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金屬叢集的熔化行為: 

依據瞬間正則模分析的次序參數 

 

 

學生: 唐平翰                    指導教授:吳天鳴 教授 

 

 

國立交通大學 

物理研究所 

 

 

摘要 
 

在此論文中，我們探討兩種金屬叢集 Ag17Cu2 和 Ag14 的熔化行為，並利

用 isothermal Brownian type 的分子動力模擬搭配 Gupta位能產生其低溫至高

溫的組態。在這兩種叢集的比熱隨溫度的變化中，皆在較高溫度顯示出一主峰，

我們定義為其熔化溫度，但它們之間的差別在於，在較低的溫度，Ag14具有一

個額外的前峰而 Ag17Cu2沒有。我們利用瞬間正則模（INM）分析剖析兩種叢

集的動力學行為，並提出了一個新的次序參數，可以具體描述兩種叢集的熔化

行為。 INM分析表明，一個叢集的次序參數可以被其瞬間振動態密度所定義，

或者可由該叢集旋轉運動的三個正交特徵向量所描述，在此該叢集可視為一轉

動剛體。對於所研究的兩種金屬叢集，我們的計算結果顯示，這兩種定義所求

得的次序參數大致是一致的，對於低溫至高溫的熔化相變過程的闡述也與此兩

種叢集各自的比熱曲線所推論的結果相吻合。此外，此次序參數也提供了更深

入的圖像，關聯了叢集的熔化行為與過去成功地應用於塊材系統的熔化相變之

對稱性破缺的概念。 
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Abstract 

 

In this thesis, we investigate the melting behaviors of two metallic clusters, 

Ag17Cu2 and Ag14, which are generated by an isothermal Brownian-type 

molecular dynamics simulation with the empirical many-body Gupta potential 

from low to high temperatures. The temperature variations in the specific heat of 

these two clusters exhibit at higher temperature a main maximum, at which we 

define as the melting temperature, but at lower temperature they differ by Ag14 

possessing an additional prepeak and none in Ag17Cu2. The instantaneous 

normal mode (INM) analysis is used to dissect dynamics of the two clusters. We 

propose a new order parameter that specifically describes the melting behaviors 

of the two clusters. Our INM studies show that the order parameter of a cluster 

can be defined either by the INM vibrational density of states, or in terms of 

three orthogonal eigenvectors describing the rotational motions of the cluster by 

considering it as a rigid body. For the two metallic clusters studied, our 

calculated results indicate the mutual agreement of the order parameter by these 

two methods and also the consistent interpretation of the melting transitions at 

both lower and higher temperatures with those inferred from their respective 

specific heat. Furthermore, the new order parameter provides an insightful 

picture between the melting of clusters and the concept of broken symmetry, 

which is successfully applied to bulk systems for understanding the melting 

transition. 
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Chapter 1  

Introduction 

By the development of solid state physics and the refinement in experimental apparatuses, we 

gradually had comprehensive knowledge about the various phenomena of bulk systems. On the contrary, 

the physics of small cluster is not developed so rapidly and completely as the bulk system. In general, 

clusters are an aggregate of atoms that are too large compared to atoms and simple molecules but too 

small compared to bulk materials. As a result of these two extremes, clusters show extraordinary 

different properties. For example, a cluster does not have the same structure or atomic arrangements as 

its bulk counterpart and can change its structure with the addition of just one or few atoms [1]. On the 

other hand, since the surface-to-volume ratio is very small, the surface effect in bulk materials can be 

neglected with a good approximation. However, in the case of clusters, most of the atoms lie on the 

surface (extremely high surface-to-volume ratio) and such a rearrangement consequently produces a 

drastic effect in their physical and chemical properties [1-[16]. 

Cluster became a separate physical subject in 1980s when it was established experimentally that 

solid clusters are characterized by magic numbers of atoms [1]. Clusters composed of these numbers of 

atoms exhibit characteristically unusual parameters, e.g., maxima in the binding energies of atoms, in 

the cluster ionization potentials, in the electron affinities, and in the abundances, as functions of the 

number of atoms comprising the cluster. Magic numbers of solid clusters are observed as local maxima 

in mass spectra of clusters and also appear in photoionization spectra of clusters, although these require 

a specific analysis. In the aspect of cluster melting, the occurrence of magic number of cluster atoms is a 

prime reason for the non-monotonic dependence of these parameters on cluster size. Many experiments 

and later studies [17-[20] using several different techniques found that the melting temperatures of 

clusters reduce linearly as a function of the inverse of cluster radius R. However, the     dependence 

breaks down for particles less than around 500 atoms [21-[26]. This argument can be confirmed by 

recent experiments of charged clusters based on mobility measurements in gases for clusters of a given 

sort and size [27]. The reason for these is the structure-magic numbers corresponding to closed shells, 

ether of atoms or of electrons. 
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A general description of the melting transition in a cluster from the solid-like to liquid-like phase is 

far more complicated than its bulk counterpart [28]. Due to their finite sizes, the kind of sharp transition 

at a well-defined melting temperature often observed in bulk systems has been replaced in clusters by a 

more gradual transition that spans a temperature range. This finite-size-effect transition has been 

predicted to scale as the inverse of the cluster particle number [29,[30]. 

Thermodynamics, the melting point of a bulk material is the temperature at which the free 

energies of the material in the liquid and solid phases are precisely equal. For clusters, a finite range of 

the melting transition means the coexistence of the solid-like and liquid-like phases in the vicinity of 

the “melting point” of the cluster. This specific property of clusters was discovered first from computer 

simulations of Lennard-Jones clusters [31-[34] and soon thereafter was interpreted and explored further 

[35-[40] for Lennard-Jones clusters with completed atomic shells. Later, for small atomic systems, 

phase coexistence in the vicinity of the phase transition was found to be a universal property [41]. In the 

two-state model, in which only the solid-like and liquid-like phases are involved, this coexistence 

phenomenon involves the cluster passing back and forth in some random fashion between (or among) 

different phase-like isomers so that part of time the cluster spends in the solid-like phase and the rest of 

the time it resides in the liquid-like phase. The specific heat CV is by far still the most frequently used 

quantity to feature the melting transition of clusters. Differing from the bulk system, where there is a 

discontinuous jump at the melting, the temperature variation of CV in a cluster may exhibit a single main 

peak with perhaps a prepeak appearing at a lower temperature [21,[22,[25,[42-[46]. In either a bulk or a 

cluster, the melting temperature Tm is customarily defined as the position of the maximum of the main 

peak. 

A microscopic understanding of the melting transition in a cluster requires an order parameter that 

manifests its structural change from the solid-like to liquid-like phase. In the literature, such 

microscopic order parameters have indeed been proffered. The short-time average of temperature in the 

microcanonical ensemble provides a concrete evidence for the coexistence of isomers that were found to 

assume the solid-like and liquid-like phases within a temperature range and one quite often specifies the 

coexistence as a signature of cluster melting [35,[47-[49]. Structures of the clusters in the coexistence 

region were analyzed also by the method of common neighbor pairs [50]. Another quantity is the 

potential energy function commonly used for addressing the transition between two coexistence cluster 

isomers that are individually stable in the Landau free energy but are separated by an energy barrier [51]. 

There are, moreover, some geometric order parameters that are applied to characterize transition 

between two stable isomers and their coexistence [52], and these order parameters are calculated on the 

basis of the short-time average in simulations. An approach along the same line is the bond-orientational 

order parameter which is applied to investigate the structural variation of clusters along pathways in 

configuration space [53,[54]. The structural transitions of clusters are recently understood by using 

simultaneously two bond-orientational order parameters [55,[56]. Analogous to the Lindemann 

parameter used for bulk systems, the root-mean-square bond length fluctuation constant δ continues 

receiving much attention in computer simulations. An abrupt change of δ with temperature variation 
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means the structure of a cluster changes dramatically; however, the temperature for the sudden change 

in δ is usually not consistent with the melting point inferred from specific heat CV. Thus, I remark here 

that the parameter δ does not work so well for clusters [45,[57,[58]. 

In this thesis, I will investigate the dynamics and melting behavior of metallic clusters from the 

viewpoint of potential energy landscape [59,[60] by exploiting the instantaneous normal mode (INM) 

analysis [61,[62]. The INM theory is an approach originally motivated for understanding the 

short-time dynamics of liquids from the point of view of the potential energy landscape [61,[62]. 

Considerable efforts have been devoted in recent years to transpose the INM theory into an analytic tool 

and fruitful dynamic properties of bulk systems have in fact been reported for simple liquids [63,[64], 

amorphous materials [65] biological systems [66], etc. On the other hand, the analyses for cluster 

dynamics and thermodynamics from the viewpoint of potential energy landscape have been developed 

independently [28,[67]. In a series of papers in 1990, Stratt and Adams [68-[70] have advanced using 

the strategy of INM for clusters. These series of works have been inspired conceptually by the so-called 

inherent structures in a liquid [59,[60] and by early theoretical attempts of Berry et al. 

[35,[47,[48,[71-[78], who developed statistical mechanical models for clusters, studied the various 

cluster dynamical properties and the finite-sized effect on cluster melting, and corroborated their 

findings by comparing them with the simulation data of argon clusters. Despite the insight provided by 

the INM theory, the tactics to exploit the cluster dynamics with the INM analysis remains an endeavor to 

be further explored. The major impediment lies in the particle number. Whereas in the bulk system the 

particle number is infinite in the thermodynamic limit, the particle number in the cluster is, however, 

finite. Even with a cluster that contains less than a hundred of particles, its energy landscape has a 

complex multi-dimensional space. One fundamental and unique feature for a cluster but not for a bulk 

system is that it has rotational motions about three principal axes. This unique trait for clusters causes 

the INM in some aspects different from the bulk systems and we propose that these particular aspects 

that are specific to clusters can be exploited to describe the melting phenomenon of a cluster. 

I will study in this thesis the melting behaviors of two metallic clusters: Ag17Cu2 bimetallic 

cluster (BC) and Ag14 pure metallic cluster (MC). The main difference in the melting behavior between 

Ag14 and Ag17Cu2 clusters lies in the temperature variation of their CV which both possess a main 

maximum but the CV of Ag14 exhibits in addition a prepeak at a lower temperature. The difference is 

resulted from that the structures of the two clusters at their respective lowest-energy state (LES) are 

quite different geometrically. According to the studies of Cu14 [46] whose CV also shows a main peak 

and a prepeak as that of Ag14, the origin of the prepeak is due to the migrational relocation of the floating 

atom in the cluster as the temperature of the cluster is raised from the LES. 

In the context of the INM analysis, I propose a new order parameter (T) to interpret the melting 

behaviors of the two metallic clusters [79,[80]. Two general approaches are proposed to calculate (T). 

In one, (T) is defined in terms of the INM vibrational density of states of individual atoms; in another, 

(T) is defined considering the cluster as a rigid body with its rotational motions described by three 

orthogonal eigenvectors. For the two cluster studied in this thesis, we show numerically that the two 
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approaches for defining the order parameter dictate almost equivalent results. Also, our results indicate 

that this new order parameter (T) interprets pretty well the melting behavior of cluster and the 

predicted melting temperature for each of the two clusters is in fairly good agreement with that inferred 

from the specific heat CV of the cluster [81]. In addition, the order parameter τ (T) provides an 

insightful interpretation between the melting of clusters and the concept of broken symmetry which 

has been found successful in studies of the melting transition of bulk systems [82].  

In Chapter two, I will give a brief review of the INM theory, in which the order parameter (T) 

will also be given in this Chapter. In Chapter three, I first give a brief introduction about the group 

theory and identify the symmetry entities for the lowest energy structures of the two clusters studied in 

this thesis. With the symmetry entities of each cluster, the atoms in the cluster are classified into 

subsets of atoms and this classification is found to be associated with the melting behavior of the 

cluster. In Chapter four, I give a brief description of the isothermal Brownian-type molecular 

dynamics simulation technique used in this thesis and introduce the Gupta empirical potential that was 

used for particle interactions in simulations. In the same chapter, the calculations for thermal and 

dynamical properties, including CV and δ, are given as well. I present the results of the INM analysis 

for Ag17Cu2 and Ag14 in Chapter five and six, respectively. In terms of the INM analysis, the results of 

the order parameter (T) for describing the melting behaviors of the two clusters are discussed in the 

two Chapters. In Chapter seven, I follow an intuitive method originally proposed by Madan, Keyes and 

Seeley to evaluate the diffusion coefficient of Ag14 cluster, which also can be referred as another 

approach to describe the melting phenomenon of the cluster. Finally, conclusions of my thesis are 

given in Chapter eight. 
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Chapter 2  

Instantaneous Normal Mode Theory for 

Clusters 

2.1 INM theory for short time dynamics 

In this section, I use the INM method to study the short time dynamics of metallic clusters. 

Consider a cluster of n metallic atoms with mass mj (j = 1,…,n), which may be of different species. The 

positions of these atoms in the 3-dimensional real space are denoted as 

    1 1 1 1, , , , , , , ,n x y z nx ny nzr r r r r r R r r . (2.1) 

The potential energy V(R) of the cluster evaluated at R is a function in 3n-dimensional space. The 

Lagrangian of the cluster under this coordinate system is written as 

  2 2 21
( )

2
j jx jy jz

j

L m r r r V    R . (2.2) 

In a short-time scale, a harmonic approximation can be applied to V(R), which is expanded up to the 

second order terms with respect to the displacements of particles from an initial configuration   . 

Therefore, the Lagrangian under the harmonic approximation at    is given as 

 

 2 2 2

0 0 0

0 0 0

1
( ) ( ) ( )

2

1
     ( ) ( ) ( )

2

j jx jy jz

j

L m r r r V      

     



D

R F R R R

R R R R R

 , (2.3) 

with 

 

0

0

( )
( )j

j

V
F

r





 


R

R
R ,  (2.4) 

and 
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0

2

0
, 0

( )
D ( )i j

i j

V

r r
 

 



 

R

R
R ,  (2.5) 

where         refers to the atom       that in Cartesian coordinates takes on      ,  ,   (     ,  , 

 ). The       is a 3n-dimesional vector that describes the forces acted on particles at configuration   ; 

Appearing in the second-order term of the harmonic approximation of       D(R0) is the so-called 

3n×3n dynamic matrix. In order to obtain the normal modes of the Lagrangian under the harmonic 

approximation, I introduce the mass-weighted coordinates: 

 
   

 
1 1 1 1

1 1 1 1 1 1

, , z , z , z , , z , z , z

  , , , , , ,

n x y z nx ny nz

x y z n nx n ny n nzm r m r m r m r m r m r

 



Z z z
. (2.6) 

In this transformation, the position vector of each atom is multiplied by the square root of its mass so 

that the mass-weighted coordinates are only a linear rescaling of the 3n-dimensional coordinates in real 

space. Accordingly, the approximated Lagrangian in the mass-weighted coordinates can be rewritten as: 

 

 2 2 21
z z z ( ) ( ) ( )

2

1
   ( ) ( ) ( )

2

jx jy jz

j

L V      

     

 0 0 0

0 0 0

Z f Z Z Z

Z Z Z Z ZK

, (2.7) 

where 

 

0 0

0

( ) 1 ( )
f ( )j

j jj

V V

z rm


 

 
   

 
Z

Z
Z

R

R
, (2.8) 

and 

 

0

2

, 0

1 ( )
( )i j

i ji j

V
K

r rm m
 

 




 
Z

R

R
, (2.9) 

      is the first derivative of the potential energy      with respect to the mass-weighted coordinates 

at    and is related to       through a factor 1/   . With the expression in Eq. (2.9) as a general 

form that can be applied for atoms of different species,       is referred to as the Hessian matrix, 

whose elements are the second derivatives of the total potential energy with respect to the 

mass-weighted coordinates. Here, I define   as the displacements of atoms in a short-time scale from 

the initial mass-weighted configuration   . That is, 

    0 1 1 1 1, , ,  ,  ,  ,  ,  ,  n x y z nx ny nz        Z Zη η η . (2.10) 

By changing to the new variable  , the approximated Lagrangian becomes as 

 
2 2 2

0

1 1

2 2

n

jx jy jz

j

L V           f η η K η . (2.11) 

In the next, the Hessian matrix   can be diagonalized by an orthogonal matrix   via the 
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equation 

 
2

, , ,i i j j

i j

U K U      
 

  , (2.12) 

where the orthogonal matrix   can be constructed by the 3n eigenvectors obtained from 

diagonalization of the Hessian matrix   evaluated at the initial configuration   . The 3n normalized 

eigenvectors of   are denoted as   
 , with         , where   

  is the 3-dimensional 

displacement vector of the j-th atom in the α-th INM. The eigenvalues of the Hessian matrix   are 

given as   
 , where    is referred as the frequency of the INM and, of course, depends on   . Since 

the configurations at which the Hessian matrices are evaluated may not correspond in general to the 

local minima of     , the eigenvalues are not guaranteed positive definite and the normal mode 

frequencies    may thus be either real or imaginary. 

Accordingly, in terms of the orthogonal matrix  , we introduce the INM coordinates   , 

        , which are transformed from the displacement   via the following equation: 

 , ej j j j

j j

q U 

     
 

       (2.13) 

The 3n instantaneous normal mode coordinates    are linearly independent and form a basis set in the 

3n-dimensional space of the mass-weighted coordinates. Following the coordinate transformation from 

  to  , we notice that   defined in Eq. (2.8) should be transformed as 

 ,f fj j

j

U   


   (2.14) 

with    ,  ,  . Therefore, the Lagrangian in the harmonic approximation can be expressed by the 

instantaneous normal modes coordinates as 

 2 2 2

0

1 1
f

2 2
L q V q q    

  

       (2.15) 

By substituting Eq. (2.15) into the Lagrange equation for each INM coordinate   , we obtain 3n 

independent differential equations which are given as 

 
2 fq q      (2.16) 

By defining a shifted normal mode coordinate, 

 
2

f
x q 
 


  , (2.17) 

we have the following equation of motion for each INM degree of freedom in the 3n-dimensional space 

 
2 0x x    .  (2.18) 

The equation (2.18) is just the equation of motion of a simple harmonic oscillator with frequency    

and its solution is simply given as: 
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(0)

 ( ) (0)cos( ) sin( )
x

x t x t t
   



 


  ,  (2.19) 

where       is related to the initial positions of atoms in the cluster and       , which is the time 

derivative of       at initial, is associated with the velocities of the atoms. In the α-th INM coordinate, 

 x q  . (2.20) 

After substituting the solution in Eq. (2.19) into Eq. (2.17), the instantaneous normal modes    at time 

t are explicitly written as 

 
2

(0) f
( ) (0)cos( ) sin( )

x
q t x t t 
   

 

 
 

   .  (2.21) 

With the inverse transformation of Eq. (2.13), we can obtain the short-time evolution of the cluster in 

the mass-weighted coordinate system. 

In terms of Eq. (2.21), we can determine a harmonic approximation for the short-time dynamics of 

a cluster. For a cluster system, the dynamics includes the translation and rotation of the whole cluster 

and vibrations among particles in the cluster. The derivation for the INM theory is quite general and 

applicable to any clusters of single species or alloys at any temperatures. However, for the physical 

quantities related to the vibrational motions of a cluster, like the velocity autocorrelation function and its 

power spectrum that will be considered in Sec. 2.2.4, the contributions due to the translational and 

rotational motions of the cluster should be excluded. In the next section, I will introduce the method to 

determine the translational and rotational INNs and show how to exclude their contributions from the 

INM analysis 
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2.2 Instantaneous normal mode analysis 

2.2.1 INM density of states 

In INM theory, the most fundamental physical quantity is the density of states. The normalized 

INM density of states (DOS) of a n-particle cluster is written as 

 

3

1

1
( ) ( )

3

n

D
n




   


  , (2.22) 

where the brackets indicate an ensemble average over cluster configurations. Generally,      is 

divided into two lobes,        , and        , which are the DOS of the stable INMs (denoted by the 

superscript s) with real frequencies ω and the unstable INMs (denoted by the superscript u) with 

imaginary frequencies       , respectively. The normalization of      yields a unit area under the 

curves of         and        , which are usually plotted in the positive and negative axes of ω, 

respectively[62,[63].  

Among the INMs, there are three zero-eigenvalue normal modes, which correspond to the 

three-dimensional translational motion of the center-of-mass of the system. For the bulk system, such as 

a liquid or glass, the remaining INMs describe the vibrational motions of the atoms, whereas for the 

finite-sized system such as a cluster which composes of given number of atoms, the remaining INMs 

include contributions from three rotational degrees of freedom of the whole cluster and 3n-6 vibrational 

degrees of freedom among atoms. In the following, I provide two methods to distinguish the rotational 

INMs from the remaining INMs. 

2.2.2 Rotational INMs 

At given instant, the degrees of freedom associated with the rotational motions of the whole cluster 

can be sorted out by the following two methods [60,[83]: 

Method I: In one method, referred as Method I in this thesis, the clusters are assumed to have an 

extremely weak rotation-vibration coupling so that a cluster at given instant is treated as a rigid body. 

Based on the conservation of the total angular momentum [84], the normalized eigenvectors of the three 

purely rotational modes, denoted as    
    

    
  , of a cluster at a configuration    can be expressed as 

[79,[85] (see A.1) 

 

0

 ,  0 ,  

0

yx z

jz jy

Rj j jR R

j jz j j jx

x y z

jy jx

r r
m m m

r r
I I I

r r

 

      
              
           

e e e , (2.23) 

where    
           are the Cartesian position coordinates of the j-th atom in the body frame of the 
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cluster whose origin is chosen at the center-of-mass. In this body frame, the coordinate axes coincide 

with the principal axes of the cluster. With respect to each one of the three principal axes, the moment 

of inertia    is defined as 

  2 2

1

n

j j

j

I m r r  


   , (2.24) 

where we assume       are cyclic in x, y, and z. In this method, the rotational and vibrational 

degrees of freedom at an instant are assumed to be completely decoupled. The three purely rotational 

eigenvectors are mutually orthonormal and they form a set of basis vectors in the 3-dimensional 

subspace which are used to describe the rotational degrees of freedom of a cluster configuration at 

given instant. However, one should notice that the purely rotational bases of cluster configurations at 

two successive instants may not be transformable by merely rotating the principal axes of the cluster in 

a real space. The reason is that there exists in a cluster the inherent rotation-vibration couplings which 

may cause a mixing between the instantaneous subspaces of the rotation and vibration from one 

instant to the next. 

The procedure to exclude the degrees of freedom associated with the three purely rotational modes 

from the Hessian matrix is the standard projection technique [70,[85], in which a 3n×3n projection 

matrix       constructed from three purely rotational eigenvectors   
  , with      

    
    

  , is 

defined as 

 , 0

, ,

( ) e e
x y z

i j i j

R R R

Q  

   

   

 R ,  (2.25) 

where    
  , with         is the Cartesian component of   

 . To project out the rotational degrees of 

freedom, one defines a projected Hessian matrix as 

      ( )

0 3 0 0 3 0( ) ( ) ( )p

n n    I IK R Q R K R Q R , (2.26) 

where     is the 3n × 3n unit matrix. The diagonalization of          then yields purely vibrational 

eigenvectors with nonzero eigenvalues. Implicit in this procedure is that the clusters under consideration 

are close to rigid and their rotational and vibrational degrees of freedom are supposedly decoupled. This 

method works generally, however, for those clusters in which the rotation-vibration couplings are 

extremely weak. However, under the INM approximation, the instantaneous rotation of a cluster is 

considered as a rigid body with the cluster structure at the instant and its total angular momentum is 

regarded as a constant so that one may simply apply this method for the cluster configurations at every 

instant. 

Method II: Strictly speaking, the three purely rotational eigenvectors are not the eigenmodes of the 

Hessian matrix K(  ) but approximate ones when the rotation-vibration couplings become significant. 

In another method, referred as Method II in this thesis, it was pointed out by Adams and Stratt [70] that 

the three rotational INMs in the cluster are coupled with the vibrational degrees of freedom resulting in 

the mixing modes of the former and the extent of mixing increases with cluster temperature. The authors 

then proposed another projection scheme to separate out the rotational contributions from the INM 
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density of states. Technically, one appeals to the three rotational eigenmodes in the Hessian matrix K(  ) 

that possess the largest angular momentum values and The three INMs are denoted as           . For 

each one of the INMs, the normalized INM eigenvector is proportional to the velocity whose vector 

property describes the instantaneous directions of the atomic motions in the center-of-mass coordinate 

system of the cluster. Accordingly, the magnitude of the rotational angular momentum in the INM α, 

with       ,   ,    can be approximated as 

  
1

n

j j j

j

L c m 




  er , (2.27) 

where    is the position vector of the j-th atom with mass    and c is a proportionality constant 

between the instantaneous velocities of particles and the normalized INM eigenvector. In this scheme, 

the rotational INMs are thus recognized as three with the largest    values. Here, two remarks are in 

order. First, with the INM eigenvectors   
 

 defined above in the mass-weighted form, c is different from 

the one given in Ref. [70] for atoms with equal mass. Second, the instantaneous cluster motions in the 

three rotational INMs generally behave as rotations of the whole cluster, although mixing with 

vibrations is to some extent seen among atoms. 

The three purely rotational modes obtained from Method I construct a rotational subspace for 

describing the rotational motion of the whole cluster, even at a configuration that is not at a local minima 

of potential landscapes. However, in Method II, the three INM eigenvectors associated with            

of a cluster coincide with those of the purely rotational modes, only for the configuration of the cluster at 

a local minimum in the potential energy landscape. If a cluster configuration is deviated from a local 

minimum, the three INMs            would mix in some extent with the vibrational natures. 

Accordingly, to examine the overlap between the subspace spanned by the INM eigenvectors of 

           and that by the purely rotational modes (  
    

    
 ), I define the following quantity:  

 

2

, , 1

( ) k

n
RL

k j j

x y z j

J L 





 

 
  

 
 e e . (2.28) 

As so defined, J     measures the projection of the rotational INM eigenvector   
  

 onto the subspace 

spanned by the eigenvectors of the purely rotational modes (  
    

    
 ). Note that the two subspaces are 

completely overlapped whenever J      ,        , whereas for J    <1 the eigenvector   
  

 

hybridizes with the degrees of freedom of the vibrational INMs and the two subspaces are not 

completely overlapped; the less the value of J     is, the stronger is the hybridization.  

2.2.3 Vibrational INM density of states 

Return to the theme of vibrational INM density of states of clusters. The definition in Eq. (2.22) 

should be modified by excluding the three-translational and three-rotational INMs and the histogram for 

the frequencies of the remaining INMs gives rise to the normalized vibrational INM DOS of a cluster, 
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which is expressed as 

 

3 6

1

1
( ) ( )

3 6

n

vibD
n




   




 

 .  (2.29) 

To make further progress, I introduce the projector    
 , which sorts out the INM of the atom j in a cluster 

with the eigenmode α. In Cartesian coordinates x, y, and z, it reads
 

 
2

ˆ
j j j jP     e e e . (2.30) 

Due to the normalization of an INM eigenvector,    
 

 obeys the following two sum rules: 

 
1

ˆ 1
n

j

j

P



 , (2.31) 

and 

 

3

1

ˆ 3
n

jP



 , (2.32) 

where the equation in (2.32) is due to the completeness of all INMs of a Hessian matrix and the numeric 

constant 3 is due to the 3 degrees of freedom of each atom. The projectors for the translation and rotation 

of the cluster are defined accordingly and are, respectively, expressed as 

 ˆ ˆ ˆ ˆyx z
TT TT

j j j jP P P P   , (2.33) 

and 

 31 2ˆ ˆ ˆ ˆ LL LR

j j j jP P P P   , (2.34) 

where            are the three translational INMs and            are the three rotational INMs sorted 

out by Method II. In addition, the    
    is used to define the total-vibrational projector of a cluster. 

That is 

 

3 6

1

ˆ ˆ
n

vib

j jP P







  . (2.35) 

Hence, the completeness relation in Eq. (2.32) can be separated into the translational, rotational and 

vibrational components 

 

3

1

ˆ ˆ ˆ ˆ 3
n

T R vib

j j j jP P P P



    . (2.36) 

With    
 , one can calculate the j-th atom contribution to the vibrational INM DOS via the formula 

 

3 6

1

1 ˆ( ) ( )
3 6

n

j jD P
n






   




 

 . (2.37) 

Obviously       is not normalized. With       so defined, the vibrational INM DOS of all atoms in 

a cluster,        , satisfies another sum rule, 
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1

( ) ( )
n

vib j

j

D D 


 . (2.38) 

Note that       includes also the real- and imaginary frequency lobes, which are given respectively as 

  
Re Im

( ) ( )

1 1

1 1ˆ ˆ( ) ( ) ,  ( )
3 6 3 6

s u

j j j jD P D P
n n

 

 
 

       
 

   
 
  ,  (2.39) 

where the summations for the DOS of the stable and unstable lobes are over INMs of the real and 

imaginary frequencies, respectively. Therefore, the integration of       over frequency yields 

    
3 6

( ) ( )

0 0
1

1 ˆ( )
3 6

n
s u

j j j j jI D d D d D d P
n





     
 



   


   . (2.40) 

Since       is not normalized, the value of    is not one. Thus,    is an ensemble average of all 

vibrational projectors associated with the j-th atom. Furthermore, due to the sum rule of    
  in Eq. 

(2.36),    is governed moreover by the following equation: 

  
3 6

1

1 1 1ˆ 3
3 6 3 6 3 6

n
T R vib

j j j j jI P P P P
n n n









    
  

 , (2.41) 

where the translational and rotational projections   
      

   and   
      

   are the ensemble 

averages of    
  and    

 
 of atom j, respectively, and   

    is the ensemble average of total-vibrational 

projector     
    . The    in Eq. (2.41) is, thus, cast into a form readily related to the translational and 

rotational projections of the INMs. In the event that a cluster experiences no external force, the   
  

value is constant for all cluster configurations. In this case,    is simply related to the negative of the 

rotational projection   
 . 

In the another aspect, for the cluster at lowest energy state (LES), the vibrational INM DOS is 

defined similarly as 

  
3 6

( )

,

1

n
LES

vibD
 



 




  , (2.42) 

where    is the β-th vibrational-mode frequency pertaining to the LES and the symbol      
 is the 

Kronecker delta. Furthermore the corresponding projectors can be employed to calculate the j-th atom 

vibrational INM DOS in the LES and we have (cf. Eq. (2.37)) 

 
   

3 6

,

1

1 ˆ
3 6

n
LES

j jD P
n 



 


 






 . (2.43) 

The summation of   
     

(ω) over all frequencies leads accordingly to 

 
 

3 6

1

1 ˆ
3 6

n
LES

j jI P
n











 , (2.44) 

which can easily be shown to satisfy 
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  3

3 6

T R

LES j j

j

P P
I

n

 



. (2.45) 

I emphasize that    defined in this subsection is a crucial quantity whose thermal variation sheds light 

on the melting behavior of a cluster that I will address below. 

2.2.4 Relation to velocity autocorrelation function 

The displacements of atoms in a cluster are confined within a finite region in space and do not 

continue to increase with time [68] as in the bulk liquids whose mean square displacements of atoms 

show the asymptotic behavior of growing linearly with time so that, predicted by mean square 

displacements of its atoms, the diffusion coefficient of atom in a cluster should be zero. As a result, there 

remains an ambiguity in the study of the dynamical properties of a cluster that resorts to the mean-square 

displacement of atoms. Even so, the velocity autocorrelation function (VAF) also provides fruitful 

information of dynamical properties in a cluster, some methods were proposed to calculate the 

diffusion coefficient of a cluster via the VAF and will be discussed in the Chapter 7. Here, I will 

discuss the VAF and its power spectrum of a cluster. The definition of the VAF for a cluster is given 

as the following formula 

 

(0) ( )

( )

(0) (0)

n

j j

j

n

j j

j

t

C t











v v

v v

, (2.46) 

where   is the number of atoms in a cluster and    is the velocity of the j-th atom. The VAF defined 

by Eq. (2.46) is a general form adequate to a cluster even containing different species of atoms. On the 

other hand, in the calculation of the VAF due to the vibrational motions of atoms in a cluster, the 

velocities of individual atoms should be corrected by subtracting out the parts corresponding to 

translational as well as the rotational motion of the whole cluster. Failing to make these corrections will 

result in a non-zero value of the long-time limit of C(t). For a cluster at low temperatures, the C(t) will 

exhibits a behavior like a under-damping oscillation as a result of atoms in the solid-like structure 

vibrating at a equilibrium position owing to thermal energy. As raising to high temperatures, the 

behavior at the beginning of C(t) will decrease to a dip and, after subsequently going through the dip, 

follows by a decaying tail, which is a characteristics of liquid-like behavior corresponding to the 

diffusion phenomenon. Further, one can examine the behavior of the VAF by its related power 

spectrum, 

 
0

( ) 2 ( )cos( )C t t dt 


   . (2.47) 

Since the VAF is an even function in time, its power spectrum is evaluated from the Fourier cosine 

transformation. In the solid-like phase, the power spectrum behaves like a superposition of many 
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spikes broadened by thermal disturbance; in the liquid-like phase, the power spectrum will become 

smoother and, at zero frequency, give a nonzero value related to the diffusion phenomenon. These 

features are similar as for the bulk systems. 

Now, I will give an short-time approximation for the VAF with its definition in Eq. (2.46) by 

considering the velocities of particles in Eq. (2.46) described under the INM coordinates   , so that 

the associated power spectrum in Eq. (2.47) also can be described under INM approximation. I give 

the formal derivation in Appendix A.2. By connecting the relation between the INM coordinates and 

mass-weighted coordinates in Eq. (2.13) and the equation of motion of INMs in Eq. (2.21), we have 

 

    

    

( ) ( )

0 0

( ) ( )

0 0

1
cos( ) cosh( )

( )
1

n
s u

j j

j j

n
s u

j j

j j

D t d D t d
m

C t

D d D d
m

     

   

 

 







  

  

, (2.48) 

where   
   

    and   
   

    are defined in Eq. (2.39), and the numerator and the denominator have 

been separated into the contributions due to the stable and unstable branches. I should point out that the 

formula in Eq. (2.48) with both stable and unstable branches accurately predicts C(t) in the short-time 

regime; however, the prediction diverges badly in the long-time limit due to the imaginary-frequency 

term. In the stable-INM approximation [86,[87], in which the contribution due to the 

imaginary-frequency lobe is neglected, the C(t) is further simplified to 

 

 ( )

0
INM,s

( )

1
cos( )

( )

n
s

j

j j

sn
j

j j

D t d
m

C t
I

m

  




 



, (2.49) 

with 

  ( ) ( )

0

s s

j jI D d 


  , (2.50) 

After making the inverse cosine transform for Eq.(2.49), the power spectral density in the stable-INM 

approximation is given as  

 

 ( )

INM,s

( )

s

j j

j

n
s

j j

j

D m

I m

 

 




, (2.51) 

which plays a similar role as that      described above in Eq.(2.47). At low temperatures the 

imaginary-frequency INMs are absent and the two quantities        and      are expected to be 

equal. 

If the cluster is composed by atoms of the same species, with      for all j in Eq.(2.48), one 

cancels out     there. Also, by Eq. (2.38), we know that     
          

   
    

  and     
       

   
   

    
 , and the denominator in Eq. (2.48) become to one due to Eq. (2.40), namely, 
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    ( ) ( )

0 0
( ) cos( ) cosh( )s u

vib vibC t D t d D t d     
 

   . (2.52) 

Correspondingly, in the stable-INM approximation, the C(t) is further simplified into 

  INM,s ( )

( ) 0

1
( ) cos( )s

s
C t D t d

I
  



  , (2.53) 

with the renormalized factor, 

  ( ) ( )

0

s s

vibI D d 


  . (2.54) 

The power spectral density in the stable-INM approximation is given as 

  INM,s ( ) ( )s sD I   , (2.55) 

which can be compared with,     , the power spectrum of a cluster defined in Eq. (2.47). 

In general, the behaviors of C(t) and its power spectral density      are very different between 

bulk systems in the solid and liquid phases. However, for a cluster system, not only the two quantities 

vary with temperature, but also the contributions of individual atom to C(t) and      are very 

sensitive with its corresponding special position in the cluster structure at of lower temperatures. Thus 

a method that gives a quantitative and deeper insight is to dissect the contributions of individual atom 

to the VAF of the whole cluster, and I consider the normalized VAF for the j-th atom in a cluster as 

 
(0) ( )

( )
(0) (0)

j j

j

j j

t
C t






v v

v v
. (2.56) 

Here, the subscript j of Cj(t) denotes the specified atom that contributes to the VAF. In liquid, the 

average over atoms in C(t) is carried out to improve the statistical accuracy since the dynamical motion 

for each of all atoms is assumed the same, while in the solid, in which atoms are fixed in position, and 

characterized by arrangements of their neighbors, Cj(t) distinct from each other depend on their 

corresponding local structures. This feature for cluster systems will become more explicit than bulk 

system due to its shell structures. From Eq. (2.56), one can examine the behavior of the VAF of 

individual atom and its related power spectrum, 

 
0

( ) 2 ( )cos( )j jC t t dt 


   . (2.57) 

Since the Cj(t) exhibits different characteristics for atoms at different positions in the structure of the 

cluster. The atomic power spectrum of the solid-like phase will depend on its position in the structure. 

However, in the liquid-like phase, the atoms of a cluster will mix together and are not characterized by 

their positions. Consequently, the atomic power spectra averaged over configurations are only 

distinguishable for the species with different masses. 

According to the definition of Cj(t) in Eq. (2.56), there is no summation over atoms. In the INM 

approximation, Cj(t) can be formulated readily by inferring from Eq.(2.48) as 
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 






 

 
, (2.58) 

where the denominator equals    and the INM DOS have been separated into the stable and unstable 

branches as in Eq. (2.48). In the stable-INM approximation [86,[87], the Cj(t) is further simplified to 

 
INM,s ( )

( )

1
( ) ( )cos( )s

j js

j

C t D t d
I

    , (2.59) 

with the renormalized factor, 

 
( ) ( )

0
( )s s

j jI D d 


  . (2.60) 

By an inverse cosine transform for Eq. (2.59), the atomic power spectrum in the stable-INM 

approximation is given as  

 INM, ( ) ( )( ) /s s s

j j jD I   . (2.61) 

Also, at low temperatures the imaginary-frequency INMs are absent and the two quantities   
     

and 

      are expected to be equal. 
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2.3 Order parameter by instantaneous normal modes 

In Sec. 2.2.3, for an cluster of n atoms, I define a quantity    of atom j in Eq. (2.41), which is 

referred as a summation of all vibrational projections,   
   , of atom j. The    values of the cluster may 

be classified according to the point group character of the cluster structure at the LES. The group 

character of the LES is well identified so that the    values of all atoms may be split into a number of 

branches each of which corresponds to a subset of the structure. Moreover, as the structure of a cluster is 

deformed from the LES by thermal fluctuation, the symmetry of the LES is broken and the group 

character of the cluster is different from that of the LES. This causes the    values of the atoms, which 

are originally split into a number of branches, to be defiled and then mixed up. As the temperature of the 

cluster raises to the melting point, the    values of all atoms will merge entirely into a small range, 

within which the    value of each atom fluctuates, as a result of the almost destruction of the LES. At 

this stage, the atoms in the cluster are unable to distinguish by the symmetry character of the lowest 

energy structure. 

In the following, I define an order parameter      for a pure cluster of n atoms by the standard 

deviation of    values of all atoms at a temperature T so that the melting phenomenon of the cluster can 

be characterized by this new order parameter. The order parameter is given as 

 
( )

( )
(0)

I

I

T
T





 , (2.62) 

with 

  
2

2( )I j jT I I   , (2.63) 

and 

 
1

1 n

j j

j

I I
n 

  , (2.64) 

where l =1 or 2 and the bar notation in Eq. (2.64) denotes an arithmetic average over atoms in the cluster. 

Physically, the order parameter      is a quantity measuring t e ordering of a cluster’s structures at a 

finite temperature relative to its LES. At low temperatures, atoms generally vibrate about the 

equilibrium positions of the LES so that the value of      is of the order of unity. As the structure of a 

cluster becomes liquid-like at a high temperature,      approaches to an extremely small value due to 

the finite size of the cluster. 

By Eq. (2.41), the order parameter      can be written alternatively in terms of the rotational 

projection   
 , viz., 

 
( )

( )
(0)

R

R

T
T





 , (2.65) 

where 

    
22

( ) R R

R j jT P P   , (2.66) 
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with 

 
1

1 ˆ
n

R R

j j

j

P P
n 

  , (2.67) 

and 

  
22

1

1 ˆ
n

R R

j j

j

P P
n 

  , (2.68) 

Equations (2.67) and (2.68) involve two averages; the values of    
     and     

           
 are obtained by 

first averaging over cluster configurations and then over atoms in a cluster. Here a notice should be 

given: In principle, the   
  of a cluster configuration is calculated with the INM eigenvectors of 

           based on Method II given in Sec. 2.2.2. However, by replacing the three INM eigenvectors 

with those purely rotational eigenvectors given in Eq. (2.23), a reasonable approximation of the 

rotational projector reads 

 
2

, ,

ˆ R jx jy jzR

j j

x y z x y z

I I I
P

I I I









   e , (2.69) 

in which 

  2 2

j j jI m r r  
   , (2.70) 

with        assuming cyclic in x, y, and z as before. In Eq. (2.69),    
 

 has therefore been 

approximated as a sum of three ratios and each ratio measures the contribution of the atom j in the 

moment of inertia of a cluster’s configuration wit  respecti e to one of its principal axes. By substituting 

this approximate    
 

 into Eqs. (2.67) and (2.68),    
      and     

            can be shown explicitly as 

 
1

1 n
jx jy jzR

j

j x y z

I I I
P

n I I I

  , (2.71) 

  
2

2

1

1 n
jx jy jzR

j

j x y z

I I I
P

n I I I

  . (2.72) 

As the approximate    
      and     

           
 are applied to calculate the standard deviation       in Eq. (2.66), 

we are led to an approximate analytic expression of the order parameter     . The calculation using this 

analytical expression for      is certainly numerically straightforward. 

It is worth mentioning, furthermore, two advantages in using the approximate     : (a) 

Theoretically,      has been reduced to a geometric one which is more directly related to the cluster 

structure, and (b) the computation of      are considerably easier and simplified by the unnecessity of 

dealing with the Hessian matrix and subsequent diagonalization. Although the approximate      is 

simply related to the cluster structures, the order parameter      is nevertheless conceptually 

originated from the curvatures of potential energy landscape, which are more fundamental for they 

contain the dynamic information and determine the structural transition of a cluster. 



 

20 

 

Chapter 3  

Point Group Theory for the Lowest 

Energy Structure of Clusters 

In this chapter, by point group theory, I investigate the symmetric properties of clusters at the 

lowest energy structure (LES). In the first section, I will introduce the basic concept of point group 

theory. In Sec. 3.2, the     and     axial point groups, to which the Ag17Cu2 and Ag14 clusters at the 

LES, respectively, are illustrated. 

3.1 Basic concept of point group theory 

In this section, I will introduce the definition of a group and show the multiplication structures of 

elements in a group by multiplication table. According to the multiplication structures, I classify the 

elements in a group into some subsets; this classification is helpful for understanding the properties of a 

group more concretely. 

3.1.1 Definition of group 

In group theory, we use symbols to denote the elements of group in a wider sense. They may 

represent a number, matrix, linear operator, or geometrical operations such as the rotation of a rigid body, 

and the collection of elements must possess the definite group properties:  

 

Any collection of elements             has the group property if an associative law of 

combination is valid under the specified manipulation for any sequence of element and for any 

ordered pair R and S, there is a unique product, written as RS, which(in some agreed sense) is 

equivalent to some single element T which is also in the collection. 
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However, a collection which possesses this group property is not sufficient to form a group and there are 

some other rules that the collection should obey. I give the complete conditions for a group in a more 

formal definition. 

 

A collection of elements form a group G, if (a) it possesses the group property (b) it 

contains a unit element E such that RE=R for all R in G; (c)it contains for every element R an 

inverse, which may be called R
-1

, such that RR
-1

=E 

 

One may doubt in condition (b) and (c) whether the right unit or right inverse elements would be the left 

unit or left inverse? Actually, this answer is yes. It can be proven that the right unit or inverse are also the 

left unit or inverse. Therefore, this property is implied naturally in condition (b) and (c), the additional 

statements about this are unnecessary. 

3.1.2 Generator, subgroup, coset, class 

In general, the order of a group is defined by its number of elements. In the point group theory, we 

concern mainly with groups of finite order and in this case the properties of a group of order g are 

conveniently summarized in a multiplication table which sets out systematically the products of all g
2
 

pairs of elements. Basically, the multiplication table is the array and an example is shown in Table 3.1. 

 

Table 3.1 The general form of the multiplication table for a group including four elements A, 

B, C and D 

 A B C D 

A AA AB AC AD 

B BA BB BC BD 

C CA CB CC CD 

D DA DB DC DD 

 

By examining the multiplication table, one can notice that all the elements of a group of order g 

may be expressed as products among a limited number of elements called generators. Consider a more 

simple case, if   is in  ,   ,   ,…,   ,…are also in G, G will be of infinite order unless      for 

some value of  . The set of elements                  is called a cyclic group of order n. Here I 

have adopted the usual algebraic terminology and write        . T e usual “laws of indices” are 

then valid and note that     . 

The definition of a group by means of its generators is an exceedingly useful devise. The generator 

provides a simple method for classifying the symmetry of groups, and this is particularly useful for 

example given in Sec. 3.2. Therefore, I give a formal definition of generator 
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A set P of elements of a group G is a system of generators of the group if every element of 

G can be written as the product of a finite number of factors, each of which is either an element 

of P or the inverse of such an element. 

 

By the definition of a generator, each element of a group can be written as a product of (positive or 

negative) integer powers of the generators. 

Any collection of the elements of   which by themselves form a group   is called a subgroup of 

 . Actually, except two kinds of trivial subgroup (or called improper subgroup), the unit element only 

and the whole group itself, other subgroup are said to be proper subgroups. We should notice that the 

subgroups of a group do not correspond to a way to partition the group. For this point, we notice that the 

unit element   must be a member of every subgroup. 

A useful method to specifically partition a group into distinct sets of elements (no element common 

to two or more sets) is to introduce the idea of coset. Let                and suppose that   , 

  , … are elements of   but not contained in  . Then, the collection defined by 

  1 2,  ,  ,  k k k h hR H R A R A R A   (3.1) 

is called the left coset of   with respect to   . The following is some properties of cosets: 

 

(i) Every elements of a group appears either in the subgroup or in one of its cosets. 

(ii) No element can be common to both a subgroup and one of its cosets. 

(iii) No element can be common to two different cosets of the same subgroup. 

(iv) No coset can contain the same element more than once. 

 

As a result of above properties of cosets, we can completely partition a group into the distinct cosets. 

That is, each element of group can be specifically classified into a subgroup or its cosets. It is inferred 

that 

 

The order h of any subgroup H must be a divisor of the order g of the group  . 

 

By the way, it is also possible to define the left cosets. For a finite group, it can be shown that the left 

cosets and right cosets give exactly the same partition of the group, though the left and right cosets with 

respect to one particular element are not necessarily identical. 

Another way to partition the group is by using the definition of class. Before introducing that, we 

consider a relation in the following statement 

 

An element   is said to be conjugate to   with respect to   if         

 

We gather elements conjugate to   into a collection, as   runs through the whole group  . We search 
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the distinct collections via changing the element   one by one of group   and the distinct collections 

are called classes. We see at once that for any two elements belong to the same class, they will be 

conjugate to each other with respect to some element of this group.  

3.2 Axial point group 

The clusters studied in this thesis include the Ag14 and Ag17Cu2 metallic clusters, whose 

lowest-energy structures (LES) belong to     and     axial point group, respectively. In general, the 

axial point group of a cluster structure usually can be characterized by a n-fold principle axis, with 

which the cluster rotates through                     will return to its original structure, and 

whose number of fold is larger than any other axis. Customarily, this n-fold principal axis is chosen to be 

the z axis and is depicted in Fig. 3.1, in which the symbol    means any other 2-fold axis possesses the 

2-fold rotational symmetry and the symbol   is a mirror plane that reflects points from one side to the 

other side and keeps original structure of a cluster. I will explain in detail later by introducing the 

symmetrical properties of the     and     axial point groups. 

 

 

Fig. 3.1 Conventionally, If an object belongs to the axial point group of n-fold rotational symmetry, the 

n-fold principal axis is fixed to parallel to the z-axis. For every rotation of                   with 

respect to principal axis, the object maintains the original structure. The other symbol    represents the 

rotational symmetry of every rotation   with respect to 2-fold rotational axis normal to the principal 

axis and, customarily, the 2-fold axis is set to be the x-axis. Another is the reflection symmetry with 

respect to a plane which is denoted by the symbol  . 
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3.2.1     axial point group 

In this subsection, I illustrate the symmetric properties of     axial point group for the lowest 

energy structure (LES) of metallic cluster Ag14, which is shown in Fig. 3.2. The LES consists of an 

icosahedron and a floating atom which is located outside it at an equal distance from three atoms that 

form a triangular facet of the icosahedron. The icosahedron is not perfect but a slightly deformed one. 

By removing away the floating atom, the deformed icosahedral geometry can be relaxed into a perfect 

icosahedron whose surface consists of 20 identical equilateral triangular facets with a bond-length side 

of 2.689 Å . By comparing the structure of this perfect icosahedron with the deformed one in Ag14, we 

find that their major difference lies in the very small expansion of the triangular facet capped on top by 

the floating atom and the expanded triangular facet is still equilateral but now having a bond-length of 

2.705 Å . 

Differing from the perfect icosahedrons, which has the    point group symmetry, the geometric 

structure of the LES of Ag14 takes on the     point group with the z-axis passing through the central 

atom inside the icosahedron and the adatom, which are depicted in Fig. 3.2. [88] The 12 atoms at the 

vertices of the deformed icosahedron can be recognized as four equilateral triangles on four different 

planes perpendicular to z-axis shown in Fig. 3.2 (b), (c) and (d). In (d), the three atoms of each 

equilateral triangle have an equal distance from the floating atom. According to the     point group, 

atoms of the LES of Ag14 are classified into six subsets, denoted by different colors as shown in Fig. 3.2. 

The central atom and the floating atom are two subsets each of single atom and are denoted hereafter as 

C and F, respectively. The other 12 atoms are differentiated into four subsets, with each subset 

containing the three atoms consisting of one equilateral triangle mentioned above. With distances from 

the F atom at 2.681, 4.579, 5.438, and 6.573 Å , the four subsets of atoms are S1, S2, S3 and S4 

representing from the nearest to the farthest distance, respectively (shown in Fig. 3.2(c)). In the 

following, I will introduce symmetry operations of the     axial point group and it can be evidenced 

that the six subsets of Ag14 are unable to mix by any of these operations. 

With the LES of Ag14 as an example, I define the three-fold rotational symmetry, which is about 

the z-axis depicted in Fig. 3.3(a). The    is used to denote this rotational symmetry operation for 

every counterclockwise rotation      with respect to the principal axis and each power of    keeps 

the rotational invariance of original structure. Apparently, there are three symmetry elements          

  
          

    generated by the    generator, and they form a typical cyclic subgroup by the 

definition given in Sec. 3.1.2. On the other hand, another typical symmetry element is the reflection 

symmetry with respect to a plane, in which the points are reflected from one side of the plane to the 

other side and the original structure is kept invariantly (shown in Fig. 3.3(b)). By convention, the 

refection symmetry about a mirror plane is denoted by . In the LES of metallic cluster Ag14, one can 

easily find three mirror planes that contain the principal axis and are vertical to the x-y plane and each 

plane contains one atom in each of the S1, S2, S3 and S4 subsets. Conventionally,    is used to denote 

this kind of mirror planes. So, the one parallel to the x-axis is assigned as   
   

, and the other two are 



 

25 

 

  
   

 and   
   

, with the superscript increasing as in the counterclockwise direction with respect to the 

principal axis. For a point group with both the symmetry operations    with rotational symmetry 

about a principal axis and   
   

 with refection planes passing through the principal axis, this group is 

called the C3v axial point group. Thus, in the     axial point group, we use the capital “C” to denote 

the rotational symmetry about the principal axis and the subscript “3” means that there is a 3-fold 

rotational symmetry and the subscript “v” denotes the vertical reflection planes that contain the 

principal axis. Further, we notice that one can generate other   
   

 by multiplying   
   

 with powers of 

  , so that   
   

 can be considered as a new generator of the     axial point group. and this is the 

critical characteristics to distinguish from the    point group [89] (which can be generalized to     

and the    axial point group). The detail multiplications of elements in the     axial point group are 

expressed in Table 3.2, in which one can easily check group properties. The subgroups, cosets, classes 

and generators of the     axial point group are given in Table 3.3. 

 

Table 3.2 Multiplication table of     axial point group 

                         

                          

                           

                            

                             

                             

                             

 

Table 3.3 The symmetry operators of the     axial point group are given in the 2
nd

 and 3
rd

 

rows. The elements in the 2
st
 row form a proper subgroup. The elements in the same block 

belong to a class. Generators are mark by red. Left coset is in the 3
rd

 row. 

 

     axial point group 
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Fig. 3.2 (a) The lowest energy structure (LES) of metallic cluster Ag14 in 3-dimensional real space. 

According to the     axial point group, the atoms can be classified into six subsets denoted by 

different colors. The origin of the coordinate systems is set at the central atom (red). The z axis passes 

through the central and floating (brown) atoms and the x axis, normal to the z axis, is in the plane that 

contains the z axis and a green atom. (b), (c) and (d) are the three projected views of the LES. In (b), 

the LES is projected on to the x-z plane. In (c), the LES is projected on to the y-z plane. The red 

broken lines indicate the four equilateral triangles that are normal to the z-axis and contain the atoms 

of the four subsets S1, S2, S3 and S4, which are colored with orange, green, purple and blue, 

respectively. In (d), the LES is projected on to the x-y plane. The three atoms of each S1, S2, S3 and S4 

subsets are in a plane and indeed form an equilateral triangle. 
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Fig. 3.3 The symmetry operations of the     axial point group for Ag14: (a) the rotational operations 

          
          

   with respect to the principal axis, (b) the reflection planes denoted by 

  
   

,   
   

,   
   

. 

 

3.2.2     axial point group 

Metallic cluster Ag17Cu2 takes on its LES c aracterized by two “center”  u atoms locating inside 

17 “surface” Ag atoms, with the 19 atoms forming two icosahedra with a partial overlap (see Fig. 3.4), 

The LES of Ag17Cu2 is consistent with our understanding of a bimetallic cluster (BC) that an atom of 

smaller size prefers to be surrounded by atoms of larger size (ionic radii of Cu and Ag are 0.96 Å  and 

1.26 Å , respectively). This mixing tendency arises from the size-mismatched disparity and has 

previously been noted in the literature for the noble-metal-based BCs [90-[92].  This subsection is 

concerned with a study for the LES of Ag17Cu2 from the point group theory. In this LES, the 19 atoms 

of Ag17Cu2 cluster are thus classified into four subsets shown in Fig. 3.4. The four subsets consist of the 

two centrally located Cu atoms, the top and bottom Ag atoms, the five Ag atoms occupying the middle 

pentagonal ring, and the ten Ag atoms sitting in the upper and lower pentagonal rings, which I denote 

hereafter as Cu
(2)

, Ag
(2)

, Ag
(5)

, and Ag
(10)

, respectively. 

The LES of Ag17Cu2 belongs to the     symmetry [88] of point group (shown in Fig. 3.5(a)), 

which is described in the following: With the principal axis that goes along the two Cu atoms, the LES 

corresponds to    symmetry operation. The axes of 2-fold rotational symmetry are the ones that are 

perpendicular to the principal axis and pass through one of the Ag atoms in the middle pentagonal ring, 

which is in the xy-plane. As shown in Fig. 3.5(b) and (c), rotating the atoms in the cluster an angle of 

  with respect to one of the axes of 2-fold rotational symmetry sends the structure of the cluster into 
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itself. Conventionally, the 2-fold rotational symmetries are denoted as   
   

 with i=1 to 5:   
   

 is 

referred to the one with the x-axis as the rotational axis and the others are indicated with superscript 

    increasing in the counterclockwise direction with respect to the principal axis. Totally, there are five 

two-fold rotational symmetric operators, which can be generated by multiplying   
   

 with each of the 

five operators      
     

     
          

        
  , so that the   

   
 can be referred as a new 

generator of     axial point group. 

Further, we should consider the reflection symmetry. As shown in Fig. 3.5(b), there are five 

mirror planes, with each plane containing the principal axis and one 2-fold rotational axis of the   
   

 

operation. We use   
   

, with i=1 to 5, to denote the five reflection symmetries with respect to each one 

of the five mirror planes. Indicated in Fig. 3.5(c), the other reflection plane is the horizontal plane 

containing the middle pentagonal ring. With respect to this refection place, the atoms above and below 

it reflect to each other such that the cluster structure maintains and we denote this symmetry operation 

as   . One can notice that    is another generator, which generates the five   
   

 by the 

multiplication of     
   

. On the other hands, due to the existence of    axis, we should additionally 

consider dihedral plane which contains the principal axis and bisects the angle between any adjacent 

pair of red lines in Fig. 3.5(b). However, in     axial point group, no reflection symmetry would 

correspond to the dihedral plane. In convention, the capital “D” is used to denote the axial point group 

that possesses the    rotational symmetry. Moreover, in the subscript of “   ”, the “5” denotes the 

five-fold rotational symmetry and the “h” means the reflection symmetry about the horizontal plane. 

Finally, I introduce a non-intuitive symmetry operation   , which is defined by a two-step 

symmetry operation with    is operating first and    following, such that this newly defined 

operator is expressed as        . According to the definition of a group given in Sec. 3.1.1, the 

product of any two elements of a group is still an element of this group; however, this two-step 

operation is not included in the afore-mentioned symmetry operations, thus it’s nessasary to include the 

symmetry operation    and its inverse     into the     axial point group. 

 

Table 3.4 The symmetry operators of the     axial point group. The elements in the 2
nd

 row 

form a proper subgroup. The elements in the same block belong to a class. Generators are 

mark by red. Left cosets are in the 3
rd

, 4
th
 and 5

th
 rows. The elements in the lower block with 

bold lines are generated by multiplying    with elements in the upper block with bold lines. 

The operator    is defined by      and     is its inverse. 

 

    axial point group 
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Fig. 3.4 (a) The LES of Ag17Cu2 cluster in three-dimensional space. According to the     axial point 

group, the atoms can be classified into four subsets distinguished by different colors. There are two 

Cu atoms, colored in red, inside the cluster. With the origin of the coordinate system at the center of 

the two Cu atoms, the z-axis passes through the two Cu atoms and the x-axis is normal to the z-axis 

and passes through one Ag atom in the middle pentagonal ring, which is in the xy-plane. In (b), (c) 

and (d), the LES is projected on to the x-z, y-z and x-y planes, respectively. In (c), the red broken lines 

indicate the three subsets of Ag atoms.  
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Fig. 3.5 The     axial point group of Ag17Cu2. In (a) the two red arrows indicate the    and    

symmetries with respect to the z- and x-axis, respectively. In (b), the red solid line indicates the 

reflection plane, denoted as   , normal to the principal axis. In (c), the red solid lines indicate the five 

reflection planes, denoted as   
    with i=1 to 5, with each one containing the principal axis and one of 

the 2-fold rotational axes. 
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Chapter 4  Simulation, Model and 

Specific Heat 

4.1 Isothermal Brownian-type molecular dynamics 

In this thesis, the isothermal Brownian-type MD simulation is used to generate the cluster 

configurations of at different temperatures. I give a brief description of the isothermal Brownian-type 

MD simulation since considerable technical details have been given in Refs. [45,[46,[58]. In Lai et al. 

works, they employed the modified cubic coupling scheme which was originally developed for studying 

the thermal properties of pure metallic clusters [58] and subsequently generalized to alloy clusters 

[45,[46]. Let us consider a bimetallic cluster A  B   , where    (  ) is the number of atoms of a-type 

(b-type). The equations of motion, which describe its x-component at a temperature T, can be written as 

 
,ai x
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a
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x

m
   (4.1) 
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,  (4.2) 

in which    and       are the x-component position coordinate and momentum, respectively, and the 

subscript    refers to the i-th atom of type a. The     ,      and      variables are the x-component 

pseudo-friction coefficients of a-type atom and they are introduced to simulate the heat bath degrees of 

freedom. The entities    and      are constant parameters and   ,   ,   , and       are all functions 

of T. For b-type atoms, we simply replace the subscript a by b in Eqs. (4.1) and (4.2). The same set of 

equations hold for the y and z components. The explicit expressions of all of these quantities and the 

detailed numerical procedure to be effected are well described in Refs. [45,[46,[58] to which the 

interested readers are referred. The lowest energy structure of the cluster is searched by a technique 

described in Refs. [81] and [90], in which an optimization algorithm are developed to predict 

structures of pure metallic and nonmetallic clusters via combining two state-of-the-art methods, the 
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genetic algorithm and the basin hopping approach. Beginning at the LES, the cluster at a finite 

temperature can be prepared by the MD run, in which the cluster temperature is raised gradually from 

zero [58,[79]. In all of these simulations, atoms at a finite temperature are traced by their labels which 

are tagged at their LES. 

For clusters Ag17Cu2 and Ag14, at every increment 10K, I analyzed total 10
6
 configurations 

generated by the simulation within an interval of 10
-8

s to investigate the melting phenomenon of the 

cluster,  

4.2 Empirical n-body Gupta potential 

4.2.1 Gupta potential for Ag17Cu2 

Intrinsically, the interactions between atoms in a cluster are many-body in nature. The 

inextricable complexity of Coulomb interactions between valence electrons and ions renders a 

first-principles derivation of a many-particle potential energy function a formidable task. Here, we 

employ the n-body Gupta potential function [93], which is widely accepted in the literature as a 

substitution. The empirical potentials for Ag17Cu2 can be written as 

     1 2

1

n

n r a

i

E V i V i


       (4.3) 

where n is the number of particles in the cluster, the repulsive term Vr is 
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and the attractive term Va, due to the hybridization of valence electrons, is 
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     

   
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The parameters    ,    ,    ,    , , and    
   

 for the Ag–Cu are obtained from the work of Mottet et 

al. [94] and are given in Table 4.1. I give the derivation of Hessian matrix of Gupta potential in 

Appendix A.3 

 

Table 4.1 Gupta-type potential parameters for the bimetallic clusters Ag-Cu taken from Mottet et al. 

(Ref. [94]). The    
   

 for Ag-Cu is calculated by averaging the    
   

of Ag-Ag and Cu-Cu. 

ij    (eV)                
   

(Å ) 

Cu-Cu 0.0894 1.2799 10.55 2.43 2.56 

Ag-Cu 0.0977 1.2275 10.7 2.805 2.725 

Ag-Ag 0.1031 1.1895 10.85 3.180 2.89 
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4.2.2 Gupta potential for Ag14 

For metallic cluster Ag14, as described in Yen et al. works for Ag-based cluster [81], they 

employed the empirical n-body Gupta potential [93] which reads 

     1 2

1

n

n r a

i

E V i V i


       (4.6) 

where n is the number of particles in the cluster. Since atoms in the cluster Ag14 are of the same 

species, the repulsive term Vr and the attractive term Va in Eq. (4.6) are, respectively, reduced to 

    0
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exp 1
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r

j j i

r
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and 
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where the parameters  ,  ,   and      have been determined by fitting to measured bulk values. 

For the metal Ag, these parameters are taken from Rapallo et al. [92] and they are given in the 4
th
 row 

of Table 4.1. 

4.3 Calculation of specific heat 

For the thermal property, the specific heat CV is considered to determine the melting temperature, 

The computation of this quantity is straightforward since the configuration energies were readily 

recorded by Eq. (4.3). In statistical mechanics, one can define the specific heat as [45,[58] 
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2

total total

V

B

E E
C

k T


   (4.9) 

where        is the total kinetic energy plus the potential energy    given in Eq.(4.3) or (4.6) by 

taking a time average (see Eq. (10) in Ref. [58]). To determine the melting temperature of a cluster, we 

begin at T = 0 K and heat it up to high temperatures. The temporal variations of the position 

coordinates of all atoms in the cluster at different T are then recorded. Rather long elapsed times in the 

range of (1 − 3) × 10
-7

s were performed so that the calculated CV vs. T curve develops as smooth as 

possible. 
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4.4 Root-mean-square bond length fluctuation 

constant 

So far, a popular order parameter for cluster is the root-mean-square (RMS) relative bond length 

fluctuation δ, which reflects details of the geometric property of a cluster, is defined by 

 
 

2
2

1

1

1

n n
ij ij

i j i ij

r r

n n r


 





   (4.10) 

where     is the bond length of atom i and j and n is the number of atom in the cluster. Due to the δ 

related to the geometric change, it is also known as the Lindemann-like parameter. The occurrence of 

an abrupt change of δ around some temperature range means that the structure of cluster changes 

drastically [58]. 



 

35 

 

Chapter 5  

INM Analysis for Melting Behavior of 

Ag17Cu2 Bimetallic Cluster 

5.1 Introduction 

This chapter is concerned with an INM study for the dynamics and melting behavior of Ag17Cu2 

bimetallic cluster (BC). My motivation comes from a recent work of Yen et al. [81] who reported 

simulation results on 14-atom Ag-based BCs. In their work, they applied the isothermal Brownian-type 

molecular dynamic (MD) simulations to the Ag-based BCs and calculated the velocity autocorrelation 

function (VAF) and its Fourier-transformed power spectral density     (ω), where the superscript i is 

referred to the i-th atom in the cluster. Starting from their lowest energy states, the BCs are heated up to 

high temperatures. The melting behaviors of the BCs are therefore studied with their specific heat data 

and     (ω). 

Similarly, starting from the lowest energy state, which has been shown in Fig. 3.4, the Ag17Cu2 BC 

is also heated up to high temperatures. The specific heat CV data of Ag17Cu2 is, thus, obtained and 

shown in Fig. 5.1. In this figure with a single peak, the main maximum position of CV, which we 

define to be t e cluster’s melting temperature, is located at Tm ≈890 K. However, the temperature 

variation in the CV curve of Ag17Cu2 is not consistent with its relative root-mean-square bond length 

fluctuation constant δ, which has a drastic change at in a low-temperature range (see Fig. 5.2). In this 

chapter, in addition to applying the same MD technique (mentioned in Sec. 4.1) to Ag17Cu2 to obtain 

VAF and        , I further analyze the simulation data in terms of the INM analysis, by evaluating 

the order parameter given in Sec. 2.3 from low to high temperatures and comparing the results with 

the specific-heat data of Ag17Cu2. 
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Fig. 5.1 Specific heat CV of Ag17Cu2 (closed circle) calculated using the isothermal 

Brownian-type MD simulation [79]. 

 

 

 

Fig. 5.2 The variation of the root-mean-square bond length fluctuation constant δ with 

temperature for Ag atoms in Ag17Cu2 [95]. 

  

T(K) 
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5.2 Temperature variation of the INM spectra 

In this section, I show the results of INM spectra of Ag17Cu2, including the vibrational DOS, 

projected vibrational DOS and their temperature variations, from which the melting behavior of the 

cluster is revealed. The INM DOS are obtained by averaging over 10
6
 configurations generated by the 

Brownian-type MD simulations with a time step of 10
-15

s within a total interval of 10
-8

s. At such a long 

time scale, the calculated velocity autocorrelation function (VAF) C(t) and all Ci(t) even at T = 100 K 

have vanished already. Consequently, a reliable power spectra can be obtained via Fourier-cosine 

transformation for the VAFs by integrating to a finite long time tail. 

5.2.1 Vibational DOS 

The normalized INM spectra of Ag17Cu2 with and without the rotational modes defined in Eq. 

(2.29) are shown in Fig. 5.3. In general, we find no noticeable difference at low T for the vibrational 

spectra obtained by the two methods described in Sec. 2.2.2 to remove the rotational INMs. Slight 

difference is observed, however, at low frequencies at high T. In order to measure the coupling strength 

between the rotational and vibrational motions, I calculate the projection J(  ) of the INM eigenvectors 

derived from (  ,  ,  ) onto the subspace spanned by the three purely rotational eigenvectors. The 

results are presented in Fig. 5.4, which shows how the overlap of the subspaces spanned by the two sets 

of rotational eigenvectors varies with temperature. Undoubtedly, the two subspaces completely overlap 

at zero temperature and still overlap to a large extent at low temperatures. Among the three INMs of 

(  ,  ,  ), the    and    modes have the largest and least values of J(  ) at all temperatures, 

respectively. The overlap of the two subspaces is significantly reduced at high temperatures: At T = 

1500 K, J(  ) roughly lowers to 63% and J(  ) to 40%, implying a stronger coupling for the 

rotation-vibration at high temperatures. Based on this observation, we confine our discussion in the 

following to only the vibrational INM spectra calculated by Method II. However, for    and      

defined in Eq. (2.41) and Eq. (2.62), which require the INM eigenvectors, I will touch on these 

quantities appealing to Method I or/and Method II for the purpose of comparison.  

At T=100 K, the vibrational spectra show structural characteristics that all vibrational modes 

possess real frequencies, displaying indeed a solid-like picture, one would expect the configurations of 

the cluster to be around the lowest energy state of the potential energy landscape. Up to 600 K, the INM 

spectra are generally smoothed out. Here we observe some vibrational modes with imaginary 

frequencies. This suggests a transition process in which the cluster at higher temperatures possesses 

enough kinetic energy to stray sufficiently far from the lowest energy state that enhances its chance to 

crossover the energy barriers to the first and higher lowest minima. As temperature is increased further 

to 1100 K, one noticeable feature is that the INM spectra display a large portion of imaginary-frequency 

vibrational INM and this structural trait is consistent with a liquid-like behavior, in which the cluster at 

sufficiently high temperatures would go around everywhere the potential energy landscape. 
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Fig. 5.3 Normalized INM spectra         of Ag17Cu2 at 100, 600, and 1100K. The red-solid lines are 

the spectra showing the contributions of rotations and vibrations. The black-dashed and green-dotted 

lines are the spectra obtained by removing the rotational contribution following Method I and II 

introduced in Sec. 2.2.2, respectively. 
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Fig. 5.4 Temperature variation of J(  ) for measuring the projection of the INM with    onto the 

subspace spanned by the three purely rotational eigenvectors for Ag17Cu2. The black-solid, red-dashed, 

and green-dotted-dashed lines are for the INMs of   ,   , and   , respectively. 
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5.2.2 Projected vibrational DOS 

To understand the INM spectra of individual atoms in the cluster at low temperature, it is 

instructive to examine the vibrational-mode DOS     
     

(ω) of Ag17Cu2 defined in Eq. (2.43) with the 

translational and rotational modes excluded. As shown in Fig. 5.5, the vibrational-mode DOS uncovers 

the degeneracy of each vibrational frequency. By considering the symmetry properties of the LES, 

which belongs to the     point group [88] as pointed out in Chapter 3, the vibrational frequencies of 

Ag17Cu2 in the LES are either non-degenerate or doubly degenerate and this lowest energy geometry is 

thus classified into four subsets (see Fig. 3.4). In this classification, Dj
(LES)

(ω) of atoms in the same 

subset is thus the same. 

 

 

Fig. 5.5 The vibrational instantaneous normal mode frequencies of Ag17Cu2 in the lowest 

energy structure. The frequencies are either non-degenerate or doubly degenerate 

 

In the same manner, the atoms in the Ag17Cu2 cluster at finite temperatures can be classified into 

four subsets according to the following procedure: A chosen number of atoms at a finite temperature can 

be obtained from those at the lowest energy state by tracing the atom labels in the simulation at a 

temperature that is raised gradually from zero. After this simulation process for raising temperature, I 

identify the atoms by their original subsets at zero temperature. At low temperatures, one can sensibly 

recognize the four subsets of atoms by the structures of the cluster, since the relative positions of atoms 

are roughly the same as those at zero temperature. Thus, the classification of atoms into the four subsets 

generally reflects the structures of the cluster at low temperatures. However, this is not so at high 

temperatures where the cluster is more appropriately realized by the liquid-like picture with its atoms of 

the same mass becoming completely random so that the subsets of atoms of Ag
(2)

, Ag
(5)

, and Ag
(10)

 lose 
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the identities they had at zero temperature. As a result, atoms at high temperatures are only 

distinguishable by their masses. 

Owing to the same response of atoms in a subset, we make an average of Dj (ω) for atoms in the 

same subset, i.e., 

    
1

1 Xn

X j

jX

D D
n

 


    (5.1) 

with the subscript X = Cu
(2)

, Ag
(2)

, Ag
(5)

, and Ag
(10)

 and j runs for the total number of nX atoms in subset 

X. The       is, therefore, considered as the averaged contribution of one atom in subset X to all 

vibrational INM with frequency ω. In Fig. 5.6, The       at        for the four subsets of 

atoms of the Ag17Cu2 cluster are presented and, in the same figure, the   
     

(ω) at the LES is also 

presented for comparison. It can be seen that   
     

(ω) is a bundle of thin straight lines. Considering 

  
     

(ω) in Fig. 5.6 (a), its vibrational modes above ω=37 rad/ps are dominated by Cu atoms whose 

four   
     

(ω) have the highest values. This is in contrast to the modes dominated by Ag atoms (in 

Fig. 5.6 (b)–(d)) with ω less than 30 rad/ps where   
     

(ω) are dominant. A comparison between 

      at T=100K and   
     

(ω) of each subset of atoms indicates a general feature of the 

temperature effects for transposing the vibrational spectrum from thin straight lines into a continuous 

function. Indeed, due to the thermal effects, the vibrational frequency gap at T=100K between ω=30 

and 37 rad/ps in   
     

(ω) is gradually filled up as in the      , but there is an exception at ω=35 

rad/ps where all       are identically zero. 

The temperature variations for the vibrational INM spectra of individual atoms are shown in Fig. 

5.7. We note first of all that the spectra of the two Cu atoms are indiscernible on the scales used in Fig. 

5.7 for all temperatures, with a general behavior which may be summarized as follows: At T =100 K, we 

observe three main peaks located at ω ≈23, 40, and 48 rad/ps and a lower one at ω ≈12 rad/ps. The peaks 

at the highest and lowest frequencies are smeared out to become shoulders at T =200 K and the latter 

completely disappear at T =300 K. For the 17 Ag atoms, their spectra at T =100 K spread mainly the 

frequency range from ω =5 to 35 rad/ps, with a separated minor structure appearing around 40 rad/ps, 

and they are in fact structurally discernible; these characteristic structures, however, get smudged as the 

temperature increases and gradually become blurred among atoms at much higher temperatures. One 

general feature that can be gleaned from Fig. 5.7 is that the imaginary-frequency INM DOS for both Cu 

and Ag atoms emerge at T ≈300 K, become noticeable at T ≈600 K for Cu atoms and 400 K for Ag 

atoms, and thereafter grow into a significant portion at much higher temperatures. 
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Fig. 5.6 Vibrational DOS       of subsets X of Ag17Cu2, with (a) X =Cu
(2)

, (b) X =Ag
(2)

, (c) X =Ag
(5)

, 

and (d) X =Ag
(10)

. The thin straight lines and dashed curves refer to the Ag17Cu2 cluster in the LES and 

at T=100K, respectively. 

  



 

43 

 

 

 

 

 

 

Fig. 5.7 Temperature variation of the vibrational INM spectra       of atoms in Ag17Cu2 from 100 to 

1500 K. The spectra are obtained by the Method II described in Sec. 2.2.2. The dashed lines (orange) 

are for Cu atoms and the full lines (green) are for Ag atoms. 
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5.2.3 Power spectrum of velocity autocorrelation function  

Obtained via the isothermal Brownian-type molecular dynamic (MD) simulations, the temperature 

variations of the VAF and its power spectral density of an individual Ag atom in Ag17Cu2 are displayed 

with the red lines in Fig. 5.8 and those for a Cu atom are displayed in Fig. 5.9. The comparison 

between Ci(t) and its time Fourier transformed, Ω
(i)

(ω), of individual atoms obtained by the INM theory 

and the simulation results are also presented in Fig. 5.8 and Fig. 5.9 for the Ag and Cu atoms, 

respectively. We have calculated Ci(t) with the INM DOS using Eq. (2.58) and in the stable-INM 

approximation by Eq. (2.59). At T = 100 K, without any imaginary-frequency INM, the results of the 

INM theory and the stable-INM approximation are the same and the calculated Ci(t) of both Ag and Cu 

atoms are rather close to those obtained by simulations (see Fig. 5.8 and Fig. 5.9). For the power spectra 

Ω
(i)

(ω), the locations of the peaks of the two kinds of atoms predicted by the INM theory generally 

coincide with those of the simulation results but they are much broader in width. At T= 500 K, because 

of the imaginary frequency INMs, the Ci(t) calculated by the INM theory deviates somewhat from the 

simulated results after 0.1 ps; the deviation is stronger for the Ag atom (Fig. 5.8) than that for the Cu 

atom (Fig. 5.9), due to more imaginary-frequency INM in the Dj (ω) of Ag atoms. At this temperature, 

the spike-like structures in t e simulated Ω
(i)

(ω) are seen to be cut away in the INM theory. At T = 900 

and 1500 K, the Ci(t) calculated by the INM theory yields accurately the simulation results roughly 

within 80 fs, which is the same time scale for the cases of bulk liquids [96,[97], but diverges strongly in 

the longtime limit due to the imaginary-frequency INMs. It is worth mentioning that for the Ag-atom 

Ci(t) at T = 900 K both the stable-INM approximation and the simulation result display an over-damped 

behavior over a long time scale. At the same temperature 900 K, the behavior of Ci(t) obtained by 

simulations for the Cu atom is, however, under-damped in noticeable contrast to that in the stable-INM 

approximation showing too fast damping (see Fig. 5.9). 
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Fig. 5.8. VAF Cj(t) and power spectrum         of an Ag atom in Ag17Cu2 at 100, 500, 900, and 

1500 K. The Ag atom is one in the Ag
(10) 

subset [see Fig. 3.4]. For Cj(t) and        , the full lines are 

the results calculated in the stable-INM approximation and the dashed lines are the results from MD 

simulations. The dotted lines in Cj(t) are results calculated with both real- and imaginary-frequency 

INMs. All vibrational INM spectra used in the calculations are obtained by Method II. 
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Fig. 5.9. VAF Cj(t) and power spectrum         of a Cu atom in Ag17Cu2 at 100, 500, 900, and 1500 

K. The Cu atom is in the Cu
(2) 

subset [see Fig. 3.4]. For Cj(t) and        , the full lines are the results 

calculated in the stable-INM approximation and the dashed lines are the results from MD simulations. 

The dotted lines in Cj(t) are results calculated with both real- and imaginary-frequency INMs. All 

vibrational INM spectra used in the calculations are obtained by Method II.. 
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5.3 Temperature variation of    

We are now in a position to study the temperature variations of    for the four subsets of atoms. In 

the upper part of Fig. 5.10, the    , which is calculated with the vibrational INM that follows Method II, 

is plotted at a temperature increment of 10 K from T =10 to 1500 K. The    values of the Cu
(2)

 subset of 

atoms are almost constant at low temperatures and, around 500 K, start to decrease gradually with 

increasing temperature. Though having a declining behavior with temperature, the    of Cu
(2)

 is well 

separated from those other three subsets of Ag atoms for the range of temperature considered here due to 

the difference in masses of Ag and Cu atoms. In the lower part of Fig. 5.10, we compare the    of each 

subset of atoms calculated with the vibrational INM applying either Method I or Method II. It is evident 

that the calculated results by the two methods for the three subsets of Ag atoms are rather similar. On the 

other hand, we find that both    of Cu
(2)

 subset of atoms obtained by the two methods exhibit similar 

temperature behavior and coincide at low temperatures but are well separated at high temperatures, with 

the temperature change for the    value by Method I starting to decrease around 800 K. 

It is interesting to see in the upper part of Fig. 5.10 that the    of the three subsets of Ag atoms split 

into three branches below 450 K and, as T → 0K, the    values of the three subsets of atoms converge to 

the values of   
 (LES)

 defined in Eq. (2.44). From T = 450 to 600 K, the three branches of the subsets of 

Ag atoms are still visibly separated. These well-resolved branches are, however, somewhat defiled by 

exchanges between two branches which correspond physically to site permutations between Ag atoms 

(for examples, Ag
(2)
↔ Ag

(10)
and Ag

(5)
↔ Ag

(10)
). Between T = 600 and 900 K, the    of the three subsets 

of Ag atoms start to mix interchangeably and these branches are no longer discernible. The    gradually 

lose the identities of the original subsets of atoms with increasing temperature. After T = 900 K, the    

of all Ag atoms merge into one so that the cluster is distinguished by two    branches corresponding to a 

thorough mixing of the two Cu atoms and among the Ag atoms. 

We delve further into the dynamics of Ag atoms by the    temperature variation of each subset of 

Ag atoms illustrated in the lower part of Fig. 5.10. Below T = 450 K, the structures of the three subsets of 

Ag atoms mimic that of the LES implying that these atoms possibly vibrate with small amplitudes about 

their solid-like equilibrium positions. From T = 450 to 600 K, the thermal variation of the    of each 

subset of Ag atoms indicates that the Ag atoms are undergoing sites exchange between subsets of atoms 

whose structures remain dynamically similar to those of the LES configuration. In this temperature 

segment, it is also possible that the three subsets of Ag atoms are displaced in their sites and driven to 

higher local minima by thermal activations over the barriers in the potential energy landscape; At much 

higher temperatures falling between T = 600 and 900 K, the probability to surmount energy barriers into 

even higher energy states increases and such large probabilities indicate that the cluster at this point will 

stray far from the lowest energy structure. Correspondingly, within this temperature range, the CV shown 

in Fig. 5.1 increases dramatically and reaches a maximum at T = 900 K. Above T = 900 K, the solid-like 

structure could  a e “melted,” wit  t e Ag atoms completely indistinguishable under an ensemble 

average, and as a result the CV undergoes a sharp drop with the temperature increasing further. 
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Fig. 5.10 Temperature variations of    for the atoms in the four subsets of Ag17Cu2: Cu
(2)

 (red circles), 

Ag
(2)

(magenta diamonds), Ag
(5)

 (brown squares), and Ag
(10)

 (green triangles) (see Fig. 3.4). The    

values in the upper panel are obtained from the vibrational INM by Method II. In the lower four panels, 

each figure compares the    of a subset of atoms with its vibrational INM obtained by Method I (black 

crosses) and that by Method II (same symbols as in the upper panel).  
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5.4 Order parameter      for melting of Ag17Cu2 

In physics, the melting phenomena are commonly described by some appropriately chosen order 

parameters. In bulk systems, the first-order melting transition is characterized by a discontinuous jump 

in the order parameter, which can be CV, at the melting temperature, whereas in finite-sized systems 

such as clusters the same kind of transition is featured by a continuous change of CV with temperature 

and it embodies the coexistence of the solid-like and liquid-like isomers [21,[22,[25,[75,[78,[98]. 

Several other order parameters have been reported also and applied to understand the solid-like to 

liquid-like transition in clusters. On the issue of coexisting the solid-like and liquid-like isomers, the 

microcanonical ensemble simulations [35,[47-[49] have associated the bimodality in the probability 

distribution of the short-time averaged temperature as prima facie evidence. These simulation studies 

have aroused subsequent interest in finding the solid-like and liquid-like states separated by a barrier in 

the Landau free energy, and the potential energy then serves as the order parameter of the free energy 

[51]. Parallel to appealing to the energy order parameters, the geometric order parameters that base upon 

the short-time average are used as well for addressing the transition between two stable isomers and 

their coexistence [52], and also the bond-orientational order parameters for investigating the structural 

variation along pathways in configuration space [53,[54]. We should perhaps mention the continual use 

of the root-mean-square bond length fluctuation constant δ as a Lindemann-like order parameter in more 

recent computer simulations [46,[57,[58]. Despite the drastic change of this order parameter with 

temperature indicating some kind of structural or phase transformation in bulk systems, the information 

of the transition deduced from δ for clusters is, however, not always consistent [45,[57] with that 

inferred from CV thus lending less credence to choosing δ as an insightful order parameter to study phase 

transition. 

Within the context of the INM analysis developed in Chapter 2, the new order parameter given in 

Eqs. (2.62)-(2.64) by INM is defined for pure clusters. Since Ag17Cu2 is a bimetallic cluster, we, thus, 

define the order parameter for this cluster in a similar way but only for Ag atoms. Toward this goal, 

the equation                  in Eq. (2.62) is unchanged, where      =           
 
 
   

. Here, the 

average denoted by bar is among the Ag atoms so that 

 
1

1 Agn

j j

jAg

I I
n 

    (5.2) 

where       . The calculated      is shown in Fig. 5.11. With the    values obtained by Method II, 

     is almost one below T = 300 K signaling that the ground-state structure is well preserved. From T 

= 300 to 600 K,      declines from 1 to 0.85 which again indicates that the LES structure is generally 

maintained. The      starts to drop sharply at T ≈ 600K and approaches asymptotically to a small value 

at a temperature close to Tm ≈890 K. This sharply decaying range of      marks a melting shake-up of 

the ground-state structure. The      stays constant at temperatures T > Tm and is non-zero due to the 

finite size of the cluster. Physically, it describes the atomic distributions that, under ensemble averages, 
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exhibit no further distinction among the Ag atoms at much higher (than Tm) temperatures. Thus, the 

phenomenon of cluster melting described by      is consistent with the thermal behavior of CV shown 

in Fig. 5.1. Except for the constant one extending up to  600 K, the temperature variation of      

calculated from the    values following either Method I or Method II is quite similar. This result 

indicates that the decline of      from T = 300 to 600 K by Method II is related to the rotation-vibration 

coupling in the Ag17Cu2 cluster with the Gupta potential. 

In recapitulation, we remark that the INM averages in      are carried out for the configurations 

that evolve along the long-time cluster trajectories, and that the underlying statistical average for the 

order parameter is based upon the canonical ensemble at each temperature. Though under different 

statistical averages, the indication of      for the transition of cluster melting are complementary to 

those obtained by another INM analysis under the short-time average in the microcanonical ensemble 

[49]. 

 

Fig. 5.11 Order parameter      vs temperature T (K) calculated with the    values of Ag atoms 

in Ag17Cu2 (shown in Fig. 5.10) obtained by Method I (open squares) or Method II (filled circles). The 

dashed line is the asymptotic high-T value of     .  
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5.5 Summary 

We have the isothermal Brownian-type molecular dynamics to calculate the specific heat CV of the 

Ag17Cu2 cluster. Velocity autocorrelation function, and its time Fourier-transformed power spectral 

density. These quantities were analyzed and the dynamical behavior of individual atoms as a function of 

temperature, the power spectral density, in particular, was examined. In Fig. 5.9, we found that the 

highest frequency mode           of the Cu atom, which is located at       rad/ps, disappears 

identically at a temperature within           . This temperature was used to infer the melting 

temperature of the Ag17Cu2 cluster, which we define the main peak position of CV at         as the 

melting temperature of the Ag17Cu2 cluster. The dynamical properties of Ag17Cu2 were further diagnosed 

using the INM analysis. In addition to the vibrational mode DOS agreeing favorably with the simulation 

results, we observe that the frequency integrated value    which is an ensemble average of all vibrational 

projection operators for the j-th atom in the cluster changes with temperature in a characteristic manner 

that sheds considerable light on the melting behavior. A detailed examination of the    of Ag atoms 

leads furthermore to a new order parameter     . The INM analysis shows that      contains cluster 

dynamic information and also predicts the Tm of Ag17Cu2 reasonably close to that inferred from CV. In 

view of this finding, the      derived in this work is a promising order parameter for understanding the 

cluster thermal property as well. 
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Chapter 6  

INM Analysis for Melting Behavior of 

Ag14 Cluster 

6.1 Introduction 

In the previous chapter, I have studied the dynamics and melting behavior of Ag17Cu2 from the 

viewpoint of potential energy landscape [59,[60] by exploiting the INM analysis [61,[62] in the context 

of the canonical ensemble average. In that study, a new order parameter was proposed in terms of the 

INM vibrational density of states (DOS) that are associated with the Ag atoms in the cluster [79]. This 

order parameter interprets pretty well the melting behavior of Ag17Cu2 and the predicted Tm is in fairly 

good agreement with that inferred from the specific heat CV of the cluster [81]. 

In this chapter, I study the melting transition of metallic cluster Ag14 based on a generalization of 

the INM analysis described in Chapter 2. In the CV curve of Ag14, an additional prepeak occurs at a 

lower temperature, which is not observed in the CV of Ag17Cu2. The reason can be traced back to that 

their respective lowest-energy structure (LES), which have been described in Chapter 3, are quite 

different geometrically. According to previous studies for Cu14 whose CV also shows a main peak and 

a prepeak as that of Ag14, the origin of the prepeak is due to the migrational relocation of the floating 

atom in the cluster as the temperature of the cluster is raised from the LES. Similarly, one may expect 

that the migrational relocation of the floating atom in Ag14 causes the occurrence of the prepeak in the 

CV curve. To confirm this argument further, I apply the INM for the Ag14 cluster and examine the 

applicability of the new order parameter for the prepeak phenomenon, whose mechanism is further 

investigated by probing the potential energy landscape. 

The calculated CV of Ag14 has been shown in Fig. 6.1, which is referred from Ref. [81]. As shown 

there, the main maximum of CV, which is defined as the melting temperature Tm, is located at 

approximately 920 K. Besides the main peak, one notices a prepeak structure near 300 K. However, 

one can find from Fig. 6.2 that the drastic change of the root-mean-square bond length fluctuation 
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constant  is not consistent with the positions of the main peak and the prepeak of CV data. The first 

drastic change in  roughly occurs from 150 to 200K and the second occurs at 450K with an extension 

to 500K; both drastic changes happen before the melting of the cluster as raising temperature. This 

inconsistence also happens to Ag17Cu2. 

 

 

Fig. 6.1 Specific heat CV of Ag14 (closed circle) calculated using the isothermal Brownian-type 

MD simulation [81]. 

 

 

Fig. 6.2 The variation of the root-mean-square bond length fluctuation constant δ with 

temperature for Ag14 [95]. 

  

δ 
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6.2 Vibrational DOS of lowest energy state by 

decomposition method 

Several theoretical studies on the structures and the vibrational modes of metallic clusters that 

employ the Gupta potential have been reported in the literature [83,[99]. Depicted in Fig. 6.3(a) are the 

vibrational modes of Ag14 in the LES. Due to the     symmetry, the vibrational frequencies are either 

nondegenerate or doubly degenerate. Removing away the floating (F) atom, I also calculate and 

compare the vibrational modes of the deformed icosahedron and the relaxed perfect one and these latter 

two results are shown in Fig. 6.3 (b) and Fig. 6.3 (c), respectively. As indicated by the degeneracies of 

the vibrational modes, the deformed icosahedron reflects the symmetry of the     point group, whereas 

the relaxed icosahedron, with the    symmetry, correctly produces the vibrational modes with fivefold, 

fourfold, and threefold degeneracies [99]. 

Some vibrational modes of Ag14 are interesting. The three highest-frequency modes, the singlet at 

40.8 rad/ps and the doublet at 41.8 rad/ps, generally describe central (C) atom inside the deformed 

icosahedron oscillating parallel and perpendicular to the principal axis, respectively. The singlet at 31 

rad/ps is the breathing mode, describing the motion of atoms along lines from the atoms to the C-atom. 

Comparing the vibrational modes of the Ag clusters with and without the F atom, we find three extra 

modes due to the presence of the F atom and they are the singlet at 33.2 rad/ps and the doublet at 7.35 

rad/ps, which describe generally the stretching and shearing vibrations between the F atom and the 

deformed icosahedron, respectively. The other modes with frequencies 10–26 rad/ps mainly come from 

the vibrational modes of the perfect icosahedron, with a reduction in some degeneracies due to the 

change in group symmetry from    to     and a shift in their frequencies by the presence of the F atom. 
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Fig. 6.3 Vibrational frequencies of Ag clusters: (a) the LES of Ag14, (b) the deformed icosahedron 

obtained by removing away the F atom from the LES, (c) the perfect icosahedron obtained by relaxing 

the deformed icosahedron. In each panel, the blue straight lines indicate the frequencies of the 

vibrational modes and the red dots specify the degeneracies of the modes.  
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6.3 Temperature variation of the INM spectra 

6.3.1 Vibational DOS 

A total number of 10
6
 configurations was generated by the Brownian-type MD simulations that run 

at a time step of 1 fs corresponding to a total time interval of 100 ns. Fig. 6.4 depicts the normalized INM 

vibrational spectra of Ag14, obtained by subtracting the contribution of the rotational INMs described in 

Sec. 2.2.2 by two methods. From low to high temperatures, we find no noticeable difference in the 

vibrational spectra obtained by the Method I and Method II. I also calculate the projection J(  ) to 

measure the rotation-vibration coupling and results are presented in Fig. 6.5. The two subspaces 

spanned by the two sets of rotational eigenvectors obtained by Method I and Method II completely 

overlap at zero temperature and still overlap to a large extent at low temperatures, with a temperature 

range less than that in Fig. 5.4 for Ag17Cu2. Among the three INMs of           , the order in the 

J(  ) magnitudes from the largest to least values still follows the sequence of the three INMs 

           at all temperatures. The overlapping of the two subspaces from low to high temperatures 

decays faster than that for Ag17Cu2 but the J(  ) values at T = 1500 K, with J(  ) roughly lowering to 

70% and J(  ) to 45%, are relatively larger than those of Ag17Cu2 at the same temperature, implying a 

weaker rotation-vibration coupling as compared with Ag17Cu2 at the same temperatures. Therefore, I 

still discuss the vibrational INM spectra calculated by Method II and calculate the    and      by 

Method I or/and Method II for comparison.  

Back to Fig. 6.4, the         of Ag14 at T=100K possesses only the real-frequency lobe, 

indicating that the cluster displays by and large a solid-like characteristic. Examining closely the cluster 

configurations at this temperature, we find that they are still around the LES of the potential energy 

landscape, preserving generally the structure in the LES. As the temperature increases to 200 and 300K, 

the INM spectra are more smoothed out than 100K and the vibrational modes with imaginary 

frequencies emerges very early at 200K, which suggests a transition process has already occurred at 

lower temperature for the barrier between the LES and the first-excited energy state is relatively low to 

overcome. For the real-frequency branch of vibrational DOS, one noticeable feature is that the high 

frequency peak at 40rad/ps gradually decrease as temperature increasing from 450K to 700K, while 

the vibrational DOS display a significant portion of imaginary-frequency INM, which implies the 

cluster may possesses enough kinetic energy to crossover the energy barriers to the first- or 

higher-excited minima, the high frequency peak of 40rad/ps at T=300K becomes as shoulder at 450K 

and almost disappears at 700K. As temperature is increased further to 900 K, the INM spectra display a 

large portion of imaginary-frequency vibrational INM and the high frequency peak of 40rad/ps is 

disappeared. This structural traits are similar as the case of Ag17Cu2.  
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Fig. 6.4 Normalized INM spectra         of Ag14 at 100, 200, 300, 450, 700, and 900 K. The 

red-solid lines are the spectra showing the contributions of both rotations and vibrations. The 

back-dashed and green-dotted lines are the spectra obtained by removing the rotational contribution 

following Method I and Method II described in Sec. 2.2.2, respectively.  
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Fig. 6.5 Temperature variation of J(  ) for measuring the projection of the INM with    onto the 

subspace spanned by the three purely rotational eigenvectors for Ag14 cluster. The black-solid, 

red-dashed, and green-dotted-dashed lines are for the INM with   ,    and   , respectively. 

6.3.2 Projected vibrational DOS 

It is instructive to dig out the relation between the projected vibrational spectral of a subset of 

atoms and the symmetry of cluster structure. To this end, I use the average projected vibrational 

spectrum of a subset X of atoms, defined in Eq. (5.1), with X denoted as one of the six subsets C, F, S1, 

S2, S3 and S4 (see Fig. 3.2). The structural information in       reflects the effects of cluster symmetry 

on the vibrational spectrum. The comparison between       of Ag14 at 100 K and that of the LES is 

given in Fig. 6.6. The       spectra of the C atom at 100 K have two main distributions whose 

positions of peaks are at ω ≈ 17 and 41.5 rad/ps coinciding with the thin straight lines of       at the 

LES. Hence, the spectra of       at 100 K are the consequence of the thermal effect driving the cluster 

structure to deviate from the LES of the potential energy landscape. The spectrum of the F atom has 

three main peaks at ω ≈ 7, 11.2, and 34 rad/ps, a plateau around 20 rad/ps, and almost without any mode 

with ω > 40 rad/ps. Among these the peaks at 7 and 34 rad/ps are related to the shearing and stretching 

vibrations between the F atom and the deformed icosahedron, respectively. For the subsets of S1, S2, S3, 

and S4, an ubiquitous feature of their       is a continuous frequency distribution that extends the 

range ω ≈ 5–45 rad/ps with a deep valley around 36 rad/ps. Scrutinizing these four spectra in great 

details, we find their       around 31 rad/ps at which the breathing mode occurs in the LES have an 
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almost equal magnitude. On the other hand, one can tell apart the difference between the spectrum of the 

S1 subset, which directly links to the F atom, and those of the other Si (i = 2, 3, 4) subsets. At LES and 

100 K, the       spectrum of the S1 subset has a relatively larger magnitude at around 34 rad/ps than 

the other three subsets. However, both       of the S1 and S2 subsets have almost equal magnitude at ω 

≈ 7 rad/ps, which is larger than those of the S3 and S4 subsets. These results point to the quite general 

feature that the stretching vibration between the F atom and the deformed icosahedron only extends to 

atoms of the S1 subset but the shearing vibration extends further to those of the S2 atoms. 

To explore further the temperature effect on the projected vibrational spectrum of individual atom 

in Ag14, we display in Fig. 6.7 the variations of       from 50 to 1000 K for all atoms. At 50 K, the 

structural characteristics of       are well discernible for the C, F, and Si atoms. Up to 100 K, the 

      spectra do not contain any imaginary-frequency INM and are rather similar to the power spectra 

obtained by the Fourier-transform of the velocity autocorrelation functions of individual atoms 

presented in Ref. [81]. The       of the surface atoms are generally indiscernible at 150 K, and they 

are seen to merge with the spectrum of the F atom at 200 K into an almost single spectrum, with the 

appearance of some imaginary frequency modes and weak structures in the real frequency lobe. This 

mergence of       indicates that the F atom has indistinguishably integrated with the surface atoms at 

200 K. For temperature higher than 200–400 K, only two kinds of distinguishable       spectra are 

observed and they come from the C-atom and the rest of atoms. However, some interesting things 

happen at 450 K. Discernible from other subsets as well, the       spectra of the S3 atoms clearly show 

a shoulder at 40 rad/ps, a value close to the frequencies of the C-atom oscillating inside the cage of the 

deformed icosahedrons in the LES. The occurrence of the shoulder suggests that at this temperature 

there is some possibility for the S3 atoms to occupy the central position of the deformed icosahedron. 

When entering into 500 K, the       of the C-atom is still separated from those of the rest of atoms. At 

this temperature its high-frequency peak is located at around 40 rad/ps but shifts slightly toward smaller 

frequency accompanying by a decline in amplitude. In contrast, the originally merged       of the rest 

of atoms are somewhat blurred and have a conspicuous hump falling in the frequency range of the 

shoulder observed in the spectra of the S3 atoms at 450 K. As the temperature goes up further to 600 K, 

the       spectra of all atoms, including the C-atom, are mixed up. In fact, one still detects a weak 

hump on the high-frequency side at ω ≈ 40 rad/ps. The occurrence of this high-frequency hump 

demonstrates that the structure of the cluster at this temperature still has an atom centrally resided inside 

the cage formed by other atoms but this central atom may not be the C-atom. The hump disappears for T 

> 600 K and all       spectra are seen to coalesce and display a large portion of imaginary frequency 

INMs, whereas the real-frequency lobe develops into a roughly triangular shape that is often observed in 

the INM spectra of simple liquids [64,[100]. These characteristics of       are reminiscent of Ag17Cu2 

in the liquid-like phase and point to same behaviors of Ag14 whose atoms at such high temperatures 

would have gone around everywhere the potential energy landscape [79]. 
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Fig. 6.6 Vibrational DOSs,      , of subset X of Ag14, with (a) X=C, (b)X=F, (c) X=S1, (d) X=S2, (e) 

X=S3, and (f) X=S4. The six subsets are referred to in Fig. 3.2. In each panel, the thin straight lines are 

for the LES and the dashed curve is an ensemble average over cluster configurations at 100 K 
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Fig. 6.7 Projected vibrational spectra       of individual atoms in Ag14 at indicated temperatures. 

The spectra are obtained by following Method II. The solid (red) and dashed (brown) lines are for the 

C and F atoms, respectively. The dotted (orange), dotted-dashed (green), dotted-dotted-dashed (violet), 

and dotted-dashed-dashed (blue) lines refer to the atoms of the S1, S2, S3, and S4 subsets, respectively. 

  



 

62 

 

6.4 Temperature variation of    

The temperature variations of the    values for all atoms are presented in Fig. 6.8. With a 

temperature increment of 10 K from T = 10 up to 1500 K, the data at each T are calculated by averaging 

over 10
6
 configurations. In the upper panel of Fig. 6.8, the    values of the six subsets of atoms are 

specified by different symbols and they are obtained by an integration of each       curve (see Fig. 6.7) 

with the vibrational INMs described by the Method II. In the lower panel of Fig. 6.8, we make a 

comparison between the    values obtained by two different methods, one via the integral of       and 

the other via Eq. (2.41) in which the translational projection is calculated straightforwardly and the 

rotational projection is evaluated with the purely rotational eigenvectors given in Eq. (2.23). As 

evidenced in Fig. 6.8, the two methods for the six subsets of atoms yield rather similar results in   . 

Let us look first at the lower panel of Fig. 6.8. One sees that the    curves of all atoms below 150 K 

are well split into six branches, with each branch corresponding to a subset of atoms. The six branches 

show that the LES is well preserved. For the F and C atoms, it is easy to understand their branches as due 

to their unique positions in the LES, whereas for the four Si subsets of atoms, it is, however, relatively 

less simple to interpret the splitting of their    branches as connecting to the geometry of the deformed 

icosahedron. To delve more deeply into the    branches, we examine Fig. 6.8 more closely. First of all, 

we find that between 100 and 150 K the F atom declines weakly in the    value obtained by Method II. 

What happens to the F atom in this temperature range is that the atom possibly relocates from a 

triangular facet to a nearby one by migrating over their common edge. This mechanism, which involves 

two steps, is shown in Fig. 6.9 by a potential energy barrier which is estimated to be 97 K. These 

migration and relocation movements of the F atom were previously observed also in Cu14 [46]. Shown 

in Fig. 6.9 , this two-step mechanism can be elucidated further as follows: From (a) to (b), a bond that 

connects the F (brown) and one of S2 (green) atoms is formed, in contrast to the breaking of the bond 

between the two S1 (orange) atoms connecting to the S2 atom. From (d) to (e), the broken bond is 

re-bonded, whereas the bond connecting the F and the third S1 atoms is broken. In all calculations, the 

bond length is set equal 3.5 Å . 

In Fig. 6.8, we find exchanges in the    values among the F and the Si atoms spanning the 

temperature range 150–200 K. These exchanges can be understood by a three-step mechanism shown in 

Fig. 6.10, where the role of the F atom as one floating outside the deformed icosahedron is replaced by 

one S1 atom with the occurrence of site exchanges among other Si atoms. The overall potential energy 

barrier in this three-step mechanism is about 127 K. The following describes in more details the 

site-permutation mechanism illustrated in Fig. 6.10 for the F (brown) atom exchanging with one of S1 

(orange) atoms and, as a result, the S1 atom playing the role as the one floating outside the deformed 

icosahedron. The path from (a) to (c) results in the bonding of the F atom with one of S2 (green) atoms 

and the breaking of the bond between two S1 atoms both linked to the S2 atom. As in Fig. 6.9, we set 

two atoms as bonded when their distance is within 3.5 Å . From (c) to (d), the F and C (red) atoms are 

thus connected, while the S1 and S2 atoms that are simultaneously linked to the F atom are unbonded. 
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From (d) to (e), the S1 atom which is disconnected from the S2 atom plays the role as a new floating 

atom after its bond with the C atom breaks up, while the F and one S3 (violet) atoms which both 

connected to the new floating atom are bonded. From (f) to (g), the F and another S2 atoms are bonded 

and, on the same occasion, the new floating atom is seen to be disconnected from the S3 atom that has 

linked to the F atom. 

At temperatures higher than 200 K, the five branches of the Ij values, presented in Fig. 6.8, for the 

subsets of F and Si atoms show tendency to coalesce and become completely indiscernible at T ≈ 300 K. 

Dynamically, this would correspond to the picture that the F atom seeps into the deformed icosahedron 

and merges with the S2, S3, and S4 atoms. The complete merger of the five branches at around 300 K 

implies that the structure of Ag14 possesses no more floating atom but a central atom plus its surrounding 

13 atoms. This latter temperature corresponds to the position of the prepeak observed in the CV curve 

[81]. 

At temperatures up to 400 K, the    branch of the C-atom is clearly well separated from the 

branches of other subsets of atoms. Structurally, this manifests the solid-like behavior of the C-atom 

being remained at the center of the cluster. Between 400 and 500 K, the    value of the C-atom is 

observed to drop in a scattered manner. This thermal behavior is apparently opposite to the increase in 

the    value of the S3 atoms and may be traced to the contribution from the high-frequency shoulder in 

the       spectra at 450 K (see Fig. 6.7). This suggests furthermore that the structure of the cluster in 

this temperature range still maintains a firm “solid-state” center, e en t ough the C-atom has a 

preference to dynamically permute its site with any of the S3 atoms. The    branches of all atoms start to 

mix at temperatures above 500 K and gradually lose the identities of their original subsets. The 

panorama of the    branches described here is reminiscent of the premelting of the F-atom into the 

surface atoms at T ≈ 300 K. As the temperature goes up much higher, the    branches of all atoms 

completely align into one single value, exhibiting a picture of complete indistinguishability of atoms and 

the cluster by now is appropriately described as a liquid-like phase. 
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Fig. 6.8 Temperature variations of    with atoms specified by the six subsets of Ag14: X=C (red 

circles), X=F (brown squares), X=S1 (orange diamonds), X=S2 (green upper-triangles), X=S3 (violet 

down-triangles), and X=S4 (blue stars). In the upper panel, the    value is the integral of       

shown in Fig. 6.5 Each figure in the lower panel compares the integral    value of a subset of atoms 

and the corresponding value obtained via Eq. (2.41) with the approximate rotational projection 

operators given in Eqs. (2.69) and (2.70) (black crosses). 
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Fig. 6.9 The potential energy (red curve) as a function of the integrated path length s for a two-step 

path via two transition states, (b) and (d), and one metastable state (c) of Ag14. The path connects to the 

two LESs, (a) and (e). Along the path, shown in the lower part, the F-atom (brown) migrates between 

two nearby triangular facets by crossing their common edge. In the LES (a), the F atom links to three 

S1 (orange) atoms; in the LES (e), the F atom links to two S1 atoms and one S2 (green) atom. The 

metastable state (c) is a first excited state of the cluster [81]. The transition state (b) is found by using 

the OPTIM program [101-[103] from the LES (a) as the Hessian matrix possesses a unique negative 

eigenvalue. The path from (a) to (c) is obtained by using the steepest-decent algorithm [104] with the 

starting point chosen at (b) along the two opposite directions of the eigenvector corresponding to the 

unique negative eigenvalue. The transition state (d) and the path from (e) to (c) are obtained similarly. 

Note that the potential energy is calculated along the steepest-decent path [105,[106] and the potential 

energy barrier from (a) to (b) is estimated to be 97 K. 
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Fig. 6.10 The potential energy (red curve) as a function of the integrated path length s for a three-step 

path via three transition states, (b), (d), and (f), and two metastable states, (c) and (e), of Ag14. The path 

connects to the two LESs, (a) and (g). The low part illustrates the path for the mechanism of 

site-permutation between the F (brown) and one of S1 (orange) atoms, which are linked by a dashed 

red line. In the LES (a), the F atom is the one floating outside the deformed icosahedron, whereas in 

the LES (g), the floating atom has been replaced by one of S1 atoms. The (c) and (e) are the two first 

excited states of the cluster [81]. The three transition states and the path are obtained by the method as 

described in Fig. 8. Similar as in Fig. 8, the potential energy is calculated along the path and the 

potential energy barrier from (a) to (d) is estimated to be 127 K.  
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6.5 Order parameter      for melting of Ag14 

prepeak 

We show in Fig. 6.11, the order parameters      calculated with either the    values according to 

Eqs.(2.62)- (2.64) or the average values of the rotational projection by employing the purely rotational 

eigenvectors according to Eqs. (2.65) (2.66) (2.71) and (2.72). A glimpse of Fig. 6.11 shows that the 

     obtained by the two methods are strikingly similar except in the region between 200 and 500 K. 

The correspondence between      and CV [81] can be made by comparing them side by side. 

Below 150 K,      is almost one, reflecting the small amplitude vibrations of atoms around the 

LES and these vibrations result in a mild increase in CV with temperature. It is interesting to see that 

     undergoes a sudden decline between 150 and 200 K, which may be interpreted as the migration 

and relocation of the F-atom near the surface of the deformed icosahedrons [46,[81] or site-permutations 

between the F atom and the surface atoms. The significant jump of      from 1 to 0.70 corresponds to 

the first sharp rise in CV at 150 K before the prepeak. Following this jump, the behavior of      in the 

temperature window 200–450 K has a small decrease by the method with the integral    values, which 

contrasts to the constant values by the purely rotational eigenvectors. Physically, this temperature region 

marks the dissolution of the F-atom into the surface of the deformed icosahedron. The almost flat region 

of      thus has intimate relevance to the prepeak structure of CV, with the middle of the flat region 

roughly matching the prepeak position of CV at T ≈ 300 K. 

The behaviors of      and CV beyond the temperature region mentioned above are rather similar 

to those for Ag17Cu2. First, we see a sharp drop in the      of Ag14 around 500 K, at which temperature 

a second sharp rise in CV occurs. As the temperature is raised above 500 K, we see another drastic 

change of     . A conspicuous characteristic of      is its abrupt drop and approaches asymptotically 

to a small value (see the inset in Fig. 6.11) at a temperature close to 920 K. The latter is strikingly close 

to the position of the main peak of CV. This temperature range thus describes the mixing process of the 

central atom with its surrounding atoms, where the cluster is driven thermally into configurations of 

higher energy excited states. The behavior of the sudden decline in      of Ag14 is also observed in 

Ag17Cu2. Both clusters point to a transition during which the solid-like and liquid-like isomers coexist. 

At temperatures above Tm, the finite size of the cluster yields a small non-zero constant      value, 

which suggests no further distinction among the atoms in the cluster; correspondingly, CV decays with 

increasing temperature. The cluster at this moment behaves more liquid-like. 
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Fig. 6.11 Temperature variation of order parameter      for Ag14 cluster. The filled circles are 

calculated via Eqs. (2.62) and (2.63) with the integral    values shown in Fig. 6.8 and the open squares 

are obtained via Eqs. (2.65) and (2.66) with the approximate rotational projections given in Eqs. (2.71) 

and (2.72). The dashed line indicates the values of      above 1000 K. The inset enlarges      

function for better visualization of the thermal behavior of      near 900 K. 

6.6 Summary 

In recapitulation, I have demonstrated with concrete illustrations for the results of Ag14 in this 

Chapter and for Ag17Cu2 in the preceding chapter that      is an insightful order parameter capable of 

describing consistently the phenomenon of cluster melting and its intimate relevance to the thermal 

variation of CV even for clusters containing a prepeak and a main peak. 

The mechanism associated with the prepeak in the CV curve of Ag14 cluster can be interpreted as 

the melting between the adatom and the surface atoms of the deformed icosahedron in the cluster; 

while the mechanism associated with the main peak in the CV curve can be referred as the melting of 

all atoms in the cluster together. My arguments for the melting mechanism have been demonstrated 

from the viewpoint of potential energy landscape. This interpretation for the melting mechanism of a 

cluster is also consistent with the temperature variations of the     values for the subsets of atoms 

classified by the symmetry characters of the LES of the cluster. Thus, this is why the order parameter 

     deduced from the standard deviation of the    values gives a well prediction about the positions 

of the prepeak and the main peak in CV curve. 
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Chapter 7  

Diffusion Phenomenon by INM Theory 

In this Chapter, I introduce another approach to evaluate the diffusion coefficient of cluster at finite 

temperatures, besides by investigating the long-time behavior of VAF C(t) given in Eq.(2.46). As a 

result of the difference in diffusion between clusters in the solid-like and liquid-like phases, this 

approach also provides a method to investigate the melting phenomenon of clusters. The diffusion 

coefficient of a bulk system is related to the zero-frequency value of the power spectrum () defined 

similarly as Eq. (2.47). This result can be derived from the Green-Kubo formula [107] and the 

self-diffusion constant D can be calculated via a time integral of C(t). That is, 

 
0

( ) ( )Bk T
D C t dt

m



  .  (7.1) 

The time integral in Eq.(7.1) is associated with the Fourier cosine transform of C(t) at  =0 which is 

explicitly proportional to the diffusion constant D. Eq. (7.1) works well for bulk systems but may not 

be so for finite-size systems, such as clusters. Since the C(t) of a cluster possesses a small incessant 

oscillation in the long-time scale, one is unable to specifically determine the diffusion coefficient of a 

cluster via Eq. (7.1). 

By a subsequent procedure, which is an extension of some earlier work by Zwanzig [108], Madan, 

Keyes and Seeley [63] proposed an intuitive way to evaluate the diffusion coefficient of a cluster with 

the stable and unstable INMs. They assumed that the VAF of a cluster is contributed from both a set of 

stable, relatively local vibrations of frequency ω and the occasional excursions, with a characteristic 

frequency   , that take the cluster away from its stable configuration. If the stable vibrational INM 

DOS,     
      , governs the stable vibrations, then we can write approximately that  
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The reason implied in this particular form is that C(t) is required to be an even function of time by 

Newton’s laws, w ereas t e existence of an excursion with frequency ων means that the envelope of the 

simple harmonic         behavior should decay asymptotically as          . The hyperbolic 
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secant factor in Eq.(7.2) allows both criteria to be satisfied. By substituting Eq.(7.2) into Eq. (7.1), a 

workable expression for D is yielded as 
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On the other hand, a relation between the diffusion constant and the characteristic frequency    can 

be found by exploiting an analogy with the calculations of chemical reaction rates in liquids, Madan, 

Keyes, and Seeley have derived an expression giving the excursion frequency self-consistently in terms 

of the diffusion constant, 

 ( )( )
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u s u
B

n m
f D

k T
  


   (7.4) 

where      is the average frequency of the stable-mode vibrations and    and      are, respectively, 

the fraction and the average magnitude of the unstable-mode vibrational frequencies. The quantity n 

represents the number of stable configuration states which are, in some sense, neighbors of a given 

stable state, that is, it reflects the number of states into which the system can hop from its present state. 

There are three undetermined coefficients,   ,   and  , in Eqs. (7.3) and (7.4). Besides the 

two equations, one more equation is required for solving the three unknowns. A clue also proposed by 

Madan, Keyes, and Seeley is that at high temperatures it turns out to be possible to estimate the 

excursion frequency    directly from the instantaneous normal mode data. Once a value of   is 

obtained in such a way, one can solve Eq. (7.3) and (7.4) for simultaneously determining the estimated 

   and diffusion coefficient D at high temperatures. Suggested by Madan, et al., with the same value 

of   for all temperatures, the diffusion constant can be computed for lower temperatures by continuing 

to solve Eqs. (7.3) and (7.4) simultaneously. 

To estimate n in detail in the INM theory, the VAF implied by the instantaneous normal mode 

spectrum is exact at short times. In the Taylor series expansion of C(t) given in Eq.(2.52), which is 

obtained by expanding         up to the second order in t, the first few terms in the expansion are 

given as 
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and 
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where the summations are over all real and imaginary modes for each system configuration with the 
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translations and rotations being subtracted out and the average is over the equilibrium distribution of 

system configurations. Now, I can rewrite this correlation function so that it remains exact through the 

same order in time by saying 

 ( ) cos( ) ( )C t at sech bt   (7.8) 

I express the constant a and b in terms of A2 and A4 by comparing the expansion coefficients with 

Eq.(7.5). It suggests that, at least in an Einstein-like approximation, the constant b is precisely the 

asymptotic decay frequency   . In other words, it leads us to the high temperature estimate 
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In principal, this equation could be used to help for evaluating the diffusion constant D at all 

temperatures, but it is only at relatively highest temperatures that it is really plausible. It is after all, only 

at the highest temperatures that the asymptotic relaxation time      will be short enough to be given 

so directly by the time correlation function determined by instantaneous normal modes. Associated 

with the diffusion coefficient evaluated from Eq. (7.3), I can obtain n in high temperatures, so that the 

diffusion coefficient from low to high temperature can be solved from Eq. (7.3) and Eq. (7.4) with the 

same n evaluated from high temperature. 

The abrupt change in the diffusion coefficient that is evaluated in terms of the theory proposed by 

Madan, Keyes, and Seeley can predict the solidlike-liquidlike phase transition for the liquid-like phase 

exhibits much larger diffusion coefficient than the solid-like phase and the results for Ag14 cluster is 

shown Fig. 7.1. Indicated by the figure, the diffusion coefficient is zero until the temperature increase 

above 870K. Roughly, this temperature is referred as the melting temperature from diffusion 

coefficient, although it is not precisely the melting temperature at 920K inferred form CV curve in Fig. 

6.1. In addition, one is unable to find any diffusion information related to the prepeak in the CV curve. 

In conclusions, this method is not so good to predict the melting temperature of the cluster systems. 

 

 

Fig. 7.1 Diffusion coefficient evaluated in terms of the theory proposed by Madan, Keyes, and Seeley. 

The diffusion phenomenon roughly occurs at temperatures above 870K. 
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Chapter 8  

Conclusions 

 The isothermal Brownian-type MD simulations with the Gupta potentials of Ag14 and Ag17Cu2 

clusters have been carried out from 0K (LES) to 1500 K, whose specific heat CV exhibits a single main 

peak or a main peak with a prepeak at a lower temperature. Methodologically, I used the INM analysis, 

which has been developed for clusters in general. In this thesis, I proposed a new order parameter 

    , which is defined as the normalized standard deviation of the integral    of the INM vibrational 

DOSs associated with all atoms in a cluster. 

In Chapter 5 and Chapter 6, I gave, respectively, a general description about melting scenario of 

Ag17Cu2 and Ag14 clusters via the temperature variation of the    values for all atoms in a cluster. For 

simplicity, we discuss here only the case for pure clusters. At the LES, the    values of atoms may be 

classified according to the point group character of the cluster structure. The group character of the 

lowest energy structure is well identified so that the    values of these atoms may be split into a number 

of branches each of which corresponds to a subgroup of the structure. At low temperatures, the cluster 

structures are near the LES and hence the    values are almost unchanged. As the temperature is 

increased into an intermediate range, the atoms in the cluster may have undertaken dynamical site 

permutations or the cluster is thermally driven into higher excited states. In either case, the group 

characters of cluster structures are different from that of the LES. In this temperature range, nevertheless, 

one may still recognize the split of the    values into branches. These    values start in fact to mix after 

a further rise in temperature and gradually they lose their original discernible branches as the 

temperature is raised higher and higher. Eventually, the    branches completely disappear and merge 

indistinguishably at certain temperature, say Tm, indicating that the positions of atoms in the cluster are 

completely dislocated. The Tm is naturally referred to as the melting temperature of the cluster. At T > 

Tm, the cluster can thus be looked upon as in a liquid-like state. 
I address further the      defined in the INM approach. The integral    value of a pure cluster 

is found to be related to the rotational projection of the j-th atom in the cluster, where the projection 

consists of a sum of three ratios with each ratio measuring the ensemble-averaged contribution of the 
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atom in the moment of inertia of the whole cluster calculated with respect to one of its principal axes. 

Thus, the order parameter      can be defined in a scheme associated with the vibrational motions of 

individual atoms or the rotational motion of the whole cluster assuming to be rigid. I demonstrate that 

almost equivalent results were obtained by the two definitions of     . Physically, the description of 

the melting for both Ag14 and Ag17Cu2 by      agrees very well with that inferred from CV, even with 

a prepeak in the CV curve. Our results strengthen our belief that      is an order parameter that sheds 

considerable light on cluster melting and provides a means to ravel the microscopic dynamics of 

clusters from the point of view of potential energy landscape.  

The reason why the order parameter      works so well is not fortuitous but stems from the fact 

that the    values are fundamentally related to the symmetry of the cluster structures at different 

temperatures. The split of    values at lower temperatures into several branches follows the symmetry 

of the LES of a cluster according to the group theory. At high temperatures, the    values merge into 

one since the cluster configurations stray far from its LES resulting in the loss of symmetry. It is well 

known in condensed matter physics that the phase transition in bulk systems from a crystal to a liquid 

is described by the concept of broken symmetry [82]. The results of the    values presented in this 

thesis imply that the broken symmetry is also a useful concept for understanding the melting of 

clusters. The main difference in the melting transition between clusters and bulk systems lies in the 

extent of the symmetry breaking: For bulk systems, the broken symmetry is associated with an infinite 

number of degrees of freedom so that the transition is abrupt at a melting temperature, whereas in 

clusters the symmetry broken is associated with a finite number of degrees of freedom so that the 

transition is gradual and, therefore, occurring within a temperature interval. The quantitative estimate 

for the broken symmetry during cluster melting would have to refer to a similar discussion of 

examining the distance of a distorted molecule from any chosen element of symmetry [109]. 

By following the concept of broken symmetry, it is worth re-thinking of why the CV of Ag14 has 

an additional prepeak, whereas none in Ag17Cu2. Based on our studies so far, I conjecture that the 

plausible reason is probably related to the difference in the LESs of the two clusters: The LES 

structure, Ag17Cu2, which has the     axial point group, possesses a highly symmetry center close to, 

but not exactly, an inversion center, while that of Ag14, with the C3v axial point group for a floating 

atom outside a deformed icosahedron, possesses only the rotational symmetry about its principal axis. 

According to our findings, the prepeak of CV seen in Ag14 is associated with the dissolution of the 

floating atom into the surface of the deformed icosahedron so that the structures of Ag14 change to 

ones with a stabilized central atom which is surrounded by the rest of the atoms. Accordingly, the 

cluster Ag14 melting at higher temperatures is associated with the symmetry breaking as the structural 

center is being destroyed by the thermal motion of atoms, similar to that for Ag17Cu2, corresponding to 

the main peak in CV curve. As far as the cluster melting is concerned, it would be intriguing to 

examine melting transition with the concept of broken symmetry especially between clusters whose 

LESs have different structural symmetries. On the other hand, an INM investigation for the 

temperature variation of the imaginary-part contribution is another interesting issue for future works.  
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Appendix 

A.1 Derivation for purely rotational 

eigenvectors of clusters 
For a cluster of n atoms with mass mj (       ), the elements of Hessian matrices are given in 

Eq. (11.5). Derived from the conservation law for total translational momentum of the cluster, the 

three translational eigenvectors of the       Hessian matrices are given as the following: 
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where M is the total mass of the cluster. One can easily examine that the eigenvalues of the three 

translational eigenvectors are indeed zero. In this Appendix, I will prove that the three purely 

rotational eigenvectors of a cluster can be derived from the conservation law for total angular 

momentum of the cluster. 

Let’s consider the total angular momentum of a cluster of n atoms as 

 i i i

i i

   L L r p   (9.2) 

where ri and pi are the position and linear momentum of particle i, respectively. Without externally 

applied forces and torques, the dynamics of the system is only influenced by the internal forces between 

particles so that its total angular momentum is conserved. Therefore, the derivative of L with respect to 

time is zero. So, we have 
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where the force on a particle is the negative of the gradient of the total potential energy V of the cluster 

with respect to the particle position. The equation for the μ component of L can be written as 
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where the three-dimensional Levi-Civita symbol ϵ (           ) has been used and a summation 

for a subscript appearing twice on one side of an equation is implied. By differentiating this equation 

with respect to the 3-dimensinal real space coordinates    , with       , and         , one may 

obtain 
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Consider the cluster configuration at a local minimum of V, which implies that           and the 

first term in Eq. (9.5) is zero. So, we have 
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Multiply and divide with the same factor       and relate each term in the summation to the 

elements of the Hessian matrix. Then, the equation becomes 
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By comparing this equation with the eigenvalue equation of a matrix, one can find that 
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are three eigenvectors of the Hessian matrix with zero eigenvalue and    is a factor for normalization. 

Therefore, by deriving from the conservation law for total angular momentum, we obtain three 

rotational eigenvectors with zero eigenvalue of the Hessian matrix and the three rotational eigenmodes 

are denoted as   ,   , and   . Besides a normalization factor, the three rotational eigenvectors can 

be expressed explicitly as 
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One should notice that we have not yet checked the orthogonality between the eigenvectors of the 

translational and rotational modes. Next, I will prove that in order to keep the orthogonality between the 

rotational and translational modes, the origin for describing the cluster configuration should be chosen 

at the center-of-mass of the cluster and select the principal axes of the cluster configuration to be the 

rotational axis for constructing the rotational modes. After this proof, we will obtain six orthogonal 

bases for describing the subspace related to the translational and rotational modes of the cluster. 

By making a cluster configuration a translational shift in three-dimensional space, the Hessian 

matrix of the cluster configuration does not change, due to the same cluster structure before and after 

the translational shift. But, according to Eq. (9.8), the translational shift of the atomic positions in the 

cluster will result in different rotational eigenvectors. This implies that we may find the rotational 

eigenvectors as many as possible from Eq. (9.8) for cluster configurations with different translational 

displacements from the original cluster configuration. Accordingly, a translational displacement of the 

whole cluster is controlled by a set of three parameters          and corresponding to this 

displacement the rotational eigenvectors of the Hessian matrix can be written as 
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which can be proved to satisfy the eigenvalue equation of the same Hessian matrix with zero 

eigenvalue in the following 
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where the second term equals zero due to the sum rule on the Hessian elements in the same row or the 

same column. Thus, for the shifted cluster configuration, the translational eigenvectors are still given 

by Eq. (9.1) but the rotational eigenvectors are given as Eq. (9.12) with a different normalization 

constant   . 
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In the following, I consider the orthogonality between the rotational and translational eigenvectors 

of a shifted cluster configuration. The orthogonality requires   
  

      
  

    for all possible pairs of 

R and T. The orthogonality equations are given explicitly as 
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This result yields 
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For the three cases with    , the equation is automatically satisfied due to the properties of the 

Levi-Civita symbols. For the other six possible cases with    , for each l, we have  
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These equations are inferred that 
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This result indicates that the three parameters   ,    and    are nothing but the x, y, and z 

coordinates of the center-of-mass of the original cluster configuration, respectively. Therefore, if the 

origin of the coordinate system is chosen at the center-of-mass of the cluster, the set of the three 

rotational eigenvectors is orthogonal to the three translational eigenvectors. Therefore, the 

corresponding rotational eigenvectors in this new coordinate system should be changed as 
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where the atomic coordinates    
  are relative to the center-of-mass of the cluster configuration. 

So far, we have not yet checked the orthogonality between the rotational eigenvectors themselves 

given in Eq. (9.18). Actually, any linear combinations of the three rotational eigenvectors are also 

another eigenvectors with zero eigenvalue. That is, 
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where      are the coefficients of the linear combination and are arbitrarily chosen. Suppose that the 

coefficients C are chosen to be the elements of an orthogonal matrix that describe a rotation of the 

coordinate axes in three-dimensional space. That is, 
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Then, the inner product of any two of the rotational eigenvectors is written as 
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The inner products between any two of three rotational eigenvector and including their self-products in 

the rotated coordinated systems can be written in a matrix form, which is expressed as 
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 (9.22) 

The matrix in Eq. (9.22) is actually the inertia tensor of the cluster configuration in the rotated 

coordinate system. If we choose the coordinate system with the origin at the center-of-mass of the 
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cluster and the coordinate axes as the three principal axes of the cluster configuration, this coordinate 

system defines the body frame of the cluster configuration, in which, the off-diagonal elements of the 

inertia tensor in Eq. (9.22) are zero and the diagonal elements give the moments of inertial of the 

cluster configuration about its principal axes. Therefore, in the body frame of the cluster configuration, 

the three rotational eigenvectors after normalization are given as 
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where    
      

      
  

 are the coordinates of atom i in the body frame of the cluster configuration, and the 

moments of inertia   ,   ,    are defined as follows, 
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  (9.24) 
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A.2 Velocity autocorrelation function in the INM 

approximation 
In Sec. 2.1, the short-time evolution of a cluster in the mass-weighted coordinates can be obtained 

from the Eq. (2.21) and the inverse transformation of Eq. (2.13). This would implies that the C(t) 

defined in Eq. (2.46) can be connected to the vibrational motions of atoms in the cluster in the context 

of INM. According to Eq. (2.21) and (2.13), the real-space coordinates of the j-th atom in the 

vibrational motions of a cluster can be transformed from the 3n-6 vibrational normal modes 

coordinates via the following formula 

 
3 61 n

j j

j

q
m








  er   (10.1) 

where  is the index for the 3n-6 vibrational INMs with eigenvectors ej

 and the normal coordinates 

q.This formula implies that the corresponding velocity of the j-th atom can be given by the equation 
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By substitute the Eq. (10.2) into Eq.(2.46), we obtain 
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  (10.3) 

With the INM solutions given in Eq. (2.21) and its time derivatives, C(t) can be approximated as 
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  (10.4) 

By making the ensemble average for each term in the summation first, each term associated with the 

indices α and β in the numerator can be decomposed into two factors as the following 

 
 (0) (0)cos( ) (0) sin( )

(0) (0) cos( ) (0) (0) sin( )

j j

j j j j

x x t x t

x x t x x t

 

     

   

      

  

  

 

   

e e

e e e e
  (10.5) 

where one factor is related to the ensemble average for a product of two velocities associated with 

different coordinates or a product of a coordinate and a velocity of another coordinate and the other 

factor is associated with the inner product of two INM eigenvectors. In statistical mechanics, the 
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coordinates and velocities of particles in a system at equilibrium are recognized as two sets of 

independent random variables, which are also independent in statistics with the INM eigenvector 

components. Because of the statistical average for the two sets of random variables,           , the 

second term on the R.H.S of Eq. (2.52) will zero. Also, following the equipartition theorem, we have 

                     . One can do the similar thing for the denominator, in which the average 

associated with the indices α and β will become 

 (0) (0) (0) (0)j j j jx x x x   

     e e e e   (10.6) 

After substituting Eqs. (10.5) and (10.6) into Eq. (10.4), carrying out the summation for the index of 

β, and replacing   
    

  with    
  given in Eq. (10.4), we obtain 
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Decomposing the vibrational INMs into the real- and imaginary-frequencies lobes, both numerator and 

denominator in Eq. (10.7) can be separated into two terms. Subsequently, by inserting the equalities 

          
 

 
   and           

 

 
   into the terms associated the real- and 

imaginary-frequency lobes, respectively, the following is obtained 

   

   

Re Im

0 0

Re Im

0 0

1 ˆ ˆcos( ) cosh( )

( )
1 ˆ ˆ

n

j j

j j

n

j j

j j

P t d P t d
m

C t

P d P d
m

 

 
 

 

 
 

         

       

 

 

 
   

 


 
   

 

   

   

 (10.8) 

where cos(t) for imaginary frequency =i has been replaced by cosh(t). According to the 

definition of   
       and   

       in Eq. (2.39), we have 
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A.3 Hessian matrix of Gupta potential 
For simplicity, we rewrite the general Gupta potential of a metallic cluster of n atoms with mass mj 

(j=1,…n), which may be of different species, in the form, 

    
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1 2

1 1 1

n n n

n ij ij i

i j j i i

E u r U
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and 
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In which 
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The first and second terms of       describe pairwise and many-body interactions, respectively. The 

Hessian matrix elements           of the Gupta potential can be calculated by Eq. (2.9). For the 

pairwise interactions, they have been given previously, but for the many-body interactions the 

derivation of the Hessian matrix elements is, however, complicated. Here, we give only the explicit 

expressions, which are 

  

 

 
 

,

,

,

1

1
  

1
 

j k

j k

j k n

j l

l l jj

W j k
m m

K R

W j k
m

 

 

 
 





 
 





R

R

  (11.5) 

where 
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The first and second terms in           involve two particles and the last three terms involve 

three particles. For the two-body terms in          ,            and            are the 3 × 3 matrices 

expressed explicitly as 
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where            and      is a     tensor and the prime and double-prime on        and        

mean the first and second   derivatives, respectively. Also,     is a     unit tensor. In contrast, for 

the three-body terms in          , j and k denote the root particles and           is a field particle, 

which is one to be summed. The quantity       is a      tensor given as                whose 

transpose,      
 

 satisfies      
       . Finally, the quantity      is a three-body scalar function, 

which is related to        as 
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Obviously, we have          . We shall apply Eq. (11.5) to determine the INM. 
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