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應用於通用圖形處理器上 

具熱感知及位置相關之三維佈局規劃演算法 

 

研究生：謝明廷        指導教授：黃俊達 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘     要 

隨著製程的演進，在縮小尺寸上遇到了瓶頸。因此三維堆疊技術被提出並使

用於延續摩爾定律(Moore’s Law)。因為三維堆疊令單位面積功率增加，產生了散

熱不易的現象，導致晶片過熱，這使得熱議題(thermal issues)無法被避免。 

熱模型 (thermal model)被廣泛應用在熱感知 (thermal-aware)佈局規劃

(floorplan)。經由熱模型，我們可以知道熱的分佈情形；然而精確的熱模型因為

執行時間過長，不適合應用在佈局規劃上。然而簡化的熱模型雖然有快速的執行

能力，但喪失了精確度。因此我們在這篇論文裡提出一個兼顧快速、且可提供相

當程度精確性的熱模型。除此之外，我們提出兩種技術去預防潛在性熱點(hotspot)

的產生–斥力(repulsion force)法以及過熱保護區(over-heat prevention zone)機制。

經由這些方法，我們使佈局規劃裡的最高溫得到改善，以及令溫度分佈更為均

勻。 

最後，我們把這個演算法應用在通用圖形處理器上(GPGPU)。藉由大量的核

心數去縮短執行時間。 
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Abstract 

As the development of integration technology, shrinking chip size has 

encountered bottlenecks. Three-dimensional (3D) integration is then proposed to 

continue sustaining Moore’s Law. However, due to the significant increasing of the 

stacking power, it is hard to dissipate heat by using 3D stacking structure. Therefore, 

the thermal issues become inevitable and has to be handled carefully. 

In order to solve thermal issues, the thermal model is widely used in 

thermal-aware floorplan to mimic the temperature distribution. But the runtime of 

accurate thermal model is too long to be used in floorplan. On the other hand, the 

simplified thermal model is fast and suitable for floorplan, but it loses accuracy. As a 

result, in this thesis, we propose a fast thermal model, which also provides a 

considerably precise temperature estimation. Besides, we also propose two techniques 

to prevent potential hotspots, named repulsion force (RF) and over-heat prevention 

zone (OHPZ). By these methods, we not only reduce the maximum temperature but 

let temperature distribution be more uniform. 

Finally, we implement this algorithm on GPGPU (General Purpose computing 

on Graphic Processor Unit). Runtime is reduced by using a great amount of cores. 
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Chapter 1 Introduction 

1.1 3D Integrated Circuits 

Nowadays, under nano-scale technology, high transistor density makes chip 

more complicated. However, as the technology progressing with shrinking size of 

device, it is difficult to continue shrinking size of device because of physical 

limitations. Many challenges incurred at the same time with the feature size getting 

smaller, such as power dissipation, reliability, leakage power, clock distribution, and 

yield issue [1]. Moreover, smaller feature size causes the delay of global interconnects 

becomes much longer than the delay of gates, as shown in Figure 1. Hence, 

interconnect delay becomes more important. 
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Figure 1. Relative delay vs. feature size [1]. 

 In order to solve above problems, three dimensional integrated circuit (3D IC) 

emerges and has been discussed in recent years [3]－[7]. By stacking dies, footprint 

area becomes smaller, which implies transistor density gets higher. Moreover, global 

interconnect length get shorter by vertical transmission, as shown in Figure 2. Shorter 

global interconnect length bring some benefits, such as lower power dissipation and 

shorter global interconnect delay. 
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Figure 2. Global interconnects before and after 3D integration. 

 Due to the dies stacked, dies need to communicate each other in vertical 

direction. There are two ways to accomplish such inter-layer communications [3][4], 

the wire bonding [3] and through-silicon vias (TSVs) technology [4] as shown in 

Figure 3 and Figure 4 respectively. 

Wire bonding technology is usually used for system-in-package (SiP). Since the 

devices communicated by outside wires, as shown in Figure 3, it takes a long 

communication path to connect devices between different layers. And these kinds of 

technologies has limitation of number of pins. 

 

Figure 3. Wire bonding technology [8]. 

 The other technology is through-silicon vias (TSVs) technology as shown in 

Figure 4. Devices residing in different layers communicate each other by TSVs which 

transmit signal vertically. Compared to wire bonding technology, TSV technology 
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brings some benefits, such as shorter global interconnects [9]－[12], smaller footprint 

area [13], lower interconnect power [14] and better heterogeneous integration. 

Besides, the major advantage of TSV technology is that TSVs can be placed 

everywhere in chip, so it has no limitation of pin counts. Nevertheless, it still has 

some drawbacks, including yield [13], power density and huge area cost. 

Block Block Block

Block Block

Block Block

Metal layer

Device layer

Dieletric layer

Bump

Through-silicon 

vias

 

Figure 4. Through-silicon vias (TSVs) technology. 

1.2 Floorplan 

1.2.1 2D Floorplan 

Floorplan is to arrange the module whose data are given, including height, width, 

power density, and netlist, for some optimization goals, for instance, area and 

wirelength. In floorplan, there are two major components. One is representation, 

which represent the floorplan. We can know the location of modules in floorplan by 

representation. The other one is approach method. 
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(a)                         (b) 

Figure 5. (a) Slicing and (b) non-slicing floorplan. 

Representation is mainly divided into two categories － slicing and non-slicing 

as shown in Figure 5. Slicing floorplan can be sliced into two parts iteratively until 

each part contains only one module, where the slicing cut can be horizontal or vertical. 

Normalized polish expression [15] and slicing tree [16] are floorplan representations 

which use slicing procedure to handle the floorplan. The other one is non-slicing 

floorplan, that is to say, it cannot be sliced into two parts always, b*tree [17], 

sequence pair [18], and O-tree [19] are this kind of floorplan representation. 

 After the representation of the floorplan is ready, the next step is to obtain a good 

floorplan under the varied goals defined by the designer. In general, two methods are 

used widely, simulated annealing (SA) method and analytical approach. SA method 

performs a series of perturbations changing the representation to get the new one. This 

method accept the worse result with certain probability. SA method can get out of 

local optimum by accepting worse result. The analytical approach gets the solution by 

using the mathematical formulation with constraints. The quality of floorplan is 

determined by cost during floorplan processing. The cost is multi-object combination, 

like area, wirelength and so on. 

1.2.2 From 2D Floorplan to 3D 

From 2D to 3D, there are some benefits in floorplan such as smaller footprint 

area and shorter wirelength, as shown in Figure 2. However, there are also some extra 
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issues. First of all, TSV is an extra issue we must to consider. [1] mentions the size of 

TSV is 1024 times larger than size of 6-transistor SRAM. Therefore, the less the TSV 

count, the better the area of floorplan. So the first issue is to minimize TSV count. 

Next, due to the stacked dies, the heat dissipation path is longer, except the layer 

nearest the heat sink. The heat is more difficult to dissipate, so the heat dissipation 

issue gets more important. 

In 3D floorplan, we still have to consider the issues of 2D floorplan. Additional, 

we must consider extra issues from 3D stacked. Hence, the cost includes not only the 

issues of 2D floorplan but also the problems brought by 3D stacked. 

1.2.3 Related Work 

In 3D floorplan, there are extra issues we should consider. [20][21] consider the 

relation between TSV count and wirelength. In general, TSV count is the 

minimization goal. 

There are several way to deal with heat dissipation issue. [22]–[28] redistribute 

whitespace by module shifting. [22]–[26] shift the module to insert the thermal via 

which does not transmit signal. Thermal via is helpful to dissipate heat because of its 

high thermal conductivity. [27][28] consider the power density of module, and let 

more whitespace be around the module with higher power density. These methods for 

handling thermal issue are post-processing after SA procedure finished. Quality of 

these methods will highly depend on the solution SA procedure produced. 

The other way to consider thermal issue is evaluate temperature of chip during 

SA procedure [29][30]. This method will calculate temperature as cost function in 

each perturbation. However, because there are a lot of perturbations in SA procedure, 

the method of evaluating temperature cannot be too complex. Thus, Cong et al. [29] 

proposed a simplified thermal model which evaluates temperature fast. 
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1.3 GPGPU 

GPGPU, the abbreviation of “General Purpose computing on Graphic Processor 

Unit”, means using graphic processor unit (GPU) to perform computation which is 

traditionally handled by central processing unit (CPU). Owing to powerful parallel 

processing capabilities of modern graphic processor and programmable pipeline, GPU 

can deal with non-graphical data. Because the core count of GPU is much more than 

CPU, GPU has better performance when performing a lot of data, especially in single 

instruction multiple data (SIMD). 

GPU originally deals with image processing including a large amount of floating 

point operations, so GPU is good at operating floating point. However, it’s not skilled 

in operating branch instruction. 

Compute unified device architecture (CUDA), which is created by NVIDIA [31], 

is one of parallel computing and programming platforms. Basically, CUDA is divided 

into two parts, software and hardware. In software side, when a CPU calls a kernel 

function, it determines the number of blocks and number of threads per block as 

shown in Figure 6. In CUDA, a block consists of a set of threads, and a thread 

represents the minimum operation unit. Different kernel functions can determine 

respective number of blocks and threads .After determining the number of blocks and 

threads, the GPU processes the instruction on threads in parallel. This concept is 

so-called single instruction multi threads (SIMT). 
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Figure 6. Thread batching. 

 In hardware side, the GPU contains several multiprocessors, where many 

streaming processors reside, as shown in Figure 7. The block and thread we have 

introduced before will map to the multiprocessor and streaming processor respectively. 

Thus, even though there are hundreds or thousands of threads, the number of threads 

which can simultaneously operate depends on number of streaming processor by user. 

However, there are fewer dividers in each multiprocessor. If a kernel function 

operates division, the number of threads which operate simultaneously is determined 

by number of dividers, not number of streaming processors. 

Figure 7 also illustrated 2 types of memory units utilized by CUDA, shared 

memory and global memory. Each multiprocessor has one shared memory, and the 

shared memory can be used by multiprocessor where shared memory locates. That is, 

threads on same block can use shared memory to save/load data. If communication 

between different multiprocessors or GPU and CPU, these conditions use global 

memory. Comparison of two memory units is shown in Table 1. 

Because the latency of global memory is much longer than shared memory, more 

than one hundred times, the using of global memory must to be avoided as possible. 

Nevertheless, shared memory will be clear as kernel function is end, so if there are 

some data other kernel functions will use, these data have to save at global memory. 
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Figure 7. Structure. 

Table 1. Comparison with shared and global memory. 

 Shared Global 

Scope Block Global 

Life time Block Program 

Hardware On chip DRAM 

Access by CPU – R/W(API) 

Latency 4 clock cycles 400–600 clock cycles 
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Chapter 2 Preliminaries 

2.1 Thermal Model 

2.1.1 Compact Resistive Thermal Model 
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Interconnect Sublayer

Bonding Interface

Thinned Substrate

Interconnect Sublayer

Bonding Interface

Thinned Substrate

Interconnect Sublayer

Heat Sink

Layer 1

Layer 2

Layer N

Bonding 

Interface

Interconnect 

Sublayer

Substrate

 

Figure 8. Compact resistive thermal model. 

 Wilkerson et al. [32] proposed a thermal model, as shown in Figure 8. In [32], 

one die is composed three sublayers, substrate, interconnect sublayer, and bonding 

interface. The bottom one is substrate where active devices reside; the next one is 

interconnect sublayer where metal wire and via reside; the last one is bonding 

interface which attach between two adjacent dies. Heat produced from active device 

dissipates from substrate to heat sink, and then it is transmitted to the ambient air 

(25℃).  

First, each die is divided into numerous grids, whose size is determined by the 

smallest module of input. Then each gird is partitioned into several nodes depended 

on the number of sublayers per die. Nodes connect to adjacent ones with thermal 

resistance. Thermal resistance determined based on grid size and thermal conductivity 

as expressed in Equation (1). L represents the length; k represents the thermal 

conductivity; A represents the cross section area. 
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 (1) 

 Next, there is current source depended on power density on the substrate node, 

and then the 3D stacked die becomes a complicated mesh circuit. Finally, the model 

applies thermal-electrical duality [33], as shown in Table 2, to create a steady-state 

temperature profile for the given floorplan. Because of thermal-electrical duality, 

Equation (2) and (3) are dual. 

Table 2. Thermal-electrical duality [33]. 

Thermal quantity Unit Electrical quantity Unit 

T, Temperature difference K V, Voltage difference V 

P, Power density W I, Current source A 

Rth, Thermal resistance K/W R, Electrical resistance Ω 

 (2) 

 (3) 

 This thermal model is accurate but it takes minutes to evaluate once. In floorplan, 

using thermal model to evaluate temperature of floorplan with one perturbation during 

simulated annealing. Then there are a great amount of perturbations, so thermal model 

has to be used as many as number of perturbations. It is too time-consuming, so it is 

not suitable for floorplan. Some accurate thermal models like finite element method 

(FEM) [34] and finite difference method (FDM) [35] have long runtime. They are not 

suitable for application of floorplan, neither. 

2.1.2 Z-Tile 

 Floorplan prefers fast thermal model. Cong et al. [29] proposed a simplified 

compact resistive thermal model. They consider that vertical path is primary heat 

dissipation path. Thus, for runtime reason, they simplify the compact resistive thermal 

model by ignoring horizontal thermal resistance, as shown in Figure 9. By only 

Ak

L
Rth




IRV 

thPRT 
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considering vertical thermal resistance, the mesh circuit becomes independent thermal 

resistance pillars. This is why this model is named Z-tile model.  

The ability of heat distribution depends on the distance to heat sink. Farther from 

heat sink, lower heat ability of heat distribution, that is, higher temperature. The 

maximum temperature will occur at the layer farthest from the heat sink, which is 

bottom layer. Thus, the formula of Z-tile for temperature evaluation is expressed as 

Equation (4). In Equation (4) the temperature is superimposed on temperature of 

upper layer. 

(4) 

P1

P2

P3

R1

R2

R3

Rsink

Single Z-tile
 

Figure 9. Construction of Z-tile model. 

2.2 Motivation 

 Thermal resistances are determined by Equation (1), and each grid size of Z-tile 

and thermal conductivity are the same. Therefore, thermal resistances of each Z-tile 

are the same. In this situation, module placed everywhere at same layer produces 

same temperature. Actually, Figure 10 shows evaluation of the same module but 

location in different positions of a chip. The module placed at corner produce higher 

temperature than it placed at center. This is because the boundaries of chip are 

adiabatic. However, in Z-tile, module produces same temperature as it is placed at 

different locations. Z-tile cannot show location-dependent property. 
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(a)                                 (b) 

Figure 10. temperature produced by module placed at (a) corner (b) center. 

 Thus, we conduct an experiment to verify our view of point. Based on compact 

resistive thermal model, we use single identical current source at different grids with 

same layer. Then we record the temperature of grid where current source is. Because 

the chip is symmetrical, temperature distribution is symmetrical, too. So we only have 

to observe quarter of chip, and the original point is at corner, as shown in Figure 11. 

In Figure 11, there are 20 × 20 grids with 12um × 12um. We can easily discern that 

the higher temperature be produced while gird is more close to the boundaries. And 

we collate the relation between temperature and distance to original point, which 

locate at (0,0,0), as shown in Figure 12, where y coordinate represents temperature 

and x coordinate represents harmonic mean (HM), as expressed in Equation (5). 

(5) 
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Figure 11. Heat distribution of chip. 

 

Figure 12. Temperature vs. harmonic mean. 

Compared to these two thermal models, compact resistive thermal model 

consider horizontal and vertical heat dissipation, so it can show the 

location-dependent property. Nevertheless, as we discussed before, the runtime of 

compact resistive thermal model is too long to be applied for floorplan. On the other 

hand, by ignoring horizontal thermal resistance, runtime of Z-tile improve a lot. 

Under this structure, Z-tile only considers vertical heat dissipation; it cannot 

differentiate the location issue. 

Two models both have drawbacks. Compact resistive thermal model has runtime 

problem; Z-tile cannot show the location-dependent property. Therefore, in this thesis 

we propose a novel thermal model with location-dependent property and fast 

execution time for floorplan. 
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2.3 Problem Formulation 

Given a set of module information, including height, width, and power density, a 

netlist, and the number of layers. Out method is to find the location and resided layer 

of each module to minimize the footprint area, total wirelength, number of TSVs, and 

peak temperature in floorplan with fix-outline constraint. 
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Chapter 3  

Thermal-aware Floorplan 

Algorithm 

3.1 Proposed Thermal Model 

We want a location-dependent thermal model without runtime increase. We will 

introduce how we build this thermal model in this section. 

No matter how accurate the model is, if runtime is too long, then it is not a good 

model for floorplan. Hence, runtime is first issue needed to be concerned. Thus, we 

prefer the simple and fast model, so we construct our thermal model based on the 

Z-tile-based model. As we know, Z-tile cannot show the location-dependent property. 

It is a location-independent thermal model. 

 Thermal resistances of each Z-tile are the same, so the temperature module 

produced are no deference while module is placed everywhere at same layer. If power 

density doesn’t change, alter thermal resistance such that temperature will change. So 

we let the central thermal resistance be smaller than peripheral thermal resistance. In 

this way, modules placed at corner will produce higher temperature than it placed at 

center. 

 We want our thermal model can reflect location-dependent property on compact 

resistive thermal model. Therefore, we let the distribution of thermal resistance on our 

thermal model display distribution of temperature on compact resistive thermal model. 

For example, as shown in Figure 13, we want to construct the single Z-tile located at 

corner. First, we put unit power density as current source at corner with top layer, 

point a, and after circuit arrives at steady-state condition, temperature of this point is 

Va. Then the top thermal resistance of Z-tile-based thermal model is Va, because if we 
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put same unit power density as current source at point a, the temperature point a 

produce is as same as the temperature compact resistive thermal model produce. Then 

we do same thing at the point located at corner with the second layer from top, point b. 

The temperature of point b is Vb, and then the point b in Z-tile-based thermal model 

must to produce the same temperature with unit power density. Thus, the second 

thermal resistance from top is Vb – Va. If we put unit power density at point b in 

Z-tile-based thermal model, the temperature will be Vb, [(Vb – Va)+Va] ×1=Vb. And 

do the same thing until the bottom thermal resistance is determined. Remainder 

thermal resistances are determined as same way. 

Compare to Z-tile, all thermal resistances of Z-tile are the same. In our model, 

thermal resistances have different values at single Z-tile with different layers, and they 

will be different as placed at different location with same layer. By altering the 

thermal resistance, Z-tile-based thermal model can show the location-dependent 

property and the thermal resistances reflect the temperature distribution of compact 

resistive thermal model. This new location-dependent thermal model is named 

location-dependent Z-tile (LDZT). 

 LDZT has location-dependent property by altering thermal resistances, and it 

preserves the speed of Z-tile. Because the formulation for temperature evaluation is 

the same, LDZT has the same runtime as Z-tile. We realize the location-dependent 

property on Z-tile without runtime increase. 
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Figure 13. Thermal resistance evaluation. 

3.2 Proposed Thermal-aware Floorplan 

Algorithm 

The flow chart of our algorithm is shown in Figure 14 and the cost function is 

shown in Equation (6). The items in Equation (6) are shown as Equation (7) – (11). 

We use SP representation to represent the floorplan and HPWL to evaluate the 

wirelength. TSV cost is TSV count and temperature cost is maximum temperature in 

LDZT. The last cost, RF, will be introduced in section 3.2.1. After floorplan finish, we 

use compact resistive thermal model to evaluate the temperature accurately. 
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Figure 14. Algorithm flow. 
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3.2.1 Repulsion Force 

LDZT is applied to our proposed floorplan algorithm. Before LDZT is used in 

floorplan, we analyze its characteristic. LDZT is a Z-tile-based model, so it has the 

property of Z-tile, such as let module with high power density be put at upper layer, 

and its runtime is as fast as Z-tile. Besides, LDZT can show the location-dependent 

property, this is the most important improvement in Z-tile. As we discussed before, we 

alter thermal resistances to realize location-dependent property. In LDZT, the module 

with high power density will be placed near the center, and this tendency will cause 

potential hotspot. Because LDZT is Z-tile-base model, it also ignores horizontal 

thermal resistance. Hence, LDZT can’t consider the horizontal heat dissipation, even 

though it has location-dependent property. The potential hotspot will occur when 

modules with high power density are all placed near the center. This condition will 

happen due to the placed tendency of LDZT. 

Although the hotspot occurred at center is better than it occurred at corner, we 

want the temperature distribution is as uniform as possible. Before LDZT is applied to 

floorplan, we want to solve this problem. We want the modules with high power 

density are not close to each other, so we add the force to exclude them. Logan et al. 

[36] proposed a repulsion force (RF) cost in floorplan to exclude the modules with 

high power density. They proposed a concept of thermal coupling, which means it has 

hotter temperature when modules with high power density closer to each other. Thus, 

they define the hot modules whose power density are higher than average power 

density and then define the repulsion force, as expressed in Equation (12), to let hot 

modules exclude each other. 

 (12) 
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 In Equation (12), Pi and Pj represent the power density of hot module i and j 

respectively, and dij
2  is the distance between these two hot modules. If two hot 

modules with very high power density, the distance between two must be large 

enough to minimize the total repulsion force cost. We refine the repulsion force cost 

to suit our floorplan algorithm, as expressed in Equation (13). 

(13) 

  

In Equation (13), we refine four points from [36]. First, we consider all modules, 

because the definition of hot module has drawback. For instance, if average power 

density is 50, shouldn’t the module with 49 of power density be considered? 

Therefore, we consider all modules, and evaluating repulsion force cost is not 

time-consuming, anyway. 

Second, we change the addition to multiplication. Because addition cannot 

precisely determine whether the reciprocal effect of two modules is good or not, we 

change it. For example, doing addition of two modules with 1 and 99 of power 

density respectively is 100. And then do it of two modules with 50 and 50 of power 

density. The answers are the same. So these two sets of modules are the same for 

repulsion force cost. But, the set of modules with 1 and 99 of power density is much 

better than the other set, because the thing that one module is hot and the other is cool 

is good for heat dissipation. In multiplication, the answer is large if and only if two 

modules both have high power density. This is why we adopt the multiplication. 

The next, [36] consider the hot module with all layers to evaluate repulsion force 

cost. Because we use LDZT to consider vertical heat dissipation already, we don’t 

have to consider vertical repulsion force. Thus, we calculate repulsion force layer by 

layer, and then we sum up the repulsion force on each layer. 

The last point we refine is adding the different weights to different layers. High 
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repulsion force of one layer means there are many modules with high power density 

or some modules with high power density are closer to each other. No matter what 

condition is, high repulsion force of one layer represents there is high probability the 

layer has hotspot. Thus, we want high repulsion force occur at upper layer, because 

upper layer is close to heat sink. So, we increase the tolerability of repulsion force at 

upper layer by the additional weight. 

3.2.2 Over-heat Prevention Zone 

We use the algorithm introduced previously for 100 random seeds. The worst 

case of 100 floorpalns is shown in Figure 15. The hotspot occurs at original point, the 

corner of floorplan. This is not condition we except, because we will place modules 

with high power density at center by LDZT. So we analyze this condition. There are 

two reasons causing the hotspot occurs at original point. 

 

Figure 15. Temperature distribution 

 The first reason is we use SP representation to represent floorplan. We will place 

modules from bottom-left to top-right by SP representation. Hence, the density of 

module of original point (bottom-let corner) will be higher than the other corners, as 

shown in Figure 16.  
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Figure 16. Modules are placed by using SP representation. 

The other reason is degree of perturbation. Because there are other items in cost 

function, all items of cost function determine where the module is placed. Although 

the thermal cost want to place module away from corner, other items may not want. In 

brief, other items may restrict the degree of perturbation. 

In order to let the hotspot be away from original point, we want the modules with 

high power density be placed away from original point. We observe the SP 

representation. In SP representation, if notation A is always left to notation B in two 

sequences (Γ+, Γ-), the location of module A will be left to the location of module B. 

Otherwise, if notation A is left to notation B in sequenceΓ+, but it is right to notation 

B in sequenceΓ-. In this condition, the module A will be placed above the module B. 

Based on this property of SP representation, the notation get closer to left part of 

sequences means that the module of this notation get closer to original point 

(bottom-left). 

After observation of SP representation, we consider the N leftmost rooms in two 

sequences as over-heat prevention zone (OHPZ), and N is the zone size. The purpose 

of OHPZ is that the modules with high power density cannot be located in OHPZ. 

Then, we define over-heat module whose power density is higher than average power 

density plus standard deviation of power density. We constrain that the over-heat 

module cannot be placed in OHPZ. 
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Chapter 4  

Parallel Floorplan Algorithm on 

GPGPU 
In this chapter, we introduce the way we parallelize the floorplan and how the 

parallel algorithm can obtain maximum speedup. As listed in section 1.3, using global 

memory will cause large latency, so we have to use it as less as possible. There are 

two conditions where we use global memory. One is communication between blocks, 

and the other is communication between CPU and GPU. For first condition, the best 

way to prevent is that let blocks not to communicate each other. Thus, we let blocks 

deal with independent issues. In this way blocks don’t need to communicate each 

other. The latter condition can’t be avoided. If CPU doesn’t transmit data to GPU, 

there are no data to use for CUDA kernel function. On the other hand, if GPU doesn’t 

transmit data to CPU, CPU can’t receive the data which are treated already. Therefore, 

we can’t avoid this condition. All we can do is reduce the frequency and quantity of 

data of communication. 

There are two types of data sent to GPU from CPU. One is the data which do not 

change during SA procedure, such as netlist, power density of module, and thermal 

resistance. The other one will change during SA procedure, such as location of 

modules, and height/width of modules. In order to reduce the frequency of 

communication, we send the type one data to GPU once before SA procedure. And 

during SA procedure, we only send type two data to GPU to reduce the quantity of 

data of communication. 

The items of cost function are area, wirelength, TSV count, temperature, and 

repulsion force. We consider each item as respective kernel function, because each 

item evaluation is suit for different number of blocks and threads. 
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We will introduce the method we parallelize these items in turn. 

4.1 Parallel Floorplan – Area 

SP representation places modules from bottom-left to top-right. When module is 

placed, its location is relative to the modules which are placed already. Thus, the 

module is dependent while calculating area. 

Because the data are dependent, we can’t divide the algorithm into independent 

parts completely. We divide the algorithm by breaking the for-loop as shown in 

Algorithm 1, pseudo-code of area evaluation for Parquet 4.5 [38]. After breaking the 

for-loop, the pseudo-code is performed be each thread. In this way, the time 

complexity of area evaluation becomes O(#modules) from O(#modules2). 
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Algorithm 1. The pseudo-code for area evaluation [38]. 

Area evaluation 

for( i = 1 to #modules ) 

  match[X[i]].x = i; 

  match[Y[i]].y= i; 

  Length[i] = 0; 

for( i = 1 to #modules ) 

  b = X[i]; 

  p = match[b].y; 

  Position[b] = Length[p]; 

  t = Position[b] + weights(b); 

  for( j = p to #modules) 

   if( t > Length[j] ) Length[j] = t; 

   else break; 

return Length[#modules]; 

 In this algorithm, the independent elements are x coordinate evaluation, y 

coordinate evaluation, and different layers. We can evaluate x coordinate and y 

coordinate of each module and module coordinate at different layers simultaneously. 

So the number of blocks is 2 × #layers. After the evaluation, we only return the 

footprint area to CPU to reduce the communication time (quantity of data of 

communication). The module data, like height/width and coordinate, are stored at 

global memory, because the shared memory will be clear while the kernel function is 

end. The module date we store are used for other kernel function. Like wirelength 

evaluation, we need module coordinate to calculate it. Other kernel function all need 

module coordinate, so we evaluation area first. 

 

BREAK 
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4.2 Parallel Floorplan – Wirelength and TSV 

Count 

We deal with these two items by using the same data, netlist, and module 

coordinate. In order to reduce the times of communications between shared memory 

and global memory, we evaluate these two items in one kernel function together.  

 In this algorithm, the independent element is net. Because the wirelength of net 

and number of layers the net cross are independent, we can deal with one net by one 

thread, the time complexity becomes O(maximum #degrees of a net) from O(total 

#degrees). And we sum up the values of each thread to get the total wirelength/TSV 

count by tree reduction technique, as shown in Figure 17. By this technique, the time 

complexity for addition is becomes O(log#nets) from O(#nets).Finally, we only send 

total wirelength and TSV count to CPU. 

10 15 7 8 10

18 25

25

7

25

50
 

Figure 17. Tree reduction technique. 

4.3 Parallel Floorplan – Temperature 

4.3.1 Power Density Evaluation 

The way to evaluate temperature is expressed in Equation (3). Before we 

evaluate temperature, we calculate power density first. The power density of the grid 
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is calculated by summation of power density of each module multiplied by its area 

ratio, the overlapping area between module and grid divide by grid area, as shown in 

Equation (14) 

(14) 

 

In Equation (14), gi represents grid i, mj represents module j, Li represents the 

layer where grid i reside, Pj represents power density of mj, and ARi,j represents the 

area ratio of overlapping between gi and mj. 

 Power density evaluations of each grid are independent. We can evaluate it of 

different grids simultaneously. One thread deals with one grid, and each grid scans all 

modules at layer where grid resides to calculate the power density. Hence, the time 

complexity becomes O(#modules) from O(#grids×#modules). In this algorithm, 

number of blocks is determined by number of layers, because different layers are 

independent element. Besides, we only need the module data with one layer on one 

block, so we can let module data with same layer be located at shared memory for 

each block.  

4.3.2 Temperature Evaluation 

After we calculate power density, we calculate the temperature immediately. 

Each grid evaluates temperature respectively. Then accumulate the temperature layer 

by layer, so the maximum temperature will occur at bottom layer. We use the tree 

reduction technique to find maximum temperature. Different from it used by 

wirelenght/TSV count, the operation tree reduction technique perform is not addition, 

but comparison. It finds maximum temperature by comparing two temperatures 

iteratively. So the time complexity becomes O(log#grids) from O(#grids). And we 

return the maximum temperature only. 
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4.4 Parallel Floorplan – Repulsion Force 

Repulsion force evaluations of each module are independent. We use one thread 

to calculate the repulsion force of one module. We evaluate repulsion force layer by 

layer. The modules with different layers are not used. This is similar to power density 

evaluation, so we deal with them in the same way. The number of blocks is 

determined by number of layers, due to the usage of shared memory has been 

discussed previously. 

 The thing each thread operates is scan all modules at one layer to calculate the 

repulsion force, so the time complexity is O(#modules) from O(#modules2). Then we 

sum up the repulsion force by tree reduction technique, so the time complexity is 

O(log#modules) from O(#modules). Finally, we return the total repulsion force only. 

  



 

29 

 

Chapter 5 Experiments 

5.1 Environmental Setup 

Partition 
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Figure 18. Experiments flow  

The largest cases form benchmark GSRC are shown in Table 3. The total flow is 

shown in Figure 18 and it is introduced as follow. Before floorplan, we construct 

thermal model, LDZT, first. Then, the initial layers where modules reside is 

determined by iLap [37]. The flooplanner we use is Parquet 4.5 [38], a 2D 

floorplanner, and [39] modify it for 3D floorplan. Next, the experimental settings of 

floorplan are shown as follow. The fix-outline constraints we set are 20% whitespace 

for 4-layer design and the area ratio is 1. The floorplan algorithm we proposed has 

been implemented in C++/Linux environment. Last, we use compact resistive thermal 

model for thermal simulation after floorplan, and the details of it are shown in Table 

4. 
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Table 3. Benchmarks. 

Circuit # of 

modules 

# of 

nets 

# of 

pins 

Max. 

module 

Min. 

module 

Avg. 

module 

Max. net 

degree 

Avg. net 

degree 

n100 100 885 1873 67 61 22 16 43 43 4 2 

n200 200 1585 3599 47 48 12 13 30 30 5 2 

n300 300 1893 4358 47 48 12 13 30 30 6 2 

 

Table 4. Physical settings. 

Physical Settings Value 

Ambient temperature 25℃ 

Thickness Substrate 30 

Interconnect sublayer 150 

Bonding interface 10 

Thinned substrate 2 

Thermal 

conductivity 

Substrate 150 

Interconnect sublayer 170 

Bonding interface 386 

Thinned substrate 20 
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5.2 Experimental Results 

In this section, we first show the results of floorplan quality, including area, 

wirelength, TSV count, and temperature. Next we present the runtime analysis in the 

CUDA platform. 

5.2.1 Quality 

In this part, we compare our work to related work [29], as shown in following 

table. Table 5, Table 6, and Table 7 show the results of circuit of n100, n200, n300 

respectively. The first row shows the zone size, and the number of bracket means 

zone size / (#modules/#layers). ZT represents Cong’s work [29] without applying 

OHPZ technique, which implies the zone size of it is 0. Other columns show the result 

of varies zone size in LDZT. In the second row, Max_T means the maximum 

temperature of a single floorplan, and the following columns show the 

maximum/minimum/average/standard deviation of max_T from floorplans generated 

by 100 different random seeds. The last, the bottom two rows show the average 

wirelength and TSV count of 100 floorplans. 

The Figure 19, Figure 20, and Figure 21 show the distribution of thermal data of 

Table 5, Table 6, and Table 7. The top endpoint of line means the maximum of Max_T, 

and the bottom endpoint of line means the minimum of Max_T. The label on the line 

means the average of Max_T. 
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Table 5. Experimental results – n100. 

Zone size  ZT  0(0%)  3(10%)  5(20%)  8(30%)  10(40%)  

Max_T  Std  5.6 5.1  2.8  2.7  2.5  3.0  

Max  163.2  160.4  154.6  150.0  151.5  155.3  

Min  130.1  133.6  137.2  139.3  135.4  135.1  

Avg  148.0  147.0  145.7  144.7  145.0  146.6  

WL  131554  131486  130930  131207  131412  131772  

TSV  703.2  702.7  699.3  693.4  704.7  701.3  

Table 6. Experimental results – n200. 

Zone size  ZT  0(0%)  5(10%)  10(20%)  15(30%)  20(40%)  

Max_T  Std 2.7  2.2  1.9  1.7  1.4  1.6  

Max 193.8  191.4  191.7  192.1  189.4  189.5  

Min 181.3  180.7  178.6  179.8  181.2  179.8  

Avg 186.3  185.3  184.6  184.4  184.1  184.5  

WL  241258  239184  240007  240083  240619  242574  

TSV  1540.4  1527.6  1522.7  1520.0  1516.6  1516.8  

Table 7. Experimental results – n300. 

Zone size  ZT  0(0%)  8(10%)  15(20%)  23(30%)  30(40%)  

Max_T  Std  2.5  1.6  1.8  1.3  1.2  1.3  

Max  203.7  199.1  197.5  196.2  196.7  197.8  

Min  189.3  189.1  187.5  189.2  188.9  189.3  

Avg  193.7  193.2  192.8  192.7  193.3  193.5  

WL  343863  340112  341874  343885  345545  347358  

TSV  1592.5  1570.4  1565.6  1566.8  1564.2  1557.2  

 

 

Figure 19. Thermal data – n100. 
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Figure 20. Thermal data – n200. 

 

Figure 21. Thermal data – n300. 

 Observing above data, TSV count and wirelength of our work are similar to 

Cong’s work. Next, observing of the thermal issue. In Figure 19 – Figure 21, the 

range of the maximum temperatures becomes smaller in our methods. It means our 

model is stable; in other words, our method is more insensitive to different seeds. If 

the zone size is too small, over-head modules are still closer to bottom-left corner. But 

if the zone size is too large, we cannot guarantee the locations of modules in OHPZ 

are the places we want. Therefore form the results, the range of zone size we 

recommend is 20% – 30%. 

 After the analysis of thermal issue, we think that observing maximum 

temperature of each floorplan is not enough. If there are two floorplans with the same 

maximum temperature, the temperature distribution of one is cool except the hotspot 

and the other is hot everywhere. If we only consider maximum temperature, these two 

floorplans are the same, but the former is better than the latter obviously. So we 

choose grids in bottom layer with top 5% temperature to analyze. The results are 
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shown in Figure 22 – Figure 24. They show the number of grids with top 5% 

temperature of Cong’s and our work with 20% zone size. We can see that the number 

of grids of our work is less than Cong’s in high temperature range. So our work not 

only has lower maximum temperature but only has more uniform temperature 

distribution. 

 

Figure 22. Thermal data II – n100. 

 

Figure 23. Thermal data II – n200. 

 

Figure 24. Thermal data II – n300. 

5.2.2 Runtime 

The following tables and figure show the experimental result of runtime. 

CPU/GPU, shown in first row, means the floorplan is operated in CPU or GPU. First 
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column shows the elements of cost function, and the follow columns show the 

runtime/runtime ratio/speedup of these items on CPU/GPU. The rightmost column 

#Pstr shows the number of streaming processors, this value means ideal upper bound 

of speedup. And the Figure 25 show the data of Table 8 – Table 10. 

Table 8. Runtime – n100. 

 CPU GPU #Pstr 

Ratio(%) Time(s) Time(s) Speedup Ratio(%) 

Area 11.4 16.9 0.8 21.1 1.9 256 

WL  4.2 6.2 1.3 4.8 3.0 64 

Temp  81.1 120.1 2.8 42.9 6.6 128 

RF  3.3 4.9 1.5 3.3 3.5 128 

Total  100.0 148.1 6.4 23.1 – – 

Tovh  – – 20.8 – 48.8 – 

Memcpy  – – 15.4 – 36.2 – 

Total  – 148.1 42.6 3.5 100.0 – 

Table 9. Runtime – n200. 

 CPU GPU #Pstr 

Ratio(%) Time(s) Time(s) Speedup Ratio(%) 

Area 8.5 78.9 4.8 16.4 4.4 256 

WL  2.6 23.9 4.5 5.3 4.1 64 

Temp  85.3 792.6 18.2 43.5 16.6 128 

RF  3.6 33.2 9.0 3.7 8.2 128 

Total  100.0 928.6 36.5 25.4 – – 

Tovh  – – 41.8 – 38.1 – 

Memcpy  – – 31.4 – 28.6 – 

Total  – 928.6 109.7 8.5 100.0 – 

  



 

36 

 

Table 10. Runtime – n300. 

 CPU GPU #Pstr 

Ratio(%) Time(s) Time(s) Speedup Ratio(%) 

Area 6.7 190.1 14.4 13.2 6.9 256 

WL  1.6 46.1 8.0 5.8 3.8 64 

Temp  87.7 2479.6 56.8 43.7 27.3 128 

RF  4.0 112.9 27.0 4.2 13.0 128 

Total  100.0 2828.7 106.2 26.6 – – 

Tovh  – – 55.3 – 26.5 – 

Memcpy  – – 46.9 – 22.5 – 

Total  – 2828.7 208.4 13.6 100.0 – 

 

(a)                (b)               (c) 

Figure 25. (a) Runtime – n100 (b) Runtime – n200 (c) Runtime – n300. 

We can see the speedup of GPU and number of streaming processors are 

different. Because the algorithm is not parallel completely and there are drawbacks we 

will discuss later on CUDA. First, we discuss the speedup of area. Because we 

evaluate coordinates module by module then get the final area when all modules are 

done. That is, data are highly dependent, and each thread may idle for each other until 

total thread finish their work. Thus, the speedup decrease due to dependent data. 

Second, when computing wirelength, because there are a great amount of branch 
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instructions on wirelength evaluation, performance may reduce by CUDA property 

we introduced previously. Next, the difference between speedup and number of 

streaming processors on temperature evaluation is smaller than it on other evaluations. 

This is because the temperature evaluation of each grid is independent, which is 

introduced before. Thus, the temperature evaluation has better parallelism than others. 

However, the computations done after power density evaluation delay the speed, so 

the final speedup gets reduced. Last, we analysis the speedup of repulsion force. In 

general, the number of streaming processors is the maximum speedup. Nevertheless, 

as we introduce before, the number of divider on each multiprocessor is much fewer 

than the number of thread on each multiprocessor, and there is division in repulsion 

force evaluation, so the maximum speedup is determined by the total number of 

dividers. The total speedup of these evaluation approximate 25. Finally, there are still 

communication time and kernel overhead, the final speedup reduce due to these 

drawbacks. The time complexity of communication time and kernel overhead increase 

linearly with module size, but the time complexity of evaluation increase faster than 

module size. Hence, while module size becomes larger, the ratio of runtime of these 

two drawbacks to total runtime becomes smaller. This is why the final speedup 

becomes larger as larger module size. 
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Chapter 6 Conclusion 
In this thesis, we propose a fast location-dependent thermal model, and a 

thermal-aware floorplan algorithm. And we implement the algorithm on CPU and 

GPGPU. 

 LDZT, the fast thermal model we propose, can show the location-dependent 

property without runtime increase. Moreover, we also propose two strategies to 

prevent generating hotspots. We refine the repulsion force to exclude the module with 

high power density. This technique can also compensate the thermal coupling issue 

due to omitting lateral thermal resistances in LDZT. And we define a zone, named 

over-heat prevention zone, to prevent left-bottom corner of floorplan getting over-heat 

during the SA procedure. The over-heat module, whose power density is higher than 

average power density by standard deviation of power density, cannot be placed in 

this zone. By these strategies, we can reduce the maximum/average temperature and 

decrease the number of grid in high temperature range. Additionally, the floorplanner 

is insensitive to random seeds, which implies the robustness of our method is quite 

good. Finally, we use CUDA to speed up the runtime. We get 3.5X – 13.6X speedup. 

The speedup gets significant as the size of the design grows. 
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