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ENGLISH ABSTRACT

In this work, we ‘address the problem of quantifying the data sharing.degree of
the memory access behavior within specific SIMT applications in order to
quantify the locality characteristics of the application’s workload. In addition,
we also offer way to visualize the way the sharing patterns of the applications
and the way they change under different models of-runtime scenarios. For the
purposes of quantifying the data sharing degree a memory.trace is.generated that
contains information of the addresses accessed at a specific point of execution.
Then, the information contained in the traces IS used to perform the data sharing
degree analysis of memory ‘accesses. In this analysis, we have redefined the
reuse distance concept in order to make it suitable to our analytical requirements,
at the same time considering the particulars of the execution model previously

mentioned.
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I. INTRODUCTION

The last decade has seen an increase in the processing demand in the different computing
markets [1]. This has made necessary the introduction of novel computer architectures to
satisfy the exponentially increasing processing needs of the end users. As a consequence,
heterogeneous computing systems [2] have risen as commercially available solutions. These
systems rely on one or more processing accelerators that are able to perform certain tasks
within the users’ applications faster and more.efficiently. SIMT architectures are one of the
most common many-core/multi-threaded processing accelerators. SIMT stands for Single
Instruction — Multiple Threads. These processors are able to handle a relatively large amount
of execution contexts simultaneously. Within this scope, GPUs are .the most popular and

widely used.

The current trend is to utilize~these=heterogeneous. computing systems for a.wider range of
scientific computing applications and other general purpose tasks:To do this, it is necessary to
understand the particularities of the processing accelerator. Thus, programmers are required to
consider 'key architecture details at the software design stage. In addition, a thorough
understanding of the application’s characteristics;and its interaction with the architecture is
necessary.to fully exploit the processing power of the accelerators. This is particularly delicate
for SIMT processors.

The performance of an application executing on- SIMT architectures, ‘'such as GPUs, is
significantly dependent.on its locality characteristic, resource utilization, control flow
behavior, among ‘other things [3]. The locality characteristic.is dependent on the memory
access patterns of the application. Considering these patterns.and the details of the underlying
memory sub-system is critical to boost performance. This is because the memory sub-system
is the principal performance bottleneck [3]. Applications for SIMT architectures are extremely

sensitive to memory utilization resources.

Many efforts already exist that have characterized the applications running on SIMT
architectures [4, 5, 6]. Most of these works define a set of metrics (percentage of branch
divergence, branch predictability, dynamic instructions, memory intensity, etc.), and observe
the values of the metrics produced by each workload after conducting a series of simulations

over real GPUs or simulators [7]. There have also been efforts to characterize the locality of



applications [8]. These works carefully explore the relationship between the execution model
of the architecture and the data sharing of the application [9]. Such works are able to leverage
the data sharing of the thread at different levels of the thread hierarchy in the SIMT
architecture, and provide guidelines based on this information to improve performance. In this
work, we use the terms data sharing between the threads and data reuse between the threads
interchangeably.

The data reuse behavior of applications deserves particular attention. As Figure 1(a) shows,
one of the benefits of taking advantage of the'data reuse is the increase in memory coalescing.
When threads request data from the off-chip memory, their accesses are said to be coalesced
when many memory requests can be served in one single off-chip memory transaction. This
happens when accesses are to contiguous or identical addresses. Memory coalescing is not
possible when the memory accesses-are too scattered. This makes either necessary additional
off-chip memory transactions _or_increases the latency of transactions if caching is present.

Thus, performance is reduced.

Another benefit is the avoidance of contention, illustrated in Figure 1(b). Contention occurs
when data Is evicted between two sub-sequent requests to the same data. In Figure 1(b), an
example is presented for a CMP. First, processor PO requests a data from memaory and uses it.
Then, processor P1 requests. data’ of its own that causes the eviction of thesprevious data
requested by PO. If PO requests that data again, PO will be stalled fetching the same data to the
off-chip memory_a second time. If these series of events repeat frequently during the
application’s execution, then it is said that contention is present..Contention harms
performance significantly, since the latency required to fetch data to off-chip memory is an

order of magnitude higher than fetching data from on-chip caches.
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Figure 1: Benefits obtained when taking advantage. of ‘the data reuse in SIMT
applications. (a) DRAM memory transactions with and without coalescing. The first two
cases from the top illustrate-the-case for coalescing. The last case shows.the case when
coalescingis not possible. (b) Illustration of the contention effect in a CMP.

The impact of the data reuse over performance is significant.[8, 9, 10]. For the case of SIMT
processors, there’s a need for architecture-agnostic. analyses to assess qualitatively and
quantitatively the locality characteristics of‘applications, in particular the data reuse behavior.
Modeling the inherent large amount of parallelism in SIMT applications and its impact on the
data reuse behavior of the applications is the main motivation behind performing such
analyses. The existing methodologies to perform- locality ‘analyses used .for applications
running on CMP systems, such as the reuse distance analysis, are not:appropriate for SIMT

applications. The main reason for this limitation is the difference in.the execution model.

Reuse distance analyses on CMP.systems:consider- implementation details of the architecture
in order to maintain accuracy [11]. In these analyses, locality is measured from the perspective
of the memory subsystem, keeping track of the addresses accessed. These analyses model the
effects of thread interference and amount of processor cores, which defines the total amount of
threads running simultaneously. However, the locality measurements obtained with this
methodology are heavily dependent on the configuration of the on-chip memory subsystem,
and are affected by factors such as the type of task scheduling and allocation. The
architectural agnosticism is sacrificed, but these analyses are still very valuable for memory

subsystem design, to predict cache miss rates and estimate performance



When applying the previously described methodologies, the locality measurements are not
solely of the application, but are of the application interacting with a memory subsystem that
has specific characteristics. This methodology becomes inappropriate for SIMT processors,
since it does not consider the particular execution model of the latter and does not consider its
inherent large parallelism. Also, the memory subsystem in SIMT processors has different
characteristics than their CMP counterparts, which imposes the need to develop better suited

analysis methodologies.

In order to quantify the locality: characteristic of SIMT applications in an integral way, it is
necessary to abstract the analytical model from the implementation details and practical
limitations of SIMT processors, and perform the analysis as closer to the application itself as
possible. Analyses performed under such conditionsswould show the locality characteristic
particular to an application in-a-self-contained, abstract and truly architecture-agnostic way.
This would. allow us to measure, as isolated as possible from ‘implementation details, the
changes of the locality characteristic under different runtime scenarios ‘and optimizaitons.
Once this has been quantified, the locality can then be measured in relation to other factors of
the SIMT execution model (scheduling, allocation, pipeline length, etc.) and the limitations of

commercial-architectures.

In this work,.we'develop a methadology to analyze and quantify, while offering.a graphical
representation, of the data reuse ‘behavior of SIMT applications under different execution
conditions. For the characterization. of the data reuse, we define a new metric: the data reuse
degree, and also, we redefine the reuse distance concept in order to employ it in our analyses.
We measure the reuse degree in the reuse distance domain of an application’s kernel,
assessing how significant the data reuse. is at different segments of the application. We also
obtain the data reuse characteristic for different kernels when modeling different abstractions
of parallelism, which gives a clear idea on the manageable locality as processing resources are

constraint.

The contributions of this work are as follows: 1) we provide a new analytical model for the
analysis, quantification and to graphically represent the data reuse behavior of SIMT
applications that is solely application dependent and architecture-agnostic, 2) provide a
methodology that captures the data reuse behavior of SIMT applications under different types
of parallelism constraints, from an ideal case where parallelism capabilities are infinite down
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to more realistic scenarios, 3) we provide a new way to identify an application’s access
patterns, embodied in its data reuse characteristic, 4) we show the changes on the data reuse
characteristic when coding optimizations are performed, 5) develop a flexible framework that
enables to analyze the effects of that certain implementation details of SIMT architectures

(scheduling, allocation, number of core clusters) have over the reuse characteristic.

This thesis is organized as follows. Chapter 2 gives an overview of SIMT processors. It
explains the abstractions of the programming and execution models, and describes very briefly
the architecture of a commercial SIMT processor. Chapter 3.explains current state-of-the-art
locality analyses. Their:limitations -are explained when trying to use them as such when
analyzing applications SIMT processors. Chapter 4 develops our new model for characterizing
the data reuse, and formally defines the data reuserdegree and the reuse.distance. Chapter 5
explains the ‘methodology used-to-perform the analyses. Chapter 6 details the different
conditions under which the data reuse characteristic is obtained.. We ‘vary the amount of
available parallelism, and a different reuse characteristic is obtained for each case. Chapter 7
explains with luxury of detail the framework developed to perform the analysis. Mostly
programmed Iin C++, we show the algorithms it has and the elements that were modeled.
Chapter 8 describes the coding optimization techniques performed over the benchmarks we
use for our experiments. These optimization techniques are taken from [9], and are used in our
experiments_to observe the change-on the reuse characteristic after applying them. Chapter 9
shows our experimental results..in Chapter 10, the related work is presented. Chapter 11

concludes this work.



Il. OVERVIEW OF SIMT PROCESSORS

This section presents general background on SIMT processors. We take as our main reference
current state-of-the-art GPU architectures. Thus, we provide general information on their

hardware specifications and programming abstractions.

2.1 Hardware of GPU Architectures
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Figure 2: Diagram of a core cluster based on NVIDIA's Kepler GeForce GTX 680 GPU.
(a) The core cluster with its internal hardware modules. (b) Illustration of the thread

hierarchy in the SIMT programming model.

The number of cores in each cluster varies depending on the family of the GPU, but they are
usually grouped by numbers of powers of 2. In the case of the GTX 680, there are 8 core

clusters, arranged in groups of two, forming 4 separate groups. The task allocation to each
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core cluster is handled by a thread block scheduler, which appears as the GigaThread Engine
in Figure 2. This module issues a group of threads to each cluster based on a task allocation
policy.

Each cluster has private caches that only the threads executing within it can access. Figure 2(a)
also shows an L2 unified cache. This L2 cache is shared by all the threads running in all core
clusters present in the GPU. Four memory controllers handle the access to the off-chip

memory, which perform memory scheduling and coalescing techniques.

Every GPU has a PCI Express/interface which is the bus that connects the GPU device to its
CPU host. It is the CPU that launches the execution of applications in the GPU and transfers
all the data to the GPU memory. Recent generations of GPUs are able to initiate tasks created
autonomously [12]. The CPU offloads work into the GPU in order to accelerate the execution

of highly parallel portions of applications, leveraging the latter’s processing power

In Figure 2(a); there’s also an array of texture units, a texture cache, a ‘configurable shared
cache and L1 cache;auniform cache (for constant variables) and an interconnection network.
The latter provides an interface for the core clusters to.move data to and fro the L2 unified
cache and the off-chip memory. It Is important to stress the fact that there are no coherence or

consistency.models implemented in the programming model of the GPUs [13].

2.2 Programming and execution abstractions of GPU

In GPUs, threads are the smallest unit that can be executed. These are grouped obeying a
hierarchical scheme that facilitates the task allocation from core clusters down to each
individual core. Tasks issued to-a GPU for execution are represented as a conglomerate of
threads grouped into grids consisting on thread blocks, which are further divided into smaller
groups of threads called warps [13]. This outlines the thread hierarchy inherent to the runtime

model of the GPU. Figure 2(b) presents the thread hierarchy as previously described.

Each warp inside a block can have up to 32 threads in current state-of-the-art NVIDIA GPUs.
The number 32 is chosen because it facilitates the management of the memory accesses by the
memory subsystem [13]. Each warp of 32 threads executes in lockstep, which means that they
execute the same instruction over different portion of data. The instructions they execute are

the ones conforming the kernel code. Each thread executes the kernel code, but each thread
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works over totally or partially mutually exclusive subsets of the data. Because of this fact, it is
said that GPUs apply an SIMT execution model.

The threads can be arranged in multidimensional arrays, and so they are grouped into warps,
which conform the blocks, as mentioned before. Each warp has a warp ID. Inside these warps,
each thread also possesses a unique ID, which becomes useful to associate it to the data

portion that it uses.

2.3 Memory Hierarchy of GRUs

The GPUs memory hierarchy is very particular, and 1t is somewhat suited to fit the needs of
the programming model just described in the previous section. The memory hierarchy of the

GPUs has 6 different memory spaces: register, local, shared, global, constant and texture.

The different spaces serve different purposes. The constant memory Space is read-only
memory used to store constants; parameters and data types declared as un-modifiable by the
CUDA programming model. The texture cache is used.to store texture and surface [13] data in
a non-inclusive way: texture data iIs EXCLUSIVELY stored in the texture cache. The registers
are assigned-to each thread so these can store operands and perform calculations: The local
memory space is a portion of the memory assigned to each individual thread, to which it can
write or read information as the computation-progresses:-Also;-it can use this space to spill
registers when exceeding the register quote. The lifetime-of this memory space lasts as long as
the thread is active. The.shared memory space can be accessed by all threads within a block
and it is managed-explicitly by the programmer. This space expires-from the memory as soon
as the block finishes execution.in the. SM. The global, constant and texture memory spaces
remain in place even after the kernel has finished execution, or other kernels are launched into
the GPU.

Understanding the details of the memory hierarchy of these processors is fundamental to
comprehend the complexity of the locality characteristics. However, as it will be explained,
the locality behavior of applications depends on multiple factors, starting from the resource
and parallelism availability. This is the central point of the analytical models proposed in this

work.



I11. LOCALITY ANALYSES IN CMP AND UNIPROCESSOR SYSTEMS

SIMT architectures can execute a large amount of threads concurrently when compared to
more conventional processor systems (CMPs, uniprocessors), and memory accesses are also
managed in a different way. The threads in SIMT processors are highly symmetrical
performing the same, or nearly the same, operations over different portions of data. The
locality behavior in SIMT processors is closely related to how threads are grouped, allocated
and identified at runtime [8]. The relationship between the threads and the data used by them
is intrinsic to the programming model of. these systems, and it is the most significant
consideration at the software design stage. Additionally, there are different on-chip memory
spaces in SIMT architectures that are used consciously by the programmer to store specific
data types and data structures. This allows for a better administration of the memory resources

depending on the particular requirements of an application.

In more conventional processor Systems, the case is dramatically different. In these processors,
the threads that enter execution do not necessarily present such similarities In the instructions
they execute and their corresponding data sets.. The amount of threads that can execute
simultaneously is much smaller when compared to.SIMT processors. The main reason for this
is the significant difference in the amount.of resources available for computation in both
architectures;”which are significantly higher _in_SIMT _processors. Moreover; due to the
asymmetry frequently common in threads running on conventional processor systems, control
flow behavior becomes more complex. This limits the amount of parallelism available that can

be leveraged to boost performance.

These conventional processors do not offer to programmers the same flexibility to manage
on-chip memory resources that SIMT processorstdo. This is so because in the former, there is
a fairly uniform and general purpose memory space, with relatively large capacity. In this case,
memory allocation, replacement and fetching are managed by the memory hardware. This is
in stark contrast with SIMT processors, where the memory spaces are more diverse, tailored
for specific uses. Programmers can instruct the hardware which data to cache or not, or to
allocate it in specific memory spaces depending on the characteristics of the data. Thus, the
configuration of the memory subsystem and its utilization is significantly more complex in

SIMT processors.



When data is specifically allocated by the programmer, it is done depending on the specifics
of the applications access patterns, and the capabilities of the specific architecture. When
accesses are too scattered, for example, caching harms performance [8], since a lot of data
loaded to the on-chip cache is not used. Therefore, programmers need this flexibility to tune

their applications to the capabilities of a specific SIMT processor.

All the factors previously described make the locality behavior of applications more complex
for the case of SIMT architecture. The differences in the amount of parallelism and the
characteristics of the memory subsystem impose the need to develop analytical models and
methodologies of analyses to properly guantify and visualize the locality behavior of these

applications.

We seek to capture the data reuse characteristic of applications. To do this, we need to have a
notion of “time™ in order to properly track the memory instructions in the mstruction stream. It
is for this reason that we adopt-the-reuse distance concept already used to analyze locality in
more conventional processors. The existing methods to perform the reuse distance analysis are
not appropriate to capture the multidimensionality of ‘the data utilization behavior of

applications running in SIMT processors.

The analysissmethodologies developed for conventional processors apply the concept of stack
distance. This concept is illustrated in Figure 3(a). Here, the data reuse distance ‘RD’ is the
number of distinct' memory references between two successive references to the same data
item [14].

D=1

i i+1 i+2 i+3 i+4 i+5 i+6
A B © D D C B

(b)

Figure 3: Reuse distance concept and memory instruction reuse behavior in SIMT
programs. (a) Sample measurement of reuse distance in traditional multiprocessors. (b)

Reuse distance behavior in SIMT architectures.

10



In Figure 3(a), the term ‘i+k’, k=1,2,3...n represents different memory instructions and the
letters below represent addresses of the memory elements accessed. According to the
traditional definition of reuse distance, in this example the reuse distance for address ‘B’ is RD
= 2 since there are four references to two different addresses between the two consecutive
accesses to ‘B’. Consequently, the reuse distance of address ‘C’ is RD = 1. This definition of
reuse distance is unable to represent the locality characteristics of SIMT applications because
it assumes a one-to-one correspondence between memory instruction and datum referenced.
This method does not reflect the more complex behaviorin SIMT architectures, as illustrated
in Figure 2(b). In this Instance, memeory instruction ‘1’; accesses multiple addresses
simultaneously, referencing ‘B’ two times, and memory instructions ‘i+2’ and ‘i+6’ reference
address ‘B’ once.and four times, respectively.--Address ‘B is reused with varying multiplicity
in different memory instructions, at different distances apart. Consequently,-memory accesses
in SIMT architectures have a one-to-many correspondence between memory instructions and
data referenced by one memory instruction.that can.access. different data multiple times. This
specific memory behavior imposes the need to re-define the concept of data reuse distance for

the SIMT case in order to establish a relationship between different memory accesses.
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IV. DATA REUSE CHARACTERIZATION

In order to properly analyze locality on SIMT processors, we have to consider the particulars
of the SIMT execution model. In SIMT processors, the applications/kernels enter execution in
the form of a grid of thread blocks. These are a conglomerate of blocks or, in NVIDIA’s
terminology, Cooperative Thread Arrays (CTASs) [13]. Each block has a determined amount of
threads. The limit in the amount of threads depends on the specific processor architecture.
Each block is scheduled for execution to a. cluster of cores (SMs, or SMXSs). The blocks are
further broken down into smaller groups of threads called warps. There’s also a warp
scheduling mechanism ‘in. the each core cluster that issues instructions into the execution
pipeline on a per warp basis: The number of threads in each warp is a fixed size for a specific
processor. Each thread inside the warps accesses data and executes instructions independently.
However, current SIMT processors are limited in the amount of parallelism that they can
exploit from a given application-because of the limits in the amount of processing resources,
flow control.capabilities and memory subsystem limitations. Thus, only a given number of

threads can issue instructions simultaneously.

In order to capture the data reuse characteristic of threads, it is first necessary to examine the
relationship. between the memory instructions in the threads and the addresses accessed.
Second, it is'necessary to establish a relationship between different memaory instructions that
appear in the reference stream as execution progresses. For the former, we define a new metric
called “data reuse.degree” which quantifies the amount of addresses reused from one memory
instruction to the next. For the latter, we employ a re-definition of the reuse distance concept

tailored to capture the reuse behavior as execution progresses.

4.1 Definition of the Data Reuse Degree

To explain the concept of data reuse degree, we explore in more detail the properties of
memory accesses in SIMT architectures. As mentioned previously, there’s a one-to-many
correspondence between the memory instructions (MIs) and the addresses they reference. This
means that every memory access has an array of addresses X associated to it. Figure 4

illustrates a group of MIs ‘i+k’, k,i=1,2...n that access a series of addresses. Every Ml
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therefore can be represented by two entities: a position within the reference stream, given by

the index ‘i+k’, k,i=1,2...n and an array of addresses X;,x.

MI. i i+1 i+2 i+3 i+4
Xo X1 X2 X3 Xa
A D N- i M
Address A E ~A J >N
Arrays B F ~A P » H
C G H— —L > H
Xi1o X1 Xi12 X3 Xi4
Xi5 Xi16 X7 Xis Xiog
X20 X1 X22 X23 X4
Reuse -
Degreé - 0 2 0 2+1=3
(RD)

Figure 4: A sample stream of memaory instructions. The Instruction array appears in the
left column, the address array is presented in the middle column and the Reuse Degree
for memory instructions ‘I’-‘i+2’ and ‘i+2’—‘i+4” appears in the right column.

As shown in Figure 4, the addresses in the array may be repeated. This is possible because in
SIMT processors more than one thread can request data from the same address, which enables
for the same memory request to be serviced by a single memory instruction. As a result, the
addresses within @an array may appear a certain number of times. When an address ‘A’ appears
repeated a number of times ‘M’, we say that address ‘A’ has a multiplicity of ‘M’ in memory

instruction ‘i*; It can be defined formally as follows:

Definition 1. The multiplicity M;(A) of address ‘A’ in-an MI i’ is the number of times that
address ‘A’ appears in the address array Xi of MI i’.

Once the concept of multiplicity has been defined, it is possible then to define the data reuse

degree.

Definition 2. The data reuse degree (DS) D;,; between two Mls i’ and j’, where j>i, in an
instruction stream is the sum of the multiplicities M;(X;.;(z)) in MI j’ for the array of

addresses X;_,; common to ‘i’ and j’, given by:
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T-1
D, = z M;(X;;(1) Eq.1
t=0

where 0 <i<j<S,Sisthesize of the reference stream, T = |X;,;|, Xioj ={Xo, X1,

Xy, ..., Xt} and X, are memory addresses.

It is clear from Eq.1 that in order to determine D;,; it is first necessary to determine the

common address array X;_,;, which.holds the subset of addresses common to MI ‘j common

%)
|

to

It is necessary to explain the previous definitions and metrics with concrete cases. In the
example presented in Figure 4, it is possible to-determine the reuse degree DS for some of the
memory instructions in the sample instruction stream. In MI ‘i’, address ‘A’ appears twice,
and it is used again in MI ‘I1+2’.In the latter, M;,,(A) = 2. Sincc ‘A’ is the only address in the
common address array, then X;;-= {A} and D;;3, = 2: When analyzing the DS between
‘i+2’ and “i+4’, we can see that the common addressiarrayis X;;={H, N}. The multiplicities
for addresses ‘H’ and ‘N’ in MI “i1+4” are M; 4(H)=2 and M, ,(N)=1, respectively. Thus, the
reuse degree Diyoirsa = Z%zoMi+4(X,-_>,-(t)) = M; .(H)+ M;, ,(N) = 2+1 =3. The result
appears in the ‘Reuse Degree’ column in"Figure 4. Notice that the DS between Mis ‘i’ to “i+1’,
‘i+3” and ‘i+4’ is zero (not undetermined). This Isso because-there are no common addresses
between ‘i’ and the other Mls different to ‘I+2’. Similar conclusions can be drawn from the

rest of Mls.

Once the reuse degree and associated metrics have been defined, it is then necessary to
establish a formal relationship between the Mls.in the instruction stream in order to obtain the

data reuse characteristic.

4.1 Definition of the Reuse Distance

Proposing a definition of the reuse distance concept for SIMT machines becomes necessary in
order to model the reuse characteristic of applications. We first examine the concepts behind
the reuse distance as it is applied in more conventional processors, and subsequently formulate

a definition for SIMT processors.
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4.1.1 Traditional reuse distance analyses

When applying the reuse distance analysis for applications in uniprocessor and CMP systems,
the concept of reuse distance is equivalent to the concept of stack distance using LRU (Least
Recently Used) replacement policy as defined by Mattson [15]. In uniprocessor systems, only
one data structure (stack, splay tree, among others) is used [16] to store the addresses that the

program accesses during execution: Figure 5 illustrates the details of this methodology.

In Figure 5(a), we can see a sample reference stream in a uniprocessor system. As previously
mentioned, there is.a one-to-one correspondence between the Ml and the.addresses referenced.
Figure 5(b) shows a data structure, a stack in this-case, changing state as data is requested.
Whenever a memory access Is-issued-by the processor, the stack is traversed to assess whether
if the current address being accessed has been previously accessed. If so, as in MI ‘i+2’ the
RD for this_address will be recorded as the number of different addresses i.e.. number of
entries, between the address being accessed and its previous entry. The previous entry is
erased and the new entry is placed at the top of the stack, with an associated distance value. In

case no previous entry for that address is found, the RD is recorded as infinity, as'in MI ‘i’.
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Figure 5: Reuse distance analysis as applied in uniprocessor systems. (a) Sample
memory trace. (b) Changes of the state of the stack as memory instructions are issued.

Additional considerations become necessary when applying the reuse distance analysis for
CMP systems. Figure 6(a) presents a sample instruction stream for a CMP with separate
memory subsystems. There are two processors, PO and P1, that can request data

simultaneously to their respective memories. We alternate the accesses by PO and P1 for
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simplicity, but it is not a necessary condition for this case. The one-to-one correspondence
between the MI and addresses referenced is maintained from the stack’s perspective.
Additional details of the CMP system implementation are taken into consideration in order to
model locality accurately [11]. Factors such as the presence of private memory subsystems
and the details of the coherence mechanism become a part of analytical model for the reuse
distance in CMPs.
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Figure 6: Reuse distance.analysis in CMP systems with private memory subsystem. (a)

Sample reference stream. (b) Stacks for.the private memory subsystem.

In Figure 6(b), we show the corresponding stacks for each memory subsystem in a system
with two private memories, assuming that all references are store operations for illustrative
purposes. In MI ‘i, processor P1 accesses address ‘A’. This address is stored as the first entry
in the stack of P1. In MI ‘i+3’, processor PO references address ‘D’. This causes the
invalidation of address ‘D’ in the stack of P1, as illustrated by the gray cross at one side of the
entry for ‘D’ in ‘i+3’. Despite being invalidated, it is maintained until it propagates to the
bottom of the stack, as shown in MIs ‘i+3’, ‘i+4’ and ‘i+5’. The entry is kept so not to alter

the RD values that result from referencing another memory element that was referenced prior
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to the invalidation of ‘D’, as it occurs with P1 when referencing address ‘A’ in MI ‘i+4’,
resulting in RD = 1. However, when the same processor references a previously invalidated
element under such circumstances in the stack, it is treated as if it was the first reference to
that element. This occurs in MI ‘i+8” for address ‘D’, for which RD = oo. Similar events

occur for address ‘F’ in MI ‘i+6’, and for address ‘C’ in MI ‘i+7’.

The invalidations due to references only occur for store memory operations. In the case where
the instructions are loads, then the memory elements are allowed to have entries in more than
one stack simultaneously. Thesinvalidation mechanism implemented in the stacks model the
implementation of the coherence mechanism, which is-a major design factor in CMPs. The

way stacks handle this situation is dependent on coherent mechanism itself, for which there
can be many variations.
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Figure 7: Reuse distance analysis in CMPs with shared memory subsystem. (a) Sample

reference stream. (b) Stacks for each memory subsystem.

In Figure 7(a), the same reference stream as in Figure 6(a) is reproduced, assuming also that
all reference are store memory instructions. The difference is that, in this instance, processors
PO and P1 utilize the same memory subsystem. There is only one stack, and the constraints for
it to change state are relaxed. No inter-thread/inter-processor interference occurs as in the
previous case. This simplifies the implementation for the distance stacks. In this case, in Ml
‘i+3’, P1 references ‘D’, and no invalidation occurs despite ‘D’ also being accessed
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(assuming store operations) by PO in ‘i+2’. Also, the distances change for addresses ‘A’, ‘C’
and ‘D’ change. The two main reasons behind this change in behavior are: 1) all addresses
referenced occupy one entry in a unified stack, and 2) the absence of stack invalidations. In
Figure 6(b), the stacks of each processor will be smaller because these only hold the addresses
referenced by the given processor. In Figure 7(b), all addresses have an entry in the same
stack, creating a condition where distances vary. On the other hand, for address ‘D’, we have
that RD = 3. This is due to the absence of invalidations, since the previous accesses of any
address will be tracked along the whole reference stream; regardless of a different processor

accessing it.

4.1.2 Reuse Distance for SIMT Processors

The reuse _distance analysis_as _applied for CMPs cannot ‘be" directly applied to SIMT
processors. _First, the analysis for the former 'is tightly: coupled with ‘the details of the
implementation of the memory subsystem and the associated coherence mechanism in a
particular CMP. This makes necessary a more.intricate mechanism for the management of the
entries in the distance stacks. Coherence mechanisms are non-existent in commercial SIMT
architectures. Second, as mentioned before, there is not a one-to-one correspondence between
the MIs and_the addresses referenced. It is not adequate to assign a one dimensional distance
value on a per address basis, since this does not model the multi-dimensional locality
characteristic that becomes visible when each MI can access multiple addresses. Third, since
the stack is traversed:-for each address accessed in on MI, the number of traverse operations
per each MI could be very high, depending on-how many-threads can execute simultaneously
in the architecture. Given that'in gach MI, the multiplicity for the addresses could vary, and
traversing the stack for each address, regardless whether they have multiplicity or not, makes
the traditional methodology inefficient for the purpose of characterizing the data reuse
behavior. In view of all these limitations, a reuse distance model for SIMT processors is

proposed.

Figure 8(a) presents a sample reference stream for a SIMT processor, analogous to the ones in
Figures 6(a) and 7(a). In this example, we assume there are ‘N’ processors. It is important to

note that current state-of-the-art SIMT processors have significantly more cores than general
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purpose CMPs. Figure 8(a) shows that each individual core can only request one data
simultaneously. But the one-to-many correspondence between the MIs and the addresses
accessed is possible because SIMT architectures can serve more than one memory access from
more than one thread simultaneously. The actual number of simultaneous accesses that can be
served depends on the number of load/store units in a core cluster, the number of core clusters
present in the whole system, the width of memory bus interface, among other architectural

factors.

DRi->i+k - 4 5 2 4

DRi+2+->i+2+k - - 0 4
b)

Figure 8: Data reuse degree in a sample reference stream-of @ SIMT processor with ‘N’
processing cores. (a) Sample reference stream of a SIMT processor. (b) Data Reuse
Degree for memory instructions ‘i’—’i+k’ and ‘i+2’=’i+2+k’.

Figure 8(b) shows the data reuse degree with respect to different distances apart, calculated as
explained in Section 3.1. There’s a different value of DS for each MI with respect to a
previous one. The values vary depending on the multiplicity of the common addresses
between the two memory instructions. If each memory instruction in the reference stream has
a different reuse degree with every other MlI, then it is safe to say that between two Mls at a
given distance from each other in the stream there is a specific degree of data reuse. Therefore,

we define the reuse distance as follows:
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Definition 3. The reuse distance (RD) between two memory instructions ‘i’ and j’, where i< j,
in the reference stream is defined as the number of memory instructions in between the ‘i’ and

j plusone: RD =i—j.

At first glance, this might seem as a very simplistic definition for the reuse distance, especially
when compared to the original definition. But it is adequate to understand the way an SIMT
application reuses data at different stages of execution. The position within the reference
stream of the MIs represent the relative time in which they are executed. The data reuse
degree varies between two memory instructions; and coupling this with the reuse distance
concept previously defined, it is possible to quantify and graphically represent the magnitude
of the data reuse between memory instructions at.different distances apart. Then it becomes
feasible to model the data reuse characteristic of SIMT applications with a temporal

dimension (RD) with assoclated magnitude of data reuse.

As seen in Figure 8(b), there can be cases where two Mls with'RD = k have noraddresses in
common, ‘as with ‘i+2’ and ‘i+3’. Therefore, the data reuse degree between the two of them is
zero. Then, for distance RD = (i+3)-(1+2) = 1, DS = 0. For simple streams, this can be
calculated feasibly, but it is important.to also'consider the rest of the MIs in the streams in
order to properly build a reuse distance histogram in which the value of each entry represents
its total amount of DS for that specific distance. The data reuse characteristic is precisely this

reuse distance histogram with the'corresponding date reuse magnitudes.
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V. ANALYSIS METHODOLOGY FOR DATA REUSE CHARACTERIZATION

In Section 3, the data reuse degree was defined and associated with a more appropriate
definition of reuse distance for SIMT processors given in Section 4. This combination would
allow us to obtain a data reuse characteristic for SIMT applications as each thread executes its
correspondent instructions. But in order to build the complete data reuse characteristic it is
necessary to develop a step by step description of the methodology, and obtain a physical

meaning behind it.

In more conventional processors, the date utilization behavior isiuni-dimensional (one address,
one memory instruction) in-principle. As explained in the previous section, a data structure per
memory subsystem (either private or shared) holds an entry.for each address accessed. As we
have explained before, every time a new memaory access IS sent to memory, the data structure
is traversed in.order to assess=whether a previous.access to the address has been previously
issued. Such methodology of analysis Is also inappropriate for- SIMT processors for the

following reasons.

First, since many addresses are requested simultaneously, how to decide which of the
addresses occupies which position within the stack? Figure 9(b) illustrates this issue when the
MlIs ‘i’ and “i+1° are executed, shown in Figure 9(a). The Option 1 in Figure 9(b) shows a
possible way in which the addresses are ordered in a stack when MI ‘i’ executes. With this
ordering, we can see the values of the RD for addresses™A’ and ‘C’ when ML ‘i+1’ executes,
which are both equal to 1. On the other hand, if the order in which.the addresses accessed by
MI ‘i’ is altered when populating the stack, as shown in Option 2 of Figure 9(b), the values of
the RD for addresses ‘A’ and ‘C’ change from 1.to 4. The issuc is visible because of the
complexity in the locality behavior due to the parallelism exploited by SIMT architectures that
this methodology is not able to model appropriately. Notice also the stack growth from one

MI to the next as compared to the cases in Figures 5, 6 and 7.

The second reason is that the growth of reuse stacks is expected to be much faster in SIMT
machines. This is due to the large amount of parallelism present in the architecture. There
might be the case that threads have largely independent data sets. Then, traversing a
potentially large stack for thousands of different addresses referenced in one single Ml is too

computationally intensive. The third reason lies in the fact that the locality characteristic
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captured by the traditional methodology assumes a sequencing of the memory addresses
accessed imposed by the execution and programming model of the conventional processors.
This assumption, which is inherent to the methodology used to analyze applications in those

architectures, is only valid when the data utilization behavior is essentially uni-dimensional.
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Figure 9: Limitations when performing" the baseline’ methodology for reuse distance
analysis on SIMT processors. (a) Subset of the reference.stream as it appears in Figure 7.

(b) Possible ways to arrange the accessed addresses on the stacks.

Keeping track of each individual address in SIMT applications is a challenging task; to say the
least. In addition, the optimization procedure for the kernels these architectures execute is not
based on individual addresses, but.thinking on the simultaneous multithreading capabilities of
the architecture [8, 9]. Code tuning optimizations are therefore implemented from a broader

scope, by carefully analyzing the memory access patterns of the applications.

Consequently, we provide a better suited methodology to obtain.the data reuse characteristic
of SIMT applications based on the.data reuse degree and the'previously defined reuse distance.
The detailed methodology is ,visible.in the flow chart in Figure 10 and synthesized in
Algorithm 1. We describe it as follows:

1. Select a memory instruction ‘i’ for analysis.

2. Scan through the addresses accessed by MI ‘i’ and build the address array “X;’. Store this
information in a data structure. In such data structure, each entry is keyed with the address,
and the value ‘v’ of the entry is v = M;(X;), i.e. the multiplicity ‘M’ for the addresses in
the address array ‘X;” of MI ‘i’.
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Figure 10: \‘ e dé s, flow chart

shows all t

3. Select the I"I' where k> 1,

imposing the ¢ s in the reference

stream of the applica

4. Create a different data ‘; 1€

address array “X;j’. As with step 2, the keys are the addresses in the address array of ‘j” and

e one created for MI “i’, and create

the value of each entry is the corresponding multiplicity of the addresses in the array.

5. Search for the common addresses in both data structures, and determine the total data
reuse degree (DS) between MI ‘i’ and j’.

6. Once the DS has been calculated, the result is accumulated in the reuse distance histogram
in the entry corresponding to RD =i - j.
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7. Steps 2~6 are repeated for all subsequent MIs that appear later than ‘J’ in the reference
stream. All the data reuse degrees for all subsequent cases will be accumulated in the

corresponding entry of the reuse distance histogram

8. Steps 1~7 are repeated for all subsequent MIs that appear later than ‘i’ in the reference
stream. The data reuse degrees are stored in the corresponding reuse distance histogram
entries. Thus, the data reuse characteristic is generated.

Algorithm 1. DR_Analysis()

/I RF is the reference stream

1. S=RFsize;

2. fori=0to S-1; Il Stepl

34+ addressStruct(ml,RF(1)); /[ Step 2

4, forj=i+1toS-1 Il Step 3

B addressStruct(mJ, RF(j)); //'Step 4

6. for a = 0.to.mJ.size I/ Step 5

N if (ml.find(mJ(a)) )

8. miJ.put(mJ(a));

9. DR =DR + mlJ(a).v;

10, RD=i-j; /I Step 6a

11. hist(RD) = hist(RD) + DR; /[ Step 6b

12.

13. Function addressStruct( m, M1 ) /I scans addresses,
14.  for k=0 to MI.simAccesses;

15. IS = m.find( MI(k).address );

16. if (is)

17. m[MI(K).address]++; /[ calculates multiplicity
18. else

19. m.insert(MI(k).address);

20. m[MI(k).address] = 1;

This model in particular uses reduction operations that concentrate all the reuse degree values
from the reference stream in the respective histogram’s entries. This gives insight on how
frequently does the application reuses data and at which frequency does the application reuses
data the most. Not only that, it also gives insight what are the total varying degrees of reuse at

these different frequencies.
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One particular property of our methodology is that, unlike the case for CMP systems, it is not
dependent on the details of the SIMT architecture’s memory subsystem, or on any other
implementation details. The data structures are built based on the Mls of the reference stream,
and the histogram is accumulative. The MIs are analyzed in the order in which they are
expected to be issued from the application’s perspective. In a real architecture, the ordering of
the MIs and the addresses they access are heavily dependent on the practical limitations of the
architecture itself: the number of simultaneous transactions carried out by the memory
subsystem, whether there are bank=conflicts, the bandwidth utilization, etc. Thus, there is no
explicit trade-off between accuracy and.generality embedded in our methodology, since it is
mostly determined by the code structure of the kernel.

As mentioned, the methodology allows analyzing the reference stream independently of any
particular architecture. This enables-to model locality under different conditions that would
yield a data.reuse degree characteristic abstracted from the limitations of current architectures.
For example, given that we have a proper instrumentation.tool, we would be able:to obtain the
reuse distance histogram assuming no limitations in the architecture’s resources: infinite SMs,
infinite load/store units, infinite thread capacity allocation, number of registers and issuing
capabilities, bandwidth limitations, etc. In thisway, we model the application’s locality under
a very controlled environment, solely dependent on the application’s structure-and the SIMT
programming - model, a feature particularly useful given the fast pace at.which SIMT

architecture are currently evolving.
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VI. SCENARIOS FOR DATA REUSE CHARACTERIZATION

So far, we have detailed the methodology of the analysis in Section 5 using the metrics
defined in Sections 4 and 5. The objective is to generate a data reuse characteristic of the
application. In this section, we describe the different scenarios in which the data reuse
characteristic is obtained, and certain particular properties of SIMT processors that are
considered in the analysis. In this work, we focus specifically on GPU architectures, since are
the most widely used, although our methodology can be applied to other types of SIMT

processors.

In order to perform the analysis,-we developed an experimental framework which we called
Locality Analyzerfor. SIMT applications, programmed in C++. The details of our framework
are explained .in Section VII. The framework allows the modification of certain parameters

and to choose the desired scenario=The six scenarios of the analysis implemented so far are:

Scenario 1. Analysis with infinite resources, thread.blocks serialized: All threads are modeled

as executing in parallel, while blocks are modeled as executing one at a time.

Scenario 2. Analysis with infinite parallel resources, within block analysis: All threads in the
block are modeled as executing in parallel. The execution model of thread blocksis irrelevant

for this scenario.

Scenario 3. /Analysis with infinite resources, all blocks ‘are modeled executing in parallel: all

threads are modeled as executing inparallel, no resource limitations of any kind.

Scenario 4. Analysis with. infinite resources, ‘K’ blocks are modeled as executing in parallel:
all threads in a block are modeled as-executing in parallel, models limitations on the blocks

that can execute concurrently. The ‘K’ concurrent blocks are chosen according to a scheduling
policy.
Scenario 5. Analysis with limited resources, ‘K’ blocks in parallel: core clusters are modeled,

and blocks are assigned to them according to a specific scheduling policy. The analysis

focuses on the local reference streams of each core cluster.

Scenario 6. Analysis with limited resources, ‘K’ blocks in parallel: core clusters are modeled,
and blocks are assigned to them using a scheduling policy. The analysis focuses on the

resulting reference stream of the core cluster collective.
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6.1 Infinite resources, thread blocks are modeled as executing sequentially
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Figure 11: Data reuse characterization. (a) Scenario 1. (b) Scenario 2. In these two
scenarios, the'SM s assumed ideal, as represented by the infinite signs in the figures
above.

In Scenario 1, the sanalysis of the trace is performed assuming that in fact the blocks are
modeled as executing sequentially. These result in-a reference stream in which instructions are
repeated with nearly uniform’frequency. However, branch divergence and other runtime
dynamics will madify the reference streams.of different blocks. This type of analysis does not
comply with the execution behavior presented. by current SIMT processors: In a real
architecture, many blocks can execute in parallel in different core clusters. However, by
performing the analysis ‘assuming block sequencing, we will be able to observe some
important characteristic of the cross-block data reuse behavior, if any. Figure 11(a) illustrates

this case.

6.2 Infinite resources, analysis within each thread block

Scenario 2 executes under identical conditions than the initial scenario, except for the fact that
the analysis is performed within the thread block. That is, the data reuse characterization is
performed only within the reference stream of the block occupying the ideal core cluster. A
core cluster with such characteristics allows all threads to execute simultaneously. Within the

reference stream context, this means that all memory requests by the threads are served
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concurrently, with no latency or scheduling that can affect the ordering of the memory
instructions. The analyses in scenarios 1 and 2 are performed assuming this particular ideal

core cluster. Figure 10(b) illustrates this case.

6.3 Infinite resources, all thread are modeled as executing in parallel

As with the case with the first two scenarios; scenario 3 of the data reuse characterization is
also performed assuming an.ideal ‘core cluster. In this case, however, the highest theoretical
amount of parallelism.becomes available by allowing all blocks to execute simultaneously. In
order to model this behavior properly, the reference streams of each block are merged into one
single reference stream. The resulting reference stream is called the “Aggregate Block™, a
concept which we will defined.briefly in a formal way. In this case, the maximum number of
threads that are able to issue memory requests is equal to the number of Mls executing
memory instructions.in-a-specific.position of the reference stream. Figure 12 illustrates this

scenario.
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Figure 12: Scenario 3 of data reuse characterization assuming ideal core clusters. (a)
Illustrates the way blocks are intended to be executed. (b) Illustrates the Aggregate

Block that results from merging the streams of all CTAs.

The analysis as performed by Scenario 3 offers significant insight on the applications data
reuse behavior. The model illustrated in Figure 12 maintains the constraints of the execution
model inherent to SIMT processors, without all the practical parallelism and memory
subsystem limitations of a specific architecture. Performing the analysis under such conditions

will provide a very particular data reuse characteristic of the application given its code
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structure and input. Scenario 3 allows us to obtain a reference data reuse characteristic that
will be used to compare how different coding optimization techniques impact the data reuse
characteristic, and how close they get to reproducing the ideal characterization. For example, a
code can have a relative small number of blocks that can be allocated to one core cluster. If
there are enough core clusters, and each cluster has enough resources, the ideal data reuse
characteristic will be reproduced. Having a reference data reuse characteristic will enable to

quantify how optimization procedures alter the reuse behavior.

6.4 Infinite resources; a number ‘K” of thread blocks modeled as executing in parallel

Scenario 4 is the first.one that models limitations on the amount of blocks that can execute

concurrently. It has the particularity that it allows to include different block scheduling

policies.
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Figure 13: Scenario 4 of the reuse degree characterization. Only "K' blocks are modeled
as executing concurrently. This‘is equivalent as having 'K' ideal core clusters, each one

executing one block at the time.

Figure 13 illustrates this situation. There are ‘K’ ideal core clusters available, each one
running one single block. The scheduling policy implemented in any particular case can select
the following block to execute in each SM, resulting in varying reference streams per core

cluster.
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Figure 14: (a) An ideal core cluster executing the reference streams of 'K' parallel blocks.
(b) The streams of parallel blocks merged-into.a.series of aggregate blocks, executed in

sequence.

Since the core clusters considered.in.Scenario 4/are also considered to be ideal,.the resulting
effect of having blocks executing in parallel can be modeled as in Figure 14. This ideal core
clusters represent an abstraction of parallelism resources, which we call array of concurrent
slots, which we define as follows.

Definition? 3. An array of concurrent slots is-an abstraction’ of a collective of parallel
resources capable of executing the Instruction/reference stream of a determined number of
block(s) simultaneously.

In the Locality Analyzer, concurrent slots appear only-in arrays of more than one element.
The blocks within each array of concurrent slots execute ‘in parallel, but arrays are serialized

with respect to each other. The blocks running in parallel in one ideal core cluster i.e. array of
concurrent slots, as in Figure 14(a), can be merged together to create a series of [%— 1]

aggregate blocks. We define an aggregate block as follows:

Definition 4. An aggregate block is the reference stream that results from merging the

reference streams of the blocks in the corresponding array of concurrent slots.
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These are then serialized as show in Figure 14(b). The analysis is therefore performed over
serialized aggregate reference streams over ideal core clusters. It is important to mention that
the blocks in concurrent slots are not always merged to create a resulting aggregate block. The
merging process will take place depending on the analysis performed, and the parallelism
resources to be modeled by a specific analysis.

6.5 Limited resources, ‘K’ block modeled as executing in parallel, within core cluster

analysis

Scenarios 5 and 6 of the analysis obtain the data reuse characteristic under conditions in which
architectural . limitations of the _core clusters are modeled. The scheduling. of threads is
performed 'on.a per-warp basison"NVIDIA GPUs. In NVIDIA GPUs and.the number of
threads in a warp.is..32.- The warp size harmonizes with other design characteristics of
NVIDIA’s GPUs: memory bus sizes, cores and functional'units. The latter play a major role in

the number of cycles needed for a warp to fully execute one instruction.

For the case of memory instructions, the number of cycles per instruction per ‘warp, assuming
an ideal memory subsystem, will be dependent-on:the:number-of:load/store units available to
each warp in a_given cycle. By taking these into consideration, only a specific amount of
threads will be able to issue memory accesses. In certain commercial GPUs, the amount of
load/store units available for.a warp in one cycle is usually 16;the size of a half-warp. As a
consequence of this,” the cycles necessary to complete a memory instruction increase.
Scenarios 5 and 6 try to analyze the effect on the data reuse characteristic of an application

under these conditions.
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Figure 15: Scenario 5 of the data reuse characterization analysis..Each core cluster has
now a finite number of load/store instructions. The analysis is performed within each

core cluster.

Figure 15 illustrates the case for-Seenario 5.In this.case, there is a finite humber of load/store
units per core cluster. The warp-scheduler inside the core clustercan only issue a number of
memory instructions that the load/store units can give service to. In our framework, the
number of load/store units can be decided at runtime. by the user. This scenario_models an
additional resource constraint that reduces the total amount of parallelism 'that.the SIMT
processor.can exploit. In Figure 15, the details of the memory subsystem are modeled ideally,

so not to make the analysis depend on the architecture:

The data reuse.characterization of Scenario 5 is done on.a per core cluster basis. Each core
cluster is assigned a series of thread blocks, as shown in Figure 15. As mentioned before, each
core cluster is are a more physical representation of the array.of concurrent slots. In this case,
aggregate blocks are not used despite assigning blocks to each array of concurrent slots. The
merging process does not take place even though parallelism can still be exploited. However,
Scenario 6 does perform the block merging, as we shall see, and characterizes the data reuse

behavior from a different perspective.

Scenario 5 analyzes the reference stream resulting from the serialized blocks assigned to each
core cluster. This analysis captures the data reuse behavior that could be taken advantage of
by an ideal shared memory subsystem within a specific cluster. The scheduling policy and the
number of core clusters in the architecture will definitely have an impact on the reuse

characteristic under such circumstances.
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Since the number of load/store units is limited, all threads are unable to request accesses
simultaneously. Therefore, more memory requests will be issued, which will increase the size
of the reference stream of each block, and of all the overall blocks assigned to a core cluster.
This will have a significant impact on the data reuse characteristic and the length of the

histogram itself. In general terms, it will modify the way the application reuses data.

6.6 Limited resources, ‘K’ blocks modeled as executing in parallel, inter-core cluster

The sixth and final scenario of the data reuse characteristic analysis is identical to Scenario 5
except for one fundamental difference. In this case, the blocks executing in parallel are
merged into aggregate blocks. Figure 167illustrates:this case. The execution is modeled as if
the series of resulting aggregate-blocks where executing in a core cluster in which the total
number of load/store units is the aggregate amount.of load/store units present over all clusters
in the system. This analysis captures the data reuse behavior that could be taken advantage of

by an ideal shared memory between the overall threads of all clusters.
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=
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Figure 16: Scenario 6 of the data reuse characterization. The analysis is performed over
the aggregate of the reference streams in every core cluster. The number of load/store

units is the total sum across the core clusters.

The purpose of all these analyses is to get a quantified representation of the reuse
characteristic under different parallelism constraints. The amount of parallelism that SIMT
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processors can exploit is what fundamentally differentiates them from more conventional
processors. This is coupled with a specific programming model. When the amount of
parallelism that the processor can handle changes, it will interact in a different way with the
application: less or more threads can execute concurrently, occupancy varies, coalescing will
vary and locality characteristics will change as well as the real resource limitation. All this
causes changes in overall running time, and memory performance. The resulting performance
is multivariable, and it is difficult to build a model of an application’s performance just by

observing the way it varies.

By providing a way to: characterize the data reuse behavior of an SIMT application, it is
possible to get further insight on the resulting performance and ways to.predict it. Scenario 3
provides a particular data reuse characteristic given the kernel code. This same characteristic
will be reproduced if the SIMT-processor has enough resources to exploit all the parallelism
needed by the kernel. However,.as.kernels utilizesbigger data sets and have larger reference
streams, reaching this condition might not be a practical goal. But the ideal data reuse
characteristic will be adequate to assess the positive .or negative impact that different
parallelism constraints will "have In its reuse characteristic. This is achieved in a totally
isolated way from other factors that affect performance, such as the capabilities for coalescing,
or the memory subsystem.

When code'tuning is performed, or architectural enhancements are added to the processor,
developers proceed in view of the architecture and the programing model. A code tuning
technique to improve data coalescing, for example, can also have an impact on the
bank-conflict avoidance, contention avoidance, and.on the way the schedulers issue
instructions, which in turn will have other. effects in different parts of the architecture.

Detailing this cascade effects is particularly difficult given the cross-relation between them.

Now that the analyses have been detailed, the next section explains the details of the

implementations of the experimental framework.
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VIl. EXPERIMENTATION FRAMEWORK

In order to perform the analyses, we developed an experimental framework which we called
Locality Analyzer for SIMT applications, programmed in C++. In order to perform all the
analyses described in Section VI, there are certain steps that need to be taken to ensure

accuracy of the results, functional correctness and fidelity.

In this work, all the analyses for the data reuse characterization are trace-based. This means
that the application is executed either,on @ PTX instruction emulator, and data relevant to its
runtime is captured in trace files. Therefore, there are two stages that need to be considered to
perform any of the analyses detailed so far: trace generation stage.and reference stream

analysis stage.

7.1 Trace Generation Stage

Our experimental framework takes as input a memory trace generated by a PTX instruction
emulator. For our experiments, we used the framework provided by the GPUQcelot [17]. The
GPUOcelot-provides a trace generation tool that.can capture a series of performance metrics
from GPU Kernels, as well as runtime’information of the threads. To perform our experiments,
we modified the trace generation code of the GPUOcelot; and modified it in order to output a
trace with a format better suited to perform the analyses-explained in Section V1. Any proper
instruction emulator can be used to generate the trace, as long as it satisfies the trace
formatting.

The trace information contains the memory: instructions. executed by the kernel. The tracer
executes each block individually i.e. blocks are serialized, and reports the threads executing
each memory instruction. Therefore, the trace file contains the Mls executed in each block, the
threads that execute each MI, the number of simultaneous accesses and the addresses of the
requested memory elements. Our analysis tool can model infinite parallel execution resources,
as we shall see in the next section, but the GPUOCelot imposes a maximum of 1024 threads
per block. Therefore, the results presented here present an idealized version similar to having
infinite resource, when the block size is below 1024. When the size of the thread blocks

exceeds this value, then the constraints imposed by the runtime of the GPUOcelot become a
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limiting factor. The capacity to run threads of one thread block concurrently in one core
clusters, to issue and execute instructions at this pace by far exceeds the capabilities of current

commercial core clusters.

The traces are obtained in a per kernel basis. When applications are executed on GPU
architectures, they can contain multiple kernels, call the same kernels multiple times and/or
both. Since the blocks belonging to a specific kernel are executed in a serialized way, the
traces contain an inherent order of the reference streams on a thread block basis. This is a
useful property, since it provides a lot of flexibility to model different execution conditions of

SIMT processors.

7.2 Reference Stream Analysis Stage

In this section, we explain the specifics of ‘the implementation of the Locality Analyzer for
SIMT applications. The purpose is to show and.demonstrate the utility provided by our
framework, the capabilities it has and the way the previous described analyses were

implemented.

7.2.1 Modelfor Thread Blocks

The first task.to perform any of the analyses detailed in the previous Section 6 is to read the
trace file using the Locality “Analyzer and build the reference .stream of each block
individually. Since the GPUQgcelot emulates the blocks in.a sequential way, the trace file
captures the reference “stream of each block in sequence. The trace format contains the
position of the Mls in the reference stream, which we call the position index, the threads that
specific MI and the addresses accessed. The trace is scanned and the information of reference
streams is stored in an array of “block” objects. This array, which can be thought of as a block
container object, would be equivalent to the grid, and the blocks are inserted in the order they
are executed by the GPUOcelot. This procedure is graphically explained in Figure 17. The
position index is the MI count. That is, the number of Mls that have been executed prior to a

specific M1 plus one.
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_Block ID: 2,1,0

Block ID=2,1,0 " pc: 3
MI Information Global instruction Count: 97
Position Index: 67
: : Threads: ...
67 Addr. {}’ Tids, etc Addresses: 545544 64455 ...
68 | Addr. {}, Tids, etc Block ID: 2,1, 0
: PC: 4
- Global instruction Count: 101
N-1 | Addr. {}, Tids, etc Memory Instruction Count: 68
™ Threads..

"\ Addresses: 88444 93855 ...

_/Block ID: 3,5,0
Block ID=3,5,0 P PLETS
: Global instruction Count: 324
Position Index: 146
Threads: ...
Addresses: 00010 ...

Mi Information

146 | Addr. {}, Tids, etc

147 | Addr. {}, Tids, etc Block ID: 3,5,0
: PC: 28
’ . Global instruction Count: 456
M-1 | Addr. {}, Tids, etc Position Index: 147

.. | Threads: ...
._Addresses: 5454 54774 4565..

Grid = Block container object

Block ID = Block ID =
2,10 3,5,0

Figure 17:_Formation of Block objects within the Locality Analyzer. The block objects
contain theiriindividual reference stream which consists on a series of ordered MIs. Each

MI has access information of its own.

Each MI executed has an entry in the trace file. Each entry contains information to which
thread block does;the instruction belong to, its relative position in‘the stream of that block
(position index), the global instruction count, the threads that issue this instruction, and the
addresses accessed. The latter is the address-array explained in Section 4. Algorithm 2 shows
the pseudo-code for the reconstruction of the thread block objects within the framework of the

Locality Analyzer.

The instructions within the while loop declared in line 2 execute as long as the trace file has
not been completely read. Line 3 creates a ‘currBlock’ object, which is an instance of the
‘blockObj’ class. This class contains all the information necessary to identify the block,
contains its reference streams, the addresses each MI accesses, and functions to manage this

information. Line 4 first reads the next block ID to read from the trace file, and stores it in
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both variables ‘currBlock.blockID’ and ‘nextBlock’. The while loop in line 6 checks whether
or not these variables hold the same ID. In case they are not equal, the block so far built within
the while loop in line 6 is inserted in the grid object, passed as an argument to the

GridFormation() function.

In case the condition currBlock.blockID == nextBlock is true, all the instructions from line 7
to 21 are executed. Line 7 creates an ‘inst’ instance of an ‘instinfo’ class. This class holds the
address array of the specific Ml, together with other information of the Ml such as the PC, the
threads executing this instruction (Threads), the position index within the reference stream
(‘posInRefStream’), the! global instruction index (‘genPo0s’), analogous to the former but
considers all instructions in general. All these information is read from the trace file in lines 8
to 11.

Line 12 reads the threads issuing-the current MI. This is the number of addresses being
accessed. The for loop declared in line 12 reads the addresses accessed by the threads in the
current Ml one by one; storing themin the variable ‘Addr’, in line 13. In line 14, the algorithm
searches an entry for the address ‘Addr’ in the address array. In case it finds an entry with the
value ‘Addr’, line 16 will increment the multiplicity of that address. In case not, a new entry is
created in the address array, and its multiplicity Is initialized to 1, as shown in lines 18 and 19,
respectively:

Once all addresses of the current MI have been read, the“inst” object is inserted in the stream
field ‘currBlock’ ebject, which is its corresponding reference stream. This task is carried out
in line 20. In line 21 the next:byte to be read in the trace file is'stored, .and right after that the
following block ID is read. In case this ID.is not equal to the.one of the current block, then the
next thread block in the trace has been reached. Line 23 checks for this condition, and moves
to the memory position prior to the read operation in line 24 if necessary. Line 25 inserts the

block object into the grid. When the trace has been completely read, the algorithm terminates.

Algorithm 2. GridFormation( GridObj )

1. Tpos=0;

2. while (Tpos < TF.size-1) // TF is the trace file
3. blockObj currBlock;

4 currBlock.blockID << TF;
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5 nextBlock = currBlock.blockID
6 While nextBlock == BlockID
7. instInfo inst;

8 inst PC << TF;

9. inst posinRefStream << TF;
10. inst genPos << TF;

11. inst Threads << TF;

12. for k = 0 to Threads

Addr << TF:
Bool i

After the block 1“- ects hav c C ¢ ine e next step is to

umber of load/store units, type

rent block scheduling policies and

select which program when

necessary. Among emory element

in bytes, number G K scheduling policy,

and number of concurre

The Locality Analyzer allows on o

modeling of certain architectural characteristics of the core clusters, such as warp scheduling
policies and load/store units.

7.2.2 Block Scheduling Policies
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The Locality Analyzer enables can analyze the impact that different block scheduling policies
have over the data reuse characteristic. This feature is enabled by allowing the developer to
program its own block scheduling policy, select blocks according to the desired policy from
the grid object, and assign it to a concurrent parallel slot. Figure 18 illustrates two cases for

the scheduling procedure.

Grid = Block container object

Analyze the
blocks

Block ID =
2,10

Block Scheduling Module
Block kl‘?'

Y
B\oC\( @ 2,9
0
ook [ ) ook [ 2.0) .

[ Block (1. 2, 6) | [Block 2.4,0)| [Block 1. 3,0)|

Block ID =
3,50

Block Choice

!

%
i

Block (0,0,0) [Block (0,0,0)| [Block (0,3, 0) [ Block (0, 1,0) |
Core Cluster Core Cluster Core Cluster Core Cluster
a) b)

Figure 18: Block scheduling module and block scheduling flow (a) Block scheduling
module assigning blocks to a system with one core cluster. (b) Block scheduling module

assigning blocks to a system with multiple core clusters

Figure 18(a) shows the situation for the case in which there is only one core cluster, which we
represent within.the framework as abstraction that we call concurrency slot, defined shortly. In
this case, the block fetched from the grid object enters at the tail of the queue, modeling a
sequential execution. In Figure 17(b), a similar case is illustrated for when multiple blocks are
able to execute in parallel, either by allowing many.core clusters or by allowing one single
core cluster to handle multiple blocks in parallel'i.e. when the number of elements in the array
of concurrency slots is more than one. In this case, the blocks can be allocated to each core
cluster in such a way to prevent workload imbalance, or other type of optimization. This

scheduling feature becomes useful for the Scenarios 3~6 of the data reuse characterization.

The block scheduling module can implement any particular policy desired. This module is
able to perform its required analysis over the grid object, and the blocks within it. The purpose
of such analysis is to determine which block is the best candidate to queue for execution to

improve over a certain metric, possibly data reuse or any other. Once the block is chosen it is
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read from the grid object, and allocated to a specific concurrency slot. Since the blocks in the
concurrency arrays are not being merged, each slot maintains the blocks serialized. Every slot

represents a block FIFO queue that models the sequencing of the scheduled blocks.

Algorithm 3 shows the pseudo-code for the block scheduling module. Line 1 declares a
two-dimensional array labeled ‘currBlocks’ that holds arrays of ‘blockArray’ objects. The two
cases illustrated in Figure 18 are considered by the scheduler. The analyses that will model
execution over a realistic number of cores are Scenarios 5 and 6. But Scenarios 4 and 3 do not
require core clusters nor core cluster modeling, since they only employ the array of
concurrency slots and the resulting aggregate blocks. These are the four scenarios that are able
to parallelize blocks. Scenarios 1 and 2 do not possess this feature, making the scheduling

module trivial in these cases.

Algorithm 3. BleekSehed( CCNum, CC, policy, parBlocks")

/1 GO: grid object, CCNum: core cluster number,
/I CC: array of core clusters, parBlocks: number of
/I parallel blocks, policy: scheduling policy

1. blockArray currBlocks[][];

2. J=0;

3. while (GO.size >0 AND (var =5 OR var = 6) )
4.  fori=0to CCNum-1

5. tempBlock ="BlockExtract(GO; -policy);
6

7

8

9

CCli].blocks.insert[tempBlock];
currBlockslj].insert(tempBlock);
I+
10. while (GO.size > 0 AND (var =4 OR var =3) )
11. for k = 0 to parBlock-1s;
12. tempBlock = BlockExtract(GO, policy);
13. currBlocks[j].insert(tempBlock);
14, j++;
15.
16. Function BlockExtract(grid, policy)
17. blockObject candidate;
18. candidate = scheAnalysis(grid, policy);
19. grid.erase(candidate);
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20. return candidate;

The code in lines 3~7 schedule blocks to each of the ‘CCNum’ core clusters. The while loop in
lines 3 first checks that the scenarios are the correct ones. Line 4 has a for loop that iterates
over the core clusters. The function in line 5 extracts a block from the grid object (‘GO)
according to the block scheduling policy specified by ‘policy’. The extracted block is assigned
to an instance of the block class labeled ‘tempBlock’. Once the block has been extracted from
the grid, line 6 inserts it in the block FIFO queue belonging to the specific core cluster. In line
7, ‘tempBlock’ is also inserted in|the entry ‘J° of ‘currBloeks’. This object is the array of
concurrent slots. The reason that both of these structures.are populated in this stage is because

Scenario 6 will require the array of concurrent slots to be converted into aggregate blocks.

The code in lines'10~14 schedule blocks for Scenarios 4 and 3. These analyses do not employ
the models of core clusters..For-this case, it iS necessary to set the size of the arrays of
concurrency slots, and populate the arrays with blocks. Line 10 makes sure that the Scenarios
are the appropriate-ones; as was the case for line 3. The for loop in line 11 will execute the
instructions‘in line 12"and line 13, which select the block from the grid object and introduces

it in ‘currBlocks’. The resulting state after executing of Algorithm 3 is shown in Figure 19.

Grid = Block container object

After scheduling is done, the

grid is empty
currBlocks[N/K+1] ‘Block (N-l—k)‘ \ Block (N-1) \
currBlocks[m] ‘ Block (m-1) ‘ ‘ Block (m-1+k)‘
currBlocks[0] \ Block (0) \\ Block (k-1) \
Core Cluster | ... |Core Cluster
currBlocks

Figure 19: After assigning blocks to the core clusters. The blocks are queued in each
cluster, and are also inserted into the ‘currBlocks’ structure, which represents the arrays

of concurrent slots.
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The function BlockExtract() chooses a block from the grid and passes it back to the calling
function. Line 17 declares an instance of the block class called ‘candidate’. The scheAnalysis()
function called in line 18 is responsible to iterate over the grid object, and choose the best
block according to the policy. Once the grid is analyzed and the block is chosen, it is assigned
to ‘candidate’. Immediately after that, the entry belonging to the chosen block is erased from
the grid, and ‘candidate’ is returned to the calling function. Within the scheAnalysis() function,
it is possible to implement many blocknscheduling policies, and analyze its effects on the data

reuse characteristic.

In this work, however,;we implement a simple sequential scheduling policy. That is, the
blocks are chosen in the order in which the trace generator tool executed them. A thorough
analysis of the impact of different block scheduling policies over the data reuse characteristic

is left for future work.

7.2.3 Core cluster modeling

Modeling certain architectural’ characteristic of the core clusters becomes important for
Scenarios 5~6. For this case, a thorough cycle-accurate modeling of the core cluster behavior
IS not necessary, since our focus IS on:thesmemoryraccesssbehavior of the application itself,

abstracted from timing details.

In order to comprehend why such thorough modeling is not necessary, we describe a simple
example. When a core cluster executes a sqrt math instruction, It is after fetching the
necessary data from global memory. Thenythe functional unit within the core cluster reads the
operands from the registers, and consumes a certain number of clock cycles performing the
relevant mathematical operations. When a new memory instruction is issued, its ordering
within the instruction stream will not be affected by the number of cycles consumed by the
sgrt instruction, only by the previous memory access. Likewise, the memory latency taken by

the MlIs will not have an impact in the sequencing of Mls.

In this work, we are only evaluating the impact of the parallelism limitation over the data
reuse characteristic of the applications. Therefore, we model the memory subsystem as ideal,

and also considering unlimited functional units, only focusing on the data utilization behavior.
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However, there are two particular resources within a core cluster that will have significant
effect on the sequence of the memory accesses: the load/store units and the warp scheduler.
The number of load/store units available to each warp in a given cycle plays a significant role
on the ordering of MIs within the reference stream. This will create a dis-adjustment on the
data reuse characteristic when compared to the ideal case. The effect can be illustrated by a

simple example.

Let’s assume there are ‘X’ number of load/store units and ‘y’ threads requesting data from
memory simultaneously. If x >y, then all the memory requests can be serviced simultaneously.
However, when x < y; the memory requests will ‘not be issued all at once. This makes
necessary for a subset of the threads in a warp to be issued, instead.of all the requesting
threads. The result is a larger number of Mls in the reference stream. If to this we couple the
effects of the warp scheduler, which-is the one responsible of issuing warps for execution, the
impact on the reuse characteristic..is two-fold. If there “are \multiple ‘warps_available for
executionzin.a given clock cycle, then choosing warps.that present significant data reuse
among eachrother will definitely help to improve performance. Choosing warps based on the
way the make use of the data could improve coalescing, avoid bank conflicts and improve

overall runtime performance.

The Locality Analyzer enables the inclusion_of more novel block scheduling policies at the
warp scheduling level. However, in this work, we have only implemented a simple
round-robin policy to ensure fairness among active threads. The scheduling-policy at this level
becomes relevant for Scenarios 5 and 6. Warps are modeled in.the @ similar way as blocks.
Every warp object within the framework has information on: their. number of threads, the
address array and to which block they belong.to..Asthorough analysis of the impact of warp

scheduling techniques over the data reuse characteristic is out of the scope of this work.

7.2.4 Merging of reference streams

When multiple blocks can be executed in parallel, it’s necessary to merge the reference
streams into an aggregate stream in order to perform analyses efficiently. Scenarios 3, 4 and 6

of the data reuse characterization requires for this task to be performed in advance.
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The block scheduling policy chooses which blocks will execute concurrently. As the blocks
are popped from the grid object, they are merged in an empty reference stream i.e. an
aggregate reference stream. This is done by creating an additional structure that absorbs and
collapses the reference stream of the concurrency slots. Initially, this data structure is empty.
When the first block is chosen, its reference stream is analyzed. The aggregate reference
stream is filled with the MIs of the first block, creating an identical copy of the first block in

the new data structure.

Block (N-1-k) Block (N-1)
currBlocks[N/K+1] PC: 3 . |pc:3
G. inst.: 97 G. inst.: 95
‘Block (N-l-k)‘ ‘ Block (N-1) ‘ PosRef: 67 PosRef: 67
Threads: 64 Threads: 32
Addresses: Addresses:
54544 567... 00010 -
currBlocks[m]
‘ Block (m-1) ‘ ‘Block (m-1+k)‘ @
) PC: 3
currBlocks[0] G. inst. : 97
PosRef: 67
Block (0) | -+ | Block (k-1) Threads: 96
Addresses: 0
00 1545544
currBlocks 64455 ..

aggrStream[N/K+1]

Figure 20: Merging of reference streams from multiple blocks in the arrays of

concurrent slots. Scenarios 3, 4, and 6 are the only ones that employ this procedure.

Figure 20 illustrates the merging. of reference streams from multiple blocks. When the
sub-sequent blocks are choesen, a similar procedure occurs, but with some modifications. The
MIs within each block need to be included in the aggregate stream, but new entries cannot
re-write the entries introduced by the previous blocks. However, if a new block has an Ml that
falls into the relative position of an Ml introduced by a previous block, additional procedures

occur.

Algorithm 4. StreamMerge( currBlocks )

// GO: grid object

1. aggrStream[].clear;

2. for j=0 to currBlocks.size-1

3. for m=0 to currBlocks[j].size-1

4 for k=0 to currBlocks[j].block[m].streamSize
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5. instInfo inst;

6. inst = currBlocks[j].block[m].instStream[K];

7. is = aggrStream[j].isThere(inst.posRef);

8. if (is)

9. aggrStream([j].threads += inst.threads;

10. for i = 0 to inst.addrArray.size

11. bool addrPres =

aggrStream[j].addrArray.isThere(inst.addrArray[i];

12. if (addrPres)

13. aggrStream([j].addrArray][ inst.addrArray[i] ] =+
inst.addrArray[i].mult;

14, else

15, aggrStream[j].addrArray.insert(inst.addrArray[i],
inst.addrArray[i].mult);

16. else

17. aggrStream[j].insert(inst.posRef, nst)

Algorithm+4.shows the pseudo-code for this ‘procedure. Line 1 clears the “aggrStream’
structure "array. Each entry in this array will hold the different aggregate streams
corresponding to each array of concurrent slots. The for loop in line 2 will iterate over the
‘currBlocks” object. Recall that ‘currBlocks s an array of concurrency slots, populated in
Algorithm 3..Every entry in this array holds the blocks that issued instructions.concurrently.
Line 3 williterate’ over the concurrency slots in the queue,-and line 4 'will iterate over the
streams of each block in the respective ‘currBlocks’ entry. Line 5 createés an instance called
‘inst” of the ‘instInfo’ class that holds all the information of that specific MI. Line 6 reads the
instruction ‘k’ of the/stream: belonging to the block analyzed in the m™ iteration. Then, line 7
checks if there’s an instruction in theraggregate stream.‘aggrStream’, corresponding to the ‘j’
aggregate block, with the same position index than the ‘/mst " instruction. If no previous entry
exists in that position, then line 17 executes, inserting the instruction in the slot corresponding
to its position index ‘inst.posinRefStream’. In case a previous entry exists with the same

position index, then an additional procedure needs to be performed.

For the case where is == TRUE i.e. a previous entry exists, it is necessary to combine the
information of ‘inst’ with the data already present in the corresponding entry of ‘aggrStream’.
Line 9 will first increment the number of threads that issued that instruction. The for loop in

line 10 will then iterate over the address array of ‘inst’, in order to merge it with the array
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already present in the corresponding entry of ‘aggrStream’. Line 11 will first look if the
addresses are already present in the address array of ‘aggrStream’. In case there is not a
previous entry, the instruction in the else clause of line 14 are executed. In this case, ‘inst’ is
inserted directly into ‘aggrStream’. When an MI of one block seeks a specific position within
the aggregate stream, then the new Ml is allocated. The information stored with each entry in
the aggregate reference stream is identical to the one stored in the entry of the MI in its
original reference stream, with the exception of the block ID, which is not necessary. Line 17

executes this task.

When a new MI requires a slot occupied by an MI previously entered, and both have
addresses in commen, the multiplicity of the common addresses will increase. The final value
is the multiplicity accumulated by the MI in the aggregate stream of the specific address plus
the multiplicity of that same address-in the new MI. This can be expressed mathematically as

follows:
MAgg(A) = MAgg(A) + MID—i(A) Eq.2
where M,q,(-) Is the aggregate multiplicity of a specific address in the aggregate reference

stream, and=M,_;(*) is the multiplicity of a specific address in the new MI “I” that belongs to
the block identified with ‘1D’. This value is‘accumulated in line 13 of Algorithm 4.

The number of aggregate streams created will depend on the amount of blocks that application
generates and.the number of blocks that are executed in parallel. Expressed in a mathematic

way:
#Agg. Streams = [% - 1] Eqg:3

where ‘N’ is the number of blocks of the application, and ‘k” is the number of blocks running
in parallel. Notice the [-] bracket, which‘rounds up the quotient to the highest integer in case

of a non-exact division.
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aggrStream[N/K+1]

PC: 3
G. inst.: 97
Aggregate Stream N/K Po;anef' 67
Threads: 96
: Addresses: 000
aggrStream[m] 154544 567 ..
PC: 10
Aggregate Stream m PC:16 . G. inst.: 97
G. inst.: 105 PosRef: 67
: PosRef: 68 Threads: 96
Addresses: 10 343
aggrstream(0] 32342 14372 ..
Aggregate Stream 0
PC: 16
G. inst. Count: 105

aggrStream MI Count: 68

Figure 21: The resulting reference stream of the aggregate blocks. It is possible to
compare this with the streams showngin Figure 19. Notice how the ‘Addresses’ and

‘Threads’ fields are augmented

Figure 21 illustrates the resulting state after executing Algorithm 4.

7.2.5 Adjusting the position index of Mis

Once the aggregate streams have been created, they are serialized with respect to each other in
the order in‘which they are.issued according to the previous procedure. A new data structure
was created in Algorithm 4 that holds entries for each aggregate stream. After this, an
additional procedure needs to take place. Each aggregate stream has an ordering of the Mls
valid only within itself. It is necessary to modify the values of the position index within the
stream to reorder the MIs with respect to their homologous in the rest of the aggregate streams,

since these are serialized. This procedure is.shown.in/Algorithm 5.

Algorithm 5. posRefAdjust(‘aggrStream )

// GO: grid object
1. posMI =0;

2. fori=0toaggrStream;

3 for j=0 to aggrStream[i].streamSize
4. aggrStream[i].inst[j]++;

5 posMI++;
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Algorithm 5 takes as input the aggregate reference stream. It iterates over all of its entries, as
can be seen by the for loop in lines 2. The nested loop in line 3 will iterate over the streams of
each entry in ‘aggrStream’. The sequencing of the aggregate streams is taken into
consideration. The data structure that holds the streams is traversed with an incrementing
variable that modifies the position index of each Ml inside the stream. For the first aggregate
stream in the sequence, the position index of the MIs remains identical. However, for the rest
of the streams, the position index is assigned the value of the incrementing variable, which is
basically a global count of Mls. The result after adjusting the position index is shown in

Figure 22,

PC: 3
G. inst.: 97
aggrStream[N/K+1] PoIsRef' 67+m*S
Aggregate Stream N/K Zzzjizgzegeo 00
154544 567 ..
aggrStream([1] PC: 16
G. inst.: 105
Aggregate Stream 1 PosRef: 68+S
aggrStream[0]
Aggregate Stream O PC: 10
G. inst.: 97
PosRef: 67
aggrStream Threads: 96

Addresses: 10 343
32342 14372 ..

PC: 16
G. inst. Count: 105
MI Count: 68

Size of this aggregate
stream = S

Figure 22: Modifications of the position reference.index withinthe reference stream. The
value of the index of the Mls in"streams other than the first will depend on the stream

length of the streams before the current one.

Notice in Figure 22 that the position index of the Mls in the Aggregate Stream 1 are now
offset by ‘S’, which is the stream size, or the number of MIs, of the previous stream. The
resulting offset for the rest of the MIs in the a specific aggregate streams will depend on the

stream sizes the previous aggregate streams
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7.2.6 Locality Analyzer Architecture: Putting it all together

Figure 23 shows a flow chart that represents the architecture of the Locality Analyzer. As this
figure shows, all of the modules described so far are included. The associated algorithms have

been developed in the previous subsection. The methodology is clearly illustrated.

The most significant properties of this architecture are its flexibility, scalability and the model
the kernel’s runtime. The focus of this methodology is to understand the locality behavior of
the applications dissociated from the details of particulars SIMT processors. The modeling of
the programming abstractions within the Locality Analyzer allows developers to manipulate
them in any way they see fit. In this way, the need for long:cycle-aceurate simulations is

reduced, extracting efficiently locality information:

Start
|

v

Reconstruct Thread .
Blocks Locality Analyzer for

l SIMT applications

Block Scheduling

Is Core Cluster

modeling Core Cluster Modeling

Merge Reference
Stream

Stream
equired?

Position Index
required?

Adjust Position Index

No

¥

Data Reuse Characterization:
Data Reuse Degree (ver.) vs. Reuse Distance (hor.)

+
END

Figure 23: Block diagram of the architecture of the Locality Analyzer. This is a very

general and simplified version of our framework
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Keep in mind that while the SIMT processors evolve and scale very quickly, the structures of
the applications for which they are used do not change as rapidly. When abstracting the
applications’ analyses from the particulars of each processor, the validity of the analysis is
maintained across different families and types of SIMT processors, as long as the
programming and runtime abstractions do not change. The analyses therefore have an

important degree of generality and usability across different generations of architectures.

The architecture of the Locality Analyzer allows for many aspects related to control flow to be
thoroughly analyzed, as well"as the modeling of the certain architectural components
(schedulers, core clusters, load/store units). Other types of analyses can be easily coded due to
the modularity characteristic the architecture possesses. However, in this.work, we focus on
the resource limitations, coding optimizations and their impact on the data reuse characteristic
of different applications. This-will-allow us to get further insight on the way the data reuse
characteristic_changes when .coding.optimizations;.coupled with the details of the execution
model, are applied to applications. This would be an important step to predict the.performance
improvement that could be gained from applying optimization techniques when running on

architectures with different characteristics.
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VIII. APPLICATION OPTIMIZATION

This section gives a brief explanation on the coding optimizations applied to the applications
in our experiments. By analyzing the changes on the data reuse characteristic after
optimization, assuming invariable the resources to exploit parallelism, it is possible to
compare the effectiveness of the optimization procedures. These coding optimizations follow
the thread mapping methodology for multi-level shared caches proposed in [9]. This
methodology performs different optimization procedures over the application: thread

clustering, warp clustering and-block scheduling.

8.1 Thread Mapping Methodology

The coding optimizations are_implemented as a stand-alone. library.  The_.procedure is
performed by the CPU host.~The-core of the procedure consists on manipulating the threads
within one kernel, modifying the baseline order of execution. To do this, it is necessary to first
analyze the data accesses of an application. For this;purpose, in [9] the compressed sparse row

(CSR) format is used, since it facilitates the manipulation of the data accesses.

The thread.smapping on the GPU side.is accomplished by applying similar technigues to those
of data and computation reordering [9]. Since.GPUs. do.not.allow programmers to explicitly
schedule threads or thread blocks for execution, then it is necessary to implement an indirect
way to mimic this behavior. Thus, the methodology makes use of appropriate data layout
techniques coupled with the re-mapping of thread indexes [9]. The way to do this is basically
to re-arrange the data contained inthe data structures and.associated arrays (array of structures)
for threads to then access ‘the data in ardifferent sequence as inttially expected [9]. A new
thread mapping array is constructed that maps the baseline thread index of each thread to a

different value, equivalent to a function that can be expressed as:

TIdx = f(threadldx) Eq.4

where 'TIdx" represents the new thread index, ‘threadldx’ represents the baseline thread

index assigned by the GPU, and f() is the function that performs the mapping.
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By making use of these two ordering techniques, it is possible to manipulate the formation of
warps and blocks, and mimic alterations in the order in which they are issued for execution.
The resulting behavior is to coordinate better the accesses in order to exploit the benefits of

data reuse [9].
The methodology proposed by [9] consists on the following steps:

1. Generate information about the data utilization and architectural parameters of the SIMT
processor: to obtain information about the data utilization, a data sharing and volume
graph is generated. The task of gathering architectural parameters of the SIMT processor

is trivial for our purposes.

2. Thread and Warp. Clustering: threads are grouped into warps such that the resulting warps

issue the minimum number of memory transactions.

3. Thread Block Scheduling:“tries to schedule in-adjacent issue slots the thread blocks that

present significant data sharing:

4. Resource utilization throttling stage: the depth of multithreading is throttled.to use the

shared cache and avoid contention.

The data'sharing and volume between the threads both are modeled as a hypergraph called
Data Sharing and Volume Graph (DSVG); define as [9]:

DSVG = HG(V,E,w,,w,)  Eq.5

in which V" is the set of vertices, ‘£ is the set of hyperedges, ‘w,,’ is the vertex weight, and
‘w,’ is the weight of the hyperedge. In this model, threads are represented as vertices within
the DSVG, and the associated weight represents the amount of private data of the thread. A
hyperedge represents threads that share data, and the weight associated with the hyperedge
indicates the amount of shared data. The data sharing within a set of vertices i.e. a set of
threads, is represented by the group of hyperedges incident to a vertex. Likewise, the data

sharing involving other sets correspond to external hyperedges relative to a given set.

Thread clustering forms warps of threads so to minimize memory transactions. The warp

clustering step builds blocks based on these newly created warps into thread blocks with an

53



increased amount of data sharing. The Thread Clustering and Warp Clustering techniques can
be reduced to the hypergraph partitioning problem, a well-known NP-hard problem [9].

Thread Block Scheduling arranges the issuing order of the blocks with the objective to reuse
data through the L2 cache. Using the projection of the result generated by the Thread and
Warp Clustering, a DSVG is obtained that enables a formulation of the Thread Block
Scheduling  Problem. In this case, each vertex in the new DSVG=
HG(V,E,w,,w,) represents a thread block, and a new function is defined that maps each
vertex to an integer, in a one-to-one relationship. The integers represent the scheduling

sequence.

As previously explained, the reuse distance is the number-of distinct memory accesses
between references to the same shared data. The Thread Block Scheduling uses this definition
to generate a new metric: the total reuse distance. This metric is the sum of. all the reuse
distances that appear as a result-of-a-specific scheduling function applied over the vertices of
the hypergraph. Therefore; a mapping function needs to.be selected to minimize the value of
that sum. The Thread Block Scheduling problem is actually a general version of the vertex

ordering problem [9].

The fourth stage of the methodology, Resource Throttling, finds the best way to utilize the last
level shared cache [9], currently the L2 cache in SIMT processors. This last step is not
included in"our experiments because we use model the memory subsystem as ideal. As
previously explained, this'work only ‘'models the aspects of the core cluster that have impact
on the ordering of the MIs with an ideal memory subsystem.
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IX. EXPERIMENTAL RESULTS

In this section we present the data reuse characteristic of a series of applications from different
domains. The applications chosen are considered irregular because their data sharing behavior
is not totally similar between threads in a block and depends substantially on the input data set
size. We use the Electronic Design Applications (EDA) used in [18]. The input to these
applications is taken from ITC’99 circuit suite [19]. We use only one input for the applications
in this set in order to make a better comparison of the reuse characteristics under different
parallelism capabilities and, coding optimizations. ‘Also, we use one application from the
NVIDIA SDK suite. Irregular applications from the Chaos group [20] and the COSMIC
project [21] are also.used. Table 1 summarizes the set of applications used in this work.

TABLE |
APPLICATIONS USED FOR EXPERIMENTATION
Apps. Source Description Inputs Kernel
Num.
sta EDA Static timing analysis (STA) 32160 nodes, | 2
gsim EDA Gate level logic simulation 63497  [edges
b17 from
bfs EDA Breadth First Search ( 2
ITC’ 99)
vectoradd | NVIDIA SDK [Vector addition Internal 1
nbf COSMIC Molecular dynamics 144,649 nodes, | 2
moldyn COSMIC Molecular dynamics 1,074,393 2
- — - - edges (foil
irreg COSMIC Partial differential equations 2
from
euler CHAOS Finite-difference  estimations COSMIC) 1
on Eulerian Mesh

9.1 Data Reuse Characteristic with serialized blocks and on a per block basis

These are the results corresponding to Scenario 1 detailed in Section 6.1. Figures 24~27

shows the data reuse characteristic for sta, gsim, bfs and vectoradd, respectively. The rest of
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the applications (nbf, moldyn, irreg, euler) were not analyzed for the case of serialized blocks
because the running time for such analysis was prohibitively long given the input set size..
There is striking similarity between bfs and sta, both from the EDA benchmark suite that
becomes visible when observing Figures 24(c) and 26(c). When looking at the source codes,
presented in Figure 28, it is possible to appreciate that the code of the kernels is almost
identical, with identical access patterns, even though the operations executed differ. Thus, it is
expected for the reuse characteristic to be almost identical. This observation demonstrates the
consistency of our model and. methodology, since they .can capture the same behavior
consistently across applications with similar-data-utilization patterns.
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Figure 24: Data reuse characteristic when modeling block execution sequentially for sta.
(a) Full reuse characteristic. (b) Showing the.reuse characteristic for the range RD={1,
400}. (c)..Showing the reuse characteristic for the range RD={1, 100}..Notice the
particular patterns.
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Figure 25: Data reuse characteristic when.modeling block execution sequentlally for
gsim. (a) Full reuse characteristic. (b) Showing the reuse characteristic for the range
RD={1, 400}. (c) Showing the reuse characteristic for the range RD={1, 100}.
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Figure 26: Data reuse characteristic when modeling block execution sequentlally for bfs.

(a) Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1,
400}. (c) Showing the reuse characteristic for the range RD={1, 100;}.
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Figure 28: Source code for the kernels of bfs (a) and sta (b).

Also, notice that the applications presented above have a reuse characteristic with periodical
behavior in the reuse distance domain. In sta (Figure 24) and vectoradd (Figure 27) it is
possible to observe multiple super-imposed patterns that yield a very particular reuse
characteristic for the application. Recall that, in these first set of charts, the thread blocks are
treated as running in sequence.
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In order to provide more insight into the reuse characteristics of Figure 24 ~ 27, Figures

29~36 show the reuse characteristic obtained on a per block basis corresponding to Scenario 2

of our analysis. We also show the results for nbf, moldyn, irreg and euler, which we will

reference in subsequent sections. Notice that for sta, gsim, bfs and vectoradd, there is a

significant similarity between the reuse characteristic of each block, and the reuse

characteristic obtained when serializing the blocks. These figures show the reuse characteristic

for two blocks out of more than a hundred that their corresponding kernels have. Notice that,

as expected, the reuse characteristic of blocks from sta and bfs are almost identical to each

other. They differ on the. magnitudes of their reuse degree, but the contour (or shape) of the

reuse characteristic is maintained across most of the blocks.
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Figure 29: Data reuse characteristicson a per block basis for sta. (&) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.
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Figure 30: Data reuse characteristic on a per block basis for gsim. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.
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Figure 33: Data reuse characteristic on lock basis for nbf. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.
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An illustrative case is vectoradd, shown in Figure 31. Here, the reuse characteristic for two of
its thread blocks is presented. Notice that each block only reuses data up to a distance RD = 3,
and presents a monotonically decreasing profile. In Figure 27, the maximum distance up to
which data is reused for this benchmark is increased by more than a 800 times. To be exact,
the maximum reuse distance for the case when the execution of the blocks is modeled in a
serialized way is RD = 2733. This comparison proofs that there is a significant, not negligible,
amount of data reuse between blocks of the kernel of vectoradd. When observing the rest of
the reuse characteristics for the sblocks In Figures 29~32, and comparing them to their
homologous in the charts of Scenario 1, we-can:see that most of these applications do present
significant data sharing among blocks. This is one of the most important observations that can

be extracted when analyzing the results from.Seenarios.1 and 2.

Note that there are some kernels-in which the blocks present a monotonically decreasing
behavior (MB) In data reuse characteristic _such.as vectoradd. in Figure 32. Other kernels
present an-approximate monotonically decreasing (AMB) profile. For these kernels, we can
differentiate-two specific groups. The first group of kernels present a peak when RD = 2, and
from there on, the data reuse degree at subsequent distances decrease in'a fairly uniform way.
In this group, we can include sta and bfs;in Figures 29 and 31, respectively. The second group
of kernels'that we differentiate present a peak at RD =1, with'a decrementing behavior similar
to that of the first group. In this group, It is possible to include gsim, in Figure 30. Both of
these cases do not strictly decrement monotonically given that the monotonicity is broken for
certain reuse distances, with DS'= 0 or with a value smaller than these.of subsequent distances.
But the nearly uniform decreasing behavior is significant.when comparing the data reuse

characteristic with other applications that present totally different behavior, as we shall see.

When a data reuse degree peaks at;RD = 1, means that the highest reuse degree occurs
between adjacent Mls. But this does not mean that every two adjacent MIs present data reuse.
Rather it means that, when considering all of the Mls (not two particular adjacent MIs) in the
reference stream, most of the reuse degree occurs between contiguous Mls. In contrast, when
the peak is at RD = 2, means that the highest degree of reuse, when considering all Mls in the

reference stream, occur every other M.

There are also kernels in which the blocks do not present any monotonic (NMB) behavior in
their domain, neither a periodic behavior. To this group belong the majority of the kernels in
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the applications analyzed in this work: nbf, moldyn, irreg, and euler, presented in Figures
33~36. These kernels present an oscillatory behavior in their reuse characteristic. These
kernels present significant variability among its blocks and an oscillatory behavior in their
reuse characteristic. It reuses data at longer distances than sta, gsim or bfs. Moreover, the peak

magnitudes of the data reuse degree is at distances larger than 1 by an order of magnitude.

Even though the scope of this paper is not to find the correlation between the data reuse
characteristic and the performance seen in real architectures, we still would like to make some
comments regarding the results seen. When a block reuses data after so many memory
instructions, the impact.on performance can be very significant when running on a real SIMT
architecture with cache memory, but it will depend on the way application reuses data. There
are two possible cases that can occur: 1)the capacity-of the cache memory is not completely
used and the ‘data fetched s-used-with a varying degree at different distances as execution
progresses, or 2) the data allocated in the cache memory by a specific Ml IS eviction by a
different Ml before it is reused again by another instruction with a specific distance apart.

Contention-is present if the eviction of the data reused is very frequent in the reference stream.

In the first case, performance is increased when the.cache is present as long as the whole data
for a specific portion of the execution is present, and not reused again for other instructions in
the stream before being evicted. The second case 1s more complex. Given that if the same data
is needed again by one instruction in the block many memory-instructions later (for example,
more than 250 MIs as in the case for moldyn), it is possible that the data will have already
been evicted from the cache. To determine whether or not this will.occur, it is necessary to
analyze the total amount of memeory allocated before such.memory access occurs from the Ml
that fetched the data the first time and on the analysis of the application’s access patterns data.
Kernels may in fact reuse data at ‘'such long distances, and this fact justifies the realization of
sub-sequent analyses to establish the relationship with performance and the effectiveness of

various optimization techniques over the data reuse characteristic.

An ideal reuse characteristic should be monotonically decreasing, implying that its maximum
peak has to be at RD=1, and should also decrease its data sharing at high rate as the reuse
distance grows. Therefore, it is desirable that kernels present a very small reuse distance
domain i.e range of reuse distances. This is so because, in the best case, adjacent Mls will
share the highest amount of data, with the sharing degree reducing its magnitude as distances
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increase i.e. as execution progresses. This will reduce the possibility that data is fetched again

In case a prior eviction occurs.

However, just the fact of having reuse degree at far away distances can also have an impact on
performance irrespective of the magnitude. If for example there’s only a single datum, reused
at a far distance apart, that has been evicted by an intermediate MI, on a real architecture, the
data will have to be fetched only to be used by a single thread, affecting the total throughput
of system. Therefore, even though these reuse degree magnitudes at far distances might seem
negligible when compared to the corresponding reuse degree peaks within the block, it is also
desirable to reduce the maximum distance at which the blocks reuse distance, not just the
magnitude of the .reuse degree at a specific distance. Taking this into consideration is
particularly important when comparing the wayscoding: optimizations affect the data reuse

characteristic.

It is also important to make some-comments on the particular data reuse characteristic of the
kernels. As:-mentioned before, Figures 29~36 present data reuse characteristics assuming
enough parallelism to run all threads concurrently, very close to the ideal behavior of the
application. In @addition, we also have seen.that blocks of one kernel present a data reuse
characteristic. with very similar profiles, only differentiating themselves with different
magnitudes at reuse distances. It-seems-intuitive that the per block data reuse characteristic
should be the way kernels of different applications-from: one-another, since these are able to
represent the ‘data reuse patterns:very effectively. However, depending on the characteristics
of the kernel code, significant variations can occur, as can be seen by nbf, moldyn, irreg and
euler. In the Figures:33~36 it Is feasible to notice the way the reuse distance domains of these
kernels vary in block 1 with respect to block 0. There are also variations in the reuse degree

magnitudes.

When a kernel has a significant amount of branches with state only known at runtime or
presents runtime variability of various kinds, and coupled with this, many instructions that
access memory are within the branch paths, then the reuse characteristic can vary significantly
from one block to the next. For some applications, the reuse distance domain is drastically
reduced for many of blocks in the kernel. The data reuse characteristic of kernel blocks that
were obtained with our methodology were not tested in their entirety. There are some kernels
for which such variations are almost non-existent, as with the case for sta, gsim, bfs and
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vectoradd. On the other hand, kernels such as nbf, moldyn, irreg and euler do present
important variations. In addition, we also ran preliminary tests with applications from the
Rodinia [22] benchmark suite prior to writing this document, and we were able to see that
there was significant variability in the reuse characteristic of different blocks. The analyses of
the variability in the data reuse characteristic presented by the thread blocks due to runtime
dynamics is left for future work.

9.2 Data Reuse Characteristic with varying parallelism capabilities

In this sub-section, we present the results corresponding to Scenarios 3 and 4. Figures 37~44
show the data reuse:characteristic of the applications obtained when all thread blocks of the
kernel are executed.in parallel. There’s a huge similarity in the contour of the charts between
these figures.and their corresponding counterparts in Figure 29~36. Consider bfs in Figure 39,
and consider.the first three blocks-of-bfs shown in'Figure 31. When all blocks are modeled as
running in parallel, the resulting data reuse characteristic has the same contour but with
varying magnitudes of the data reuse degree at the same distances. There’s still some variation
with respect to the particular blocks, but the.contour similarities between both charts is very
strong. This same behavior is presented between all of the applications and their associated
thread blocks:
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Figure 37: Data reuse characteristic when modeling block execution when all blocks run

in parallel for sta.
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Figure 44: Data reuse characteristic when all blocks of euler are modeled as executing in

parallel.

This similarity ‘observed is particularly important. The runtime variations that alter the data
reuse characteristic of each individual block, briefly explained in Section 9.1, get “absorbed”
by the characterization methodology: That is, the resulting characteristic of all blocks running
in parallel becomes.insensitive to the changes in the reuse characteristic that certain blocks
suffer due to runtime dynamics. This is because the analysis process Is a reductionist since it
accumulates all the data reuse degrees associated to a specific value of reuse distance. The
result is that we obtain a reuse characteristic.that is ideal for which block scheduling or task
allocation policies are trivial. Such reuse characteristic is not defined by the details of the
memory subsystem and not by parallelism limitations. ‘Therefore, it becomes a less variable
and more reliable representation of the data reuse characteristic of the kernel. Tentatively, we

can define this as the signature reuse characteristic for the applications used in this work.

Figures 45~52 present ;the data reuse characteristic_of the applications when a different
number of blocks ‘K’ are able to run concusrently. For every application, we used K=2, K=4,
K=8, K=16. The blocks that run simultaneously are chosen by the block scheduling module
and the policy it implements. The way the blocks are scheduled in the concurrent slots
modifies the resulting reference stream, which will result in variations of the data reuse
characteristic. Notice that all of the applications present a similar contour with peaks of
different magnitude at different reuse distances. Also, they all present the same behavior as

the number of blocks able to run in parallel increases.
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executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.
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properly. (b) Data reuse characteristic for K=4. (c) Data reuse characteristic for K=8. (d)
Data reuse characteristic for K=16.
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Figure 52: Data reuse characteristic when only ‘K’ blocks of euler are modeled as
executing in parallel. (a) Data reuse characteristic for K=2. The reuse domain for this
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71



properly. (b) Data reuse characteristic for K=4. (c) Data reuse characteristic for K=8. (d)
Data reuse characteristic

For every value of ‘K’, all the kernels find their reuse distance domain (spectrum) increased
when compared to the case where all blocks are running in parallel. This happens because of
the amount of data reuse across blocks that these applications present, analogous to what
occurs when all blocks are serialized. The increase in the total reuse distance domain is hard to
determine a priori because of the variations that blocks may incur during runtime, no matter
how slightly they are. Also, and for this same' reason, the.number of reuse degree peaks

increase across the RD domain.

As ‘K’ increases from 2 to'4, the RD domain is reduced in a near-linear away. For every
application, the‘reuse distance domain when K=4 is nearly half of the reuse distance domain
when K=2. The same occurs between K=8 and K=4, and between K=16 and K=8. This
demonstrates, in a quantified-way;-the impact that the availability of resources-has over the
reuse characteristic of a kernel. If the amount of blocks that are able to run in parallel is very
low, and assuming that a kernel has a fairly large.amount of blocks when compared to the
resources in a real architecture, it is very likely that data will be reused at very far away
distances i.¢. after a large number of MIs. For example, let’s take a look at sta. When running
all blocks in_parallel, we observe.DS= 1256 at the fargest reuse distance in thesdomain RD =
37. On the other hand, when only 2 blocks are able to-run-in parallel, we have that at the
largest reuse distance RD = 4103 with DS=2, very low reuse degree and very far. This fact
can have a significant impact on the application’s performance, as explained in Section 9.1.

Notice that the RD domain has inecreased by more than 10 times.

Even though the reuse characteristics shown.in Figures 45~52 present a similar contour as ‘K’
varies, the actual reuse degree vs. reuse distance relationship is still very similar to the one of
their corresponding blocks i.e present strong similarity, even after applying a round robin
scheduling policy. In Figures 53 and 54 we present the data reuse characteristic of sta for K=2
and K=16, respectively, with zoom in three different ranges. We see that in the range from
RD=1 to RD=20 in Figure 53(a) for K=2, there’s a strong similarity with the characteristic
obtained when all blocks are running in parallel. Even the magnitudes are very similar. In the
next range from RD=21 to RD=40 in Figure 53(b), the variation with respect to the previous
range is trivial, both are almost identical. And the last range, from RD=41 to RD=60 in Figure
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53(c), we see that it is also strikingly similar to the previous range. The same behavior is
observed for K=16, as presented in Figure 54. Therefore, different ranges of the overall data
reuse characteristic are heavily related to one another. This happens because, even though the

runtime dynamics affect the reuse characteristic of the blocks, the data reuse pattern is still

very similar across the majority of the blocks of the kernels used in this work.
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Figure 53: Data reuse characteristic resulting when only K=2 blocks of sta are modeled
as executing in parallel. (a)-Data-reuse characteristic presented for reuse-distance range

RD={1, 20}.(b) Data reuse characteristic presented for reuse distance range RD={21, 40}.

(c) Data reuse characteristic-presented for reuse distance range RD={41, 60}.
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Figure 54: Data reuse characteristic resulting when only K=16 blocks of sta are modeled
as executing in_parallel. (a) Data reuse characteristic presented for reuse distance range
RD={1, 20}. (b) Data reuse characteristic presented for reuse distance range RD={21, 40}.

(c) Data reuse characteristic presented for reuse distance range RD={41, 60}.

9.3 Data Reuse Characteristic with limitations of SIMT Architectures

The results presented in this subsection correspond to Scenarios 5 and 6 of the data reuse
characterization. These Scenarios capture the data characteristic when modeling the
limitations of SIMT architectures when issuing memory instructions. As explained in Sections
6.5 and 6.6, we include a finite number of load/store units associated with each core cluster in
the system, which we modeled in the Locality Analyzer. We experimented with a constant

number of core clusters and varying number of load/store units. Figures 55~61 present the
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reuse characteristic obtained when modeling all core clusters in the systems, setting the
number of core clusters to 16 and with 16, 32 and 64 load/store units per core cluster.
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Figure 55: Data reuse characteristic from the aggregate reference stream of all core
clusters with varying number of load/store units in each core cluster for sta. (a) Data
reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic
for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per corecluster.
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Figure 56: Data reuse characteristic from the-aggregate-reference stream of all core
clusters with'varying number. of load/store units in each core cluster for gsim. (a) Data
reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic
for 32 load/store units per.core. cluster. (c) Data reuse:characteristic for 64 load/store

units per core cluster.
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Figure 57: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for bfs. (a) Data
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reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic
for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.
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Figure 60: Data reuse characteristic from_the aggregate reference stream of all core
clusters with varying number of load/store units In each core cluster for irreg. (a) Data
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Figure 61: Data reuse characteristic from the aggregate reference stream of all core
clusters with varying number of load/store units in each core cluster for euler. (a) Data
reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic
for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster:

In Figure 55, the data"reuse characteristic for sta IS shown when modeling certain SIMT
architectural limitations. Notice that for the reuse degree peaks that appeared in the results of
previous sections do not appear in this figure. It appears that the characteristic is flattened as
the reuse distance increases. The reuse degree magnitudes at short distances are very high, but
decrease at a higher rate as the reuse distance increases. This same behavior, as Figures 55~58

show, is common to sta, gsim, bfs and vectoradd.

These four applications present a very particular case. When the number of load/store units
becomes limited, the amount of data reuse that one single MI can exploit with relationship to

any other MI is significantly reduced. The amount of threads that execute one specific
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memory instruction is usually much larger than the number of load/store units in a single core
cluster. Consequently, the total number of simultaneous accesses that a single core cluster
can handle is dependent on the amount of load/store units it has. Therefore, to service the
requests of multiple threads, more execution cycles are necessary, which in turns means more
Mls increasing the position index of every Ml in the reference stream. This has the effect of
distributing the total reuse degree across different memory accesses, which basically flattens
the reuse characteristic, distributing the magnitude of degree peaks previously seen among a

wider number of distances.

This observation is particularly. important. Keep in mind that we have only modeled one single
resource limitation.of SIMT ‘architecture for our experiments. Figure 62 shows a zoomed
version of sta for. 16 load/store units. Notice thesway the characteristic is smoother than
previous cases, and notice the-‘kneels’ of the chart it now presents at very specific distances.
This case does not present any similarity whatsoever withithe. data reuse characteristic
observed in_individual blocks of sta nor when different amount of blocks run_in parallel, as
show in Section 9.2. Intuitively, it Is more appropriate to conclude that the reuse characteristic
obtained from sta when modeling SIMT limitations is actually the data reuse that the model of
our SIMT architecture can in fact exploit from sta. Thus, it is not solely dependent on the
application, but in the interaction.between the reuse pattern of the sta kernel and the SIMT

load/store units.
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Data reuse characteristic for 16 load/store units per core cluster. (b) Data reuse
characteristic for 32 load/store units per core cluster. (c) Data reuse characteristic for 64

load/store units per core cluster.
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For the rest of the kernels tested, as shown in Figures 59~61 for nbf, irreg and euler,
significant peaks are still present, but with at least 2 orders of magnitude smaller when
compared to their respective counterpart for the case when all blocks are modeled as
executing in parallel. The reason for why this reuse degree peaks appear is explained by the
reuse characteristic itself of each block. These kernels reuse data at very long distances apart,
making partially ineffective the smoothing effect due the presence of finite load/store units. It
is partially ineffective because the smoothing of the data reuse characteristic curve is not total,
as the case with sta, but very significant due to the reduction in magnitude. As explained
before, when a kernel uses data at such far away distances, there could a huge impact on

performance.

Another important observation can be extractedsfrom Figures 55~61. It'Is not possible to
obtain the characteristic of ‘the-reuse patterns of the kernels when modeling its runtime
behavior under the limitations imposed by real SUIMT processors considered in our analyses.
When the;analyses is performed on real architectures, the characteristic will deviate even
further from-what is seen under more controlled scenarios. When capturing the data reuse
characteristic of the kernels becomes relevant,.then itis necessary a methodology like the one
proposed with the associated implementation as described in Sections 6 and 7. To accomplish
this, it is necessary to abstract the analysis from the details of the architectures, and focus only

on the programming and runtime models of the particular processor.

Even though 'we focused more on the case of sta, all of the applications used in this work
present a similar _behavior, as the figures show. The data reuse characteristics of the
applications lose their reuse degree peaks, get flattened .or partially flattened i.e. the reuse
degree magnitude of the peaks,in previous instances is distributed among a larger number of
distances. There are cases, as vectoradd shown in Figure 58, the decrease rate of the reuse
degree might be smaller, but the decrease rate maintains uniformity and relatively smooth.
Even with the fact that the general behavior is similar in the kernels presented, there are still
differences that need to be explored. A thorough exploration of these differences is left for

future work.

Figure 63~70 present the reuse characteristic in two of the individual core clusters. In both
Variations 5 (Figures 55~61) and Scenarios 6 (Figures 63~70) the resulting reference stream
is different than in the case for Scenario 3 (all blocks running in parallel). This is due to the
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effects of the scheduling policy, as in Scenario 4, and this also coupled with the presence of a
finite number of core clusters in each core, which makes it necessary to serialize a significant
portion of the thread blocks. This limits drastically the amount of Mls that can be executed at
the same time. The behavior is very similar to the ones seen in Figures 55~61, corresponding
to Scenario 5. There’s a striking similarity between these two cases, but the magnitudes in
Scenario 6 are comparatively much smaller.
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Figure 63: Data reuse characteristic from the reference stream of the first and second
core clusters with varying number of load/store units for sta. (a) First core cluster with
16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster
with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.
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Figure 68: Data reuse characteristic from

e reference stream of the first and second
core clusters with varying number of load/store units for moldyn. (a) First core cluster
with 16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core
cluster with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First
core cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.
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Figure 70: Data reuse characteristic from the reference stream of the first and second
core clusters with varying number of load/store units for euler. (a) First core cluster with
16 load/store units. (b) Second core cluster with 16 load/store units. (¢) First core cluster
with 32 load/store units. (d) Second. core cluster with 32 load/store units. (e) First core
cluster with 64 load/store units. (f) Second.core cluster with 64 load/store units.

9.4 Data Reuse Characteristic when applying code optimizations

In this section, the data reuse characteristics of selected applications are obtained after the
coding optimizations explained in Section 8. Initially, we will focus on the changes that the
data reuse characteristic presents under such optimization when performing Scenario 2 (per

thread block) of the data reuse characterization. Figures 71~77 show the charts for sta, gsim,
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bfs, nbf, moldyn, irreg and euler respectively. Only the changes of the first block in the
kernels are presented. Each of these kernels has over a 100 blocks and to analyze them all,
with all of the variations and explain them, will require an extensive analysis that is beyond

the current scope.
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Figure 71: Data reuse characteristic foriblock O of sta after coding optimizations. (a)
After applying thread.clustering. (b) After applying thread and warp clustering. (c)
After applying thread clustering, warp clustering and block scheduling. (d) Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is 17. (e)
Comparison.prior to optimizations and after thread and warp clustering. Difference in
the reuse_degree is 802. (f).Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 802.

DS DS DS
700 800 | 800 i
600 700 700 ‘
500 600 - 600 i
500 f 500

400
400
300
00 200 | 200 |
0 T T T T T T R 0+ - T T R 0 '
% 2 9 61\ % o 1 » ™ 9 © 4 ® % 5

» L AD Ay KL A A P ) ~ R bid

% & 4 % R

DD P D

a) b) V)
250 250
200
150 260
100

150

50 I
0 — - R 100 100
50/ % %95 6190908038900
100 ®
150
: 0 - . 0 L. | -
200 N 5 s S S D> P PP 5 5w 6 N e R R G

250 50 50

d)
Figure 72: Data reuse characteristic for block 0 of gsim after coding optimizations. (a)
After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison
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prior to optimizations and after thread clustering. Difference in the reuse degree is 400.
(e) Comparison prior to optimizations and after thread and warp clustering. Difference
in the reuse degree is 795. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 794.
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Figure 73: Data reuse characteristic for block-0 of bfs after coding optimizations. (a)
After applying thread clustering. (b) After applying thread and warp clustering. (c)
After applying thread clustering, warp clustering and block scheduling. (d)=Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is 17. (e)
Comparison prior to optimizations and after thread and warp clustering. Difference in
the reuse degree is 802 (f) Comparison prior to optimizations and after thread clustering,

warp clustering and block scheduling. Difference in the reuse degree is 802.
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Figure 74: Data reuse characteristic for block 0 of nbf after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)
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After applying thread clustering, warp clustering and block scheduling. (d) Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is
44458. (e) Comparison prior to optimizations and after thread and warp clustering.
Difference in the reuse degree is 60346 (f) Comparison prior to optimizations and after
thread clustering, warp clustering and block scheduling. Difference in the reuse degree is
60576.
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Figure 75: Data reuse characteristic for block 0 of moldyn after coding optimizations. (a)
After applying thread clustering. (b)“After applying thread and warp clustering. (c)
After applying thread clustering, warp clustering and:block scheduling. (d) Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is
352556. () Comparison prior to optimizations and after thread and warp clustering.
Difference in the reuse degree'is 446146. (f) Comparisonsprior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is
447102.
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Figure 76: Data reuse characteristic for block 0 of irreg after eoding optimizations. (a)
After applying thread clustering. (b) /After applying thread and warp clustering. (c)
After applying thread clustering, warp clustering and block scheduling. (d) Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is
47309. (e). Comparison prior-to-optimizations and after thread and warp.clustering.
Difference.in the reuse degree is 53448. (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is
43212.
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Figure 77: Data reuse characteristic for block 0 of euler after coding optimizations. (a)
After applying thread clustering. (b) After applying thread and warp clustering. (c)
After applying thread clustering, warp clustering and block scheduling. (d) Comparison
prior to optimizations and after thread clustering. Difference in the reuse degree is

59694. (e) Comparison prior to optimizations and after thread and warp clustering.
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Difference in the reuse degree is 81755. (f) Comparison prior to optimizations and after
thread clustering, warp clustering and block scheduling. Difference in the reuse degree is
82204.

Let’s analyze first sta. In Figure 71(a), we see the resulting data reuse characteristic when
applying the thread clustering technique. The contour is fairly the same as it for the data reuse
characteristic prior to the optimization, presented in Section 9.1. However, a closer
observation in fact reveals a very interesting variation in the magnitude for the reuse degree at
very specific distances. In order to facilitate the comparisons, Figure 71(d) shows the
difference between the data reuse degree in Figure 71(a) and the corresponding characteristic
in Figure 29(a). This chart is obtained by subtracting the reuse degree at the corresponding
reuse distance in:the characteristic in Figure 29(a)»from Figure 71(a)..The sum of all the
values in Figure 71(d) is shown-at-the bottom part of the figure. We ‘can see that there’s an
increase in the total reuse degree of 17 units when compared tosthe case with no optimization.
This sum,.even though not a proper way to compare the changes in the reuse characteristic
between the-two cases, still provides a very intuitive way.of understanding the improvement
on the reuse behavior that the optimizations have over the data reuse patterns. However, as we
shall see ‘briefly, there are cases in which this:magnitude can change negatively, requiring a

different interpretation.

Notice also that in'Figure 71(d), the portion of the reuse-degree magnitudes at RD=3, 5 have
decreased, while the reuse degree for distances RD=1 have increased by much more. Both
quantities do not seem directly related. As this observation shows, the reuse degree for reuse
distances has therefore increased-for the short distances significantly, while there has been a

decrement in the longer distances, but not that substantial:

A very particular behavior is observed for the case when thread clustering optimization
technique is coupled with warp clustering, as described in Section 8. The resulting data reuse
characteristic is presented in Figure 71(b). The contour is still the same, but the reuse distance
domain has been reduced by 23.5% (from 17 down to 13). Figure 71(e) presents the
comparison chart between Figure 71(b) and Figure 29(a). The total reuse degree increases
even more up to 802, even though the reuse distance domain is also reduced, signaling a
significant improvement. The fact that the reuse domain has been reduced means that there is
less probability for data being evicted before being requested by a different Ml at this specific
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distance apart. In [18], Kuo et. al. report a running time performance improvement of around
60% for sta when applying thread clustering and warp clustering. The performance gain can

be explained in part by the changes seen in the data reuse characteristic.

The data reuse characteristic for the case where the three optimization techniques (thread
clustering, warp clustering and block scheduling) are applied is presented in Figure 71(c). For
the thread block O of sta there is not much performance improvement when compared to the
case where only thread clustering and warp clustering are applied. However, a performance
improvement of more than 80% is reported in [18]. Thisjs because the charts in Figures
71~77 only capture the' reuse. characteristic within the block itself, therefore any coding
optimization that mimics a variation in the way blocks are scheduled will not be entirely
visible within the block. However, for nbf, moldynyirreg and euler, the block scheduling
optimization ‘does have an effect-on the code. Recall that these optimizations are coding
optimizations mimicking a scheduling approach..An analysis.of the effects of this coding

optimizations technique over the groups of applications used mentioned is left for further
research.

Figures 78~84 presents the data reuse characteristic for the case where all blocks within the
application are run in parallel when coding optimizations are applied.
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Figure 78: Data reuse characteristic for all blocks running in parallel of sta after coding
optimizations. (a) After applying thread clustering. (b) After applying thread and warp
clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)
Comparison prior to optimizations and after thread clustering. Difference in the reuse

degree is -10216. (e) Comparison prior to optimizations and after thread and warp
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clustering. Difference in the reuse degree is 14229. (f) Comparison prior to optimizations

and after thread clustering, warp clustering and block scheduling. Difference in the
reuse degree is 11940.
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Figure 79: Data reuse characteristic for all blocks running in parallel of gsim after
coding optimizations. (a) After applying thread clustering. (b) After applying thread and
warp clustering. (c) After applying thread clustering, warp clustering.and block
scheduling. (d) Comparison prior to optimizations and after thread clustering.
Difference in the reuse degree is 8236.(e) Comparison prior to optimizations and after
thread and warp clustering. Difference in the reuse degree is 21363. (f) Comparison
prior to optimizations and after thread clustering, warp clustering and block scheduling.
Difference in the reuse degree is.17129.
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Figure 80: Data reuse characteristic for all blocks running in parallel of bfs after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp
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clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)
Comparison prior to optimizations and after thread clustering. Difference in the reuse
degree is -10812. (e) Comparison prior to optimizations and after thread and warp
clustering. Difference in the reuse degree is 13361. (f) Comparison prior to optimizations
and after thread clustering, warp clustering and block scheduling. Difference in the
reuse degree is 11324.
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Figure 81: Data reuse characteristic for all.blocks running in parallel of nbf after coding
optimizations. (a) After applying thread clustering. (b) After applying thread and warp
clustering. (¢) After applying thread clustering, warp clustering and block secheduling. (d)
Comparison‘prior to optimizations and after thread clustering. Difference in the reuse
degree is 6053. () Comparison prior to optimizations and after thread and warp
clustering. Difference in the reuse degree is 7400. (f) Comparison prior to optimizations

and after thread clustering, warp: clustering and.block scheduling. Difference in the
reuse degree is 9138.
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Figure 82: Data reuse characteristic for all blocks running in parallel of moldyn after
coding optimizations. (a) After applying thread clustering. (b) After applying thread and
warp clustering. (c) After applying thread clustering, warp clustering and block
scheduling:.(d) Comparison-prior to ' optimizations and after thread. clustering.
Difference in the reuse degree is -3373236. (¢) Comparison prior to optimizations and
after thread and warp clustering. Difference. in the reuse degree Is -5170268. (f)
Comparison prior to optimizations and after thread clustering, warp clustering and

block scheduling. Difference in the reuse degree is -5791542.
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Figure 83: Data reuse characteristic for all blocks running in parallel of irreg after
coding optimizations. (a) After applying thread clustering. (b) After applying thread and
warp clustering. (c) After applying thread clustering, warp clustering and block

scheduling. (d) Comparison prior to optimizations and after thread -clustering.
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Difference in the reuse degree is -4445. (e) Comparison prior to optimizations and after
thread and warp clustering. Difference in the reuse degree is -4402. (f) Comparison prior
to optimizations and after thread clustering, warp clustering and block scheduling.

Difference in the reuse degree is -4647.
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Figure 84: Data reuse characteristic for all blocks.running in parallel of euler after
coding optimizations. (a) After applying thread clustering. (b) After applying thread and
warp clustering. (c) After applying thread clustering, warp clustering and block
scheduling. -(d) Comparison prior to . optimizations and after thread. clustering.
Difference.in the reuse degreesis 8904. (e) Comparison prior to optimizations and after
thread andiwarp clustering. Difference in the reuse degree-is 7834. (f) Comparison prior
to optimizations. and after thread' clustering, warp clustering and block scheduling.

Difference in the reuse degree is 9172,

Notice once again the case for sta in.Figure 78. The contour is the same, but the reuse degree
magnitudes vary when compared to Figure 71. Figure 78(e) presents the comparison charts for
the cases where the three coding optimizations are applied. In this case, the total reuse degree
over the distance domain is drastically reduced after applying the optimizations. The
explanation behind this is that when all blocks execute in parallel and are optimized, a
situation occurs where the position of the Mls within the reference stream is reduced and/or
the addresses accessed by one given MI are now accessed by a different Ml earlier in the
reference stream. This causes that one MI accesses data simultaneously for an Ml in the
original reference that would have accessed those addresses are a later position. When this

occurs, the reuse degree for that distance will reduce, signaling some improvement under
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these circumstances, even though the reuse characteristic does not present an increase in the

overall reuse degree magnitudes.

Analyzing thoroughly why does in fact the reuse characteristic for the case when all blocks are
running in parallel changes in such a way for when optimizations are applied, contrasting this
with the behavior observed by block 0 in Figures 29~36, will require to analyze each of the
blocks of the kernels. However, as we have explained, the huge amount of parallelism
available in our idealized architecture model might be the cause behind this.

A reasonable conclusion to. explain the performance improvement after optimizing is the
increase of memory coalescing that rescheduling the blocks in'a more efficient way cause. For
now, neither the current methodology nor the analytical model provided here can quantify
memory coalescing within a given MI. Therefore, the performance improvement cannot be
explained only considering the data reuse characteristic as analyzed so far. The. scope of this
paper is net. obtain a relationship=between the reuse characteristic and' the performance
improvements, but the behavior just observed makes it .necessary to make such analysis in

future work:

A similar behavior is presented for all the applications shown. When the optimizations are
applied, the.total data reuse degree increases-and, in some cases, the distance reuse domain is
reduced. Notice how all the applications maintain without any significant changes the contour

of their reuse characteristic, even when the reuse domain is shrunk.
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X. RELATED WORK

In [8, 10, 23, 24, 25, 26] it was demonstrated the importance of data reuse in CMPs
(multi/many-core) and SIMT processors as a means to improve performance for different
benchmarks and application domains. As noted in [27], understanding data reuse becomes
important in many-core systems that are limited by memory bandwidth, as the case for SIMT
processors [28]. Exploiting data reuse saves memory bandwidth, because less accesses are
required [12, 13, 29]. The capacity limitaiton is significant in SIMT processors, due to the
relative small caches for the amount of threads [12, 29]. In [9], Kuo et. al. explain that the
capacity constraint. can cause contention and destructive. sharing. in certain cases.
Understanding whether these phenomena are duge to application behavior or to limitations of
the subsystem 1s necessary. Also, understanding data reuse Is key to improve the management
of the memaory resources of SIMT.applications, which are relatively scarce, but are critical in

boosting performance [3].

In [8], Jia'et. al. propose a taxonomy of the data reuse behavior based on the abstractions of
the execution model and proposed compiler-based technigues to analyze the reuse behavior.
For this, they use the intrinsic|relationship_of the thread identification mechanism and their
portion of.the total data set. This approach is limited in_that it cannot analyze memory
accesses whose addresses: are unknown until runtime. Also, they assume that applications
running on a GPU present negligible cross-block data reuse. This assumption is valid for a
specific set of applications. However, as we have seen in the results section of our work, there
are applications that do present considerable cross-block data reuse.

In [9], Kuo et. al. developed a standalone library that builds'a hypergraph that represents the
data sharing between different run time abstractions of GPUs. Based on this analysis, coding
optimizations are performed to CUDA kernels that mimic scheduling mechanisms. The gain

in performance is signifcant.

Most of the efforts in data reuse characterization and analysis, such as [8] and [9], are based
on static analyses. These works don’t provide a way to quantify the data reuse behavior, or to
characterizae any locality dimensions: whole-program, in program code, in program data, over

time (program phases), interaction between programs, as explained in [10]. Arguably, some of
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these dimensions might not be totally applicable to SIMT environment. For example,
analyzing the different phasesof computation might not be efficient or relevant for certaub
kernels in SIMT processors, since these kernels are relatively short-lived (when compared to
threads in a CMP environment). However, analogous concepts to whole-program locality bare
significant relevance, in our view, because of the necessity to analyze memory access patterns
and to exploit data reuse of GPU kernels. Our model attempts to create a locality signature of
the program totally isolated from particular architectural limitations. In this way, we quantify
and visualize the specific reuse behavior of ‘the application. This is useful in assessing the
improvement due to code optimizations.over-the data reuse behavior (temporal/spatial locality)
and performance since, as exposed in [30], these two, sometimes, do.not relate to each other in

a straightforward.way.

In contrast to [8] and [9], for-our-work we preffered not to employ static analyses, using
memory traces instead. Our main.reason is because:such static methods cannot account for the
indeterministism of certain portions of the kernel. Memory traces can offer profound insight
of the applications, allowing for more refined analyses to capture runtime variations, model
them and increase predictability [10]. However, the methodology we propose is relatively
straightforward, and has not been extended to_provide prediction of any kind. In this work, we
attempt to provide the locality signature of the SIMT applications using a new metric: the data

reuse degreegand a variation of the reuse distance concept.

Locality characterization of applications using reuse distance profiles, concept introduced by
[15] as LRU stack distance, has been widely used to predict cache performance and measure
different dimensions'of locality. It has been used for systems with serialized memory behavior
(corresponding to uniprocessor systems)yas.is.the.case in [30, 31, 32] and also for systems in
which concurrency in memory access is allowed, such as in CMPs [11, 33, 34]. The reuse
distance profiles so obtained can be used to predict cache miss rates, under assumptions of
other cache parameters (LRU policy, constant associativity, etc), and analyze different
dimensions of locality [10, 14]. Additional complications arise when analyzing applications

running on CMP systems, as explained in [11], but prediction is still feasible.

The methodology used to capture program locality based on the data reuse behavior used for

CMP systems detailed in [11] is not totally adequate to model locality for SIMT processors.
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The reason is that private caches in CMP systems are in fact exclusive to each core, whereas
the privacy of the caches in SIMT processor is not. In this case, all threads within one core
cluster utilize the same caches with a particular portion assigned to them when necessary.
Trying to even perform the analysis on the portion assigned to each thread becomes
impractical. This is because threads in SIMT threads are smaller in stream size and are
relatively short-lived when compared to their counter-parts in most applications running on
CMPs. Our work proposes a new methodology totally different than the use in CMP systems,

and proposes a novel approach to analyzing locality in SIMT,_processors.

In [35], Tang et. al. offer an analytical model based on stack distance to predict cache miss
rates on GPUs. Tang et. al.;acknowledge the impact that the programming model of SIMT
processors has<on. analyzing locality. Also, they consider very specific constraints and
characteristics of the memory-susbsytem (Effect Point) coupled with program behavior
(Access Point) to perform the.stack.distance profiling. Their work is focused on predicting
miss ratesrand the ocurrence of contention. The histograms obtained by this methodology are
highly dependent on the cache parameterers assumed (associativiy, replacement policy).
Therefore, it IS not inherent to the kernel itself. Also, they assume that cross-block data reuse
is negligible.” As mentioned before, the validity of the assumption that there is no cross-block
reuse depends on the particular kernel.

We attempt'to improve over the approach proposed in [35] by quantifying the data reuse on
per memory instruction. basis, and building a histogram that captures the data reuse between
two memory instructions at varying distances in an efficient ways In contrast to [35], we don’t
build stacks and traverse them in.every access to build the histogram, since this makes
problematic the creation of the histograms..ln Section 2, we explained that this approach can
alter the actual reuse distance depending on the order in which the addresses traverse the stack
(or any other data structure for that matter). This problem is not addressed at all in [35].
Another improvement when compared to [35], is that we perform our analysis independent on
particulars of the cache parameter, considering the programming model and the amount of

available parallelism given the code structure of the kernel.
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XI. CONCLUSIONS

In this work, we have a shown a novel methodology to analyze locality in SIMT applications.
This methodology is totally architecture agnostic, dependent only on the programming and
runtime models, and it allows to model the execution of the kernels under varying degrees of
parallelism. In addition, we also define new metrics and a new reuse distance model which we
use to obtain the data reuse characteristic, a term we coined to refer to a specific locality
property of SIMT applications: data sharing or data reuse. Coupled with this, we also a
developed a framework; the Locality Analyzer, that implements our methodology with the
analyses detailed throughout the document. Our framework is very flexible and scalable,
which will allow performing different types of analyses:

We were also capable of observing very interesting properties of the kernels we tested when
showing their quantified data-reuse-characteristic in a visual way. We demonstrated that the
kernels we tested do in fact present a significant amount .of data reuse across different blocks
in the kernel. We also showed the way different parallelism constraints alter the reuse
behavior 'of the kernel, and the way SIMT architectural limitations basically damp out the
reuse characteristic, making it smoother and distributing the memory requests across a larger

number of memory instructions.

We also show the way certain coding optimization techniques modify the reuse characteristic
of the applications. This accounts for part of the performance improvement that the kernels
incur when running on a real GPU system, but cannot explain all of:it, as we could see when

analyzing the reuse characteristic under specific constraints.

When observing the results, we realized that further work is required in order to define
properly the signature reuse characteristic of the kernels and correlate the behavior observed
with performance in real architectures. First, we need make a more thorough analysis of the
variability presented by the blocks of one kernel within the perspective of the data reuse
characteristic. This will provide a different way to categorize applications based on a truly
architecture agnostic metrics. Also, it is also necessary to test different scheduling policies in
order to analyze their effect on the data reuse characteristic, and demonstrate if it is whether or

not beneficial to control the scheduling policies of real architectures. Moreover, it is necessary
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to extend the analyses to quantify coalescing, if possible, and to estimate the occurrence of
contention and miss rates, since such analysis will allow establishing the relationship between
data reuse characteristic and the performance observed. This will enable to explain better the

performance improvements when running applications on real architectures.

In addition, it will also be necessary to optimize the algorithms used in the analytical
framework and to calculate the reuse degree. For some of the kernels used in this work, the
trace files generated were relatively large, and Scenarios 1, 5 and 6 would take too much time
to calculate. For some cases, also Scenario 4 for K=2 would take too much time to complete,
as was the case for moldyn which took almost a week. Scenarios 2; 3 and 4 would complete a
couple of minutes for all kernels. However, by making the process' faster and more efficient
for the rest of the:Scenarios, the procedure will become more attractive for programmers and

architectures.

For future work also is important-to analyze the way the‘input and input sizes:modifiy the
reuse characteristic and expand the applications used. It would be also interesting to show the
reuse characteristic of other benchmark suites such.as Parboil, Rodinia and more applications
from the NVIDIA SDK.
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