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On-The-Fly Capture and Replay Mechanisms for Multi-port Network

Devices in Operational Networks

Student: Yu-An Lin Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

Testing networking devices in the live environment has complex real traffic, but it may
cause network interrupt and cannot reproduce defects. Replaying with real traffic to test
networking devices can reproduce defects, but the effectiveness of defect reproduction is not
high because of the limitation of replay tools and incomplete reconstruction of DUT (Devices
Under Test) states. To keep the high complexity of test traffic and also improve the
effectiveness of defect reproduction, we-design-a new mechanism which can allow DUT to
automatically be online/offline and process multi-port replay for multi-port networking
devices with an OpenFlow switch. We monitor and capture defect traces when the DUT is
online. To save the space, we capture partial payload and limited packet count that are enough
to trigger the defects. When we detect the DUT failure, we let the DUT be offline and replay
defect trace to identify the defect. For efficient defect identification, we process different
reductions for different types of defect. The experimental results show that the partial payload
in the packets of captured defect traces can trigger defects. The first 46 bytes is enough for
Layer-2 devices and the first 154 bytes is sufficient for our Layer-3 device. The packet count
of defect trace depends on the testbed. For defect identification, a reduction based on binary
searching algorithm is proposed to deal with defects caused by the payload anomaly and
defects caused by the busy condition. The downsizing ratio for defects caused by the payload
anomaly is up to 98.8% and the one for defects caused by the busy condition is up to 96%.
For the outage time of the failover during the DUT failure, the minimum outage time is

obtained when the check interval is 1 second and tolerant consecutive failure time is 2.

Keywords: networking devices, failover, OpenFlow switch, multi-port replay, downsizing
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Chapter 1 Introduction

Networking devices are required to be robust, as they are the cornerstone of the Internet.
Networking device testing, which finds out the defects of networking devices and fixes them
before product sale, can improve the correctness and robustness of networking devices. By
observing the behaviors of DUTs (Devices Under Test) in a testbed, engineers can analyze the
defects for debugging. The effectiveness of defect discovery on networking device testing in

diverse testbeds can be different with various traffic, testing approaches and replay tools.
Artificial Traffic vs. Real Traffic

The traffic used in networking device testing can be classified as artificial traffic and
real traffic. The former is generated with protocol modeling [1, 2, 3]. Artificial traffic is easy
to produce test cases for specific protocals; tbut it usually lacks sufficient diversity and
complexity. The latter is captured from live environment [4, 5]. Real traffic contains complex
network scenarios such as peer-to-peer (P2P), streaming, on-line games, etc. These scenarios
are hard to be emulated by modeling, so real traffic is more effective in defect discovery than

artificial traffic.
Live Testing vs. Replay Testing

Two main approaches can be used to test networking devices: live testing and replay
testing. The former deploys DUTs in a real-world environment for testing, while the latter
deploys DUTSs in a closed testbed and replays captured traffic. Live testing is more effective in
defect discovery than replay testing because some defects, such as the defect caused by race
condition, only appear in a specific state of a DUT. Those defects may not be triggered in
replay testing in a different DUT state. Despite the advantage of live testing, the drawbacks
are that the defects are not reproducible, and can cause unexpected network interrupt. Thus
live testing provides little information for defect debugging and influences the service quality.
Although replay testing produces limited defects, it can replay specific defect-triggering
traffic to a DUT many times without influencing the network service quality. Hence, replay

testing is more useful for defect debugging than live testing.

Two-port Replay vs. Multi-port Replay



Replay tools can be stateless or stateful. The stateless tools like TCPreplay [6] and
Tomahawk [7] replay packets based on the timestamps of the packets, but these approaches
are not useful for some DUTs which need to keep the state of each network connection. To
reproduce the behavior of connections, stateful replay tools modify the content of network
trace according to the responses of the DUTs [8-14]. For example, SocketReplay [11] will
produce dummy packets to maintain TCP connections.

Depending on the number of ports on a DUT, the replay can be either two-port or
multi-port. The two-port replay sends traffic from one port to the other through the DUT to
reproduce defects. The aforementioned replay tools are all used for two-port DUTs.
Nonetheless, we may face a problem in multi-port DUT replay: Some defects are triggered by
the interaction of traffic from multiple ports. Replay tools working with two-port DUTs are
unable to reproduce the scenario. If a multi-port DUT is used to replay, splitting the traffic for
each replay port and synchronizing the replay ports during replay are the challenge.

For improving the efficiency and accuracy of multi-port networking device testing, we
focus on defect discovery, replay accuracy and debugging efficiency. How to find defects is
an important issue in networking device testing. Because real traffic is better than artificial
traffic in defect discovery, we capture real traffic through a DUT in live testing. But when the
DUT breaks down, it influences the operational network. In order to reduce the influence of
network interrupt, we need a mechanism to allow traffic bypassing the DUT as soon as
possible. For the replay accuracy, since most replay tools do not work well for multi-port
DUTs, we need a new replay mechanism for multi-port DUTs to reconstruct the defect
scenario as one in live environment. For debugging efficiency, the raw captured packet traces
are usually huge. We need a method to identify the minimum subset of defect-triggering
traffic, so that the storage to save the traffic can be saved and the packet traces of

defect-triggering can be reduced.

In this work, we aim to improve the efficiency and accuracy of networking device testing.
A mechanism, called OFCR (One-The-Fly Capture and Replay), changes the circuit
automatically for defect discovery and reproduction. When a DUT is in a normal state, we
perform live testing for the DUT and buffer real traffic simultaneously. While the DUT breaks
down, we bypass live traffic and shift the DUT to a replay testbed automatically. When the
DUT is in the replay testbed, we use the captured traffic before the breakdown to reproduce

and identify the defect. We implement live traffic bypass and replayed traffic split and mix in



an OF switch (OpenFlow[17] switch) instead of using expensive devices: bypass switch and
aggregator switch. For defect identification, we find a minimum subset of captured trace by

using binary search to keep the least number of packets and the shortest length of payloads.

The remainder of this paper is structured as follows. Chapter 2 presents the background.
Chapter 3 describes the assumption and problem statements, and Chapter 4 describes the
architecture and implementation issues of OFCR. The experimental results and case study are
presented in Chapter 5. Finally, we conclude this work and discuss the future works in
Chapter 6.



Chapter 2 Background

This chapter underlines the overview of networking device testing, as well as the

architecture of OpenFlow network. Finally, it discusses the related works.

2.1 Networking Device Testing

We categorize networking device testing by testing traffic into four types, including
artificial traffic replay testing, live testing, real traffic replay testing and real-time capture and
replay testing. Figure 1 presents the architectures of the networking device testing of the four
types.

—— :connected with traffic flow

! ( Normal mode
-——: connected without traffic flow

Bypass mode

morjitor
check DUT

traffic ggnerator
replay traffic
Intranet

Internet Intérnet

DUT

(a) artificial traffic replay testing

Live mode

repla

replay traffic

Intranet

Internet Internet

(c) real traffic replay testing (d) real-time capture and replay testing

Figure 1: Testing architecture.

Figure 1 (a) presents the artificial traffic replay testing. We deploy the DUT and the
traffic generator in a closed testbed, and the traffic generator will send traffic to the DUT. The
traffic is produced by network debugging tools like SmartBits, Codenomicon, etc. Figure 1 (b)
presents the live testing. This testing deploys DUT in a live environment. To handle network

interrupt when the DUT fails, a monitor is used to check the DUT and a bypass switch is used



to allow traffic bypass the DUT when the DUT failure. Live testing is in the normal mode
when the DUT works correctly. In this mode, the traffic passes through the bypass switch as if
DUT connects to live network directly. When the monitor detects a failure, it will switch to
the bypass mode. In this mode, the ports connected to DUT will close and the traffic will
bypass the DUT. In Figure 1 (c) presents the real traffic replay testing, which is in a closed
testbed. This testing replays traffic captured from a live environment by replay tools like
TCPreplay. Figure 1 (d) presents the real-time capture and replay testing. This testing has two
modes: live mode and replay mode. The live mode is similar to the live mode in live testing,
but the difference is that the machine not only checks the DUT but also buffers live traffic.
When the failure is detected, it will turn to the replay mode. Like live testing, the bypass
switch will allow traffic bypass the DUT. At the same time, the replayer can replay the traces

buffered earlier to reproduce defects for debugging.

Table 1: Comparisons of testing.

Artificial traffic | Live testing | Real traffic replay | Real-time capture
replay testing testing and replay testing
Traffic source Artificial traffic Live traffic Captured trace Live traffic/captured
trace
Network service quality | Yes No Yes No
Traffic complexity Low High Middle Middle - high
Defect reproduction Full completed No Partial completed Most completed
Test case customization | High Low Middle Low

We compare the four types of testing in Table 1. In spite of the simplicity of traffic, the
advantages of artificial traffic replay testing are the ability of reproducing all defects and good
test case customization. The customization of test cases is high because most traffic
generators can configure the property of generated traffic. On the contrary, live testing keeps
the reality of traffic, but it sacrifices service quality for unexpected network interrupts by
DUTs. Moreover, it cannot reproduce the event and has bad test case customization either.
Real traffic replay testing is the compromise between the first two types of testing. It uses
captured real traffic to improve the complexity and keep the ability of defect reproduction.
But the ability of defect reproduction is worse than live testing because of the limitation of
replay tools and replay scenarios. It has good service quality as a closed testbed is used, and
the customization is better than live testing because we can categorize the collected traces into
several groups for testing. Real-time capture and replay testing has better traffic complexity
than real traffic replay testing because it deploys the DUT online to encounter some

un-reproducible defects, and it has better defect reproduction because more similar replay



scenario than real traffic replay testing. But the tradeoff is the network interrupt when the
mode switching. Because the test cases depend on the live traffic, its customization is as low

as live testing.

2.2 OpenFlow Network

OpenFlow is a protocol which provides access to the data plane of networking devices. It
separates the control plane and the data plane, so that the forwarding path of networking
devices can be decided by a remote controller. Administrators can change the network
topology from a software controller, significantly enhancing the flexibility of network traffic

management.

An OpenFlow network consists of two components: OF switch and OF controller. An OF
switch transmits data packets according to a flow table and interacts with the OF controller by
a secure channel. When a packet arrives, the OF switch will check its flow table first. If the
packet does not match any rule in the flow table, it'will be sent to the controller through the
secure channel. The OF controller will make a decision for this packet and add a rule into the
flow table. When the next packet that belongs to the same flow arrives, the OF switch can
handle it by this rule. There are many powerful OF controller implementations like
NOX/POX [18], Beacon [19], Floodlight [20], etc. By programming the controller,

administrators can control traffic as they want.

2.3 Related Works

Some popular traffic capture and traffic replay tools are discussed in this subsection and

their comparisons are summarized in Table 2.

Table 2: Comparisons of capture and replay tools.

Capture Replay Feature
Tcpdump [4] Low volume traffic | N/A Basic traffic capture
Time Machine [5] High volume traffic | N/A Long connection cutoff
SocketReplay [11] High volume traffic | Stateful, 2 ports Long connection cutoff, payload

cutoff, socket connection

TCPreplay [6] N/A Stateless, 2 ports | Divide traffic to server & client
Tomahawk [7] N/A Stateless, 2 ports | Traffic retransmission
Monkey [8] Low volume traffic | Stateful, 2 ports Delay simulation,
TCPopera [9] N/A Stateful, 2 ports TCP state emulation
\olume Control Replay [10] | N/A Stateful, 2 ports Replay traffic volume control




There are several studies related to capture losses and storage space saving. They are all
developed from base traffic capture — Tcpdump[4], which is useful with low volume traffic
but is inefficient with high-speed traffic because of the frequent system interrupts. To reduce
capture losses, many studies use filtering. The study in [5] only records the beginning of all
connections to reduce losses and save storage. The study in [11] improves this approach by
recording only the beginning of all of the connections and the first part of packets.

Replay tools can be either stateless or stateful. Stateless replay tools send traffic
according to the timestamps of packets. TCPreplay [6] can split traces to simulate the
behavior between the server and the client through two interfaces. Tomahawk [7] is similar to
TCPreplay, but it can retransmit packets when the packets are dropped. Stateful replay tools
can keep the states of connections like TCP during replay. SocketReplay [11] maintains the
TCP connection state by creating new socket connections. TCPopera [9] emulates the states
for each TCP connection. Monkey [8] focuses on TCP replay, and it uses the socket interface
to keep the connection state and simulate.the'delays in connections. The study in [10] focuses
on the effectiveness of stateful replay, it can. dynamically change the volume of generated
traffic during replay. To improve the effectiveness of defect reproduction, we need to build a
replay environment which is the-most similar to the defect-triggering environment. Despite
the above replay tools can be used for stateless and stateful devices, they are insufficient to
reconstruct the replay environment for multi-port-networking devices. Because these tools
cannot split traffic during replay, they cannot reproduce some defects caused by the
interaction of multi-port traffic such as the overloads of two different VLANS in a switch.



Chapter 3 Problem Statement

It is obvious that real-time capture and replay testing is effective, but it is not suitable for
multi-port devices because of the limited number of ports in the bypass switch and the replay
tools. The OF switch is a good choice for traffic handling like bypassing the DUT and
splitting during replay. The purpose of this work, namely OFCR, is to combine the real-time
capture and replay testing with the OF switch to construct an effective testing for multi-port
DUTs. This chapter highlights the terminology and assumptions, and then discusses the
problem statement.

3.1 Terminology and Assumptions

In this work, the term traffic is defined as dynamic packet flow in network, and trace is
the static file which records the packet flow. A trace that records the traffic causing failures is
a defect trace. Not all defects can be reproduced because some defects are due to a
non-reproducible scenario like race condition. For a defect trace with reproducible defects, we
call it a defect-triggering trace. Here we classify reproducible defects into two types:
overload defect and protocol defect. Overload -defect is caused by a busy condition in the
DUT such as hardware overload and table overflow, while protocol defect is triggered by

specific content in packets, such as too short or too long payloads and content anomaly.

The procedure in OFCR can be divided into three stages: live mode, live-to-replay
failover and replay mode. Most of the time in OFCR s in the live mode. It records the defect
traces when the DUT fails from a normal state. In order to save the storage, we set thresholds
to limit the number of packets and maximum packet lengths when capturing traffic.
Live-to-replay failover is a transition between the live mode and replay mode. It changes from
live mode to replay mode when the network breaks down due to the DUT failure. It modifies
the flow table in the OF switch to keep the network alive and deploy a multi-port replay
circuit. Similarly, it can change from the replay mode to live mode when the DUT recovers
from the failure. In the replay mode, OFCR replays the defect trace to the multiple ports in the
DUT. If the DUT fails again after replay, then the trace is a defect-triggering trace and OFCR
will process hybrid defect reduction. Hybrid defect reduction contains overload defect

reduction and protocol defect reduction. The former assumes the defect is an overload defect



to operate reduction and the latter assumes the defect is a protocol defect. After these two

reductions finish, we can derive the minimum defect-triggering trace.

Table 3 is the descriptions of the notations used in this work. There are three types of
ports in the OF switch. D; represents the port i to the DUT port U;, P; represents the port i to
live network and R1, R, denote the ports to the two-port replayer. T denotes the defect trace in
traffic capture with total count of packets (connections) ¢ and max packet length 1. Inside T, t;;
represents the last j-th packet (connection) to U;. When the layer of the DUT is less than four,
the unit is packet, otherwise the unit is connection. uc; is the count of packets (connections) to
U;i. The trace used for replaying the defect, T,, is derived from T. Some packets in T are
incomplete because their original length is larger than I. This will reduce the effectiveness of
replay for incomplete packet drop by the network interface, so we process checksum
recalculation for packets in T by packet modification tools [14, 15] to derive T,. When OFCR
operates the hybrid defect reduction, reduced trace To, Tp and Tmin Will be generated. The

notations in the reduction part are used during the hybrid defect reduction.

Table 3: Description of notations.

Categories Notations Description
DUT N The number of ports used to connect network in the DUT
U; Port i used to connect network in the DUT
D; Port i to the DUT in the OF switch
OF switch P; Porti‘to live network in the OF switch
Ri Ry Port to the replayer in the OF switch
T= {ti,j| 1<i<N, 1<j<uc} Captured defect trace, t; jis last j-th packet (connection) to U;
ug; Packet (connection) to port U; in T
c | | Packet (connection) count in T | Max packet length in T
Trace T, = {Tz,j| 1<i<N, 1<j<ucr; } Defect trace for replay, r; ; is last j-th packet (connection) to U;
ucr; Packet (connection) to port U; in T,
Cr | I Packet (connection) count in T, | Max packet length in T,
To Reduced trace by overload defect reduction
Ty Reduced trace by protocol defect reduction
Thmin Minimum trace after reduction
Tin Input trace of packet/payload reduction
Tout Output trace of packet/payload reduction
cin; Packet (connection) to port U; in T;,
cout; Packet (connection) to port U; in Tgy
lin lout Max packet length in T;, | Max packet length in Tgy
Reduction head; Index of the first packet (connection) to U;in T,
tail; Index of the last packet (connection) to U;in T,
cut p Cut unit in packet reduction Cut unit in payload reduction
te ty Threshold in packet reduction | Threshold in payload reduction




3.2 Problem Description

We will face some problems for debugging when dealing with a trace captured during a
period of time before the DUT failure. First, the packet count ¢ and the max packet length | of
trace T may be insufficient to trigger the defects. Second, defects may not be triggered
because the two-port replayer cannot forward traffic to multiple ports U; like the original
defect-triggering scenario. Finally, even though the captured defect trace T, is small, it is not

easy to identify the defect-triggering packets in T,.

The detailed problem description is given as follows. Given a DUT with N ports
connecting to network by an OF switch and a trace T captured when the DUT fails. The
objectives of our work are (1) finding out minimum c and | in T that can triggers defects, (2)
replaying packet ri;j in T, to multiple ports U; on the DUT, and (3) deriving the minimum

defect-identifying trace Ty, from T,.
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Chapter 4 On-The-Fly Capture and Replay Mechanisms (OFCR)

In this chapter, we state the overview of OFCR and the details of each module in OFCR.

Furthermore, we discuss the implementation issues of OFCR.

4.1 Overview of OFCR

As illustrated in Figure 2, the architectures of OFCR are composed of two modes: the
live mode for the DUT normal state and the replay mode for the DUT failure state. In the live
mode, as illustrated in the left part of Figure 2, the OF switch not only forwards bidirectional
traffic between live network (Intranets and Internet) and the DUT but also mirrors traffic to
the RRCA (Remote Replay and Control Agent). The RRCA checks the DUT states and
buffers the mirrored traces. In the right part of Figure 2 is the replay mode. In this mode, OF
switch separates the network into two parts. The_ left part is live network, and the right part is
the multi-port replay network. The RRCA extracts the defect traces from the buffered traces,
and then replays them to the DUT. To process multi-port replay on different layer DUTSs,
OFCR uses existing two-port replay tools and splits replayed traffic on the OF switch. If the
defects can be triggered by multi-port replay, OFCR-will process defect identification to find
the minimum defect-triggering trace. Defect identification uses hybrid defect reduction
involving overload defect reduction and ‘protocol defect reduction. The hybrid defect
reduction processes the above two reductions sequentially to identify defects. Finally, we

derive the minimum defect-triggering traces from the results of hybrid defect reduction.

Live mode Replay mode R
o
S RRCA
|
o |
\ traffic capture ! traffic replay
%DQ Xy |
Il. I‘i.. | \
traffic | \
Intranet 1 Intranet bypass
§ OF Switth
N N ‘In
SI N

Intranet N Intranet N

——: connected with traffic flow
-——: connected without traffic flow

Figure 2: Architecture of OFCR.
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The mechanism switching between the two modes is called live-to-replay failover. The
major objective of live-to-replay failover is to recover from network interrupt caused by the
DUT failure in the live mode as soon as possible. The details of live-to-replay failover will be

discussed later.

All modules worked in RRCA are shown in Figure 3. In the live mode, two modules are
active, the buffer module and the check module. The buffer module is used to buffer the
mirrored traces, and the check module checks the DUT state. When the OFCR s in the replay
mode, there are four modules operating including the check module, the capture module, the
replay module and the reduction module. The check module is the only module used in both
modes. The capture module is used to store the defect traces. The replay module processes
multi-port replay and the reduction module identifies the defect in the defect trace. Finally, the
bypass module doesn’t belong to the live mode or replay mode, it processes live-to-replay
failover.

Remote replay & control agent (RRCA)

Buffer Check
module module
Reduction Capture
module module
Replay Bypass
module module

Figure 3: Architecture of RRCA.
Bypass Module

Live-to-replay failover is operated by the bypass module in OFCR. The bypass module
changes the flow table in the OF switch based on the mode of OFCR. The OF switch forwards
incoming packets from port P; to Dj, so that packets pass through the DUT for testing in the
live mode, where P; is port i to live network and D; is port i to the DUT in OF switch. When
OFCR switches to the replay mode because of the DUT failures, the bypass module needs to
cut off the connections between P; and D; and builds a backup circuit. Therefore, a
pre-defined configuration file is essential for the bypass module to modify rules in the flow

table to let packets pass through ports P;.

Figure 4 is an example of live-to-replay failover. The DUT connects to two dorms and
Internet through an OF switch. The entries in the flow table are one-to-one mapping between

P; and D; in the live mode. But there is no entry between Djand P; in the replay mode, the

12



entries about D; will be introduced in the replay module. The bypass module will build the
rules of relationship between P; by a pre-defined configuration file.

Live mode Replay mode

OF switch OF switch
Dorm Dorm
140.113.248.254/24 A | 1 & U 140.113.248 254/24 A
Dorm =3 [ DUT Dorm 3
140.113.244.254/24 | 12 ] 140.113.244.254/24 i
Internet Tg '73 Us Internet A

flow table entry

in_port Py, actions = out : D,
in_port P, actions = out : D,
in_port Ps, actions = out : Ds
in_port Dy, actions = out : P,
in_port D5, actions = out : P,
in_port Ds, actions = out : P;

flow table entry

in_port Py,
in_port Py,
in_port P,
in_port P,
in_port Ps,
in_port Ps,

nw_dst=140.113.244.254/24, actions = out
actions = out : Ps
nw_dst=140.113.248.254/24, actions = out :
actions = out : P
nw_dst=140.113.248.254/24, actions = out :
nw_dst=140.113.244.254/24, actions = out : P,

P

Py

Figure 4: Example of live-to-replay failover.

4.2 OFCR Live Mode

Figure 5 presents the component behavior in the ' OFCR live mode. There are two main

components: check module and buffer module.- The check module monitors the DUT states
and records the states. The buffer-module records mirrored traffic T from P; on the OF switch.

The trace T will be reserved for a-while. If the DUT keeps -normal, this trace will be removed

to save the storage.

RRCA
Buffer Check
; module module
|
_ " Reduction Capture
mirror | module module
trace 7
| Replay Bypass
. module module monitor
|
|
C—i control
b1~ bua i
| Dorm 1 I L 4
A & Dy L
Il DUT
O S Nused
Dorm 2 4
[Eom2 F—=4—+—15 G| ports
|
|
= DN U/v
Pv| " OF switch
— : data flow
: control flow
— -+ = :mirror flow

Figure 5: OFCR live mode.
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Check Module

The check module is responsible to check the status of DUT by probing the DUT to be
explained in subsection 4.4. To collect information for the defects, the check module accesses
and records the DUT states in several ways like SNMP and console port. The states can be
categorized into common states and specific states. The former states are CPU usage, memory
usage, bandwidth usage and error logs. The latter states depend on the layer of the DUT, and
can be the MAC table and the ARP table in switches, and the ARP table and the routing table

in routers.
Buffer Module

The buffer module captures mirrored traffic T continually with ¢ packets (connections)
and the maximum packet length | bytes. The capture size has a tradeoff between memory
storage and defect effectiveness. The packet count ¢ influences the defect reproduction and
memory space, and the maximum packet.length | influences the defect reproduction and
packet losses. The capture size depends on the traffic volume of the testbed and the layer of
DUT. Because common networking devices only have 1~4. ports for traffic mirror, it is easy to
encounter the bandwidth overload problem on mirror port. The buffer module can apply
many-to-many mirroring by setting the flow table rules in the OF switch. This approach can
resolve the bandwidth overload problem to generate ‘less packet losses and also allocate
diverse mirror groups for the intranet and ‘internet to reduce the overhead of replay

pre-processing.
4.3 OFCR Replay Mode

Figure 6 is the components in the OFCR replay mode. The four major components in this
mode: check module, capture module, replay module and reduction module. The check
module does the same job as it is in the live mode, it is used to determine the effectiveness of
the defect trace replay. The capture module extracts the defect trace T, from buffer module in
the live mode. The replay module forwards packet r;; to different ports D; in order to transmit
to the proper ports U; in the DUT, where r;j is last j-th packet (connection) to the DUT port U;
in T;. The reduction module downsizes the defect-triggering trace T, to derive the minimum
trace Tnin. According to the type of the defect, the reduction module uses different reduce

approaches.
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RRCA

Buffer Check
module module
Reduction Capture
module module
T
Replay Bypass
replayrtrace module module monitor

tnr ~ tuen, | | B2 ~ uuery 81~ B

Rl R control

A\ \\ & U
DUT
A \ N ports

2

\ Dy 17/
OF switch

Pn

: data flow
: control flow

Figure 6: OFCR replay mode.
Capture Module

The capture module extracts-the defect trace from the buffered trace T. The defect trace
T, has the same capture size ¢, = ¢, |, =.I. The packet (connection) count to DUT port U; ucr;
may not be equal to uc; because the-DUT ports for replay can be different from the live mode
when processing multi-port replay. The maximum packet length | may produce incomplete
packets during capturing, so the capture module needs to recalculate the checksum of each
packet in T, to derive packet ri;.

Replay Module

The replay module replays T, to trigger defects. To reconstruct similar scenario as the
DUT in the live mode, we replay each packet in T, to the original DUT port as the live mode,
ucr; = crj for i = 1...N. It splits T, into the Intranet side and Internet side, and then replays T,
from ports R; and R, depending on which side the packet (connection) belongs. To forward
packets r;; to the corresponding port D;, the OF switch splits incoming packets by source IP
addresses. The relations between source IP addresses and ports also need to be defined in a
pre-defined configuration file. Figure 7 is the example of the replay module. There are two
dorms in the live mode, so the OF switch splits the packets from R; to D; and D, by their

subnets.
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; Replay mode
Live mode OF switch PRy OF switch
Dor RRCA
140.113.248.254/24 | A | [ &) 4 2 4
Dorm side
(140.113.248.254/24, R
140.113.244.254/24)
Dorm = Ny DUT DUT
140,113 244.254/24 | 7 | 2] o ) u
Internet 3 D] U Internet side &, | D] Us

flow table entry

in_port Py, actions = out : D,
in_port P,, actions = out : D
in_port P, actions = out : Dj
in_port Dy, actions = out : P,
in_port D5, actions = out : P,
in_port Ds, actions = out : P3

Reduction Module

flow table entry

in_port D, actions = out : R,

in_port D,, actions = out : R,

in_port D3, actions = out : R,

in_port R,, actions = out : Dj

in_port R;, nw_src=140.113.248.254/24, actions = out : D,
in_port R;, nw_src=140.113.244.254/24, actions = out : D,

Figure 7: Example of replay module.

The reduction module identifies defect-triggering traces by hybrid defect reduction. It

assumes the defect is overload defect and protocol defect, and then applies the overload defect

reduction and the protocol defect reduction respectively. As illustrated in the left part of

Figure 8, the hybrid defect reduction processes two reductions sequentially and derives two

reduced trace T, and Tp. The reduced traces T, and T, are generated by the overload defect

reduction and protocol defect reduction. \We can determine-Tni, by comparing the traces To, T,

and the original defect trace T,.

Hybrid Defect Reduction

Start

Overload
defect
reduction
v
Protocol
defect
reduction

Overload Defect Reduction Protocol Defect Reduction

To=T;
v

Payload
Reduction

v

Packet

S
/{D =T, & \Yes

T,=T.

Tmin = Tr

Reduction

No

Tmin=ToUT,

A

End

I

(et )

LT
v

Packet
Reduction

v

Payload
Reduction

End

Figure 8: Reduction module procedure.
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There are two situations to derive the minimum trace Tpin. (1) If To = Trand T, = Ty, it
means that T, is not a defect-triggering trace or T, is the minimum defect-triggering trace with
no redundant packets. So we set Tmiy as T;. (2) Otherwise, we keep both reduced traces Tpin =
To U T,. Because two reduced trace T, and Ty, may be different in packet (connection) count

and max packet length, we preserve both traces to maintain more information for debugging.

In the right part of Figure 8 is the procedure of the overload defect reduction and the
protocol defect reduction. Because the overload defects are usually caused by too many
packets and the number of defect-triggering packets is unclear, when we process the reduction
of packets, the results will be quite different each time. Therefore, to minimize the size of
reduced trace, the overload defect reduction removes redundant payloads first, and then
concentrates on reducing packet count. In contract, protocol defects are caused by a single or
a few packets. To save processing time of replay in reduction, the protocol defect reduction
downsizes the number of packets first and then finds critical parts of payloads.

Figure 9 is the flowchart of packet reductionand payload reduction with binary search.
The input trace of the reduction is Tj,, the-trace Tij is the subset of T, and has two properties
cinjand lin. cin; presents packet (connection) count through DUT port U; and i, means the max
packet length. The output trace of the reduction Is To... Similarly, Ty has coutjand I,y These
two reductions have cut units cut or p-respectively, and they have thresholds t; and t,
respectively to stop the reduction. When the cut unit meets the threshold, the reduction stops
and generates Toy Packet reduction removes redundant packets before/after the
defect-triggering part. We use head; and tail; to present the indexes of the first and the last
packet (connection) to port i in the reduced trace Ti,, the packet with index between head; and
tail; will keep in Toy. The left part of packet reduction in the figure deals with the packet
reduction before the defect-triggering part, and the right part handles the reduction after the
defect-triggering part. When the layer of devices is larger than 3, the cut unit cut changes to
connection. The packet reduction will cut entire connection during reduction because
incomplete connection cannot reproduce the connection state. The procedure of payload
reduction is simpler than the one of packet reduction, because it only reduces the max packet

length of the reduced trace Tjp.
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Packet Reduction Payload Reduction

y > cut: cut unit of packet(connection) i D
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head; = 0, tail; = cin; -1 ¢ oy Y ax le . e
— : > tail; = tail; - cut Max lengt hy"'“ p: partition(byte)
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_~Trigger~ No
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Figure 9: Packet reduction and payload reduction.
4.4 Implementation Issues

In this subsection, we discuss the implementation issues on traffic capture and failure
detection. The captured traffic may. lose packets in the. mirror module in the networking
devices and capture interfaces in RRCA. Common-networking devices only have 1~4 ports
supported for traffic mirroring. The traffic volume of mirrored ports is easy to exceed the
bandwidth of mirror port. To reduce packet losses in that situation, we use the OF switch to
deploy several mirror ports. For packet losses on network interfaces in the RRCA, we add
memory and use an improved traffic capture tool, Gulp [21]. Gulp uses ring-buffer and
allocates the packet reader and writer in different CPUs to reduce packet losses. Furthermore,
the buffer module records traces by add a number which is in a loop in the end of trace file
name, it is used to prevent the situation that the defect-triggering packets are recorded in the
end of the first trace and the beginning of the second trace, but because we buffer a single

trace at a time, we only get the second trace finally.

Failure detection is important because it is the key of mode switching in RRCA. The tool
used in the check module is called CheckDev which is developed by NBL [22]. It sends ARP,
ICMP and HTTP requests to the DUT so as to probe the DUT status. Moreover, it retrieves
the detailed DUT states by the SNMP and console ports. Because of the diverse commands in

console port for different DUTSs, we write specific scripts by Expect [23] to dump the state
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information from the DUT. Another implementation issue in the failure detection is the failure
criteria. If the failure criteria are too loose, we will lose some defect traces; otherwise, we will
get more defect traces and process more live-to-replay failover. There may be some normal
traces in the defect traces. It is hard to distinguish normal traces and un-reproducible defect
traces from defect traces because they both don’t trigger any failure when replay. The check
module implements the failure criteria by three parameters: check interval, check timeout and
tolerant consecutive failure time. We use these three parameters to control live-to-replay

failover and keep the effectiveness of defect traces.
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Chapter 5 Experiments and Result Analysis

The experiment environment and results will be discussed in this section. In 5.1, we
introduce the details about the used testbed in this work. Then we discuss the experimental
results from the perspectives of the venders and users. Finally, we analyze the cases about the
defect traces.

5.1 Experiment Testbed

The defects triggering in live environment are un-custom. It is hard to collect the defects
of specific protocol on specific DUT efficiently, so we use debugging tools to generate
specific protocol traffic for DUT used in the experiments. If the generated traffic triggers a
defect on the DUT and it can trigger defect by replaying, we capture it as a defect-triggering
trace for the experiments. For the reproduction of experiments, we also capture a period of
dorm traffic as a normal trace used in the experiments. The testbed is presented in Figure 10.
The testbed is composed of two steps.. The first step is collecting normal/defect-triggering
traffic which is in both sides of the figure. The left side is.normal traffic collection. We mirror
the dorm traffic in NCTU BetaSite as the normal traffic.- The right side is defect-triggering
traffic collection. Here we use the debugging tools TestCenter and Codenomicon to trigger
DUT defects and capture the defect-triggering traffic. The DUTs we used are ZyXEL
GS-2750 and SuperMicro SSE-G24-TG4..ZyXEL GS-2750 is an L2 (Layer-2) switch,
SuperMicro SSE-G24-TG4 is an L3 (Layer-3) router and the RRCA is a PC which is
equipped with Intel i3-2130 processor, 8GB memory and 9 network interfaces. After finishing
normal and defect-triggering traffic collections, we conduct the experiments as the middle
part of Figure 10. Because the OF switch TL-WR1043ND is a SOHO AP, it is not capable of
handling captured dorm traffic. We use small traffic to process multi-port replay and
live-to-replay failover with the OF switch. We process multi-port replay by sending traffic
from RRCA to OF switch, then the OF switch passes traffic to the DUT. The connectivity
tester is used to measure the effectiveness of live-to-replay failover. We process live-to-replay
failover experiments by replaying defect-triggering traces from RRCA to the DUT directly
and at the same time probing the connectivity tester though the OF switch. The OF switch
transmits the probe messages to the connectivity tester directly or through the DUT according
to the DUT state. We use the RRCA and the DUT without the OF switch for the experiments

about the traffic capture and traffic reduction because the traffic can overload the OF switch.
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The details of the normal traces and defect-triggering traces are shown in Table 4. The
normal traces are collected from the dorm-9-and 12 in NCTU dorm network. To generate
different scale testbeds, we capture the normal traces in-one dorm (dorm 9) and two dorms
(dorm 9, 12). The protocol defect traces with IP payload anomalies on ZyXEL switch and the
OSPF payload anomalies on SuperMicro router are produced by Codenomicon. IP payload
anomalies are packets with anomalous fields in-the 1P header, and OSPF payload anomalies
are packets with anomalous fields in the OSPF-packet. The overload defect traces on ZyXEL
switch are generated by TestCenter, and they have two types: dense ARP requests and dense
ICMP requests. Dense ARP requests are used to overflow the MAC table, and dense ICMP

requests are used to overflow the ARP table. These two traces can overflow the MAC table

normal | :
traffic |

traffic

Internet

| | replay
: traffic
mirror |

RRCA ~
\

N .
monijtor
\

\ traffic
N\

traffic
.

TestCenter Codengmicon

triggering

trigger defect

Figure 10: Experimental environment.

and the ARP table in ZyXEL switch.

Table 4: Test traces.

Type Trace count Average size Packet count
Two-dorm traffic Normal 1 918.5MB 818,970
One-dorm traffic Normal 1 446.3MB 368,238
IP payload anomaly Protocol 10 144.7MB 873
Dense ARP requests Overload 1 72.1MB 540,012
Dense ICMP requests Overload 1 864KB 6,331
OSPF payload anomaly Protocol 3 20.3KB 243

To simulate defect-triggering traffic in the live network, we mix a normal trace and a
defect-triggering trace. The procedure of traffic mix is replaying a normal trace and a

defect-triggering trace to the DUT simultaneously, and capturing them as a defect trace from
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the DUT. For L2 devices, we have 12 mixed defect traces for one-dorm environment and 12
for two-dorm environment. For one-dorm/two-dorm environment, these mixed defect traces
combine a normal traffic with 10 IP payload anomaly traces, a dense ARP requests trace and a
dense ICMP requests trace, so there are 10 protocol defect-triggering traces and 2 overload
defect-triggering traces in these 12 mixed defect traces. For L3 devices, we only have 3 OSPF
payload anomaly traces. After traffic mix of a two-dorm normal trace and an OSPF anomaly

trace, we derive 3 protocol defect-triggering traces for L3 devices.

5.2 Experimental Results

We view the experimental results from the perspectives of the vender side and user side
in this subsection. For venders, they care about the effective capture size in the OFCR live
mode, the diversity of reduction for different types of defects and the efficiency of reduction
thresholds in the OFCR replay mode. For users, the only thing they are concerned about is the
outage time during the OFCR live-to-replay failover, so we show the relationship between the

failure criteria and the outage time.
Capture Size

The capture size is the first-.we need to decide when. starting OFCR. The parameters ¢
and | influence the effectiveness and size of captured defect traces. We try to find the optimal
capture size ¢ and | to balance the above two-things for different layers DUTs. The results of
L2 switch ZyXEL GS-2750 in the one-dorm and two-dorm environments are presented in
Figure 11 and 12, and those of L3 router SuperMicro SSE-G24-TG4 is shown in Figure 13.

Figure 11 presents the effectiveness of defect reproduction for different packet count ¢
and max packet length | in two-dorm testbed. The results show that the first 46 bytes of
payload (only ARP/ICMP headers) are enough to trigger all defects. Moreover, capturing
10,000 packets in a trace is sufficient to keep the all protocol defect-triggering packets and
50,000 packets in a trace can keep all defect-triggering packets in 12 mixed defect traces. This
is because the overload defect traces need many packets to break down the DUT, packet count
¢ = 50,000 is enough to capture all defect-triggering packets. When I is less than 46 bytes, we
can find out that it can reproduce only one overload defect trace with ¢ > 50,000. This is
because this overload defect is triggered by too many broadcast packets. Even though these

captured broadcast packets only include their IP headers, they still can paralyze the DUT.
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Figure 11: Capture size of L2 switch in a two-dorm testbed.

We also test the L3 SuperMicro router by these 12 mix defect traces in two-dorm testbed.
And we find out that 10 protocol-defect traces are-not effective because they are defects
specific to the ZyXEL switch, but two overload defect traces still can trigger the defects when
| is 46 bytes and c is 50000. So we capture traffic with max packet length | = 46 bytes is

enough to keep the defects for L2 devices.

Figure 12 shows that the results of L2 switch in one-dorm environment. The difference
between Figure 12 and Figure 11 is the traffic scale of the environment, and the other factors
in these experiments are the same. Because the traffic volume in the one-dorm environment is
much smaller than the two-dorm environment, we can reproduce all two overload defect
traces with ¢ = 10,000 rather than 50,000 in the two-dorm environment and the reproduction
effectiveness of protocol defect trace improves slightly in ¢ = 3,000 and 5,000. To reproduce
all protocol defect traces, the capture size of packet count ¢ is 10,000 and the max packet
length | is 46 bytes. And when the capture packet count ¢ = 10,000 with max packet length | =
46 bytes can also reproduce all overload defect traces. Therefore, capturing 10,000 packets in
a trace and max packet length 46 bytes is enough to reproduce all 12 defect-triggering traces

in one-dorm environment.
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Figure 12: Capture size-of L2 switch in a one-dorm testbed.

Figure 13 is the results of L3 router in the two-dorm-environment. There are only three
protocol defect traces in this experiment.-\\WWe need to capture the first 154 bytes to trigger the
protocol defects. These protocol defects are triggered by LS (Link State) Update packets in
the OSPF, and the OSPF component of the DUT is unable to handle the inconsistency of
fields in OSPF packets after it processes LSAs (Link State Advertisement) information after
LSA header in the LS Update packet. Because these protocol defects need OSPF payload to
trigger defects, the max packet length | depends on max LSA of the router. In our experiment,

the SuperMicro router needs first 154 bytes to trigger defects.

reproduced trace count Protocol Defect
3 max packet length |
m 34 (IP header)
2 42 (ICMP header)
1 m 58 (OSPF header)
I] m 78 (OSPF+LSA header)
0
1000 3000 5000 10000 50000 100000 o4 (IEMPpayload)
m 65535 (max IP packet)
packet count ¢

Figure 13: Capture size of L3 router in a two-dorm testbed.
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Diversity of Reductions

Because of different properties of the protocol and overload defects, a single reduction
will not be suitable for both types of defects. To evaluate the effectiveness of the different
reductions, we compare them by the processing time and the downsizing ratio. The processing
time is the time from receiving the trace to finishing, and the downsizing ratio represents the

relationship between the size of the trace after reduction and that of the original defect trace.

- .. . d dt i
The formula is expressed as downsizing ratio = 1 — — 22 222

original defect trace size’

We compare five reductions in the OFCR with the protocol defects and overload defects
in Figure 14 and 15. The original defect traces have 50,000 packets and the max packet length
is 1,522 bytes. The reduction thresholds t. and t, are 1,000 and 10 bytes, respectively.

o ] m Protocol Defect Overload Defect
downsizing ratio
100% 98.8 98.8 98.8
96.0 96.0
0, I
95% 92.0 91.6
0nH - I
90% 87.3
ofn - I
85% 82.6
80% - 9.1 -
75% T T T T T 1
Packet Payload Protocol Defect  Overload Hybrid Defect
Reduction Reduction Reduction Defect Reduction
Reduction

Figure 14: Downsizing ratio of reductions.

In Figure 14, we can find that the packet reduction and payload reduction are not good
on trace downsizing. The protocol defect reduction and overload defect reductions have the
same downsizing ratio (98.8%) on the protocol defects, but the overload defect reduction has
better downsizing ratio on the overload defects up to 96%. The hybrid defect reduction
chooses the best result from the protocol defect reduction and overload defect reduction, so it

certainly has the best downsizing ratio.
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Figure 15: Processing time of reductions.

Figure 15 shows the results of processing time of different reductions. The processing
time of the protocol defects is longer than.that of the overload defects in each reduction. The
reason is that there are a few defect-triggering packets in the protocol defect traces, so
protocol defect traces need to take-more turns to replay the reduced trace during the reduction.
Because the packet count influences the replay time significantly, the packet reduction and
protocol defect reduction which reduces packet-counts first will take shorter processing time
than other reductions. However, considering the downsizing ratio, protocol defect reduction is
more efficient than packet reduction because it takes additional 200 seconds to reduce more
6% of the size (up to 98% for protocol defect). But the downsizing ratio of the protocol defect
reduction is not sufficient for overload defect (91%), the overload defect reduction spends
more 230 seconds to remove additional 4% of the size (up to 96%). The processing time of
the hybrid defect reduction is the longest because it is the sum of protocol defect reduction

and overload defect reduction.
Efficiency of Reduction Thresholds

The efficiency of the reduction is controlled by t. and t,, which are the thresholds of the
cut unit for packet count and the max packet length, respectively. The results of choosing
diverse thresholds in the hybrid defect reduction are presented in Figure 16. The defect traces
are also with 50,000 packets and max packet length 1522 bytes. Large thresholds t. and t, will
save the processing time but lower the downsizing ratio. However, when the thresholds t. and

t, are too small, the processing time increases significantly but the downsizing ratio rises
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limitedly. Given the thresholds t. is 5,000, 1,000 and 500, t, is 50, 10 and 5, we can derive the
best downsizing ratio 98.8% when t; < 1,000 (2% of packet count) and t, < 10.
Considering the processing time, the reduction is the most efficient when t; = 1,000 and t, =
10.

downsizing ratio (%) ® Downsizing Ratio Processing Time processing time (sec)

99.0% 1400

98.8% - - 1200
0f -

98.6% 1000

98.4%

| - 800
98.2% -
- 600
98.0% -
97.8% - F 400
97.6% - - 200
97.4% - : : : 0

(500,5) (500, 10) (500, 50) (1000, 5) (1000, 10)(1000, 50)(5000, 5) (5000, 10)(5000, 50)
(t t)

Figure 16: The efficiency of reduction thresholds.
Outage Time vs. Failure Criteria

The defects affect different parts of the' DUT. Some defects make the DUT fail slightly,
and the DUT can recover from the failure by itself in a short period of time. Some defects
break down the DUT, and the DUT cannot be recovered until the administrators reboot it. The
outage time is the time when the OFCR spends for switching from live to replay mode during
the DUT failure and from replay to live mode when DUT recovers. The connections of users
will be disconnected in this period. To reduce the outage time, we detect a failure with
different check intervals, tolerant consecutive failure times. The tolerant consecutive failure
time is the threshold of the DUT consecutive failure time in a specific check interval and
response times, the live-to-replay failover will execute when the DUT consecutive failure
time exceeds it. The response timeout is the waiting time for the reply of the probing request.
Figure 17 presents the results of different check intervals and tolerant consecutive failure
times with 1 second response timeout. Two situations occur in the experiment, a defect
triggers in the experiment and no defect triggers in the experiment. The leftmost bar presents
the outage time without failover (19 seconds), which is the real failure time of the DUT. We
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can find out that most failure criteria can reduce the outage time except (7, 3). With the same
tolerant consecutive failure time, the smaller check interval is, the less outage time is. Small
tolerant consecutive failure time can also reduce outage time, but it is better to larger than one.
If the tolerant consecutive failure time is one, we may presume a DUT failure because of the
incomplete reply packets or packet losses, and then process meaningless live-to-replay

failover.

outage time (sec) m Defect Trigger mNo Defect Trigger

25
20

15 -

10 -

: I

0 - : : : : :

no (1,2 (21 (@13 (1) B2 @GB3 (B2 (3 (72 (73
failover

(check interval, # tolerant consecutive failure)

Figure 17: Outage time-under different failure criteria.

5.3 Case Studies

In this subsection, we interpret the protocol defect traces in the test traces. When we use
Codenomicon to test ZyXEL switch with-IP.anomaly traces, the ICMP module of the switch
crashes but the switch itself does not detect it. Under no error logs, we try to analyze the
packets in the IP anomaly defect trace, and find out that the anomaly is on the flags and

fragment offset. Figure 18 is the details about the IP anomalies.

Figure 18 (a) is the anomaly in the flags field of the IP header. The first bit in the flags
field is a reserved bit and it should be 0, but here it is 1. Figure 18 (b) is the anomaly which
combines the flags and fragment offset anomalies in the IP header. The more bit in the flags
field is set to 1 which means there is another fragment, but the value of fragment offset is the
maximum value. It is impossible to have another fragment after this packet. This anomaly is
hard to be detected because if we check these two fields separately, both of them are correct in

that field. However, they become an anomaly when they appear together.
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Frame 29868: 167 bytes on wire (1336 bits), 167 by
Ethernet II, Src: Oa:cO:de:f4:ce:d4a (0a:cO:de:f4:(
Internet Protocol version 4, Src: 192.168.100.150

Frame 29668: 167 bytes on wire (1336 bits), 167 Dy
Ethernet II, Src: Oa:cO:de:f4:ce:4a (0a:cO:de:f4:q
[Internet Protocol version 4, Src: 192.168.100.150

version: 4
Header length: 20 bytes
# Differentiated Services Field: 0x00 (DSCP 0x00:
Total Length: 153
Identification: 0x0001 (1)
Liae

. = Reserved bit:

version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00:
Total Length: 153

Identification: 0x0001 (1)

5 Flags: 0x03 (pon't Fragment) (More Fragments)
Set 0 . = Reserved bit: Not set

+

.0.. .... = pon't fragment: Not set MO 7 fragment: Set
..0. .... = More fragments: Not set 1 = More fragments: Set
Fragment offset: 8192 Fr;&.ént o' set: 65528 :
= W il Wi SedWine :WWab: Ve
(a) flag anomaly (b) flag and fragment offset anomaly

Figure 18: The example of IP anomaly.

Although the logs in the DUT have no error messages, we still can analyze the defects by
accessing other DUT states. We find out that there is no overflow in any tables, and the CPU
and memory are not at the busy states. Combining with the information and the behavior of
the DUT failure, we can conjecture that a single anomalous packet may generate an exception
but it does not break down the relevant component in the DUT. However, consecutive packets
of IP fragment anomaly could break down the component because of the queues for fragment
buffer. Therefore, the protocol defects may_be not just caused by a single anomalous packet.
They could be generated by a sequence of anomalous. packets which is much less than the

number of packets triggering overload defects.
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Chapter 6 Conclusions and Future Works

The proposed OFCR mechanism collects real traffic in live network and reproduces
defects in replay environment, also implements multi-port replay to simulate the situation
which a defect happens in multi-port networking devices. There are live mode and replay
mode in the OFCR architecture. In the live mode, the OF switch passes live network traffic to
the DUT and mirrors the traffic to the RRCA. OFCR switches to the replay mode when
detecting the DUT failure. The OF switch lets the live traffic bypass the DUT and connects
the DUT to the RRCA to replay the captured defect trace to the proper DUT ports. If the
defect can be reproduced, the OFCR processes the defect identification by hybrid defect

reduction.

Venders care about the ability and efficiency of defect reproduction, diversity of
reduction and reduction thresholds. It is«shown that the capture size for defect reproduction
only needs first parts of packets and the packet-count is based on the traffic volume of the
testbed. Our results show that first 46 bytes of packet is enough for L2 devices and max
packet length is specific to the L3 device, first 154 bytes-is sufficient for our L3 router, and
the 10,000 packets are required for our .one-dorm testbed and 50,000 packets are required for
our two-dorm testbed. For reductions used-in defect identification, protocol defect reduction is
specific to protocol defects (98.8%), and the overload defect reduction is specific to overload
defects (96%). Hybrid defect reduction processes the protocol defect reduction and overload
defect reduction individually to get the best downsizing ratio and more information for
debugging. The reduction thresholds influence downsizing ratio and processing time. Our
results show that the thresholds are 10 bytes for packet length and 1,000 for packets (2% of
total packet counts) have the best downsizing ratio and the least processing time on our defect
traces. Finally, the only thing which the users care is the outage time. The setting that the
check interval is 1 second and the tolerant consecutive failure time is 2 derives the minimum

outage time.

We plan to test more upper layer DUTs to find suitable capture size for them in the future.
Improving the accuracy of failure detection is a direction of our future work. So far CheckDev
only sends ARP, ICMP and HTTP requests to probe the DUT, but sometimes specific

component in the DUT breaks down and the DUT can still serve those probe messages. In this
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condition, CheckDev cannot detect the DUT failure, so the functionality of CheckDev should
be expanded to support more types of service probing like IGMP, RIP. Moreover, some
failures are caused by the medium not the DUT, and it is impossible to reproduce this kind of
failure by replaying traffic to the DUT. We hope to develop a checking mechanism on the OF
switch to detect the failure of medium between the DUT and RRCA.
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