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高介電係數閘極電晶體之負偏壓溫度不穩定

性引致臨界電壓改變量分佈之統計特性和模

式 
 

 

  學生：李啟偉           指導教授：汪大暉 博士 

 國立交通大學  電子工程學系  電子研究所 

 

摘要 
 

  在本篇論文中，我們針對元件中個別的單電荷產生，藉由統計性的方

法，探討了在高介電係數奈米級閘極電晶體元件中，負偏壓溫度不穩定性

引致臨界電壓改變量之分佈。我們量測大量小面積High-k元件之單電荷產

生特徵時間及其造成之臨界電壓漂移。我們發現單電荷產生之特徵時間有

數decade之廣。基於RD 模型之基礎，我們提出一個統計模型，結合實驗

萃取之單電荷產生之特徵時間及單電荷造成之臨界電壓漂移分佈，成功地

以蒙地卡羅模擬重現實驗數據之Vt 分佈及其和NBTI 操作時間的關係。 
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Abstract 

In this thesis, a negative-bias-temperature-instability (NBTI) induced Vt 

distribution is examined by a statistical study of individual trapped charge creations in 

nanoscale HfSiON gate dielectric pMOSFETs. We measure individual trapped charge 

creation times and corresponding threshold voltage shifts during NBTI stress in a 

large number of devices. The characteristic time distributions of the first three trapped 

charge creation are obtained. Wide dispersion of trap creation characteristic times in 

several decades is observed. A statistical model for an NBTI induced Vt distribution 

by employing the RD model and convolving collected the trapped charge creation 
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times and a single trapped charge induced Vt shift is developed. Our model can 

reproduces measurement results of an overall NBTI induced Vt distribution and its 

stress time evolutions well. 
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Chapter 1 

Introduction 

 

The aggressive CMOS scaling has been reaching the physical limit of 

conventional SiO2 MOSFETs as a result of significant direct tunneling current 

through ultrathin oxides. High-permittivity (high-k) gate dielectrics have emerged as a 

post-SiO2 solution. Negative bias temperature instability (NBTI) has been recognized 

as a major concern in scaled high-permittivity (high-k) gate dielectric p-type 

metal-oxide-semiconductor field effect transistors (pMOSFETs) because of its 

significant impact on circuit performance and reliability [1-3]. The use of high-k gate 

dielectrics even expedites NBTI degradation [4-5]. NBTI caused noise margin 

degradation in SRAM cell (Fig. 1.1) and frequency degradation in a ring oscillator 

(Fig. 1.2) have been reported recently [6-7]. NBTI severity aggravates as supply 

voltage reduces in device scaling. In addition to digital circuits, NBTI is of particular 

importance for analog applications where the ability to match device characteristics to 

a high precision is critical [8]. For instance, in digital-to-analog converters, NBTI can 

pose a serious reliability issue as a small Vt shift in bias current source can cause large 

gain errors [9]. Therefore, it is important to carefully characterize the time evolution 

of threshold voltage to ensure the long-term viability of an integrated circuit. 

 

As MOSFET reduce to a nanometer scale, the threshold voltage degradation due 

to NBTI varies considerably from one transistor to another. Two NBTI degradation 

models, a reaction-diffusion (RD) model [10] and a charge trapping model [11-12], 

have been proposed. In our earlier work [11], we reported that NBTI induced Vt 
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degradation exhibits two stages. The first stage is ascribed to the charging of 

pre-existing high-k traps and exhibits a log(t) dependence. The second stage is caused 

by high-k trap creation and follows power-law dependence on stress time. Since in 

this work our measured NBTI induced Vt degradation obeys a t
1/n

 dependence (n~5.6), 

an NBTI Vt distribution model will be developed based on the RD model.  

The mean of an NBTI Vt distribution, or a Vt in a large-area device, can be 

well predicted by the RD model [10, 13-15], but the RD model alone is insufficient to 

describe an entire Vt distribution in nanoscale transistors. In NBTI qualification, 

since it is the tail part of a Vt distribution to determine a qualification pass/failure 

(Fig. 1.3), an accurate model of an overall Vt distribution and its stress time 

evolutions is urgently needed in an NBTI qualification method. 

 

 In Chapter 2, we characterize NBTI trap creation and Vt shifts in small-area 

devices. Unlike a large-area device, NBTI induced Vt degradation proceeds in discrete 

steps in small-area devices [3, 16]. Due to the discrete nature of a Vt evolution, we are 

able to measure individual trapped charge creation times and each trapped charge 

induced Vt shift. A total Vt shift in an NBTI stressed device can be expressed as the 

sum of each individual trapped charge induced vt, i.e.,


,1

N

t t ii
V v


   , where N is a 

total number of stress created traps in a device and vt denotes a single trapped charge 

caused Vt shift. Two factors influence a Vt distribution. One is the dispersion of vt 

and the other is fluctuations in number of traps N in stressed devices. Single trapped 

charge (hole) induced vt and its trapped charge (hole) creation time in NBTI stress 

are extracted from the measurement data.  

 

 In Chapter 3, we obtain the trapped charge (hole) creation time (i) distributions 
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are Gaussian-like distributions. Relationship of i distributions in trapped charge 

creation are derived by the RD model. A Monte Carlo model employing the RD 

model, collected the trapped charge creation time distributions and single trapped 

charge (hole) induced vt distribution will be developed to simulate an NBTI induced 

Vt distribution and its stress time evolutions. The mean and variance of Vt are 

acquired during NBTI stress. In literature, a Poisson distributed trap number was 

usually assumed [17-19] in an NBTI stressed device to model a Vt distribution. We 

also compare our model with Poisson model. However, the Poisson model based on a 

notion that individual trapped charge creations during NBTI stress are independent. In 

other words, each new trap creation in a device has the same probability regardless of 

how many traps have been created. Nevertheless, the RD model and measurement 

result show that NBTI degradation obeys a power-law dependence on stress time, 

implying that a new trap creation rate decreases with an increasing trapped charge 

number. Therefore, the use of a Poisson distribution model is contradictory to a 

measurement result and may exaggerate an NBTI induced Vt distribution tail. 

Finally, we give a conclusion in Chapter 4. 
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Fig. 1.1 Absolute Static Noise Margin (SNM) change vs. threshold voltage shift (Vt) 

for different VDD, indicating that the SNM change increases as VDD decreases. 
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Fig. 1.2 Percentage frequency reduction of NBTI stressed ring oscillator versus 

supply voltage (VDD). The magnitude of the frequency reduction increases as VDD 

decreases. 
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Fig. 1.3 Illustration of an NBTI induced Vt distribution and a device qualification 

criterion. 
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Chapter 2 

Characterization of Individual NBTI 

Trapped Charge Creation 
 

2.1 Preface 

As device dimensions reduce to a nanometer scale, NBTI induced Vt shifts 

scatter widely from a device to a device. Modeling of an entire NBTI induced Vt 

distribution is needed to ensure that the tail of Vt distribution does not cross the 

reliability criteria in a specified lifetime.  

 

Conventionally, NBTI characterization is carried out by periodically interrupting 

stress to measure device electrical parameters such as Vt or drain current (Id) 

degradation. Note that conventional measurement (for example, by Agilent 4156), 

which usually takes a few seconds between stress and recovery transitions, is unable 

to catch an initial transient in a s to ms range and may significantly underestimate 

the magnitude of a transient effect. Owing to recent improvements in measurement 

techniques [20-22], a measurement delay can be reduced to s (for example, by 

Agilent B1500) to avoid information missing during a switching transient.  

 

In contrast to large-area devices (Fig. 2.1 (a)), we found that NBTI induced Vt 

degradation and recovery in nanoscale transistors proceed in discrete steps [22-26] 

due to augmentation of single charge effects in scaled devices. Example Vt evolutions 

in a small-area device (W/L=80nm/30nm) are shown in Fig. 2.1 (b). In the figure, 

each abrupt Vt change in stress/recovery Vt traces is caused by single charge 
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creation/detrapping in gate dielectrics. Due to the discrete nature of Vt evolutions, we 

are able to measure individual charge creation/detrapping times and the magnitudes of 

single charge induced Vt shifts. Statistical characterization of NBTI traps in nanoscale 

devices helps gain insight into mechanisms in NBTI stress. 

 

2.2 Device Details and Measurement setup 

    We characterize NBTI stress in high-k (HfSiON) gate dielectric and metal gate 

(TiN) pMOSFETs. The devices have a gate length of 30nm, a gate width of 80nm and 

an equivalent oxide thickness (EOT) of ~1.0nm. The device structure we used in this 

thesis is illustrated in Fig. 2.2.  

 

Schematic diagram for NBTI stress transient measurement is shown in Fig. 2.3 

(a). The stress characterization scheme is similar to [27], i.e., in a 

stress-measurement-stress (SMS) sequence, as shown in Fig. 2.3 (b). In NBTI stress 

phase, |Vg,stress|=1.8V and Vd=0V at room temperature for 100sec. In measurement 

phase, the drain voltage |Vd,meas| is 0.05V and the gate voltage |Vg,meas| is chosen such 

that a pre-stress drain current is ~500nA. Drain current variations (Id) are recorded 

using Agilent B1500 with a switch delay time less than 1s. A corresponding Vt is 

obtained from a measured Id divided by a transconductance (gm). 

 

2.3 Single Charge Induced vt Distribution and Percolation 

Effect 

    To check on Si surface trap creation in NBTI stress, we monitor 

transconductance (gm) and subthreshold swing (S) degradations during stress. 
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Pre-stress and post-stress subthreshold Id−Vg are shown in Fig. 2.4. An almost parallel 

shift is noted, suggesting that Vt degradation is mainly caused by trapped charge 

creation in the bulk of gate dielectrics rather than surface traps. Both S and gm 

degradations are less than 5% after the stress. For simplicity, a constant gm is used 

when converting a Id into a Vt. Fig. 2.5 shows example Id and Vt traces in NBTI 

stress. A small letter (vt,i) denotes a single trapped hole creation induced Vt shift, 

where i denotes a trapped charge creation sequence number. A capital letter (Vt) is a 

total Vt shift after stress.  

 

In nanoscale MOSFETs, non-uniform 3D electrostatics and the discreteness and 

the randomness of substrate dopants determine current percolation paths in a channel 

(Fig. 2.6). Thus, each trapped charge creation has specific vt amplitude depending on 

its position in a channel.  

 

We measure and record the magnitudes of single-charge induced vt in NBTI 

stress/recovery Vt traces in ~130 pMOSFETs. The magnitude distributions of the vt 

are plotted in Fig. 2.7. The measurement resolution is about 1mV. Voltage steps with 

vt less than 1mV are not recorded. The collected vt from stress traces and from 

recovery traces have a similar distribution, characterized by an exponential function 

f(|vt|)=exp(−|vt|/amp)/amp with a amp of 3.3mV. A straight line with a slope of 

3.3mV is drawn to serve as a reference. The exponential function is an empirical 

formula. The origin and the dispersion of the vt have been studied thoroughly. In 

such small-area devices, single-charge induced vt cannot be estimated from its 

distance to a gate electrode by using a 1D capacitance equation C=/d because of a 

strong random dopant induced current percolation effect (Fig. 2.6). The exponential 
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distribution is realized due to the percolation effect [3, 17-18, 28-29]. A 3D atomistic 

numerical device simulation shows a similar vt probability function [29]. 

 

2.4 Characteristic Times for Trapped Charge Creation 

    The second factor affecting an NBTI induced Vt distribution is the dispersion of 

a characteristic time for a trapped hole creation. Individual trapped hole creation times 

are clearly defined in stress Vt traces, for example, 1, 2 and 3 in Fig. 2.5. We collect 

the first three trapped hole creation times (i, i=1,2,3) from about 130 devices. The 

probability density functions (PDFs) of the log(i), i=1,2,3, are shown in Fig. 2.8. It 

should be remarked that about 3% devices have less than 3 traps created in a stress 

period of 100sec. The mean (<log(i)>) and the standard deviation of the three log(i) 

distributions are indicated in Table I. The solid line in Fig. 2.8 is a fit by a Gaussian 

distribution.  

 

                                                              Eq. (2.1) 

 

The trap creation characteristic times scatter over several orders of magnitudes. 

The wide spread of i is attributed to the dispersion from different local chemistry and 

3D electrostatics such as random dopants and edge effects in a nanoscale device. We 

calculate the mean of each log(i) and reveal a relationship 

<log(i)>−<log(1)>~nlog(i), as shown in Fig. 2.9. A statistical i distribution model 

will be developed. 
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Fig. 2.1 (a) Continuous Vt evolutions in NBTI stress and relaxation in a large-area 

(W/L=3m/2m) high-k pMOSFET. Vg is −1.8V in stress. T= 25°C. (b) Stepwise Vt 

evolutions in NBTI stress and relaxation in a small-area (W/L=80nm/30nm) high-k 

pMOSFET. Vg is −1.8V in stress. T=25°C. The abrupt Vt shifts represent 

single-charge trapping and detrapping. 
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Fig. 2.2 We characterize NBTI stress in high-k (HfSiON) gate dielectric and metal 

gate (TiN) MOSFETs. The devices have a gate length of 30nm, a gate width of 80nm 

and an equivalent oxide thickness of ~1.0nm. 
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Fig. 2.3 (a) Schematic diagram for NBTI stress transient characterization. (b) The 

waveforms applied to the gate and the drain in stress and in measurement phases. 
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Fig. 2.4 log(Id) versus Vg plots before and after 100sec NBTI stress at Vg=−1.8V in a 

pMOSFET. 
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Fig. 2.5 Example Id and Vt traces in NBTI stress. 1, 2 and 3 are the 1st, the 2nd 

and the 3rd trapped hole creation times, respectively. vt,i (i = 1, 2, 3) represents a 

single trapped hole creation induced threshold voltage shift. 
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Fig. 2.6 Illustration of channel surface potential and current pattern. When the trapped 

charge locates on the main current path, it will induce larger vt amplitude. 
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Fig. 2.7 The magnitude distributions of single-charge induced vt collected from 

NBTI stress and recovery Vt traces in 130 pMOSFETs. The solid line is drawn as a 

reference. 
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Fig. 2.8 The probability density distribution of a trapped charge (hole) creation time 

in NBTI stress. 1, 2, and 3 are the 1st, the 2nd, and the 3rd trapped hole creation 

times, respectively, in a device. The three log() distributions have a similar shape but 

are shifted by an amount nlog(i). 
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Fig. 2.9 We calculate the mean (<log(i)>) of the three log(i) distributions and reveal 

a relationship <log(i)>－<log(1)>~nlog(i). i is a sequence number in trapped charge 

creation in NBTI stress and n is about 5.6. 
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Table I The mean (<log(i)>) and the standard deviation of the three log(i) 

distributions. i is a sequence number in trapped charge creation in NBTI stress. 

  

trapped hole 

creation time
1 2 3

mean of log() 

(<log()>)
−3.572 −1.885 −0.906

standard

deviation of log()
1.436 1.379 1.282
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Chapter 3 

Modeling of an NBTI induced Vt 

Distribution 
 

3.1 Preface 

    An NBTI induced Vt distribution in pMOSFETs is explored and characterized. 

In the previous chapter, we characterize individual trapped charge creation by NBTI 

stress in a large number of nanoscale high-k pMOSFETs. The time constant (i) 

distributions of the first three trapped holes (i=1,2,3) are obtained. The mean and the 

variance of the log(i) are investigated. We find that the characteristic times of a 

trapped charge creation scatter over several decades of time in nanoscale pMOSFETs, 

which is attributed to the dispersion from different local chemistry in 

reaction-diffusion (RD) model and 3D electrostatics such as random dopants and edge 

effects in a nanoscale device. Two NBTI degradation models, a RD model [10] and a 

charge trapping model [11-12], have been proposed. Since in this work our measured 

NBTI induced Vt degradation obeys a t
1/n

 dependence, an NBTI induced Vt 

distribution model will be developed based on the RD model.  

 

We collect the first three trapped charge creation times (i, i=1,2,3) from about 

130 devices. A statistical model for an NBTI induced Vt distribution by employing 

the RD model and convolving collected the trapped charge creation times (i) and a 

single trapped charge induced Vt shift is developed. Our model reproduces 

measurement results of an overall NBTI induced Vt distribution and its stress time 

evolutions well. 
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3.2 Reaction-Diffusion Model (RD Model) 

According to the RD model, the stress time dependence of the number of NBTI 

generated traps in a device is shown below [10], 

 

                                                              Eq. (3.1) 

 

and 

 

Eq. (3.2) 

 

Nt is a total number of NBTI trapped charges in a device (also interpreted as a 

sequence number of the last created trapped charge). W is a gate width, L is a gate 

length, and other variables have their usual definitions in [10]. Three activation 

energies (EF, ER, Ediffusion) associated with KF, KR, and D in the RD model are lumped 

together and activation energy (ED) in Eq. (3.1) is defined as 

 

Eq. (3.3) 

 

By re-arranging the terms in Eq. (3.1), the i-th trapped charge creation time (i) is 

shown below 

 

Eq. (3.4) 
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3.3 Relationship of i Distributions in Trapped Charge 

Creation 

In the following, we re-arranging the terms and taking average in Eq. (3.4) and 

the relationship of the mean of the log(i) is obtained,  

 

Eq. (3.5) 

 

It should be remarked that a real subtracted amount is 1.69 for log(2) (cf. 

6log(2)=1.81) and 2.67 for log(3) (cf. 6log(3) =2.86). The slight difference is in that 

Eq. (3.5) is derived based on an NBTI evolution rate (t
1/n

) with n=6 while our 

measured n is about 5.6 in an initial stress stage. Thus, we obtain 

<log(2)>−<log(1)>=5.6log(2)=1.69 and <log(3)>−<log(1)>=5.6log(3)=2.67. The 

calculated result from Eq. (3.5) is in reasonable agreement with the measurement 

result in Table I. 

 

Furthermore, we can shift the measured log(i) distribution by subtracting a term 

nlog(i) from Eq. (3.5). The log(i)−nlog(i) distributions from the 1, 2, and 3, 

respectively, are shown in Fig. 3.1. A reasonably good match of the log() 

distributions from the 1, 2, and 3 is obtained. The solid line in Fig. 3.1 represents a 

Gaussian-distribution fit. The standard deviation of the Gaussian distribution is about 

1.6. 

 

3.4 NBTI Stress Induced Vt Spread 

    We measure threshold voltage shifts at different stress times in a number of 

1log( ) log( ) log( ).i n i     
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NBTI stressed pMOSFETs. The number of trapped holes and a total threshold voltage 

shift (Vt) in each device are recorded. Fig. 3.2 shows the measurement results at a 

stress time of 0.01s, 1s and 100s, respectively. The y-axis is a total Vt in stress and 

the x-axis is the number of trapped holes. Each data point represents a device. A 

straight line with a slope of 3.3mV, i.e., an average single-charge induced Vt shift, is 

drawn in the figure as a reference. The measurement data scatter along the lines. The 

Vt and the number distributions broaden with stress time.  

 

We extract the mean and the variance of the Vt distributions. An average of Vt 

in 130 devices is plotted in Fig. 3.3. The mean follows a power law dependence on 

stress time (t
1/n

) in five decades of time with n about 6. The variance of the Vt 

distribution also increases with stress time, as shown in Fig. 3.4. In our earlier work, 

we reported a two-stage Vt degradation by BTI stress [11]. The first stage is ascribed 

to the charging of pre-existing high-k dielectric traps and exhibits a log(t) dependence. 

The second stage degradation is caused by high-k dielectric trap creation and follows 

a power law dependence on stress time. Note that a log(t) degradation stage is not 

observed in this work possibly because of no many pre-existing traps in the current 

samples.  

  

3.5 Monte Carlo Simulation Results and Discussion 

A statistical model based on a Monte Carlo (MC) approach is developed. Based 

on the collected the trapped charge creation times (i) and vt distributions, a Monte 

Carlo simulation can calculate the number of traps (N) and entire Vt distributions. A 

Monte Carlo flowchart is shown in Fig. 3.5. In our MC simulation, a trapped charge 

creation sequence number (i) is assigned to each precursor in a device. The trapped 
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charge creation times (i) of each precursor is chosen according to the Gaussian 

distribution in Fig. 3.1. A Poisson-distributed precursor number (M) in each device is 

assumed with a mean value of 24 in an 80nm×30nm device, which corresponds to a 

precursor density of 10
12 

cm
-2

 [30]. Each trapped charge creation time (i) is then 

shifted according to Eq. (3.5). A trapped charge creation time with the shortest  has i 

= 1, and the second shortest one has i = 2 and so on. In this approach, we can 

reproduce the same i distributions (Fig. 3.6).  

 

For a stress time t, the number of trapped charges N is computed by counting all 

the precursors with i (i=1,2,...,M) less than t. For each counted trapped charge, a 

single trapped charge induced Vt shift (vt) is randomly selected based on an 

exponential distribution, f(|vt|)=exp(−|vt|/amp)/amp, with amp=3.3mV. An NBTI 

induced Vt at a stress time t can be computed by summing up all the vt, i.e., 

,1

N

t t ii
V v


   . In total, 5x10

5 
devices are simulated in Monte Carlo simulation. The 

mean and the variance of the simulated Vt distributions versus stress time are shown 

in Fig. 3.3 and Fig. 3.4, respectively. Good agreement between the Monte Carlo 

simulation and measurement results is obtained. In addition, we compare measured 

and simulated Vt distributions at different stress times. Complementary cumulative 

distribution functions (1-CDF) of NBTI induced Vt at a stress time of t=0.01s, 1s 

and 100s are plotted in Fig. 3.7. The inset of the figure is the probability density 

function of Vt. Our simulation is in good agreement with measurement results.  

 

Finally, we also compare this model with the Poisson distributed trap number 

model [17-19] at a stress time of 100s. To examine the difference in a Vt distribution 

tail, complementary cumulative distribution functions (1-CDF) of the two models at a 
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stress time of 100s are plotted in Fig. 3.8 with a logarithmic scale in y-axis. The 

probability density distributions of a trapped charge number from the two models are 

plotted in Fig. 3.9. The Poisson model apparently yields a broader distribution in 

trapped charge number (N) and thus a larger NBTI induced Vt tail. The difference 

between the two models increases with stress time as more trapped charges are 

created. The reason is that individual trapped charge creations are un-correlated in the 

Poisson model. In other words, each new trap creation in a device has the same 

probability regardless of how many traps have been created. Nevertheless, the RD 

model and measurement results show that NBTI degradation obeys a power-law (t
1/n

) 

dependence on stress time, implying that trapped charge creation becomes more 

difficult as a sequence number of charge creation increases. We also compare NBTI 

failure rates in 100sec stress from the two models with two Vt failure criteria, Vt > 

50mV and 100mV (Table II). The difference between the two models increases as a 

failure Vt increases. Our model can fit an NBTI distribution tail better.  
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Fig. 3.1 The probability density distributions of log(i)－nlog(i). The solid line 

represents a Gaussian-distribution fit. 
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Fig. 3.2 NBTI induced Vt versus number of created trapped holes in a device at a 

stress time of 0.01s (a), 1s (b) and 100s (c). Each data point represents a device. A 

straight line with a slope of 3.3 mV is drawn as a reference. 
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Fig. 3.3 The mean of the Vt distribution versus NBTI stress time from measurement 

and from our model. 
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Fig. 3.4 The variance of the Vt distribution versus NBTI stress time from 

measurement and from our model. 
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Fig. 3.5 A Monte Carlo simulation flowchart. M is the number of precursors in a 

device. A precursor density of 1×10
12

 1/cm
2
 is assumed. 
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Fig. 3.6 Probability density distributions of a trapped charge (hole) creation time in a 

log() scale. The symbols are measurement result and the solid lines are from Monte 

Carlo simulation. 
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Fig. 3.7 Complementary cumulative distribution functions (1-CDF) of NBTI induced 

Vt from measurement and from a Monte Carlo simulation. The stress time is 0.01s 

(a), 1s (b) and 100s (c), respectively. The inset shows the probability distributions of 

Vt.  
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Fig. 3.8 Comparison of NBTI induced Vt distributions (1-CDF) calculated from this 

model and from the Poisson distributed trap number model. The dots are 

measurement result. The stress time is 100s. 
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Fig. 3.9 The probability density distributions of a trapped charge number from our 

model and from the Poisson distributed trap number model.  
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Table II NBTI failure rates in 100s stress based on two Vt failure criteria. 

  

NBTI Failure 

Criterion

Poisson

Model 
This Model Measurement

Vt = 50mV 10.98% 7.62% 9 / 132

Vt = 100mV 0.032% 0.003% N / A
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Chapter 4 

Conclusion 

 

    A discrete feature in NBTI stress Vt evolutions due to individual trapped charge 

creations in small-area devices is observed. Single charge creation times and induced 

Vt shifts are clearly defined. This single charge characterization approach allows us to 

gain insight into NBTI induced threshold voltage shift distributions in small-area 

devices. Statistical characterization of individual trapped charge creations in NBTI 

stress in a large number of nanoscale high-k (HfSiON)/metal gate (TiN) pMOSFETs 

is performed and an NBTI induced Vt distribution have been investigated.  

 

Two factors are found to influence an NBTI induced Vt distribution. One is the 

dispersion of single trapped charge induced threshold voltage shift and the other one 

is the dispersion of trapped charge creation times. The broad distribution of trapped 

charge creation times is attributed to the dispersion from different local chemistry and 

3D electrostatics such as random dopants and edge effects in a nanoscale device.  

 

We develop a statistical model based on measured trap characteristic time 

distributions to simulate an NBTI induced Vt distribution in nanoscale devices. A 

correlation between the trapped charge creation distributions and the spread of an 

NBTI induced Vt distribution has been established. Our model can reproduce a 

measurement result of an NBTI induced Vt distribution and its stress time evolution 

well. 
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