

National Chiao Tung University

EECS International Graduate Program

Thesis

記憶體追蹤方式在單指令多執行緒架構中資料分享程度之分析研

究

A Memory Trace-Based Analysis for Data Sharing Degree in SIMT

Architectures

Student: Luis Angel Garrido Platero

Advisor: Prof. Bo-Cheng Lai

June, 2013

以記憶體追蹤方式在單指令多執行緒架構中資料分享程度之分析

研究

A Memory Trace-Based Analysis for Data Sharing Degree in SIMT

Architectures

研 究 生：盧以斯 Student: Luis Angel Garrido Platero

指導教授：賴伯承 Advisor: Bo-Cheng Lai

國 立 交 通 大 學

EECS International Graduate Program

碩 士 論 文

A Thesis

Submitted to the EECS International Graduate Program

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

EECS

June 2013

Hsinchu, Taiwan, Republic of China

中華民國一０二年六月

i

以記憶體追蹤方式在單指令多執行緒架構中資料分享程度之分析

研究

Student: Luis Angel Garrido Platero Advisors: Dr. Bo-Cheng Lai

EECS International Graduate Program

National Chiao Tung University

CHINESE ABSTRACT

在本論文中，我們透過量化單一指令多執行續程式中記憶體存取的資料分

享程度進而分析應用程式的區域特性。此外，我們也提供了不同執行環境

下之資料分享的視覺化方法。為了量化資料分享程度，本論文使用含有執

行階段記憶體位置的記憶體追蹤以完成記憶體存取的資料分享程度分析。

在此分析中，我們重新定義重複使用距離的概念以提供分析以及不同執行

環境的需要。

ii

A Memory Trace-based Analysis for Data Sharing Degree of SIMT Architectures

Student: Luis Angel Garrido Platero Advisors: Dr. Bo-Cheng Lai

EECS International Graduate Program

National Chiao Tung University

ENGLISH ABSTRACT

In this work, we address the problem of quantifying the data sharing degree of

the memory access behavior within specific SIMT applications in order to

quantify the locality characteristics of the application‟s workload. In addition,

we also offer way to visualize the way the sharing patterns of the applications

and the way they change under different models of runtime scenarios. For the

purposes of quantifying the data sharing degree a memory trace is generated that

contains information of the addresses accessed at a specific point of execution.

Then, the information contained in the traces is used to perform the data sharing

degree analysis of memory accesses. In this analysis, we have redefined the

reuse distance concept in order to make it suitable to our analytical requirements,

at the same time considering the particulars of the execution model previously

mentioned.

iii

TABLE OF CONTENTS

Chinese Abstract………………………………………………………………………………………………..i

English Abstract..ii

Table of Contents………………………………………………………..…………………………………….iii

List of Tables…………………………………………………………………………………...........................iv

List of Figures……………………………………………………………………………………………….....v

Symbols………………………………………………………………………………………………………...xvi

I. INTRODUCTION .. 1

II. OVERVIEW OF SIMT PROCESSORS .. 6

2.1 Hardware of GPU Architectures... 6

2.2 Programming and execution abstractions of GPU ... 7

2.3 Memory Hierarchy of GPUs .. 8

III. LOCALITY ANALYSES IN CMP AND UNIPROCESSOR SYSTEMS 9

IV. DATA REUSE CHARACTERIZATION .. 12

4.1 Definition of the Data Reuse Degree .. 12

4.1 Definition of the Reuse Distance .. 14

4.1.1 Traditional reuse distance analyses .. 15

4.1.2 Reuse Distance for SIMT Processors ... 18

V. ANALYSIS METHODOLOGY FOR

DATA REUSE CHARACTERIZATION .. 21

VI. SCENARIOS FOR DATA REUSE CHARACTERIZATION 26

5.1 Infinite resources, thread blocks are modeled as executing sequentially 27

5.2 Infinite resources, analysis within each thread block ... 27

5.3 Infinite resources, all thread are modeled as executing in parallel 28

5.4 Infinite resources, a number „K‟ of thread blocks modeled as

executing in parallel ... 29

iv

5.5 Limited resources, „K‟ block modeled as executing

in parallel, within core cluster analysis .. 31

5.6 Limited resources, „K‟ blocks modeled as executing in

parallel, inter-core cluster .. 33

VII. EXPERIMENTATION FRAMEWORK ... 35

6.1 Trace Generation Stage .. 35

6.2 Reference Stream Analysis Stage ... 36

6.2.1 Model for Thread Blocks .. 36

6.2.2 Scheduling Policies .. 39

6.2.3 Core cluster modeling ... 43

6.2.4 Merging of reference streams ... 44

6.2.5 Adjusting the position index of Mis ... 48

6.2.6 Locality Analyzer Architecture: Putting it all together 50

VIII. APPLICATION OPTIMIZATION .. 52

8.1 Thread Mapping Methodology ... 52

IX. EXPERIMENTAL RESULTS ... 55

9.1 Data Reuse Characteristic with serialized blocks

and on a per block basis ... 55

9.2 Data Reuse Characteristic with varying parallelism capabilities 64

9.3 Data Reuse Characteristic with limitations of SIMT Architectures 73

9.4 Data Reuse Characteristic when applying code optimizations 86

X. RELATED WORK ... 98

XI. CONCLUSIONS .. 101

XII. REFERENCES ... 103

v

LIST OF TABLES

Table 1: APPLICATIONS USED FOR EXPERIMENTATION

vi

LIST OF FIGURES

Figure 1: Benefits obtained when taking advantage of the data reuse in SIMT applications. (a)

DRAM memory transactions with and without coalescing. The first two cases from the top

illustrate the case for coalescing. The last case shows the case when coalescing is not possible.

(b) Illustration of the contention effect in a CMP. ... 3

Figure 2: Diagram of a core cluster based on NVIDIA's Kepler GeForce GTX 680 GPU. (a)

The core cluster with its internal hardware modules. (b) Illustration of the thread hierarchy in

the SIMT programming model. .. 6

Figure 3: Reuse distance concept and memory instruction reuse behavior in SIMT programs.

(a) Sample measurement of reuse distance in traditional multiprocessors. (b) Reuse distance

behavior in SIMT architectures. ... 10

Figure 4: A sample stream of memory instructions. The instruction array appears in the left

column, the address array is presented in the middle column and the Reuse Degree for

memory instructions „i‟ „i+2‟ and „i+2‟ „i+4‟ appears in the right column. 13

Figure 5: Reuse distance analysis as applied in uniprocessor systems. (a) Sample memory

trace. (b) Changes of the state of the stack as memory instructions are issued. 15

Figure 6: Reuse distance analysis in CMP systems with private memory subsystem. (a)

Sample reference stream. (b) Stacks for the private memory subsystem. 16

Figure 7: Reuse distance analysis in CMPs with shared memory subsystem. (a) Sample

reference stream. (b) Stacks for each memory subsystem.. 17

Figure 8: Data reuse degree in a sample reference stream of a SIMT processor with „N‟

processing cores. (a) Sample reference stream of a SIMT processor. (b) Data Reuse Degree

for memory instructions „i‟ ‟i+k‟ and „i+2‟ ‟i+2+k‟. .. 19

Figure 9: Limitations when performing the baseline methodology for reuse distance analysis

on SIMT processors. (a) Subset of the reference stream as it appears in Figure 7. (b) Possible

ways to arrange the accessed addresses on the stacks. ... 22

Figure 10: Flow chart of the data reuse characterization methodology. This flow chart shows

all the steps when performing the analysis over a reference stream. 23

vii

Figure 11: Data reuse characterization. (a) Scenario 1. (b) Scenario 2. In these two scenarios,

the SM is assumed ideal, as represented by the infinite signs in the figures above. 27

Figure 12: Scenario 3 of data reuse characterization assuming ideal core clusters. (a)

Illustrates the way blocks are intended to be executed. (b) Illustrates the Aggregate Block that

results from merging the streams of all CTAs. ... 28

Figure 13: Scenario 4 of the reuse degree characterization. Only 'K' blocks are modeled as

executing concurrently. This is equivalent as having 'K' ideal core clusters, each one executing

one block at the time. .. 29

Figure 14: (a) An ideal core cluster executing the reference streams of 'K' parallel blocks. (b)

The streams of parallel blocks merged into a series of aggregate blocks, executed in sequence.

 .. 30

Figure 15: Scenario 5 of the data reuse characterization analysis. Each core cluster has now a

finite number of load/store instructions. The analysis is performed within each core cluster. 32

Figure 16: Scenario 6 of the data reuse characterization. The analysis is performed over the

aggregate of the reference streams in every core cluster. The number of load/store units is the

total sum across the core clusters. .. 33

Figure 17: Formation of Block objects within the Locality Analyzer. The block objects

contain their individual reference stream which consists on a series of ordered MIs. Each MI

has access information of its own. .. 37

Figure 18: Block scheduling module and block scheduling flow (a) Block scheduling module

assigning blocks to a system with one core cluster. (b) Block scheduling module assigning

blocks to a system with multiple core clusters ... 40

Figure 19: After assigning blocks to the core clusters. The blocks are queued in each cluster,

and are also inserted into the „currBlocks‟ structure, which represents the arrays of concurrent

slots. .. 42

Figure 20: Merging of reference streams from multiple blocks in the arrays of concurrent slots.

Scenarios 3, 4, and 6 are the only ones that employ this procedure. .. 45

Figure 21: The resulting reference stream of the aggregate blocks. It is possible to compare

this with the streams shown in Figure 19. Notice how the „Addresses‟ and „Threads‟ fields are

augmented ... 48

viii

Figure 22: Modifications of the position reference index within the reference stream. The

value of the index of the MIs in streams other than the first will depend on the stream length

of the streams before the current one. .. 49

Figure 23: Block diagram of the architecture of the Locality Analyzer. This is a very general

and simplified version of our framework ... 50

Figure 24: Data reuse characteristic when modeling block execution sequentially for sta. (a)

Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1, 400}. (c)

Showing the reuse characteristic for the range RD={1, 100}. Notice the particular patterns. . 56

Figure 25: Data reuse characteristic when modeling block execution sequentially for gsim. (a)

Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1, 400}. (c)

Showing the reuse characteristic for the range RD={1, 100}. .. 56

Figure 26: Data reuse characteristic when modeling block execution sequentially for bfs. (a)

Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1, 400}. (c)

Showing the reuse characteristic for the range RD={1, 100}. .. 57

Figure 27: Data reuse characteristic when modeling block execution sequentially for

vectoradd. (a) Full reuse characteristic. (b) Showing the reuse characteristic for the range

RD={1, 400}. (c) Showing the reuse characteristic for the range RD={1, 100}. 57

Figure 28: Source code for the kernels of bfs (a) and sta (b). .. 57

Figure 29: Data reuse characteristic on a per block basis for sta. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 58

Figure 30: Data reuse characteristic on a per block basis for gsim. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 58

Figure 31: Data reuse characteristic on a per block basis for bfs. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 59

Figure 32: Data reuse characteristic on a per block basis for vectoradd. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1. 59

Figure 33: Data reuse characteristic on a per block basis for nbf. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 59

ix

Figure 34: Data reuse characteristic on a per block basis for moldyn. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1. 60

Figure 35: Data reuse characteristic on a per block basis for irreg. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 60

Figure 36: Data reuse characteristic on a per block basis for euler. (a) Data reuse characteristic

for thread block 0. (b) Full reuse characteristic for thread block 1. ... 60

Figure 37: Data reuse characteristic when modeling block execution when all blocks run in

parallel for sta. .. 64

Figure 38: Data reuse characteristic when modeling block execution when all blocks run in

parallel for gsim. ... 65

Figure 39: Data reuse characteristic when modeling block execution when all blocks run in

parallel for bfs. .. 65

Figure 40: Data reuse characteristic when all blocks of vectoradd are modeled as executing in

parallel. ... 65

Figure 41: Data reuse characteristic when all blocks of nbf are modeled as executing in

parallel. ... 66

Figure 42: Data reuse characteristic when all blocks of moldyn are modeled as executing in

parallel. ... 66

Figure 43: Data reuse characteristic when all blocks of irreg are modeled as executing in

parallel. ... 66

Figure 44: Data reuse characteristic when all blocks of euler are modeled as executing in

parallel. ... 67

Figure 45: Data reuse characteristic when only „K‟ blocks of sta are modeled as executing in

parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for K=4. (c) Data

reuse characteristic for K=8. (d) Data reuse characteristic for K=16. 68

x

Figure 46: Data reuse characteristic when only „K‟ blocks of gsim are modeled as executing in

parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for K=4. (c) Data

reuse characteristic for K=8. (d) Data reuse characteristic for K=16. 68

Figure 47: Data reuse characteristic when only „K‟ blocks of bfs are modeled as executing in

parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for K=4. (c) Data

reuse characteristic for K=8. (d) Data reuse characteristic for K=16. 69

Figure 48: Data reuse characteristic when only „K‟ blocks of vectoradd are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for

K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16. 69

Figure 49: Data reuse characteristic when only „K‟ blocks of nbf are modeled as executing in

parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for K=4. (c) Data

reuse characteristic for K=8. (d) Data reuse characteristic for K=16. 70

Figure 50: Data reuse characteristic when only „K‟ blocks of moldyn are modeled as executing

in parallel. (a) Data reuse characteristic for K=2. The reuse domain for this case is actually

RD={1,124030}. The tool used to make the graphs could not display it properly. (b) Data

reuse characteristic for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse

characteristic for K=16. .. 70

Figure 51: Data reuse characteristic when only „K‟ blocks of irreg are modeled as executing in

parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic for K=4. (c) Data

reuse characteristic for K=8. (d) Data reuse characteristic ... 71

Figure 52: Data reuse characteristic when only „K‟ blocks of euler are modeled as executing

in parallel. (a) Data reuse characteristic for K=2. The reuse domain for this case is actually

RD={1,66623}. The tool used to make the graphs could not display it properly. (b) Data reuse

characteristic for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic ... 71

Figure 53: Data reuse characteristic resulting when only K=2 blocks of sta are modeled as

executing in parallel. (a) Data reuse characteristic presented for reuse distance range RD={1,

20}. (b) Data reuse characteristic presented for reuse distance range RD={21, 40}. (c) Data

reuse characteristic presented for reuse distance range RD={41, 60}. 73

Figure 54: Data reuse characteristic resulting when only K=16 blocks of sta are modeled as

executing in parallel. (a) Data reuse characteristic presented for reuse distance range RD={1,

20}. (b) Data reuse characteristic presented for reuse distance range RD={21, 40}. (c) Data

reuse characteristic presented for reuse distance range RD={41, 60}. 73

xi

Figure 55: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for sta. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 74

Figure 56: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for gsim. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 74

Figure 57: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for bfs. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 74

Figure 58: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for vectoradd. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 75

Figure 59: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for nbf. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 75

Figure 60: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for irreg. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 76

Figure 61: Data reuse characteristic from the aggregate reference stream of all core clusters

with varying number of load/store units in each core cluster for euler. (a) Data reuse

characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 76

xii

Figure 62: Data reuse characteristic in reuse distance range RD={0, 100} of the aggregate

reference stream of all core clusters with varying number of load/store units for sta. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic for 32

load/store units per core cluster. (c) Data reuse characteristic for 64 load/store units per core

cluster. .. 77

Figure 63: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for sta. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 79

Figure 64: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for gsim. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 80

Figure 65: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for bfs. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 81

Figure 66: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for vectoradd. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 82

Figure 67: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for nbf. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 83

Figure 68: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for moldyn. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 84

xiii

Figure 69: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for irreg. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 85

Figure 70: Data reuse characteristic from the reference stream of the first and second core

clusters with varying number of load/store units for euler. (a) First core cluster with 16

load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster with 32

load/store units. (d) Second core cluster with 32 load/store units. (e) First core cluster with 64

load/store units. (f) Second core cluster with 64 load/store units. .. 86

Figure 71: Data reuse characteristic for block 0 of sta after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 17. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 802. (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 802. ... 87

Figure 72: Data reuse characteristic for block 0 of gsim after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 400. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 795. (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 794. ... 87

Figure 73: Data reuse characteristic for block 0 of bfs after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 17. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 802 (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 802. ... 88

Figure 74: Data reuse characteristic for block 0 of nbf after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 44458. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 60346 (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 60576. ... 88

xiv

Figure 75: Data reuse characteristic for block 0 of moldyn after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 352556. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 446146.

(f) Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 447102. ... 89

Figure 76: Data reuse characteristic for block 0 of irreg after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 47309. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 53448. (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 43212. ... 90

Figure 77: Data reuse characteristic for block 0 of euler after coding optimizations. (a) After

applying thread clustering. (b) After applying thread and warp clustering. (c) After applying

thread clustering, warp clustering and block scheduling. (d) Comparison prior to optimizations

and after thread clustering. Difference in the reuse degree is 59694. (e) Comparison prior to

optimizations and after thread and warp clustering. Difference in the reuse degree is 81755. (f)

Comparison prior to optimizations and after thread clustering, warp clustering and block

scheduling. Difference in the reuse degree is 82204. ... 90

Figure 78: Data reuse characteristic for all blocks running in parallel of sta after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is -10216. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 14229. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 11940. ... 92

Figure 79: Data reuse characteristic for all blocks running in parallel of gsim after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is 8236. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 21363. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 17129. ... 93

Figure 80: Data reuse characteristic for all blocks running in parallel of bfs after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

xv

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is -10812. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 13361. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 11324. ... 93

Figure 81: Data reuse characteristic for all blocks running in parallel of nbf after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is 6053. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 7400. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 9138. 94

Figure 82: Data reuse characteristic for all blocks running in parallel of moldyn after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is -3373236. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is -5170268. (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is

-5791542. .. 95

Figure 83: Data reuse characteristic for all blocks running in parallel of irreg after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is -4445. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is -4402. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is -4647. ... 95

Figure 84: Data reuse characteristic for all blocks running in parallel of euler after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse degree

is 8904. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 7834. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 9172. 96

xvi

SYMBOLS

DS: Data Reuse Degree, Data Sharing Degree.

RD: Reuse Distance.

R: short for Reuse Distance in Figures.

MI: memory instruction

M: multiplicity of an address in a memory instruction

 : common address array between memory instructions „i‟ and „j‟.

 : address array of memory instruction „i‟.

1

I. INTRODUCTION

The last decade has seen an increase in the processing demand in the different computing

markets [1]. This has made necessary the introduction of novel computer architectures to

satisfy the exponentially increasing processing needs of the end users. As a consequence,

heterogeneous computing systems [2] have risen as commercially available solutions. These

systems rely on one or more processing accelerators that are able to perform certain tasks

within the users‟ applications faster and more efficiently. SIMT architectures are one of the

most common many-core/multi-threaded processing accelerators. SIMT stands for Single

Instruction – Multiple Threads. These processors are able to handle a relatively large amount

of execution contexts simultaneously. Within this scope, GPUs are the most popular and

widely used.

The current trend is to utilize these heterogeneous computing systems for a wider range of

scientific computing applications and other general purpose tasks. To do this, it is necessary to

understand the particularities of the processing accelerator. Thus, programmers are required to

consider key architecture details at the software design stage. In addition, a thorough

understanding of the application‟s characteristics and its interaction with the architecture is

necessary to fully exploit the processing power of the accelerators. This is particularly delicate

for SIMT processors.

The performance of an application executing on SIMT architectures, such as GPUs, is

significantly dependent on its locality characteristic, resource utilization, control flow

behavior, among other things [3]. The locality characteristic is dependent on the memory

access patterns of the application. Considering these patterns and the details of the underlying

memory sub-system is critical to boost performance. This is because the memory sub-system

is the principal performance bottleneck [3]. Applications for SIMT architectures are extremely

sensitive to memory utilization resources.

Many efforts already exist that have characterized the applications running on SIMT

architectures [4, 5, 6]. Most of these works define a set of metrics (percentage of branch

divergence, branch predictability, dynamic instructions, memory intensity, etc.), and observe

the values of the metrics produced by each workload after conducting a series of simulations

over real GPUs or simulators [7]. There have also been efforts to characterize the locality of

2

applications [8]. These works carefully explore the relationship between the execution model

of the architecture and the data sharing of the application [9]. Such works are able to leverage

the data sharing of the thread at different levels of the thread hierarchy in the SIMT

architecture, and provide guidelines based on this information to improve performance. In this

work, we use the terms data sharing between the threads and data reuse between the threads

interchangeably.

The data reuse behavior of applications deserves particular attention. As Figure 1(a) shows,

one of the benefits of taking advantage of the data reuse is the increase in memory coalescing.

When threads request data from the off-chip memory, their accesses are said to be coalesced

when many memory requests can be served in one single off-chip memory transaction. This

happens when accesses are to contiguous or identical addresses. Memory coalescing is not

possible when the memory accesses are too scattered. This makes either necessary additional

off-chip memory transactions or increases the latency of transactions if caching is present.

Thus, performance is reduced.

Another benefit is the avoidance of contention, illustrated in Figure 1(b). Contention occurs

when data is evicted between two sub-sequent requests to the same data. In Figure 1(b), an

example is presented for a CMP. First, processor P0 requests a data from memory and uses it.

Then, processor P1 requests data of its own that causes the eviction of the previous data

requested by P0. If P0 requests that data again, P0 will be stalled fetching the same data to the

off-chip memory a second time. If these series of events repeat frequently during the

application‟s execution, then it is said that contention is present. Contention harms

performance significantly, since the latency required to fetch data to off-chip memory is an

order of magnitude higher than fetching data from on-chip caches.

3

Permuted

accesses = 1

transactions

Coalesced

accesses = 1

transactions

…

…

 0 32 64 96 128 160 192 224 256 288 320 352 384

 0 32 64 96 128 160 192 224 256 288 320 352 384

a)

0 32 64 96 128 160 192 224 256 288 320 352 384

Scattered

accesses = k

transactions

P0 P1

Memory

Memory

Memory Memory

Memory

Memory

Request Sent

Off-chip access

Request Sent

Eviction Off-chip access

Request Served

P0 P1

P0 P1

P0 P1

Request Sent

Eviction

Off-chip access

P1P0

b)

P0 P1

Figure 1: Benefits obtained when taking advantage of the data reuse in SIMT

applications. (a) DRAM memory transactions with and without coalescing. The first two

cases from the top illustrate the case for coalescing. The last case shows the case when

coalescing is not possible. (b) Illustration of the contention effect in a CMP.

The impact of the data reuse over performance is significant [8, 9, 10]. For the case of SIMT

processors, there‟s a need for architecture-agnostic analyses to assess qualitatively and

quantitatively the locality characteristics of applications, in particular the data reuse behavior.

Modeling the inherent large amount of parallelism in SIMT applications and its impact on the

data reuse behavior of the applications is the main motivation behind performing such

analyses. The existing methodologies to perform locality analyses used for applications

running on CMP systems, such as the reuse distance analysis, are not appropriate for SIMT

applications. The main reason for this limitation is the difference in the execution model.

Reuse distance analyses on CMP systems consider implementation details of the architecture

in order to maintain accuracy [11]. In these analyses, locality is measured from the perspective

of the memory subsystem, keeping track of the addresses accessed. These analyses model the

effects of thread interference and amount of processor cores, which defines the total amount of

threads running simultaneously. However, the locality measurements obtained with this

methodology are heavily dependent on the configuration of the on-chip memory subsystem,

and are affected by factors such as the type of task scheduling and allocation. The

architectural agnosticism is sacrificed, but these analyses are still very valuable for memory

subsystem design, to predict cache miss rates and estimate performance

4

When applying the previously described methodologies, the locality measurements are not

solely of the application, but are of the application interacting with a memory subsystem that

has specific characteristics. This methodology becomes inappropriate for SIMT processors,

since it does not consider the particular execution model of the latter and does not consider its

inherent large parallelism. Also, the memory subsystem in SIMT processors has different

characteristics than their CMP counterparts, which imposes the need to develop better suited

analysis methodologies.

In order to quantify the locality characteristic of SIMT applications in an integral way, it is

necessary to abstract the analytical model from the implementation details and practical

limitations of SIMT processors, and perform the analysis as closer to the application itself as

possible. Analyses performed under such conditions would show the locality characteristic

particular to an application in a self-contained, abstract and truly architecture-agnostic way.

This would allow us to measure, as isolated as possible from implementation details, the

changes of the locality characteristic under different runtime scenarios and optimizaitons.

Once this has been quantified, the locality can then be measured in relation to other factors of

the SIMT execution model (scheduling, allocation, pipeline length, etc.) and the limitations of

commercial architectures.

In this work, we develop a methodology to analyze and quantify, while offering a graphical

representation, of the data reuse behavior of SIMT applications under different execution

conditions. For the characterization of the data reuse, we define a new metric: the data reuse

degree, and also, we redefine the reuse distance concept in order to employ it in our analyses.

We measure the reuse degree in the reuse distance domain of an application‟s kernel,

assessing how significant the data reuse is at different segments of the application. We also

obtain the data reuse characteristic for different kernels when modeling different abstractions

of parallelism, which gives a clear idea on the manageable locality as processing resources are

constraint.

The contributions of this work are as follows: 1) we provide a new analytical model for the

analysis, quantification and to graphically represent the data reuse behavior of SIMT

applications that is solely application dependent and architecture-agnostic, 2) provide a

methodology that captures the data reuse behavior of SIMT applications under different types

of parallelism constraints, from an ideal case where parallelism capabilities are infinite down

5

to more realistic scenarios, 3) we provide a new way to identify an application‟s access

patterns, embodied in its data reuse characteristic, 4) we show the changes on the data reuse

characteristic when coding optimizations are performed, 5) develop a flexible framework that

enables to analyze the effects of that certain implementation details of SIMT architectures

(scheduling, allocation, number of core clusters) have over the reuse characteristic.

This thesis is organized as follows. Chapter 2 gives an overview of SIMT processors. It

explains the abstractions of the programming and execution models, and describes very briefly

the architecture of a commercial SIMT processor. Chapter 3 explains current state-of-the-art

locality analyses. Their limitations are explained when trying to use them as such when

analyzing applications SIMT processors. Chapter 4 develops our new model for characterizing

the data reuse, and formally defines the data reuse degree and the reuse distance. Chapter 5

explains the methodology used to perform the analyses. Chapter 6 details the different

conditions under which the data reuse characteristic is obtained. We vary the amount of

available parallelism, and a different reuse characteristic is obtained for each case. Chapter 7

explains with luxury of detail the framework developed to perform the analysis. Mostly

programmed in C++, we show the algorithms it has and the elements that were modeled.

Chapter 8 describes the coding optimization techniques performed over the benchmarks we

use for our experiments. These optimization techniques are taken from [9], and are used in our

experiments to observe the change on the reuse characteristic after applying them. Chapter 9

shows our experimental results. In Chapter 10, the related work is presented. Chapter 11

concludes this work.

6

II. OVERVIEW OF SIMT PROCESSORS

This section presents general background on SIMT processors. We take as our main reference

current state-of-the-art GPU architectures. Thus, we provide general information on their

hardware specifications and programming abstractions.

2.1 Hardware of GPU Architectures

Figure 2(a) presents a diagram of the architecture of a core cluster or, as NVIDIA calls it, a

Streaming Multiprocessor (SM). The diagram presented is based on NVIDIA‟s Kepler

GeForce GTX 680 GPU [12]. In this figure, the elements with the subscript “Core” represent

the CUDA cores, which are the basic processing units inside a GPU. Core cluster are groups

of these small cores.

Core
DP

Unit

LD/

ST

Core

Core

Core

Core

Core

Core

Core

Core

DP

Unit

DP

Unit

LD/

ST

LD/

ST

Core

Core

Core

REGISTER FILE (65536 x 32-bit)

…

… …

Warp Scheduler Warp Scheduler

Instruction Cache

Texture Cache

64 KB Shared Memory / L1 Cache

Uniform Cache

Tex Tex

…Tex Tex

M
e

m
o

ry
 C

o
n

tro
lle

r
M

e
m

o
ry

 C
o

n
tro

lle
r

M
e

m
o

ry
 C

o
n

tr
o

lle
r

M
e

m
o

ry
 C

o
n

tro
lle

r

GigaThread Engine

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

GRID (2,3,1)

Thread (0,0) Thread (0,1) Thread (0,2)

Thread (0,1) Thread (1,1) Thread (2,1)

Block(0,2)

LD/

ST

LD/

ST

LD/

ST

LD/

ST

…

…

… …

Interconnect Network

Memory

…

L2 Unified Cache

a) b)

Interconnect Network

Figure 2: Diagram of a core cluster based on NVIDIA's Kepler GeForce GTX 680 GPU.

(a) The core cluster with its internal hardware modules. (b) Illustration of the thread

hierarchy in the SIMT programming model.

The number of cores in each cluster varies depending on the family of the GPU, but they are

usually grouped by numbers of powers of 2. In the case of the GTX 680, there are 8 core

clusters, arranged in groups of two, forming 4 separate groups. The task allocation to each

7

core cluster is handled by a thread block scheduler, which appears as the GigaThread Engine

in Figure 2. This module issues a group of threads to each cluster based on a task allocation

policy.

Each cluster has private caches that only the threads executing within it can access. Figure 2(a)

also shows an L2 unified cache. This L2 cache is shared by all the threads running in all core

clusters present in the GPU. Four memory controllers handle the access to the off-chip

memory, which perform memory scheduling and coalescing techniques.

Every GPU has a PCI Express interface which is the bus that connects the GPU device to its

CPU host. It is the CPU that launches the execution of applications in the GPU and transfers

all the data to the GPU memory. Recent generations of GPUs are able to initiate tasks created

autonomously [12]. The CPU offloads work into the GPU in order to accelerate the execution

of highly parallel portions of applications, leveraging the latter‟s processing power

In Figure 2(a), there‟s also an array of texture units, a texture cache, a configurable shared

cache and L1 cache, a uniform cache (for constant variables) and an interconnection network.

The latter provides an interface for the core clusters to move data to and fro the L2 unified

cache and the off-chip memory. It is important to stress the fact that there are no coherence or

consistency models implemented in the programming model of the GPUs [13].

2.2 Programming and execution abstractions of GPU

In GPUs, threads are the smallest unit that can be executed. These are grouped obeying a

hierarchical scheme that facilitates the task allocation from core clusters down to each

individual core. Tasks issued to a GPU for execution are represented as a conglomerate of

threads grouped into grids consisting on thread blocks, which are further divided into smaller

groups of threads called warps [13]. This outlines the thread hierarchy inherent to the runtime

model of the GPU. Figure 2(b) presents the thread hierarchy as previously described.

Each warp inside a block can have up to 32 threads in current state-of-the-art NVIDIA GPUs.

The number 32 is chosen because it facilitates the management of the memory accesses by the

memory subsystem [13]. Each warp of 32 threads executes in lockstep, which means that they

execute the same instruction over different portion of data. The instructions they execute are

the ones conforming the kernel code. Each thread executes the kernel code, but each thread

8

works over totally or partially mutually exclusive subsets of the data. Because of this fact, it is

said that GPUs apply an SIMT execution model.

The threads can be arranged in multidimensional arrays, and so they are grouped into warps,

which conform the blocks, as mentioned before. Each warp has a warp ID. Inside these warps,

each thread also possesses a unique ID, which becomes useful to associate it to the data

portion that it uses.

2.3 Memory Hierarchy of GPUs

The GPUs memory hierarchy is very particular, and it is somewhat suited to fit the needs of

the programming model just described in the previous section. The memory hierarchy of the

GPUs has 6 different memory spaces: register, local, shared, global, constant and texture.

The different spaces serve different purposes. The constant memory space is read-only

memory used to store constants, parameters and data types declared as un-modifiable by the

CUDA programming model. The texture cache is used to store texture and surface [13] data in

a non-inclusive way: texture data is EXCLUSIVELY stored in the texture cache. The registers

are assigned to each thread so these can store operands and perform calculations. The local

memory space is a portion of the memory assigned to each individual thread, to which it can

write or read information as the computation progresses. Also, it can use this space to spill

registers when exceeding the register quote. The lifetime of this memory space lasts as long as

the thread is active. The shared memory space can be accessed by all threads within a block

and it is managed explicitly by the programmer. This space expires from the memory as soon

as the block finishes execution in the SM. The global, constant and texture memory spaces

remain in place even after the kernel has finished execution, or other kernels are launched into

the GPU.

Understanding the details of the memory hierarchy of these processors is fundamental to

comprehend the complexity of the locality characteristics. However, as it will be explained,

the locality behavior of applications depends on multiple factors, starting from the resource

and parallelism availability. This is the central point of the analytical models proposed in this

work.

9

III. LOCALITY ANALYSES IN CMP AND UNIPROCESSOR SYSTEMS

SIMT architectures can execute a large amount of threads concurrently when compared to

more conventional processor systems (CMPs, uniprocessors), and memory accesses are also

managed in a different way. The threads in SIMT processors are highly symmetrical

performing the same, or nearly the same, operations over different portions of data. The

locality behavior in SIMT processors is closely related to how threads are grouped, allocated

and identified at runtime [8]. The relationship between the threads and the data used by them

is intrinsic to the programming model of these systems, and it is the most significant

consideration at the software design stage. Additionally, there are different on-chip memory

spaces in SIMT architectures that are used consciously by the programmer to store specific

data types and data structures. This allows for a better administration of the memory resources

depending on the particular requirements of an application.

In more conventional processor systems, the case is dramatically different. In these processors,

the threads that enter execution do not necessarily present such similarities in the instructions

they execute and their corresponding data sets. The amount of threads that can execute

simultaneously is much smaller when compared to SIMT processors. The main reason for this

is the significant difference in the amount of resources available for computation in both

architectures, which are significantly higher in SIMT processors. Moreover, due to the

asymmetry frequently common in threads running on conventional processor systems, control

flow behavior becomes more complex. This limits the amount of parallelism available that can

be leveraged to boost performance.

These conventional processors do not offer to programmers the same flexibility to manage

on-chip memory resources that SIMT processors do. This is so because in the former, there is

a fairly uniform and general purpose memory space, with relatively large capacity. In this case,

memory allocation, replacement and fetching are managed by the memory hardware. This is

in stark contrast with SIMT processors, where the memory spaces are more diverse, tailored

for specific uses. Programmers can instruct the hardware which data to cache or not, or to

allocate it in specific memory spaces depending on the characteristics of the data. Thus, the

configuration of the memory subsystem and its utilization is significantly more complex in

SIMT processors.

10

When data is specifically allocated by the programmer, it is done depending on the specifics

of the applications access patterns, and the capabilities of the specific architecture. When

accesses are too scattered, for example, caching harms performance [8], since a lot of data

loaded to the on-chip cache is not used. Therefore, programmers need this flexibility to tune

their applications to the capabilities of a specific SIMT processor.

All the factors previously described make the locality behavior of applications more complex

for the case of SIMT architecture. The differences in the amount of parallelism and the

characteristics of the memory subsystem impose the need to develop analytical models and

methodologies of analyses to properly quantify and visualize the locality behavior of these

applications.

We seek to capture the data reuse characteristic of applications. To do this, we need to have a

notion of “time” in order to properly track the memory instructions in the instruction stream. It

is for this reason that we adopt the reuse distance concept already used to analyze locality in

more conventional processors. The existing methods to perform the reuse distance analysis are

not appropriate to capture the multidimensionality of the data utilization behavior of

applications running in SIMT processors.

The analysis methodologies developed for conventional processors apply the concept of stack

distance. This concept is illustrated in Figure 3(a). Here, the data reuse distance „RD‟ is the

number of distinct memory references between two successive references to the same data

item [14].

i

A

i+1

B

i+2

C

i+3

D

i+4

D

i+5

C

i+6

B

RD = 1

RD = 2

i

A

A

B

B

i+1

C

C

D

D

i+2

E

E

B

C

i+3

A

F

A

-

i+4

F

F

B

F

i+5

A

E

E

E

i+6

B

B

B

B

RD = ?

RD = ?
(a)

(b)

Figure 3: Reuse distance concept and memory instruction reuse behavior in SIMT

programs. (a) Sample measurement of reuse distance in traditional multiprocessors. (b)

Reuse distance behavior in SIMT architectures.

11

In Figure 3(a), the term „i+k‟, k=1,2,3…n represents different memory instructions and the

letters below represent addresses of the memory elements accessed. According to the

traditional definition of reuse distance, in this example the reuse distance for address „B’ is RD

= 2 since there are four references to two different addresses between the two consecutive

accesses to „B’. Consequently, the reuse distance of address „C‟ is RD = 1. This definition of

reuse distance is unable to represent the locality characteristics of SIMT applications because

it assumes a one-to-one correspondence between memory instruction and datum referenced.

This method does not reflect the more complex behavior in SIMT architectures, as illustrated

in Figure 2(b). In this instance, memory instruction „i‟ accesses multiple addresses

simultaneously, referencing „B’ two times, and memory instructions „i+2‟ and „i+6‟ reference

address „B’ once and four times, respectively. Address „B’ is reused with varying multiplicity

in different memory instructions, at different distances apart. Consequently, memory accesses

in SIMT architectures have a one-to-many correspondence between memory instructions and

data referenced by one memory instruction that can access different data multiple times. This

specific memory behavior imposes the need to re-define the concept of data reuse distance for

the SIMT case in order to establish a relationship between different memory accesses.

12

IV. DATA REUSE CHARACTERIZATION

In order to properly analyze locality on SIMT processors, we have to consider the particulars

of the SIMT execution model. In SIMT processors, the applications/kernels enter execution in

the form of a grid of thread blocks. These are a conglomerate of blocks or, in NVIDIA‟s

terminology, Cooperative Thread Arrays (CTAs) [13]. Each block has a determined amount of

threads. The limit in the amount of threads depends on the specific processor architecture.

Each block is scheduled for execution to a cluster of cores (SMs, or SMXs). The blocks are

further broken down into smaller groups of threads called warps. There‟s also a warp

scheduling mechanism in the each core cluster that issues instructions into the execution

pipeline on a per warp basis. The number of threads in each warp is a fixed size for a specific

processor. Each thread inside the warps accesses data and executes instructions independently.

However, current SIMT processors are limited in the amount of parallelism that they can

exploit from a given application because of the limits in the amount of processing resources,

flow control capabilities and memory subsystem limitations. Thus, only a given number of

threads can issue instructions simultaneously.

In order to capture the data reuse characteristic of threads, it is first necessary to examine the

relationship between the memory instructions in the threads and the addresses accessed.

Second, it is necessary to establish a relationship between different memory instructions that

appear in the reference stream as execution progresses. For the former, we define a new metric

called “data reuse degree” which quantifies the amount of addresses reused from one memory

instruction to the next. For the latter, we employ a re-definition of the reuse distance concept

tailored to capture the reuse behavior as execution progresses.

4.1 Definition of the Data Reuse Degree

To explain the concept of data reuse degree, we explore in more detail the properties of

memory accesses in SIMT architectures. As mentioned previously, there‟s a one-to-many

correspondence between the memory instructions (MIs) and the addresses they reference. This

means that every memory access has an array of addresses associated to it. Figure 4

illustrates a group of MIs „i+k‟, k,i=1,2…n that access a series of addresses. Every MI

13

therefore can be represented by two entities: a position within the reference stream, given by

the index „i+k‟, k,i=1,2…n and an array of addresses .

Xo

 …

A

A

B

C

 …

X10

X15

X20

X1

 …

D

E

F

G

 …

X11

X16

X21

X2

…

N

A

A

H

…

X12

X17

X22

X3

…

I

J

P

L

…

X13

X18

X23

X4

 …

M

N

H

H

 …

X14

X19

X24

Reuse

Degree

(RD)

MI. i i+1 i+2 i+3 i+4

Address

Arrays

- 0 2 0 2+1 = 3

Figure 4: A sample stream of memory instructions. The instruction array appears in the

left column, the address array is presented in the middle column and the Reuse Degree

for memory instructions ‘i’ ‘i+2’ and ‘i+2’ ‘i+4’ appears in the right column.

As shown in Figure 4, the addresses in the array may be repeated. This is possible because in

SIMT processors more than one thread can request data from the same address, which enables

for the same memory request to be serviced by a single memory instruction. As a result, the

addresses within an array may appear a certain number of times. When an address „A‟ appears

repeated a number of times „M‟, we say that address „A‟ has a multiplicity of „M‟ in memory

instruction „i‟. It can be defined formally as follows:

Definition 1. The multiplicity (A) of address ‘A’ in an MI ‘i’ is the number of times that

address ‘A’ appears in the address array of MI ‘i’.

Once the concept of multiplicity has been defined, it is possible then to define the data reuse

degree.

Definition 2. The data reuse degree (DS) between two MIs ‘i’ and ‘j’, where j>i, in an

instruction stream is the sum of the multiplicities ((t)) in MI ‘j’ for the array of

addresses common to ‘i’ and ‘j’, given by:

14

 ∑

where , S is the size of the reference stream, | |, = {X0, X1,

X2, … , XT} and Xk are memory addresses.

It is clear from Eq.1 that in order to determine it is first necessary to determine the

common address array , which holds the subset of addresses common to MI „j‟ common

to „i‟.

It is necessary to explain the previous definitions and metrics with concrete cases. In the

example presented in Figure 4, it is possible to determine the reuse degree DS for some of the

memory instructions in the sample instruction stream. In MI „i‟, address „A‟ appears twice,

and it is used again in MI „i+2‟. In the latter, (A) = 2. Since „A‟ is the only address in the

common address array, then = {A} and . When analyzing the DS between

„i+2‟ and „i+4‟, we can see that the common address array is ={H, N}. The multiplicities

for addresses „H‟ and „N‟ in MI „i+4‟ are (H)=2 and (N)=1, respectively. Thus, the

reuse degree ∑

 (H)+ (N) = 2+1 =3. The result

appears in the „Reuse Degree‟ column in Figure 4. Notice that the DS between MIs „i‟ to „i+1‟,

„i+3‟ and „i+4‟ is zero (not undetermined). This is so because there are no common addresses

between „i‟ and the other MIs different to „i+2‟. Similar conclusions can be drawn from the

rest of MIs.

Once the reuse degree and associated metrics have been defined, it is then necessary to

establish a formal relationship between the MIs in the instruction stream in order to obtain the

data reuse characteristic.

4.1 Definition of the Reuse Distance

Proposing a definition of the reuse distance concept for SIMT machines becomes necessary in

order to model the reuse characteristic of applications. We first examine the concepts behind

the reuse distance as it is applied in more conventional processors, and subsequently formulate

a definition for SIMT processors.

15

4.1.1 Traditional reuse distance analyses

When applying the reuse distance analysis for applications in uniprocessor and CMP systems,

the concept of reuse distance is equivalent to the concept of stack distance using LRU (Least

Recently Used) replacement policy as defined by Mattson [15]. In uniprocessor systems, only

one data structure (stack, splay tree, among others) is used [16] to store the addresses that the

program accesses during execution. Figure 5 illustrates the details of this methodology.

In Figure 5(a), we can see a sample reference stream in a uniprocessor system. As previously

mentioned, there is a one-to-one correspondence between the MI and the addresses referenced.

Figure 5(b) shows a data structure, a stack in this case, changing state as data is requested.

Whenever a memory access is issued by the processor, the stack is traversed to assess whether

if the current address being accessed has been previously accessed. If so, as in MI „i+2‟ the

RD for this address will be recorded as the number of different addresses i.e. number of

entries, between the address being accessed and its previous entry. The previous entry is

erased and the new entry is placed at the top of the stack, with an associated distance value. In

case no previous entry for that address is found, the RD is recorded as infinity, as in MI „i‟.

Dist. = 1

i i+1 i+2 i+3 i+4 i+5

A B A A C B

Dist. = 2

Addr. Dist.
 A ∞

Addr. Dist.
 B ∞
 A ∞

Addr. Dist.
 A 1
 B ∞

Addr. Dist.
 C ∞
 A 1
 B ∞

Addr. Dist.
 B 2
 C ∞
 A 1
 B ∞

a)

Addr. Dist.
 A 1
 B ∞
 A ∞

b)

Figure 5: Reuse distance analysis as applied in uniprocessor systems. (a) Sample

memory trace. (b) Changes of the state of the stack as memory instructions are issued.

Additional considerations become necessary when applying the reuse distance analysis for

CMP systems. Figure 6(a) presents a sample instruction stream for a CMP with separate

memory subsystems. There are two processors, P0 and P1, that can request data

simultaneously to their respective memories. We alternate the accesses by P0 and P1 for

16

simplicity, but it is not a necessary condition for this case. The one-to-one correspondence

between the MI and addresses referenced is maintained from the stack‟s perspective.

Additional details of the CMP system implementation are taken into consideration in order to

model locality accurately [11]. Factors such as the presence of private memory subsystems

and the details of the coherence mechanism become a part of analytical model for the reuse

distance in CMPs.

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8

P1 A D A F D

Dist. = 1

Ad. Dis.
 - -

Ad. Dis.
 C ∞

a)

Ad. Dis.
 C ∞

b)

P0 C D F C

Ad. Dis.
 A ∞

P0

P1

Dist. = 2

Ad. Dis.
 D ∞
 C ∞

Ad. Dis.
 D ∞
 C ∞

Ad. Dis.
 F ∞
 D ∞
 C ∞

Ad. Dis.
 F ∞
 D ∞
 C ∞

Ad. Dis.
 C 2
 F ∞
 D ∞
 C ∞

Ad. Dis.
 C 2
 F ∞
 D ∞

Ad. Dis.
 A ∞

Ad. Dis.
 D ∞
 A ∞

Ad. Dis.
 D ∞
 A ∞

Ad. Dis.
 A 1
 D ∞
 A ∞

Ad. Dis.
 A 1
 D ∞

Ad. Dis.
 F ∞
 A 1

Ad. Dis.
 F ∞
 A 1

Ad. Dis.
 D ∞
 F ∞
 A 1

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8

Figure 6: Reuse distance analysis in CMP systems with private memory subsystem. (a)

Sample reference stream. (b) Stacks for the private memory subsystem.

In Figure 6(b), we show the corresponding stacks for each memory subsystem in a system

with two private memories, assuming that all references are store operations for illustrative

purposes. In MI „i‟, processor P1 accesses address „A‟. This address is stored as the first entry

in the stack of P1. In MI „i+3‟, processor P0 references address „D‟. This causes the

invalidation of address „D‟ in the stack of P1, as illustrated by the gray cross at one side of the

entry for „D‟ in „i+3‟. Despite being invalidated, it is maintained until it propagates to the

bottom of the stack, as shown in MIs „i+3‟, „i+4‟ and „i+5‟. The entry is kept so not to alter

the RD values that result from referencing another memory element that was referenced prior

17

to the invalidation of „D‟, as it occurs with P1 when referencing address „A‟ in MI „i+4‟,

resulting in RD = 1. However, when the same processor references a previously invalidated

element under such circumstances in the stack, it is treated as if it was the first reference to

that element. This occurs in MI „i+8‟ for address „D‟, for which RD = . Similar events

occur for address „F‟ in MI „i+6‟, and for address „C‟ in MI „i+7‟.

The invalidations due to references only occur for store memory operations. In the case where

the instructions are loads, then the memory elements are allowed to have entries in more than

one stack simultaneously. The invalidation mechanism implemented in the stacks model the

implementation of the coherence mechanism, which is a major design factor in CMPs. The

way stacks handle this situation is dependent on coherent mechanism itself, for which there

can be many variations.

b)

Ad. Dis.
 A ∞

Ad. Dis.
 C ∞
 A ∞

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8

P1

Dist. = 2

a)

P0

Dist. = 3

A D A F D

 C D F C

Ad. Dis.
 D ∞
 C ∞
 A ∞

Ad. Dis.
 D ∞
 C ∞
 A ∞

Ad. Dis.
 A 2
 D ∞
 C ∞
 A ∞

Ad. Dis.
 F ∞
 A 2
 D ∞
 C ∞

Ad. Dis.
 F ∞
 A 2
 D ∞
 C ∞

Ad. Dis.
 C 3
 F ∞
 A 1
 D ∞
 C ∞

Dist. = 3

Ad. Dis.
 D 3
 C 3
 F ∞
 A 1
 D ∞

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8

Figure 7: Reuse distance analysis in CMPs with shared memory subsystem. (a) Sample

reference stream. (b) Stacks for each memory subsystem.

In Figure 7(a), the same reference stream as in Figure 6(a) is reproduced, assuming also that

all reference are store memory instructions. The difference is that, in this instance, processors

P0 and P1 utilize the same memory subsystem. There is only one stack, and the constraints for

it to change state are relaxed. No inter-thread/inter-processor interference occurs as in the

previous case. This simplifies the implementation for the distance stacks. In this case, in MI

„i+3‟, P1 references „D‟, and no invalidation occurs despite „D‟ also being accessed

18

(assuming store operations) by P0 in „i+2‟. Also, the distances change for addresses „A‟, „C‟

and „D‟ change. The two main reasons behind this change in behavior are: 1) all addresses

referenced occupy one entry in a unified stack, and 2) the absence of stack invalidations. In

Figure 6(b), the stacks of each processor will be smaller because these only hold the addresses

referenced by the given processor. In Figure 7(b), all addresses have an entry in the same

stack, creating a condition where distances vary. On the other hand, for address „D‟, we have

that RD = 3. This is due to the absence of invalidations, since the previous accesses of any

address will be tracked along the whole reference stream, regardless of a different processor

accessing it.

4.1.2 Reuse Distance for SIMT Processors

The reuse distance analysis as applied for CMPs cannot be directly applied to SIMT

processors. First, the analysis for the former is tightly coupled with the details of the

implementation of the memory subsystem and the associated coherence mechanism in a

particular CMP. This makes necessary a more intricate mechanism for the management of the

entries in the distance stacks. Coherence mechanisms are non-existent in commercial SIMT

architectures. Second, as mentioned before, there is not a one-to-one correspondence between

the MIs and the addresses referenced. It is not adequate to assign a one dimensional distance

value on a per address basis, since this does not model the multi-dimensional locality

characteristic that becomes visible when each MI can access multiple addresses. Third, since

the stack is traversed for each address accessed in on MI, the number of traverse operations

per each MI could be very high, depending on how many threads can execute simultaneously

in the architecture. Given that in each MI, the multiplicity for the addresses could vary, and

traversing the stack for each address, regardless whether they have multiplicity or not, makes

the traditional methodology inefficient for the purpose of characterizing the data reuse

behavior. In view of all these limitations, a reuse distance model for SIMT processors is

proposed.

Figure 8(a) presents a sample reference stream for a SIMT processor, analogous to the ones in

Figures 6(a) and 7(a). In this example, we assume there are „N‟ processors. It is important to

note that current state-of-the-art SIMT processors have significantly more cores than general

19

purpose CMPs. Figure 8(a) shows that each individual core can only request one data

simultaneously. But the one-to-many correspondence between the MIs and the addresses

accessed is possible because SIMT architectures can serve more than one memory access from

more than one thread simultaneously. The actual number of simultaneous accesses that can be

served depends on the number of load/store units in a core cluster, the number of core clusters

present in the whole system, the width of memory bus interface, among other architectural

factors.

b)

C D A - G

i i+1 i+2 i+3 i+4

P1

P0

A C E - L

A C E F K

A - A - G P2

P3

…

…

…

…

…

…

PN-2

PN-1

PN

E A G - G

F A I - G

G H J F -

DRi->i+k

DRi+2+->i+2+k

- 4 5 2 4

- - 0 4

a)

Figure 8: Data reuse degree in a sample reference stream of a SIMT processor with ‘N’

processing cores. (a) Sample reference stream of a SIMT processor. (b) Data Reuse

Degree for memory instructions ‘i’ ’i+k’ and ‘i+2’ ’i+2+k’.

Figure 8(b) shows the data reuse degree with respect to different distances apart, calculated as

explained in Section 3.1. There‟s a different value of DS for each MI with respect to a

previous one. The values vary depending on the multiplicity of the common addresses

between the two memory instructions. If each memory instruction in the reference stream has

a different reuse degree with every other MI, then it is safe to say that between two MIs at a

given distance from each other in the stream there is a specific degree of data reuse. Therefore,

we define the reuse distance as follows:

20

Definition 3. The reuse distance (RD) between two memory instructions ‘i’ and ‘j’, where i ,

in the reference stream is defined as the number of memory instructions in between the ‘i’ and

‘j’ plus one: RD = i – j.

At first glance, this might seem as a very simplistic definition for the reuse distance, especially

when compared to the original definition. But it is adequate to understand the way an SIMT

application reuses data at different stages of execution. The position within the reference

stream of the MIs represent the relative time in which they are executed. The data reuse

degree varies between two memory instructions, and coupling this with the reuse distance

concept previously defined, it is possible to quantify and graphically represent the magnitude

of the data reuse between memory instructions at different distances apart. Then it becomes

feasible to model the data reuse characteristic of SIMT applications with a temporal

dimension (RD) with associated magnitude of data reuse.

As seen in Figure 8(b), there can be cases where two MIs with RD = k have no addresses in

common, as with „i+2‟ and „i+3‟. Therefore, the data reuse degree between the two of them is

zero. Then, for distance RD = (i+3)-(i+2) = 1, DS = 0. For simple streams, this can be

calculated feasibly, but it is important to also consider the rest of the MIs in the streams in

order to properly build a reuse distance histogram in which the value of each entry represents

its total amount of DS for that specific distance. The data reuse characteristic is precisely this

reuse distance histogram with the corresponding date reuse magnitudes.

21

V. ANALYSIS METHODOLOGY FOR DATA REUSE CHARACTERIZATION

In Section 3, the data reuse degree was defined and associated with a more appropriate

definition of reuse distance for SIMT processors given in Section 4. This combination would

allow us to obtain a data reuse characteristic for SIMT applications as each thread executes its

correspondent instructions. But in order to build the complete data reuse characteristic it is

necessary to develop a step by step description of the methodology, and obtain a physical

meaning behind it.

In more conventional processors, the date utilization behavior is uni-dimensional (one address,

one memory instruction) in principle. As explained in the previous section, a data structure per

memory subsystem (either private or shared) holds an entry for each address accessed. As we

have explained before, every time a new memory access is sent to memory, the data structure

is traversed in order to assess whether a previous access to the address has been previously

issued. Such methodology of analysis is also inappropriate for SIMT processors for the

following reasons.

First, since many addresses are requested simultaneously, how to decide which of the

addresses occupies which position within the stack? Figure 9(b) illustrates this issue when the

MIs „i‟ and „i+1‟ are executed, shown in Figure 9(a). The Option 1 in Figure 9(b) shows a

possible way in which the addresses are ordered in a stack when MI „i‟ executes. With this

ordering, we can see the values of the RD for addresses „A‟ and „C‟ when MI „i+1‟ executes,

which are both equal to 1. On the other hand, if the order in which the addresses accessed by

MI „i‟ is altered when populating the stack, as shown in Option 2 of Figure 9(b), the values of

the RD for addresses „A‟ and „C‟ change from 1 to 4. The issue is visible because of the

complexity in the locality behavior due to the parallelism exploited by SIMT architectures that

this methodology is not able to model appropriately. Notice also the stack growth from one

MI to the next as compared to the cases in Figures 5, 6 and 7.

The second reason is that the growth of reuse stacks is expected to be much faster in SIMT

machines. This is due to the large amount of parallelism present in the architecture. There

might be the case that threads have largely independent data sets. Then, traversing a

potentially large stack for thousands of different addresses referenced in one single MI is too

computationally intensive. The third reason lies in the fact that the locality characteristic

22

captured by the traditional methodology assumes a sequencing of the memory addresses

accessed imposed by the execution and programming model of the conventional processors.

This assumption, which is inherent to the methodology used to analyze applications in those

architectures, is only valid when the data utilization behavior is essentially uni-dimensional.

P1

P0

P2

P3

…

…

PN-2

PN-1

PN

A

A

A

C

E

F

G

i

Ad. Dis.
 A ∞
 C ∞
 E ∞
 F ∞
 G ∞

Ad. Dis.
 D ∞
 H ∞
 A 1
 C 1
 A ∞
 C ∞
 E ∞
 F ∞
 G ∞

…

C

C

D

A

A

H

-
Ad. Dis.
 E ∞
 F ∞
 G ∞
 A ∞
 C ∞

Ad. Dis.
 H ∞
 D ∞
 A 4
 C 4
 E ∞
 F ∞
 G ∞
 A ∞
 C ∞

i+1

i i+1

Option 1

i i+1

Option 2

a) b)

Figure 9: Limitations when performing the baseline methodology for reuse distance

analysis on SIMT processors. (a) Subset of the reference stream as it appears in Figure 7.

(b) Possible ways to arrange the accessed addresses on the stacks.

Keeping track of each individual address in SIMT applications is a challenging task, to say the

least. In addition, the optimization procedure for the kernels these architectures execute is not

based on individual addresses, but thinking on the simultaneous multithreading capabilities of

the architecture [8, 9]. Code tuning optimizations are therefore implemented from a broader

scope, by carefully analyzing the memory access patterns of the applications.

Consequently, we provide a better suited methodology to obtain the data reuse characteristic

of SIMT applications based on the data reuse degree and the previously defined reuse distance.

The detailed methodology is visible in the flow chart in Figure 10 and synthesized in

Algorithm 1. We describe it as follows:

1. Select a memory instruction „i‟ for analysis.

2. Scan through the addresses accessed by MI „i‟ and build the address array „Xi‟. Store this

information in a data structure. In such data structure, each entry is keyed with the address,

and the value „v‟ of the entry is (Xi), i.e. the multiplicity „M‟ for the addresses in

the address array „Xi‟ of MI „i‟.

23

Start

Select the next MI 'i' in

the reference stream

Read next address in MI

'i' and store it in 'addr'

Addresses left

in MI 'i'?

Select the next MI 'j' in

the reference stream

Add 'addr2' to address array

'Xj', increase Mj(addr2).

Read next address in MI

'j' and store it in 'addr2'

Select common address

between 'i' and 'j'

Calculate DS with

common addresses

Accum. DS in the

histogram for RD=j-i

Addresses left

in MI 'j'?

End of

reference

stream?

End of

reference

stream?

End of

reference

stream?

END

Add 'addr' to address array

'Xi', increase Mi(addr).

Construct address array

‘Xj'.

Figure 10: Flow chart of the data reuse characterization methodology. This flow chart

shows all the steps when performing the analysis over a reference stream.

3. Select the subsequent MIs „j‟, where . We can define j = i+k, where ,

imposing the condition , where „S‟ is the number of MIs in the reference

stream of the application.

4. Create a different data structure for MI „j‟ similar to the one created for MI „i‟, and create

address array „Xj‟. As with step 2, the keys are the addresses in the address array of „j‟ and

the value of each entry is the corresponding multiplicity of the addresses in the array.

5. Search for the common addresses in both data structures, and determine the total data

reuse degree (DS) between MI „i‟ and „j‟.

6. Once the DS has been calculated, the result is accumulated in the reuse distance histogram

in the entry corresponding to RD = i - j.

24

7. Steps 2~6 are repeated for all subsequent MIs that appear later than „j‟ in the reference

stream. All the data reuse degrees for all subsequent cases will be accumulated in the

corresponding entry of the reuse distance histogram

8. Steps 1~7 are repeated for all subsequent MIs that appear later than „i‟ in the reference

stream. The data reuse degrees are stored in the corresponding reuse distance histogram

entries. Thus, the data reuse characteristic is generated.

Algorithm 1. DR_Analysis()

// RF is the reference stream

1. S = RF.size;

2. for i=0 to S-1; // Step1

3. addressStruct(mI,RF(i)); // Step 2

4. for j = i + 1 to S-1 // Step 3

5. addressStruct(mJ, RF(j)); // Step 4

6. for a = 0 to mJ.size // Step 5

7. if (mI.find(mJ(a)))

8. mIJ.put(mJ(a));

9. DR = DR + mIJ(a).v;

10. RD = i - j; // Step 6a

11. hist(RD) = hist(RD) + DR; // Step 6b

12.

13. Function addressStruct(m, MI) // scans addresses,

14. for k=0 to MI.simAccesses;

15. is = m.find(MI(k).address);

16. if (is)

17. m[MI(k).address]++; // calculates multiplicity

18. else

19. m.insert(MI(k).address);

20. m[MI(k).address] = 1;

This model in particular uses reduction operations that concentrate all the reuse degree values

from the reference stream in the respective histogram‟s entries. This gives insight on how

frequently does the application reuses data and at which frequency does the application reuses

data the most. Not only that, it also gives insight what are the total varying degrees of reuse at

these different frequencies.

25

One particular property of our methodology is that, unlike the case for CMP systems, it is not

dependent on the details of the SIMT architecture‟s memory subsystem, or on any other

implementation details. The data structures are built based on the MIs of the reference stream,

and the histogram is accumulative. The MIs are analyzed in the order in which they are

expected to be issued from the application‟s perspective. In a real architecture, the ordering of

the MIs and the addresses they access are heavily dependent on the practical limitations of the

architecture itself: the number of simultaneous transactions carried out by the memory

subsystem, whether there are bank-conflicts, the bandwidth utilization, etc. Thus, there is no

explicit trade-off between accuracy and generality embedded in our methodology, since it is

mostly determined by the code structure of the kernel.

As mentioned, the methodology allows analyzing the reference stream independently of any

particular architecture. This enables to model locality under different conditions that would

yield a data reuse degree characteristic abstracted from the limitations of current architectures.

For example, given that we have a proper instrumentation tool, we would be able to obtain the

reuse distance histogram assuming no limitations in the architecture‟s resources: infinite SMs,

infinite load/store units, infinite thread capacity allocation, number of registers and issuing

capabilities, bandwidth limitations, etc. In this way, we model the application‟s locality under

a very controlled environment, solely dependent on the application‟s structure and the SIMT

programming model, a feature particularly useful given the fast pace at which SIMT

architecture are currently evolving.

26

VI. SCENARIOS FOR DATA REUSE CHARACTERIZATION

So far, we have detailed the methodology of the analysis in Section 5 using the metrics

defined in Sections 4 and 5. The objective is to generate a data reuse characteristic of the

application. In this section, we describe the different scenarios in which the data reuse

characteristic is obtained, and certain particular properties of SIMT processors that are

considered in the analysis. In this work, we focus specifically on GPU architectures, since are

the most widely used, although our methodology can be applied to other types of SIMT

processors.

In order to perform the analysis, we developed an experimental framework which we called

Locality Analyzer for SIMT applications, programmed in C++. The details of our framework

are explained in Section VII. The framework allows the modification of certain parameters

and to choose the desired scenario. The six scenarios of the analysis implemented so far are:

Scenario 1. Analysis with infinite resources, thread blocks serialized: All threads are modeled

as executing in parallel, while blocks are modeled as executing one at a time.

Scenario 2. Analysis with infinite parallel resources, within block analysis: All threads in the

block are modeled as executing in parallel. The execution model of thread blocks is irrelevant

for this scenario.

Scenario 3. Analysis with infinite resources, all blocks are modeled executing in parallel: all

threads are modeled as executing in parallel, no resource limitations of any kind.

Scenario 4. Analysis with infinite resources, „K‟ blocks are modeled as executing in parallel:

all threads in a block are modeled as executing in parallel, models limitations on the blocks

that can execute concurrently. The „K‟ concurrent blocks are chosen according to a scheduling

policy.

Scenario 5. Analysis with limited resources, „K‟ blocks in parallel: core clusters are modeled,

and blocks are assigned to them according to a specific scheduling policy. The analysis

focuses on the local reference streams of each core cluster.

Scenario 6. Analysis with limited resources, „K‟ blocks in parallel: core clusters are modeled,

and blocks are assigned to them using a scheduling policy. The analysis focuses on the

resulting reference stream of the core cluster collective.

27

6.1 Infinite resources, thread blocks are modeled as executing sequentially

BLOCK 0

BLOCK N-1

…

…

a) b)

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

Block Scheduler ∞

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

Block Scheduler ∞

BLOCK 0 BLOCK N-1

Figure 11: Data reuse characterization. (a) Scenario 1. (b) Scenario 2. In these two

scenarios, the SM is assumed ideal, as represented by the infinite signs in the figures

above.

In Scenario 1, the analysis of the trace is performed assuming that in fact the blocks are

modeled as executing sequentially. These result in a reference stream in which instructions are

repeated with nearly uniform frequency. However, branch divergence and other runtime

dynamics will modify the reference streams of different blocks. This type of analysis does not

comply with the execution behavior presented by current SIMT processors. In a real

architecture, many blocks can execute in parallel in different core clusters. However, by

performing the analysis assuming block sequencing, we will be able to observe some

important characteristic of the cross-block data reuse behavior, if any. Figure 11(a) illustrates

this case.

6.2 Infinite resources, analysis within each thread block

Scenario 2 executes under identical conditions than the initial scenario, except for the fact that

the analysis is performed within the thread block. That is, the data reuse characterization is

performed only within the reference stream of the block occupying the ideal core cluster. A

core cluster with such characteristics allows all threads to execute simultaneously. Within the

reference stream context, this means that all memory requests by the threads are served

28

concurrently, with no latency or scheduling that can affect the ordering of the memory

instructions. The analyses in scenarios 1 and 2 are performed assuming this particular ideal

core cluster. Figure 10(b) illustrates this case.

6.3 Infinite resources, all thread are modeled as executing in parallel

As with the case with the first two scenarios, scenario 3 of the data reuse characterization is

also performed assuming an ideal core cluster. In this case, however, the highest theoretical

amount of parallelism becomes available by allowing all blocks to execute simultaneously. In

order to model this behavior properly, the reference streams of each block are merged into one

single reference stream. The resulting reference stream is called the “Aggregate Block”, a

concept which we will defined briefly in a formal way. In this case, the maximum number of

threads that are able to issue memory requests is equal to the number of MIs executing

memory instructions in a specific position of the reference stream. Figure 12 illustrates this

scenario.

AGGREGATE BLOCK 0…

a) b)

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

BLOCK 0 BLOCK 1 BLOCK N-1

Block Scheduler ∞ Block Scheduler ∞

Figure 12: Scenario 3 of data reuse characterization assuming ideal core clusters. (a)

Illustrates the way blocks are intended to be executed. (b) Illustrates the Aggregate

Block that results from merging the streams of all CTAs.

The analysis as performed by Scenario 3 offers significant insight on the applications data

reuse behavior. The model illustrated in Figure 12 maintains the constraints of the execution

model inherent to SIMT processors, without all the practical parallelism and memory

subsystem limitations of a specific architecture. Performing the analysis under such conditions

will provide a very particular data reuse characteristic of the application given its code

29

structure and input. Scenario 3 allows us to obtain a reference data reuse characteristic that

will be used to compare how different coding optimization techniques impact the data reuse

characteristic, and how close they get to reproducing the ideal characterization. For example, a

code can have a relative small number of blocks that can be allocated to one core cluster. If

there are enough core clusters, and each cluster has enough resources, the ideal data reuse

characteristic will be reproduced. Having a reference data reuse characteristic will enable to

quantify how optimization procedures alter the reuse behavior.

6.4 Infinite resources, a number ‘K’ of thread blocks modeled as executing in parallel

Scenario 4 is the first one that models limitations on the amount of blocks that can execute

concurrently. It has the particularity that it allows to include different block scheduling

policies.

…

…

C D L

C

C

C

C

C D L …
NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

BLOCK 0

BLOCK K

…
Block Scheduler ∞

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

BLOCK K-1

BLOCK 2K-1

…

2
nd

 Level Scheduler ∞

Figure 13: Scenario 4 of the reuse degree characterization. Only 'K' blocks are modeled

as executing concurrently. This is equivalent as having 'K' ideal core clusters, each one

executing one block at the time.

Figure 13 illustrates this situation. There are „K‟ ideal core clusters available, each one

running one single block. The scheduling policy implemented in any particular case can select

the following block to execute in each SM, resulting in varying reference streams per core

cluster.

30

AGGREGATE BLOCK N/K-1

AGGREGATE BLOCK 0

a) b)

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

C D L

C

C

C

C

C D L …

2
nd

 Level Scheduler ∞

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

BLOCK 0 BLOCK K-1…

BLOCK N-1-K BLOCK N-1… …

Block Scheduler ∞

… …

Block Scheduler ∞

Figure 14: (a) An ideal core cluster executing the reference streams of 'K' parallel blocks.

(b) The streams of parallel blocks merged into a series of aggregate blocks, executed in

sequence.

Since the core clusters considered in Scenario 4 are also considered to be ideal, the resulting

effect of having blocks executing in parallel can be modeled as in Figure 14. This ideal core

clusters represent an abstraction of parallelism resources, which we call array of concurrent

slots, which we define as follows.

Definition 3. An array of concurrent slots is an abstraction of a collective of parallel

resources capable of executing the instruction/reference stream of a determined number of

block(s) simultaneously.

In the Locality Analyzer, concurrent slots appear only in arrays of more than one element.

The blocks within each array of concurrent slots execute in parallel, but arrays are serialized

with respect to each other. The blocks running in parallel in one ideal core cluster i.e. array of

concurrent slots, as in Figure 14(a), can be merged together to create a series of ⌈

 ⌉

aggregate blocks. We define an aggregate block as follows:

Definition 4. An aggregate block is the reference stream that results from merging the

reference streams of the blocks in the corresponding array of concurrent slots.

31

These are then serialized as show in Figure 14(b). The analysis is therefore performed over

serialized aggregate reference streams over ideal core clusters. It is important to mention that

the blocks in concurrent slots are not always merged to create a resulting aggregate block. The

merging process will take place depending on the analysis performed, and the parallelism

resources to be modeled by a specific analysis.

6.5 Limited resources, ‘K’ block modeled as executing in parallel, within core cluster

analysis

Scenarios 5 and 6 of the analysis obtain the data reuse characteristic under conditions in which

architectural limitations of the core clusters are modeled. The scheduling of threads is

performed on a per-warp basis on NVIDIA GPUs. In NVIDIA GPUs and the number of

threads in a warp is 32. The warp size harmonizes with other design characteristics of

NVIDIA‟s GPUs: memory bus sizes, cores and functional units. The latter play a major role in

the number of cycles needed for a warp to fully execute one instruction.

For the case of memory instructions, the number of cycles per instruction per warp, assuming

an ideal memory subsystem, will be dependent on the number of load/store units available to

each warp in a given cycle. By taking these into consideration, only a specific amount of

threads will be able to issue memory accesses. In certain commercial GPUs, the amount of

load/store units available for a warp in one cycle is usually 16, the size of a half-warp. As a

consequence of this, the cycles necessary to complete a memory instruction increase.

Scenarios 5 and 6 try to analyze the effect on the data reuse characteristic of an application

under these conditions.

32

BLOCK K BLOCK 2K-1

…

C D L

C

C

C

C

C D L
…

2
nd

 Level Scheduler

NoC ∞

On-Chip Mem. Sys. ∞

∞

Mem. Controller ∞

2
nd

 Level Scheduler

NoC ∞

On-Chip Mem. Sys. ∞

Mem. Controller ∞

…

BLOCK K-1BLOCK 0

…

L

L

L

L
C D L

C

C

C

C

C D L
… ∞

L

L

L

L

Block Scheduler ∞

Figure 15: Scenario 5 of the data reuse characterization analysis. Each core cluster has

now a finite number of load/store instructions. The analysis is performed within each

core cluster.

Figure 15 illustrates the case for Scenario 5. In this case, there is a finite number of load/store

units per core cluster. The warp scheduler inside the core cluster can only issue a number of

memory instructions that the load/store units can give service to. In our framework, the

number of load/store units can be decided at runtime by the user. This scenario models an

additional resource constraint that reduces the total amount of parallelism that the SIMT

processor can exploit. In Figure 15, the details of the memory subsystem are modeled ideally,

so not to make the analysis depend on the architecture.

The data reuse characterization of Scenario 5 is done on a per core cluster basis. Each core

cluster is assigned a series of thread blocks, as shown in Figure 15. As mentioned before, each

core cluster is are a more physical representation of the array of concurrent slots. In this case,

aggregate blocks are not used despite assigning blocks to each array of concurrent slots. The

merging process does not take place even though parallelism can still be exploited. However,

Scenario 6 does perform the block merging, as we shall see, and characterizes the data reuse

behavior from a different perspective.

Scenario 5 analyzes the reference stream resulting from the serialized blocks assigned to each

core cluster. This analysis captures the data reuse behavior that could be taken advantage of

by an ideal shared memory subsystem within a specific cluster. The scheduling policy and the

number of core clusters in the architecture will definitely have an impact on the reuse

characteristic under such circumstances.

33

Since the number of load/store units is limited, all threads are unable to request accesses

simultaneously. Therefore, more memory requests will be issued, which will increase the size

of the reference stream of each block, and of all the overall blocks assigned to a core cluster.

This will have a significant impact on the data reuse characteristic and the length of the

histogram itself. In general terms, it will modify the way the application reuses data.

6.6 Limited resources, ‘K’ blocks modeled as executing in parallel, inter-core cluster

The sixth and final scenario of the data reuse characteristic analysis is identical to Scenario 5

except for one fundamental difference. In this case, the blocks executing in parallel are

merged into aggregate blocks. Figure 16 illustrates this case. The execution is modeled as if

the series of resulting aggregate blocks where executing in a core cluster in which the total

number of load/store units is the aggregate amount of load/store units present over all clusters

in the system. This analysis captures the data reuse behavior that could be taken advantage of

by an ideal shared memory between the overall threads of all clusters.

2
nd

 Level Scheduler

NoC ∞

On-Chip Mem. Sys. ∞

Mem. Controller ∞

C D L

C

C

C

C

C D L
… ∞

L

L

L

L

AGGREGATE BLOCK N/K-1

AGGREGATE BLOCK 0

…

Block Scheduler ∞

Figure 16: Scenario 6 of the data reuse characterization. The analysis is performed over

the aggregate of the reference streams in every core cluster. The number of load/store

units is the total sum across the core clusters.

The purpose of all these analyses is to get a quantified representation of the reuse

characteristic under different parallelism constraints. The amount of parallelism that SIMT

34

processors can exploit is what fundamentally differentiates them from more conventional

processors. This is coupled with a specific programming model. When the amount of

parallelism that the processor can handle changes, it will interact in a different way with the

application: less or more threads can execute concurrently, occupancy varies, coalescing will

vary and locality characteristics will change as well as the real resource limitation. All this

causes changes in overall running time, and memory performance. The resulting performance

is multivariable, and it is difficult to build a model of an application‟s performance just by

observing the way it varies.

By providing a way to characterize the data reuse behavior of an SIMT application, it is

possible to get further insight on the resulting performance and ways to predict it. Scenario 3

provides a particular data reuse characteristic given the kernel code. This same characteristic

will be reproduced if the SIMT processor has enough resources to exploit all the parallelism

needed by the kernel. However, as kernels utilize bigger data sets and have larger reference

streams, reaching this condition might not be a practical goal. But the ideal data reuse

characteristic will be adequate to assess the positive or negative impact that different

parallelism constraints will have in its reuse characteristic. This is achieved in a totally

isolated way from other factors that affect performance, such as the capabilities for coalescing,

or the memory subsystem.

When code tuning is performed, or architectural enhancements are added to the processor,

developers proceed in view of the architecture and the programing model. A code tuning

technique to improve data coalescing, for example, can also have an impact on the

bank-conflict avoidance, contention avoidance, and on the way the schedulers issue

instructions, which in turn will have other effects in different parts of the architecture.

Detailing this cascade effects is particularly difficult given the cross-relation between them.

Now that the analyses have been detailed, the next section explains the details of the

implementations of the experimental framework.

35

VII. EXPERIMENTATION FRAMEWORK

In order to perform the analyses, we developed an experimental framework which we called

Locality Analyzer for SIMT applications, programmed in C++. In order to perform all the

analyses described in Section VI, there are certain steps that need to be taken to ensure

accuracy of the results, functional correctness and fidelity.

In this work, all the analyses for the data reuse characterization are trace-based. This means

that the application is executed either on a PTX instruction emulator, and data relevant to its

runtime is captured in trace files. Therefore, there are two stages that need to be considered to

perform any of the analyses detailed so far: trace generation stage and reference stream

analysis stage.

7.1 Trace Generation Stage

Our experimental framework takes as input a memory trace generated by a PTX instruction

emulator. For our experiments, we used the framework provided by the GPUOcelot [17]. The

GPUOcelot provides a trace generation tool that can capture a series of performance metrics

from GPU kernels, as well as runtime information of the threads. To perform our experiments,

we modified the trace generation code of the GPUOcelot, and modified it in order to output a

trace with a format better suited to perform the analyses explained in Section VI. Any proper

instruction emulator can be used to generate the trace, as long as it satisfies the trace

formatting.

The trace information contains the memory instructions executed by the kernel. The tracer

executes each block individually i.e. blocks are serialized, and reports the threads executing

each memory instruction. Therefore, the trace file contains the MIs executed in each block, the

threads that execute each MI, the number of simultaneous accesses and the addresses of the

requested memory elements. Our analysis tool can model infinite parallel execution resources,

as we shall see in the next section, but the GPUOCelot imposes a maximum of 1024 threads

per block. Therefore, the results presented here present an idealized version similar to having

infinite resource, when the block size is below 1024. When the size of the thread blocks

exceeds this value, then the constraints imposed by the runtime of the GPUOcelot become a

36

limiting factor. The capacity to run threads of one thread block concurrently in one core

clusters, to issue and execute instructions at this pace by far exceeds the capabilities of current

commercial core clusters.

The traces are obtained in a per kernel basis. When applications are executed on GPU

architectures, they can contain multiple kernels, call the same kernels multiple times and/or

both. Since the blocks belonging to a specific kernel are executed in a serialized way, the

traces contain an inherent order of the reference streams on a thread block basis. This is a

useful property, since it provides a lot of flexibility to model different execution conditions of

SIMT processors.

7.2 Reference Stream Analysis Stage

In this section, we explain the specifics of the implementation of the Locality Analyzer for

SIMT applications. The purpose is to show and demonstrate the utility provided by our

framework, the capabilities it has and the way the previous described analyses were

implemented.

7.2.1 Model for Thread Blocks

The first task to perform any of the analyses detailed in the previous Section 6 is to read the

trace file using the Locality Analyzer and build the reference stream of each block

individually. Since the GPUOcelot emulates the blocks in a sequential way, the trace file

captures the reference stream of each block in sequence. The trace format contains the

position of the MIs in the reference stream, which we call the position index, the threads that

specific MI and the addresses accessed. The trace is scanned and the information of reference

streams is stored in an array of “block” objects. This array, which can be thought of as a block

container object, would be equivalent to the grid, and the blocks are inserted in the order they

are executed by the GPUOcelot. This procedure is graphically explained in Figure 17. The

position index is the MI count. That is, the number of MIs that have been executed prior to a

specific MI plus one.

37

Block ID: 2, 1, 0

PC: 3

Global instruction Count: 97

Position Index: 67

Threads: ...

Addresses: 545544 64455 ...

Block ID: 2, 1, 0

PC: 4

Global instruction Count: 101

Memory Instruction Count: 68

Threads..

Addresses: 88444 93855 ...

.

.

.

Block ID: 3,5,0

PC: 15

Global instruction Count: 324

Position Index: 146

Threads: ...

Addresses: 0 0 0 1 0 ...

Block ID: 3,5,0

PC: 28

Global instruction Count: 456

Position Index: 147

Threads: ...

Addresses: 5454 54774 4565..

MI Information

67

68

N-1

…

…

Addr. {}, Tids, etc

Addr. {}, Tids, etc

Addr. {}, Tids, etc

Block ID = 2,1,0

MI Information

146

147

M-1

…

…

Addr. {}, Tids, etc

Addr. {}, Tids, etc

Addr. {}, Tids, etc

Block ID = 3,5,0

…

…

…

…

Block ID =

2,1,0

Block ID =

3,5,0
… … … … …

Grid = Block container object

Figure 17: Formation of Block objects within the Locality Analyzer. The block objects

contain their individual reference stream which consists on a series of ordered MIs. Each

MI has access information of its own.

Each MI executed has an entry in the trace file. Each entry contains information to which

thread block does the instruction belong to, its relative position in the stream of that block

(position index), the global instruction count, the threads that issue this instruction, and the

addresses accessed. The latter is the address array explained in Section 4. Algorithm 2 shows

the pseudo-code for the reconstruction of the thread block objects within the framework of the

Locality Analyzer.

The instructions within the while loop declared in line 2 execute as long as the trace file has

not been completely read. Line 3 creates a „currBlock’ object, which is an instance of the

„blockObj’ class. This class contains all the information necessary to identify the block,

contains its reference streams, the addresses each MI accesses, and functions to manage this

information. Line 4 first reads the next block ID to read from the trace file, and stores it in

38

both variables „currBlock.blockID’ and „nextBlock’. The while loop in line 6 checks whether

or not these variables hold the same ID. In case they are not equal, the block so far built within

the while loop in line 6 is inserted in the grid object, passed as an argument to the

GridFormation() function.

In case the condition currBlock.blockID == nextBlock is true, all the instructions from line 7

to 21 are executed. Line 7 creates an „inst’ instance of an „instInfo’ class. This class holds the

address array of the specific MI, together with other information of the MI such as the PC, the

threads executing this instruction (Threads), the position index within the reference stream

(„posInRefStream’), the global instruction index („genPos‟), analogous to the former but

considers all instructions in general. All these information is read from the trace file in lines 8

to 11.

Line 12 reads the threads issuing the current MI. This is the number of addresses being

accessed. The for loop declared in line 12 reads the addresses accessed by the threads in the

current MI one by one, storing them in the variable „Addr‟, in line 13. In line 14, the algorithm

searches an entry for the address „Addr‟ in the address array. In case it finds an entry with the

value „Addr‟, line 16 will increment the multiplicity of that address. In case not, a new entry is

created in the address array, and its multiplicity is initialized to 1, as shown in lines 18 and 19,

respectively.

Once all addresses of the current MI have been read, the „inst‟ object is inserted in the stream

field „currBlock‟ object, which is its corresponding reference stream. This task is carried out

in line 20. In line 21 the next byte to be read in the trace file is stored, and right after that the

following block ID is read. In case this ID is not equal to the one of the current block, then the

next thread block in the trace has been reached. Line 23 checks for this condition, and moves

to the memory position prior to the read operation in line 24 if necessary. Line 25 inserts the

block object into the grid. When the trace has been completely read, the algorithm terminates.

Algorithm 2. GridFormation(GridObj)

1. Tpos = 0;

2. while (Tpos < TF.size-1) // TF is the trace file

3. blockObj currBlock;

4. currBlock.blockID << TF;

39

5. nextBlock = currBlock.blockID

6. While nextBlock == BlockID

7. instInfo inst;

8. inst PC << TF;

9. inst posInRefStream << TF;

10. inst genPos << TF;

11. inst Threads << TF;

12. for k = 0 to Threads

13. Addr << TF;

14. Bool is = inst.addrArray.isPresent(Addr);

15. if (is)

16. addrArray[Addr]++;

17. else

18. addrArray.insert(Addr);

19. addrArray[Addr] = 1;

20. currBlock.stream(inst);

21. currByte = TF.seek(TF.curr);

22. nextBlock << TF;

23. if (nextBlock != currBlock.blockID)

24. TF.seek(currByte – nextBlock);

25. GridObj.insert(currBlock);

After the block objects have been formed and stored in the grid container, the next step is to

select which analysis to perform and pass the necessary parameters to the program when

necessary. Among the parameters that the program can take are: size of the memory element

in bytes, number of core clusters, number of load/store units, type of block scheduling policy,

and number of concurrent parallel blocks.

The Locality Analyzer allows the implementation of different block scheduling policies and

modeling of certain architectural characteristics of the core clusters, such as warp scheduling

policies and load/store units.

7.2.2 Block Scheduling Policies

40

The Locality Analyzer enables can analyze the impact that different block scheduling policies

have over the data reuse characteristic. This feature is enabled by allowing the developer to

program its own block scheduling policy, select blocks according to the desired policy from

the grid object, and assign it to a concurrent parallel slot. Figure 18 illustrates two cases for

the scheduling procedure.

B
lock (2, 7, 0)

Block ID =

2,1,0

Block ID =

3,5,0
… … … … …

Grid = Block container object

Block Scheduling Module

Core Cluster Core Cluster

Block (0,0,0)

Block (0,2,0)

Block (0, 0, 0) Block (0, 3, 0)

Core Cluster Core Cluster

Block (1,4,0)

Block (0, 1, 0)

Block (1, 2, 0) Block (2, 4, 0) Block (1, 3, 0)

Block (1, 2, 0)

Block (1, 2, 0)

Block (1, 2, 0)

…
 …

…

…
 …

 …

a) b)

Analyze the

blocks

Block Choice

Figure 18: Block scheduling module and block scheduling flow (a) Block scheduling

module assigning blocks to a system with one core cluster. (b) Block scheduling module

assigning blocks to a system with multiple core clusters

Figure 18(a) shows the situation for the case in which there is only one core cluster, which we

represent within the framework as abstraction that we call concurrency slot, defined shortly. In

this case, the block fetched from the grid object enters at the tail of the queue, modeling a

sequential execution. In Figure 17(b), a similar case is illustrated for when multiple blocks are

able to execute in parallel, either by allowing many core clusters or by allowing one single

core cluster to handle multiple blocks in parallel i.e. when the number of elements in the array

of concurrency slots is more than one. In this case, the blocks can be allocated to each core

cluster in such a way to prevent workload imbalance, or other type of optimization. This

scheduling feature becomes useful for the Scenarios 3~6 of the data reuse characterization.

The block scheduling module can implement any particular policy desired. This module is

able to perform its required analysis over the grid object, and the blocks within it. The purpose

of such analysis is to determine which block is the best candidate to queue for execution to

improve over a certain metric, possibly data reuse or any other. Once the block is chosen it is

41

read from the grid object, and allocated to a specific concurrency slot. Since the blocks in the

concurrency arrays are not being merged, each slot maintains the blocks serialized. Every slot

represents a block FIFO queue that models the sequencing of the scheduled blocks.

Algorithm 3 shows the pseudo-code for the block scheduling module. Line 1 declares a

two-dimensional array labeled „currBlocks‟ that holds arrays of „blockArray‟ objects. The two

cases illustrated in Figure 18 are considered by the scheduler. The analyses that will model

execution over a realistic number of cores are Scenarios 5 and 6. But Scenarios 4 and 3 do not

require core clusters nor core cluster modeling, since they only employ the array of

concurrency slots and the resulting aggregate blocks. These are the four scenarios that are able

to parallelize blocks. Scenarios 1 and 2 do not possess this feature, making the scheduling

module trivial in these cases.

Algorithm 3. BlockSched(CCNum, CC, policy, parBlocks)

// GO: grid object, CCNum: core cluster number,

// CC: array of core clusters, parBlocks: number of

// parallel blocks, policy: scheduling policy

1. blockArray currBlocks[][];

2. j=0;

3. while (GO.size > 0 AND (var = 5 OR var = 6))

4. for i=0 to CCNum-1

5. tempBlock = BlockExtract(GO, policy);

6. CC[i].blocks.insert[tempBlock];

7. currBlocks[j].insert(tempBlock);

8. j++;

9.

10. while (GO.size > 0 AND (var = 4 OR var = 3))

11. for k = 0 to parBlock-1s;

12. tempBlock = BlockExtract(GO, policy);

13. currBlocks[j].insert(tempBlock);

14. j++;

15.

16. Function BlockExtract(grid, policy)

17. blockObject candidate;

18. candidate = scheAnalysis(grid, policy);

19. grid.erase(candidate);

42

20. return candidate;

The code in lines 3~7 schedule blocks to each of the „CCNum‟ core clusters. The while loop in

lines 3 first checks that the scenarios are the correct ones. Line 4 has a for loop that iterates

over the core clusters. The function in line 5 extracts a block from the grid object („GO’)

according to the block scheduling policy specified by „policy‟. The extracted block is assigned

to an instance of the block class labeled „tempBlock‟. Once the block has been extracted from

the grid, line 6 inserts it in the block FIFO queue belonging to the specific core cluster. In line

7, „tempBlock‟ is also inserted in the entry „j‟ of „currBlocks‟. This object is the array of

concurrent slots. The reason that both of these structures are populated in this stage is because

Scenario 6 will require the array of concurrent slots to be converted into aggregate blocks.

The code in lines 10~14 schedule blocks for Scenarios 4 and 3. These analyses do not employ

the models of core clusters. For this case, it is necessary to set the size of the arrays of

concurrency slots, and populate the arrays with blocks. Line 10 makes sure that the Scenarios

are the appropriate ones, as was the case for line 3. The for loop in line 11 will execute the

instructions in line 12 and line 13, which select the block from the grid object and introduces

it in „currBlocks‟. The resulting state after executing of Algorithm 3 is shown in Figure 19.

Grid = Block container object

Core Cluster

Block (0)

Core Cluster

Block (k-1)

Block (m-1) Block (m-1+k)

…

…

After scheduling is done, the

grid is empty

currBlocks[0]

Block (N-1-k) Block (N-1)

…

…

currBlocks[m]

currBlocks[N/K+1]

…

…

…

…

currBlocks

Figure 19: After assigning blocks to the core clusters. The blocks are queued in each

cluster, and are also inserted into the ‘currBlocks’ structure, which represents the arrays

of concurrent slots.

43

The function BlockExtract() chooses a block from the grid and passes it back to the calling

function. Line 17 declares an instance of the block class called „candidate‟. The scheAnalysis()

function called in line 18 is responsible to iterate over the grid object, and choose the best

block according to the policy. Once the grid is analyzed and the block is chosen, it is assigned

to „candidate‟. Immediately after that, the entry belonging to the chosen block is erased from

the grid, and „candidate‟ is returned to the calling function. Within the scheAnalysis() function,

it is possible to implement many blocknscheduling policies, and analyze its effects on the data

reuse characteristic.

In this work, however, we implement a simple sequential scheduling policy. That is, the

blocks are chosen in the order in which the trace generator tool executed them. A thorough

analysis of the impact of different block scheduling policies over the data reuse characteristic

is left for future work.

7.2.3 Core cluster modeling

Modeling certain architectural characteristic of the core clusters becomes important for

Scenarios 5~6. For this case, a thorough cycle-accurate modeling of the core cluster behavior

is not necessary, since our focus is on the memory access behavior of the application itself,

abstracted from timing details.

In order to comprehend why such thorough modeling is not necessary, we describe a simple

example. When a core cluster executes a sqrt math instruction, it is after fetching the

necessary data from global memory. Then, the functional unit within the core cluster reads the

operands from the registers, and consumes a certain number of clock cycles performing the

relevant mathematical operations. When a new memory instruction is issued, its ordering

within the instruction stream will not be affected by the number of cycles consumed by the

sqrt instruction, only by the previous memory access. Likewise, the memory latency taken by

the MIs will not have an impact in the sequencing of MIs.

In this work, we are only evaluating the impact of the parallelism limitation over the data

reuse characteristic of the applications. Therefore, we model the memory subsystem as ideal,

and also considering unlimited functional units, only focusing on the data utilization behavior.

44

However, there are two particular resources within a core cluster that will have significant

effect on the sequence of the memory accesses: the load/store units and the warp scheduler.

The number of load/store units available to each warp in a given cycle plays a significant role

on the ordering of MIs within the reference stream. This will create a dis-adjustment on the

data reuse characteristic when compared to the ideal case. The effect can be illustrated by a

simple example.

Let‟s assume there are „x‟ number of load/store units and „y‟ threads requesting data from

memory simultaneously. If x > y, then all the memory requests can be serviced simultaneously.

However, when x < y, the memory requests will not be issued all at once. This makes

necessary for a subset of the threads in a warp to be issued, instead of all the requesting

threads. The result is a larger number of MIs in the reference stream. If to this we couple the

effects of the warp scheduler, which is the one responsible of issuing warps for execution, the

impact on the reuse characteristic is two-fold. If there are multiple warps available for

execution in a given clock cycle, then choosing warps that present significant data reuse

among each other will definitely help to improve performance. Choosing warps based on the

way the make use of the data could improve coalescing, avoid bank conflicts and improve

overall runtime performance.

The Locality Analyzer enables the inclusion of more novel block scheduling policies at the

warp scheduling level. However, in this work, we have only implemented a simple

round-robin policy to ensure fairness among active threads. The scheduling policy at this level

becomes relevant for Scenarios 5 and 6. Warps are modeled in the a similar way as blocks.

Every warp object within the framework has information on their number of threads, the

address array and to which block they belong to. A thorough analysis of the impact of warp

scheduling techniques over the data reuse characteristic is out of the scope of this work.

7.2.4 Merging of reference streams

When multiple blocks can be executed in parallel, it‟s necessary to merge the reference

streams into an aggregate stream in order to perform analyses efficiently. Scenarios 3, 4 and 6

of the data reuse characterization requires for this task to be performed in advance.

45

The block scheduling policy chooses which blocks will execute concurrently. As the blocks

are popped from the grid object, they are merged in an empty reference stream i.e. an

aggregate reference stream. This is done by creating an additional structure that absorbs and

collapses the reference stream of the concurrency slots. Initially, this data structure is empty.

When the first block is chosen, its reference stream is analyzed. The aggregate reference

stream is filled with the MIs of the first block, creating an identical copy of the first block in

the new data structure.

PC: 3

G. inst. : 97

PosRef: 67

Threads: 96

Addresses: 0

0 0 1 545544

64455 ..currBlocks

PC: 3

G. inst.: 97

PosRef: 67

Threads: 64

Addresses:

54544 567...

…

PC: 3

G. inst.: 95

PosRef: 67

Threads: 32

Addresses:

0 0 0 1 0 …
…

Block (N-1-k) Block (N-1)

…

Block (0) Block (k-1)

Block (m-1) Block (m-1+k)

…

…

currBlocks[0]

Block (N-1-k) Block (N-1)

…

…

currBlocks[m]

currBlocks[N/K+1]

…

…

…

aggrStream[N/K+1]

Figure 20: Merging of reference streams from multiple blocks in the arrays of

concurrent slots. Scenarios 3, 4, and 6 are the only ones that employ this procedure.

Figure 20 illustrates the merging of reference streams from multiple blocks. When the

sub-sequent blocks are chosen, a similar procedure occurs, but with some modifications. The

MIs within each block need to be included in the aggregate stream, but new entries cannot

re-write the entries introduced by the previous blocks. However, if a new block has an MI that

falls into the relative position of an MI introduced by a previous block, additional procedures

occur.

Algorithm 4. StreamMerge(currBlocks)

// GO: grid object

1. aggrStream[].clear;

2. for j=0 to currBlocks.size-1

3. for m=0 to currBlocks[j].size-1

4. for k=0 to currBlocks[j].block[m].streamSize

46

5. instInfo inst;

6. inst = currBlocks[j].block[m].instStream[k];

7. is = aggrStream[j].isThere(inst.posRef);

8. if (is)

9. aggrStream[j].threads += inst.threads;

10. for i = 0 to inst.addrArray.size

11. bool addrPres =

aggrStream[j].addrArray.isThere(inst.addrArray[i];

12. if (addrPres)

13. aggrStream[j].addrArray[inst.addrArray[i]] =+

inst.addrArray[i].mult;

14. else

15. aggrStream[j].addrArray.insert(inst.addrArray[i],

inst.addrArray[i].mult);

16. else

17. aggrStream[j].insert(inst.posRef, inst)

Algorithm 4 shows the pseudo-code for this procedure. Line 1 clears the „aggrStream’

structure array. Each entry in this array will hold the different aggregate streams

corresponding to each array of concurrent slots. The for loop in line 2 will iterate over the

„currBlocks’ object. Recall that „currBlocks’ is an array of concurrency slots, populated in

Algorithm 3. Every entry in this array holds the blocks that issued instructions concurrently.

Line 3 will iterate over the concurrency slots in the queue, and line 4 will iterate over the

streams of each block in the respective „currBlocks‟ entry. Line 5 creates an instance called

„inst‟ of the „instInfo‟ class that holds all the information of that specific MI. Line 6 reads the

instruction „k‟ of the stream belonging to the block analyzed in the m
th

 iteration. Then, line 7

checks if there‟s an instruction in the aggregate stream „aggrStream‟, corresponding to the „j‟

aggregate block, with the same position index than the „inst’ instruction. If no previous entry

exists in that position, then line 17 executes, inserting the instruction in the slot corresponding

to its position index „inst.posInRefStream’. In case a previous entry exists with the same

position index, then an additional procedure needs to be performed.

For the case where is == TRUE i.e. a previous entry exists, it is necessary to combine the

information of „inst’ with the data already present in the corresponding entry of „aggrStream‟.

Line 9 will first increment the number of threads that issued that instruction. The for loop in

line 10 will then iterate over the address array of „inst‟, in order to merge it with the array

47

already present in the corresponding entry of „aggrStream‟. Line 11 will first look if the

addresses are already present in the address array of „aggrStream‟. In case there is not a

previous entry, the instruction in the else clause of line 14 are executed. In this case, „inst’ is

inserted directly into „aggrStream‟. When an MI of one block seeks a specific position within

the aggregate stream, then the new MI is allocated. The information stored with each entry in

the aggregate reference stream is identical to the one stored in the entry of the MI in its

original reference stream, with the exception of the block ID, which is not necessary. Line 17

executes this task.

When a new MI requires a slot occupied by an MI previously entered, and both have

addresses in common, the multiplicity of the common addresses will increase. The final value

is the multiplicity accumulated by the MI in the aggregate stream of the specific address plus

the multiplicity of that same address in the new MI. This can be expressed mathematically as

follows:

where is the aggregate multiplicity of a specific address in the aggregate reference

stream, and is the multiplicity of a specific address in the new MI „i‟ that belongs to

the block identified with „ID‟. This value is accumulated in line 13 of Algorithm 4.

The number of aggregate streams created will depend on the amount of blocks that application

generates and the number of blocks that are executed in parallel. Expressed in a mathematic

way:

 ⌈

 ⌉

where „N‟ is the number of blocks of the application, and „k‟ is the number of blocks running

in parallel. Notice the ⌈ ⌉ bracket, which rounds up the quotient to the highest integer in case

of a non-exact division.

48

Aggregate Stream m

Aggregate Stream 0

…

aggrStream[0]

Aggregate Stream N/K

…

aggrStream[m]

aggrStream[N/K+1]

aggrStream

PC: 3

G. inst.: 97

PosRef: 67

Threads: 96

Addresses: 0 0 0

1 54544 567 ..

PC: 16

G. inst.: 105

PosRef: 68

…

PC: 10

G. inst.: 97

PosRef: 67

Threads: 96

Addresses: 10 343

32342 14372 ..

PC: 16

G. inst. Count: 105

MI Count: 68

…

Figure 21: The resulting reference stream of the aggregate blocks. It is possible to

compare this with the streams shown in Figure 19. Notice how the ‘Addresses’ and

‘Threads’ fields are augmented

Figure 21 illustrates the resulting state after executing Algorithm 4.

7.2.5 Adjusting the position index of Mis

Once the aggregate streams have been created, they are serialized with respect to each other in

the order in which they are issued according to the previous procedure. A new data structure

was created in Algorithm 4 that holds entries for each aggregate stream. After this, an

additional procedure needs to take place. Each aggregate stream has an ordering of the MIs

valid only within itself. It is necessary to modify the values of the position index within the

stream to reorder the MIs with respect to their homologous in the rest of the aggregate streams,

since these are serialized. This procedure is shown in Algorithm 5.

Algorithm 5. posRefAdjust(aggrStream)

// GO: grid object

1. posMI = 0;

2. for i = 0 to aggrStream;

3. for j=0 to aggrStream[i].streamSize

4. aggrStream[i].inst[j]++;

5. posMI++;

49

Algorithm 5 takes as input the aggregate reference stream. It iterates over all of its entries, as

can be seen by the for loop in lines 2. The nested loop in line 3 will iterate over the streams of

each entry in „aggrStream‟. The sequencing of the aggregate streams is taken into

consideration. The data structure that holds the streams is traversed with an incrementing

variable that modifies the position index of each MI inside the stream. For the first aggregate

stream in the sequence, the position index of the MIs remains identical. However, for the rest

of the streams, the position index is assigned the value of the incrementing variable, which is

basically a global count of MIs. The result after adjusting the position index is shown in

Figure 22.

Aggregate Stream 1

Aggregate Stream 0

aggrStream[0]

Aggregate Stream N/K

…

aggrStream[1]

aggrStream[N/K+1]

aggrStream

PC: 3

G. inst.: 97

PosRef: 67+m*S

Threads: 96

Addresses: 0 0 0

1 54544 567 ..

PC: 16

G. inst.: 105

PosRef: 68+S

…

PC: 10

G. inst.: 97

PosRef: 67

Threads: 96

Addresses: 10 343

32342 14372 ..

PC: 16

G. inst. Count: 105

MI Count: 68

…

Size of this aggregate

stream = S

Figure 22: Modifications of the position reference index within the reference stream. The

value of the index of the MIs in streams other than the first will depend on the stream

length of the streams before the current one.

Notice in Figure 22 that the position index of the MIs in the Aggregate Stream 1 are now

offset by „S‟, which is the stream size, or the number of MIs, of the previous stream. The

resulting offset for the rest of the MIs in the a specific aggregate streams will depend on the

stream sizes the previous aggregate streams

50

7.2.6 Locality Analyzer Architecture: Putting it all together

Figure 23 shows a flow chart that represents the architecture of the Locality Analyzer. As this

figure shows, all of the modules described so far are included. The associated algorithms have

been developed in the previous subsection. The methodology is clearly illustrated.

The most significant properties of this architecture are its flexibility, scalability and the model

the kernel‟s runtime. The focus of this methodology is to understand the locality behavior of

the applications dissociated from the details of particulars SIMT processors. The modeling of

the programming abstractions within the Locality Analyzer allows developers to manipulate

them in any way they see fit. In this way, the need for long cycle-accurate simulations is

reduced, extracting efficiently locality information.

Reconstruct Thread

Blocks

Block Scheduling

Core Cluster Modeling

Merge Reference

Stream

Adjust Position Index

Data Reuse Characterization:

Data Reuse Degree (ver.) vs. Reuse Distance (hor.)

Is Merge

Stream

required?

Is Core Cluster

modeling

required?

Is Adjust

Position Index

required?

Yes

No

Yes

No

Yes

No

Locality Analyzer for

SIMT applications

Start

END

Figure 23: Block diagram of the architecture of the Locality Analyzer. This is a very

general and simplified version of our framework

51

Keep in mind that while the SIMT processors evolve and scale very quickly, the structures of

the applications for which they are used do not change as rapidly. When abstracting the

applications‟ analyses from the particulars of each processor, the validity of the analysis is

maintained across different families and types of SIMT processors, as long as the

programming and runtime abstractions do not change. The analyses therefore have an

important degree of generality and usability across different generations of architectures.

The architecture of the Locality Analyzer allows for many aspects related to control flow to be

thoroughly analyzed, as well as the modeling of the certain architectural components

(schedulers, core clusters, load/store units). Other types of analyses can be easily coded due to

the modularity characteristic the architecture possesses. However, in this work, we focus on

the resource limitations, coding optimizations and their impact on the data reuse characteristic

of different applications. This will allow us to get further insight on the way the data reuse

characteristic changes when coding optimizations, coupled with the details of the execution

model, are applied to applications. This would be an important step to predict the performance

improvement that could be gained from applying optimization techniques when running on

architectures with different characteristics.

52

VIII. APPLICATION OPTIMIZATION

This section gives a brief explanation on the coding optimizations applied to the applications

in our experiments. By analyzing the changes on the data reuse characteristic after

optimization, assuming invariable the resources to exploit parallelism, it is possible to

compare the effectiveness of the optimization procedures. These coding optimizations follow

the thread mapping methodology for multi-level shared caches proposed in [9]. This

methodology performs different optimization procedures over the application: thread

clustering, warp clustering and block scheduling.

8.1 Thread Mapping Methodology

The coding optimizations are implemented as a stand-alone library. The procedure is

performed by the CPU host. The core of the procedure consists on manipulating the threads

within one kernel, modifying the baseline order of execution. To do this, it is necessary to first

analyze the data accesses of an application. For this purpose, in [9] the compressed sparse row

(CSR) format is used, since it facilitates the manipulation of the data accesses.

The thread mapping on the GPU side is accomplished by applying similar techniques to those

of data and computation reordering [9]. Since GPUs do not allow programmers to explicitly

schedule threads or thread blocks for execution, then it is necessary to implement an indirect

way to mimic this behavior. Thus, the methodology makes use of appropriate data layout

techniques coupled with the re-mapping of thread indexes [9]. The way to do this is basically

to re-arrange the data contained in the data structures and associated arrays (array of structures)

for threads to then access the data in a different sequence as initially expected [9]. A new

thread mapping array is constructed that maps the baseline thread index of each thread to a

different value, equivalent to a function that can be expressed as:

where represents the new thread index, „ ‟ represents the baseline thread

index assigned by the GPU, and f() is the function that performs the mapping.

53

By making use of these two ordering techniques, it is possible to manipulate the formation of

warps and blocks, and mimic alterations in the order in which they are issued for execution.

The resulting behavior is to coordinate better the accesses in order to exploit the benefits of

data reuse [9].

The methodology proposed by [9] consists on the following steps:

1. Generate information about the data utilization and architectural parameters of the SIMT

processor: to obtain information about the data utilization, a data sharing and volume

graph is generated. The task of gathering architectural parameters of the SIMT processor

is trivial for our purposes.

2. Thread and Warp Clustering: threads are grouped into warps such that the resulting warps

issue the minimum number of memory transactions.

3. Thread Block Scheduling: tries to schedule in adjacent issue slots the thread blocks that

present significant data sharing.

4. Resource utilization throttling stage: the depth of multithreading is throttled to use the

shared cache and avoid contention.

The data sharing and volume between the threads both are modeled as a hypergraph called

Data Sharing and Volume Graph (DSVG), define as [9]:

in which „V’ is the set of vertices, „E’ is the set of hyperedges, „ ‟ is the vertex weight, and

„ ‟ is the weight of the hyperedge. In this model, threads are represented as vertices within

the DSVG, and the associated weight represents the amount of private data of the thread. A

hyperedge represents threads that share data, and the weight associated with the hyperedge

indicates the amount of shared data. The data sharing within a set of vertices i.e. a set of

threads, is represented by the group of hyperedges incident to a vertex. Likewise, the data

sharing involving other sets correspond to external hyperedges relative to a given set.

Thread clustering forms warps of threads so to minimize memory transactions. The warp

clustering step builds blocks based on these newly created warps into thread blocks with an

54

increased amount of data sharing. The Thread Clustering and Warp Clustering techniques can

be reduced to the hypergraph partitioning problem, a well-known NP-hard problem [9].

Thread Block Scheduling arranges the issuing order of the blocks with the objective to reuse

data through the L2 cache. Using the projection of the result generated by the Thread and

Warp Clustering, a DSVG is obtained that enables a formulation of the Thread Block

Scheduling Problem. In this case, each vertex in the new

 represents a thread block, and a new function is defined that maps each

vertex to an integer, in a one-to-one relationship. The integers represent the scheduling

sequence.

As previously explained, the reuse distance is the number of distinct memory accesses

between references to the same shared data. The Thread Block Scheduling uses this definition

to generate a new metric: the total reuse distance. This metric is the sum of all the reuse

distances that appear as a result of a specific scheduling function applied over the vertices of

the hypergraph. Therefore, a mapping function needs to be selected to minimize the value of

that sum. The Thread Block Scheduling problem is actually a general version of the vertex

ordering problem [9].

The fourth stage of the methodology, Resource Throttling, finds the best way to utilize the last

level shared cache [9], currently the L2 cache in SIMT processors. This last step is not

included in our experiments because we use model the memory subsystem as ideal. As

previously explained, this work only models the aspects of the core cluster that have impact

on the ordering of the MIs with an ideal memory subsystem.

55

IX. EXPERIMENTAL RESULTS

In this section we present the data reuse characteristic of a series of applications from different

domains. The applications chosen are considered irregular because their data sharing behavior

is not totally similar between threads in a block and depends substantially on the input data set

size. We use the Electronic Design Applications (EDA) used in [18]. The input to these

applications is taken from ITC‟99 circuit suite [19]. We use only one input for the applications

in this set in order to make a better comparison of the reuse characteristics under different

parallelism capabilities and coding optimizations. Also, we use one application from the

NVIDIA SDK suite. Irregular applications from the Chaos group [20] and the COSMIC

project [21] are also used. Table 1 summarizes the set of applications used in this work.

TABLE I

APPLICATIONS USED FOR EXPERIMENTATION

Apps. Source Description Inputs Kernel

Num.

sta EDA Static timing analysis (STA) 32160 nodes,

63497 edges

(b17 from

ITC‟ 99)

2

gsim EDA Gate level logic simulation 2

bfs EDA Breadth First Search 2

vectoradd NVIDIA SDK Vector addition Internal 1

nbf COSMIC Molecular dynamics 144,649 nodes,

1,074,393

edges (foil

from

COSMIC)

2

moldyn COSMIC Molecular dynamics 2

irreg COSMIC Partial differential equations 2

euler CHAOS Finite-difference estimations

on Eulerian Mesh

1

9.1 Data Reuse Characteristic with serialized blocks and on a per block basis

These are the results corresponding to Scenario 1 detailed in Section 6.1. Figures 24~27

shows the data reuse characteristic for sta, gsim, bfs and vectoradd, respectively. The rest of

56

the applications (nbf, moldyn, irreg, euler) were not analyzed for the case of serialized blocks

because the running time for such analysis was prohibitively long given the input set size..

There is striking similarity between bfs and sta, both from the EDA benchmark suite that

becomes visible when observing Figures 24(c) and 26(c). When looking at the source codes,

presented in Figure 28, it is possible to appreciate that the code of the kernels is almost

identical, with identical access patterns, even though the operations executed differ. Thus, it is

expected for the reuse characteristic to be almost identical. This observation demonstrates the

consistency of our model and methodology, since they can capture the same behavior

consistently across applications with similar data utilization patterns.

a) b) c)

DS DS DS

R R R

Figure 24: Data reuse characteristic when modeling block execution sequentially for sta.

(a) Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1,

400}. (c) Showing the reuse characteristic for the range RD={1, 100}. Notice the

particular patterns.

a) b) c)

R R R

DS DS DS

Figure 25: Data reuse characteristic when modeling block execution sequentially for

gsim. (a) Full reuse characteristic. (b) Showing the reuse characteristic for the range

RD={1, 400}. (c) Showing the reuse characteristic for the range RD={1, 100}.

57

a) b) c)

DS DS DS

R R R

Figure 26: Data reuse characteristic when modeling block execution sequentially for bfs.

(a) Full reuse characteristic. (b) Showing the reuse characteristic for the range RD={1,

400}. (c) Showing the reuse characteristic for the range RD={1, 100}.

a) b) c)

R R R

DS DS DS

Figure 27: Data reuse characteristic when modeling block execution sequentially for

vectoradd. (a) Full reuse characteristic. (b) Showing the reuse characteristic for the range

RD={1, 400}. (c) Showing the reuse characteristic for the range RD={1, 100}.

unsigned gid = blockIdx.x * blockDim.x + threadIdx.x;
if (gid >= ngates)
 return;

Id adjb = ddata[DataIdx];
Id adje = ddata[DataIdx];

Data arrival;

for (unsigned aid = adj; aid < adje; aid++)
{

adj = dadjs[aid];
arrival = arrival || ddata[DataIdx];

}

unsigned gid = blockIdx.x * blockDim.x + threadIdx.x;
if (gid >= ngates)
 return;

Id adjb = ddata[DataIdx];
Id adje = ddata[DataIdx];

Data arrival;

for (unsigned aid = adj; aid < adje; aid++)
{

adj = dadjs[aid];
arrival = max(arrival, ddata[DataIdx]);

}

a) b)

Figure 28: Source code for the kernels of bfs (a) and sta (b).

Also, notice that the applications presented above have a reuse characteristic with periodical

behavior in the reuse distance domain. In sta (Figure 24) and vectoradd (Figure 27) it is

possible to observe multiple super-imposed patterns that yield a very particular reuse

characteristic for the application. Recall that, in these first set of charts, the thread blocks are

treated as running in sequence.

58

In order to provide more insight into the reuse characteristics of Figure 24 ~ 27, Figures

29~36 show the reuse characteristic obtained on a per block basis corresponding to Scenario 2

of our analysis. We also show the results for nbf, moldyn, irreg and euler, which we will

reference in subsequent sections. Notice that for sta, gsim, bfs and vectoradd, there is a

significant similarity between the reuse characteristic of each block, and the reuse

characteristic obtained when serializing the blocks. These figures show the reuse characteristic

for two blocks out of more than a hundred that their corresponding kernels have. Notice that,

as expected, the reuse characteristic of blocks from sta and bfs are almost identical to each

other. They differ on the magnitudes of their reuse degree, but the contour (or shape) of the

reuse characteristic is maintained across most of the blocks.

a) b)

DS DS

R R

Figure 29: Data reuse characteristic on a per block basis for sta. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

a) b)

R

DS DS

R

Figure 30: Data reuse characteristic on a per block basis for gsim. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

59

a) b)

DS DS

RR

Figure 31: Data reuse characteristic on a per block basis for bfs. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

a) b)

DS DS

R

Figure 32: Data reuse characteristic on a per block basis for vectoradd. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

a)

DS

R

DS

b)

R

Figure 33: Data reuse characteristic on a per block basis for nbf. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

60

a) b)

DSDS

R R

Figure 34: Data reuse characteristic on a per block basis for moldyn. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

DS

a)

R

DS

b)

R

Figure 35: Data reuse characteristic on a per block basis for irreg. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

a) b)

DS

R

DS

R

Figure 36: Data reuse characteristic on a per block basis for euler. (a) Data reuse

characteristic for thread block 0. (b) Full reuse characteristic for thread block 1.

61

An illustrative case is vectoradd, shown in Figure 31. Here, the reuse characteristic for two of

its thread blocks is presented. Notice that each block only reuses data up to a distance RD = 3,

and presents a monotonically decreasing profile. In Figure 27, the maximum distance up to

which data is reused for this benchmark is increased by more than a 800 times. To be exact,

the maximum reuse distance for the case when the execution of the blocks is modeled in a

serialized way is RD = 2733. This comparison proofs that there is a significant, not negligible,

amount of data reuse between blocks of the kernel of vectoradd. When observing the rest of

the reuse characteristics for the blocks in Figures 29~32, and comparing them to their

homologous in the charts of Scenario 1, we can see that most of these applications do present

significant data sharing among blocks. This is one of the most important observations that can

be extracted when analyzing the results from Scenarios 1 and 2.

Note that there are some kernels in which the blocks present a monotonically decreasing

behavior (MB) in data reuse characteristic such as vectoradd in Figure 32. Other kernels

present an approximate monotonically decreasing (AMB) profile. For these kernels, we can

differentiate two specific groups. The first group of kernels present a peak when RD = 2, and

from there on, the data reuse degree at subsequent distances decrease in a fairly uniform way.

In this group, we can include sta and bfs, in Figures 29 and 31, respectively. The second group

of kernels that we differentiate present a peak at RD = 1, with a decrementing behavior similar

to that of the first group. In this group, it is possible to include gsim, in Figure 30. Both of

these cases do not strictly decrement monotonically given that the monotonicity is broken for

certain reuse distances, with DS = 0 or with a value smaller than those of subsequent distances.

But the nearly uniform decreasing behavior is significant when comparing the data reuse

characteristic with other applications that present totally different behavior, as we shall see.

When a data reuse degree peaks at RD = 1, means that the highest reuse degree occurs

between adjacent MIs. But this does not mean that every two adjacent MIs present data reuse.

Rather it means that, when considering all of the MIs (not two particular adjacent MIs) in the

reference stream, most of the reuse degree occurs between contiguous MIs. In contrast, when

the peak is at RD = 2, means that the highest degree of reuse, when considering all MIs in the

reference stream, occur every other MI.

There are also kernels in which the blocks do not present any monotonic (NMB) behavior in

their domain, neither a periodic behavior. To this group belong the majority of the kernels in

62

the applications analyzed in this work: nbf, moldyn, irreg, and euler, presented in Figures

33~36. These kernels present an oscillatory behavior in their reuse characteristic. These

kernels present significant variability among its blocks and an oscillatory behavior in their

reuse characteristic. It reuses data at longer distances than sta, gsim or bfs. Moreover, the peak

magnitudes of the data reuse degree is at distances larger than 1 by an order of magnitude.

Even though the scope of this paper is not to find the correlation between the data reuse

characteristic and the performance seen in real architectures, we still would like to make some

comments regarding the results seen. When a block reuses data after so many memory

instructions, the impact on performance can be very significant when running on a real SIMT

architecture with cache memory, but it will depend on the way application reuses data. There

are two possible cases that can occur: 1) the capacity of the cache memory is not completely

used and the data fetched is used with a varying degree at different distances as execution

progresses, or 2) the data allocated in the cache memory by a specific MI is eviction by a

different MI before it is reused again by another instruction with a specific distance apart.

Contention is present if the eviction of the data reused is very frequent in the reference stream.

In the first case, performance is increased when the cache is present as long as the whole data

for a specific portion of the execution is present, and not reused again for other instructions in

the stream before being evicted. The second case is more complex. Given that if the same data

is needed again by one instruction in the block many memory instructions later (for example,

more than 250 MIs as in the case for moldyn), it is possible that the data will have already

been evicted from the cache. To determine whether or not this will occur, it is necessary to

analyze the total amount of memory allocated before such memory access occurs from the MI

that fetched the data the first time and on the analysis of the application‟s access patterns data.

Kernels may in fact reuse data at such long distances, and this fact justifies the realization of

sub-sequent analyses to establish the relationship with performance and the effectiveness of

various optimization techniques over the data reuse characteristic.

An ideal reuse characteristic should be monotonically decreasing, implying that its maximum

peak has to be at RD=1, and should also decrease its data sharing at high rate as the reuse

distance grows. Therefore, it is desirable that kernels present a very small reuse distance

domain i.e range of reuse distances. This is so because, in the best case, adjacent MIs will

share the highest amount of data, with the sharing degree reducing its magnitude as distances

63

increase i.e. as execution progresses. This will reduce the possibility that data is fetched again

in case a prior eviction occurs.

However, just the fact of having reuse degree at far away distances can also have an impact on

performance irrespective of the magnitude. If for example there‟s only a single datum, reused

at a far distance apart, that has been evicted by an intermediate MI, on a real architecture, the

data will have to be fetched only to be used by a single thread, affecting the total throughput

of system. Therefore, even though these reuse degree magnitudes at far distances might seem

negligible when compared to the corresponding reuse degree peaks within the block, it is also

desirable to reduce the maximum distance at which the blocks reuse distance, not just the

magnitude of the reuse degree at a specific distance. Taking this into consideration is

particularly important when comparing the way coding optimizations affect the data reuse

characteristic.

It is also important to make some comments on the particular data reuse characteristic of the

kernels. As mentioned before, Figures 29~36 present data reuse characteristics assuming

enough parallelism to run all threads concurrently, very close to the ideal behavior of the

application. In addition, we also have seen that blocks of one kernel present a data reuse

characteristic with very similar profiles, only differentiating themselves with different

magnitudes at reuse distances. It seems intuitive that the per block data reuse characteristic

should be the way kernels of different applications from one another, since these are able to

represent the data reuse patterns very effectively. However, depending on the characteristics

of the kernel code, significant variations can occur, as can be seen by nbf, moldyn, irreg and

euler. In the Figures 33~36 it is feasible to notice the way the reuse distance domains of these

kernels vary in block 1 with respect to block 0. There are also variations in the reuse degree

magnitudes.

When a kernel has a significant amount of branches with state only known at runtime or

presents runtime variability of various kinds, and coupled with this, many instructions that

access memory are within the branch paths, then the reuse characteristic can vary significantly

from one block to the next. For some applications, the reuse distance domain is drastically

reduced for many of blocks in the kernel. The data reuse characteristic of kernel blocks that

were obtained with our methodology were not tested in their entirety. There are some kernels

for which such variations are almost non-existent, as with the case for sta, gsim, bfs and

64

vectoradd. On the other hand, kernels such as nbf, moldyn, irreg and euler do present

important variations. In addition, we also ran preliminary tests with applications from the

Rodinia [22] benchmark suite prior to writing this document, and we were able to see that

there was significant variability in the reuse characteristic of different blocks. The analyses of

the variability in the data reuse characteristic presented by the thread blocks due to runtime

dynamics is left for future work.

9.2 Data Reuse Characteristic with varying parallelism capabilities

In this sub-section, we present the results corresponding to Scenarios 3 and 4. Figures 37~44

show the data reuse characteristic of the applications obtained when all thread blocks of the

kernel are executed in parallel. There‟s a huge similarity in the contour of the charts between

these figures and their corresponding counterparts in Figure 29~36. Consider bfs in Figure 39,

and consider the first three blocks of bfs shown in Figure 31. When all blocks are modeled as

running in parallel, the resulting data reuse characteristic has the same contour but with

varying magnitudes of the data reuse degree at the same distances. There‟s still some variation

with respect to the particular blocks, but the contour similarities between both charts is very

strong. This same behavior is presented between all of the applications and their associated

thread blocks.

Figure 37: Data reuse characteristic when modeling block execution when all blocks run

in parallel for sta.

65

Figure 38: Data reuse characteristic when modeling block execution when all blocks run

in parallel for gsim.

Figure 39: Data reuse characteristic when modeling block execution when all blocks run

in parallel for bfs.

Figure 40: Data reuse characteristic when all blocks of vectoradd are modeled as

executing in parallel.

66

DS

R

Figure 41: Data reuse characteristic when all blocks of nbf are modeled as executing in

parallel.

DS

R

Figure 42: Data reuse characteristic when all blocks of moldyn are modeled as executing

in parallel.

DS

R

Figure 43: Data reuse characteristic when all blocks of irreg are modeled as executing in

parallel.

67

DS

R

Figure 44: Data reuse characteristic when all blocks of euler are modeled as executing in

parallel.

This similarity observed is particularly important. The runtime variations that alter the data

reuse characteristic of each individual block, briefly explained in Section 9.1, get “absorbed”

by the characterization methodology. That is, the resulting characteristic of all blocks running

in parallel becomes insensitive to the changes in the reuse characteristic that certain blocks

suffer due to runtime dynamics. This is because the analysis process is a reductionist since it

accumulates all the data reuse degrees associated to a specific value of reuse distance. The

result is that we obtain a reuse characteristic that is ideal for which block scheduling or task

allocation policies are trivial. Such reuse characteristic is not defined by the details of the

memory subsystem and not by parallelism limitations. Therefore, it becomes a less variable

and more reliable representation of the data reuse characteristic of the kernel. Tentatively, we

can define this as the signature reuse characteristic for the applications used in this work.

Figures 45~52 present the data reuse characteristic of the applications when a different

number of blocks „K‟ are able to run concurrently. For every application, we used K=2, K=4,

K=8, K=16. The blocks that run simultaneously are chosen by the block scheduling module

and the policy it implements. The way the blocks are scheduled in the concurrent slots

modifies the resulting reference stream, which will result in variations of the data reuse

characteristic. Notice that all of the applications present a similar contour with peaks of

different magnitude at different reuse distances. Also, they all present the same behavior as

the number of blocks able to run in parallel increases.

68

b)

DS

R

DS

DS
DS

a)

R

R

R

d)c)

Figure 45: Data reuse characteristic when only ‘K’ blocks of sta are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.

DS

R

DS

a) b)

DS DS

c) d)

R

R

R

Figure 46: Data reuse characteristic when only ‘K’ blocks of gsim are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.

69

DS

R

DS

a) b)
DS

c) d)

R

R

DS

R

Figure 47: Data reuse characteristic when only ‘K’ blocks of bfs are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.

DS

R

DS

a) b)
DS

c) d)

R

R

DS

R

R

R

Figure 48: Data reuse characteristic when only ‘K’ blocks of vectoradd are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.

70

DS DS

a)DS DS

R R

b)

R R

c) d)

Figure 49: Data reuse characteristic when only ‘K’ blocks of nbf are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic for K=16.

DS DS

a) b)
DS DS

c)

R

d)

R

R R

Figure 50: Data reuse characteristic when only ‘K’ blocks of moldyn are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. The reuse domain for this

case is actually RD={1,124030}. The tool used to make the graphs could not display it

71

properly. (b) Data reuse characteristic for K=4. (c) Data reuse characteristic for K=8. (d)

Data reuse characteristic for K=16.

DS

c)

R

a)

DS

b)

R

DS

R

d)

R

DS

Figure 51: Data reuse characteristic when only ‘K’ blocks of irreg are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. (b) Data reuse characteristic

for K=4. (c) Data reuse characteristic for K=8. (d) Data reuse characteristic

a)DS b)DS

R

DS DS

R

R

c) d)

R

Figure 52: Data reuse characteristic when only ‘K’ blocks of euler are modeled as

executing in parallel. (a) Data reuse characteristic for K=2. The reuse domain for this

case is actually RD={1,66623}. The tool used to make the graphs could not display it

72

properly. (b) Data reuse characteristic for K=4. (c) Data reuse characteristic for K=8. (d)

Data reuse characteristic

For every value of „K‟, all the kernels find their reuse distance domain (spectrum) increased

when compared to the case where all blocks are running in parallel. This happens because of

the amount of data reuse across blocks that these applications present, analogous to what

occurs when all blocks are serialized. The increase in the total reuse distance domain is hard to

determine a priori because of the variations that blocks may incur during runtime, no matter

how slightly they are. Also, and for this same reason, the number of reuse degree peaks

increase across the RD domain.

As „K‟ increases from 2 to 4, the RD domain is reduced in a near-linear away. For every

application, the reuse distance domain when K=4 is nearly half of the reuse distance domain

when K=2. The same occurs between K=8 and K=4, and between K=16 and K=8. This

demonstrates, in a quantified way, the impact that the availability of resources has over the

reuse characteristic of a kernel. If the amount of blocks that are able to run in parallel is very

low, and assuming that a kernel has a fairly large amount of blocks when compared to the

resources in a real architecture, it is very likely that data will be reused at very far away

distances i.e. after a large number of MIs. For example, let‟s take a look at sta. When running

all blocks in parallel, we observe DS= 1256 at the largest reuse distance in the domain RD =

37. On the other hand, when only 2 blocks are able to run in parallel, we have that at the

largest reuse distance RD = 4103 with DS=2, very low reuse degree and very far. This fact

can have a significant impact on the application‟s performance, as explained in Section 9.1.

Notice that the RD domain has increased by more than 10 times.

Even though the reuse characteristics shown in Figures 45~52 present a similar contour as „K‟

varies, the actual reuse degree vs. reuse distance relationship is still very similar to the one of

their corresponding blocks i.e present strong similarity, even after applying a round robin

scheduling policy. In Figures 53 and 54 we present the data reuse characteristic of sta for K=2

and K=16, respectively, with zoom in three different ranges. We see that in the range from

RD=1 to RD=20 in Figure 53(a) for K=2, there‟s a strong similarity with the characteristic

obtained when all blocks are running in parallel. Even the magnitudes are very similar. In the

next range from RD=21 to RD=40 in Figure 53(b), the variation with respect to the previous

range is trivial, both are almost identical. And the last range, from RD=41 to RD=60 in Figure

73

53(c), we see that it is also strikingly similar to the previous range. The same behavior is

observed for K=16, as presented in Figure 54. Therefore, different ranges of the overall data

reuse characteristic are heavily related to one another. This happens because, even though the

runtime dynamics affect the reuse characteristic of the blocks, the data reuse pattern is still

very similar across the majority of the blocks of the kernels used in this work.

DS DS DS

RR R

a) b) c)

Figure 53: Data reuse characteristic resulting when only K=2 blocks of sta are modeled

as executing in parallel. (a) Data reuse characteristic presented for reuse distance range

RD={1, 20}. (b) Data reuse characteristic presented for reuse distance range RD={21, 40}.

(c) Data reuse characteristic presented for reuse distance range RD={41, 60}.

DS DS DS

RR R

a) b) c)

Figure 54: Data reuse characteristic resulting when only K=16 blocks of sta are modeled

as executing in parallel. (a) Data reuse characteristic presented for reuse distance range

RD={1, 20}. (b) Data reuse characteristic presented for reuse distance range RD={21, 40}.

(c) Data reuse characteristic presented for reuse distance range RD={41, 60}.

9.3 Data Reuse Characteristic with limitations of SIMT Architectures

The results presented in this subsection correspond to Scenarios 5 and 6 of the data reuse

characterization. These Scenarios capture the data characteristic when modeling the

limitations of SIMT architectures when issuing memory instructions. As explained in Sections

6.5 and 6.6, we include a finite number of load/store units associated with each core cluster in

the system, which we modeled in the Locality Analyzer. We experimented with a constant

number of core clusters and varying number of load/store units. Figures 55~61 present the

74

reuse characteristic obtained when modeling all core clusters in the systems, setting the

number of core clusters to 16 and with 16, 32 and 64 load/store units per core cluster.

DS DS DS

RR R

a) b) c)

Figure 55: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for sta. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

DS DS DS

RR R

a) b) c)

Figure 56: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for gsim. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

DS DS DS

RR R

a) b) c)

Figure 57: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for bfs. (a) Data

75

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

DS DS DS

R
R R

a) b) c)

Figure 58: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for vectoradd. (a)

Data reuse characteristic for 16 load/store units per core cluster. (b) Data reuse

characteristic for 32 load/store units per core cluster. (c) Data reuse characteristic for 64

load/store units per core cluster.

DS DS DS

a) b) c)

RR R

Figure 59: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for nbf. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

76

DS DS DS

a)

R

b)

R

c)

R

Figure 60: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for irreg. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

DS DS DS

R

a) b)

R

c)

R

Figure 61: Data reuse characteristic from the aggregate reference stream of all core

clusters with varying number of load/store units in each core cluster for euler. (a) Data

reuse characteristic for 16 load/store units per core cluster. (b) Data reuse characteristic

for 32 load/store units per core cluster. (c) Data reuse characteristic for 64 load/store

units per core cluster.

In Figure 55, the data reuse characteristic for sta is shown when modeling certain SIMT

architectural limitations. Notice that for the reuse degree peaks that appeared in the results of

previous sections do not appear in this figure. It appears that the characteristic is flattened as

the reuse distance increases. The reuse degree magnitudes at short distances are very high, but

decrease at a higher rate as the reuse distance increases. This same behavior, as Figures 55~58

show, is common to sta, gsim, bfs and vectoradd.

These four applications present a very particular case. When the number of load/store units

becomes limited, the amount of data reuse that one single MI can exploit with relationship to

any other MI is significantly reduced. The amount of threads that execute one specific

77

memory instruction is usually much larger than the number of load/store units in a single core

cluster. Consequently, the total number of simultaneous accesses that a single core cluster

can handle is dependent on the amount of load/store units it has. Therefore, to service the

requests of multiple threads, more execution cycles are necessary, which in turns means more

MIs increasing the position index of every MI in the reference stream. This has the effect of

distributing the total reuse degree across different memory accesses, which basically flattens

the reuse characteristic, distributing the magnitude of degree peaks previously seen among a

wider number of distances.

This observation is particularly important. Keep in mind that we have only modeled one single

resource limitation of SIMT architecture for our experiments. Figure 62 shows a zoomed

version of sta for 16 load/store units. Notice the way the characteristic is smoother than

previous cases, and notice the „kneels‟ of the chart it now presents at very specific distances.

This case does not present any similarity whatsoever with the data reuse characteristic

observed in individual blocks of sta nor when different amount of blocks run in parallel, as

show in Section 9.2. Intuitively, it is more appropriate to conclude that the reuse characteristic

obtained from sta when modeling SIMT limitations is actually the data reuse that the model of

our SIMT architecture can in fact exploit from sta. Thus, it is not solely dependent on the

application, but in the interaction between the reuse pattern of the sta kernel and the SIMT

load/store units.

DS DS DS

RR R

a) b) c)

Figure 62: Data reuse characteristic in reuse distance range RD={0, 100} of the aggregate

reference stream of all core clusters with varying number of load/store units for sta. (a)

Data reuse characteristic for 16 load/store units per core cluster. (b) Data reuse

characteristic for 32 load/store units per core cluster. (c) Data reuse characteristic for 64

load/store units per core cluster.

78

For the rest of the kernels tested, as shown in Figures 59~61 for nbf, irreg and euler,

significant peaks are still present, but with at least 2 orders of magnitude smaller when

compared to their respective counterpart for the case when all blocks are modeled as

executing in parallel. The reason for why this reuse degree peaks appear is explained by the

reuse characteristic itself of each block. These kernels reuse data at very long distances apart,

making partially ineffective the smoothing effect due the presence of finite load/store units. It

is partially ineffective because the smoothing of the data reuse characteristic curve is not total,

as the case with sta, but very significant due to the reduction in magnitude. As explained

before, when a kernel uses data at such far away distances, there could a huge impact on

performance.

Another important observation can be extracted from Figures 55~61. It is not possible to

obtain the characteristic of the reuse patterns of the kernels when modeling its runtime

behavior under the limitations imposed by real SIMT processors considered in our analyses.

When the analyses is performed on real architectures, the characteristic will deviate even

further from what is seen under more controlled scenarios. When capturing the data reuse

characteristic of the kernels becomes relevant, then it is necessary a methodology like the one

proposed with the associated implementation as described in Sections 6 and 7. To accomplish

this, it is necessary to abstract the analysis from the details of the architectures, and focus only

on the programming and runtime models of the particular processor.

Even though we focused more on the case of sta, all of the applications used in this work

present a similar behavior, as the figures show. The data reuse characteristics of the

applications lose their reuse degree peaks, get flattened or partially flattened i.e. the reuse

degree magnitude of the peaks in previous instances is distributed among a larger number of

distances. There are cases, as vectoradd shown in Figure 58, the decrease rate of the reuse

degree might be smaller, but the decrease rate maintains uniformity and relatively smooth.

Even with the fact that the general behavior is similar in the kernels presented, there are still

differences that need to be explored. A thorough exploration of these differences is left for

future work.

Figure 63~70 present the reuse characteristic in two of the individual core clusters. In both

Variations 5 (Figures 55~61) and Scenarios 6 (Figures 63~70) the resulting reference stream

is different than in the case for Scenario 3 (all blocks running in parallel). This is due to the

79

effects of the scheduling policy, as in Scenario 4, and this also coupled with the presence of a

finite number of core clusters in each core, which makes it necessary to serialize a significant

portion of the thread blocks. This limits drastically the amount of MIs that can be executed at

the same time. The behavior is very similar to the ones seen in Figures 55~61, corresponding

to Scenario 5. There‟s a striking similarity between these two cases, but the magnitudes in

Scenario 6 are comparatively much smaller.

DS DS

R R

a) b)
DS DS

R
R

c) d)DS DS

R R

e) f)

Figure 63: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for sta. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

80

DS DS

R R

a) b)
DS DS

R R

c) d)DS

R R

e) f)

DS

Figure 64: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for gsim. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

81

DS DS

R R

a) b)
DS DS

R R

c) d)DS

R R

e) f)

DS

Figure 65: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for bfs. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

82

DS DS

R R

a) b)
DS DS

R R

c) d)DS

R R

e) f)

DS

Figure 66: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for vectoradd. (a) First core cluster

with 16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core

cluster with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First

core cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

83

DS

R R

a)
DS DS

c) d)
DS

R

e) f)

DS

b)

DS

R
R

R

Figure 67: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for nbf. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

84

DS DS

a) b)DS DS

c) d)
DS

e) f)

DS

R

R R

R

R

R

Figure 68: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for moldyn. (a) First core cluster

with 16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core

cluster with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First

core cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

85

DS

a) b)

DS

e) f)

DS

R

DS

R

DS

R

d)c)

R

R

DS

R

Figure 69: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for irreg. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

86

DS

DS

R

a)

DS

b)

R

R

DS

c)

DS

R

d)

R

e)

R

DS

f)

Figure 70: Data reuse characteristic from the reference stream of the first and second

core clusters with varying number of load/store units for euler. (a) First core cluster with

16 load/store units. (b) Second core cluster with 16 load/store units. (c) First core cluster

with 32 load/store units. (d) Second core cluster with 32 load/store units. (e) First core

cluster with 64 load/store units. (f) Second core cluster with 64 load/store units.

9.4 Data Reuse Characteristic when applying code optimizations

In this section, the data reuse characteristics of selected applications are obtained after the

coding optimizations explained in Section 8. Initially, we will focus on the changes that the

data reuse characteristic presents under such optimization when performing Scenario 2 (per

thread block) of the data reuse characterization. Figures 71~77 show the charts for sta, gsim,

87

bfs, nbf, moldyn, irreg and euler respectively. Only the changes of the first block in the

kernels are presented. Each of these kernels has over a 100 blocks and to analyze them all,

with all of the variations and explain them, will require an extensive analysis that is beyond

the current scope.

DS DS

R

a) b)

DS

R
R

c)
DS DS DS

d) e) f)

R RR

Figure 71: Data reuse characteristic for block 0 of sta after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is 17. (e)

Comparison prior to optimizations and after thread and warp clustering. Difference in

the reuse degree is 802. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 802.

DS DS

R

a) b)

DS

R R

c)
DS DS DS

d) e) f)

R

RR

Figure 72: Data reuse characteristic for block 0 of gsim after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

88

prior to optimizations and after thread clustering. Difference in the reuse degree is 400.

(e) Comparison prior to optimizations and after thread and warp clustering. Difference

in the reuse degree is 795. (f) Comparison prior to optimizations and after thread

clustering, warp clustering and block scheduling. Difference in the reuse degree is 794.

DS DS

R

a) b)

DS

R
R

c)

DS DS DS

d) e) f)

R
RR

Figure 73: Data reuse characteristic for block 0 of bfs after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is 17. (e)

Comparison prior to optimizations and after thread and warp clustering. Difference in

the reuse degree is 802 (f) Comparison prior to optimizations and after thread clustering,

warp clustering and block scheduling. Difference in the reuse degree is 802.

DS DS

R

DS

DS DS DS

R

a) b)

R R

R

c)

d) e) f)

R R

Figure 74: Data reuse characteristic for block 0 of nbf after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

89

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is

44458. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 60346 (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is

60576.

DS DS DS

R

a) b)

R R

c)
DS

R

d)

DS

e)

R

DS

f)

R

Figure 75: Data reuse characteristic for block 0 of moldyn after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is

352556. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 446146. (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is

447102.

90

DS DS

a) b)
DS

R

DS

c)

R R

DS

d)

DS

e)

R

f)
R R

Figure 76: Data reuse characteristic for block 0 of irreg after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is

47309. (e) Comparison prior to optimizations and after thread and warp clustering.

Difference in the reuse degree is 53448. (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is

43212.

DS DS

R

DS

DS
DSa) b) c)

R R R

DS

d)

R

e)

R

f)

R

Figure 77: Data reuse characteristic for block 0 of euler after coding optimizations. (a)

After applying thread clustering. (b) After applying thread and warp clustering. (c)

After applying thread clustering, warp clustering and block scheduling. (d) Comparison

prior to optimizations and after thread clustering. Difference in the reuse degree is

59694. (e) Comparison prior to optimizations and after thread and warp clustering.

91

Difference in the reuse degree is 81755. (f) Comparison prior to optimizations and after

thread clustering, warp clustering and block scheduling. Difference in the reuse degree is

82204.

Let‟s analyze first sta. In Figure 71(a), we see the resulting data reuse characteristic when

applying the thread clustering technique. The contour is fairly the same as it for the data reuse

characteristic prior to the optimization, presented in Section 9.1. However, a closer

observation in fact reveals a very interesting variation in the magnitude for the reuse degree at

very specific distances. In order to facilitate the comparisons, Figure 71(d) shows the

difference between the data reuse degree in Figure 71(a) and the corresponding characteristic

in Figure 29(a). This chart is obtained by subtracting the reuse degree at the corresponding

reuse distance in the characteristic in Figure 29(a) from Figure 71(a). The sum of all the

values in Figure 71(d) is shown at the bottom part of the figure. We can see that there‟s an

increase in the total reuse degree of 17 units when compared to the case with no optimization.

This sum, even though not a proper way to compare the changes in the reuse characteristic

between the two cases, still provides a very intuitive way of understanding the improvement

on the reuse behavior that the optimizations have over the data reuse patterns. However, as we

shall see briefly, there are cases in which this magnitude can change negatively, requiring a

different interpretation.

Notice also that in Figure 71(d), the portion of the reuse degree magnitudes at RD=3, 5 have

decreased, while the reuse degree for distances RD=1 have increased by much more. Both

quantities do not seem directly related. As this observation shows, the reuse degree for reuse

distances has therefore increased for the short distances significantly, while there has been a

decrement in the longer distances, but not that substantial.

A very particular behavior is observed for the case when thread clustering optimization

technique is coupled with warp clustering, as described in Section 8. The resulting data reuse

characteristic is presented in Figure 71(b). The contour is still the same, but the reuse distance

domain has been reduced by 23.5% (from 17 down to 13). Figure 71(e) presents the

comparison chart between Figure 71(b) and Figure 29(a). The total reuse degree increases

even more up to 802, even though the reuse distance domain is also reduced, signaling a

significant improvement. The fact that the reuse domain has been reduced means that there is

less probability for data being evicted before being requested by a different MI at this specific

92

distance apart. In [18], Kuo et. al. report a running time performance improvement of around

60% for sta when applying thread clustering and warp clustering. The performance gain can

be explained in part by the changes seen in the data reuse characteristic.

The data reuse characteristic for the case where the three optimization techniques (thread

clustering, warp clustering and block scheduling) are applied is presented in Figure 71(c). For

the thread block 0 of sta there is not much performance improvement when compared to the

case where only thread clustering and warp clustering are applied. However, a performance

improvement of more than 80% is reported in [18]. This is because the charts in Figures

71~77 only capture the reuse characteristic within the block itself, therefore any coding

optimization that mimics a variation in the way blocks are scheduled will not be entirely

visible within the block. However, for nbf, moldyn, irreg and euler, the block scheduling

optimization does have an effect on the code. Recall that these optimizations are coding

optimizations mimicking a scheduling approach. An analysis of the effects of this coding

optimizations technique over the groups of applications used mentioned is left for further

research.

Figures 78~84 presents the data reuse characteristic for the case where all blocks within the

application are run in parallel when coding optimizations are applied.

DS DS

R

a) b)

DS

R R

c)

R

d) e)

R
R

f)

DS DS DS

Figure 78: Data reuse characteristic for all blocks running in parallel of sta after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse

degree is -10216. (e) Comparison prior to optimizations and after thread and warp

93

clustering. Difference in the reuse degree is 14229. (f) Comparison prior to optimizations

and after thread clustering, warp clustering and block scheduling. Difference in the

reuse degree is 11940.

DS DS

R

a) b)

DS

R R

c)

DS DS DS

d) e) f)

R R R

Figure 79: Data reuse characteristic for all blocks running in parallel of gsim after

coding optimizations. (a) After applying thread clustering. (b) After applying thread and

warp clustering. (c) After applying thread clustering, warp clustering and block

scheduling. (d) Comparison prior to optimizations and after thread clustering.

Difference in the reuse degree is 8236. (e) Comparison prior to optimizations and after

thread and warp clustering. Difference in the reuse degree is 21363. (f) Comparison

prior to optimizations and after thread clustering, warp clustering and block scheduling.

Difference in the reuse degree is 17129.

DS DS

a) b)

DS

c)

R
R R

d) e)

DS

R
R

f)

R

DS DS

Figure 80: Data reuse characteristic for all blocks running in parallel of bfs after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

94

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse

degree is -10812. (e) Comparison prior to optimizations and after thread and warp

clustering. Difference in the reuse degree is 13361. (f) Comparison prior to optimizations

and after thread clustering, warp clustering and block scheduling. Difference in the

reuse degree is 11324.

d)

R

e)

DS

R

f)

DS

R

DS

a)

R

DS

b)

DS

R

c)

R

DS

Figure 81: Data reuse characteristic for all blocks running in parallel of nbf after coding

optimizations. (a) After applying thread clustering. (b) After applying thread and warp

clustering. (c) After applying thread clustering, warp clustering and block scheduling. (d)

Comparison prior to optimizations and after thread clustering. Difference in the reuse

degree is 6053. (e) Comparison prior to optimizations and after thread and warp

clustering. Difference in the reuse degree is 7400. (f) Comparison prior to optimizations

and after thread clustering, warp clustering and block scheduling. Difference in the

reuse degree is 9138.

95

d) f)

DS

R

e)

R

DS

R

DS

a)DS

R

DS

b)

R

DS

c)

R

Figure 82: Data reuse characteristic for all blocks running in parallel of moldyn after

coding optimizations. (a) After applying thread clustering. (b) After applying thread and

warp clustering. (c) After applying thread clustering, warp clustering and block

scheduling. (d) Comparison prior to optimizations and after thread clustering.

Difference in the reuse degree is -3373236. (e) Comparison prior to optimizations and

after thread and warp clustering. Difference in the reuse degree is -5170268. (f)

Comparison prior to optimizations and after thread clustering, warp clustering and

block scheduling. Difference in the reuse degree is -5791542.

DS DS

d)

DS

R

e)

R

f)

R

DS

a)

R

DS

b)

R

DS

c)

R

Figure 83: Data reuse characteristic for all blocks running in parallel of irreg after

coding optimizations. (a) After applying thread clustering. (b) After applying thread and

warp clustering. (c) After applying thread clustering, warp clustering and block

scheduling. (d) Comparison prior to optimizations and after thread clustering.

96

Difference in the reuse degree is -4445. (e) Comparison prior to optimizations and after

thread and warp clustering. Difference in the reuse degree is -4402. (f) Comparison prior

to optimizations and after thread clustering, warp clustering and block scheduling.

Difference in the reuse degree is -4647.

d)

DS

R

e)

DS

R

f)

DS

R

DS

a)

R

DS

b)

R

DS

c)

R

Figure 84: Data reuse characteristic for all blocks running in parallel of euler after

coding optimizations. (a) After applying thread clustering. (b) After applying thread and

warp clustering. (c) After applying thread clustering, warp clustering and block

scheduling. (d) Comparison prior to optimizations and after thread clustering.

Difference in the reuse degree is 8904. (e) Comparison prior to optimizations and after

thread and warp clustering. Difference in the reuse degree is 7834. (f) Comparison prior

to optimizations and after thread clustering, warp clustering and block scheduling.

Difference in the reuse degree is 9172.

Notice once again the case for sta in Figure 78. The contour is the same, but the reuse degree

magnitudes vary when compared to Figure 71. Figure 78(e) presents the comparison charts for

the cases where the three coding optimizations are applied. In this case, the total reuse degree

over the distance domain is drastically reduced after applying the optimizations. The

explanation behind this is that when all blocks execute in parallel and are optimized, a

situation occurs where the position of the MIs within the reference stream is reduced and/or

the addresses accessed by one given MI are now accessed by a different MI earlier in the

reference stream. This causes that one MI accesses data simultaneously for an MI in the

original reference that would have accessed those addresses are a later position. When this

occurs, the reuse degree for that distance will reduce, signaling some improvement under

97

these circumstances, even though the reuse characteristic does not present an increase in the

overall reuse degree magnitudes.

Analyzing thoroughly why does in fact the reuse characteristic for the case when all blocks are

running in parallel changes in such a way for when optimizations are applied, contrasting this

with the behavior observed by block 0 in Figures 29~36, will require to analyze each of the

blocks of the kernels. However, as we have explained, the huge amount of parallelism

available in our idealized architecture model might be the cause behind this.

A reasonable conclusion to explain the performance improvement after optimizing is the

increase of memory coalescing that rescheduling the blocks in a more efficient way cause. For

now, neither the current methodology nor the analytical model provided here can quantify

memory coalescing within a given MI. Therefore, the performance improvement cannot be

explained only considering the data reuse characteristic as analyzed so far. The scope of this

paper is not obtain a relationship between the reuse characteristic and the performance

improvements, but the behavior just observed makes it necessary to make such analysis in

future work.

A similar behavior is presented for all the applications shown. When the optimizations are

applied, the total data reuse degree increases and, in some cases, the distance reuse domain is

reduced. Notice how all the applications maintain without any significant changes the contour

of their reuse characteristic, even when the reuse domain is shrunk.

98

X. RELATED WORK

In [8, 10, 23, 24, 25, 26] it was demonstrated the importance of data reuse in CMPs

(multi/many-core) and SIMT processors as a means to improve performance for different

benchmarks and application domains. As noted in [27], understanding data reuse becomes

important in many-core systems that are limited by memory bandwidth, as the case for SIMT

processors [28]. Exploiting data reuse saves memory bandwidth, because less accesses are

required [12, 13, 29]. The capacity limitaiton is significant in SIMT processors, due to the

relative small caches for the amount of threads [12, 29]. In [9], Kuo et. al. explain that the

capacity constraint can cause contention and destructive sharing in certain cases.

Understanding whether these phenomena are due to application behavior or to limitations of

the subsystem is necessary. Also, understanding data reuse is key to improve the management

of the memory resources of SIMT applications, which are relatively scarce, but are critical in

boosting performance [3].

In [8], Jia et. al. propose a taxonomy of the data reuse behavior based on the abstractions of

the execution model and proposed compiler-based techniques to analyze the reuse behavior.

For this, they use the intrinsic relationship of the thread identification mechanism and their

portion of the total data set. This approach is limited in that it cannot analyze memory

accesses whose addresses are unknown until runtime. Also, they assume that applications

running on a GPU present negligible cross-block data reuse. This assumption is valid for a

specific set of applications. However, as we have seen in the results section of our work, there

are applications that do present considerable cross-block data reuse.

In [9], Kuo et. al. developed a standalone library that builds a hypergraph that represents the

data sharing between different run time abstractions of GPUs. Based on this analysis, coding

optimizations are performed to CUDA kernels that mimic scheduling mechanisms. The gain

in performance is signifcant.

Most of the efforts in data reuse characterization and analysis, such as [8] and [9], are based

on static analyses. These works don‟t provide a way to quantify the data reuse behavior, or to

characterizae any locality dimensions: whole-program, in program code, in program data, over

time (program phases), interaction between programs, as explained in [10]. Arguably, some of

99

these dimensions might not be totally applicable to SIMT environment. For example,

analyzing the different phasesof computation might not be efficient or relevant for certaub

kernels in SIMT processors, since these kernels are relatively short-lived (when compared to

threads in a CMP environment). However, analogous concepts to whole-program locality bare

significant relevance, in our view, because of the necessity to analyze memory access patterns

and to exploit data reuse of GPU kernels. Our model attempts to create a locality signature of

the program totally isolated from particular architectural limitations. In this way, we quantify

and visualize the specific reuse behavior of the application. This is useful in assessing the

improvement due to code optimizations over the data reuse behavior (temporal/spatial locality)

and performance since, as exposed in [30], these two, sometimes, do not relate to each other in

a straightforward way.

In contrast to [8] and [9], for our work we preffered not to employ static analyses, using

memory traces instead. Our main reason is because such static methods cannot account for the

indeterministism of certain portions of the kernel. Memory traces can offer profound insight

of the applications, allowing for more refined analyses to capture runtime variations, model

them and increase predictability [10]. However, the methodology we propose is relatively

straightforward, and has not been extended to provide prediction of any kind. In this work, we

attempt to provide the locality signature of the SIMT applications using a new metric: the data

reuse degree, and a variation of the reuse distance concept.

Locality characterization of applications using reuse distance profiles, concept introduced by

[15] as LRU stack distance, has been widely used to predict cache performance and measure

different dimensions of locality. It has been used for systems with serialized memory behavior

(corresponding to uniprocessor systems), as is the case in [30, 31, 32] and also for systems in

which concurrency in memory access is allowed, such as in CMPs [11, 33, 34]. The reuse

distance profiles so obtained can be used to predict cache miss rates, under assumptions of

other cache parameters (LRU policy, constant associativity, etc), and analyze different

dimensions of locality [10, 14]. Additional complications arise when analyzing applications

running on CMP systems, as explained in [11], but prediction is still feasible.

The methodology used to capture program locality based on the data reuse behavior used for

CMP systems detailed in [11] is not totally adequate to model locality for SIMT processors.

100

The reason is that private caches in CMP systems are in fact exclusive to each core, whereas

the privacy of the caches in SIMT processor is not. In this case, all threads within one core

cluster utilize the same caches with a particular portion assigned to them when necessary.

Trying to even perform the analysis on the portion assigned to each thread becomes

impractical. This is because threads in SIMT threads are smaller in stream size and are

relatively short-lived when compared to their counter-parts in most applications running on

CMPs. Our work proposes a new methodology totally different than the use in CMP systems,

and proposes a novel approach to analyzing locality in SIMT processors.

In [35], Tang et. al. offer an analytical model based on stack distance to predict cache miss

rates on GPUs. Tang et. al. acknowledge the impact that the programming model of SIMT

processors has on analyzing locality. Also, they consider very specific constraints and

characteristics of the memory susbsytem (Effect Point) coupled with program behavior

(Access Point) to perform the stack distance profiling. Their work is focused on predicting

miss rates and the ocurrence of contention. The histograms obtained by this methodology are

highly dependent on the cache parameterers assumed (associativiy, replacement policy).

Therefore, it is not inherent to the kernel itself. Also, they assume that cross-block data reuse

is negligible. As mentioned before, the validity of the assumption that there is no cross-block

reuse depends on the particular kernel.

We attempt to improve over the approach proposed in [35] by quantifying the data reuse on

per memory instruction basis, and building a histogram that captures the data reuse between

two memory instructions at varying distances in an efficient way. In contrast to [35], we don‟t

build stacks and traverse them in every access to build the histogram, since this makes

problematic the creation of the histograms. In Section 2, we explained that this approach can

alter the actual reuse distance depending on the order in which the addresses traverse the stack

(or any other data structure for that matter). This problem is not addressed at all in [35].

Another improvement when compared to [35], is that we perform our analysis independent on

particulars of the cache parameter, considering the programming model and the amount of

available parallelism given the code structure of the kernel.

101

XI. CONCLUSIONS

In this work, we have a shown a novel methodology to analyze locality in SIMT applications.

This methodology is totally architecture agnostic, dependent only on the programming and

runtime models, and it allows to model the execution of the kernels under varying degrees of

parallelism. In addition, we also define new metrics and a new reuse distance model which we

use to obtain the data reuse characteristic, a term we coined to refer to a specific locality

property of SIMT applications: data sharing or data reuse. Coupled with this, we also a

developed a framework, the Locality Analyzer, that implements our methodology with the

analyses detailed throughout the document. Our framework is very flexible and scalable,

which will allow performing different types of analyses.

We were also capable of observing very interesting properties of the kernels we tested when

showing their quantified data reuse characteristic in a visual way. We demonstrated that the

kernels we tested do in fact present a significant amount of data reuse across different blocks

in the kernel. We also showed the way different parallelism constraints alter the reuse

behavior of the kernel, and the way SIMT architectural limitations basically damp out the

reuse characteristic, making it smoother and distributing the memory requests across a larger

number of memory instructions.

We also show the way certain coding optimization techniques modify the reuse characteristic

of the applications. This accounts for part of the performance improvement that the kernels

incur when running on a real GPU system, but cannot explain all of it, as we could see when

analyzing the reuse characteristic under specific constraints.

When observing the results, we realized that further work is required in order to define

properly the signature reuse characteristic of the kernels and correlate the behavior observed

with performance in real architectures. First, we need make a more thorough analysis of the

variability presented by the blocks of one kernel within the perspective of the data reuse

characteristic. This will provide a different way to categorize applications based on a truly

architecture agnostic metrics. Also, it is also necessary to test different scheduling policies in

order to analyze their effect on the data reuse characteristic, and demonstrate if it is whether or

not beneficial to control the scheduling policies of real architectures. Moreover, it is necessary

102

to extend the analyses to quantify coalescing, if possible, and to estimate the occurrence of

contention and miss rates, since such analysis will allow establishing the relationship between

data reuse characteristic and the performance observed. This will enable to explain better the

performance improvements when running applications on real architectures.

In addition, it will also be necessary to optimize the algorithms used in the analytical

framework and to calculate the reuse degree. For some of the kernels used in this work, the

trace files generated were relatively large, and Scenarios 1, 5 and 6 would take too much time

to calculate. For some cases, also Scenario 4 for K=2 would take too much time to complete,

as was the case for moldyn which took almost a week. Scenarios 2, 3 and 4 would complete a

couple of minutes for all kernels. However, by making the process faster and more efficient

for the rest of the Scenarios, the procedure will become more attractive for programmers and

architectures.

For future work also is important to analyze the way the input and input sizes modifiy the

reuse characteristic and expand the applications used. It would be also interesting to show the

reuse characteristic of other benchmark suites such as Parboil, Rodinia and more applications

from the NVIDIA SDK.

103

XII. REFERENCES

[1] J. Hennessy; D. Patterson, 5
th

 ed., Computer Architecture. Elsevier, 2012.

[2] Brodtkorb, A.R.; Dyken, C.; Hagen, T. R.; Hjelmervik, J.M.; Storaasli, O.O.

“State-of-the-art in Heterogeneous Computing”. In Journal of Scientific Programming,

2010.

[3] Lashgar, A.; Baniasadi, A. “Performance in GPU Architectures: Potentials and Distances”.

In Workshop on Duplicating, Deconstructing and Debunking (WDDD) in conjunction

with ISCA, 2011.

[4] A. Kerr; G. Diamos; S. Yalamanchili. “A Characterization and Analysis of PTX Kernels”,

in IEEE International Symposium on Workload Characterization, October 2009.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron. Rodinia: A Benchmark

Suite For Heterogenous Computing. In Proc. of IEEE International Symposium of

Workload Characterization. 2009.

[6] Goswami, N., Shankar, R., Joshi, M., Li, T. “Exploring GPU Workloads: Characterization

Methodology, Analysis and Microarchitecture Evaluation implications”. In IEEE

International Symposium on Workload Characterization, December 2010.

[7] Yuan, G.L.; Fung, W.W.L.; Wong, H.; Aamodt, T.M. “Analyzing CUDA workloads using

a detailed GPU Simulator”. International Symposium on Performance Analysis of Systems

and Software (ISPASS), April 2009.

[8] Jia, W.; Shaw, K.; Martonosi, M. “”Characterizing and Improving the Use of

Demand-Fetched Caches in GPU”. In International Conference on Supercomputing, 2012.

[9] Kuo, H.K.; Lai, B.C.C.; Jou, J.Y. “A Cache Hierarchy Aware Thread Mapping

Methodology for GPGPUs”.

[10] Zhang, E Z.; Jiang, Y.; Shen, X. “The Significance of CMP Cache Sharing on

Contemporary Multithreaded Applications”. In Annual Symposium on Principles and

Practice of Parallel Programming. 2010.

[11] Schuff, D.L.; Parsons, B.S.; Pai, V.S. “Multicore-Aware Reuse Distance Analysis”. In

Parallel And Distributed Processing, Workshops and PhD Forum (IPDPSW), 2010.

104

[12] NVIDIA Corporation. NVIDIA GeForce GTX 680. 2012.

[13] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Version 4.2. 2012.

[14] Ding, C.; Zhong, Y. “Predicting Whole-Program Locality Through Reuse Distance

Analysis”. In Conference of Programming Languages and Implementation, 2003.

[15] Mattson, R.L.; Gecsei, J.; Slutz, D.R.; Traiger, I.L. “Evaluation Techniques for storage

hierarchies”. In IBM Systems Journal, 1970.

[16] Niu, Q.; Dinan, J.; Lu, Q.; Sadayappan, P. “PARDA: A Fast Parallel Reuse Distance

Analysis Algorithm”. In IEEE International Symposium on Parallel and Distributed

Processing Symposium, May 2012.

[17] G. Diamos, A. Kerr, S. Yalamanchili. Ocelot: A Dynamic Optimization Framework for

Bulk-Synchronous Applications in Heterogeneous Systems. In Proc. of PACT, pages

331-342. 2010.

[18] H.-K. Kuo, K.-T. Chen, B.-C. C. Lai and J.-Y. Jou, “Thread Affinity Mapping for

Irregular Data Access on Shared Cache GPGPU,” In Proc. Asia and South Pacific Design

Automation Conf., pp. 659-664, 2012.

[19] “ITC‟99 Benchmarks”, http://www.cad.polito.it/downloads/tools/benchmarks.html

[20] Das, R.; Uysal, M.; Saltz, J.; Hwang, Y.-S. “Communication Optimizations for Irregular

Scientific Computations on Distributed Memory Architectures”. In Journal of Parallel and

Distributed Computing, vol. 22, no. 3, pp. 462-478, 1994.

[21] Han, H.; Tseng, C.-W. “Exploiting Locality for Irregular Scientific Codes”. In IEEE

Transactions on Parallel and Distributed Systems, vol. 17, no.7, pp. 606-618, 2006.

[22] Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J.W.; Skadron, K. “Rodinia: A

Benchmark Suite For Heterogenous Computing”. In Proc. of IEEE International

Symposium of Workload Characterization. 2009.

[23] Krishna, A; Samih, A.; Solihin, Y. “Data Sharing in Multi-Threaded Applications and Its

Impact on Chip Design”. In Proc. of IEEE International Symposium on Performance

Analysis of System and Software, 2012

[24] NVIDIA Corporation. NVIDIA CUDA C Programming Guide.

http://www.cad.polito.it/downloads/tools/benchmarks.html

105

[25] Zhang, Y.; Kandemir, M.; Yemliha, T. “Studying Inter-Core Data Reuse in Multicores”.

In SIGMETRICS, 2011.

[26] Wu, C.C.; Wei, K.C.; Lin, T.H. “Optimizing Dynamic Programming on Graphics

Processing Units via Data Reuse and Data Prefetch with Inter-Block Barrier

Synchronization”. In International Conference on Parallel and Distributed Systems.

[27] Cong, J.; Zhang, P.; Zou, Yi. “Combined Loop Transformation and Hierarchy Allocation

for Data Reuse Optimization”. In International Conference on Computer-Aided Design

(ICCAD), 2011.

[28] Gou, C.Y.; Gaydadjiev, G.N. “Addressing GPU On-Chip Shared Memory Bank

Conflicts Using Elastic Pipeline”. In International Journal of Parallel Programming, 2012.

[29] NVIDIA Corporation. NVIDIA‟s Next Generation CUDA Computer Architecture: Fermi.

2009.

[30] Pyo, C.; Lee, G. “Reference Distance as a Metric for Data Locality”. In High

Performance Computing on the Information Superhighway, 1997.

[31] Beyls, K.; D‟Hollander, Erik H. “Reuse Distance as a Metric for Cache Behavior”. In

Proc. of the IASTED Conference on Parallel and Distributed Computing and Systems,

2001.

[32] Fang, C.; Carr, S.; Önder, S.; Wang, Z. “Reuse-distance-based Miss-rate Prediction on a

Per Instruction Basis”. In Workshop on Memory System Performance, 2004.

[33] Petoumenos, P.; Keramidas, G.; Zeffer, H.; Kaxiras, S.; Hagersten, E. “Modeling Cache

Sharing on Chip Multiprocessor Architectures”. In International Symposium on Workload

Characterizations, 2006.

[34] Xu, C.; Chen, X.; Dick, R.P.; Mao, Z.M. “Cache Contention and Application

Performance Prediction for Multi-Core Systems”. In International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2010.

[35] Tang, T.; Yang, X.; Lin, Y. “Cache Miss Analysis for GPU Programs Based on Stack

Distance Profile”. In International conference on Distributed Systems, 2011.

