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在營運網路中多埠網通設備之即時捕捉與重播機制 

 

學生: 林昱安                               指導教授: 林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

 利用真實環境測試網路設備可以得到複雜的真實測試流量，但缺點是可能造成網路

中斷且錯誤無法重製。而透過重播真實流量測試網路設備可以重製錯誤，但因為流量重

播工具的限制以及不完整的待測物狀態重建導致不佳的錯誤重製率。為了保留複雜的測

試流量及提升錯誤重製率，我們設計一個新機制，它使用 OpenFlow switch 對待測物進

行自動上/下線與多埠流量重播。當待測物在線上時，此機制對待測物進行監控並捕捉錯

誤流量。為了節省空間，我們只捕捉足夠觸發錯誤的封包長度及封包數量。當待測物下

線時，便重播錯誤流量以進行錯誤標示。我們針對不同類型的錯誤使用不同的減量方式

以有效率地進行錯誤標示。實驗結果顯示，錯誤流量的捕捉只需保留封包的部分內容便

可觸發錯誤。針對第二層設備，保留封包前 46 bytes 就足夠觸發錯誤；而我們的第三層

設備只需留下前 154 bytes。封包數量則是依測試環境而異。在錯誤標示方面，我們針對

封包欄位造成的錯誤及超載造成的錯誤設計減量方式，這個減量方式是以二元搜尋法為

基礎。我們提出的減量方式對封包欄位造成的錯誤之縮減比率高達 98.8%、超載造成的

錯誤可達96%。對於因待測物下線而造成的服務中斷時間，我們發現在監控間距為 1秒、

容許連續錯誤次數為 2 次時，進行待測物下線能最有效地降低服務中斷時間。 

 

關鍵字：網路設備、故障轉移、OpenFlow switch、多埠重播、減量 
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On-The-Fly Capture and Replay Mechanisms for Multi-port Network 

Devices in Operational Networks 

 

Student: Yu-An Lin                    Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

Testing networking devices in the live environment has complex real traffic, but it may 

cause network interrupt and cannot reproduce defects. Replaying with real traffic to test 

networking devices can reproduce defects, but the effectiveness of defect reproduction is not 

high because of the limitation of replay tools and incomplete reconstruction of DUT (Devices 

Under Test) states. To keep the high complexity of test traffic and also improve the 

effectiveness of defect reproduction, we design a new mechanism which can allow DUT to 

automatically be online/offline and process multi-port replay for multi-port networking 

devices with an OpenFlow switch. We monitor and capture defect traces when the DUT is 

online. To save the space, we capture partial payload and limited packet count that are enough 

to trigger the defects. When we detect the DUT failure, we let the DUT be offline and replay 

defect trace to identify the defect. For efficient defect identification, we process different 

reductions for different types of defect. The experimental results show that the partial payload 

in the packets of captured defect traces can trigger defects. The first 46 bytes is enough for 

Layer-2 devices and the first 154 bytes is sufficient for our Layer-3 device. The packet count 

of defect trace depends on the testbed. For defect identification, a reduction based on binary 

searching algorithm is proposed to deal with defects caused by the payload anomaly and 

defects caused by the busy condition. The downsizing ratio for defects caused by the payload 

anomaly is up to 98.8% and the one for defects caused by the busy condition is up to 96%. 

For the outage time of the failover during the DUT failure, the minimum outage time is 

obtained when the check interval is 1 second and tolerant consecutive failure time is 2. 

 

Keywords: networking devices, failover, OpenFlow switch, multi-port replay, downsizing 
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Chapter 1 Introduction 

  

 Networking devices are required to be robust, as they are the cornerstone of the Internet. 

Networking device testing, which finds out the defects of networking devices and fixes them 

before product sale, can improve the correctness and robustness of networking devices. By 

observing the behaviors of DUTs (Devices Under Test) in a testbed, engineers can analyze the 

defects for debugging. The effectiveness of defect discovery on networking device testing in 

diverse testbeds can be different with various traffic, testing approaches and replay tools. 

Artificial Traffic vs. Real Traffic 

The traffic used in networking device testing can be classified as artificial traffic and 

real traffic. The former is generated with protocol modeling [1, 2, 3]. Artificial traffic is easy 

to produce test cases for specific protocols, but it usually lacks sufficient diversity and 

complexity. The latter is captured from live environment [4, 5]. Real traffic contains complex 

network scenarios such as peer-to-peer (P2P), streaming, on-line games, etc. These scenarios 

are hard to be emulated by modeling, so real traffic is more effective in defect discovery than 

artificial traffic. 

Live Testing vs. Replay Testing 

 Two main approaches can be used to test networking devices: live testing and replay 

testing. The former deploys DUTs in a real-world environment for testing, while the latter 

deploys DUTs in a closed testbed and replays captured traffic. Live testing is more effective in 

defect discovery than replay testing because some defects, such as the defect caused by race 

condition, only appear in a specific state of a DUT. Those defects may not be triggered in 

replay testing in a different DUT state. Despite the advantage of live testing, the drawbacks 

are that the defects are not reproducible, and can cause unexpected network interrupt. Thus 

live testing provides little information for defect debugging and influences the service quality. 

Although replay testing produces limited defects, it can replay specific defect-triggering 

traffic to a DUT many times without influencing the network service quality. Hence, replay 

testing is more useful for defect debugging than live testing. 

Two-port Replay vs. Multi-port Replay 
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 Replay tools can be stateless or stateful. The stateless tools like TCPreplay [6] and 

Tomahawk [7] replay packets based on the timestamps of the packets, but these approaches 

are not useful for some DUTs which need to keep the state of each network connection. To 

reproduce the behavior of connections, stateful replay tools modify the content of network 

trace according to the responses of the DUTs [8-14]. For example, SocketReplay [11] will 

produce dummy packets to maintain TCP connections. 

Depending on the number of ports on a DUT, the replay can be either two-port or 

multi-port. The two-port replay sends traffic from one port to the other through the DUT to 

reproduce defects. The aforementioned replay tools are all used for two-port DUTs. 

Nonetheless, we may face a problem in multi-port DUT replay: Some defects are triggered by 

the interaction of traffic from multiple ports. Replay tools working with two-port DUTs are 

unable to reproduce the scenario. If a multi-port DUT is used to replay, splitting the traffic for 

each replay port and synchronizing the replay ports during replay are the challenge. 

 For improving the efficiency and accuracy of multi-port networking device testing, we 

focus on defect discovery, replay accuracy and debugging efficiency. How to find defects is 

an important issue in networking device testing. Because real traffic is better than artificial 

traffic in defect discovery, we capture real traffic through a DUT in live testing. But when the 

DUT breaks down, it influences the operational network. In order to reduce the influence of 

network interrupt, we need a mechanism to allow traffic bypassing the DUT as soon as 

possible. For the replay accuracy, since most replay tools do not work well for multi-port 

DUTs, we need a new replay mechanism for multi-port DUTs to reconstruct the defect 

scenario as one in live environment. For debugging efficiency, the raw captured packet traces 

are usually huge. We need a method to identify the minimum subset of defect-triggering 

traffic, so that the storage to save the traffic can be saved and the packet traces of 

defect-triggering can be reduced. 

 In this work, we aim to improve the efficiency and accuracy of networking device testing. 

A mechanism, called OFCR (One-The-Fly Capture and Replay), changes the circuit 

automatically for defect discovery and reproduction. When a DUT is in a normal state, we 

perform live testing for the DUT and buffer real traffic simultaneously. While the DUT breaks 

down, we bypass live traffic and shift the DUT to a replay testbed automatically. When the 

DUT is in the replay testbed, we use the captured traffic before the breakdown to reproduce 

and identify the defect. We implement live traffic bypass and replayed traffic split and mix in 
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an OF switch (OpenFlow[17] switch) instead of using expensive devices: bypass switch and 

aggregator switch. For defect identification, we find a minimum subset of captured trace by 

using binary search to keep the least number of packets and the shortest length of payloads.  

 The remainder of this paper is structured as follows. Chapter 2 presents the background. 

Chapter 3 describes the assumption and problem statements, and Chapter 4 describes the 

architecture and implementation issues of OFCR. The experimental results and case study are 

presented in Chapter 5. Finally, we conclude this work and discuss the future works in 

Chapter 6. 
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Chapter 2 Background 

   

This chapter underlines the overview of networking device testing, as well as the 

architecture of OpenFlow network. Finally, it discusses the related works. 

2.1 Networking Device Testing 

 We categorize networking device testing by testing traffic into four types, including 

artificial traffic replay testing, live testing, real traffic replay testing and real-time capture and 

replay testing. Figure 1 presents the architectures of the networking device testing of the four 

types.  

 

Figure 1: Testing architecture. 

 Figure 1 (a) presents the artificial traffic replay testing. We deploy the DUT and the 

traffic generator in a closed testbed, and the traffic generator will send traffic to the DUT. The 

traffic is produced by network debugging tools like SmartBits, Codenomicon, etc. Figure 1 (b) 

presents the live testing. This testing deploys DUT in a live environment. To handle network 

interrupt when the DUT fails, a monitor is used to check the DUT and a bypass switch is used 
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to allow traffic bypass the DUT when the DUT failure. Live testing is in the normal mode 

when the DUT works correctly. In this mode, the traffic passes through the bypass switch as if 

DUT connects to live network directly. When the monitor detects a failure, it will switch to 

the bypass mode. In this mode, the ports connected to DUT will close and the traffic will 

bypass the DUT. In Figure 1 (c) presents the real traffic replay testing, which is in a closed 

testbed. This testing replays traffic captured from a live environment by replay tools like 

TCPreplay. Figure 1 (d) presents the real-time capture and replay testing. This testing has two 

modes: live mode and replay mode. The live mode is similar to the live mode in live testing, 

but the difference is that the machine not only checks the DUT but also buffers live traffic. 

When the failure is detected, it will turn to the replay mode. Like live testing, the bypass 

switch will allow traffic bypass the DUT. At the same time, the replayer can replay the traces 

buffered earlier to reproduce defects for debugging. 

Table 1: Comparisons of testing. 

 Artificial traffic 

replay testing 

Live testing Real traffic replay 

testing 

Real-time capture 

and replay testing 

Traffic source Artificial traffic Live traffic Captured trace Live traffic/captured 

trace 

Network service quality Yes No Yes No 

Traffic complexity Low High Middle Middle - high 

Defect reproduction Full completed No Partial completed Most completed 

Test case customization High Low Middle Low 

 

We compare the four types of testing in Table 1. In spite of the simplicity of traffic, the 

advantages of artificial traffic replay testing are the ability of reproducing all defects and good 

test case customization. The customization of test cases is high because most traffic 

generators can configure the property of generated traffic. On the contrary, live testing keeps 

the reality of traffic, but it sacrifices service quality for unexpected network interrupts by 

DUTs. Moreover, it cannot reproduce the event and has bad test case customization either. 

Real traffic replay testing is the compromise between the first two types of testing. It uses 

captured real traffic to improve the complexity and keep the ability of defect reproduction. 

But the ability of defect reproduction is worse than live testing because of the limitation of 

replay tools and replay scenarios. It has good service quality as a closed testbed is used, and 

the customization is better than live testing because we can categorize the collected traces into 

several groups for testing. Real-time capture and replay testing has better traffic complexity 

than real traffic replay testing because it deploys the DUT online to encounter some 

un-reproducible defects, and it has better defect reproduction because more similar replay 
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scenario than real traffic replay testing. But the tradeoff is the network interrupt when the 

mode switching. Because the test cases depend on the live traffic, its customization is as low 

as live testing. 

2.2 OpenFlow Network 

 OpenFlow is a protocol which provides access to the data plane of networking devices. It 

separates the control plane and the data plane, so that the forwarding path of networking 

devices can be decided by a remote controller. Administrators can change the network 

topology from a software controller, significantly enhancing the flexibility of network traffic 

management. 

 An OpenFlow network consists of two components: OF switch and OF controller. An OF 

switch transmits data packets according to a flow table and interacts with the OF controller by 

a secure channel. When a packet arrives, the OF switch will check its flow table first. If the 

packet does not match any rule in the flow table, it will be sent to the controller through the 

secure channel. The OF controller will make a decision for this packet and add a rule into the 

flow table. When the next packet that belongs to the same flow arrives, the OF switch can 

handle it by this rule. There are many powerful OF controller implementations like 

NOX/POX [18], Beacon [19], Floodlight [20], etc. By programming the controller, 

administrators can control traffic as they want. 

2.3 Related Works 

 Some popular traffic capture and traffic replay tools are discussed in this subsection and 

their comparisons are summarized in Table 2. 

Table 2: Comparisons of capture and replay tools. 

 Capture Replay Feature 

Tcpdump [4] Low volume traffic N/A Basic traffic capture 

Time Machine [5] High volume traffic N/A Long connection cutoff 

SocketReplay [11] High volume traffic Stateful, 2 ports Long connection cutoff, payload 

cutoff, socket connection 

TCPreplay [6] N/A Stateless, 2 ports Divide traffic to server & client 

Tomahawk [7] N/A Stateless, 2 ports Traffic retransmission 

Monkey [8] Low volume traffic Stateful, 2 ports Delay simulation, 

TCPopera [9] N/A Stateful, 2 ports TCP state emulation 

Volume Control Replay [10] N/A Stateful, 2 ports Replay traffic volume control 
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There are several studies related to capture losses and storage space saving. They are all 

developed from base traffic capture – Tcpdump[4], which is useful with low volume traffic 

but is inefficient with high-speed traffic because of the frequent system interrupts. To reduce 

capture losses, many studies use filtering. The study in [5] only records the beginning of all 

connections to reduce losses and save storage. The study in [11] improves this approach by 

recording only the beginning of all of the connections and the first part of packets. 

 Replay tools can be either stateless or stateful. Stateless replay tools send traffic 

according to the timestamps of packets. TCPreplay [6] can split traces to simulate the 

behavior between the server and the client through two interfaces. Tomahawk [7] is similar to 

TCPreplay, but it can retransmit packets when the packets are dropped. Stateful replay tools 

can keep the states of connections like TCP during replay. SocketReplay [11] maintains the 

TCP connection state by creating new socket connections. TCPopera [9] emulates the states 

for each TCP connection. Monkey [8] focuses on TCP replay, and it uses the socket interface 

to keep the connection state and simulate the delays in connections. The study in [10] focuses 

on the effectiveness of stateful replay, it can dynamically change the volume of generated 

traffic during replay. To improve the effectiveness of defect reproduction, we need to build a 

replay environment which is the most similar to the defect-triggering environment. Despite 

the above replay tools can be used for stateless and stateful devices, they are insufficient to 

reconstruct the replay environment for multi-port networking devices. Because these tools 

cannot split traffic during replay, they cannot reproduce some defects caused by the 

interaction of multi-port traffic such as the overloads of two different VLANs in a switch. 
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Chapter 3 Problem Statement 

 

It is obvious that real-time capture and replay testing is effective, but it is not suitable for 

multi-port devices because of the limited number of ports in the bypass switch and the replay 

tools. The OF switch is a good choice for traffic handling like bypassing the DUT and 

splitting during replay. The purpose of this work, namely OFCR, is to combine the real-time 

capture and replay testing with the OF switch to construct an effective testing for multi-port 

DUTs. This chapter highlights the terminology and assumptions, and then discusses the 

problem statement. 

3.1 Terminology and Assumptions 

 In this work, the term traffic is defined as dynamic packet flow in network, and trace is 

the static file which records the packet flow. A trace that records the traffic causing failures is 

a defect trace. Not all defects can be reproduced because some defects are due to a 

non-reproducible scenario like race condition. For a defect trace with reproducible defects, we 

call it a defect-triggering trace. Here we classify reproducible defects into two types: 

overload defect and protocol defect. Overload defect is caused by a busy condition in the 

DUT such as hardware overload and table overflow, while protocol defect is triggered by 

specific content in packets, such as too short or too long payloads and content anomaly. 

 The procedure in OFCR can be divided into three stages: live mode, live-to-replay 

failover and replay mode. Most of the time in OFCR is in the live mode. It records the defect 

traces when the DUT fails from a normal state. In order to save the storage, we set thresholds 

to limit the number of packets and maximum packet lengths when capturing traffic. 

Live-to-replay failover is a transition between the live mode and replay mode. It changes from 

live mode to replay mode when the network breaks down due to the DUT failure. It modifies 

the flow table in the OF switch to keep the network alive and deploy a multi-port replay 

circuit. Similarly, it can change from the replay mode to live mode when the DUT recovers 

from the failure. In the replay mode, OFCR replays the defect trace to the multiple ports in the 

DUT. If the DUT fails again after replay, then the trace is a defect-triggering trace and OFCR 

will process hybrid defect reduction. Hybrid defect reduction contains overload defect 

reduction and protocol defect reduction. The former assumes the defect is an overload defect 



 

9 

to operate reduction and the latter assumes the defect is a protocol defect. After these two 

reductions finish, we can derive the minimum defect-triggering trace. 

Table 3 is the descriptions of the notations used in this work. There are three types of 

ports in the OF switch. Di represents the port i to the DUT port Ui, Pi represents the port i to 

live network and R1, R2 denote the ports to the two-port replayer. T denotes the defect trace in 

traffic capture with total count of packets (connections) c and max packet length l. Inside T, ti,j 

represents the last j-th packet (connection) to Ui. When the layer of the DUT is less than four, 

the unit is packet, otherwise the unit is connection. uci is the count of packets (connections) to 

Ui . The trace used for replaying the defect, Tr, is derived from T. Some packets in T are 

incomplete because their original length is larger than l. This will reduce the effectiveness of 

replay for incomplete packet drop by the network interface, so we process checksum 

recalculation for packets in T by packet modification tools [14, 15] to derive Tr. When OFCR 

operates the hybrid defect reduction, reduced trace To, Tp and Tmin will be generated. The 

notations in the reduction part are used during the hybrid defect reduction. 

Table 3: Description of notations. 

Categories Notations Description 

DUT N The number of ports used to connect network in the DUT 

Ui Port i used to connect network in the DUT 

 

OF switch 

Di Port i to the DUT in the OF switch 

Pi Port i to live network in the OF switch 

R1, R2 Port to the replayer in the OF switch 

 

 

 

 

Trace 

𝑇 = {𝑡𝑖,𝑗| 1 ≤ 𝑖 ≤ 𝑁,   1 ≤ 𝑗 ≤ 𝑢𝑐𝑖 } Captured defect trace, ti, j is last j-th packet (connection) to Ui 

uci Packet (connection) to port Ui in T 

c l Packet (connection) count in T Max packet length in T 

𝑇𝑟 = {𝑟𝑖,𝑗 | 1 ≤ 𝑖 ≤ 𝑁,   1 ≤ 𝑗 ≤ 𝑢𝑐𝑟𝑖 } Defect trace for replay, ri,,j is last j-th packet (connection) to Ui 

ucri Packet (connection) to port Ui in Tr 

cr lr Packet (connection) count in Tr Max packet length in Tr 

To Reduced trace by overload defect reduction 

Tp Reduced trace by protocol defect reduction 

Tmin Minimum trace after reduction 

 

 

 

 

 

Reduction 

Tin Input trace of packet/payload reduction 

Tout Output trace of packet/payload reduction 

cini Packet (connection) to port Ui in Tin 

couti Packet (connection) to port Ui in Tout 

lin lout Max packet length in Tin Max packet length in Tout 

headi Index of the first packet (connection) to Ui in Tr 

taili Index of the last packet (connection) to Ui in Tr 

cut p Cut unit in packet reduction Cut unit in payload reduction 

tc tp Threshold in packet reduction Threshold in payload reduction 
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3.2 Problem Description 

 We will face some problems for debugging when dealing with a trace captured during a 

period of time before the DUT failure. First, the packet count c and the max packet length l of 

trace T may be insufficient to trigger the defects. Second, defects may not be triggered 

because the two-port replayer cannot forward traffic to multiple ports Ui like the original 

defect-triggering scenario. Finally, even though the captured defect trace Tr is small, it is not 

easy to identify the defect-triggering packets in Tr.  

The detailed problem description is given as follows. Given a DUT with N ports 

connecting to network by an OF switch and a trace T captured when the DUT fails. The 

objectives of our work are (1) finding out minimum c and l in T that can triggers defects, (2) 

replaying packet ri,j in Tr to multiple ports Ui on the DUT, and (3) deriving the minimum 

defect-identifying trace Tmin from Tr. 
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Chapter 4 On-The-Fly Capture and Replay Mechanisms (OFCR) 

  

In this chapter, we state the overview of OFCR and the details of each module in OFCR. 

Furthermore, we discuss the implementation issues of OFCR. 

4.1 Overview of OFCR 

 As illustrated in Figure 2, the architectures of OFCR are composed of two modes: the 

live mode for the DUT normal state and the replay mode for the DUT failure state. In the live 

mode, as illustrated in the left part of Figure 2, the OF switch not only forwards bidirectional 

traffic between live network (Intranets and Internet) and the DUT but also mirrors traffic to 

the RRCA (Remote Replay and Control Agent). The RRCA checks the DUT states and 

buffers the mirrored traces. In the right part of Figure 2 is the replay mode. In this mode, OF 

switch separates the network into two parts. The left part is live network, and the right part is 

the multi-port replay network. The RRCA extracts the defect traces from the buffered traces, 

and then replays them to the DUT. To process multi-port replay on different layer DUTs, 

OFCR uses existing two-port replay tools and splits replayed traffic on the OF switch. If the 

defects can be triggered by multi-port replay, OFCR will process defect identification to find 

the minimum defect-triggering trace. Defect identification uses hybrid defect reduction 

involving overload defect reduction and protocol defect reduction. The hybrid defect 

reduction processes the above two reductions sequentially to identify defects. Finally, we 

derive the minimum defect-triggering traces from the results of hybrid defect reduction. 

 

Figure 2: Architecture of OFCR. 
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The mechanism switching between the two modes is called live-to-replay failover. The 

major objective of live-to-replay failover is to recover from network interrupt caused by the 

DUT failure in the live mode as soon as possible. The details of live-to-replay failover will be 

discussed later. 

All modules worked in RRCA are shown in Figure 3. In the live mode, two modules are 

active, the buffer module and the check module. The buffer module is used to buffer the 

mirrored traces, and the check module checks the DUT state. When the OFCR is in the replay 

mode, there are four modules operating including the check module, the capture module, the 

replay module and the reduction module. The check module is the only module used in both 

modes. The capture module is used to store the defect traces. The replay module processes 

multi-port replay and the reduction module identifies the defect in the defect trace. Finally, the 

bypass module doesn’t belong to the live mode or replay mode, it processes live-to-replay 

failover. 

 

Figure 3: Architecture of RRCA. 

Bypass Module 

 Live-to-replay failover is operated by the bypass module in OFCR. The bypass module 

changes the flow table in the OF switch based on the mode of OFCR. The OF switch forwards 

incoming packets from port Pi to Di, so that packets pass through the DUT for testing in the 

live mode, where Pi is port i to live network and Di is port i to the DUT in OF switch. When 

OFCR switches to the replay mode because of the DUT failures, the bypass module needs to 

cut off the connections between Pi and Di and builds a backup circuit. Therefore, a 

pre-defined configuration file is essential for the bypass module to modify rules in the flow 

table to let packets pass through ports Pi. 

 Figure 4 is an example of live-to-replay failover. The DUT connects to two dorms and 

Internet through an OF switch. The entries in the flow table are one-to-one mapping between 

Pi and Di in the live mode. But there is no entry between Di and Pi in the replay mode, the 
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entries about Di will be introduced in the replay module. The bypass module will build the 

rules of relationship between Pi by a pre-defined configuration file.  

 

Figure 4: Example of live-to-replay failover. 

4.2 OFCR Live Mode 

 Figure 5 presents the component behavior in the OFCR live mode. There are two main 

components: check module and buffer module. The check module monitors the DUT states 

and records the states. The buffer module records mirrored traffic T from Pi on the OF switch. 

The trace T will be reserved for a while. If the DUT keeps normal, this trace will be removed 

to save the storage. 

 

Figure 5: OFCR live mode. 
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Check Module 

 The check module is responsible to check the status of DUT by probing the DUT to be 

explained in subsection 4.4. To collect information for the defects, the check module accesses 

and records the DUT states in several ways like SNMP and console port. The states can be 

categorized into common states and specific states. The former states are CPU usage, memory 

usage, bandwidth usage and error logs. The latter states depend on the layer of the DUT, and 

can be the MAC table and the ARP table in switches, and the ARP table and the routing table 

in routers. 

Buffer Module 

 The buffer module captures mirrored traffic T continually with c packets (connections) 

and the maximum packet length l bytes. The capture size has a tradeoff between memory 

storage and defect effectiveness. The packet count c influences the defect reproduction and 

memory space, and the maximum packet length l influences the defect reproduction and 

packet losses. The capture size depends on the traffic volume of the testbed and the layer of 

DUT. Because common networking devices only have 1~4 ports for traffic mirror, it is easy to 

encounter the bandwidth overload problem on mirror port. The buffer module can apply 

many-to-many mirroring by setting the flow table rules in the OF switch. This approach can 

resolve the bandwidth overload problem to generate less packet losses and also allocate 

diverse mirror groups for the intranet and internet to reduce the overhead of replay 

pre-processing. 

4.3 OFCR Replay Mode 

Figure 6 is the components in the OFCR replay mode. The four major components in this 

mode: check module, capture module, replay module and reduction module. The check 

module does the same job as it is in the live mode, it is used to determine the effectiveness of 

the defect trace replay. The capture module extracts the defect trace Tr from buffer module in 

the live mode. The replay module forwards packet ri,j to different ports Di in order to transmit 

to the proper ports Ui in the DUT, where ri,j is last j-th packet (connection) to the DUT port Ui 

in Tr. The reduction module downsizes the defect-triggering trace Tr to derive the minimum 

trace Tmin. According to the type of the defect, the reduction module uses different reduce 

approaches. 
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Figure 6: OFCR replay mode. 

Capture Module 

 The capture module extracts the defect trace from the buffered trace T. The defect trace 

Tr has the same capture size cr = c, lr = l. The packet (connection) count to DUT port Ui ucri 

may not be equal to uci because the DUT ports for replay can be different from the live mode 

when processing multi-port replay. The maximum packet length l may produce incomplete 

packets during capturing, so the capture module needs to recalculate the checksum of each 

packet in Tr to derive packet ri,j. 

Replay Module 

 The replay module replays Tr to trigger defects. To reconstruct similar scenario as the 

DUT in the live mode, we replay each packet in Tr to the original DUT port as the live mode, 

ucri = cri for i = 1…N. It splits Tr into the Intranet side and Internet side, and then replays Tr 

from ports R1 and R2 depending on which side the packet (connection) belongs. To forward 

packets ri,j to the corresponding port Di, the OF switch splits incoming packets by source IP 

addresses. The relations between source IP addresses and ports also need to be defined in a 

pre-defined configuration file. Figure 7 is the example of the replay module. There are two 

dorms in the live mode, so the OF switch splits the packets from R1 to D1 and D2 by their 

subnets. 
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Figure 7: Example of replay module. 

Reduction Module 

 The reduction module identifies defect-triggering traces by hybrid defect reduction. It 

assumes the defect is overload defect and protocol defect, and then applies the overload defect 

reduction and the protocol defect reduction respectively. As illustrated in the left part of 

Figure 8, the hybrid defect reduction processes two reductions sequentially and derives two 

reduced trace To and Tp. The reduced traces To and Tp are generated by the overload defect 

reduction and protocol defect reduction. We can determine Tmin by comparing the traces To, Tp 

and the original defect trace Tr. 

 

Figure 8: Reduction module procedure. 
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There are two situations to derive the minimum trace Tmin. (1) If To = Tr and Tp = Tr, it 

means that Tr is not a defect-triggering trace or Tr is the minimum defect-triggering trace with 

no redundant packets. So we set Tmin as Tr. (2) Otherwise, we keep both reduced traces Tmin = 

To ∪ Tp. Because two reduced trace To and Tp may be different in packet (connection) count 

and max packet length, we preserve both traces to maintain more information for debugging. 

In the right part of Figure 8 is the procedure of the overload defect reduction and the 

protocol defect reduction. Because the overload defects are usually caused by too many 

packets and the number of defect-triggering packets is unclear, when we process the reduction 

of packets, the results will be quite different each time. Therefore, to minimize the size of 

reduced trace, the overload defect reduction removes redundant payloads first, and then 

concentrates on reducing packet count. In contract, protocol defects are caused by a single or 

a few packets. To save processing time of replay in reduction, the protocol defect reduction 

downsizes the number of packets first and then finds critical parts of payloads. 

Figure 9 is the flowchart of packet reduction and payload reduction with binary search. 

The input trace of the reduction is Tin, the trace Tin is the subset of Tr and has two properties 

cini and lin. cini presents packet (connection) count through DUT port Ui and lin means the max 

packet length. The output trace of the reduction is Tout. Similarly, Tout has couti and lout. These 

two reductions have cut units cut or p respectively, and they have thresholds tc and tp 

respectively to stop the reduction. When the cut unit meets the threshold, the reduction stops 

and generates Tout. Packet reduction removes redundant packets before/after the 

defect-triggering part. We use headi and taili to present the indexes of the first and the last 

packet (connection) to port i in the reduced trace Tin, the packet with index between headi and 

taili will keep in Tout. The left part of packet reduction in the figure deals with the packet 

reduction before the defect-triggering part, and the right part handles the reduction after the 

defect-triggering part. When the layer of devices is larger than 3, the cut unit cut changes to 

connection. The packet reduction will cut entire connection during reduction because 

incomplete connection cannot reproduce the connection state. The procedure of payload 

reduction is simpler than the one of packet reduction, because it only reduces the max packet 

length of the reduced trace Tin. 
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Figure 9: Packet reduction and payload reduction. 

4.4 Implementation Issues 

 In this subsection, we discuss the implementation issues on traffic capture and failure 

detection. The captured traffic may lose packets in the mirror module in the networking 

devices and capture interfaces in RRCA. Common networking devices only have 1~4 ports 

supported for traffic mirroring. The traffic volume of mirrored ports is easy to exceed the 

bandwidth of mirror port. To reduce packet losses in that situation, we use the OF switch to 

deploy several mirror ports. For packet losses on network interfaces in the RRCA, we add 

memory and use an improved traffic capture tool, Gulp [21]. Gulp uses ring-buffer and 

allocates the packet reader and writer in different CPUs to reduce packet losses. Furthermore, 

the buffer module records traces by add a number which is in a loop in the end of trace file 

name, it is used to prevent the situation that the defect-triggering packets are recorded in the 

end of the first trace and the beginning of the second trace, but because we buffer a single 

trace at a time, we only get the second trace finally. 

 Failure detection is important because it is the key of mode switching in RRCA. The tool 

used in the check module is called CheckDev which is developed by NBL [22]. It sends ARP, 

ICMP and HTTP requests to the DUT so as to probe the DUT status. Moreover, it retrieves 

the detailed DUT states by the SNMP and console ports. Because of the diverse commands in 

console port for different DUTs, we write specific scripts by Expect [23] to dump the state 
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information from the DUT. Another implementation issue in the failure detection is the failure 

criteria. If the failure criteria are too loose, we will lose some defect traces; otherwise, we will 

get more defect traces and process more live-to-replay failover. There may be some normal 

traces in the defect traces. It is hard to distinguish normal traces and un-reproducible defect 

traces from defect traces because they both don’t trigger any failure when replay. The check 

module implements the failure criteria by three parameters: check interval, check timeout and 

tolerant consecutive failure time. We use these three parameters to control live-to-replay 

failover and keep the effectiveness of defect traces. 
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Chapter 5 Experiments and Result Analysis 

 The experiment environment and results will be discussed in this section. In 5.1, we 

introduce the details about the used testbed in this work. Then we discuss the experimental 

results from the perspectives of the venders and users. Finally, we analyze the cases about the 

defect traces. 

5.1 Experiment Testbed 

 The defects triggering in live environment are un-custom. It is hard to collect the defects 

of specific protocol on specific DUT efficiently, so we use debugging tools to generate 

specific protocol traffic for DUT used in the experiments. If the generated traffic triggers a 

defect on the DUT and it can trigger defect by replaying, we capture it as a defect-triggering 

trace for the experiments. For the reproduction of experiments, we also capture a period of 

dorm traffic as a normal trace used in the experiments. The testbed is presented in Figure 10. 

The testbed is composed of two steps. The first step is collecting normal/defect-triggering 

traffic which is in both sides of the figure. The left side is normal traffic collection. We mirror 

the dorm traffic in NCTU BetaSite as the normal traffic. The right side is defect-triggering 

traffic collection. Here we use the debugging tools TestCenter and Codenomicon to trigger 

DUT defects and capture the defect-triggering traffic. The DUTs we used are ZyXEL 

GS-2750 and SuperMicro SSE-G24-TG4. ZyXEL GS-2750 is an L2 (Layer-2) switch, 

SuperMicro SSE-G24-TG4 is an L3 (Layer-3) router and the RRCA is a PC which is 

equipped with Intel i3-2130 processor, 8GB memory and 9 network interfaces. After finishing 

normal and defect-triggering traffic collections, we conduct the experiments as the middle 

part of Figure 10. Because the OF switch TL-WR1043ND is a SOHO AP, it is not capable of 

handling captured dorm traffic. We use small traffic to process multi-port replay and 

live-to-replay failover with the OF switch. We process multi-port replay by sending traffic 

from RRCA to OF switch, then the OF switch passes traffic to the DUT. The connectivity 

tester is used to measure the effectiveness of live-to-replay failover. We process live-to-replay 

failover experiments by replaying defect-triggering traces from RRCA to the DUT directly 

and at the same time probing the connectivity tester though the OF switch. The OF switch 

transmits the probe messages to the connectivity tester directly or through the DUT according 

to the DUT state. We use the RRCA and the DUT without the OF switch for the experiments 

about the traffic capture and traffic reduction because the traffic can overload the OF switch. 
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Figure 10: Experimental environment. 

 The details of the normal traces and defect-triggering traces are shown in Table 4. The 

normal traces are collected from the dorm 9 and 12 in NCTU dorm network. To generate 

different scale testbeds, we capture the normal traces in one dorm (dorm 9) and two dorms 

(dorm 9, 12). The protocol defect traces with IP payload anomalies on ZyXEL switch and the 

OSPF payload anomalies on SuperMicro router are produced by Codenomicon. IP payload 

anomalies are packets with anomalous fields in the IP header, and OSPF payload anomalies 

are packets with anomalous fields in the OSPF packet. The overload defect traces on ZyXEL 

switch are generated by TestCenter, and they have two types: dense ARP requests and dense 

ICMP requests. Dense ARP requests are used to overflow the MAC table, and dense ICMP 

requests are used to overflow the ARP table. These two traces can overflow the MAC table 

and the ARP table in ZyXEL switch.  

Table 4: Test traces. 

 Type Trace count Average size Packet count 

Two-dorm traffic Normal 1 918.5MB 818,970 

One-dorm traffic Normal 1 446.3MB 368,238 

IP payload anomaly Protocol 10 144.7MB 873 

Dense ARP requests Overload 1 72.1MB 540,012 

Dense ICMP requests Overload 1 864KB 6,331 

OSPF payload anomaly Protocol 3 20.3KB 243 

To simulate defect-triggering traffic in the live network, we mix a normal trace and a 

defect-triggering trace. The procedure of traffic mix is replaying a normal trace and a 

defect-triggering trace to the DUT simultaneously, and capturing them as a defect trace from 
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the DUT. For L2 devices, we have 12 mixed defect traces for one-dorm environment and 12 

for two-dorm environment. For one-dorm/two-dorm environment, these mixed defect traces 

combine a normal traffic with 10 IP payload anomaly traces, a dense ARP requests trace and a 

dense ICMP requests trace, so there are 10 protocol defect-triggering traces and 2 overload 

defect-triggering traces in these 12 mixed defect traces. For L3 devices, we only have 3 OSPF 

payload anomaly traces. After traffic mix of a two-dorm normal trace and an OSPF anomaly 

trace, we derive 3 protocol defect-triggering traces for L3 devices.  

5.2 Experimental Results 

We view the experimental results from the perspectives of the vender side and user side 

in this subsection. For venders, they care about the effective capture size in the OFCR live 

mode, the diversity of reduction for different types of defects and the efficiency of reduction 

thresholds in the OFCR replay mode. For users, the only thing they are concerned about is the 

outage time during the OFCR live-to-replay failover, so we show the relationship between the 

failure criteria and the outage time. 

Capture Size 

 The capture size is the first we need to decide when starting OFCR. The parameters c 

and l influence the effectiveness and size of captured defect traces. We try to find the optimal 

capture size c and l to balance the above two things for different layers DUTs. The results of 

L2 switch ZyXEL GS-2750 in the one-dorm and two-dorm environments are presented in 

Figure 11 and 12, and those of L3 router SuperMicro SSE-G24-TG4 is shown in Figure 13. 

Figure 11 presents the effectiveness of defect reproduction for different packet count c 

and max packet length l in two-dorm testbed. The results show that the first 46 bytes of 

payload (only ARP/ICMP headers) are enough to trigger all defects. Moreover, capturing 

10,000 packets in a trace is sufficient to keep the all protocol defect-triggering packets and 

50,000 packets in a trace can keep all defect-triggering packets in 12 mixed defect traces. This 

is because the overload defect traces need many packets to break down the DUT, packet count 

c = 50,000 is enough to capture all defect-triggering packets. When l is less than 46 bytes, we 

can find out that it can reproduce only one overload defect trace with c ≥ 50,000. This is 

because this overload defect is triggered by too many broadcast packets. Even though these 

captured broadcast packets only include their IP headers, they still can paralyze the DUT. 
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Figure 11: Capture size of L2 switch in a two-dorm testbed. 

We also test the L3 SuperMicro router by these 12 mix defect traces in two-dorm testbed. 

And we find out that 10 protocol defect traces are not effective because they are defects 

specific to the ZyXEL switch, but two overload defect traces still can trigger the defects when 

l is 46 bytes and c is 50000. So we capture traffic with max packet length l = 46 bytes is 

enough to keep the defects for L2 devices. 

Figure 12 shows that the results of L2 switch in one-dorm environment. The difference 

between Figure 12 and Figure 11 is the traffic scale of the environment, and the other factors 

in these experiments are the same. Because the traffic volume in the one-dorm environment is 

much smaller than the two-dorm environment, we can reproduce all two overload defect 

traces with c = 10,000 rather than 50,000 in the two-dorm environment and the reproduction 

effectiveness of protocol defect trace improves slightly in c = 3,000 and 5,000. To reproduce 

all protocol defect traces, the capture size of packet count c is 10,000 and the max packet 

length l is 46 bytes. And when the capture packet count c = 10,000 with max packet length l = 

46 bytes can also reproduce all overload defect traces. Therefore, capturing 10,000 packets in 

a trace and max packet length 46 bytes is enough to reproduce all 12 defect-triggering traces 

in one-dorm environment. 
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Figure 12: Capture size of L2 switch in a one-dorm testbed. 

 Figure 13 is the results of L3 router in the two-dorm environment. There are only three 

protocol defect traces in this experiment. We need to capture the first 154 bytes to trigger the 

protocol defects. These protocol defects are triggered by LS (Link State) Update packets in 

the OSPF, and the OSPF component of the DUT is unable to handle the inconsistency of 

fields in OSPF packets after it processes LSAs (Link State Advertisement) information after 

LSA header in the LS Update packet. Because these protocol defects need OSPF payload to 

trigger defects, the max packet length l depends on max LSA of the router. In our experiment, 

the SuperMicro router needs first 154 bytes to trigger defects. 

 

Figure 13: Capture size of L3 router in a two-dorm testbed. 
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Diversity of Reductions 

 Because of different properties of the protocol and overload defects, a single reduction 

will not be suitable for both types of defects. To evaluate the effectiveness of the different 

reductions, we compare them by the processing time and the downsizing ratio. The processing 

time is the time from receiving the trace to finishing, and the downsizing ratio represents the 

relationship between the size of the trace after reduction and that of the original defect trace. 

The formula is expressed as 𝑑𝑜𝑤𝑛𝑠𝑖𝑧𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = 1 −
𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑟𝑎𝑐𝑒 𝑠𝑖𝑧𝑒

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑒𝑓𝑒𝑐𝑡 𝑡𝑟𝑎𝑐𝑒 𝑠𝑖𝑧𝑒
. 

 We compare five reductions in the OFCR with the protocol defects and overload defects 

in Figure 14 and 15. The original defect traces have 50,000 packets and the max packet length 

is 1,522 bytes. The reduction thresholds tc and tp are 1,000 and 10 bytes, respectively. 

 

Figure 14: Downsizing ratio of reductions. 

In Figure 14, we can find that the packet reduction and payload reduction are not good 

on trace downsizing. The protocol defect reduction and overload defect reductions have the 

same downsizing ratio (98.8%) on the protocol defects, but the overload defect reduction has 

better downsizing ratio on the overload defects up to 96%. The hybrid defect reduction 

chooses the best result from the protocol defect reduction and overload defect reduction, so it 

certainly has the best downsizing ratio. 
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Figure 15: Processing time of reductions. 

Figure 15 shows the results of processing time of different reductions. The processing 

time of the protocol defects is longer than that of the overload defects in each reduction. The 

reason is that there are a few defect-triggering packets in the protocol defect traces, so 

protocol defect traces need to take more turns to replay the reduced trace during the reduction.  

Because the packet count influences the replay time significantly, the packet reduction and 

protocol defect reduction which reduces packet counts first will take shorter processing time 

than other reductions. However, considering the downsizing ratio, protocol defect reduction is 

more efficient than packet reduction because it takes additional 200 seconds to reduce more 

6% of the size (up to 98% for protocol defect). But the downsizing ratio of the protocol defect 

reduction is not sufficient for overload defect (91%), the overload defect reduction spends 

more 230 seconds to remove additional 4% of the size (up to 96%). The processing time of 

the hybrid defect reduction is the longest because it is the sum of protocol defect reduction 

and overload defect reduction.  

Efficiency of Reduction Thresholds 

 The efficiency of the reduction is controlled by tc and tp, which are the thresholds of the 

cut unit for packet count and the max packet length, respectively. The results of choosing 

diverse thresholds in the hybrid defect reduction are presented in Figure 16. The defect traces 

are also with 50,000 packets and max packet length 1522 bytes. Large thresholds tc and tp will 

save the processing time but lower the downsizing ratio. However, when the thresholds tc and 

tp are too small, the processing time increases significantly but the downsizing ratio rises 
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limitedly. Given the thresholds tc is 5,000, 1,000 and 500, tp is 50, 10 and 5, we can derive the 

best downsizing ratio 98.8% when tc ≤  1,000 (2% of packet count) and tp ≤  10. 

Considering the processing time, the reduction is the most efficient when tc = 1,000 and tp = 

10.  

 

Figure 16: The efficiency of reduction thresholds. 

Outage Time vs. Failure Criteria 

 The defects affect different parts of the DUT. Some defects make the DUT fail slightly, 

and the DUT can recover from the failure by itself in a short period of time. Some defects 

break down the DUT, and the DUT cannot be recovered until the administrators reboot it. The 

outage time is the time when the OFCR spends for switching from live to replay mode during 

the DUT failure and from replay to live mode when DUT recovers. The connections of users 

will be disconnected in this period. To reduce the outage time, we detect a failure with 

different check intervals, tolerant consecutive failure times. The tolerant consecutive failure 

time is the threshold of the DUT consecutive failure time in a specific check interval and 

response times, the live-to-replay failover will execute when the DUT consecutive failure 

time exceeds it. The response timeout is the waiting time for the reply of the probing request. 

Figure 17 presents the results of different check intervals and tolerant consecutive failure 

times with 1 second response timeout. Two situations occur in the experiment, a defect 

triggers in the experiment and no defect triggers in the experiment. The leftmost bar presents 

the outage time without failover (19 seconds), which is the real failure time of the DUT. We 
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can find out that most failure criteria can reduce the outage time except (7, 3). With the same 

tolerant consecutive failure time, the smaller check interval is, the less outage time is. Small 

tolerant consecutive failure time can also reduce outage time, but it is better to larger than one. 

If the tolerant consecutive failure time is one, we may presume a DUT failure because of the 

incomplete reply packets or packet losses, and then process meaningless live-to-replay 

failover. 

 

Figure 17: Outage time under different failure criteria. 

5.3 Case Studies 

 In this subsection, we interpret the protocol defect traces in the test traces. When we use 

Codenomicon to test ZyXEL switch with IP anomaly traces, the ICMP module of the switch 

crashes but the switch itself does not detect it. Under no error logs, we try to analyze the 

packets in the IP anomaly defect trace, and find out that the anomaly is on the flags and 

fragment offset. Figure 18 is the details about the IP anomalies.  

Figure 18 (a) is the anomaly in the flags field of the IP header. The first bit in the flags 

field is a reserved bit and it should be 0, but here it is 1. Figure 18 (b) is the anomaly which 

combines the flags and fragment offset anomalies in the IP header. The more bit in the flags 

field is set to 1 which means there is another fragment, but the value of fragment offset is the 

maximum value. It is impossible to have another fragment after this packet. This anomaly is 

hard to be detected because if we check these two fields separately, both of them are correct in 

that field. However, they become an anomaly when they appear together. 
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Figure 18: The example of IP anomaly. 

Although the logs in the DUT have no error messages, we still can analyze the defects by 

accessing other DUT states. We find out that there is no overflow in any tables, and the CPU 

and memory are not at the busy states. Combining with the information and the behavior of 

the DUT failure, we can conjecture that a single anomalous packet may generate an exception 

but it does not break down the relevant component in the DUT. However, consecutive packets 

of IP fragment anomaly could break down the component because of the queues for fragment 

buffer. Therefore, the protocol defects may be not just caused by a single anomalous packet. 

They could be generated by a sequence of anomalous packets which is much less than the 

number of packets triggering overload defects. 
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Chapter 6 Conclusions and Future Works 

 

 The proposed OFCR mechanism collects real traffic in live network and reproduces 

defects in replay environment, also implements multi-port replay to simulate the situation 

which a defect happens in multi-port networking devices. There are live mode and replay 

mode in the OFCR architecture. In the live mode, the OF switch passes live network traffic to 

the DUT and mirrors the traffic to the RRCA. OFCR switches to the replay mode when 

detecting the DUT failure. The OF switch lets the live traffic bypass the DUT and connects 

the DUT to the RRCA to replay the captured defect trace to the proper DUT ports. If the 

defect can be reproduced, the OFCR processes the defect identification by hybrid defect 

reduction. 

 Venders care about the ability and efficiency of defect reproduction, diversity of 

reduction and reduction thresholds. It is shown that the capture size for defect reproduction 

only needs first parts of packets and the packet count is based on the traffic volume of the 

testbed. Our results show that first 46 bytes of packet is enough for L2 devices and max 

packet length is specific to the L3 device, first 154 bytes is sufficient for our L3 router, and 

the 10,000 packets are required for our one-dorm testbed and 50,000 packets are required for 

our two-dorm testbed. For reductions used in defect identification, protocol defect reduction is 

specific to protocol defects (98.8%), and the overload defect reduction is specific to overload 

defects (96%). Hybrid defect reduction processes the protocol defect reduction and overload 

defect reduction individually to get the best downsizing ratio and more information for 

debugging. The reduction thresholds influence downsizing ratio and processing time. Our 

results show that the thresholds are 10 bytes for packet length and 1,000 for packets (2% of 

total packet counts) have the best downsizing ratio and the least processing time on our defect 

traces. Finally, the only thing which the users care is the outage time. The setting that the 

check interval is 1 second and the tolerant consecutive failure time is 2 derives the minimum 

outage time. 

 We plan to test more upper layer DUTs to find suitable capture size for them in the future. 

Improving the accuracy of failure detection is a direction of our future work. So far CheckDev 

only sends ARP, ICMP and HTTP requests to probe the DUT, but sometimes specific 

component in the DUT breaks down and the DUT can still serve those probe messages. In this 
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condition, CheckDev cannot detect the DUT failure, so the functionality of CheckDev should 

be expanded to support more types of service probing like IGMP, RIP. Moreover, some 

failures are caused by the medium not the DUT, and it is impossible to reproduce this kind of 

failure by replaying traffic to the DUT. We hope to develop a checking mechanism on the OF 

switch to detect the failure of medium between the DUT and RRCA. 
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