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摘       要 

 
 

微波影像在遙測地表、獲得地面上土壤、水資源等，甚至在軍事方面都

是相當重要的影像資訊。由於微波影像的同調性質，需要相當精確之相位

計算，稍許的相角誤差會造成影像模糊、解析度降低，而使其價值降低。

這裡所提及的相位誤差皆指方位角方向的誤差，並且是因為飛機路徑偏移

所造成的。自動聚焦演算法是一種改善微波影像品質的演算法，可以估測

訊號的相位誤差，以達到消除相角誤差，改善影像之解析度。 

   自動聚焦技術主要包含兩個部分：誤差估測和誤差補償。傳統由感測

器執行之運動補償功能只能測量到相位的一次項係數，如果加上自動聚焦

法，則可以將二階以上的誤差項消除。本篇論文主要是探討在不同的模式

下，自動聚焦演算法的成效。利用自動聚焦演算法來補助系統的運動補償

功能或成為微波影像系統之一部分架構，以期改善微波影像之品質。 
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Abstract 

   Microwave images are important for acquiring the surface data of the 

earth such as the soil of the ground, water resource, and the applications in 

military. Because of the coherent characteristics of microwave, the phase must 

be calculated accurately. A little phase error will cause image degrading and 

useless.  

   Phase errors mentioned here mean errors in azimuth direction. Autofocus 

technique is an algorithm to improve microwave images quality. Autofocus 

technique can estimate phase errors and remove phase errors to improve the 

images resolution. Autofocus technique generally encompasses two steps：phase 

estimation and phase compensation. First order coefficient of the phase error 

function can be estimated by sensor-based motion compensation. Second or 

higher order term of phase error function could be estimated and cancelled by 

autofocus technique. 

In this paper, the effect of the autofocus algorithm in different modes is 

presented. The autofocus algorithm is used to assist the capability of motion 

compensation of the system. And the autofocus algorithm is expected to improve 

the quality of microwave images. 
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Chapter 1 Introduction 

1.1 History 

Many algorithms were introduced to implement the autofocus technique. 

Among them, five practical autofocus technique are discussed in the following 

paragraphs. The first four techniques are mapdrift (MD), multiple aperture 

mapdrift (MAM), phase difference (PD), and phase gradient autofocus (PGA). 

We describe these techniques for only one-dimensional phase error because the 

azimuth phase error is of the main concern in SAR applications. The fifth 

technique is prominent point processing (PPP). In more precise applications, 

PPP provides a full motion compensation capability that includes the ability to 

determine the scene rotation rate for SAR and ISAR applications. 

First, mapdrift is developed in the early to mid-1970s that was a significant 

event in the evolution of fine-resolution imaging radar[1]. MD directly estimates 

the quadratic coefficient of the phase error and then, based on this estimate, 

builds and applies a one-dimensional correction vector to the signal history. 

Second, the extension of MD, MAM, known as multiple aperture mapdrift 

autofocus, appeared in 1981 in the classified literature[1]. Third, the development 

of PD began in the late 1980s[2]. The PD algorithm achieves results comparable 

to MD with fewer computations. This algorithm is able to generate an accurate 

quadratic phase error measurement without first canceling the major portion of 

the error being measure. Fourth, the PGA algorithm for estimating higher order 

phase errors first appeared in the SAR literature in 1981[3-6]. The algorithm is 

unique in that it is not model-based；implementation does not require explicit 
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selection of a maximum order for the phase error being estimated. PGA 

algorithm has a well-deserved reputation as a superior algorithm for higher order 

autofocus. Finally, PPP algorithm operates much like an autofocus technique and 

is considered a refocus technique, although it is not technically automatic. The 

PPP technique is an interactive procedure making use of the radar signals 

returned from the target to obtain azimuth coherence for the SAR signal history. 

 

1.2 Motive and Object 

Forming a microwave image is different from forming an optical image 

because a microwave image does not directly reflect the signal intensity of an 

object such that a photo reveals its intensity in space coordinate. Microwave 

image must be processed by a series of transform, and reveal its signal intensity 

in Range or Doppler coordinate. An optical image has fine resolution, and it is 

easy to read. The source of light is not coherent that won’t cause the speckle 

phenomenon. Microwave image has many advantages such as detecting objects 

day or night, detecting objects in every kind of weather and observing the object 

on ground or water.  

In microwave imagery, turbulence in the unknown path movements corrupt 

the phase of the echo signals leading to image degraded. Phase-distortions 

represent a major obstacle preventing the widespread use of microwave imaging. 

The removal of blur-causing phase-distortions often requires data-driven 

phase-retrieval or autofocus techniques. These techniques are widely used in 

narrow-beam, narrow-bandwidth, spotlight mode Synthetic Aperture Radar 

(SAR) to improve the system performance. Autofocus algorithm attempt to 

estimation unknown motion-errors and provide the accuracy unable to be 
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obtained using an INS. Accurate motion estimation is important because 

unknown motion error cause image degraded. 

What we want to do is using autofocus technique to reconstruct the 

microwave image and to improve image resolution. We apply Prominent Point 

Process (PPP) algorithm, Phase Curvature Autofocus (PCA) algorithm, and 

Strip-map Phase Gradient Autofocus (SPGA) algorithm on images. All of them 

are not as mature as PGA hence we want to research them. 

 

1.3 Research Orientation 

We have already known how PGA works, but it does not match our 

applications because of the different modes. Therefore, other algorithms like 

PPP and PCA are our goal.  

We will implement our algorithms on PC-based platform. In software aspect, 

Matlab is used to implement algorithms.  

First, we study theorems of both algorithms and derive relative formulas. 

Next, Matlab is used to simulate algorithms, and we modify algorithms to match 

our applications at the same time. Finally, algorithms are implemented with real 

stripmap data. We observe and compare the results. 
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Chapter 2 Autofocus Fundamental 

Autofocus techniques improve image focus by removing a large part of any 

phase errors. The phase error is presented after conventional motion 

compensation and data formatting procedures. Autofocus with respect to 

microwave imagery refers to the computer-automated estimation and subsequent 

removal of these residual phase errors. Autofocus generally encompasses two 

distinct steps: error estimation and error compensation. Error estimation operates 

on the SAR data and estimates the coefficients of an expansion that models the 

existing phase error. Elementary autofocus methods may determine only the 

quadratic coefficient while more elaborate methods estimate higher order 

coefficients as well. Error compensation or cancellation uses the coefficient 

values that the first step provides. These steps are described in detail in this 

chapter. And a few different methods have been proposed for the phase 

estimation step, with different criteria for optimality. Some autofocus 

implementations require explicit knowledge of the set of error coefficients to 

insert the proper quantities into the correction procedure. In other 

implementations, the coefficients are implicit in some composite compensation 

phase function. For instance, measurements on a high-intensity point scatterer in 

the image may provide this phase function. 

 

2.1 Motivation for autofocus 

For Synthetic aperture systems, the coherence is very important. Synthetic 

aperture requires much information about the returned signal to get well-known 

locations. Uncertain trajectories that deviate over fraction of a wavelength (λ/16) 
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cause the synthetic aperture imagery blurring. SAR imagery suffers from this 

blurring, although the problem is less significant with the high 

pulse-repetition-frequency and short integration times of SAR system[7]. 

Moreover, the accuracy of a typical GPS-locked inertial navigation system (INS) 

in sufficient to allow close to diffraction-limited SAR imagery[8].  

Autofocus algorithms must be used to estimate the phase-distortions caused 

by path errors. Autofocus algorithms estimate the platform trajectory and 

remove residual image blurring using the collected data. Another name for this 

type of algorithm is micronnavigation. 

 

2.2 The autofocus problem 

Synthetic aperture autofocus was originally developed in the SAR system. 

This kind of algorithm is to estimate the phase error and center-frequency of the 

returned signal. The phase error is the error that estimates the SAR platform 

velocity. The imagery from a system suffering a phase error has a quadratic 

defocus[9]. Center-frequency errors cause along-track blurring effects similar to 

those caused by low-frequency sway errors in stripmap system. 

The main purpose for the autofocus algorithm is to estimate the platform’s 

path-deviation at each pulse. Autofocus is often achieved in an iterative 

framework, using the recorded returned signal. The related problem of autofocus 

is usually aided by an on-board INS and is not generally iterative. 

The estimated phase errors must be less than λ/8 over the aperture[10]. The 

motion constraints are derived using the two-way propagation path-echoes still 

sum coherently if the position errors are less than λ/16. When unknown motion 

effects cause phase error greater than λ/8, the returned signal do not sum 

 5



coherently and SAR image suffers degradation. The constraints on 

high-frequency errors are even limited and are less than λ/60 over the 

aperture[9][11]. Low-frequency phase errors across the aperture cause main-lobe 

broadening that cause the image degraded but high-frequency phase errors result 

in raising the side-lobe[11] that result in a loss of contrast in the image. 

 

2.3 Spotlight vs. stripmap 

Imaging in stripmap mode is different form imaging in spotlight mode hence 

their processes of motion compensation are much different. It is more difficult 

for stripmap than spotlight systems to focus the obtained the imagery. This is 

because blurring of stripmap images being space-variant[12], but spotlight images 

have space-invariant blurring. Space-variant blurring[7][13] means that standard, 

well researched, spotlight autofocus methods such as mapdrift[14], and PGA[15-17] 

are unable to be applied to stripmap data without modification. In the case of 

PGA, an extension to the stripmap case does not exist[13] and is referred to as 

phase curvature autofocus (PCA) [18][19]. The assumption of space invariance in 

the spotlight algorithms often makes the extension to stripmap systems 

challenging. The reason why space-invariant algorithms perform poorly in 

space-variant problems is straightforward. A space-invariant autofocus algorithm 

ensemble averages over all scatterers to estimate the path. However, in a 

space-invariant problem, all scatters have the same blurring. In a space-variant 

problem, each scatterer has a different blurring. Averaging many different path 

estimates results in a poor overall path estimate. 

Data from stripmap systems is often autofocused by segmenting the image 

into smaller along-track sections[19-21] in order to overcome the problem caused 
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by space-variant blurring. Usually a preprocessing step is required[14][20][22] to 

massage the data into a form that SAR autofocusing algorithms can use. Each 

section of the data is autofocused independently and the individual estimates 

combined to remove the distortion form the entire image[21] [23]. Approaches that 

account for the spatial variance and retain information (such as stripmap phase 

gradient autofocus (SPGA)) have better performance. To summarize, spotlight 

autofocus is a special case of stripmap autofocus where the space-variance of the 

problem is low. Spotlight algorithms often ignore the effect of space variant 

blurring. 

 

2.4 Autofocus technique 

Phase errors are presented in a SAR signal history at the time of the final 

Fourier transform operation. The most serious degradation is often image 

defocus caused by the presence of uncorrected quadratic and higher order phase 

errors. Uncompensated motion between the SAR antenna phase center (APC) 

and the scene being imaged is a primary source of phase errors. Other sources 

include algorithm approximations, hardware limitations, and propagation 

effects. 

Autofocus algorithms often need to estimate the phase error across the 

aperture ( )kφ -- effectively determining the time shift in the image. Much 

different phase estimation has been used for this purpose. Some of them more 

widely used are outlined in this section. 

The performance of autofocus algorithms relies on the phase estimation 

technique. The PGA algorithm has been proven to be a robust technique that can 

provide excellent results over a wide variety of both scene content and structure 
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of the degrading phase-error function. It is unique in that it is not model-based. 

The PGA algorithm has a well-deserved reputation as a superior algorithm for 

higher order autofocus. 

 

2.5 Phase Gradient Autofocus (PGA) 

Fig 2.1 shows the actual operation steps in simulation of the PGA 

algorithm[24]. The process begins with the range compressed image and selects a 

subset of range bins containing the greatest energy. It performs an azimuth 

Fourier transform to compress each selected rang bin, locates the peak amplitude 

within each azimuth-compressed range bin, and selects a window of complex 

pixels from each range bin centered about the azimuth location of the peak 

amplitude sample. The procedure continues through a number of steps using 

these groups of pixels from each selected range bin to compute the first 

derivative of the signal history associated with the windowed image pixels. 

These last steps must use of the derivative property of the Fourier transform[25]. 

The final step of the PGA algorithm integrates the derivative of the azimuth 

phase error to calculate the phase error itself as a function of azimuth sample 

number over the aperture. It is a simple task to convert this estimate of the 

higher order phase error into an error correction vector. A typical procedure 

applies the correction vector to the signal history and iterates the algorithm 

several times on the corrected data in order to reduce residual error. 

 

2.5.1 Phase Estimation 

We consider a single range bin containing one point scatterer. The 

time-domain signal from the scatterer is  
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0 0( ) exp{ [ ( )]}
2 2e
T Tg t a j w t t tφ φ= + + − ≤ ≤         (2-1) 

Here, at, wo and 0φ  represent the magnitude, frequency, and phase of the 

signal-history, respectively； ( )e tφ  represent the phase error of the signal-history. 

The PGA algorithm first takes a Fourier transform of the signal in azimuth. We 

can obtain  

0
0( ) sin [ ( )] ( )j

eG w aT c T w w e wφ= − ⊗Φ        (2-2) 

where Φe(w) is the Fourier transform of the phase error term exp[j ( )e tφ ]；the 

symbol “ ⊗ ”  denotes convolution. Next, selecting and symmetrically 

windowing the peak amplitude point within this range bin and using the 

weighting function W(w) to produce 

0
0 0( ) W( ) sin [ ( )] ( )j

w eG w w w aT c T w w e wφ= − − ⊗ Φ     (2-3) 

The window can only include the highest frequency phase error that the PGA 

can estimate and exclude the interference of other points. Taking the inverse 

Fourier transform of the windowed signal with respect w-w0, then 

             (2-4) 0 ( )( ) w( )ej j t
wg t ae e tφ φ= ⊗

where w(t) is the inverse Fourier transform of W(w). The windowed signal 

function in time-domain, gw(t) represents the signal history associated with peak 

point response in the corresponding image domain. If the window length is long 

enough to include all important frequency component of Φe(w), then there is a 

little effect on gw(t) and we can ignore the effect of w(t) in (2-4). 

The PGA algorithm utilize the inverse Fourier transform of jwGw(w) to 

obtain the first derivation of gw(t). For a single target, this derivative  is 

equal to  

.

wg ( )t
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( ) ( ) ( )w e wg t j t g tφ=
i i

           (2-5) 

where  is the derivative of the phase error. This relationship provides a 

means to estimate  using the computed values of . 

.
( )e tφ

.
( )e tφ

.

wg ( )t

Assuming the effect of w(t) can be neglected, the estimation of the 

derivative of the phase error becomes  

     l
.

*

2

Im[ ( ) ( )]( )
| ( ) |
w w

e
w

g t g tt
g t

φ =
i

         (2-6) 

Integration of (2-6) provides the phase error estimate to within a constant. 

For a scene containing many rang bins, the PGA averages both the numerator 

and the denominator of (2-6) over many range bins to estimate the gradient. 

Using N range bins, the estimation becomes 

    l
*

2

Im[ ( , ) ( , )]
( )

| ( , ) |

w w
N

e
w

N

g n t g n t
t

g n t
φ =

∑
∑

i

i

        (2-7) 

where gw(n,t) is the signal associated with the windowed target from the nth 

range bin and  is its derivative. The expression in (2-7) represents 

weighted least-squares estimate of the phase error derivative

.

wg ( , )n t
[5].  

 

2.5.2 Implementation 

There are four crucial steps in PGA algorithm referred to as circular shifting, 

windowing, phase gradient estimation, and iterative correction. It appears that 

the circular shifting operation not only attempts to align strong scatterers, 

subsequently improving the signal-to-noise ratio for phase estimation, but it also 

aligns regions undergoing subtle contrast changes. Windowing has the effect of 

preserving the width of the dominant blur for each range bin while discarding 
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data that cannot contribute to the phase-error estimation. Phase estimation is to 

correct the phase error. Last step, the iteration is to estimate and to correct the 

phase repeatedly.  

It is important to select a window in order to offer significant data in the 

PGA algorithm. The first step is to select a window length that is much larger 

than the anticipated phase errors require and reduces the window length on 

subsequent iterations. The initial window length can include the entire azimuth 

extent of the image. Typically, each PGA iteration reduces the previous window 

length between 20 and 50 percent to minimum value. The minimum window 

value dictates the maximum order phase error that the procedure can estimate. 

With this strategy, the PGA algorithm can have excellent performance in 

estimating phase errors of arbitrarily high order on a wide variety of scenes[6]. 

Figure 2.2 show the algorithmic steps and corresponding images in PGA 

algorithm[26]. The following simulation is the result of the graduate thesis which 

written by the senior in my lab. I just extract some results of his thesis. 

 Following the steps of Figure 2.2, we input an image with phase errors 

shown in first step. Second, we circular shift the input image. Next, the shifted 

image is windowed with 20dB window. The neighbor image of the windowed 

images is the accumulation of image intensity in dB. The corrected image after 

PGA algorithm obviously many phase errors are removed. And we iterate the 

loop again to see how effect it will be. Figure 2.3 shows the iteration result. The 

window width is much smaller. That means the information is concentrated, and 

a lot of phase errors are removed. After iterations, the image does not improve as 

the first time. We can compare these images in figure 2.4, and only little 

difference is between the first corrected image and the iterated image. Figure 2.5 

show the estimated phase error. The blue solid curve is the error function that we 
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apply to the original image. The error function is to simulate the path-deviation, 

the platform vibration, and some low-frequency phase errors. The red dotted 

curve is the first estimated phase error that is close to the simulation error 

function. The green dot curve is during two iterations and it almost the same as 

the red one. 

The above result is with the high-SNR image hence the phase error is easier 

to find out. Iteration times can be less in the high-SNR image. If the image is 

low-SNR, we must iterate more times to get higher resolution image. 

 

 12



Chapter 3 Prominent Point Processing Algorithm 

Formation of fine resolution, well-focused SAR images require accurate 

knowledge of and compensation for relative motion between APC and the target. 

Especially in spotlight mode there exists rotational motion, images will be 

degraded greatly when the rotational motion is not uniform. Traditional 

autofocus methods such as MAM, PD, and PGA only can compensate 

space-invariant phase error but can not remove space-variant phase error.  

Space-invariant phase error is common in spotlight SAR. 

The PPP technique is an interactive procedure making use of the radar 

signals returned from the target to obtain azimuth coherence for the SAR signal 

history. The procedure isolates the signals backscattered from a number of 

prominent points in the target field. The signal from the first prominent point 

provides a reference signal to compensate for translational motion effects. 

Signals from two additional prominent points provide an estimate of rotational 

motion to improve image quality by aiding data formatting. 

It is natural to develop and use the prominent approach in the framework of 

the polar format algorithm because the prominent point technique to estimate the 

image azimuth scale involves the data formatting process. Single and multiple 

prominent point technique are also applicable to spotlight processing with other 

formation algorithms. 

Single prominent point refocus moving targets that are smeared in 

conventionally processed SAR imagery because of unknown target 

translations[27]. More broadly, in an airborne SAR data collection, PPP can be 

useful to augment or replace instrumentation of the SAR antenna to measure its 
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motion. A multiple prominent point implementation is especially valuable as a 

means to accomplish both translational and rotational motion compensation. 

 

3.1 Single Prominent Point Processing Algorithm 

The single PPP algorithm identifies a single dominant point scatterer on the 

target and measures its pulse-to-pulse range position and phase variation. Using 

these measurements, the algorithm achieves scene center stabilization (one step 

in motion compensation) by removing the undesired phase effects of 

translational motion from the collected signal history. In fact, the algorithm 

estimates and compensates simultaneously for low- and high-frequency azimuth 

phase errors from all sources, including undesirable relative motion. There is no 

need for supplemental autofocus in azimuth unless it is necessary t o compensate 

for smaller, space-variant effects. The steps of this refocus algorithm are[24]: 

 1. Identify and isolate a prominent point: 

2. Compress(in range) the signal history containing the target 

3. Track the identified prominent point over the aperture time to measure the 

phase and the range location of its peak response 

4. Use the measurements of the peak location to adjust the frequency of 

each pulse in the original signal history 

5. Use the measurements of the peak phase to adjust the phase of each pulse 

in the original signal history 

6. Process the modified signal history with a two-dimensional FFT. 

Selection of the prominent point is an interactive process requiring user inputs.  

  In the two-dimensional image domain, a poorly focused target which the 

user of the algorithm must be isolate. In the range-compressed signal domain, a 
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scatterer appears as a line meandering across the signal history in the azimuth 

direction. The Figure 3.1(a) shows the two prominent point tracks. The 

algorithm estimates the phase and frequency of the selected scatterer by 

measuring the phase and the location of its peak response in each 

range-compressed pulse. It uses these measurements to adjust the starting phase 

and the frequency of the SAR signal returned from each transmitted pulse in the 

original signal history. After these adjustments, the return from the selected 

prominent point (now the scene center) has zero frequency and constant phase 

over the entire two-dimensional processing aperture. Range compression of this 

compensated signal history now generates the signal track of this prominent 

point scatterer at a constant range shown in Figure 3.1(b). The track of a second 

target point still meanders somewhat in range during the azimuth aperture 

interval. An azimuth FFT of this range-compressed signal history yields a 

focused image of the prominent point. The second scatterer still is not 

well-focused. The Figure 3.1(c) shows the result with some exaggeration. 

 

3.1.1 Analysis 

The radar transmits pulses using a LFM chirp signal with chirp rate γ, 

period T, and center frequency fc. The transmission pulse signal  

2( ) ( ) cos[2 ( ) ]t cs t A t f t t nTπ πγ= + −         (3-1) 

n is pulse number, and t is fast time 

It is convenient to select a rectangular pulse shape of amplitude A0 for A(t) 

and to use the complex form to represent this real signal. Defining , 

the transmitted signal ： 

t t nT= −�

 15



     
2

0( ) ( ) exp{ [2 ]}x
p

t
cs t A rect j f t t

T
π πγ=

� �+       (3-2) 

Tp is the transmitted pulse length. The rect() function ： 

11 | |
2( ) {
10 | |
2

u
rect u

u

≤
=

>
         (3-3) 

The expression for transmitted signal in (3-2) does not incorporate the 

effects of transmits amplifier and waveguide on the signal. It does not include 

the time delay for the signal to reach the antenna. These effects affect the 

understanding and image formation techniques. 

Assuming an ideal scatterer of radar at (Xt, Yt, Zt), its amplitude and phase 

characteristics do not change with frequency and aspect angle. This assumption 

is realistic for normal situation. The received signal from a single point at (Xt, Yt, 

Zt) at pulse n is  

  
2( ) a ( )exp{ [2 ( ) ( )d

r c d
p

t ts t rect j f t t t t
T

π πγ−
= − +

� �i ]}d−      (3-4) 

where “a” is proportional to A0 and td is the total time delay from the antenna to 

the target and back to the antenna. 

   The derivation of (3-4) ignores any attenuation due to the two-way 

propagation of transmitted energy to the scene and back to the radar. In fact, the 

amplitude of the received signal will be a function of many factors including the 

amplitude of the transmitted signal, distance to the target, and gain of the 

antenna, in addition to the range cross-section of the target. 

It is common practice to make the simplifying assumption that the sensor is 

stationary during pulse transmission and reception while moving in discrete 
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increments between pulses. In this situation, an adequate approximation for td is 
2 t

d
Rt
c

≈            (3-5) 

Rt is the distance from the Antenna Phase Center (APC) to the target. Using the 

approximation, (3-4) becomes  

  22 / 2 2( ) a ( )exp{ [2 ( ) ( ) ]}t t
r c

p

t R c R Rs t rect j f t t
T c

π πγ−
= − +

� �i t

c
−    (3-6) 

The distance Rt(n) express  

2 2( ) ( ) (t a e t a e t a e
2)tR X X X Y Y Y Z Z Z= + − + + − + + −       (3-7) 

The slant range vector Ra = ( Xa, Ya, Za) represent the measured distant. The 

error vector Re = ( Xe, Ye, Ze) represents any error in motion measurement. 

Figure 3.2 illustrates the geometry. 

The last analog signal conditioning step before sampling the received signal 

is demodulation. A spotlight mode system, occasionally, and stripmap or scan 

mode systems, often, will not perform this dechirp. We choose to include the 

dechirp operation in the model development here. The radar demodulates the 

received signal by mixing it with a replica of the transmitted signal delay by 

2R0/c.  

Stripmap and spotlight modes differ in selection of a motion compensation 

signal. Figure 3.3 shows the difference. Spotlight compensates each pulse 

exactly for the scatterer at scene center to convert this scatterer’s signal to a 

constant phase. In Figure 3.3, the spotlight mode compensates for the distance 

AC and treats the data as if it came from B in subsequent processing. 

The radar incorporates a real-time motion compensation operation by 

mixing the received signal sr(n,t) of (3-6) with a reference function sref(n,t) to 

produce the intermediate frequency(IF) signal sif(n,t). The reference signal is 
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   202 2( ) exp{ [2 ( ) ( ) ]}ref c
R Rs t j f t t
c c

π πγ= − + −� 0       (3-8) 

R0(n) is reference range from the planned APC location to the scene center. The 

model does not include the effects of any receiver waveguide dispersion on the 

signal nor any receiver filter and waveguide time delay. The IF signal that 

results from mixing (3-6) with (3-8) is 

0

2 2
0 2

2 / 4 ( ) 4( ) ( )exp[ ( )]exp[ ( )]
t

t c
if t

p

t R c f ts t a rect j R R j R R
T c c

π γ πγ− +
= − −

� �
i −  

(3-9) 

It is convenient to write this equation in the form 

( , )12 /( ) ( ) j n t
if

p

t R cs t a rect e
T

Φ−
=

��
i           (3-10) 

and 

0
1 0 1 02

24 4 2( , ) ( )( ) ( )cf Rn t t R R R R
c c c
πγ π

γ
Φ = − + − − + −� � γ

       (3-11) 

where R1(n) replace Rt(n). 

The next step in the algorithm is to Fourier transform ( )ifs t  for each pulse 

in fast time over the parameter . The range-compressed signal is  02 /t R−� c

2
10 10 10 102

442 4( , ) sin [ ( )]exp[ ( )]c t
p pt t

ffS n f aT c T f R j R R Rif c c c c
ππγ πγ

= + − + + �
� �

                    (3-12) 

using R10 = R1 - R0 for convenience. The peak intensity of the signal  

occurs at 

( , )if t
S n f�

102 /R cγ− . A cross-correlation of the range-compressed returns from 

successive pulses determines the pulse-to-pulse changes in peak location. At this 

point, it is acceptable to either subtract off a range frequency term in the original 
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signal history or move the compressed pulses in range using an interpolation 

routine to align successive pulses. The necessary frequency adjustment to (3-10) 

is to multiply by a complex exponential having a phase Φadj given by 

0
1 0

4 ( )(adj
2 )RR R t

c c
πγ

Φ = − −�           (3-13) 

The next step is to measure the phase of the peak response. The phase is  

2
1 0 1 02

4 4( ) ( ) ( )c
pk

fn R R R
c c

Rπ πγ
Φ = − − + −            (3-14) 

The result of multiplying the frequency adjustment described Φadj and a phase 

that is the negative of Φpk is 

21
1 12

2 / 4 2 4( , ) ( ) exp[ ( )( )]exp[ ( ) ]
t

t c
ifm t

p

t R c f Rs n t arect j t R R j R R
T c c c

πγ πγ
γ

−
= + − −

�� � −

                     (3-15) 

for the general scatterer at location ( Xt, Yt, Zt) and range Rt. The process 

stabilizes a scene center scatter (for which Rt = R1) gives any signal from this 

scatterer a constant phase and zero frequency. 

   The final step is to compress this signal in azimuth and in range 

dimension via the two-dimensional Fourier transform. The result image is in 

Figure 3.1(c). 

If the target’s relative rotation rate is essentially constant over the coherent 

data processing interval, this single point compensation alone provides an 

approximately focused image, especially when the target is small enough that 

polar formatting is not required. However, when the incremental change in 

rotation angle is not constant from pulse to pulse, a position-dependent blurring 

or defocusing of scatterers generally occurs. 
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The azimuth scale, relating image and target distances in the azimuth 

direction, depends on this rotation rate； therefore, the azimuth scale accuracy 

depends on auxiliary data accuracy. However, the range scale, relating image 

and target distances in the range direction, is independent of the relative motion. 

Thus, the range scale accuracy in PPP is equivalent to that in a motion 

measurement implementation 

 

3.2 Implementation 

 Figure 3.4 is the flowchart of PPP algorithm. Unlike PGA, PPP algorithm 

does not need iteration step. Figure 3.5 is a spotlight image with the random 

phase error that simulates aircraft sway. Next, Figure 3.6 is the corrected image 

removed the linear phase. It is obviously that the quality of Figure 3.6 is much 

better than the Figure3.5. Because of PPP algorithm can’t remove linear phase 

term, the linear phase removal method use the regressive method[26]. Figure 3.7 

is the image without adding random phase error. We can compare Figure 3.6 

with Figure 3.7. The brightness of corrected image is smaller than the original. 

We see that the point spread in range is more convergent, in additional the most 

important is the spread in azimuth is also converge. In Figure 3.8, the red dotted 

line is the random phase error we added, and the blue solid line is the estimated 

phase. We see the two lines are close, and their trends are similar. From the two 

viewpoints of the corrected image and the estimated phase, PPP algorithm works 

well in spotlight image. 

 Next, we discuss that the larger random phase error influences PPP phase 

estimation accuracy or not. There, we consider that the added phase error is 10 

times larger than above. Figure 3.9 is the information with the larger error. First, 
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we see the top right image; it is similar with the original image, the top left one. 

Following, the bottom block show the added random phase error and the 

estimated phase where we also see the trends are similar. Although the curve is 

not so match, the final destination --- image correction is good. The linear phase 

estimated by regressive method seems not good. But we could say it works 

successfully with larger phase error. 

 PPP can also apply to stripmap data. The following implementations are all 

for stripmap data. First, we see Figure 3.10 that is real image with random error, 

and the image is distortion. Figure 3.11 is corrected image via PPP algorithm. 

Obviously, it looks much better than Figure 3.10. Comparing it with the original 

image without added error, Figure 3.12, the corrected image can be restored as 

similar as original one. Figure 3.13 is the plot of the random phase error and the 

estimated phase. The simulation result is same as spotlight. 

Next, we implement the algorithm with the actual data without given phase 

error. The implementation is what we really care about. Figure 3.14 is the 

implementation result. We observe that the corrected image is not better than 

original image. Many reasons may cause the result. We think the most probable 

reason is that the motion compensation is so good that there is not much aircraft 

sway information for PPP to correct. And some little error may be caused by the 

hardware like electric circuits, mechanism vibration, thermal noise, and so on.  

Because of the failure of above implementation, we decide to use image 

without conventional motion compensation (mocomp) to understand what 

reasons cause the failure of PPP with stripmap data. Figure 3.15 is a no mocomp 

image, and it is obviously worse than the image using mocomp, Figure 3.7. Here, 

we see how important mocomp is. Figure 3.16 is the no mocomp image 

corrected via PPP. We carefully observe the two images, and we don’t get a 
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much better or worse image. In some regions of the image, the scatters are much 

convergent, but in other places are not. We can’t judge it is better or worse. And 

it also has the similar situation with other stripmap images.  

 There are many simulations, and most of them show satisfying result except 

the last two simulation. PPP does not design for stripmap SAR but for ISAR. 

That’s why PPP doesn’t have such good result for stripmap images. 
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Chapter 4 Stripmap Autofocus Algorithm 

 Stripmap autofocus is different from spotlight autofocus because of 

synthesizing image also in different way. Our data is stripmap mode hence we 

have to research it. Most stripmap autofocus algorithms derive from PGA --- 

spotlight autofocus algorithm. The following two kinds of stripmap autofocus 

algorithms are presented : PCA and SPGA. 

 

4.1 Phase Curvature Algorithm 

 Phase curvature autofocus (PCA) [28] is an extension of phase gradient 

autofocus (PGA) [29] for stripmap geometries. The idea was proposed by Wahl to 

extend PGA to narrow-band stripmap SAR systems. PCA as originally published 

is suitable for narrow-band systems with no range curvature. 

 In narrow-band systems that the sway error can be treated as a phase only 

function so PCA is prepared to use this kind of system. This assumes that the 

image blurring is contained in 1-D. PCA uses phase curvature range redundancy 

of the corrupted, azimuth-chirped image to estimate sway. It averages random 

phase curvature components form the scene to get the common phase curvature 

error caused by sway. The common phase curvature error is the double 

integrated to estimate the sway. 

 

4.1.1 Problems and solution for stripmap mode 

A conventional development of stripmap SAR views each point target in the 

image as having arisen from arisen from a certain linear FM chirp response in 

the range-compression step in forming an image is accomplished by convolution 
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with a corresponding chirp sequence. This suggests that in order to obtain 

aperture domain data suitable for a phase estimation procedure similar to PGA, 

each point target response in the image domain should be isolated, windowed, 

and convolved with the proper FM chirp. This effectively reconstructs the 

original range-compressed data from which the target image was produced 

(along with noise arising from the clutter included in the window). 

Multiplication by the known conjugate chirp values at each position then yields 

an aperture sequence consisting of a target-dependent complex constant, 

multiplied by the complex exponential associated with the phase error, spanning 

the particular set of pulses involved in imaging that target. A collection of 

selected targets produces a set of displaced apertures in the range compressed 

domain, each of which reveals a particular segment of the phase error function, 

as depicted in the Figure 4.1(a)、(b) for spotlight and stripmap mode each, and 

dotted line means the linear phase. 

 In practice, the aperture domain data used for phase error estimation can be 

computed much more efficiently than by actually performing the chirp 

convolution procedure described above. This is a consequence of a theorem 

stating that the chirp deconvolution involved in stripmap processing is 

equivalent to a conjugate chirp multiplication followed by FT centered on the 

target. (A sequel to this paper will detail this development.) as a result, the 

stripmap autofocus procedure may be implemented with steps very similar to the 

spotlight mode PGA algorithm. The main difference is that compressed domain 

corresponding to the locations of the targets in the image domain. 
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4.1.2 Analysis 

 There is a difference in the way in which the phase data in the range 

compressed domain must be processed in the stripmap algorithm, as opposed to 

the spotlight case. The reason is that the target aperture signals formed as 

described above fail to reconstruct any linear component of phase error that may 

be present in the corresponding segment of SAR data. This is of no consequence 

in the spotlight mode case where the individual target apertures coincide, but it 

creates a problem in the stripmap case in which the apertures are offset from 

each other. The result is that partially overlapping aperture that span different 

segments of the phase error function, with potentially different local linear 

components, will not necessarily exhibit the same phase gradients in the region 

of overlap. The curvature of the phase function will, however, coincide for all 

target apertures that overlap a certain point in the collection and maybe used as 

the basis for coherent averaging. Thus the stripmap autofocus algorithm 

computes second differences in phase, averages across the appropriate target 

apertures, and performs a double integration to produce an estimate of the phase 

error function. Iteration is again used to improve the estimate. 

 The phase estimation is similar with PGA that mentions above in 2.5.1. 

There, we derive the mathematical model from (2-5), and all assumption is the 

same as PGA in 2.5.1. The derivative of (2-5) is 
2

( ) ( ) ( ) ( ) ( )
ew e w wg t j t g t t g tφ φ= −

ii ii i
       (4-1) 

Also, assuming the effect of w(t) can be neglected, the estimation of the 

second derivative of the phase error becomes  

l
*

2

Im[ ( ) ( )]( )
| ( ) |
w w

e
w

g t g tt
g t

φ =

iiii

         (4-2) 
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Double integration of (4-2) provides the phase error estimate to within a 

constant. 

For a scene containing many rang bins, the PCA averages both the 

numerator and the denominator of (4-2) over many range bins to estimate the 

gradient. Using N range bins, the estimation becomes 

    l
*

2

Im[ ( , ) ( , )]
( )

| ( , ) |

w w
N

e
w

N

g n t g n t
t

g n t
φ =

∑
∑

ii

ii

        (4-3) 

where gw(n,t) is the signal associated with the windowed target from the nth 

range bin and  is its second derivative. The expression in (4-3) 

represents weighted least-squares estimate of the phase error derivative

wg ( , )n t
ii

[5]. And 

the derivation above is in continuous time domain, it is not suitable for actually 

implement. The following discrete time domain is derived for coding. g(m) is 

used to substitute g(t), and m denotes discrete index. For simplifying the 

derivation, signal phase term only retain phase error function ( )e mφ . 

     ( ) exp[ ( )]eg m a j mφ=          (4-4) 

The first derivative of phase error function in differential function eφ∆  is 

defined : 

     ( 1) (e e em )mφ φ φ∆ = + −          (4-5) 

Therefore, the second derivative of phase error function is  

 
( 1) ( ) ( 2) ( 1) ( 1) (

( 2) 2 ( 1) ( )
e e e e e

e e e

m m m m m
m m m

)e mφ φ φ φ φ φ
φ φ φ

∆ + − ∆ = + − + − + +
= + − + +

   (4-6) 

Finally, we can get the estimation of second derivative of the phase error 

function, , n2 ( )e mφ∆

n2 *( ) { ( 2)[ ( 1)] ( )}e m phase g m g m g mφ∆ = + + 2       (4-7) 
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4.1.3 Implementation 

 The process of PCA is almost the same as PGA. We see Figure 2.2, and only 

step 5 is different. In PGA, phase gradient is used to estimate the phase error in 

step 5, but the phase curvature is used in PCA. 

 The first simulation we use the same image as PPP simulation, Figure 3.7. 

PCA has been compared with PGA because their theory is similar. Figure 4.2 is 

the total information about the simulation for iteration 0. We see that PCA 

converges faster than PGA. The estimated phase is close to the added phase 

error. Figure 4.3 is a bigger image that can observe more details and the image is 

via two iterations of PCA. Figure 4.4 is via two iterations of PGA. Both results 

are similar. Note that PCA can’t remove the linear phase and we use regressive 

method to cancel the linear phase, too. Next, we see Figure 4.5, the estimated 

phase. The blue thin line is the estimated phase of PCA, and the green thick one 

is the estimated phase of PGA. We can’t judge which one is better, but PCA is 

convergent faster than PGA in many simulations.  

 Figure 4.6 is a part of the real stripmap image, and we add the random phase 

error to see the error could be estimated or not. Figure 4.6 is the total 

information of iteration 0 of PCA, and there are the original image, the degraded 

image, the corrected image (iteration 0) and the estimated phase. We find that 

the performance is not so good at first correction. The figure 4.7 is the more 

iteration times image. The image is obviously convergent at iteration 2 and not 

divergent in following iterations. The figure 4.8 is the estimated phase per 

iteration. The dotted red curve is added random phase error, and the star blue 

curve is the estimated phase via five times iteration. It is found that the 

estimated phase via two iterations is similar with iteration 3, 4, 5 and the phase 
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is different from iteration 0 and 1. It is worth noting that the final image is as 

good as the original one. 

 Following, we discuss the stripmap image without artificial blur we added 

will be improved or not. Figure 4.9 shows the result. The left one is a part of the 

original image, and the right is via two iterations of PCA. There is no any 

difference between each other and no divergence after many iterations. In other 

word, the quality of image won’t become worse. The reason is the same as the 

PPP simulation in the preceding chapter. 

 Finally, we also take the map without sensor-based mocomp to implement. 

Figure 4.10 is the image without sensor-based mocomp. Figure 4.11 is the image 

via iteration 0 ~ 5. There is obviously much improvement after iteration 2. It is 

more convenient to compare the difference. Figure 4.12 is the complete size 

image. It is impossible for us to compensate the no mocomp image as good as 

image with navigation mocomp because there is too much unknown aircraft 

dynamics information. PCA successfully makes scatters more convergent that 

proves the algorithm works!  

 Besides above implementations, there we discuss the effect of the window 

size selection. We see Figure 4.13, and there are three kinds of window size. The 

top one is general size, and the size is most used. The middle one is larger than 

the first, and we mainly compare these two kinds of window size. In our 

experience, the second window performs better than the first, but the convergent 

rate is more slowly. In Figure 4.14, the left one is the result of general size 

window, and the middle one is corresponding to larger size window. We observe 

these two in detail, and the middle image is better than the left. The scatters are 

more convergent as iteration times increase. The iteration time we mark is the 

times to reach a stable situation. The bottom one of Figure 4.13 is the biggest 
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window that almost encompasses the entire image. We find that the result, the 

right one of Figure 4.14, is not good, and the whole image is degraded. Different 

window sizes correspond to the cases of different scenario. It is by rule of thumb 

that the first window never encompasses the whole image in actual data.  

From this discussion, window selection is always an important issue for 

PGA based algorithms, and the selection will determine the implementation 

result good or not. 

 

4.2 Stripmap Phase Gradient Algorithm 

The disadvantage of PCA is it does not estimate local linear sways. Thus if 

there was not at least a point target per synthetic aperture length, i.e., aperture 

coverage is insufficient, then the reconstructed image can be disjoint. SPGA 

overcomes this problem by estimating the local linear sway. Therefore we 

introduce SPGA[30] as new improved algorithm here. The algorithm is suitable 

for SAS system not for SAR system. We want that someone will take this work 

and modify the algorithm to be suitable for our application.  

The algorithm described here unifies the discussion of stripmap autofocus. 

Instead of deriving an algorithm based on narrow-band/narrow-beam 

approximations a model with as few approximations as possible has been used. 

Traditional autofocus algorithms may be derived from this algorithm by 

applying appropriate approximations. Thus, all of the algorithms previously 

discussed in the chapter can be described in the framework of the algorithm 

presented here. 

The stripmap phase gradient autofocus (SPGA) algorithm consists of a 

number of subproblems that described in separate sections later in this chapter. 
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The SPGA algorithm operates as follows: 

1. Starting with the blurred image f(x,y), a number of prominent targets in 

the image are selected and the coordinates (xm,ym) recorded. Typically, a 

fixed number of bright scatterers are selected.  

2. Applying 2-D window function as following : 

   ( , ) ( ) ( )− −
= m

m
x y

mx x yw x y rect rect
W W

y

m

        (4-8) 

where Wx and Wy are the range and azimuth widths respectively. These 

widths are chosen to be as small as possible, but the window must 

encompass image blurring information. 

3. Masking the blurred image with the window 

( , ) ( , ) ( , )=mf x y f x y w x y          (4-9) 

4. Applying 2-D Fourier transform to windowed image 

    ( , ) { ( , ),F f f F f x ym x y x y m }=        (4-10) 

5. Finding the true target position, � �( , )m mx y  of the individual targets that 

estimate by using the techniques. Using centroiding to estimate the spatial 

Doppler shift :  

    
2

2

( , )

( , )

y m x y y x
y

m x y y x

f F f f df df
f

F f f df df
∆ = ∫∫

∫∫
       (4-11) 

The spatial Doppler shift estimate, myf∆ , is mapped into an estimate of 

�( −m my y )  using the wavenumber transform  

6. The region of interest images are phase modulated to correct for the shift 

in target position 
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  m m' ( , ) ( , )exp( ( ) ( ))m x y m x y x m m m mF f f F f f jf x x jfy y y= − − − −       (4-12) 

7. Applying the wavenumber transform  

     '( , ) { ( , )}=m x m x yX f u SC F f f        (4-13) 

where the modified wavenumber transform coordinate mapping SC{} is 

given by 
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         (4-14) 

8. Phase gradients of  in the along-track direction are calculated 

and averaged for all m. The ML phase gradient estimator is employed 

( , )m xX f u

    m m( ) { ( , ) }φ η∆ = ∆∫
x

x xf
u Arg f u df       (4-15) 

where 

   m *( , ) ( , ) ( , )η∆ = + ∆∑ mx m x x
m

f u X f u X f u u      (4-16) 

is used to calculate the individual phase gradients. 

9. A final phase estimate, �( )φ u , is generated from the phase gradients via 

cumulative summation or various other methods depending on the phase 

estimation kernel selected. When the ML phase gradient estimator is used, 

this is summarized by  

� m �
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u q       (4-17) 

10. The final phase-estimate �( )φ u  is converted into a sway estimate via  

       l �

0

( )( )
2
φ

=
uX u
k

        (4-18) 

11. The new sway estimate is used to motion compensate the image and the 
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algorithm iterates from step 1 until the sway estimate is less than some 

threshold. 

The SPGA algorithmic steps are in Figure 4.15. 

 

4.2.1 Target region selection 

 Target region selection is important for SPGA algorithm. If poor targets are 

selected their influence is reduced by the better phase-estimation kernels. 

However, enough points are required to achieve the desired autofocus accuracy. 

 SPGA currently selects a predetermined number of target regions in order of 

descending energy. Regions are selected from any range bin and only need be 

separated by current resolution at a particular iteration. Full aperture coverage is 

essential, so enough points must be selected to ensure coverage of each section 

of the aperture. Typically 100-1000points would be selected for a 50m by 50m 

SAS image this number should provide aperture coverage and allow accurate 

autofocus performance. Note that the selection of alias lobes from undersampled 

imagery should be avoided to prevent autofocus bias. 

 Autofocus accuracy improves as more points are selected, thus having the 

aperture covered with multiple targets is desirable. However, a trade-off is not as 

straightforward as it appears. QPGA for example, selects 4-8 times more targets 

than traditional PGA but is accurate enough to autofocus without iteration. Thus 

selecting more targets can reduce computational burden – particularly with the 

large iteration cost involved in stripmap reconstruction. This observation is often 

overlooked – autofocus accuracy improves even when using pints with low 

signal-to-clutter ratios. 

 Another strategy for improving accuracy is to select widely separated points. 
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This is performed to ensure that the pints selected are independent i.e., are not 

different parts of the same object. Phase-estimation improves since the 

averaging of random target phase is not biased by a few strong-scattering 

extended targets. To some extent, the 2-D windowing used in SPGA alleviates 

this problem by ensuring sufficient along-tack and across-track separation. 

 

4.2.2 Window width selection 

 SPGA windows individual targets to ensure that only one scatterer at one 

time is used. If the window encompasses a number of targets, the phase 

estimation has poor results. As the algorithm iterates, the along-track window 

size decreased, reducing the likelihood of multiple targets within a single 

window. Selecting many targets at different locations improves sway estimation. 

 Window width selection is an important task for any PGA-based algorithm. 

The window acts to improve the signal-to-clutter ratio of the phase estimation 

and gas a large impact on algorithm performance. In PGA, the window width 

requires careful selection to avoid discarding useful autofocus information. This 

is apparent if the window does not fully encompass the target blurring; the 

algorithm is unable to estimate high order aperture phase components leading to 

residual blurring. SPGA, like PGA, starts with a wide window that decreases 

over time. This window must encompass all blurring, allowing estimation of 

errors contained in both low-order and high-order blurring components. Usually, 

the initial window width is selected to exceed the expected blurring to avoid 

data loss. 

 SPGA has slightly different windowing requirements to traditional 

PGA/PCA style algorithms due to the along-track position estimation. SPGA 
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requires that the window width is selected to allow accurate Doppler centroid 

estimation. This means that a small number of along-track side-lobes of the 

target peak must be encompassed. Windows are typically 2-3 times bigger for 

SPGA than for PGA/PCA with equivalent blurring. Curvature-based phase 

estimation removes the requirement for using larger along-track window width 

than PGA/PCA. Interestingly, SPGA’s linear phase estimation and correction 

might not be required in the final iterations so the requirement for larger window 

widths at convergence is not certain. Further investigation is necessary. Another 

slight difference between SPGA windowing and PGA windowing is that with 

SPGA the window width should be range-variant since a fixed sway causes 

increasing blurring extent with range. 

 Traditional PGA window width selection techniques are not suitable for 

SAS autofocus. These typically measure the -10dB point of the centre shifted 

image. These techniques work well when a number of prominent scatterers 

occur in the image but fail in scenes consisting mostly of clutter. With clutter 

images the window width is decreased by a fixed fraction each iteration. This is 

needed since blurring only causes contrast loss in clutter scenes – no peak 

blurring is evident. SAS images have few prominent scatterers and need to use 

successive window width reduction. 

 

4.2.3 Azimuth position estimation 

 The biggest difference between SPGA and other PGA/PCA based 

algorithms is the estimation of the along-track position of the targets before 

phase-estimation. This allows phase gradient averaging instead of phase 

curvature averaging and improves phase-estimation. Target position estimation 
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is necessary because phase gradient estimation is unable to estimate the linear 

phase trend caused by target shifting. Unknown linear phase trends prevent 

averaging of phase gradients and must be removed. In contrast, spotlight 

imagery has an unknown linear phase trend common to all targets so phase 

gradient averaging is possible. 

The along-track target position is estimated using prior knowledge of the 

beam-pattern and spatial-frequency coverage of stripmap systems. Linear phase 

shift cause frequency shifting. Thus the linear phase trend across the target may 

be estimated by measuring the shifting of the target’s along-track spatial Doppler 

spectrum. 

Three methods[30] for determining the Doppler spectrum shift have been 

employed with SPGA to date. There are: 

Doppler centroiding – Doppler centroiding operated by estimating the centroid 

of the power spectrum averaged over range. This may be described by 

2

2

( , )

( , )

y m x y y x
y

m x y y x

f F f f df df
f

F f f df df
∆ = ∫∫

∫∫
       (4-19) 

where  is the wavenumber-domain data of the target patch. The 

centroid of the power spectrum is preferred to the centroid of the amplitude 

spectrum since linear trends cause energy-shifting and the amplitude can be 

adversely affected by higher order sway. Note that the centroid estimate 

also causes an underestimation of the shift due to the circular repetition of 

the Doppler spectrum caused by Doppler aliasing. This aliasing can be 

resolved using a circular centroid estimator of the form 

( , )m x yF f f

  max 2
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2
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π
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Modified Doppler centroiding – using the observation that the centre of the 

target scene is not necessarily the centre of energy and that Doppler 

centroid estimation aims to estimate the linear trend via energy-shifting, a 

modified centroid estimation can also be used. This uses the centroid of the 

image scene and correcting the normal Doppler centroid result. Centroiding 

of the target scene improves the estimation when multiple targets are 

selected in a region of interest – the limiting condition on autofocus 

performance. Similar observations might also aid the correlation estimator 

discussed next 

Doppler correlation – Doppler correlation is another method of estimating the 

Doppler shift and does not suffer underestimation due to Doppler aliasing. 

Doppler correlation operates by correlating the spectrum of the target patch 

with the expected spectrum. This operation is described by  

    *max { ( , ) ( )}
yy f m x y x f y yf F f f df A f∆ = ∫       (4-21) 

where 

    ( ) ( sinc( ) sinc( ))
2 2
y t y r

y t r

f D f
A f D D

D
π π

=        (4-22) 

is the expected amplitude spectrum. 

 Of the methods, modified Doppler centroid estimation is preferred because 

of its improved accuracy and reduced computational requirements. 

 It is worth noting that the noise performance of position estimation is 

different to that of the phase estimation kernels described earlier. Clutter suffers 

the same linear shift as the selected target so has the same spatial Doppler 

spectrum. The result is that the performance of the estimator is determined by 

the signal-to-noise ratio not the signal-to-clutter ratio. The difference can be as 
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much as20-40dB 

 Estimating the true position of the targets allows the use of phase gradient 

estimation. This is possible when platform yaw is negligible or accurately 

measured. When unknown yaw is present, workarounds allow the use of phase 

gradient estimation. In addition, phase curvature based estimation can be used 

with a decrease in performance. Finally, phase gradient based estimation is 

sensitive to the accuracy of the along-track target position estimation, and any 

technique for improving those estimations will benefit the SPGA algorithm. 

 

4.2.4 Wavenumber transform 

 The modified wavenumber transform coordinate transform SC{} acts to 

transform the phase error estimates from the individual targets into a 

space-invariant domain prior to averaging. This is a typical step in space-variant 

image processing. The success of the wavenumber transform in accomplishing 

this results from its similarity to the reconstruction process. Both PGA and PCA 

use approximations of the wavenumber transform tailored to the environment 

they are designed for : PGA, a Fourier transform; and PCA an along-track chirp 

spreading. 

 The wavenumber transform maps image blurring to the phase error in the 

pulse compressed data that caused the blurring. Once in the pulse compressed 

data domain, the phase errors have redundancy in along-track position of the 

target adversely affects the average. However, the difference between the image 

target position and the estimated trued target position is small for later iterations 

and has little effect on the average. The use of the wavenumber transform allows 

the phase error information from multiple targets to be combined in sensible 
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fashion. 

 

4.2.4.1 Wavenumber geometry based derivation 

The wavenumber transform is the basis of the stripmap blurring model used 

in this thesis and as such is also the basis of the SPGA autofocus method. 

The wavenumber transform can also derived using straightforward 

geometrical arguments. 

 Starting with the angle to target θ 

 1tan ( )n
n

u y
x

θ − −
=  

and noting that in the far-field of the target patch the spatial frequency coverage 

is described by the same angle 

 1tan ( )y
x

f
f

θ −=  

The wavenumber transform relation may now be derived as  

 y n
n

x

f x
u y

f
= −  

 

4.2.5 Phase Estimation 

 Phase estimation is the heart of the SPGA method. Like PGA, small 

improvements to the phase estimation kernels can yield large improvements in 

the end result. The phase estimation kernel used depends on the accuracy of the 

along-track position estimation. When the along-track position estimates are 

accurate, a phase gradient method should be used. However, when the 

along-track position of the targets is unknown or inaccurate, a phase-curvature 
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kernel must be used. Even with unknown along-track positions, a phase gradient 

kernel can be used once an estimate of the phase error is obtained using phase 

curvatures. 

 The kernel currently used of SPGA is the ML phase gradient estimator. 

WPGA provides a better phase estimator than the ML estimator suggested. 

However, the weightings used in WPGA’s derivation are calculated based on 

spotlight SPGA assumptions and the iterative scheme employed cannot currently 

be used in a stripmap framework. 

 

4.2.6 SPGA vs. traditional algorithm 

 SPGA provides a framework which can describe a number of traditional 

autofocus algorithms. 

PGA 

 SPAG implements PGA if narrow-band and narrow-beam approximations 

are made and the along-track position of the targets is assumed to be zero in the 

phase compensation and interpolation. Under these approximations, the 

wavenumber transform becomes the along-track Fourier transform that PGA 

uses. The centre shifting step of PGA is implicitly implemented by SPGA’s 

centroiding the Fourier transform around the target region of interest. Further 

work is required on the phase estimation technique of the more sophisticated 

PGA. 

PCA 

 PCA is implemented by using narrow-band, narrow-beam approximations 

and using a phase curvature based phase estimation. 

PPP 
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 PPP is implemented by allowing SPGA only a single point and using a 

phase-averaging estimation kernel. 
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Chapter 5 Conclusion 

 Many autofocus algorithms are developed for SAR, especially for spotlight 

mode. We choose these two algorithms to research that because these two 

algorithms are not so mature and the relative research is not so much. Another 

reason is that our SAR data is stripmap mode, and stripmap data is also suitable 

for the two algorithms. 

 We make a comparison table to understand the effects of these two 

algorithms. Table 5.1 compares three algorithms PGA, PPP, and PCA. PGA is 

used to compare with PPP; PGA and PPP algorithm develop for spotlight mode 

originally.  

 The meaning of the notation in Table 5.1 : “ O ” expresses “ better ” which 

means the image can be restored or scatter can be more convergent; “ Δ ” 

expresses “ similar ” which means some scatters may be convergent but others 

not; “ X ” expresses “ worse ” that means the image can’t be restored or even 

worse.  

 In table 5.1, it is obvious that PPP algorithm is not as good as PCA 

algorithm for stripmap data. It does not surprise us since PPP algorithm is 

developed for ISAR system, and there are also some constraints in applying 

stripmap data. We only implement single point PPP so it may be not enough 

information for stripmap images. It is successful for PCA algorithm whether in 

spotlight or stripmap images. From above implementations, we discover 

stripmap autofocus algorithms also work with spotlight images. 

 Although PCA algorithm compensates the stripmap image successfully, 

there are also some disadvantages. The most one is linear phase term removal. 
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PCA can’t remove linear phase term in its algorithm but SPGA can. SPGA is 

derived from PCA, and the linear phase term removal is included in SPGA 

algorithm. Therefore, we think that SPGA performance will be better than PCA 

and hope the following junior in lab will complete the algorithm. 
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     Figure 2.1 Block diagram of the phase gradient autofocus procedure 
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Figure 2.2 PGA algorithmic steps and corresponding images 
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Figure 2.4 Compare processed images with original image  

(a) processed image (iteration=0)  (b) processed image (iteration=1)  
(c) original image without phase errors 
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Figure 3.3 Motion compensation comparison 
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Figure 3.4 PPP algorithmic steps 
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Figure 3.5 Input spotlight image for PPP 

 

 
Figure 3.6 Corrected spotlight image by PPP 

 

 
Figure 3.7 Original spotlight image 
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Figure 3.8 Estimated phase and random error 

 
Figure 3.9 The total result with 10 times bigger random phase error 
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Figure 3.10 Stripmap image

Figure 3.11 Correcte
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Figure 3.14 Corrected stripmap image without error 

 

 

Figure 3.15 Stripmap image without mocomp  
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Figure 3.16 Corrected stripmap
 

 
Figure 4.1(a) Phase error and line
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ar phase for spotlight mode 



 
Figure 4.1(b) Phase error and linear phase for stripmap mode 

 
Figure 4.2 Corrected image after PCA and PGA (iteration = 0) 
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Figure 4.3 Corrected image after PCA (iteration = 2) 

 

 
Figure 4.4 Corrected image after PGA (iteration = 2) 

 
Figure 4.5 Estimated phase by PCA and PGA (iteration = 2) 
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Figure 4.6 Stripmap image with random error by PCA (iteration = 0) 

 
Figure 4.7 Corrected image (iteration = 0 ~ 5) 
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Figure 4.8 Estimated phase (iteration = 0 ~ 5) 
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Figure 4.9 Original image without random error via PCA (iteration = 2) 
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Figure 4.10 No mocomp image 

 
Figure 4.11 Image of the process of iteration 0 ~ 5 
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Figure 4.12 No mocomp image after five iterations of PCA 

 
Figure 4.13 Three kinds of window size 
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 (a) small window & 
iteration = 5 

(b) medium window &
iteration = 6 

(c) large window & 
iteration = 5 

 
 

Figure 4.14 Corrected image with three kinds of window size 
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Figure 4.15 SPGA algorithmic steps 
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Tables 

  Spotlight  
data 

Stripmap data 
with error 

Stripmap data 
without error  

Stripmap data 
with no mocomp

PGA O X X X 

PPP O O X ∆ 

PCA O O ∆ O 

O : better 

∆ : similar 

X : worse 
Table 5.1 Algorithm implementation comparison  
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