

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

應用於通用圖形處理器上

具熱感知及位置相關之三維佈局規劃演算法

Location-Dependent Thermal-Aware 3D Floorplan on

General-Purpose GPU

研 究 生：謝明廷

 指導教授：黃俊達 博士

中 華 民 國 一０二 年 七 月

應用於通用圖形處理器上

具熱感知及位置相關之三維佈局規劃演算法

Location-Dependent Thermal-Aware 3D Floorplan on

General-Purpose GPU

研究生：謝明廷 Student: Ming-Ting Hsieh

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering & Institute of Electronics

July 2013

Hsinchu, Taiwan, Republic of China

中華民國一０二年七月

i

應用於通用圖形處理器上

具熱感知及位置相關之三維佈局規劃演算法

研究生：謝明廷 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

隨著製程的演進，在縮小尺寸上遇到了瓶頸。因此三維堆疊技術被提出並使

用於延續摩爾定律(Moore’s Law)。因為三維堆疊令單位面積功率增加，產生了散

熱不易的現象，導致晶片過熱，這使得熱議題(thermal issues)無法被避免。

熱模型 (thermal model)被廣泛應用在熱感知 (thermal-aware)佈局規劃

(floorplan)。經由熱模型，我們可以知道熱的分佈情形；然而精確的熱模型因為

執行時間過長，不適合應用在佈局規劃上。然而簡化的熱模型雖然有快速的執行

能力，但喪失了精確度。因此我們在這篇論文裡提出一個兼顧快速、且可提供相

當程度精確性的熱模型。除此之外，我們提出兩種技術去預防潛在性熱點(hotspot)

的產生–斥力(repulsion force)法以及過熱保護區(over-heat prevention zone)機制。

經由這些方法，我們使佈局規劃裡的最高溫得到改善，以及令溫度分佈更為均

勻。

最後，我們把這個演算法應用在通用圖形處理器上(GPGPU)。藉由大量的核

心數去縮短執行時間。

ii

Location-Dependent Thermal-Aware 3D Floorplan on

General-Purpose GPU

Student: Ming-Ting Hsieh Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

As the development of integration technology, shrinking chip size has

encountered bottlenecks. Three-dimensional (3D) integration is then proposed to

continue sustaining Moore’s Law. However, due to the significant increasing of the

stacking power, it is hard to dissipate heat by using 3D stacking structure. Therefore,

the thermal issues become inevitable and has to be handled carefully.

In order to solve thermal issues, the thermal model is widely used in

thermal-aware floorplan to mimic the temperature distribution. But the runtime of

accurate thermal model is too long to be used in floorplan. On the other hand, the

simplified thermal model is fast and suitable for floorplan, but it loses accuracy. As a

result, in this thesis, we propose a fast thermal model, which also provides a

considerably precise temperature estimation. Besides, we also propose two techniques

to prevent potential hotspots, named repulsion force (RF) and over-heat prevention

zone (OHPZ). By these methods, we not only reduce the maximum temperature but

let temperature distribution be more uniform.

Finally, we implement this algorithm on GPGPU (General Purpose computing

on Graphic Processor Unit). Runtime is reduced by using a great amount of cores.

iii

誌 謝

 首先我要感謝我的指導老師－黃俊達教授。在老師細心的指導下，我學會了

面對問題的態度與解決的方法；老師總是抽空與我討論研究，並樂於給予我適當

的建議以及方向，好似一盞明燈，讓我在學術瀚洋裡不會迷失方向。也謝謝我的

口試委員陳宏明教授與黃婷婷教授，能撥冗參加口試。

 再來要感謝我的父母，正因為有他們含辛茹苦地把我拉拔長大，我才能有今

日的成就，感激之情溢於言表。接下來要感謝實驗室的博班學長姐：卡拉學長教

會我平行化運算的使用方法，使得這份論文的後半部得以完成；形姐在碩一時對

我的指導，讓我受益良多；宏哥即使在百忙之中，也會抽空幫我解決 server 的

問題，以及以豐厚的經驗教導我各大國家的民族風情及軍事比較；特別要感謝莎

姐一直以來對我的指導，總能包容我拙劣的報告方式，認真聆聽我的想法，並給

予有用的意見與指教。

 感謝實驗室的同學－包子、廣正、馬力、和鵬先，與你們一起修課、研究的

日子，是我最寶貴的經驗與回憶，沒有之一。也要感謝實驗室的學長們，由於有

學長們的研究成果，我這篇論文才得以順利完成；接下來＂順便＂感謝實驗室學

弟妹們：AJ、BJ、偉豪、慧珊、顥瀚、還有子敬，平時在面對壓力比研究及修課

還大的雜事，仍能坦然面對、果斷處理，讓我能在最舒適的環境裡做研究。

 最後要感謝所有曾經幫助過我的人，因為你們，我的人生得以完整。

iv

Content

摘 要... i

Abstract .. ii

誌 謝.. iii

Content .. iv

List of Tables ... vi

List of Figures .. vii

Chapter 1 Introduction .. 1

1.1 3D Integrated Circuits .. 1

1.2 Floorplan .. 3

1.2.1 2D Floorplan ... 3

1.2.2 From 2D Floorplan to 3D ... 4

1.2.3 Related Work ... 5

1.3 GPGPU .. 6

Chapter 2 Preliminaries .. 9

2.1 Thermal Model ... 9

2.1.1 Compact Resistive Thermal Model .. 9

2.1.2 Z-Tile .. 10

2.2 Motivation .. 11

2.3 Problem Formulation ... 14

Chapter 3 Thermal-aware Floorplan Algorithm ... 15

3.1 Proposed Thermal Model ... 15

3.2 Proposed Thermal-aware Floorplan Algorithm ... 17

3.2.1 Repulsion Force .. 19

3.2.2 Over-heat Prevention Zone ... 21

Chapter 4 Parallel Floorplan Algorithm on GPGPU .. 23

4.1 Parallel Floorplan – Area ... 24

4.2 Parallel Floorplan – Wirelength and TSV Count ... 26

4.3 Parallel Floorplan – Temperature ... 26

4.3.1 Power Density Evaluation... 26

4.3.2 Temperature Evaluation .. 27

4.4 Parallel Floorplan – Repulsion Force .. 28

Chapter 5 Experiments ... 29

5.1 Environmental Setup .. 29

5.2 Experimental Results ... 31

5.2.1 Quality... 31

v

5.2.2 Runtime ... 34

Chapter 6 Conclusion ... 38

Reference ... 39

vi

List of Tables

Table 1. Comparison with shared and global memory. .. 8

Table 2. Thermal-electrical duality [33]. ... 10

Table 3. Benchmarks. ... 30

Table 4. Physical settings. .. 30

Table 5. Experimental results – n100. .. 32

Table 6. Experimental results – n200. .. 32

Table 7. Experimental results – n300. .. 32

Table 8. Runtime – n100. ... 35

Table 9. Runtime – n200. ... 35

Table 10. Runtime – n300. ... 36

vii

List of Figures

Figure 1. Relative delay vs. feature size [1]... 1

Figure 2. Global interconnects before and after 3D integration. 2

Figure 3. Wire bonding technology [8]. ... 2

Figure 4. Through-silicon vias (TSVs) technology. ... 3

Figure 5. (a) Slicing and (b) non-slicing floorplan. ... 4

Figure 6. Thread batching. ... 7

Figure 7. Structure. .. 8

Figure 8. Compact resistive thermal model. .. 9

Figure 9. Construction of Z-tile model. ... 11

Figure 10. temperature produced by module placed at (a) corner (b) center. 12

Figure 11. Heat distribution of chip. .. 13

Figure 12. Temperature vs. harmonic mean. .. 13

Figure 13. Thermal resistance evaluation. ... 17

Figure 14. Algorithm flow. ... 18

Figure 15. Temperature distribution ... 21

Figure 16. Modules are placed by using SP representation. .. 22

Figure 17. Tree reduction technique. ... 26

Figure 18. Experiments flow.. 29

Figure 19. Thermal data – n100. .. 32

Figure 20. Thermal data – n200. .. 33

Figure 21. Thermal data – n300. .. 33

Figure 22. Thermal data II – n100. .. 34

Figure 23. Thermal data II – n200. .. 34

Figure 24. Thermal data II – n300. .. 34

Figure 25. (a) Runtime – n100 (b) Runtime – n200 (c) Runtime – n300. 36

1

Chapter 1 Introduction

1.1 3D Integrated Circuits

Nowadays, under nano-scale technology, high transistor density makes chip

more complicated. However, as the technology progressing with shrinking size of

device, it is difficult to continue shrinking size of device because of physical

limitations. Many challenges incurred at the same time with the feature size getting

smaller, such as power dissipation, reliability, leakage power, clock distribution, and

yield issue [1]. Moreover, smaller feature size causes the delay of global interconnects

becomes much longer than the delay of gates, as shown in Figure 1. Hence,

interconnect delay becomes more important.

Gate Delay
(Fan out 4)

Local
(Scaled)

Global with
 Repeaters

Global w/o
 Repeaters

100

10

1

0.1
250 180 130 90 45 32

Process Technology Node (nm)

R
e

la
ti

ve
 D

e
la

y

Figure 1. Relative delay vs. feature size [1].

 In order to solve above problems, three dimensional integrated circuit (3D IC)

emerges and has been discussed in recent years [3]－[7]. By stacking dies, footprint

area becomes smaller, which implies transistor density gets higher. Moreover, global

interconnect length get shorter by vertical transmission, as shown in Figure 2. Shorter

global interconnect length bring some benefits, such as lower power dissipation and

shorter global interconnect delay.

2

A

B

C

D E

F

B C
F

A
D E

Figure 2. Global interconnects before and after 3D integration.

 Due to the dies stacked, dies need to communicate each other in vertical

direction. There are two ways to accomplish such inter-layer communications [3][4],

the wire bonding [3] and through-silicon vias (TSVs) technology [4] as shown in

Figure 3 and Figure 4 respectively.

Wire bonding technology is usually used for system-in-package (SiP). Since the

devices communicated by outside wires, as shown in Figure 3, it takes a long

communication path to connect devices between different layers. And these kinds of

technologies has limitation of number of pins.

Figure 3. Wire bonding technology [8].

 The other technology is through-silicon vias (TSVs) technology as shown in

Figure 4. Devices residing in different layers communicate each other by TSVs which

transmit signal vertically. Compared to wire bonding technology, TSV technology

3

brings some benefits, such as shorter global interconnects [9]－[12], smaller footprint

area [13], lower interconnect power [14] and better heterogeneous integration.

Besides, the major advantage of TSV technology is that TSVs can be placed

everywhere in chip, so it has no limitation of pin counts. Nevertheless, it still has

some drawbacks, including yield [13], power density and huge area cost.

Block Block Block

Block Block

Block Block

Metal layer

Device layer

Dieletric layer

Bump

Through-silicon

vias

Figure 4. Through-silicon vias (TSVs) technology.

1.2 Floorplan

1.2.1 2D Floorplan

Floorplan is to arrange the module whose data are given, including height, width,

power density, and netlist, for some optimization goals, for instance, area and

wirelength. In floorplan, there are two major components. One is representation,

which represent the floorplan. We can know the location of modules in floorplan by

representation. The other one is approach method.

4

(a) (b)

Figure 5. (a) Slicing and (b) non-slicing floorplan.

Representation is mainly divided into two categories － slicing and non-slicing

as shown in Figure 5. Slicing floorplan can be sliced into two parts iteratively until

each part contains only one module, where the slicing cut can be horizontal or vertical.

Normalized polish expression [15] and slicing tree [16] are floorplan representations

which use slicing procedure to handle the floorplan. The other one is non-slicing

floorplan, that is to say, it cannot be sliced into two parts always, b*tree [17],

sequence pair [18], and O-tree [19] are this kind of floorplan representation.

 After the representation of the floorplan is ready, the next step is to obtain a good

floorplan under the varied goals defined by the designer. In general, two methods are

used widely, simulated annealing (SA) method and analytical approach. SA method

performs a series of perturbations changing the representation to get the new one. This

method accept the worse result with certain probability. SA method can get out of

local optimum by accepting worse result. The analytical approach gets the solution by

using the mathematical formulation with constraints. The quality of floorplan is

determined by cost during floorplan processing. The cost is multi-object combination,

like area, wirelength and so on.

1.2.2 From 2D Floorplan to 3D

From 2D to 3D, there are some benefits in floorplan such as smaller footprint

area and shorter wirelength, as shown in Figure 2. However, there are also some extra

5

issues. First of all, TSV is an extra issue we must to consider. [1] mentions the size of

TSV is 1024 times larger than size of 6-transistor SRAM. Therefore, the less the TSV

count, the better the area of floorplan. So the first issue is to minimize TSV count.

Next, due to the stacked dies, the heat dissipation path is longer, except the layer

nearest the heat sink. The heat is more difficult to dissipate, so the heat dissipation

issue gets more important.

In 3D floorplan, we still have to consider the issues of 2D floorplan. Additional,

we must consider extra issues from 3D stacked. Hence, the cost includes not only the

issues of 2D floorplan but also the problems brought by 3D stacked.

1.2.3 Related Work

In 3D floorplan, there are extra issues we should consider. [20][21] consider the

relation between TSV count and wirelength. In general, TSV count is the

minimization goal.

There are several way to deal with heat dissipation issue. [22]–[28] redistribute

whitespace by module shifting. [22]–[26] shift the module to insert the thermal via

which does not transmit signal. Thermal via is helpful to dissipate heat because of its

high thermal conductivity. [27][28] consider the power density of module, and let

more whitespace be around the module with higher power density. These methods for

handling thermal issue are post-processing after SA procedure finished. Quality of

these methods will highly depend on the solution SA procedure produced.

The other way to consider thermal issue is evaluate temperature of chip during

SA procedure [29][30]. This method will calculate temperature as cost function in

each perturbation. However, because there are a lot of perturbations in SA procedure,

the method of evaluating temperature cannot be too complex. Thus, Cong et al. [29]

proposed a simplified thermal model which evaluates temperature fast.

6

1.3 GPGPU

GPGPU, the abbreviation of “General Purpose computing on Graphic Processor

Unit”, means using graphic processor unit (GPU) to perform computation which is

traditionally handled by central processing unit (CPU). Owing to powerful parallel

processing capabilities of modern graphic processor and programmable pipeline, GPU

can deal with non-graphical data. Because the core count of GPU is much more than

CPU, GPU has better performance when performing a lot of data, especially in single

instruction multiple data (SIMD).

GPU originally deals with image processing including a large amount of floating

point operations, so GPU is good at operating floating point. However, it’s not skilled

in operating branch instruction.

Compute unified device architecture (CUDA), which is created by NVIDIA [31],

is one of parallel computing and programming platforms. Basically, CUDA is divided

into two parts, software and hardware. In software side, when a CPU calls a kernel

function, it determines the number of blocks and number of threads per block as

shown in Figure 6. In CUDA, a block consists of a set of threads, and a thread

represents the minimum operation unit. Different kernel functions can determine

respective number of blocks and threads .After determining the number of blocks and

threads, the GPU processes the instruction on threads in parallel. This concept is

so-called single instruction multi threads (SIMT).

7

Figure 6. Thread batching.

 In hardware side, the GPU contains several multiprocessors, where many

streaming processors reside, as shown in Figure 7. The block and thread we have

introduced before will map to the multiprocessor and streaming processor respectively.

Thus, even though there are hundreds or thousands of threads, the number of threads

which can simultaneously operate depends on number of streaming processor by user.

However, there are fewer dividers in each multiprocessor. If a kernel function

operates division, the number of threads which operate simultaneously is determined

by number of dividers, not number of streaming processors.

Figure 7 also illustrated 2 types of memory units utilized by CUDA, shared

memory and global memory. Each multiprocessor has one shared memory, and the

shared memory can be used by multiprocessor where shared memory locates. That is,

threads on same block can use shared memory to save/load data. If communication

between different multiprocessors or GPU and CPU, these conditions use global

memory. Comparison of two memory units is shown in Table 1.

Because the latency of global memory is much longer than shared memory, more

than one hundred times, the using of global memory must to be avoided as possible.

Nevertheless, shared memory will be clear as kernel function is end, so if there are

some data other kernel functions will use, these data have to save at global memory.

8

Register

Shared

Memory

0

Register

Shared

Memory

1

Register

Shared

Memory

2

Register

Shared

Memory

13

 ●　●　●

Global Memory

Multiprocessor
Streaming

processor

GPU

CPU

Figure 7. Structure.

Table 1. Comparison with shared and global memory.

 Shared Global

Scope Block Global

Life time Block Program

Hardware On chip DRAM

Access by CPU – R/W(API)

Latency 4 clock cycles 400–600 clock cycles

9

Chapter 2 Preliminaries

2.1 Thermal Model

2.1.1 Compact Resistive Thermal Model

Substrate

Interconnect Sublayer

Bonding Interface

Thinned Substrate

Interconnect Sublayer

Bonding Interface

Thinned Substrate

Interconnect Sublayer

Heat Sink

Layer 1

Layer 2

Layer N

Bonding

Interface

Interconnect

Sublayer

Substrate

Figure 8. Compact resistive thermal model.

 Wilkerson et al. [32] proposed a thermal model, as shown in Figure 8. In [32],

one die is composed three sublayers, substrate, interconnect sublayer, and bonding

interface. The bottom one is substrate where active devices reside; the next one is

interconnect sublayer where metal wire and via reside; the last one is bonding

interface which attach between two adjacent dies. Heat produced from active device

dissipates from substrate to heat sink, and then it is transmitted to the ambient air

(25℃).

First, each die is divided into numerous grids, whose size is determined by the

smallest module of input. Then each gird is partitioned into several nodes depended

on the number of sublayers per die. Nodes connect to adjacent ones with thermal

resistance. Thermal resistance determined based on grid size and thermal conductivity

as expressed in Equation (1). L represents the length; k represents the thermal

conductivity; A represents the cross section area.

10

 (1)

 Next, there is current source depended on power density on the substrate node,

and then the 3D stacked die becomes a complicated mesh circuit. Finally, the model

applies thermal-electrical duality [33], as shown in Table 2, to create a steady-state

temperature profile for the given floorplan. Because of thermal-electrical duality,

Equation (2) and (3) are dual.

Table 2. Thermal-electrical duality [33].

Thermal quantity Unit Electrical quantity Unit

T, Temperature difference K V, Voltage difference V

P, Power density W I, Current source A

Rth, Thermal resistance K/W R, Electrical resistance Ω

 (2)

 (3)

 This thermal model is accurate but it takes minutes to evaluate once. In floorplan,

using thermal model to evaluate temperature of floorplan with one perturbation during

simulated annealing. Then there are a great amount of perturbations, so thermal model

has to be used as many as number of perturbations. It is too time-consuming, so it is

not suitable for floorplan. Some accurate thermal models like finite element method

(FEM) [34] and finite difference method (FDM) [35] have long runtime. They are not

suitable for application of floorplan, neither.

2.1.2 Z-Tile

 Floorplan prefers fast thermal model. Cong et al. [29] proposed a simplified

compact resistive thermal model. They consider that vertical path is primary heat

dissipation path. Thus, for runtime reason, they simplify the compact resistive thermal

model by ignoring horizontal thermal resistance, as shown in Figure 9. By only

Ak

L
Rth




IRV 

thPRT 

11

considering vertical thermal resistance, the mesh circuit becomes independent thermal

resistance pillars. This is why this model is named Z-tile model.

The ability of heat distribution depends on the distance to heat sink. Farther from

heat sink, lower heat ability of heat distribution, that is, higher temperature. The

maximum temperature will occur at the layer farthest from the heat sink, which is

bottom layer. Thus, the formula of Z-tile for temperature evaluation is expressed as

Equation (4). In Equation (4) the temperature is superimposed on temperature of

upper layer.

(4)

P1

P2

P3

R1

R2

R3

Rsink

Single Z-tile

Figure 9. Construction of Z-tile model.

2.2 Motivation

 Thermal resistances are determined by Equation (1), and each grid size of Z-tile

and thermal conductivity are the same. Therefore, thermal resistances of each Z-tile

are the same. In this situation, module placed everywhere at same layer produces

same temperature. Actually, Figure 10 shows evaluation of the same module but

location in different positions of a chip. The module placed at corner produce higher

temperature than it placed at center. This is because the boundaries of chip are

adiabatic. However, in Z-tile, module produces same temperature as it is placed at

different locations. Z-tile cannot show location-dependent property.





layers

i

isink

i

j

j

layers

i

i PRRPT
#

11

#

1

)(

12

(a) (b)

Figure 10. temperature produced by module placed at (a) corner (b) center.

 Thus, we conduct an experiment to verify our view of point. Based on compact

resistive thermal model, we use single identical current source at different grids with

same layer. Then we record the temperature of grid where current source is. Because

the chip is symmetrical, temperature distribution is symmetrical, too. So we only have

to observe quarter of chip, and the original point is at corner, as shown in Figure 11.

In Figure 11, there are 20 × 20 grids with 12um × 12um. We can easily discern that

the higher temperature be produced while gird is more close to the boundaries. And

we collate the relation between temperature and distance to original point, which

locate at (0,0,0), as shown in Figure 12, where y coordinate represents temperature

and x coordinate represents harmonic mean (HM), as expressed in Equation (5).

(5)

1

11
2),(













yx
yxHM

13

X

Y

Z

Figure 11. Heat distribution of chip.

Figure 12. Temperature vs. harmonic mean.

Compared to these two thermal models, compact resistive thermal model

consider horizontal and vertical heat dissipation, so it can show the

location-dependent property. Nevertheless, as we discussed before, the runtime of

compact resistive thermal model is too long to be applied for floorplan. On the other

hand, by ignoring horizontal thermal resistance, runtime of Z-tile improve a lot.

Under this structure, Z-tile only considers vertical heat dissipation; it cannot

differentiate the location issue.

Two models both have drawbacks. Compact resistive thermal model has runtime

problem; Z-tile cannot show the location-dependent property. Therefore, in this thesis

we propose a novel thermal model with location-dependent property and fast

execution time for floorplan.

14

2.3 Problem Formulation

Given a set of module information, including height, width, and power density, a

netlist, and the number of layers. Out method is to find the location and resided layer

of each module to minimize the footprint area, total wirelength, number of TSVs, and

peak temperature in floorplan with fix-outline constraint.

15

Chapter 3

Thermal-aware Floorplan

Algorithm

3.1 Proposed Thermal Model

We want a location-dependent thermal model without runtime increase. We will

introduce how we build this thermal model in this section.

No matter how accurate the model is, if runtime is too long, then it is not a good

model for floorplan. Hence, runtime is first issue needed to be concerned. Thus, we

prefer the simple and fast model, so we construct our thermal model based on the

Z-tile-based model. As we know, Z-tile cannot show the location-dependent property.

It is a location-independent thermal model.

 Thermal resistances of each Z-tile are the same, so the temperature module

produced are no deference while module is placed everywhere at same layer. If power

density doesn’t change, alter thermal resistance such that temperature will change. So

we let the central thermal resistance be smaller than peripheral thermal resistance. In

this way, modules placed at corner will produce higher temperature than it placed at

center.

 We want our thermal model can reflect location-dependent property on compact

resistive thermal model. Therefore, we let the distribution of thermal resistance on our

thermal model display distribution of temperature on compact resistive thermal model.

For example, as shown in Figure 13, we want to construct the single Z-tile located at

corner. First, we put unit power density as current source at corner with top layer,

point a, and after circuit arrives at steady-state condition, temperature of this point is

Va. Then the top thermal resistance of Z-tile-based thermal model is Va, because if we

16

put same unit power density as current source at point a, the temperature point a

produce is as same as the temperature compact resistive thermal model produce. Then

we do same thing at the point located at corner with the second layer from top, point b.

The temperature of point b is Vb, and then the point b in Z-tile-based thermal model

must to produce the same temperature with unit power density. Thus, the second

thermal resistance from top is Vb – Va. If we put unit power density at point b in

Z-tile-based thermal model, the temperature will be Vb, [(Vb – Va)+Va] ×1=Vb. And

do the same thing until the bottom thermal resistance is determined. Remainder

thermal resistances are determined as same way.

Compare to Z-tile, all thermal resistances of Z-tile are the same. In our model,

thermal resistances have different values at single Z-tile with different layers, and they

will be different as placed at different location with same layer. By altering the

thermal resistance, Z-tile-based thermal model can show the location-dependent

property and the thermal resistances reflect the temperature distribution of compact

resistive thermal model. This new location-dependent thermal model is named

location-dependent Z-tile (LDZT).

 LDZT has location-dependent property by altering thermal resistances, and it

preserves the speed of Z-tile. Because the formulation for temperature evaluation is

the same, LDZT has the same runtime as Z-tile. We realize the location-dependent

property on Z-tile without runtime increase.

17

a

b

c

a

b

c

Va

Vb – Va

Vc – Vb

Figure 13. Thermal resistance evaluation.

3.2 Proposed Thermal-aware Floorplan

Algorithm

The flow chart of our algorithm is shown in Figure 14 and the cost function is

shown in Equation (6). The items in Equation (6) are shown as Equation (7) – (11).

We use SP representation to represent the floorplan and HPWL to evaluate the

wirelength. TSV cost is TSV count and temperature cost is maximum temperature in

LDZT. The last cost, RF, will be introduced in section 3.2.1. After floorplan finish, we

use compact resistive thermal model to evaluate the temperature accurately.

18

Floorplan information

Perturbation of

solution

Accept?

Stop?

Restore

floorplan

Reduce

annealing

temperature

Floorplan result

Heat evalutation

SA-based

engine

N

Y

N

Y

Figure 14. Algorithm flow.

(6)

(7)

(8)

(9)

(10)

(11)

RFLDZTNumTSVHPWL2area1 CostCostCostCostCostCost  543 

old

oldnew

area
Footprint

FootprintFootprint
Cost




old

oldnew
HPWL

HPWL

HPWLHPWL
Cost




old

oldnew
NumTSV

NumTSV

NumTSVNumTSV
Cost




old

oldnew
LDZT

maxT(LDZT)

maxT(LDZT)maxT(LDZT)
Cost




old

oldnew
RF

RF

RFRF
Cost




19

3.2.1 Repulsion Force

LDZT is applied to our proposed floorplan algorithm. Before LDZT is used in

floorplan, we analyze its characteristic. LDZT is a Z-tile-based model, so it has the

property of Z-tile, such as let module with high power density be put at upper layer,

and its runtime is as fast as Z-tile. Besides, LDZT can show the location-dependent

property, this is the most important improvement in Z-tile. As we discussed before, we

alter thermal resistances to realize location-dependent property. In LDZT, the module

with high power density will be placed near the center, and this tendency will cause

potential hotspot. Because LDZT is Z-tile-base model, it also ignores horizontal

thermal resistance. Hence, LDZT can’t consider the horizontal heat dissipation, even

though it has location-dependent property. The potential hotspot will occur when

modules with high power density are all placed near the center. This condition will

happen due to the placed tendency of LDZT.

Although the hotspot occurred at center is better than it occurred at corner, we

want the temperature distribution is as uniform as possible. Before LDZT is applied to

floorplan, we want to solve this problem. We want the modules with high power

density are not close to each other, so we add the force to exclude them. Logan et al.

[36] proposed a repulsion force (RF) cost in floorplan to exclude the modules with

high power density. They proposed a concept of thermal coupling, which means it has

hotter temperature when modules with high power density closer to each other. Thus,

they define the hot modules whose power density are higher than average power

density and then define the repulsion force, as expressed in Equation (12), to let hot

modules exclude each other.

 (12)





hot module ij

ji

d

pp
RF

2

20

 In Equation (12), Pi and Pj represent the power density of hot module i and j

respectively, and dij
2 is the distance between these two hot modules. If two hot

modules with very high power density, the distance between two must be large

enough to minimize the total repulsion force cost. We refine the repulsion force cost

to suit our floorplan algorithm, as expressed in Equation (13).

(13)

In Equation (13), we refine four points from [36]. First, we consider all modules,

because the definition of hot module has drawback. For instance, if average power

density is 50, shouldn’t the module with 49 of power density be considered?

Therefore, we consider all modules, and evaluating repulsion force cost is not

time-consuming, anyway.

Second, we change the addition to multiplication. Because addition cannot

precisely determine whether the reciprocal effect of two modules is good or not, we

change it. For example, doing addition of two modules with 1 and 99 of power

density respectively is 100. And then do it of two modules with 50 and 50 of power

density. The answers are the same. So these two sets of modules are the same for

repulsion force cost. But, the set of modules with 1 and 99 of power density is much

better than the other set, because the thing that one module is hot and the other is cool

is good for heat dissipation. In multiplication, the answer is large if and only if two

modules both have high power density. This is why we adopt the multiplication.

The next, [36] consider the hot module with all layers to evaluate repulsion force

cost. Because we use LDZT to consider vertical heat dissipation already, we don’t

have to consider vertical repulsion force. Thus, we calculate repulsion force layer by

layer, and then we sum up the repulsion force on each layer.

The last point we refine is adding the different weights to different layers. High

 




 



layers

k
layer

module ij

jik 1 w
d

pp
wRF

k

#

1
2

1 ,

21

repulsion force of one layer means there are many modules with high power density

or some modules with high power density are closer to each other. No matter what

condition is, high repulsion force of one layer represents there is high probability the

layer has hotspot. Thus, we want high repulsion force occur at upper layer, because

upper layer is close to heat sink. So, we increase the tolerability of repulsion force at

upper layer by the additional weight.

3.2.2 Over-heat Prevention Zone

We use the algorithm introduced previously for 100 random seeds. The worst

case of 100 floorpalns is shown in Figure 15. The hotspot occurs at original point, the

corner of floorplan. This is not condition we except, because we will place modules

with high power density at center by LDZT. So we analyze this condition. There are

two reasons causing the hotspot occurs at original point.

Figure 15. Temperature distribution

 The first reason is we use SP representation to represent floorplan. We will place

modules from bottom-left to top-right by SP representation. Hence, the density of

module of original point (bottom-let corner) will be higher than the other corners, as

shown in Figure 16.

22

Figure 16. Modules are placed by using SP representation.

The other reason is degree of perturbation. Because there are other items in cost

function, all items of cost function determine where the module is placed. Although

the thermal cost want to place module away from corner, other items may not want. In

brief, other items may restrict the degree of perturbation.

In order to let the hotspot be away from original point, we want the modules with

high power density be placed away from original point. We observe the SP

representation. In SP representation, if notation A is always left to notation B in two

sequences (Γ+, Γ-), the location of module A will be left to the location of module B.

Otherwise, if notation A is left to notation B in sequenceΓ+, but it is right to notation

B in sequenceΓ-. In this condition, the module A will be placed above the module B.

Based on this property of SP representation, the notation get closer to left part of

sequences means that the module of this notation get closer to original point

(bottom-left).

After observation of SP representation, we consider the N leftmost rooms in two

sequences as over-heat prevention zone (OHPZ), and N is the zone size. The purpose

of OHPZ is that the modules with high power density cannot be located in OHPZ.

Then, we define over-heat module whose power density is higher than average power

density plus standard deviation of power density. We constrain that the over-heat

module cannot be placed in OHPZ.

23

Chapter 4

Parallel Floorplan Algorithm on

GPGPU
In this chapter, we introduce the way we parallelize the floorplan and how the

parallel algorithm can obtain maximum speedup. As listed in section 1.3, using global

memory will cause large latency, so we have to use it as less as possible. There are

two conditions where we use global memory. One is communication between blocks,

and the other is communication between CPU and GPU. For first condition, the best

way to prevent is that let blocks not to communicate each other. Thus, we let blocks

deal with independent issues. In this way blocks don’t need to communicate each

other. The latter condition can’t be avoided. If CPU doesn’t transmit data to GPU,

there are no data to use for CUDA kernel function. On the other hand, if GPU doesn’t

transmit data to CPU, CPU can’t receive the data which are treated already. Therefore,

we can’t avoid this condition. All we can do is reduce the frequency and quantity of

data of communication.

There are two types of data sent to GPU from CPU. One is the data which do not

change during SA procedure, such as netlist, power density of module, and thermal

resistance. The other one will change during SA procedure, such as location of

modules, and height/width of modules. In order to reduce the frequency of

communication, we send the type one data to GPU once before SA procedure. And

during SA procedure, we only send type two data to GPU to reduce the quantity of

data of communication.

The items of cost function are area, wirelength, TSV count, temperature, and

repulsion force. We consider each item as respective kernel function, because each

item evaluation is suit for different number of blocks and threads.

24

We will introduce the method we parallelize these items in turn.

4.1 Parallel Floorplan – Area

SP representation places modules from bottom-left to top-right. When module is

placed, its location is relative to the modules which are placed already. Thus, the

module is dependent while calculating area.

Because the data are dependent, we can’t divide the algorithm into independent

parts completely. We divide the algorithm by breaking the for-loop as shown in

Algorithm 1, pseudo-code of area evaluation for Parquet 4.5 [38]. After breaking the

for-loop, the pseudo-code is performed be each thread. In this way, the time

complexity of area evaluation becomes O(#modules) from O(#modules2).

25

Algorithm 1. The pseudo-code for area evaluation [38].

Area evaluation

for(i = 1 to #modules)

 match[X[i]].x = i;

 match[Y[i]].y= i;

 Length[i] = 0;

for(i = 1 to #modules)

 b = X[i];

 p = match[b].y;

 Position[b] = Length[p];

 t = Position[b] + weights(b);

 for(j = p to #modules)

 if(t > Length[j]) Length[j] = t;

 else break;

return Length[#modules];

 In this algorithm, the independent elements are x coordinate evaluation, y

coordinate evaluation, and different layers. We can evaluate x coordinate and y

coordinate of each module and module coordinate at different layers simultaneously.

So the number of blocks is 2 × #layers. After the evaluation, we only return the

footprint area to CPU to reduce the communication time (quantity of data of

communication). The module data, like height/width and coordinate, are stored at

global memory, because the shared memory will be clear while the kernel function is

end. The module date we store are used for other kernel function. Like wirelength

evaluation, we need module coordinate to calculate it. Other kernel function all need

module coordinate, so we evaluation area first.

BREAK

26

4.2 Parallel Floorplan – Wirelength and TSV

Count

We deal with these two items by using the same data, netlist, and module

coordinate. In order to reduce the times of communications between shared memory

and global memory, we evaluate these two items in one kernel function together.

 In this algorithm, the independent element is net. Because the wirelength of net

and number of layers the net cross are independent, we can deal with one net by one

thread, the time complexity becomes O(maximum #degrees of a net) from O(total

#degrees). And we sum up the values of each thread to get the total wirelength/TSV

count by tree reduction technique, as shown in Figure 17. By this technique, the time

complexity for addition is becomes O(log#nets) from O(#nets).Finally, we only send

total wirelength and TSV count to CPU.

10 15 7 8 10

18 25

25

7

25

50

Figure 17. Tree reduction technique.

4.3 Parallel Floorplan – Temperature

4.3.1 Power Density Evaluation

The way to evaluate temperature is expressed in Equation (3). Before we

evaluate temperature, we calculate power density first. The power density of the grid

27

is calculated by summation of power density of each module multiplied by its area

ratio, the overlapping area between module and grid divide by grid area, as shown in

Equation (14)

(14)

In Equation (14), gi represents grid i, mj represents module j, Li represents the

layer where grid i reside, Pj represents power density of mj, and ARi,j represents the

area ratio of overlapping between gi and mj.

 Power density evaluations of each grid are independent. We can evaluate it of

different grids simultaneously. One thread deals with one grid, and each grid scans all

modules at layer where grid resides to calculate the power density. Hence, the time

complexity becomes O(#modules) from O(#grids×#modules). In this algorithm,

number of blocks is determined by number of layers, because different layers are

independent element. Besides, we only need the module data with one layer on one

block, so we can let module data with same layer be located at shared memory for

each block.

4.3.2 Temperature Evaluation

After we calculate power density, we calculate the temperature immediately.

Each grid evaluates temperature respectively. Then accumulate the temperature layer

by layer, so the maximum temperature will occur at bottom layer. We use the tree

reduction technique to find maximum temperature. Different from it used by

wirelenght/TSV count, the operation tree reduction technique perform is not addition,

but comparison. It finds maximum temperature by comparing two temperatures

iteratively. So the time complexity becomes O(log#grids) from O(#grids). And we

return the maximum temperature only.





ij Lm

jiji ARpgtyPowerDensi ,)(

28

4.4 Parallel Floorplan – Repulsion Force

Repulsion force evaluations of each module are independent. We use one thread

to calculate the repulsion force of one module. We evaluate repulsion force layer by

layer. The modules with different layers are not used. This is similar to power density

evaluation, so we deal with them in the same way. The number of blocks is

determined by number of layers, due to the usage of shared memory has been

discussed previously.

 The thing each thread operates is scan all modules at one layer to calculate the

repulsion force, so the time complexity is O(#modules) from O(#modules2). Then we

sum up the repulsion force by tree reduction technique, so the time complexity is

O(log#modules) from O(#modules). Finally, we return the total repulsion force only.

29

Chapter 5 Experiments

5.1 Environmental Setup

Partition

Floorplan

Temperature

evaluation

Module

information
netlist

Construct LDZT

SA

Floorplan

result

Thermal

profile

Figure 18. Experiments flow

The largest cases form benchmark GSRC are shown in Table 3. The total flow is

shown in Figure 18 and it is introduced as follow. Before floorplan, we construct

thermal model, LDZT, first. Then, the initial layers where modules reside is

determined by iLap [37]. The flooplanner we use is Parquet 4.5 [38], a 2D

floorplanner, and [39] modify it for 3D floorplan. Next, the experimental settings of

floorplan are shown as follow. The fix-outline constraints we set are 20% whitespace

for 4-layer design and the area ratio is 1. The floorplan algorithm we proposed has

been implemented in C++/Linux environment. Last, we use compact resistive thermal

model for thermal simulation after floorplan, and the details of it are shown in Table

4.

30

Table 3. Benchmarks.

Circuit # of

modules

of

nets

of

pins

Max.

module

Min.

module

Avg.

module

Max. net

degree

Avg. net

degree

n100 100 885 1873 67 61 22 16 43 43 4 2

n200 200 1585 3599 47 48 12 13 30 30 5 2

n300 300 1893 4358 47 48 12 13 30 30 6 2

Table 4. Physical settings.

Physical Settings Value

Ambient temperature 25℃

Thickness Substrate 30

Interconnect sublayer 150

Bonding interface 10

Thinned substrate 2

Thermal

conductivity

Substrate 150

Interconnect sublayer 170

Bonding interface 386

Thinned substrate 20

31

5.2 Experimental Results

In this section, we first show the results of floorplan quality, including area,

wirelength, TSV count, and temperature. Next we present the runtime analysis in the

CUDA platform.

5.2.1 Quality

In this part, we compare our work to related work [29], as shown in following

table. Table 5, Table 6, and Table 7 show the results of circuit of n100, n200, n300

respectively. The first row shows the zone size, and the number of bracket means

zone size / (#modules/#layers). ZT represents Cong’s work [29] without applying

OHPZ technique, which implies the zone size of it is 0. Other columns show the result

of varies zone size in LDZT. In the second row, Max_T means the maximum

temperature of a single floorplan, and the following columns show the

maximum/minimum/average/standard deviation of max_T from floorplans generated

by 100 different random seeds. The last, the bottom two rows show the average

wirelength and TSV count of 100 floorplans.

The Figure 19, Figure 20, and Figure 21 show the distribution of thermal data of

Table 5, Table 6, and Table 7. The top endpoint of line means the maximum of Max_T,

and the bottom endpoint of line means the minimum of Max_T. The label on the line

means the average of Max_T.

32

Table 5. Experimental results – n100.

Zone size ZT 0(0%) 3(10%) 5(20%) 8(30%) 10(40%)

Max_T Std 5.6 5.1 2.8 2.7 2.5 3.0

Max 163.2 160.4 154.6 150.0 151.5 155.3

Min 130.1 133.6 137.2 139.3 135.4 135.1

Avg 148.0 147.0 145.7 144.7 145.0 146.6

WL 131554 131486 130930 131207 131412 131772

TSV 703.2 702.7 699.3 693.4 704.7 701.3

Table 6. Experimental results – n200.

Zone size ZT 0(0%) 5(10%) 10(20%) 15(30%) 20(40%)

Max_T Std 2.7 2.2 1.9 1.7 1.4 1.6

Max 193.8 191.4 191.7 192.1 189.4 189.5

Min 181.3 180.7 178.6 179.8 181.2 179.8

Avg 186.3 185.3 184.6 184.4 184.1 184.5

WL 241258 239184 240007 240083 240619 242574

TSV 1540.4 1527.6 1522.7 1520.0 1516.6 1516.8

Table 7. Experimental results – n300.

Zone size ZT 0(0%) 8(10%) 15(20%) 23(30%) 30(40%)

Max_T Std 2.5 1.6 1.8 1.3 1.2 1.3

Max 203.7 199.1 197.5 196.2 196.7 197.8

Min 189.3 189.1 187.5 189.2 188.9 189.3

Avg 193.7 193.2 192.8 192.7 193.3 193.5

WL 343863 340112 341874 343885 345545 347358

TSV 1592.5 1570.4 1565.6 1566.8 1564.2 1557.2

Figure 19. Thermal data – n100.

33

Figure 20. Thermal data – n200.

Figure 21. Thermal data – n300.

 Observing above data, TSV count and wirelength of our work are similar to

Cong’s work. Next, observing of the thermal issue. In Figure 19 – Figure 21, the

range of the maximum temperatures becomes smaller in our methods. It means our

model is stable; in other words, our method is more insensitive to different seeds. If

the zone size is too small, over-head modules are still closer to bottom-left corner. But

if the zone size is too large, we cannot guarantee the locations of modules in OHPZ

are the places we want. Therefore form the results, the range of zone size we

recommend is 20% – 30%.

 After the analysis of thermal issue, we think that observing maximum

temperature of each floorplan is not enough. If there are two floorplans with the same

maximum temperature, the temperature distribution of one is cool except the hotspot

and the other is hot everywhere. If we only consider maximum temperature, these two

floorplans are the same, but the former is better than the latter obviously. So we

choose grids in bottom layer with top 5% temperature to analyze. The results are

34

shown in Figure 22 – Figure 24. They show the number of grids with top 5%

temperature of Cong’s and our work with 20% zone size. We can see that the number

of grids of our work is less than Cong’s in high temperature range. So our work not

only has lower maximum temperature but only has more uniform temperature

distribution.

Figure 22. Thermal data II – n100.

Figure 23. Thermal data II – n200.

Figure 24. Thermal data II – n300.

5.2.2 Runtime

The following tables and figure show the experimental result of runtime.

CPU/GPU, shown in first row, means the floorplan is operated in CPU or GPU. First

35

column shows the elements of cost function, and the follow columns show the

runtime/runtime ratio/speedup of these items on CPU/GPU. The rightmost column

#Pstr shows the number of streaming processors, this value means ideal upper bound

of speedup. And the Figure 25 show the data of Table 8 – Table 10.

Table 8. Runtime – n100.

 CPU GPU #Pstr

Ratio(%) Time(s) Time(s) Speedup Ratio(%)

Area 11.4 16.9 0.8 21.1 1.9 256

WL 4.2 6.2 1.3 4.8 3.0 64

Temp 81.1 120.1 2.8 42.9 6.6 128

RF 3.3 4.9 1.5 3.3 3.5 128

Total 100.0 148.1 6.4 23.1 – –

Tovh – – 20.8 – 48.8 –

Memcpy – – 15.4 – 36.2 –

Total – 148.1 42.6 3.5 100.0 –

Table 9. Runtime – n200.

 CPU GPU #Pstr

Ratio(%) Time(s) Time(s) Speedup Ratio(%)

Area 8.5 78.9 4.8 16.4 4.4 256

WL 2.6 23.9 4.5 5.3 4.1 64

Temp 85.3 792.6 18.2 43.5 16.6 128

RF 3.6 33.2 9.0 3.7 8.2 128

Total 100.0 928.6 36.5 25.4 – –

Tovh – – 41.8 – 38.1 –

Memcpy – – 31.4 – 28.6 –

Total – 928.6 109.7 8.5 100.0 –

36

Table 10. Runtime – n300.

 CPU GPU #Pstr

Ratio(%) Time(s) Time(s) Speedup Ratio(%)

Area 6.7 190.1 14.4 13.2 6.9 256

WL 1.6 46.1 8.0 5.8 3.8 64

Temp 87.7 2479.6 56.8 43.7 27.3 128

RF 4.0 112.9 27.0 4.2 13.0 128

Total 100.0 2828.7 106.2 26.6 – –

Tovh – – 55.3 – 26.5 –

Memcpy – – 46.9 – 22.5 –

Total – 2828.7 208.4 13.6 100.0 –

(a) (b) (c)

Figure 25. (a) Runtime – n100 (b) Runtime – n200 (c) Runtime – n300.

We can see the speedup of GPU and number of streaming processors are

different. Because the algorithm is not parallel completely and there are drawbacks we

will discuss later on CUDA. First, we discuss the speedup of area. Because we

evaluate coordinates module by module then get the final area when all modules are

done. That is, data are highly dependent, and each thread may idle for each other until

total thread finish their work. Thus, the speedup decrease due to dependent data.

Second, when computing wirelength, because there are a great amount of branch

37

instructions on wirelength evaluation, performance may reduce by CUDA property

we introduced previously. Next, the difference between speedup and number of

streaming processors on temperature evaluation is smaller than it on other evaluations.

This is because the temperature evaluation of each grid is independent, which is

introduced before. Thus, the temperature evaluation has better parallelism than others.

However, the computations done after power density evaluation delay the speed, so

the final speedup gets reduced. Last, we analysis the speedup of repulsion force. In

general, the number of streaming processors is the maximum speedup. Nevertheless,

as we introduce before, the number of divider on each multiprocessor is much fewer

than the number of thread on each multiprocessor, and there is division in repulsion

force evaluation, so the maximum speedup is determined by the total number of

dividers. The total speedup of these evaluation approximate 25. Finally, there are still

communication time and kernel overhead, the final speedup reduce due to these

drawbacks. The time complexity of communication time and kernel overhead increase

linearly with module size, but the time complexity of evaluation increase faster than

module size. Hence, while module size becomes larger, the ratio of runtime of these

two drawbacks to total runtime becomes smaller. This is why the final speedup

becomes larger as larger module size.

38

Chapter 6 Conclusion
In this thesis, we propose a fast location-dependent thermal model, and a

thermal-aware floorplan algorithm. And we implement the algorithm on CPU and

GPGPU.

 LDZT, the fast thermal model we propose, can show the location-dependent

property without runtime increase. Moreover, we also propose two strategies to

prevent generating hotspots. We refine the repulsion force to exclude the module with

high power density. This technique can also compensate the thermal coupling issue

due to omitting lateral thermal resistances in LDZT. And we define a zone, named

over-heat prevention zone, to prevent left-bottom corner of floorplan getting over-heat

during the SA procedure. The over-heat module, whose power density is higher than

average power density by standard deviation of power density, cannot be placed in

this zone. By these strategies, we can reduce the maximum/average temperature and

decrease the number of grid in high temperature range. Additionally, the floorplanner

is insensitive to random seeds, which implies the robustness of our method is quite

good. Finally, we use CUDA to speed up the runtime. We get 3.5X – 13.6X speedup.

The speedup gets significant as the size of the design grows.

39

Reference

[1] “International Technology Roadmap for Semiconductor,” Semiconductor

Industry Association 2005–2010.

[2] G. Metze, M. Khbels, N. Goldsman, and B. Jacob, “Heterogeneous integration,”

Tech Trend Notes, vol. 12, no. 2, p. 3, 2003.

[3] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A.

Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong,

“Three-dimensional integrated circuits,” IBM J. of Research and Development,

vol. 50, no. 4.5, pp. 491–506, Jul. 2006.

[4] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip

design for improving deep submicron interconnect performance and

systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633, May

2001.

[5] R. Tummala and V. Madisetti, “System on chip or system on package?” IEEE

Design & Test of Computers, vol. 16, no. 2, pp. 48–56, Apr.–Jun. 1999.

[6] P. H. Shiu and K. S. Lim, “Multi-layer floorplanning for reliable

system-on-package,” Proc. Int’l Symp. Circuits and System, pp. 23–26, 2004.

[7] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L.

Schaper, “Process integration for through-silicon vias,” J. of Vacuum Science

and Technology A, vol. 23, no. 4, pp. 824–829, Jul. 2005.

[8] SOCcentral. [Online]. Available: http://www.soccentral.com

[9] S. Das, A. P. Chandrakasan, and R. Reif, “Calibration of rent's rule models for

three-dimensional integrated circuits,” IEEE Trans. Very Large Scale Integration

Systems, vol. 12, no. 4, pp. 359–366, Apr. 2004.

[10] A. Rahman and R. Reif, “System-level performance evaluation of

three-dimensional integrated circuits,” IEEE Trans. Very Large Scale Integration

Systems, vol.8, no.6, pp. 671–678, Dec. 2000.

[11] S. Das, A. Fan, K. Chen, C. S. Tan, N. Checka, and R. Reif, “Technology,

performance, and computer-aided design of three-dimensional integrated circuits,”

Proc. Int’l Symp. Physical Design, pp. 108–115, 2004.

[12] I. Kaya, S. Salewski, M. Olbrich, and E. Barke, “Wirelength reduction using 3D

physical design,” Int’l Workshop Integrated Circuit System Design, pp. 453–462,

2004.

[13] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead fault

tolerance scheme for TSV-based 3D network on chip links,” Proc. Int’l Conf.

Computer-Aided Design, pp. 598–602, 2008.

40

[14] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer,

and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,”

IEEE Design & Test of Computers, vol. 22, no. 6, pp. 498–510, Nov.–Dec. 2005.

[15] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” Proc. Design

Automation Conf., pp.101–107, 1986.

[16] R. Otten, “Automatic floorplan design,” Proc. Design Automation Conf.,

pp.261–267, 1982.

[17] Y.-C. Chang, Y.-W. Chang, G.-M.Wu, and S.-W.Wu, “B*-trees: A new

representation for nonslicing floorplans,” Proc. Design Automation Conf., pp.

458–463, 2000.

[18] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement

based on rectangle-packing by the sequence pair”. IEEE Trans. Computer Aided

Design of Integrated Circuits and Systems, vol. 15, no. 12, pp. 1518–1524, Dec.

1996.

[19] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation of

nonslicing floorplan and its applications,” Proc. Design Automation Conf., pp.

268–273, 1999.

[20] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani, and C.-K

Cheng, “Hierarchical 3D floorplanning algorithm for wirelength optimization,”

IEEE Trans. Circuits and Syst.I: Regular Papers, vol. 53, no. 12, pp. 2637–2646,

Dec. 2006.

[21] T. Yan, Q. Dong, Y. Takashima, Y. Kajitani, “How dose partitioning matter for

3D floorplanning,” Proc. ACM Great Lakes symposium on VLSI, pp. 73–78,

2006.

[22] Z. Li, X. Hong, Q. Zhou, S. Zeng, J. Bian, W. Yu, H. H. Yang, V. Pitchumani,

and C.-K. Cheng, “Efficient thermal via planning approach and its application in

3-D floorplanning,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 26, no. 4, pp. 645–658, Apr. 2007.

[23] Z. Li, X-L. Hong, Q. Zhou, S. Zeng, H. Yang, V. Pitchumani, and C-K. Cheng,

“Integrating dynamic thermal via planning with 3D floorplanning algorithm,”

Proc. Int’l Symp. Physical Design, pp. 178–185, 2006.

[24] Y. Huang, Q. Zhou, and Y. Cai, “Thermal via planning aware force-directed

floorplanning for 3D ICs,” Int’l Conf. Application-Specific Integrated Circuit, pp.

751–753, 2009.

[25] E. Wong and S. Lim, “Whitespace redistribution for thermal via insertion in 3D

stacked ICs,” Proc. Int’l Conf. Computer Design, pp. 267–272, 2007.

41

[26] X. Li, Y. Ma, X. Hong, S. Dong, and J. Cong, “LP based white space

redistribution for thermal via planning and performance optimization in 3D ICs,”

Proc. Asia and South Pacific Design Automation Conf., pp. 209–212, 2008.

[27] Y. Chen, H. Zhou, R. Dick, “Integrated circuit white space redistribution for

temperature optimization,” Proc. Int’l Conf. Design, Automation & Test in

Europe, pp. 1–6, 2011.

[28] L. Xiao, S. Sinha, J. Xu, E. Young, “Fixed-outline thermal-aware 3D

floorplanning,” Proc. Int’l Conf. Design Automation Conference, pp. 561–567,

2010.

[29] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm for

3D ICs,” Proc. Int’l Conf. Computer-Aided Design, pp. 306–313, 2004.

[30] J. Kung, I. Han, S. Sapatnekar, and Y. Shin, “Thermal singature: a simple yet

accuate thermal index for floorplan optimization,” Proc. Int’l Conf. Design

Automation Conference, pp. 108–113, 2011.

[31] http://www.nvidia.com/object/cuda_home_new.html

[32] P. Wilkerson, A. Raman, and M. Turowski, “Fast, automated thermal simulation

of three-dimensional integrated circuits,” Int’l Society Conf. on Thermal

Phenomena, vol. 1, pp. 706–713, Jun. 2004.

[33] W. Huang, “HotSpot - A chip and package compact thermal modeling

methodology for VLSI design,” PhD Thesis, ECE, University of Virginia, 2007.

[34] W. K. Chu and W. H. Kao, “A three-dimensional transient electro thermal

simulation system for IC’s,” Proc. Therminic Workshop, pp. 201–207, 1995.

[35] T.-Y. Wang, Y.-M. Lee, and C. C.-P. Chen, “3D thermal-ADI: an efficient

chip-level transient thermal simulator,” Proc. International Symposium Physical

Design, pp. 10–17, 2003.

[36] S. Logan, M. Guthaus, “Fast thermal-aware floorplanning using white-space

optimization,” Proc. Int’l Conf. Very Large Scale Integration, pp. 65–70, 2009

[37] Y-S. Huang, Y.-H. Liu, and J.-D. Huang, “Layer-aware design partitioning for

vertical interconnect minimization,” Proc. IEEE Computer Society Annual Symp.

on VLSI, pp. 144–149, 2011.

[38] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: enabling hierarchical

design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp.

1120–1135, Dec. 2003.

[39] C-Y. Huang, “Efficient TSV planning via congestion-aware block shifting in 3D

floorplanning,” Master Thesis, EE, National Chiao Tung University, 2012.

