴(𝑇𝑇5) where 
 

𝑓𝑓5𝐴𝐴(𝑇𝑇5) = � � 𝑓𝑓4(𝑇𝑇4)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,5−𝑇𝑇4+𝑇𝑇5�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,5𝑑𝑑𝑇𝑇4𝑑𝑑𝜏𝜏𝑇𝑇,5

𝑇𝑇5

𝑇𝑇4=0

∞

𝜇𝜇𝑇𝑇,5=0
 

                             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
4

𝑟𝑟−𝜆𝜆𝑇𝑇5 �
𝑇𝑇53

6
+

𝑇𝑇52

𝜆𝜆 + 𝜇𝜇
+

2𝑇𝑇5
(𝜆𝜆 + 𝜇𝜇)2� 

 

(4.18) 

 

Case B: For 𝑇𝑇5 ≤ 𝑇𝑇4, 𝑓𝑓5(𝑇𝑇5) can be represented by 𝑓𝑓5𝐵𝐵(𝑇𝑇5) where 

 

𝑓𝑓5𝐵𝐵(𝑇𝑇5) = � � 𝑓𝑓4(𝑇𝑇4)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,5−𝑇𝑇4+𝑇𝑇5�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,5
∞

𝜇𝜇𝑇𝑇,5=𝑇𝑇4−𝑇𝑇5

∞

𝑇𝑇4=𝑇𝑇5
𝑑𝑑𝜏𝜏𝑇𝑇,5𝑑𝑑𝑇𝑇4 

                        = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
4

𝑟𝑟−𝜆𝜆𝑇𝑇5 �
𝑇𝑇52

2(𝜆𝜆 + 𝜇𝜇)
+

3𝑇𝑇5
(𝜆𝜆 + 𝜇𝜇)2 +

5
(𝜆𝜆 + 𝜇𝜇)3� 

 

(4.19) 

 
From (4.18) and (4.19), 𝑓𝑓5(𝑇𝑇5) can be expressed as 
 

𝑓𝑓5(𝑇𝑇5) = 𝑓𝑓5𝐴𝐴(𝑇𝑇5) + 𝑓𝑓5𝐵𝐵(𝑇𝑇5) 

             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
4

𝑟𝑟−𝜆𝜆𝑇𝑇5 �
𝑇𝑇53

6
+

3𝑇𝑇52

2(𝜆𝜆 + 𝜇𝜇)
+

5𝑇𝑇5
(𝜆𝜆 + 𝜇𝜇)2 +

5
(𝜆𝜆 + 𝜇𝜇)3� 

 

(4.20) 

 

From (4.3), (4.16) and (4.20), Pr[𝑇𝑇5 ≥ 0] = �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)7
� (14𝜆𝜆3 + 14𝜆𝜆2𝜇𝜇 + 6𝜆𝜆𝜇𝜇2 + 𝜇𝜇3)  

and 
 

𝑝𝑝(4) = Pr[𝑇𝑇4 ≥ 0] − Pr[𝑇𝑇5 ≥ 0] 

          = �
𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)5
� (5𝜆𝜆2 + 4𝜆𝜆𝜇𝜇 + 𝜇𝜇2) 

          − �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)7
� (14𝜆𝜆3 + 14𝜆𝜆2𝜇𝜇 + 6𝜆𝜆𝜇𝜇2 + 𝜇𝜇3) 

 

 

21 
 



          = �
𝜇𝜇2(2𝜆𝜆 + 𝜇𝜇)

(𝜆𝜆 + 𝜇𝜇)3
� − �

𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)7
� (14𝜆𝜆3 + 14𝜆𝜆2𝜇𝜇 + 6𝜆𝜆𝜇𝜇2 + 𝜇𝜇3) −  𝑝𝑝(3) 

          = �
𝜇𝜇2

(𝜆𝜆 + 𝜇𝜇)7�
[(𝜆𝜆 + 𝜇𝜇)4(2𝜆𝜆 + 𝜇𝜇) − 14𝜆𝜆3𝜇𝜇2 − 14𝜆𝜆2𝜇𝜇3 − 6𝜆𝜆𝜇𝜇4 − 𝜇𝜇5] 

          −
2𝜆𝜆3𝜇𝜇2

(𝜆𝜆 + 𝜇𝜇)5
 

          =
5𝜆𝜆4𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)7
 

 

 

 

(4.21) 

 

Consider 𝑖𝑖 = 6. From (4.2) and (4.17), we have 

 

𝜏𝜏𝑉𝑉,5 = 𝜏𝜏𝑇𝑇,6 − 𝑇𝑇5 + 𝑇𝑇6 (4.22) 

 

From (4.22), we derive 𝑓𝑓6(𝑇𝑇6) in two cases. 

Case A: For 𝑇𝑇5 < 𝑇𝑇6, 𝑓𝑓6(𝑇𝑇6) can be represented as 𝑓𝑓6𝐴𝐴(𝑇𝑇6) where 
 

𝑓𝑓6𝐴𝐴(𝑇𝑇6) = � � 𝑓𝑓5(𝑇𝑇5)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,6−𝑇𝑇5+𝑇𝑇6�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,6𝑑𝑑𝑇𝑇5𝑑𝑑𝜏𝜏𝑇𝑇,6

𝑇𝑇6

𝑇𝑇5=0

∞

𝜇𝜇𝑇𝑇,6=0
 

                             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
5

𝑟𝑟−𝜆𝜆𝑇𝑇6 �
𝑇𝑇64

24
+

𝑇𝑇63

2(𝜆𝜆 + 𝜇𝜇)
+

5𝑇𝑇62

2(𝜆𝜆 + 𝜇𝜇)2 +
5𝑇𝑇6

(𝜆𝜆 + 𝜇𝜇)3� 

 

(4.23) 

 

Case B: For 𝑇𝑇6 ≤ 𝑇𝑇5, 𝑓𝑓6(𝑇𝑇6) can be represented by 𝑓𝑓6𝐵𝐵(𝑇𝑇6) where 

 

𝑓𝑓6𝐵𝐵(𝑇𝑇6) = � � 𝑓𝑓5(𝑇𝑇5)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,6−𝑇𝑇5+𝑇𝑇6�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,6
∞

𝜇𝜇𝑇𝑇,6=𝑇𝑇5−𝑇𝑇6

∞

𝑇𝑇5=𝑇𝑇6
𝑑𝑑𝜏𝜏𝑇𝑇,6𝑑𝑑𝑇𝑇5 

                        = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
5

𝑟𝑟−𝜆𝜆𝑇𝑇6 �
𝑇𝑇63

6(𝜆𝜆 + 𝜇𝜇)
+

2𝑇𝑇62

(𝜆𝜆 + 𝜇𝜇)2 +
9𝑇𝑇6

(𝜆𝜆 + 𝜇𝜇)3 +
14

(𝜆𝜆 + 𝜇𝜇)4� 

 

(4.24) 

 
From (4.23) and (4.24), 𝑓𝑓6(𝑇𝑇6) can be expressed as 
 

𝑓𝑓6(𝑇𝑇6) = 𝑓𝑓6𝐴𝐴(𝑇𝑇6) + 𝑓𝑓6𝐵𝐵(𝑇𝑇6) 

             = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
5

𝑟𝑟−𝜆𝜆𝑇𝑇6 �
𝑇𝑇64

24
+

2𝑇𝑇63

3(𝜆𝜆 + 𝜇𝜇)
+

9𝑇𝑇62

2(𝜆𝜆 + 𝜇𝜇)2 +
14𝑇𝑇6

(𝜆𝜆 + 𝜇𝜇)3  +
14

(𝜆𝜆 + 𝜇𝜇)4� 

 

(4.25) 
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From (4.3), (4.21) and (4.25), Pr[𝑇𝑇6 ≥ 0] = � 𝜇𝜇5

(𝜆𝜆+𝜇𝜇)9
� (42𝜆𝜆4 + 48𝜆𝜆3𝜇𝜇 + 27𝜆𝜆2𝜇𝜇2 + 8𝜆𝜆𝜇𝜇3 +

𝜇𝜇4), and 

 

𝑝𝑝(5) = Pr[𝑇𝑇5 ≥ 0] − Pr[𝑇𝑇6 ≥ 0] 

          = �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)7
� (14𝜆𝜆3 + 14𝜆𝜆2𝜇𝜇 + 6𝜆𝜆𝜇𝜇2 + 𝜇𝜇3) 

          − �
𝜇𝜇5

(𝜆𝜆 + 𝜇𝜇)9
� (42𝜆𝜆4 + 48𝜆𝜆3𝜇𝜇 + 27𝜆𝜆2𝜇𝜇2 + 8𝜆𝜆𝜇𝜇3 + 𝜇𝜇4) 

          = �
𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)7
� [5𝜆𝜆4 + 𝜇𝜇(14𝜆𝜆3 + 14𝜆𝜆2𝜇𝜇 + 6𝜆𝜆𝜇𝜇2 + 𝜇𝜇3)] 

          − �
𝜇𝜇5

(𝜆𝜆 + 𝜇𝜇)9�
(42𝜆𝜆4 + 48𝜆𝜆3𝜇𝜇 + 27𝜆𝜆2𝜇𝜇2 + 8𝜆𝜆𝜇𝜇3 + 𝜇𝜇4) − 𝑝𝑝(4) 

          = �
𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)9� (5𝜆𝜆6 + 24𝜆𝜆5𝜇𝜇 + 5𝜆𝜆4𝜇𝜇2) −  𝑝𝑝(4) 

          = �
𝜇𝜇3

(𝜆𝜆 + 𝜇𝜇)9� (5𝜆𝜆6 + 24𝜆𝜆5𝜇𝜇 + 5𝜆𝜆4𝜇𝜇2 − 5𝜆𝜆6 − 10𝜆𝜆5𝜇𝜇 − 5𝜆𝜆4𝜇𝜇2) 

          =
14𝜆𝜆5𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)9
 

 

 

 

 

 

 

(4.26) 

 

Consider 𝑖𝑖 = 6. From (4.2) and (4.22), we have 

 

𝜏𝜏𝑉𝑉,6 = 𝜏𝜏𝑇𝑇,7 − 𝑇𝑇6 + 𝑇𝑇7 (4.27) 

 

From (4.27), we derive 𝑓𝑓7(𝑇𝑇7) in two cases. 

Case A: For 𝑇𝑇6 < 𝑇𝑇7, 𝑓𝑓7(𝑇𝑇7) can be represented as 𝑓𝑓7𝐴𝐴(𝑇𝑇7) where 
 

𝑓𝑓7𝐴𝐴(𝑇𝑇7) = � � 𝑓𝑓6(𝑇𝑇6)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,7−𝑇𝑇6+𝑇𝑇7�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,7𝑑𝑑𝑇𝑇6𝑑𝑑𝜏𝜏𝑇𝑇,7

𝑇𝑇7

𝑇𝑇6=0

∞

𝜇𝜇𝑇𝑇,7=0
 

               = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
6

𝑟𝑟−𝜆𝜆𝑇𝑇7 �
𝑇𝑇75

120
+

𝑇𝑇74

6(𝜆𝜆 + 𝜇𝜇)
+

3𝑇𝑇73

2(𝜆𝜆 + 𝜇𝜇)2 +
7𝑇𝑇72

(𝜆𝜆 + 𝜇𝜇)3 +
14𝑇𝑇7

(𝜆𝜆 + 𝜇𝜇)4� 

 

(4.28) 
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Case B: For 𝑇𝑇7 ≤ 𝑇𝑇6, 𝑓𝑓7(𝑇𝑇7) can be represented by 𝑓𝑓7𝐵𝐵(𝑇𝑇7) where 

 

𝑓𝑓7𝐵𝐵(𝑇𝑇7) = � � 𝑓𝑓6(𝑇𝑇6)𝜆𝜆𝑟𝑟−𝜆𝜆�𝜇𝜇𝑇𝑇,7−𝑇𝑇6+𝑇𝑇7�𝜇𝜇𝑟𝑟−𝜇𝜇𝜇𝜇𝑇𝑇,7
∞

𝜇𝜇𝑇𝑇,7=𝑇𝑇6−𝑇𝑇7

∞

𝑇𝑇6=𝑇𝑇7
𝑑𝑑𝜏𝜏𝑇𝑇,7𝑑𝑑𝑇𝑇6 

               = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
6

𝑟𝑟−𝜆𝜆𝑇𝑇7 �
𝑇𝑇74

24(𝜆𝜆 + 𝜇𝜇)
+

5𝑇𝑇73

6(𝜆𝜆 + 𝜇𝜇)2 +
7𝑇𝑇72

(𝜆𝜆 + 𝜇𝜇)3 +
28𝑇𝑇7

(𝜆𝜆 + 𝜇𝜇)4 +
42

(𝜆𝜆 + 𝜇𝜇)5� 

 

(4.29) 

             

From (4.28) and (4.29), 𝑓𝑓7(𝑇𝑇7) can be expressed as 

𝑓𝑓7(𝑇𝑇7) = 𝑓𝑓7𝐴𝐴(𝑇𝑇7) + 𝑓𝑓7𝐵𝐵(𝑇𝑇7)  

                = �
𝜆𝜆𝜇𝜇
𝜆𝜆 + 𝜇𝜇

�
6

𝑟𝑟−𝜆𝜆𝑇𝑇7 �
𝑇𝑇75

120
+

5𝑇𝑇74

24(𝜆𝜆 + 𝜇𝜇)
+

7𝑇𝑇73

3(𝜆𝜆 + 𝜇𝜇)2 +
14𝑇𝑇72

(𝜆𝜆 + 𝜇𝜇)3 +
42𝑇𝑇7

(𝜆𝜆 + 𝜇𝜇)4 +
42

(𝜆𝜆 + 𝜇𝜇)5� 

 

(4.30) 

 

From (4.3), (4.26) and (4.30), Pr[𝑇𝑇7 ≥ 0] = � 𝜇𝜇6

(𝜆𝜆+𝜇𝜇)11
� (132𝜆𝜆5 + 165𝜆𝜆4𝜇𝜇 + 110𝜆𝜆3𝜇𝜇2 +

44𝜆𝜆2𝜇𝜇3 + 10𝜆𝜆𝜇𝜇4 + 𝜇𝜇5), and 

 

𝑝𝑝(6) = Pr[𝑇𝑇6 ≥ 0] − Pr[𝑇𝑇7 ≥ 0] 

          = �
𝜇𝜇5

(𝜆𝜆 + 𝜇𝜇)9
� (42𝜆𝜆4 + 48𝜆𝜆3𝜇𝜇 + 27𝜆𝜆2𝜇𝜇2 + 8𝜆𝜆𝜇𝜇3 + 𝜇𝜇4) 

          − �
𝜇𝜇6

(𝜆𝜆 + 𝜇𝜇)11
� (132𝜆𝜆5 + 165𝜆𝜆4𝜇𝜇 + 110𝜆𝜆3𝜇𝜇2 + 44𝜆𝜆2𝜇𝜇3 + 10𝜆𝜆𝜇𝜇4 + 𝜇𝜇5) 

          = �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)9
� [14 + 𝜇𝜇(42𝜆𝜆4 + 48𝜆𝜆3𝜇𝜇 + 27𝜆𝜆2𝜇𝜇2 + 8𝜆𝜆𝜇𝜇3 + 𝜇𝜇4)] 

          − �
𝜇𝜇6

(𝜆𝜆 + 𝜇𝜇)11
� (132𝜆𝜆5 + 165𝜆𝜆4𝜇𝜇 + 110𝜆𝜆3𝜇𝜇2 + 44𝜆𝜆2𝜇𝜇3 + 10𝜆𝜆𝜇𝜇4 + 𝜇𝜇5) 

          − 𝑝𝑝(5) 

          = �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)11� (14𝜆𝜆7 + 70𝜆𝜆6𝜇𝜇 + 14𝜆𝜆5𝜇𝜇2) −  𝑝𝑝(5) 

          = �
𝜇𝜇4

(𝜆𝜆 + 𝜇𝜇)11� (14𝜆𝜆7 + 70𝜆𝜆6𝜇𝜇 + 14𝜆𝜆5𝜇𝜇2 − 14𝜆𝜆7 − 28𝜆𝜆6𝜇𝜇 − 14𝜆𝜆5𝜇𝜇2) 

          =
42𝜆𝜆6𝜇𝜇5

(𝜆𝜆 + 𝜇𝜇)11
 

 

 

 

 

 

 

 

(4.31) 
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With elaboration, we found that 𝑝𝑝(𝑛𝑛) can be expressed by a general form 

 

𝑝𝑝(𝑛𝑛) =
𝐶𝐶𝑛𝑛𝜆𝜆𝑛𝑛𝜇𝜇𝑛𝑛−1

(𝜆𝜆 + 𝜇𝜇)2𝑛𝑛−1  (4.32) 

 

where  𝐶𝐶𝑛𝑛 =
(2𝑛𝑛 − 2)!
𝑛𝑛! (𝑛𝑛 − 1)!

    for 𝑛𝑛 ≥ 1 is of the form of Catalan number [11]. 

From (4.32), 

 

𝐸𝐸[𝑛𝑛] = �𝑛𝑛 ×  𝑝𝑝(𝑛𝑛)
∞

𝑛𝑛=1

= �
[2(𝑛𝑛 − 1)]! 𝜆𝜆𝑛𝑛𝜇𝜇𝑛𝑛−1

[(𝑛𝑛 − 1)!]2(𝜆𝜆 + 𝜇𝜇)2𝑛𝑛−1

∞

𝑛𝑛=1

      (4.33) 
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Chapter 5 

Numerical Examples 
 

We have implemented a discrete event simulation model (similar to the approach in 

[12-14]), which is validated against by (3.7), (3.9), (3.11) for 𝑁𝑁 = 2, and (4.32) and (4.33) 

for 𝑁𝑁 → ∞. The discrepancies between the analytic and simulation results are within 1%. 

Based on the simulation model, this chapter uses numerical examples to investigate how 

parameters 𝑁𝑁 (the size of the image buffer), 𝜏𝜏𝑉𝑉 (the user viewing times), and 𝜏𝜏𝑇𝑇 (the 

image transmission delays) affect the prefetching mechanism.  

 

We consider web albums in CloudPocket where the average image size is 922.68KB. 

The 𝜏𝜏𝑉𝑉  samples are measured from a technical trial with 10 users. With the fitting 

techniques [15], these 𝜏𝜏𝑉𝑉 samples are fit by the Gamma distribution, where 𝐸𝐸[𝜏𝜏𝑉𝑉] = 9.06 

seconds and 𝑉𝑉𝑉𝑉 = 0.04𝐸𝐸[𝜏𝜏𝑉𝑉]2. The 𝜏𝜏𝑇𝑇 samples are measured from the commercial 3G 

and Wi-Fi services [16,17], and are fit by the Erlang distribution. For 3G without 

compression, 𝐸𝐸[𝜏𝜏𝑇𝑇] = 3.283 seconds and 𝑉𝑉𝑇𝑇 = 0.18𝐸𝐸[𝜏𝜏𝑇𝑇]2. For 3G with compression 

(including the decompression time at the UE), 𝐸𝐸[𝜏𝜏𝑇𝑇] =  1.995 seconds and 𝑉𝑉𝑇𝑇 = 

0.15 𝐸𝐸[𝜏𝜏𝑇𝑇]2 . For Wi-Fi without compression, 𝐸𝐸[𝜏𝜏𝑇𝑇] =  0.846 seconds and 𝑉𝑉𝑇𝑇 = 

0.24𝐸𝐸[𝜏𝜏𝑇𝑇]2. For Wi-Fi with compression, 𝐸𝐸[𝜏𝜏𝑇𝑇] = 0.623 seconds and 𝑉𝑉𝑇𝑇 = 0.25𝐸𝐸[𝜏𝜏𝑇𝑇]2. 

These measured 𝜏𝜏𝑇𝑇 samples can be fit by the Erlang distribution with 𝑎𝑎 = 6 for 3G, and 

𝑎𝑎 = 4 for Wi-Fi.  
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In our measurements, very good user experience is observed with the minimal image 

buffer size 𝑁𝑁 = 2.  For 3G with 𝑁𝑁 = 2 , 𝐸𝐸[𝑛𝑛] = 41.67  and 𝐸𝐸[𝑤𝑤] = 0.007  𝐸𝐸[𝜏𝜏𝑇𝑇] 

without compression, and 𝐸𝐸[𝑛𝑛] = 1.38 × 104  and 𝐸𝐸[𝑤𝑤] = 1.7 × 10−5  𝐸𝐸[𝜏𝜏𝑇𝑇]  with 

compression. For Wi-Fi without compression, 𝐸𝐸[𝑛𝑛] = 7.7 × 107 and [𝑤𝑤] = 1.29 × 10−8 

𝐸𝐸[𝜏𝜏𝑇𝑇], and 𝐸𝐸[𝑛𝑛] = 1.01 × 1010  and 𝐸𝐸[𝑤𝑤] = 9.9 × 10−11  𝐸𝐸[𝜏𝜏𝑇𝑇] with compression. In 

our experiments, most users sequentially access the images, and regularly manipulate the 

received images (and small 𝑉𝑉𝑉𝑉 variances are observed), therefore good user experience can 

be achieved with 𝑁𝑁 = 2, where 𝐸𝐸[𝑛𝑛∗] ≤ 1
2
 is the network resources wasted in prefetching. 

Although the user behaviors observed in CloudPocket’s technical trial are common, it is 

important that we also consider irregular viewing scenarios where 𝑉𝑉𝑉𝑉 may be much larger 

than 0.04𝐸𝐸[𝜏𝜏𝑉𝑉]2. In the remainder of this chapter, we investigate irregular viewing behavior 

with larger variances; i.e., 0.1𝐸𝐸[𝜏𝜏𝑉𝑉]2 ≤ 𝑉𝑉𝑉𝑉 ≤ 10𝐸𝐸[𝜏𝜏𝑉𝑉]2 . For example, when 𝑉𝑉𝑉𝑉 =

10𝐸𝐸[𝜏𝜏𝑉𝑉]2, the user will quickly flip many images and then stop to manipulate other 

operations before she/he accesses the subsequent images from the server. In such a case, an 

image buffer size larger than 2 is required. To see the effect of 𝑉𝑉𝑉𝑉, Figure 5.1 plots the 

𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇] curves for 𝑉𝑉𝑉𝑉 ranging from 0.1𝐸𝐸[𝜏𝜏𝑉𝑉]2 to 10𝐸𝐸[𝜏𝜏𝑉𝑉]2, where 𝑁𝑁 =

2. Figure 5.1 indicates that as 𝑉𝑉𝑉𝑉 increases, 𝐸𝐸[𝑛𝑛] decreases and 𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇] increases. 

For 𝑉𝑉𝑉𝑉 =10𝐸𝐸[𝜏𝜏𝑉𝑉]2,  𝐸𝐸[𝑛𝑛] = 1.33  and 𝐸𝐸[𝑤𝑤] = 0.691𝐸𝐸[𝜏𝜏𝑇𝑇] for 3G without compression. 

For 3G with compression, 𝐸𝐸[𝑛𝑛] = 1.4  and 𝐸𝐸[𝑤𝑤]  = 0.658𝐸𝐸[𝜏𝜏𝑇𝑇].  For Wi-Fi without 

compression, 𝐸𝐸[𝑛𝑛] = 1.53  and 𝐸𝐸[𝑤𝑤] = 0.606𝐸𝐸[𝜏𝜏𝑇𝑇] . For Wi-Fi with compression, 

𝐸𝐸[𝑛𝑛] = 1.58 and 𝐸𝐸[𝑤𝑤] = 0.587𝐸𝐸[𝜏𝜏𝑇𝑇]. It is clear that the user experience is not good (i.e., 

𝐸𝐸[𝑛𝑛] < 2) for large viewing variance (e.g., 𝑉𝑉𝑉𝑉 = 10𝐸𝐸[𝜏𝜏𝑉𝑉]2). 
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Figure 5.1: Effects of 𝑉𝑉𝑉𝑉 (𝑁𝑁 = 2); the measured 𝜏𝜏𝑇𝑇 and 𝜏𝜏𝑉𝑉 distributions are used except 

that 𝑉𝑉𝑉𝑉 ranges from 0.1𝐸𝐸[𝜏𝜏𝑉𝑉]2 to 10𝐸𝐸[𝜏𝜏𝑉𝑉]2. 

 

Figure 5.2 plots the 𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇] curves against 𝑁𝑁, where measured 𝜏𝜏𝑉𝑉 and 

𝜏𝜏𝑇𝑇 distributions are used as inputs except that we set 𝑉𝑉𝑉𝑉 = 10𝐸𝐸[𝜏𝜏𝑉𝑉]2. This figure indicates 

trivial results that as 𝑁𝑁  increases, 𝐸𝐸[𝑛𝑛]  increases and 𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇]  decreases. The 

non-trivial results are that the curves provide guidelines to select the appropriate 𝑁𝑁 values. 

If we expect to achieve the user experience goals such that 𝐸𝐸[𝑛𝑛] > 100 and 𝐸𝐸[𝑤𝑤]/

𝐸𝐸[𝜏𝜏𝑇𝑇] <  0.1, then 𝑁𝑁 = 26 should be selected for 3G without compression and 𝑁𝑁 = 19 

for 3G with compression. For Wi-Fi, 𝑁𝑁 = 14 should be selected without compression and 

𝑁𝑁 = 13 with compression. In these selections, the extra network resources are 𝐸𝐸[𝑛𝑛∗] ≤

12.5 for 3G without compression, 𝐸𝐸[𝑛𝑛∗] ≤ 9 for 3G with compression, 𝐸𝐸[𝑛𝑛∗] ≤ 6.5 for 

Wi-Fi without compression, and 𝐸𝐸[𝑛𝑛∗] ≤ 6 for Wi-Fi with compression. 
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Figure 5.2: Effects of 𝑁𝑁 (𝑉𝑉𝑉𝑉=10 𝐸𝐸[𝜏𝜏𝑉𝑉]2) 

 

Figure 5.1 and Figure 5.2 indicate when 𝑉𝑉𝑉𝑉 increases from 0.1𝐸𝐸[𝜏𝜏𝑉𝑉]2 to 10𝐸𝐸[𝜏𝜏𝑉𝑉]2, to 

achieve the same user experience (e.g., 𝐸𝐸[𝑛𝑛] > 100 and 𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇] < 0.1), the selected 

𝑁𝑁 should be increased from, for example, 2 to 19 for 3G with compression. 

 

Let 𝛼𝛼 be the improvement on 𝐸𝐸[𝑛𝑛] due to image compression. Similarly, let 𝛽𝛽 be 

the improvement on 𝐸𝐸[𝑤𝑤] when the images are compressed. Figure 5.3 indicates that as 

𝑉𝑉𝑉𝑉 increases, the improvements (i.e., 𝛼𝛼 and 𝛽𝛽) decrease. Figure 5.4 indicates that as 𝑁𝑁 

increases, the improvements increase. The improvements offered by compression are more 

significant for 3G than those for Wi-Fi. For example, when 𝑁𝑁 = 26 and 𝑉𝑉𝑉𝑉=10 𝐸𝐸[𝜏𝜏𝑉𝑉]2, 

the 𝛼𝛼 improvement for 3G is 1.31 times that of Wi-Fi and the 𝛽𝛽 improvement for 3G is 

2.91 times that of Wi-Fi. In summary, if the mobile album service is offered under the 3G 

environment, then prefetching with compression is highly recommended. 
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Figure 5.3: Effects of 𝑉𝑉𝑉𝑉 and Compression (𝑁𝑁 = 2) 

 

Figure 5.4: Effects of 𝑁𝑁 and Compression (𝑉𝑉𝑉𝑉=10 𝐸𝐸[𝜏𝜏𝑉𝑉]2) 
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Chapter 6 

Conclusions 
 

This thesis proposed a prefetching mechanism that enhances user experience on 

accessing mobile web albums. The output measures are the expected number of the images 

𝐸𝐸[𝑛𝑛] that the user can continue to access without waiting, and the expected waiting time 

𝐸𝐸[𝑤𝑤] that the user has to wait for the arrival of the next image. The buffer size N of the user 

equipment (UE) affects the performance of prefetching. The larger the N value, the better 

the user experience (a larger 𝐸𝐸[𝑛𝑛] and a smaller 𝐸𝐸[𝑤𝑤]). However, a large N value means 

that many images will be perfected. If they are not viewed by the user, the network 

resources for transmitting these images are wasted. The number 𝐸𝐸[𝑛𝑛∗] of wasted 

transmitted images is 𝐸𝐸[𝑛𝑛∗] ≤ 𝑁𝑁−1
2

. 

 

We proposed analytic and simulation models to select the smallest N (the optimal N 

value) so that the expected user experience can be achieved. Our study indicated that 𝐸𝐸[𝑛𝑛] 

and 𝐸𝐸[𝑤𝑤] are significantly affected by the variance 𝑉𝑉𝑉𝑉 of the viewing time distribution. 

For example, when 𝑉𝑉𝑉𝑉 = 10 𝐸𝐸[𝜏𝜏𝑉𝑉]2, if the user experience goals are 𝐸𝐸[𝑛𝑛] > 100 and 

𝐸𝐸[𝑤𝑤]/𝐸𝐸[𝜏𝜏𝑇𝑇] <  0.1, then 𝑁𝑁 = 19 should be selected for 3G with compression, and 𝑁𝑁 =

14 for Wi-Fi with compression. On the other hand, to achieve the same 𝐸𝐸[𝑛𝑛] and 𝐸𝐸[𝑤𝑤] 

performances when 𝑉𝑉𝑉𝑉 ≤ 0.04𝐸𝐸[𝜏𝜏𝑉𝑉]2, 𝑁𝑁 = 2 is enough. Further investigation indicates 

that image compression significantly improves the performance in the 3G environment. As 

a final remark, the prefetching mechanism of CloudPocket can be easily implemented to 

improve the user experience, and this mobile web album service is an award winner in a 
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nation-wide competition of Taiwan in 2012. 
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